Sample records for material characterization efforts

  1. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  2. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less

  3. Detection and Characterization of Malathion Adherence to Piping Materials Used in Water Distribution Systems

    DTIC Science & Technology

    2015-03-26

    photoelectron spectroscopy was also used in an effort to detect shifts in the adsorptive spectra that appeared to be attributable to the presence of trace ... DETECTION AND CHARACTERIZATION OF MALATHION ADHERENCE TO PIPING MATERIALS USED IN WATER DISTRIBUTION... DETECTION AND CHARACTERIZATION OF MALATHION ADHERENCE TO PIPING MATERIALS USED IN WATER DISTRIBUTION SYSTEMS THESIS Presented to the Faculty

  4. Superpave in-situ stress/strain investigation--phase II : vol. II, materials characterization.

    DOT National Transportation Integrated Search

    2009-05-01

    The characterization of materials is an intergral part of the overall effort to validate the Superpave system and to calibrate the performance prdeictionmodels for the environmental conditions observed in the Commonwealth of Pennsylvania.

  5. Role of Microstructure on the Performance of UHTCs

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead

    2010-01-01

    We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.

  6. A summary of laboratory testing performed to characterize and select an elastomeric O-ring material to be used in the redesigned solid rocket motors of the space transportation system

    NASA Technical Reports Server (NTRS)

    Turner, J. E.

    1993-01-01

    An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.

  7. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  8. Materials characterization on efforts for ablative materials

    NASA Technical Reports Server (NTRS)

    Tytula, Thomas P.; Schad, Kristin C.; Swann, Myles H.

    1992-01-01

    Experimental efforts to develop a new procedure to measure char depth in carbon phenolic nozzle material are described. Using a Shor Type D Durometer, hardness profiles were mapped across post fired sample blocks and specimens from a fired rocket nozzle. Linear regression was used to estimate the char depth. Results are compared to those obtained from computed tomography in a comparative experiment. There was no significant difference in the depth estimates obtained by the two methods.

  9. Preliminary Validation of Composite Material Constitutive Characterization

    Treesearch

    John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson

    2012-01-01

    This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...

  10. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  11. Metagenomic Characterization and Biochemical Analysis of Cellulose-Degrading Bacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials, and Soil

    DTIC Science & Technology

    2016-01-04

    Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant Materials,and Soil In an effort to...degrading bacteria from various samples, including termite gut, sheep rumen, soil, and decaying plant materials. Using selective media culture with...Metagenomic Characterization and Biochemical Analysis of Cellulose-DegradingBacterial Communities from Sheep Rumen, Termite Hindgut, Decaying Plant

  12. Metalorganic chemical vapor deposition and characterization of ZnO materials

    NASA Astrophysics Data System (ADS)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  13. Development and Characterization of Reference Materials for Genetic Testing: Focus on Public Partnerships.

    PubMed

    Kalman, Lisa V; Datta, Vivekananda; Williams, Mickey; Zook, Justin M; Salit, Marc L; Han, Jin Yeong

    2016-11-01

    Characterized reference materials (RMs) are needed for clinical laboratory test development and validation, quality control procedures, and proficiency testing to assure their quality. In this article, we review the development and characterization of RMs for clinical molecular genetic tests. We describe various types of RMs and how to access and utilize them, especially focusing on the Genetic Testing Reference Materials Coordination Program (Get-RM) and the Genome in a Bottle (GIAB) Consortium. This review also reinforces the need for collaborative efforts in the clinical genetic testing community to develop additional RMs.

  14. Characterization of Cyclohexanone Inclusions in Class 1 RDX

    DTIC Science & Technology

    2014-06-01

    characterized with respect to solvent inclusions in support of a U.S. Army Research Laboratory (ARL) program to model Multiscale Response of Energetic...pertinent to their modeling effort under the Multiscale Response of Energetic Materials (MREM) program, and the Weapons and Materials Research...support of a U.S. Army Research Laboratory (ARL) initiative called “ Multiscale Modeling of Energetic Materials” (MREM). The MREM program aims, for

  15. Thermal and Chemical Characterization of Composite Materials. MSFC Center Director's Discretionary Fund Final Report, Project No. ED36-18

    NASA Technical Reports Server (NTRS)

    Stanley, D. C.; Huff, T. L.

    2003-01-01

    The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

  16. Investigation of hot mix asphalt mixtures at Mn/ROAD : final report

    DOT National Transportation Integrated Search

    1997-02-01

    This report presents the material characterization for the Minnesota Road Research Project (Mn/ROAD) bituminous materials. This effort will provide the historical base line information on properties needed for the validation of future pavement evalua...

  17. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  18. Engineered materials characterization report, volume 3 - corrosion data and modeling update for viability assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCright, R D

    1998-06-30

    This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less

  19. Quantifying and Addressing the DOE Material Reactivity Requirements with Analysis and Testing of Hydrogen Storage Materials & Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Y. F.

    2012-04-30

    The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogenmore » storage safety to provide a larger, highly coordinated effort.« less

  20. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  1. Spectral characterization of natural backgrounds

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  2. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  3. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  4. High Performance Polymers and Composites (HiPPAC) Center

    NASA Technical Reports Server (NTRS)

    Mintz, Eric A.; Veazie, David

    2005-01-01

    NASA University Research Centers funding has allowed Clark Atlanta University (CAU) to establish a High Performance Polymers and Composites (HiPPAC) Research Center. Clark Atlanta University, through the HiPPAC Center has consolidated and expanded its polymer and composite research capabilities through the development of research efforts in: (1) Synthesis and characterization of polymeric NLO, photorefractive, and piezoelectric materials; (2) Characterization and engineering applications of induced strain smart materials; (3) Processable polyimides and additives to enhance polyimide processing for composite applications; (4) Fabrication and mechanical characterization of polymer based composites.

  5. Institute for Advanced Materials at University of Louisville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkara, Mahendra; Sumaneskara, Gamini; Starr, Thomas L

    2009-10-29

    In this project, a university-wide, academic center has been established entitled Institute for Advanced Materials and Renewable Energy. In this institute, a comprehensive materials characterization facility has been established by co-locating several existing characterization equipment and acquiring several state of the art instrumentation such as field emission transmission electron microscope, scanning electron microscope, high resolution X-ray diffractometer, Particle Size Distribution/Zeta Potential measurement system, and Ultra-microtome for TEM specimen. In addition, a renewable energy conversion and storage research facility was also established by acquiring instrumentation such as UV-Vis absorption spectroscopy, Atomic Layer Deposition reactor, Solar light simulator, oxygen-free glove box, potentiostat/galvanostatsmore » and other miscellaneous items. The institute is staffed with three full-time staff members (one senior research technologist, a senior PhD level research scientist and a junior research scientist) to enable proper use of the techniques. About thirty faculty, fifty graduate students and several researchers access the facilities on a routine basis. Several industry R&D organizations (SudChemie, Optical Dynamics and Hexion) utilize the facility. The established Institute for Advanced Materials at UofL has three main objectives: (a) enable a focused research effort leading to the rapid discovery of new materials and processes for advancing alternate energy conversion and storage technologies; (b) enable offering of several laboratory courses on advanced materials science and engineering; and (c) develop university-industry partnerships based on the advanced materials research. The Institute's efforts were guided by an advisory board comprising eminent researchers from outside KY. Initial research efforts were focused on the discovery of new materials and processes for solar cells and Li ion battery electrodes. Initial sets of results helped PIs to secure a successful EPSCoR cluster implementation grant by teaming with additional researchers from UK. In addition to research efforts, the project enabled several other outcomes: (a) helped recruit a junior faculty member (Dr. Moises Carreon) and establish a lab focused on meso-porous materials toward separation and catalysis; (b) enabled offering of three new, graduate level courses (Materials characterization using spectroscopy and microscopy; Electron and x-ray diffraction; and renewable energy systems); and (c) mentoring of a junior faculty members (Dr. Gerold Willing).« less

  6. Characterization of Formaldehyde Emissions from Tire Crumb Rubber in Small Environmental Chambers - 2

    EPA Science Inventory

    Concerns have been raised about the safety of recycled rubber tire crumbs used in synthetic turf fields and playgrounds in the United States. To support federal efforts to better characterize recycled tire-derived surface materials, dynamic small chamber tests were conducted at...

  7. Experimental and Analytical Studies for a Computational Materials Program

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1999-01-01

    The studies supported by Grant NAG1-1780 were directed at providing physical data on polymer behavior that would form the basis for computationally modeling these types of materials. Because of ongoing work in polymer characterization this grant supported part of a larger picture in this regard. Efforts went into two combined areas of their time dependent mechanical response characteristics: Creep properties on the one hand, subject to different volumetric changes (nonlinearly viscoelastic behavior) and time or frequency dependence of dilatational material behavior. The details of these endeavors are outlined sufficiently in the two appended publications, so that no further description of the effort is necessary.

  8. Towards intelligent microstructural design of Nanocomposite Materials. Lightweight, high strength structural/armor materials for service in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mara, Nathan Allan; Bronkhorst, Curt Allan; Beyerlein, Irene Jane

    2015-12-21

    The intent of this research effort is to prove the hypothesis that: Through the employment of controlled processing parameters which are based upon integrated advanced material characterization and multi-physics material modeling, bulk nanolayered composites can be designed to contain high densities of preferred interfaces that can serve as supersinks for the defects responsible for premature damage and failure.

  9. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  10. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE PAGES

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...

    2017-03-28

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  11. Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1972-01-01

    The effort and results of a program to determine and study the critical process variables associated with the manufacture of aerospace, hermetically-sealed, nickel-cadmium cells are reported. During the period, the impregnation/polarization process variable study was brought to a close with the completion of a series of related experiments. The results of the experiments are summarized. During this period, a general characterization of cell separator materials was initiated. The major conclusions resulting from the characterization of materials are included.

  12. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  13. Exploring Preservice Elementary Teachers' Critique and Adaptation of Science Curriculum Materials in Respect to Socioscientific Issues

    ERIC Educational Resources Information Center

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-01-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students' learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers' critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate…

  14. Evaluation of ceramics for stator application: Gas turbine engine report

    NASA Technical Reports Server (NTRS)

    Trela, W.; Havstad, P. H.

    1978-01-01

    Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.

  15. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    PubMed

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  16. Superpave in-situ stress/strain investigation--phase II : vol. I, summary report.

    DOT National Transportation Integrated Search

    2009-05-01

    The characterization of materials is an intergral part of the overall effort to validate the Superpave system and to calibrate the performance prdeictionmodels for the environmental conditions observed in the Commonwealth of Pennsylvania.

  17. Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials

    NASA Technical Reports Server (NTRS)

    Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor

    2007-01-01

    This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.

  18. Wormhole Formation in RSRM Nozzle Joint Backfill

    NASA Technical Reports Server (NTRS)

    Stevens, J.

    2000-01-01

    The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and predictions. Finally, two candidate replacement materials are being screened and "validated" using the developed test systems.

  19. Advances on the constitutive characterization of composites via multiaxial robotic testing and design optimization

    Treesearch

    John G. Michopoulos; John Hermanson; Athanasios Iliopoulos

    2014-01-01

    The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...

  20. Novel Magnetic Fluids for Breast Cancer Therapy

    DTIC Science & Technology

    2005-04-01

    synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano

  1. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  2. Replacing critical rare earth materials in high energy density magnets

    NASA Astrophysics Data System (ADS)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  3. Characterization of the Environmentally Induced Chemical Transformations of Uranium Tetrafluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellons, M.

    A key challenge with nuclear safeguards environmental sampling is identification of the materials post release due to subsequent chemical reactions with ambient water and oxygen. Uranium Tetrafluoride (UF4) is of interest as an intermediate in both the upstream and downstream portions of uranium feedstock and metal production processes used in nuclear fuel production; however minimal published research exists relating to UF4 hydrolysis. FY16 efforts were dedicated to in-situ Raman spectroscopy and X-ray diffraction characterization of UF4 during exposure to various relative humidity conditions. This effort mapped several hydrolysis reaction pathways and identified both intermediate, and terminal progeny species.

  4. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  5. Ion irradiation testing and characterization of FeCrAl candidate alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less

  6. Superpave in-situ stress/strain investigation--phase II : vol. IV, mechanistic analysis and implementation.

    DOT National Transportation Integrated Search

    2009-05-01

    The characterization of materials is an intergral part of the overall effort to validate the Superpave system and to calibrate the performance prdeictionmodels for the environmental conditions observed in the Commonwealth of Pennsylvania.

  7. A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Junpeng; Liu, Hongwei

    2018-01-01

    Accurately illustrating the photocarrier dynamics and photoelectrical properties of two dimensional (2D) materials is crucial in the development of 2D material-based optoelectronic devices. Considering this requirement, terahertz (THz) spectroscopy has emerged as a befitting characterization tool to provide deep insights into the carrier dynamics and measurements of the electrical/photoelectrical conductivity of 2D materials. THz spectroscopic measurements would provide information of transient behaviors of carriers with high accuracy in a nondestructive and noncontact manner. In this article, we present a comprehensive review on recent research efforts on investigations of 2D materials of graphene and transition metal dichalcogenides (TMDs) using THz spectroscopy. A brief introduction of THz time-domain spectroscopy (THz-TDS) and optical pump-THz probe spectroscopy (OPTP) is provided. The characterization of the electron transport of graphene at equilibrium state and transient behavior at non-equilibrium state is reviewed. We also review the characterizations of TMDs including MoS2 and WSe2. Finally, we conclude the recent reports and give a prospect on how THz characterizations would guide the design and optimization of 2D material-based optoelectronic devices.

  8. Acoustic emission measurements of aerospace materials and structures

    NASA Technical Reports Server (NTRS)

    Sachse, Wolfgang; Gorman, Michael R.

    1993-01-01

    A development status evaluation is given for aerospace applications of AE location, detection, and source characterization. Attention is given to the neural-like processing of AE signals for graphite/epoxy. It is recommended that development efforts for AE make connections between the material failure process and source dynamics, and study the effects of composite material anisotropy and inhomogeneity on the propagation of AE waves. Broadband, as well as frequency- and wave-mode selective sensors, need to be developed.

  9. Superpave in-situ stress/strain investigation--phase II : vol. III, field data collection and summary.

    DOT National Transportation Integrated Search

    2009-05-01

    The characterization of materials is an intergral part of the overall effort to validate the Superpave system and to calibrate the performance prdeictionmodels for the environmental conditions observed in the Commonwealth of Pennsylvania.

  10. Development of quiet and durable porous Portland cement concrete paving materials

    DOT National Transportation Integrated Search

    2003-09-01

    This report outlines the systematic research effort conducted in order to develop and characterize Enhanced Porosity Concrete (EPC) to mitigate the problem of tire-road interaction noise. The basic tenet of this research is that carefully introduced ...

  11. Fabrication of eco-friendly PNP transistor using RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kumar, B. Santhosh; Harinee, N.; Purvaja, K.; Shanker, N. Praveen; Manikandan, M.; Aparnadevi, N.; Mukilraj, T.; Venkateswaran, C.

    2018-05-01

    An effort has been made to fabricate a thin film transistor using eco-friendly oxide semiconductor materials. Oxide semiconductor materials are cost - effective, thermally and chemically stable with high electron/hole mobility. Copper (II) oxide is a p-type semiconductor and zinc oxide is an n-type semiconductor. A pnp thin film transistor was fabricated using RF magnetron sputtering. The films deposited have been subjected to structural characterization using AFM. I-V characterization of the fabricated device, Ag/CuO/ZnO/CuO/Ag, confirms transistor behaviour. The mechanism of electron/hole transport of the device is discussed below.

  12. Material Models for the Human Torso Finite Element Model

    DTIC Science & Technology

    2018-04-04

    material characterizations drawn from current literature. Biofidelity of the ARL torso was determined by comparing peak force, force-displacement, peak...Flesh simulation. The soft tissue mesh in the upper neck was highly distorted at 21.2 ms (right) compared to the original mesh (left...a realistic response with results comparable to physical experiments to support future efforts to evaluate BABT. 2. Methods 2.1 Review of

  13. Abstracts of AF Materials Laboratory Reports. January 1973 - December 1973

    DTIC Science & Technology

    1974-07-01

    substituted polymers with aryl ether , ketone and sulfone units in the backbone has been studied. The best resins seem to have come from simple...exposed to hostile environments such as heat aging plus salt spray, humid aging , humid aging and elevated temperature cycling, and fatigue...unclassified results of materials and process and radome characterization effort. Environmental exposure including thermal aging resulted in significant

  14. Mechanical Impact Testing: A Statistical Measurement

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie

    2005-01-01

    In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.

  15. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  16. Investigation of Zerodur material processing

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    The Final Report of the Center for Applied Optics (CAO), of The University of Alabama (UAH) study entitled 'Investigation of Zerodur Material Processing' is presented. The objectives of the effort were to prepare glass samples by cutting, grinding, etching, and polishing block Zerodur to desired specifications using equipment located in the optical shop located in the Optical System Branch at NASA/MSFC; characterize samples for subsurface damage and surface roughness; utilize Zerodur samples for coating investigations; and perform investigations into enhanced optical fabrication and metrology techniques. The results of this investigation will be used to support the Advanced X Ray Astrophysics Facility (AXAF) program as well as other NASA/MSFC research programs. The results of the technical effort are presented and discussed.

  17. A Study of Submicron Grain Boundary Precipitates in Ultralow Carbon 316LN Steels

    NASA Astrophysics Data System (ADS)

    Downey, S.; Han, K.; Kalu, P. N.; Yang, K.; Du, Z. M.

    2010-04-01

    This article reports our efforts in characterization of an ultralow carbon 316LN-type stainless steel. The carbon content in the material is one-third that in a conventional 316LN, which further inhibits the formation of grain boundary carbides and therefore sensitizations. Our primary effort is focused on characterization of submicron size precipitates in the materials with the electron backscatter diffraction (EBSD) technique complemented by Auger electron spectroscopy (AES). Thermodynamic calculations suggested that several precipitates, such as M23C6, Chi, Sigma, and Cr2N, can form in a low carbon 316LN. In the steels heat treated at 973 K (700 °C) for 100 hours, a combination of EBSD and AES conclusively identified the grain boundary precipitates (≥100 nm) as Cr2N, which has a hexagonal closed-packed crystallographic structure. Increases of the nitrogen content promote formation of large size Cr2N precipitates. Therefore, prolonged heat treatment at relatively high temperatures of ultralow carbon 316LN steels may result in a sensitization.

  18. Characterization Of Graphene-Ferroelectric Superlattice Hybrid Devices

    NASA Astrophysics Data System (ADS)

    Yusuf, Mohammed; Du, Xu; Dawber, Matthew

    2013-03-01

    Ferroelectric materials possess a spontaneous electrical polarization, which can be controlled by an electric field. A good interface between ferroelectric surface and graphene sheets can introduce a new generation of multifunctional devices, in which the ferroelectric material can be used to control the properties of graphene. In our approach, problems encountered in previous efforts to combine ferroelectric/carbon systems are overcome by the use of artificially layered superlattice materials grown in the form of epitaxial thin films. In these materials the phase transition temperature and dielectric response of the material can be tailored, allowing us to avoid polarization screening by surface absorbates, whilst maintaining an atomically smooth surface and optimal charge doping properties. Using ferroelectric PbTiO3/SrTiO3 superlattices, we have shown ultra-low-voltage operation of graphene field effect devices within +/- 1 V at room temperature. The switching of the graphene field effect transistors is characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics. Low temperature characterization confirmed that the coercive field required for the ferroelectric domain switching increases significantly with decreasing temperatures. National Science Foundation (NSF) (grant number 1105202)

  19. New materials and structures for photovoltaics

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Wagner, S.; Petroff, P. M.

    1993-01-01

    Despite the fact that over the years crystal chemists have discovered numerous semiconducting substances, and that modern epitaxial growth techniques are able to produce many novel atomic-scale architectures, current electronic and opto-electronic technologies are based but on a handful of ˜10 traditional semiconductor core materials. This paper surveys a number of yet-unexploited classes of semiconductors, pointing to the much-needed research in screening, growing, and characterizing promising members of these classes. In light of the unmanageably large number of a-priori possibilities, we emphasize the role that structural chemistry and modern computer-aided design must play in screening potentially important candidates. The basic classes of materials discussed here include nontraditional alloys, such as non-isovalent and heterostructural semiconductors, materials at reduced dimensionality, including superlattices, zeolite-caged nanostructures and organic semiconductors, spontaneously ordered alloys, interstitial semiconductors, filled tetrahedral structures, ordered vacancy compounds, and compounds based on d and f electron elements. A collaborative effort among material predictor, material grower, and material characterizer holds the promise for a successful identification of new and exciting systems.

  20. DebriSat Fragment Characterization System and Processing Status

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Shiotani, B.; M. Carrasquilla; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2016-01-01

    The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from hypervelocity impact tests performed to simulate on-orbit collisions. After the impact tests, a team at the University of Florida has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the post-impact effort has been the collection of 2 mm and larger fragments resulting from the hypervelocity impact test. To date, in excess of 125K fragments have been recovered which is approximately 40K more than the 85K fragments predicted by the existing models. While the fragment collection activities continue, there has been a transition to the characterization of the recovered fragments. Since the start of the characterization effort, the focus has been on the use of automation to (i) expedite the fragment characterization process and (ii) minimize the effects of human subjectivity on the results; e.g., automated data entry processes were developed and implemented to minimize errors during transcription of the measurement data. At all steps of the process, however, there is human oversight to ensure the integrity of the data. Additionally, repeatability and reproducibility tests have been developed and implemented to ensure that the instrumentations used in the characterization process are accurate and properly calibrated.

  1. LDRD Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweany, Melinda

    2017-10-01

    This is a high-risk effort to leverage knowledge gained from previous work, which focused on detector development leading to better energy resolution and reconstruction errors. This work seeks to enable applications that require precise elemental characterization of materials, such as chemical munitions remediation, offering the potential to close current detection gaps.

  2. Fatigue Crack Growth Database for Damage Tolerance Analysis

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.

    2005-01-01

    The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.

  3. 2004 research briefs :Materials and Process Sciences Center.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-sciencemore » base has on the ultimate success of the NW program and the overall DOE technology portfolio.« less

  4. Experimental characterization of nonlinear, rate-dependent behavior in advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.

  5. Characterization of low concentration uranium glass working materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less

  6. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  7. Development of Si(1-x)Ge(x) technology for microwave sensing applications

    NASA Technical Reports Server (NTRS)

    Mena, Rafael A.; Taub, Susan R.; Alterovitz, Samuel A.; Young, Paul E.; Simons, Rainee N.; Rosenfeld, David

    1993-01-01

    The progress for the first year of the work done under the Director's Discretionary Fund (DDF) research project entitled, 'Development of Si(1-x)Ge(x) Technology for Microwave Sensing Applications.' This project includes basic material characterization studies of silicon-germanium (SiGe), device processing on both silicon (Si) and SiGe substrates, and microwave characterization of transmission lines on silicon substrates. The material characterization studies consisted of ellipsometric and magneto-transport measurements and theoretical calculations of the SiGe band-structure. The device fabrication efforts consisted of establishing SiGe device processing capabilities in the Lewis cleanroom. The characterization of microwave transmission lines included studying the losses of various coplanar transmission lines and the development of transitions on silicon. Each part of the project is discussed individually and the findings for each part are presented. Future directions are also discussed.

  8. First principles materials design of novel functional oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.

    2016-05-31

    We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less

  9. Advanced materials for radiation-cooled rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian; Biaglow, James; Schneider, Steven

    1993-01-01

    The most common material system currently used for low thrust, radiation-cooled rockets is a niobium alloy (C-103) with a fused silica coating (R-512A or R-512E) for oxidation protection. However, significant amounts of fuel film cooling are usually required to keep the material below its maximum operating temperature of 1370 C, degrading engine performance. Also the R-512 coating is subject to cracking and eventual spalling after repeated thermal cycling. A new class of high-temperature, oxidation-resistant materials are being developed for radiation-cooled rockets, with the thermal margin to reduce or eliminate fuel film cooling, while still exceeding the life of silicide-coated niobium. Rhenium coated with iridium is the most developed of these high-temperature materials. Efforts are on-going to develop 22 N, 62 N, and 440 N engines composed of these materials for apogee insertion, attitude control, and other functions. There is also a complimentary NASA and industry effort to determine the life limiting mechanisms and characterize the thermomechanical properties of these materials. Other material systems are also being studied which may offer more thermal margin and/or oxidation resistance, such as hafnium carbide/tantalum carbide matrix composites and ceramic oxide-coated iridium/rhenium chambers.

  10. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, Thomas J.; Mangels, J. A.

    1986-01-01

    The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.

  11. Three dimensional (3D) microstructure-based finite element modeling of Al-SiC nanolaminates using focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Carl R.

    Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less

  12. Characterization of seepage in the exploratory studies facility, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Oliver, T.A.; Whelan, J.F.

    2006-01-01

    Following a 5-month period of above-average precipitation during the winter of 2004-2005, water was observed seeping into the South Ramp section of the Exploratory Studies Facility of the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada. Samples of the seepage were collected and analyzed for major ions, trace metals, and delta deuterium and delta oxygen-18 values in an effort to characterize the water and assess the interaction of seepage with anthropogenic materials used in the construction of the proposed repository. As demonstrated by the changes in the chemistry of water dripping from a rock bolt, interaction of seepage with construction materials can alter solution chemistry and oxidation state.

  13. Characterization of CdTe and (CdZn)Te detectors with different metal contacts

    NASA Astrophysics Data System (ADS)

    Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.

    2013-09-01

    In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, William Jonathan; Braase, Lori Ann

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification ofmore » current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.« less

  15. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  16. Dynamic characterization and modeling of potting materials for electronics assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.

    2017-01-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.

  17. Cluster 1: commercializing additive manufacturing—hurdles in materials characterization and testing

    DOE PAGES

    Roach, R. A.; Gardner, S. H.

    2017-10-20

    A major challenge in the commercialization of additive manufactured (AM) materials and processes is the ability to achieve acceptance of processes and products. There has been some progress towards acceptance has been made by adapting legacy qualification paradigms to match with the very limited process control and monitoring offered by AM machines. The opportunity for in-situ measurement can provide process monitoring and control perhaps changing the way we qualify parts however it is limited by lack of adequate process measurement methods. New measurement techniques, sensors and correlations to relevant phenomena are needed that enable process control and monitoring for consistentlymore » producing high quality articles. Beyond process data we need to characterize uncertainties of performance in all aspects of material, process and final part. These are prerequisites to achieving articles that are indeed worthy of materials characterization efforts that establish a microstructural reference of desirable performance through process-structure-property relations. Only then can industry apply physics based understanding of the material, part and process to probabilistically predict performance of an AM part. Our paper provides a brief overview, discussion of hurdles and key areas where R&D investment is needed.« less

  18. Cluster 1: commercializing additive manufacturing—hurdles in materials characterization and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, R. A.; Gardner, S. H.

    A major challenge in the commercialization of additive manufactured (AM) materials and processes is the ability to achieve acceptance of processes and products. There has been some progress towards acceptance has been made by adapting legacy qualification paradigms to match with the very limited process control and monitoring offered by AM machines. The opportunity for in-situ measurement can provide process monitoring and control perhaps changing the way we qualify parts however it is limited by lack of adequate process measurement methods. New measurement techniques, sensors and correlations to relevant phenomena are needed that enable process control and monitoring for consistentlymore » producing high quality articles. Beyond process data we need to characterize uncertainties of performance in all aspects of material, process and final part. These are prerequisites to achieving articles that are indeed worthy of materials characterization efforts that establish a microstructural reference of desirable performance through process-structure-property relations. Only then can industry apply physics based understanding of the material, part and process to probabilistically predict performance of an AM part. Our paper provides a brief overview, discussion of hurdles and key areas where R&D investment is needed.« less

  19. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  20. Homelessness as the Unforgiving Minute of the Present: The Rhetorical Tenses of Democratic Citizenship

    ERIC Educational Resources Information Center

    Loehwing, Melanie

    2010-01-01

    Popular discourse and advocacy efforts characterize homelessness as a social problem bound by the present-centered concerns of physical affliction and material deprivation. Wayne Powers's documentary film "Reversal of Fortune" exemplifies this tendency by performing a "social experiment" to investigate how giving a homeless man $100,000 would…

  1. Beyond the Evident Content Goals Part I. Tapping the Depth and Flow of the Educational Undercurrent.

    ERIC Educational Resources Information Center

    Dugdale, Sharon; Kibbey, David

    1990-01-01

    The first in a series of three articles, successful instructional materials from a 15-year software development effort are analyzed and characterized with special attention given to educational experiences intended to shape students' perceptions of the fundamental nature, interconnectedness, and usefulness of mathematics. The software programs…

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stechel, Ellen Beth; Ambrosini, Andrea; Coker, Eric Nicholas

    The Sunshine to Petrol effort at Sandia aims to convert carbon dioxide and water to precursors for liquid hydrocarbon fuels using concentrated solar power. Significant advances have been made in the field of solar thermochemical CO{sub 2}-splitting technologies utilizing yttria-stabilized zirconia (YSZ)-supported ferrite composites. Conceptually, such materials work via the basic redox reactions: Fe{sub 3}O{sub 4} {yields} 3FeO + 0.5O{sub 2} (Thermal reduction, >1350 C) and 3FeO + CO{sub 2} {yields} Fe{sub 3}O{sub 4} + CO (CO{sub 2}-splitting oxidation, <1200 C). There has been limited fundamental characterization of the ferrite-based materials at the high temperatures and conditions present in thesemore » cycles. A systematic study of these composites is underway in an effort to begin to elucidate microstructure, structure-property relationships, and the role of the support on redox behavior under high-temperature reducing and oxidizing environments. In this paper the synthesis, structural characterization (including scanning electron microscopy and room temperature and in-situ x-ray diffraction), and thermogravimetric analysis of YSZ-supported ferrites will be reported.« less

  3. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  4. Testing and Characterization of a Prototype Telescope for the Evolved Laser Interferometer Space Antenna (eLISA)

    NASA Technical Reports Server (NTRS)

    Sankar, S.; Livas, J.

    2016-01-01

    We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.

  5. (abstract) Oblique Insonification Ultrasonic NDE of Composite Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Lih, S. S.; Mal, A. K.

    1997-01-01

    In recent years, a great deal of research has been exerted to developing NDE methods for the characterization of the material properties of composites as well as other space structural materials. The need for information about such parameters as the elastic properties, density, and thickness are critical to the safe design and operation of such structural materials. Ultrasonics using immersion methods has played an important role in these efforts due to its capability, cost effectiveness, and ease of use. The authors designed a series of ultrasonic oblique insonification experiments in order to develop a practical field applicable NDE method for space structures.

  6. Designs and Materials for Better Coronagraph Occulting Masks

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2010-01-01

    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile

  7. Tansmutation Research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, Paul

    2011-07-31

    Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

  8. A Review of Research on Impulsive Loading of Marine Composites

    NASA Astrophysics Data System (ADS)

    Porfiri, Maurizio; Gupta, Nikhil

    Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.

  9. Open Circuit Resonant Sensors for Composite Damage Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    Mielnik, John J., Jr.

    2011-01-01

    Under the Integrated Vehicle Health Management (IVHM) program work was begun to investigate the feasibility of sensor systems for detecting and diagnosing damage to aircraft composite structures and materials. Specific interest for this study was in damage initiated by environmental storm hazards and the direct effect of lightning strikes on the material structures of a composite aircraft in flight. A series of open circuit resonant sensors was designed, fabricated, characterized, and determined to be a potentially viable means for damage detection and diagnosis of composite materials. The results of this research and development effort are documented in this report.

  10. HOW OLD IS IT? - 241PU/241AM NUCLEAR FORENSIC CHRONOLOGY REFERENCE MATERIALS

    PubMed Central

    Fitzgerald, Ryan; Inn, Kenneth G.W.; Horgan, Christopher

    2018-01-01

    One material attribute for nuclear forensics is material age. 241Pu is almost always present in uranium- and plutonium-based nuclear weapons, which pose the greatest threat to our security. The in-growth of 241Am due to the decay of 241Pu provides an excellent chronometer of the material. A well-characterized 241Pu/241Am standard is needed to validate measurement capability, as a basis for between-laboratory comparability, and as material for verifying laboratory performance. This effort verifies the certification of a 38 year old 241Pu Standard Reference Material (SRM4340) through alpha-gamma anticoincidence counting, and also establishes the separation date to two weeks of the documented date. PMID:29720779

  11. Comportement dynamique d'alliages a memoire de forme et application aux composites-AMF

    NASA Astrophysics Data System (ADS)

    de Santis, Silvio

    Meeting current industrial, governmental and international standards regarding vibration and noise levels is a challenging task facing many engineers. These specifications are present in just about all fields of engineering, from aerospace to marine transportation, from automotive to railway transportation, from computer equipment to industrial working environments. An appropriate use of the remarkable properties of high damping metals (HIDAMETS) and shape memory alloy (SMA) reinforced composites emerges as a possible solution to these problems. Among many obstacles to overcome in developing such a technology, the implementation of reliable and adequate characterization techniques to determine dynamic properties of these materials appears to be of prime importance. The research efforts presented in this thesis are aimed at developing advanced techniques to characterize the dynamic behavior of HIDAMETS and SMA reinforced composites. These characterization results lead to the enhancement of numerical (finite element) and/or analytical methods for the simulation of dynamic responses of structures made of these materials. In particular, the research work has focused on three themes: the numerical and experimental validation of applying a characterization procedure developed for traditional composites to SMA reinforced composites; the development of a test bench for uniaxial hysteresis characterization of HIDAMETS in the medium frequency range; the hysteresis characterization and modeling of manganese copper (MnCu) and nickel titanium samples. The results obtained in the course of these efforts show that the characterization technique developed for traditional composites at the University of Brussels is sufficiently precise to successfully predict natural frequencies of complex SMA reinforced composite structures. Using the characterization to predict structural damping ratios, we observe a bias error in the prediction with respect to experimental results although the relative values between modes are consistent. Regarding the development of the test bench for uniaxial hysteresis characterization of HIDAMETS, results suggest that with the introduction of a few minor enhancements and with particular experimental precautions, the test bench can play an important role in characterizing HIDAMETS dynamic properties at various frequencies and strain amplitudes and in understanding micro mechanical mechanisms responsible for energy dissipation. Finally, uniaxial hysteresis loops and related parameters have been obtained with MnCu and NiTi samples. A material model based on dual kriging interpolation that expresses the tangent stiffness along these hysteresis loops as a function of strain and strain amplitude has also been developed.

  12. Machining of Fibre Reinforced Plastic Composite Materials.

    PubMed

    Caggiano, Alessandra

    2018-03-18

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  13. Machining of Fibre Reinforced Plastic Composite Materials

    PubMed Central

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  14. Materials characterization of propellants using ultrasonics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Jones, David

    1993-01-01

    Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.

  15. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  16. Development and characterization of Powder Metallurgy (PM) 2XXX series Al alloy products and Metal Matrix Composite (MMC) 2XXX Al/SiC materials for high temperature aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.; Gurganus, T. B.; Walker, J. A.

    1992-01-01

    The results of a series of material studies performed by the Lockheed Aeronautical Systems Company over the time period from 1980 to 1991 are discussed. The technical objective of these evaluations was to develop and characterize advanced aluminum alloy materials with temperature capabilities extending to 350 F. An overview is given of the first five alloy development efforts under this contract. Prior work conducted during the first five modifications of the alloy development program are listed. Recent developments based on the addition of high Zr levels to an optimum Al-Cu-Mg alloy composition by powder metallurgy processing are discussed. Both reinforced and SiC or B4C ceramic reinforced alloys were explored to achieve specific target goals for high temperature aluminum alloy applications.

  17. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  18. Aperture Shield Materials Characterized and Selected for Solar Dynamic Space Power System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The aperture shield in a solar dynamic space power system is necessary to prevent thermal damage to the heat receiver should the concentrated solar radiation be accidentally or intentionally focused outside of the heat receiver aperture opening and onto the aperture shield itself. Characterization of the optical and thermal properties of candidate aperture shield materials was needed to support the joint U.S./Russian solar dynamic space power effort for Mir. The specific objective of testing performed at the NASA Lewis Research Center was to identify a high-temperature material with a low specular reflectance, a low solar absorptance, and a high spectral emittance so that during an off-pointing event, the amount of solar energy reflecting off the aperture shield would be small, the ratio of solar absorptance to spectral emittance would provide the lowest possible equilibrium temperature, and the integrity of the aperture shield would remain intact.

  19. A Statistics-Based Material Property Analysis to Support TPS Characterization

    NASA Technical Reports Server (NTRS)

    Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.

    2012-01-01

    Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.

  20. Characterizing Vaccinium berry Standard Reference Materials by GC-MS using NIST spectral libraries.

    PubMed

    Lowenthal, Mark S; Andriamaharavo, Nirina R; Stein, Stephen E; Phinney, Karen W

    2013-05-01

    A gas chromatography-mass spectrometry (GC-MS)-based method was developed for qualitative characterization of metabolites found in Vaccinium fruit (berry) dietary supplement Standard Reference Materials (SRMs). Definitive identifications are provided for 98 unique metabolites determined among six Vaccinium-related SRMs. Metabolites were enriched using an organic liquid/liquid extraction, and derivatized prior to GC-MS analysis. Electron ionization (EI) fragmentation spectra were searched against EI spectra of authentic standards compiled in the National Institute of Standards and Technology's mass spectral libraries, as well as spectra selected from the literature. Metabolite identifications were further validated using a retention index match along with prior probabilities and were compared with results obtained in a previous effort using collision-induced dissociation (CID) MS/MS datasets from liquid chromatography coupled to mass spectrometry experiments. This manuscript describes a nontargeted metabolite profile of Vaccinium materials, compares results among related materials and from orthogonal experimental platforms, and discusses the feasibility and development of using mass spectral library matching for nontargeted metabolite identification.

  1. Microstructural characterization of pressed HMX material sets at differing densities

    NASA Astrophysics Data System (ADS)

    Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.

    2017-01-01

    The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.

  2. Novel Repair Concept for Composite Materials by Repetitive Geometrical Interlock Elements

    PubMed Central

    Hufenbach, Werner; Adam, Frank; Heber, Thomas; Weckend, Nico; Bach, Friedrich-Wilhelm; Hassel, Thomas; Zaremba, David

    2011-01-01

    Material adapted repair technologies for fiber-reinforced polymers with thermosetting matrix systems are currently characterized by requiring major efforts for repair preparation and accomplishment in all industrial areas of application. In order to allow for a uniform distribution of material and geometrical parameters over the repair zone, a novel composite interlock repair concept is introduced, which is based on a repair zone with undercuts prepared by water-jet technology. The presented numerical and experimental sensitivity analyses make a contribution to the systematic development of the interlock repair technology with respect to material and geometrical factors of influence. The results show the ability of the novel concept for a reproducible and automatable composite repair. PMID:28824134

  3. Nanostructured materials: A novel approach to enhanced performance. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korth, G.E.; Froes, F.H.; Suryanarayana, C.

    Nanostuctured materials are an emerging class of materials that can exhibit physical and mechanical characteristics often exceeding those exhibited by conventional course grained materials. A number of different techniques can be employed to produce these materials. In this program, the synthesis methods were (a) mechanical alloying , (b) physical vapor deposition, and (c) plasma processing. The physical vapor deposition and plasma processing were discontinued after initial testing with subsequent efforts focused on mechanical alloying. The major emphasis of the program was on the synthesis, consolidation, and characterization of nanostructured Al-Fe, Ti-Al, Ti-Al-Nb, and Fe-Al by alloying intermetallics with a viewmore » to increase their ductilities. The major findings of this project are reported.« less

  4. Viscoplastic Characterization of Ti-6-4: Experiments

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Arnold, Steven M.

    2016-01-01

    As part of a continued effort to improve the understanding of material time-dependent response, a series of mechanical tests have been conducted on the titanium alloy, Ti-6Al-4V. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures and strain rates to engage various amounts of time-dependent behavior. Additional tests were conducted that involved loading steps, overloads, dwell periods, and block loading segments to characterize the interaction between plasticity and time-dependent behavior. These data will be used to characterize a recently developed, viscoelastoplastic constitutive model with a goal toward better estimates of aerospace component behavior, resulting in improved safety.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  6. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    NASA Astrophysics Data System (ADS)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.

  7. Low-cost infrared glass for IR imaging applications

    NASA Astrophysics Data System (ADS)

    Graham, Amy G.; LeBlanc, Richard A.; Hilton, Ray A., Sr.

    2003-09-01

    With the advent of the uncooled detectors, the fraction of infrared (IR) imaging system cost due to lens elements has risen to the point where work was needed in the area of cost. Since these IR imaging systems often have tight packaging requirements which drive the optical elements to have complex surfaces, typical IR optical elements are costly to manufacture. The drive of our current optical material research is to lower the cost of the materials as well as the element fabrication for IR imaging systems. A low cost, moldable amorphous material, Amtir-4, has been developed and characterized. Ray Hilton Sr., Amorphous Materials Inc., Richard A. LeBlanc, Amy Graham and Others at Lockheed Martin Missiles and Fire Control Orlando (LMMFC-O) and James Johnson, General Electric Global Research Center (GE-GRC), along with others have been doing research for the past three years characterizing and designing IR imaging systems with this material. These IR imaging systems have been conventionally fabricated via diamond turning and techniques required to mold infrared optical elements have been developed with this new material, greatly reducing manufacturing costs. This paper will outline efforts thus far in incorporating this new material into prototype IR imaging systems.

  8. An adapted yield criterion for the evolution of subsequent yield surfaces

    NASA Astrophysics Data System (ADS)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  9. Raman detection of improvised explosive device (IED) material fabricated using drop-on-demand inkjet technology on several real world surfaces

    NASA Astrophysics Data System (ADS)

    Farrell, Mikella E.; Holthoff, Ellen L.; Pellegrino, Paul M.

    2015-05-01

    The requirement to detect hazardous materials (i.e., chemical, biological, and explosive) on a host of materials has led to the development of hazard detection systems. These new technologies and their capabilities could have immediate uses for the US military, national security agencies, and environmental response teams in efforts to keep people secure and safe. In particular, due to the increasing use by terrorists, the detection of common explosives and improvised explosive device (IED) materials have motivated research efforts toward detecting trace (i.e., particle level) quantities on multiple commonly encountered surfaces (e.g., textiles, metals, plastics, natural products, and even people). Non-destructive detection techniques can detect trace quantities of explosive materials; however, it can be challenging in the presence of a complex chemical background. One spectroscopic technique gaining increased attention for detection is Raman. One popular explosive precursor material is ammonium nitrate (AN). The material AN has many agricultural applications, however it can also be used in the fabrication of IEDs or homemade explosives (HMEs). In this paper, known amounts of AN will be deposited using an inkjet printer into several different common material surfaces (e.g., wood, human hair, textiles, metals, plastics). The materials are characterized with microscope images and by collecting Raman spectral data. In this report the detection and identification of AN will be demonstrated.

  10. Analysis of teaching materials of civic education is characterized by the value of character in building an anti-corruption culture

    NASA Astrophysics Data System (ADS)

    Sarmini; Suyanto, Totok; Nadiroh, Ulin

    2018-01-01

    In general, corruption is very harmful to society. One of the efforts in preventing corruption is by the culture of Anti-Corruption Education in the young generation through teaching materials in schools. The research method used is qualitative description. The sample in this research is 60 junior high school teachers of Citizenship Education in Surabaya. Data analysis technique used in this research is descriptive statistic with percentage technique. The result of this research is that it is very important that the value of the character of anti-corruption education in teaching materials to grow in the young generation.

  11. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  12. Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter

    2006-01-01

    A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.

  13. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  14. Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process

    Treesearch

    Bamdad Barari; Thomas K. Ellingham; Issam I. Ghamhia; Krishna M. Pillai; Rani El-Hajjar; Lih-Sheng Turng; Ronald Sabo

    2016-01-01

    Plant derived cellulose nano-fibers (CNF) are a material with remarkable mechanical properties compared to other natural fibers. However, efforts to produce nano-composites on a large scale using CNF have yet to be investigated. In this study, scalable CNF nano-composites were made from isotropically porous CNF preforms using a freeze drying process. An improvised...

  15. Performance and Reliability of Bonded Interfaces for High-temperature Packaging: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVoto, Douglas J.

    2017-10-19

    As maximum device temperatures approach 200 °Celsius, continuous operation, sintered silver materials promise to maintain bonds at these high temperatures without excessive degradation rates. A detailed characterization of the thermal performance and reliability of sintered silver materials and processes has been initiated for the next year. Future steps in crack modeling include efforts to simulate crack propagation directly using the extended finite element method (X-FEM), a numerical technique that uses the partition of unity method for modeling discontinuities such as cracks in a system.

  16. Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.

  17. Joining dissimilar materials using Friction Stir scribe technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less

  18. Preparation of waterproof OSL dosimeters from hygroscopic materials with a special reference to NaCl:Cu

    NASA Astrophysics Data System (ADS)

    More, Y. K.; Wankhede, S. P.; Patil, R. R.; Kulkarni, M. S.; Kumar, Munish; Moharil, S. V.

    2016-05-01

    Optically stimulated luminescence (OSL) originally developed for geological/archaeological dating, has been found very useful for diverse applications in the field of radiation dosimetry. There is still a scarcity of OSL materials with demonstrated properties suited to dosimetry applications. Progress on the development of OSL materials with engineered properties has been slow and most research has focused on the OSL characterization of existing materials. One of the reasons for availability of only a handful of OSL dosimetry materials with adequate properties is that they have to satisfy certain stringent conditions necessary for such applications. Especially, hygroscopic materials are considered totally unsuitable. The efforts were made in our laboratory to overcome this problem. It is shown here that "water-proof" dosimeters can be prepared from even hygroscopic materials such as NaCl.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Jeffrey R.

    The design and characterization of new materials for hydrogen storage is an important area of research, as the ability to store hydrogen at lower pressures and higher temperatures than currently feasible would lower operating costs for small hydrogen fuel cell vehicles. In particular, metal-organic frameworks (MOFs) represent promising materials for use in storing hydrogen in this capacity. MOFs are highly porous, three-dimensional crystalline solids that are formed via linkages between metal ions (e.g., iron, nickel, and zinc) and organic molecules. MOFs can store hydrogen via strong adsorptive interactions between the gas molecules and the pores of the framework, providing amore » high surface area for gas adsorption and thus the opportunity to store hydrogen at significantly lower pressures than with current technologies. By lowering the energy required for hydrogen storage, these materials hold promise in rendering hydrogen a more viable fuel for motor vehicles, which is a highly desirable outcome given the clean nature of hydrogen fuel cells (water is the only byproduct of combustion) and the current state of global climate change resulting from the combustion of fossil fuels. The work presented in this report is the result of collaborative efforts between researchers at Lawrence Berkeley National Lab (LBNL), the National Institute of Standards and Technology (NIST), and General Motors Corporation (GM) to discover novel MOFs promising for H 2 storage and characterize their properties. Described herein are several new framework systems with improved gravimetric and volumetric capacity to strongly bind H 2 at temperatures relevant for vehicle storage. These materials were rigorously characterized using neutron diffraction, to determine the precise binding locations of hydrogen within the frameworks, and high-pressure H 2 adsorption measurements, to provide a comprehensive picture of H 2 adsorption at all relevant pressures. A rigorous understanding of experimental findings was further achieved via first-principles electronic structure calculations, which also supported synthetic efforts through predictions of additional novel frameworks with promising properties for vehicular H 2 storage. The results of the computational efforts also helped to elucidate the fundamental principles governing the interaction of H 2 with the frameworks, and in particular with exposed metal sites in the pores of these materials. Significant accomplishments from this project include the discovery of a metal-organic framework with a high H 2 binding enthalpy and volumetric capacity at 25 °C and 100 bar, which surpasses the metrics of any other known metal-organic framework. Additionally this material was designed to be extremely cost effective compared to most comparable adsorbents, which is imperative for eventual real-world applications. Progress toward synthesizing new frameworks containing multiple open coordination sites is also discussed, and appears to be the most promising future direction for hydrogen storage in these porous materials.« less

  20. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jain, Anubhav

    2017-04-01

    Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siranosian, Antranik Antonio; Schembri, Philip Edward; Luscher, Darby Jon

    The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferredmore » from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso-scale composite modeling framework, applicable to many composite materials, and the corresponding macroscale testing and test data interrogation techniques to support model calibration.« less

  2. Exploring preservice elementary teachers' critique and adaptation of science curriculum materials in respect to socioscientific issues

    NASA Astrophysics Data System (ADS)

    Forbes, Cory T.; Davis, Elizabeth A.

    2008-09-01

    The work presented here represents a preliminary effort undertaken to address the role of teachers in supporting students’ learning and decision-making about socioscientific issues (SSI) by characterizing preservice elementary teachers’ critique and adaptation of SSI-based science curriculum materials and identifying factors that serve to mediate this process. Four undergraduate preservice elementary teachers were studied over the course of one semester. Results indicate that the teachers navigated multiple learning goals, as well as their own subject-matter knowledge, informal reasoning about SSI, and role identity, in their critique and adaptation of SSI-oriented science instructional materials. Implications for science teacher education and the design of curriculum materials in respect to SSI are discussed.

  3. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron diffraction is introduced as a relatively new orientation microscopy technique to characterize defects (e.g., geometrically necessary dislocations and grain boundaries) in challenging nanocrystalline metallic materials. The capability of this characterization technique to quantitatively determine the dislocation density distributions of geometrically necessary dislocations in severely deformed metallic materials is assessed. Based on the developed method, it is possible to determine the distributions and accumulations of dislocations with respect to the nearest grain boundaries and triple junctions. Also, the competency of this technique to study the grain boundary character distributions of nanocrystalline metallic materials is presented.

  4. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  5. Fabrication and Testing of Ceramic Matrix Composite Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Effinger, M. R.; Clinton, R. C., Jr.; Dennis, J.; Elam, S.; Genge, G.; Eckel, A.; Jaskowiak, M. H.; Kiser, J. D.; Lang, J.

    2001-01-01

    NASA has established goals for Second and Third Generation Reusable Launch Vehicles. Emphasis has been placed on significantly improving safety and decreasing the cost of transporting payloads to orbit. Ceramic matrix composites (CMC) components are being developed by NASA to enable significant increases in safety and engineer performance, while reducing costs. The development of the following CMC components are being pursued by NASA: (1) Simplex CMC Blisk; (2) Cooled CMC Nozzle Ramps; (3) Cooled CMC Thrust Chambers; and (4) CMC Gas Generator. These development efforts are application oriented, but have a strong underpinning of fundamental understanding of processing-microstructure-property relationships relative to structural analyses, nondestructive characterization, and material behavior analysis at the coupon and component and system operation levels. As each effort matures, emphasis will be placed on optimizing and demonstrating material/component durability, ideally using a combined Building Block Approach and Build and Bust Approach.

  6. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Valentine, Peter G.

    2017-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Benjamin; Stuart, David; Nelson, Harry

    The R&D efforts of the UCSB Detector R&D program in the 2015--2017 period are reported. These were to develop a liquid scintillator based detector to be used for characterizing radioactive impurities in samples for rapid and effective screening of low background materials for direct dark matter detection experiments; complete engineering and simulation work investigating the feasibility of constructing large detectors in salt caverns; and provide engineering innovation for development of new ideas.

  8. Sustainability Characterization for Additive Manufacturing.

    PubMed

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  9. Compositional analysis of biomass reference materials: Results from an interlaboratory study

    DOE PAGES

    Templeton, David W.; Wolfrum, Edward J.; Yen, James H.; ...

    2015-10-29

    Biomass compositional methods are used to compare different lignocellulosic feedstocks, to measure component balances around unit operations and to determine process yields and therefore the economic viability of biomass-to-biofuel processes. Four biomass reference materials (RMs NIST 8491–8494) were prepared and characterized, via an interlaboratory comparison exercise in the early 1990s to evaluate biomass summative compositional methods, analysts, and laboratories. Having common, uniform, and stable biomass reference materials gives the opportunity to assess compositional data compared to other analysts, to other labs, and to a known compositional value. The expiration date for the original characterization of these RMs was reached andmore » an effort to assess their stability and recharacterize the reference values for the remaining material using more current methods of analysis was initiated. We sent samples of the four biomass RMs to 11 academic, industrial, and government laboratories, familiar with sulfuric acid compositional methods, for recharacterization of the component reference values. In this work, we have used an expanded suite of analytical methods that are more appropriate for herbaceous feedstocks, to recharacterize the RMs’ compositions. We report the median values and the expanded uncertainty values for the four RMs on a dry-mass, whole-biomass basis. The original characterization data has been recalculated using median statistics to facilitate comparisons with this data. We found improved total component closures for three out of the four RMs compared to the original characterization, and the total component closures were near 100 %, which suggests that most components were accurately measured and little double counting occurred. Here, the major components were not statistically different in the recharacterization which suggests that the biomass materials are stable during storage and that additional components, not seen in the original characterization, were quantified here.« less

  10. Optical trapping and optical force positioning of two-dimensional materials.

    PubMed

    Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M

    2018-01-18

    In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.

  11. Teaching color measurement in graphic arts

    NASA Astrophysics Data System (ADS)

    Ingram, Samuel T.; Simon, Frederick T.

    1997-04-01

    The production of color images has grown in recent years due to the impact of digital technology. Access and equipment affordability are now bringing a new generation of color producers into the marketplace. Many traditional questions concerning color attributes are repeatedly asked by individuals: color fidelity, quality, measurements and device characterization pose daily dilemmas. Curriculum components should be offered in an educational environment that enhance the color foundations required of knowledgeable managers, researchers and technicians. The printing industry is adding many of the new digital color technologies to their vocabulary pertinent to color production. This paper presents current efforts being made to integrate color knowledge in a four year program of undergraduate study. Specific topics include: color reproduction, device characterization, material characterization and the role of measurements as a linking attribute. This paper also provides information detailing efforts to integrate color specification/measurement and analysis procedures used by students and subsequent application in color image production are provided. A discussion of measurement devices used in the learning environment is also presented. The investigation involves descriptive data on colorants typically used in printing inks and color.

  12. Preparation of waterproof OSL dosimeters from hygroscopic materials with a special reference to NaCl:Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Y. K., E-mail: moreyogesh153@gmail.com; Moharil, S. V.; Wankhede, S. P.

    Optically stimulated luminescence (OSL) originally developed for geological/archaeological dating, has been found very useful for diverse applications in the field of radiation dosimetry. There is still a scarcity of OSL materials with demonstrated properties suited to dosimetry applications. Progress on the development of OSL materials with engineered properties has been slow and most research has focused on the OSL characterization of existing materials. One of the reasons for availability of only a handful of OSL dosimetry materials with adequate properties is that they have to satisfy certain stringent conditions necessary for such applications. Especially, hygroscopic materials are considered totally unsuitable.more » The efforts were made in our laboratory to overcome this problem. It is shown here that “water-proof” dosimeters can be prepared from even hygroscopic materials such as NaCl.« less

  13. Analysis report for 241-BY-104 Auger samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1994-11-10

    This report describes the analysis of the surface crust samples taken from single-shell tank (SST) BY-104, suspected of containing ferrocyanide wastes. This sampling and analysis will assist in ascertaining whether there is any hazard due to combustion (burning) or explosion of these solid wastes. These characteristics are important to future efforts to characterize the salt and sludge in this type of waste tank. This report will outline the methodology and detail the results of analyses performed during the characterization of this material. All analyses were performed by Westinghouse Hanford Company at the 222-S laboratory unless stated otherwise.

  14. Dynamic electromechanical characterization of the ferroelectric ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1998-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in pulsed power applications for many years. Recently, new design and certification requirements have generated a strong interest in numerically simulating the operation of pulsed power devices. Because of a scarcity of relevant experimental data obtained within the past twenty years, we have initiated an extensive experimental study of the dynamic behavior of this material in support of simulation efforts. The experiments performed to date have been limited to examining the behavior of unpoled material. Samples of PZT 95/5 have been shocked to axial stresses from 0.5 to 5.0 GPa in planar impact experiments. Impact face conditions have been recorded using PVDF stress gauges, and transmitted wave profiles have been recorded either at window interfaces or at a free surface using laser interferometry (VISAR). The results significantly extend the stresses examined in prior studies of unpoled material, and ensure that a comprehensive experimental characterization of the mechanical behavior under shock loading is available for continuing development of PZT 95/5 material models.

  15. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less

  16. In situ thermomechanical testing methods for micro/nano-scale materials.

    PubMed

    Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M

    2017-02-23

    The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.

  17. Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter

    2007-01-01

    An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.

  18. Lunar site characterization and mining

    NASA Technical Reports Server (NTRS)

    Glass, Charles E.

    1992-01-01

    Lunar mining requirements do not appear to be excessively demanding in terms of volume of material processed. It seems clear, however, that the labor-intensive practices that characterize terrestrial mining will not suffice at the low-gravity, hard-vacuum, and inaccessible sites on the Moon. New research efforts are needed in three important areas: (1) to develop high-speed, high-resolution through-rock vision systems that will permit more detailed and efficient mine site investigation and characterization; (2) to investigate the impact of lunar conditions on our ability to convert conventional mining and exploration equipment to lunar prototypes; and (3) to develop telerobotic or fully robotic mining systems for operations on the Moon and other bodies in the inner solar system. Other aspects of lunar site characterization and mining are discussed.

  19. Nanoelectric Materials Laboratory Development

    NASA Technical Reports Server (NTRS)

    Allen, Lee; Hill, Curtis

    2015-01-01

    The Ultracapacitor Research and Development project is a collaborative effort between the NASA Marshall Space Flight Center's (MSFC's) ES43 Parts, Packaging, and Fabrication Branch and the EM41 Nonmetallic Materials Branch. NASA's Ultracapacitor Research is an effort to develop solid-state energy storage devices through processing of ceramic materials into printable dielectric inks, which can be formed and treated to produce solid state ultracapacitor cells capable of exceeding lithium-ion battery energy density at a fraction of the weight. Research and development efforts into solid state ultracapacitors have highlighted a series of technical challenges such as understanding as-received nature of ceramic powders, treatment and optimization of ceramic powders, dielectric and conductor ink formulation, and firing of printed (green) ultracapacitor cells. Two facilities have been continually developed since project inception: the Additive Electronics Lab in Bldg. 4487 and the Nanoelectric Materials Lab in Bldg. 4602. The Nanoelectric Materials Lab has become a unique facility at MSFC, capable of custom processing a wide range of media for additive electronics. As research has progressed, it was discovered that additional in-house processing was necessary to achieve smaller, more uniform particle diameters. A vibratory mill was obtained that can agitate powder and media in three directions, which has shown to be much more effective than ball milling. However, in order to understand the effects of milling, a particle size analysis system has been installed to characterize as-received and milled materials Continued research into the ultracapacitor technology included advanced milling and optimization of ceramic nanoparticles, fluidized bed treatment of atomic-layer deposition- (ALD-) coated ceramic particles, custom development of dielectric and conductor inks, as well as custom ink precursors such as polyvinylidene diflouride- (PVDF-) loaded vehicles. Experiments with graphene-based inks were also conducted.

  20. High-throughput characterization for solar fuels materials discovery

    NASA Astrophysics Data System (ADS)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  1. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  2. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  3. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  4. EDITORIAL: (Nano)characterization of semiconductor materials and structures (Nano)characterization of semiconductor materials and structures

    NASA Astrophysics Data System (ADS)

    Bonanni, Alberta

    2011-06-01

    The latest impressive advancements in the epitaxial fabrication of semiconductors and in the refinement of characterization techniques have the potential to allow insight into the deep relation between materials' structural properties and their physical and chemical functionalities. Furthermore, while the comprehensive (nano)characterization of semiconductor materials and structures is becoming more and more necessary, a compendium of the currently available techniques is lacking. We are positive that an overview of the hurdles related to the specific methods, often leading to deceptive interpretations, will be most informative for the broad community working on semiconductors, and will help in shining some light onto a plethora of controversial reports found in the literature. From this perspective, with this special issue we address and highlight the challenges and misinterpretations related to complementary local (nanoscale) and more global experimental methods for the characterization of semiconductors. The six topical reviews and the three invited papers by leading experts in the specific fields collected in here are intended to provide the required broad overview on the possibilities of actual (nano)characterization methods, from the microscopy of single quantum structures, over the synchrotron-based absorption and diffraction of nano-objects, to the contentious detection of tiny magnetic signals by quantum interference and resonance techniques. We are grateful to all the authors for their valuable contributions. Moreover, I would like to thank the Editorial Board of the journal for supporting the realization of this special issue and for inviting me to serve as Guest Editor. We greatly appreciate the work of the reviewers, of the editorial staff of Semiconductor Science and Technology and of IOP Publishing. In particular, the efforts of Alice Malhador in coordinating this special issue are acknowledged.

  5. On the spectral reflectance properties of materials exposed at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Guinness, E.; Arvidson, R.; Dale-Bannister, M.; Singer, R.; Bruckenthal, E.

    1987-01-01

    Reflectance data derived from Viking Lander multispectral data were used to characterize the types of soils and blocks exposed at the landing sites and to search for evidence of relatively unaltered igneous rocks. A comprehensive effort was mounted to examine multispectral data that combines testing of camera radiometric calibrations, explicitly removing the effects of atmospheric attenuation and skylight, and quantitatively comparing the corrected data to reflectance data from laboratory materials. Bi-directional reflectances for blue, green and red channels were determined for 31 block and soil exposures at Viking landing sites.

  6. Biologically inspired technologies using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  7. Overview of Materials Qualification Needs for Metal Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Salem, Ayman; Beuth, Jack; Harrysson, Ola; Lewandowski, John J.

    2016-03-01

    This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

  8. The viscoelastic characterization of polymer materials exposed to the low-Earth orbit environment

    NASA Technical Reports Server (NTRS)

    Strganac, Thomas; Letton, Alan

    1992-01-01

    Recent accomplishments in our research efforts have included the successful measurement of the thermal mechanical properties of polymer materials exposed to the low-earth orbit environment. In particular, viscoelastic properties were recorded using the Rheometrics Solids Analyzer (RSA 2). Dynamic moduli (E', the storage component of the elastic modulus, and E'', the loss component of the elastic modulus) were recorded over three decades of frequency (0.1 to 100 rad/sec) for temperatures ranging from -150 to 150 C. Although this temperature range extends beyond the typical use range of the materials, measurements in this region are necessary in the development of complete viscoelastic constitutive models. The experimental results were used to provide the stress relaxation and creep compliance performance characteristics through viscoelastic correspondence principles. Our results quantify the differences between exposed and control polymer specimens. The characterization is specifically designed to elucidate a constitutive model that accurately predicts the change in behavior of these materials due to exposure. The constitutive model for viscoelastic behavior reflects the level of strain, the rate of strain, and the history of strain as well as the thermal history of the material.

  9. Iridium-Coated Rhenium Radiation-Cooled Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.; Schneider, Steven J.

    1997-01-01

    Radiation-cooled rockets are used for a range of low-thrust propulsion functions, including apogee insertion, attitude control, and repositioning of satellites, reaction control of launch vehicles, and primary propulsion for planetary space- craft. The key to high performance and long lifetimes for radiation-cooled rockets is the chamber temperature capability. The material system that is currently used for radiation-cooled rockets, a niobium alloy (C103) with a fused silica coating, has a maximum operating temperature of 1370 C. Temperature limitations of C103 rockets force the use of fuel film cooling, which degrades rocket performance and, in some cases, imposes a plume contamination issue from unburned fuel. A material system composed of a rhenium (Re) substrate and an iridium (Ir) coating has demonstrated operation at high temperatures (2200 C) and for long lifetimes (hours). The added thermal margin afforded by iridium-coated rhenium (Ir/Re) allows reduction or elimination of fuel film cooling. This, in turn, leads to higher performance and cleaner spacecraft environments. There are ongoing government- and industry-sponsored efforts to develop flight Ir/ Re engines, with the primary focus on 440-N, apogee insertion engines. Complementing these Ir/Re engine development efforts is a program to address specific concerns and fundamental characterization of the Ir/Re material system, including (1) development of Ir/Re rocket fabrication methods, (2) establishment of critical Re mechanical properly data, (3) development of reliable joining methods, and (4) characterization of Ir/Re life-limiting mechanisms.

  10. Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Anheier, Norman C.; Musgraves, Jonathan D.

    2011-05-01

    Physical properties of chalcogenide glass, including broadband infrared transparency, high refractive index, low glass transition temperature, and nonlinear properties, make them attractive candidates for advanced mid-infrared (3 to 12 {micro}m) optical designs. Efforts focused at developing new chalcogenide glass formulations and processing methods require rapid quantitative evaluation of their optical contents to guide the materials research. However, characterization of important optical parameters such as optical dispersion remains a slow and costly process, generally with limited accuracy. The recent development of a prism coupler at the Pacific Northwest National Laboratory (PNNL) now enables rapid, high precision measurement of refractive indices atmore » discrete wavelengths from the visible to the mid-infrared. Optical dispersion data of several chalcogenide glass families were collected using this method. Variations in the optical dispersion were correlated to glass composition and compared against measurements using other methods. While this work has been focused on facilitating chalcogenide glass synthesis, mid-infrared prism coupler analysis has broader applications to other mid-infrared optical material development efforts, including oxide glasses and crystalline materials.« less

  11. Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material

    NASA Astrophysics Data System (ADS)

    Brown, Alexander Earl

    Modern detector materials used for infrared (IR) imaging purposes contain complex multi-layered architectures, making more robust characterization techniques necessary. In order to determine mutli-carrier transport properties in the presence of mixed conduction, variable-field Hall characterization can be performed and then analyzed using mobility spectrum analysis to extract parameters of interest. Transport parameters are expected to aid in modeling and simulation of materials and can be used in optimization of particular problem areas. The performances of infrared devices ultimately depend on transport mechanisms, so an accurate determination becomes paramount. This work focuses on the characterization of two materials at the forefront of IR detectors; incumbent, tried and true, HgCdTe technologies and emergent III-V based superlattice structures holding much promise for future detector purposes. Ex-situ doped long-wave planar devices and in-situ doped mid-wave dual-layer heterojunctions (P+/n architecture) HgCdTe structures are explored with regards to substrate choice, namely lattice-matched CdZnTe and lattice-mismatched Si or GaAs. A detailed study of scattering mechanisms reveal that growth on lattice-mismatched substrates leads to dislocation scattering limited mobility at low temperature, correlating with extrinsically limited minority carrier lifetime and excesses diode tunneling current, resulting in overall lower performance. Mobility spectrum analysis proves to be an effective diagnostic on performance as well as providing insight in surface, substrate-interface, and minority carrier transport. Two main issues limiting performance of III-V based superlattices are addressed; high residual doping backgrounds and surface passivation. Mobility spectrum analysis proves to be a reliable method of determining background doping levels. Modest improvements are obtained via post-growth thermal annealing, but results suggest future efforts should be placed upon growth improvements. Passivation efforts using charged electret dielectric show promise but further refinements would be needed. Thiol passivation is identified as a successful passivant of Be-doped p-type InAs/GaSb long-wave absorbers using mobility spectrum analysis, correlating with fabricated device dark current. Mobility spectrum analysis demonstrates it will be indispensable in future development of III-V material.

  12. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  13. Low-Cost, Net-Shape Ceramic Radial Turbine Program

    DTIC Science & Technology

    1985-05-01

    PROGRAM ELEMENT. PROJECT. TASK Garrett Turbine Engine Company AE OKUI UBR 111 South 34th Street, P.O. Box 2517 Phoenix, Arizona 85010 %I. CONTROLLING...processing iterations. Program management and materials characterization were conducted at Garrett Turbine Engine Company (GTEC), test bar and rotor...automotive gas turbine engine rotor development efforts at ACC. xvii PREFACE This is the final technical report of the Low-Cost, Net- Shape Ceramic

  14. Detailed Hydraulic Assessment Using a High-Resolution Piezocone Coupled to the GeoVis

    DTIC Science & Technology

    2008-04-01

    story. For example, the SCAPS laser - induced fluorescence (LIF) technology for petroleum hydrocarbons (commercialized as the Rapid Optical...impacts of oily or viscous waste materials smearing during camera deployment, the SCAPS laser induced fluorescence (LIF) probe uses the same type of...characterization techniques on DOD sites. ESTCP has previously funded efforts to help establish regulatory acceptance of the SCAPS Laser Induced Fluorescence (LIF

  15. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  16. Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2007-01-01

    From 1999-2006, the NASA Glenn Research Center (GRC) supported the development of a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions, Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contract to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling convertor, first as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced convertor from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included convertor extended-duration testing in air and thermal vacuum environments, heater head life assessment, materials studies, permanent magnet aging characterization, linear alternator evaluations, structural dynamics testing, electromagnetic interference (EMI) and electromagnetic compatibility (EMC) characterization, organic materials evaluations, reliability studies, and development of an end-to-end system dynamic model. Related efforts are now continuing in many of these areas to support ASRG development.

  17. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  18. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  19. ATF Neutron Irradiation Program Technical Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less

  20. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  1. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  2. Monitoring non-thermal plasma processes for nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  3. Defect-Engineered Metal–Organic Frameworks

    PubMed Central

    Fang, Zhenlan; Bueken, Bart; De Vos, Dirk E; Fischer, Roland A

    2015-01-01

    Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect-engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. PMID:26036179

  4. Q4 Titanium 6-4 Material Properties Development

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth; Nettles, Mindy

    2015-01-01

    This task involves development and characterization of selective laser melting (SLM) parameters for additive manufacturing of titanium-6%aluminum-4%vanadium (Ti-6Al-4V or Ti64). SLM is a relatively new manufacturing technology that fabricates complex metal components by fusing thin layers of powder with a high-powered laser beam, utilizing a 3D computer design to direct the energy and form the shape without traditional tools, dies, or molds. There are several metal SLM technologies and materials on the market today, and various efforts to quantify the mechanical properties, however, nothing consolidated or formal to date. Meanwhile, SLM material fatigue properties of Ti64 are currently highly sought after by NASA propulsion designers for rotating turbomachinery components.

  5. Mechanical Strength and Failure Characterization of Sn-Ag-Cu Intermetallic Compound Joints at the Microscale

    NASA Astrophysics Data System (ADS)

    Ladani, Leila; Razmi, Jafar

    2012-03-01

    Continuous miniaturization of microelectronic devices has led the industry to develop interconnects on the order of a few microns for advanced superhigh-density and three-dimensional integrated circuits (3D ICs). At this scale, interconnects that conventionally consist of solder material will completely transform to intermetallic compounds (IMCs) such as Cu6Sn5. IMCs are brittle, unlike conventional solder materials that are ductile in nature; therefore, IMCs do not experience large amounts of plasticity or creep before failure. IMCs have not been fully characterized, and their mechanical and thermomechanical reliability is questioned. This study presents experimental efforts to characterize such material. Sn-based microbonds are fabricated in a controlled environment to assure complete transformation of the bonds to Cu6Sn5 IMC. Microstructural analysis including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) is utilized to determine the IMC material composition and degree of copper diffusion into the bond area. Specimens are fabricated with different bond thicknesses and in different configurations for various tests. Normal strength of the bonds is measured utilizing double cantilever beam and peeling tests. Shear tests are conducted to quantify the shear strength of the material. Four-point bending tests are conducted to measure the fracture toughness and critical energy release rate. Bonds are fabricated in different sizes, and the size effect is investigated. The shear strength, normal strength, critical energy release rate, and effect of bond size on bond strength are reported.

  6. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  7. TPF coronagraph instrument design

    NASA Technical Reports Server (NTRS)

    Shaklan, S B.; Balasubramanian, K.; Ceperly, D.; Green, J.; Hoppe, D.; Lay, O. P.; Lisman, P. D.; Mouroulis, P. Z.

    2005-01-01

    For the past 2 years, NASA has invested substantial resources to study the design and performance of the Terrestrial Planet Finder Coronagraph (TPF-C). The work, led by the Jet Propulsion Laboratory with collaboration from Goddard Space Flight Center and several university and commercial entities, encompasses observatory design, performance modeling, materials characterization, primary mirror studies, and a significant technology development effort including a high-contrast imaging testbed that has achieved 1e-9 contrast in a laboratory experiment.

  8. Fabrication and characterization of shape memory polymers at small-scales

    NASA Astrophysics Data System (ADS)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  9. Sustainability Characterization for Additive Manufacturing

    PubMed Central

    Mani, Mahesh; Lyons, Kevin W; Gupta, SK

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts. PMID:26601038

  10. Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.

    PubMed

    Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P

    2017-01-29

    Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.

  11. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  12. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further details of the instrumentation used for insulator measurements and representative measurements of insulating spacecraft materials are provided in other Spacecraft Charging Conference presentations. The NASA Space Environments and Effects Program, the Air Force Office of Scientific Research, the Boeing Corporation, NASA Graduate Research Fellowships, and the NASA Rocky Mountain Space Grant Consortium have provided support.

  13. Technical, analytical and computer support

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development of a rigorous mathematical model for the design and performance analysis of cylindrical silicon-germanium thermoelectric generators is reported that consists of two parts, a steady-state (static) and a transient (dynamic) part. The material study task involves the definition and implementation of a material study that aims to experimentally characterize the long term behavior of the thermoelectric properties of silicon-germanium alloys as a function of temperature. Analytical and experimental efforts are aimed at the determination of the sublimation characteristics of silicon germanium alloys and the study of sublimation effects on RTG performance. Studies are also performed on a variety of specific topics on thermoelectric energy conversion.

  14. HAN-Based Monopropellant Technology Development

    NASA Technical Reports Server (NTRS)

    Reed, Brian

    2002-01-01

    NASA Glenn Research Center is sponsoring efforts to develop technology for high-performance, high-density, low-freezing point, low-hazards monopropellant systems. The program is focused on a family of monopropellant formulations composed of an aqueous solution of hydroxylammonium nitrate (HAN) and a fuel component. HAN-based monopropellants offer significant mass and volume savings to small (less than 100 kg) satellite for orbit raising and on-orbit propulsion applications. The low-hazards characteristics of HAN-based monopropellants make them attractive for applications where ground processing costs are a significant concern. A 1-lbf thruster has been demonstrated to a 20-kg satellite orbit insertion duty cycle, using a formulation compatible with currently available catalysts. To achieve specific impulse levels above those of hydrazine, catalyst materials that can withstand the high-temperature, corrosive combustion environment of HAN-based monopropellants have to be developed. There also needs to be work done to characterize propellant properties, burning behavior, and material compatibility. NASA is coordinating their monopropellant efforts with those of the United States Air Force.

  15. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  16. Morphological and physical behavior of styrenic, phosphonium-containing ionomers

    NASA Astrophysics Data System (ADS)

    Beyer, Rick; Stokes, Kristoffer

    2010-03-01

    Despite many years of effort, a clear understanding of the factors controlling morphology in Nafion and other ionomers has not been achieved. The increasing need for fuel cell technology continues to drive efforts to develop materials having better performance characteristics even though fundamental structure-property relationships remain unclarified. Alkaline fuel cells (AFCs) present several benefits over proton exchange membrane (PEM) fuel cells, including cost of manufacture (less expensive catalysts) and a significantly shorter path to commercialization. Here we present the most recent findings from our efforts to examine structure-morphology-property relationships for a series of model cationic ionomers. A series of statistical copolymers of styrene and p-vinylbenzyl-trimethyl-phosphonium chloride have been prepared via RAFT polymerization, allowing us to investigate the effect of ion content on physical behavior. Chemical, physical, and morphological characterization has been undertaken using NMR, TGA, DSC, SAXS, and TEM.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importancemore » as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.« less

  18. Aging Studies of VCE Dismantlement Returns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letant, S; Alviso, C; Pearson, M

    2011-10-17

    VCE is an ethylene/vinyl acetate/vinyl alcohol terpolymer binder for filled elastomers which is designed to accept high filler loadings. Filled elastomer parts consist of the binder (VCE), a curing agent (Hylene MP, diphenol-4-4{prime}-methylenebis(phenylcarbamate)), a processing aid (LS, lithium stearate), and filler particles (typically 70% fraction by weight). The curing of the filled elastomer parts occurs from the heat-activated reaction between the hydroxyl groups of VCE with the Hylene MP curing agent, resulting in a cross-linked network. The final vinyl acetate content is typically between 34.9 and 37.9%, while the vinyl alcohol content is typically between 1.27 and 1.78%. Surveillance datamore » for this material is both scarce and scattered, complicating the assessment of any aging trends in systems. In addition, most of the initial surveillance efforts focused on mechanical properties such as hardness and tensile strength, and chemical information is therefore lacking. Material characterization and aging studies had been performed on previous formulations of the VCE material but the Ethylene Vinyl Acetate (EVA) starting copolymer is no longer commercially available. New formulations with replacement EVA materials are currently being established and will require characterization as well as updated aging models.« less

  19. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  20. Fabrication and Characterization of SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.

    2001-01-01

    Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.

  1. Laser microprobe characterization of C species in Interplanetary Dust Particles (IDP)

    NASA Technical Reports Server (NTRS)

    Dibrozolo, F. R.; Bunch, T. E.; Chang, S.; Brownlee, D. E.

    1986-01-01

    Preliminary results of a study whose aim is the characterization of carbon (C) species in microvolumes of materials by means of laser ionization mass spectrometry (LIMS) are presented. The LIMS instrument employs a pulsed UV laser to produce nearly instantaneous vaporization and ionization of materials, followed by acceleration and time-of-flight analysis of the ions produced. LIMS provides a survey technique with nearly simultaneous acquisition of mass spectra covering the entire elemental range. The main limitation of the LIMS technique at present is its limited ability to perform quantitative analysis, due in part to insufficient knowledge of the mechanism of laser-solid interaction. However, considerable effort is now being directed at making LIMS a more quantitative technique. A variety of different C samples, both natural and man made were analyzed to establish the ability of LIMS to differentiate among the various C phases. The results of preliminary analyses performed on meteoritical and interplanetary dust samples are also presented. The C standards selected for the LIMS characterization range from essentially amorphous soot to diamond, which exhibits the highest degree of ordering.

  2. CAE for Injection Molding — Past, Present and the Future

    NASA Astrophysics Data System (ADS)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE tools will eventually be integrated into an Enterprise Resources Planning (ERP) system as the trend of enterprise globalization continues.

  3. Protein-based flexible whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Yilmaz, Huzeyfe; Pena-Francesch, Abdon; Xu, Linhua; Shreiner, Robert; Jung, Huihun; Huang, Steven H.; Özdemir, Sahin K.; Demirel, Melik C.; Yang, Lan

    2016-02-01

    The idea of creating photonics tools for sensing, imaging and material characterization has long been pursued and many achievements have been made. Approaching the level of solutions provided by nature however is hindered by routine choice of materials. To this end recent years have witnessed a great effort to engineer mechanically flexible photonic devices using polymer substrates. On the other hand, biodegradability and biocompatibility still remains to be incorporated. Hence biomimetics holds the key to overcome the limitations of traditional materials in photonics design. Natural proteins such as sucker ring teeth (SRT) and silk for instance have remarkable mechanical and optical properties that exceed the endeavors of most synthetic and natural polymers. Here we demonstrate for the first time, toroidal whispering gallery mode resonators (WGMR) fabricated entirely from protein structures such as SRT of Loligo vulgaris (European squid) and silk from Bombyx mori. We provide here complete optical and material characterization of proteinaceous WGMRs, revealing high quality factors in microscale and enhancement of Raman signatures by a microcavity. We also present a most simple application of a WGMR as a natural protein add-drop filter, made of SRT protein. Our work shows that with protein-based materials, optical, mechanical and thermal properties can be devised at the molecular level and it lays the groundwork for future eco-friendly, flexible photonics device design.

  4. Preparation and Some Properties of N-Type IrxCo1-xSB3 Solid Solutions

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    1995-01-01

    A number of studies have been recently devoted to the preparation and characterization of binary skutterudite materials to investigate their potential as advanced thermoelectric materials. These studies show that the potential of these binary skutterudite compounds is limited because of their relatively large thermal conductivity. In order to achieve high thermoelectric figure of merits for these materials, efforts should focus on thermal conductivity reduction. Recent results obtained on n-type CoSb3 and IrSb3 compounds have shown that n-type skutterudite materials might have a better potential for thermoelectric applications than p-type materials. The thermoelectric properties of p-type IrxCo1-xSb3 solid solutions have been recently investigated and it was shown that a substantial reduction in thermal conductivity was achieved. We prepared and measured some properties of n-type IrxCo1-xSb3 solid solutions. The samples are characterized by large Seebeck coefficient values and significantly lower thermal conductivity values than those measured on the binary compounds CoSb3 and IrSb3. A maximum ZT value of about 0.4 was obtained at a temperature of about 300(deg)C. Improvements in the figure of merit are possible in this system by optimization of the doping level.

  5. From blood to bubbles: Time resolved micro-particle detection and characterization by scattered ultrasound

    NASA Astrophysics Data System (ADS)

    Roy, Ronald A.

    2004-05-01

    Robert Apfel believed in the creative application of acoustics technology to difficult problems in biomedical sensing. Much of his work in this area focused on material characterization, with the intention of effecting diagnosis. His early work in blood cell characterization employed acoustic levitation to measure the bulk mechanical properties of human red blood cells. This subsequently paved the way to the use of high-frequency acoustic scattering to yield the compressibility and density of individual blood cells. Technology developed in this later effort was then adapted to the very difficult problem of transient micro-cavitation detection, and the active cavitation detector (ACD) was born. This paper traces this line of work from its origins and, in the process, serves to celebrate Bob Apfel's peerless ingenuity and irrepressible creativity.

  6. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    USGS Publications Warehouse

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.

  8. Design, Synthesis, and Characterization of Nanostructured Materials for Energy Storage Devices and Flexible Chemical Sensors

    NASA Astrophysics Data System (ADS)

    Kang, Ning

    Nanomaterials have shown increasing applications in the design and fabrication of functional devices such as energy storage devices and sensor devices. A key challenge is the ability to harness the nanostructures in terms of size, shape, composition and structure so that the unique nanoscale functional properties can be exploited. This dissertation describes our findings in design, synthesis, and characterization of nanoparticles towards applications in two important fronts. The first involves the investigation of nanoalloy catalysts and functional nanoparticles for energy storage devices, including Li-air and Li-ion batteries, aiming at increasing the capacity and cycle performance. Part of this effort focuses on design of bifunctional nanocatalysts through alloying noble metal with non-noble transition metal to improve the ORR and OER activity of Li-air batteries. By manipulating the composition and alloying structure of the catalysts, synergetic effect has been demonstrated, which is substantiated by both experimental results and theoretical calculation for the charge/discharge process. The other part of the effort focuses on modification of Si nanoparticles towards high-capacity anode materials. The modification involved dopant elements, carbon coating, and graphene composite formation to manipulate the ability of the nanoparticles in accommodating the volume expansion. The second part focuses on the design, preparation and characterization of metal nanoparticles and nanocomposite materials for the application in flexible sensing devices. The investigation focuses on fabrication of a novel class of nanoparticle-nanofibrous membranes consisting of gold nanoparticles embedded in a multi-layered fibrous membrane as a tunable interfacial scaffold for flexible sweat sensors. Sensing responses to different ionic species in aqueous solutions and relative humidity changes in the environment were demonstrated, showing promising potential as flexible sensing devices for applications in wearable sweat sensors. Moreover, printing technique was also applied in the fabrication of conductive patterns as the sensing electrodes. The results shed new lights on the understanding of the structural tuning of the nanomaterials for the ultimate applications in advanced energy storage devices and chemical sensor devices.

  9. Analytical Chemistry at the Interface Between Materials Science and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Brien, Janese C.

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detectionmore » of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.« less

  10. Advanced Technology Development for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2004-01-01

    A high-efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second- and thirdgeneration Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in-house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi-dimensional Stirling computational fluid dynamics code, capable of modeling complete convertors. A 2-D version of the code is now operational, and validation efforts at both CSU and the University of Minnesota are complementing the code development. A screening of advanced superalloy, refractory metal alloy, and ceramic materials has been completed, and materials have been selected for creep and joining characterization as part of developing a high-temperature heater head. A breadboard characterization is underway for an advanced controller using power electronics for active power factor control with a goal of eliminating the heavy tuning capacitors that are typically needed to achieve near unity power factors. Key Stirling developments just initiated under recent NRA (NASA Research Announcement) awards will also be discussed. These include a lightweight convertor to be developed by Sunpower Inc. and an advanced microfabricated regenerator to be done by CSU.

  11. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  12. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  13. Cross Directorate Proposal: Nanostructured Materials for Munitions and Propellants-Production, Modeling, and Characterization

    DTIC Science & Technology

    2016-07-15

    towards hydration and decomposition along with probing their hydration mechanisms, we are now exploring processing and deposition effects for this...oxidizer films and tested for their reactivity. Hydration Mechanism for HI3O8 → HIO3 Previous efforts by our group investigating the hydration ...mechanism of I2O5 → HI3O8 reflected that the hydration mechanism proceeded through a nucleation and growth process followed by a diffusion limited

  14. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  15. Design of Bioinorganic Materials at the Interface of Coordination and Biosupramolecular Chemistry.

    PubMed

    Maity, Basudev; Ueno, Takafumi

    2017-04-01

    Protein assemblies have recently become known as potential molecular scaffolds for applications in materials science and bio-nanotechnology. Efforts to design protein assemblies for construction of protein-based hybrid materials with metal ions, metal complexes, nanomaterials and proteins now represent a growing field with a common aim of providing novel functions and mimicking natural functions. However, the important roles of protein assemblies in coordination and biosupramolecular chemistry have not been systematically investigated and characterized. In this personal account, we focus on our recent progress in rational design of protein assemblies using bioinorganic chemistry for (1) exploration of unnatural reactions, (2) construction of functional protein architectures, and (3) in vivo applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  17. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.

    2017-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  18. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage

    NASA Technical Reports Server (NTRS)

    Sibille, L.; Carpenter, P.; Schlagheck, R.; French, R. A.

    2006-01-01

    Experience gained during the Apollo program demonstrated the need for extensive testing of surface systems in relevant environments, including regolith materials similar to those encountered on the lunar surface. As NASA embarks on a return to the Moon, it is clear that the current lunar sample inventory is not only insufficient to support lunar surface technology and system development, but its scientific value is too great to be consumed by destructive studies. Every effort must be made to utilize standard simulant materials, which will allow developers to reduce the cost, development, and operational risks to surface systems. The Lunar Regolith Simulant Materials Workshop held in Huntsville, AL, on January 24 26, 2005, identified the need for widely accepted standard reference lunar simulant materials to perform research and development of technologies required for lunar operations. The workshop also established a need for a common, traceable, and repeatable process regarding the standardization, characterization, and distribution of lunar simulants. This document presents recommendations for the standardization, production and usage of lunar regolith simulant materials.

  19. Investigation of materials for inert electrodes in aluminum electrodeposition cells

    NASA Astrophysics Data System (ADS)

    Haggerty, J. S.; Sadoway, D. R.

    1987-09-01

    Work was divided into major efforts. The first was the growth and characterization of specimens; the second was Hall cell performance testing. Cathode and anode materials were the subject of investigation. Preparation of specimens included growth of single crystals and synthesis of ultra high purity powders. Special attention was paid to ferrites as they were considered to be the most promising anode materials. Ferrite anode corrosion rates were studied and the electrical conductivities of a set of copper-manganese ferrites were measured. Float Zone, Pendant Drop Cryolite Experiments were undertaken because unsatisfactory choices of candidate materials were being made on the basis of a flawed set of selection criteria applied to an incomplete and sometimes inaccurate data base. This experiment was then constructed to determine whether the apparatus used for float zone crystal growth could be adapted to make a variety of important based melts and their interactions with candidate inert anode materials. Compositions), driven by our perception that the basis for prior selection of candidate materials was inadequate. Results are presented.

  20. KCAT, Xradia, ALS and APS Performance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A; Martz, H; Brown, W

    2004-09-30

    At Lawrence Livermore National Laboratory (LLNL) particular emphasis is being placed on the nondestructive characterization (NDC) of components, subassemblies and assemblies of millimeter-size extent with micrometer-size features (mesoscale). These mesoscale objects include materials that vary widely in composition, density, geometry and embedded features. Characterizing these mesoscale objects is critical for corroborating the physics codes that underlie LLNL's Stockpile Stewardship mission. In this report we present results from our efforts to quantitatively characterize the performance of several x-ray systems in an effort to benchmark existing systems and to determine which systems may have the best potential for our mesoscale imaging needs.more » Several different x-ray digital radiography (DR) and computed tomography (CT) systems exist that may be applicable to our mesoscale object characterization requirements, including microfocus and synchrotron systems. The systems we have benchmarked include KCAT (LLNL developed) and Xradia {mu}XCT (Xradia, Inc., Concord, CA), both microfocus systems, and Beamline 1-ID at the Advance Photon Source (APS) and the Tomography Beamline at the Advanced Light Source (ALS), both synchrotron based systems. The ALS Tomography Beamline is a new installation, and the data presented and analyzed here is some of the first to be acquired at the facility. It is important to note that the ALS system had not yet been optimized at the time we acquired data. Results for each of these systems has been independently documented elsewhere. In this report we summarize and compare the characterization results for these systems.« less

  1. Material Modeling of Space Shuttle Leading Edge and External Tank Materials For Use in the Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Carney, Kelly; Melis, Matthew; Fasanella, Edwin L.; Lyle, Karen H.; Gabrys, Jonathan

    2004-01-01

    Upon the commencement of the analytical effort to characterize the impact dynamics and damage of the Space Shuttle Columbia leading edge due to External Tank insulating foam, the necessity of creating analytical descriptions of these materials became evident. To that end, material models were developed of the leading edge thermal protection system, Reinforced Carbon Carbon (RCC), and a low density polyurethane foam, BX-250. Challenges in modeling the RCC include its extreme brittleness, the differing behavior in compression and tension, and the anisotropic fabric layup. These effects were successfully included in LS-DYNA Material Model 58, *MAT_LAMINATED_ COMPOSITE_ FABRIC. The differing compression and tension behavior was modeled using the available damage parameters. Each fabric layer was given an integration point in the shell element, and was allowed to fail independently. Comparisons were made to static test data and coupon ballistic impact tests before being utilized in the full scale analysis. The foam's properties were typical of elastic automotive foams; and LS-DYNA Material Model 83, *MAT_FU_CHANG_FOAM, was successfully used to model its behavior. Material parameters defined included strain rate dependent stress-strain curves for both loading and un-loading, and for both compression and tension. This model was formulated with static test data and strain rate dependent test data, and was compared to ballistic impact tests on load-cell instrumented aluminum plates. These models were subsequently utilized in analysis of the Shuttle leading edge full scale ballistic impact tests, and are currently being used in the Return to Flight Space Shuttle re-certification effort.

  2. Associative Flow Rule Used to Include Hydrostatic Stress Effects in Analysis of Strain-Rate-Dependent Deformation of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.

    2004-01-01

    designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and the strain-rate dependence of the composite response are due primarily to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. By applying micromechanics techniques along with given fiber properties, one can also determine the effects of the hydrostatic stresses in the polymer on the overall composite deformation response. First efforts to account for the hydrostatic stress effects in the composite deformation applied purely empirical methods that relied on composite-level data. In later efforts, to allow polymer properties to be characterized solely on the basis of polymer data, researchers at the NASA Glenn Research Center developed equations to model the polymers that were based on a non-associative flow rule, and efforts to use these equations to simulate the deformation of representative polymer materials were reasonably successful. However, these equations were found to have difficulty in correctly analyzing the multiaxial stress states found in the polymer matrix constituent of a composite material. To correct these difficulties, and to allow for the accurate simulation of the nonlinear strain-rate-dependent deformation analysis of polymer matrix composites, in the efforts reported here Glenn researchers reformulated the polymer constitutive equations from basic principles using the concept of an associative flow rule. These revised equations were characterized and validated in an experimental program carried out through a university grant with the Ohio State University, wherein tensile and shear deformation data were obtained for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. Tensile deformation data also were obtained over a variety of strain rates and fiber orientation angles for a representative polymer matrix composite composed using the polymer.

  3. A database to enable discovery and design of piezoelectric materials

    PubMed Central

    de Jong, Maarten; Chen, Wei; Geerlings, Henry; Asta, Mark; Persson, Kristin Aslaug

    2015-01-01

    Piezoelectric materials are used in numerous applications requiring a coupling between electrical fields and mechanical strain. Despite the technological importance of this class of materials, for only a small fraction of all inorganic compounds which display compatible crystallographic symmetry, has piezoelectricity been characterized experimentally or computationally. In this work we employ first-principles calculations based on density functional perturbation theory to compute the piezoelectric tensors for nearly a thousand compounds, thereby increasing the available data for this property by more than an order of magnitude. The results are compared to select experimental data to establish the accuracy of the calculated properties. The details of the calculations are also presented, along with a description of the format of the database developed to make these computational results publicly available. In addition, the ways in which the database can be accessed and applied in materials development efforts are described. PMID:26451252

  4. Toward a benchmark material in aerogel development

    NASA Astrophysics Data System (ADS)

    Sibille, Laurent; Cronise, Raymond J.; Noever, David A.; Hunt, Arlon J.

    1996-03-01

    Discovered in the thirties, aerogels constitute today the lightest solids known while exhibiting outstanding thermal and noise insulation properties in air and vacuum. In a far-reaching collaboration, the Space Science Laboratory at NASA Marshall Space Flight Center and the Microstructured Materials Group at Lawrence Berkeley National Laboratory are engaged in a two-fold research effort aiming at characterizing the microstructure of silica aerogels and the development of benchmark samples through the use of in-orbit microgravity environment. Absence of density-driven convection flows and sedimentation is sought to produce aerogel samples with narrow distribution of pore sizes, thus largely improving transparency of the material in the visible range. Furthermore, highly isotropic distribution of doping materials are attainable even in large gels grown in microgravity. Aerospace companies (cryogenic tanks insulation and high temperature insulation of space vehicles), insulation manufacturers (household and industrial applications) as well as pharmaceutical companies (biosensors) are potential end-users of this rapidly developing technology.

  5. Nevada National Security Site: Site-Directed Research and Development (SDRD) Fiscal Year 2015 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Howard A.

    This report presents results of multiple research projects, new and ongoing, funded under the Site-Directed Research and Development Program for the Nevada National Security Site during federal fiscal year 2015. The Site's legacy capabilities in remote sensing combined with new paradigms for emergency response and consequence management help drive the need to develop advanced aerial sensor platforms. Likewise, dynamic materials science is a critical area of scientific research for which basic physics issues are still unresolved. New methods of characterizing materials in extreme states are vitally needed, and these efforts are paving the way with new knowledge. Projects selected inmore » FY 2015 for the Exploratory Research portfolio exhibit a strong balance of NNSS mission relevance. Geoscience, seismology, and techniques for detecting underground nuclear events are still essential focus areas. Many of the project reports in the second major section of this annual report are ongoing continuations in multi-year lifecycles. Diagnostic techniques for stockpile and nuclear security science figured prominently as well, with a few key efforts coming to fruition, such as phase transition detection. In other areas, modeling efforts toward better understanding plasma focus physics has also started to pay dividends for major program needs.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S; Danganan, L; Tammero, L

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed advanced rapid diagnostics that may be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the potential to improve our nation's ability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect animal populations of high economic importance in themore » United States. Under 2005 DHS funding we have developed multiplexed (MUX) nucleic-acid-based PCR assays that combine foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease (SVD) and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1 or Infectious Bovine Rhinotracheitus IBR), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus BPSV, Orf of sheep, and Pseudocowpox). Under 2006 funding we have developed a Multiplexed PCR [MUX] porcine assay for detection of FMDV with rule out tests for VESV and SVD foreign animal diseases in addition to one other domestic vesicular animal disease vesicular stomatitis virus (VSV) and one domestic animal disease of swine porcine reproductive and respiratory syndrome (PRRS). We have also developed a MUX bovine assay for detection of FMDV with rule out tests for the two bovine foreign animal diseases malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox viruses which are of two bovine types bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). This document provides details of signature generation, evaluation, and testing, as well as the specific methods and materials used. A condensed summary of the development, testing and performance of the multiplexed assay panel was presented in a 126 page separate document, entitled 'Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out'. This supplemental document provides additional details of large amount of data collected for signature generation, evaluation, and testing, as well as the specific methods and materials used for all steps in the assay development and utilization processes. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, VSV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must preceed efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available.« less

  7. United States Research and Development effort on ITER magnet tasks

    DOE PAGES

    Martovetsky, Nicolai N.; Reierson, Wayne T.

    2011-01-22

    This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  8. Ceramic Matrix Composites for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2011-01-01

    Ceramic matrix composite (CMC) components are being developed for turbine engine applications. Compared to metallic components, the CMC components offer benefits of higher temperature capability and less cooling requirements which correlates to improved efficiency and reduced emissions. This presentation discusses a technology develop effort for overcoming challenges in fabricating a CMC vane for the high pressure turbine. The areas of technology development include small component fabrication, ceramic joining and integration, material and component testing and characterization, and design and analysis of concept components.

  9. Manufacturing and Characterization of Ultra Pure Ferrous Alloys Final Report CRADA No. TC02069.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesuer, D.; McGreevy, T. E.

    This CRADA was a.collaborative effort between the Lawrence Livermore National Security LLC (formerly University of California)/Lawrence Livermore National Laboratory (LLNL),and Caterpillar Inc. (CaterpiHar), to further advance levitation casting techniques (developed at the Central Research Institute for Material (CRIM) in St. Petersburg, Russia) for use in manufacturing high purity metal alloys. This DOE Global Initiatives for Proliferation Prevention Program (IPP) project was to develop and demonstrate the levitation casting technology for producing ultra-pure alloys.

  10. Fabrication and Characterization of a Composite Fibrous Construct with Photocatalytic Activity and Physical Adsorption Capabilities for Water Treatment Applications

    NASA Astrophysics Data System (ADS)

    Everett, Dominique Tresten

    Environmental pollution has exponentially increased since the industrial revolution due to many advancements in technology which has led to the use of innovative materials. In the manufacturing and fabrication processes of modern technology, society has become victim to the contamination via production byproducts. This issue needs to be addressed with greater efforts to solve this worldwide issue to ultimately minimize these potential detrimental public health effects and improve environmental preservation. This research study focuses on contributing to efforts with minimizing wastewater pollution by the fabrication and characterization of complex porosity gradient fibrous membrane that purifies via particle size exclusion, photocatalysis and also physical adsorption. The membrane consists of a nano/mico-fibrous composite network fabricated by side-by-side electrospinning for the initial aim of this study. The experimental setup resulted in a novel morphological structure that yields exceptional catalytic responsiveness in visible light compared to conventional materials that are currently used. Subsequently, there is a thermal bonded discontinuous polymeric microfibrous mat with activated carbon granule incorporation to serve as a superior mechanical stability agent with high physical adsorption capability. The second aim was to investigate fiber length dependence on mechano-morphological properties while achieving adequate activated carbon during processing when subjected to post-fabrication thermal bonding of resulting mat. Furthermore, the third aim was to fabricate the complex construct by combining methods from the first and second aim to assemble a system that filters through two water purification mechanisms (photocatalysis and physical adsorption) simultaneously. This study was investigated for characterization and verification for various aspects such as morphological analyses, crystallographic assessments, mechanical testing, while defining construct functionality by examining adsorption and photodegradation performance.

  11. Nanomaterials Work at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2005-01-01

    Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.

  12. Scattered light characterization of FORTIS

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan R.; Carter, Anna; Redwine, Keith; Teste, Stephane; Pelton, Russell; Hagopian, John; Kutyrev, Alexander; Li, Mary J.; Moseley, S. Harvey

    2017-08-01

    We describe our efforts to build a Wide-Field Lyman alpha Geocoronal simulator (WFLaGs) for characterizing the end-to-end sensitivity of FORTIS (Far-UV Off Rowland-circle Telescope for Imaging and Spectroscopy) to scattered Lyman α emission from outside of the nominal (1/2 degree)2 field-of-view. WFLaGs is a 50 mm diameter F/1 aluminum parabolic collimator fed by a hollow cathode discharge lamp with a 80 mm clear MgF2 window housed in a vacuum skin. It creates emission over a 10 degree FOV. WFLaGS will allow us to validate and refine a recently developed scattered light model and verify our scatter light mitigation strategies, which will incorporate low scatter baffle materials, and possibly 3-d printed light traps, covering exposed scatter centers. We present measurements of scattering intensity of Lyman alpha as a function of angle with respect to the specular reflectance direction for several candidate baffle materials. Initial testing of WFLaGs will be described.

  13. High efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Sah, C. Tang

    1986-01-01

    A review of the entire research program since its inception ten years ago is given. The initial effort focused on the effects of impurities on the efficiency of silicon solar cells to provide figures of maximum allowable impurity density for efficiencies up to about 16 to 17%. Highly accurate experimental techniques were extended to characterize the recombination properties of the residual imputities in the silicon solar cell. A numerical simulator of the solar cell was also developed, using the Circuit Technique for Semiconductor Analysis. Recent effort focused on the delineation of the material and device parameters which limited the silicon efficiency to below 20% and on an investigation of cell designs to break the 20% barrier. Designs of the cell device structure and geometry can further reduce recombination losses as well as the sensitivity and criticalness of the fabrication technology required to exceed 20%. Further research is needed on the fundamental characterization of the carrier recombination properties at the chemical impurity and physical defect centers. It is shown that only single crystalline silicon cell technology can be successful in attaining efficiencies greater than 20%.

  14. Final Report “Electrical and mechanical characterization of rocks at the sub-millimeter scale” DE-SC0000757

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scales, John

    The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less

  15. General Multimechanism Reversible-Irreversible Time-Dependent Constitutive Deformation Model Being Developed

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Arnold, Steven M.

    2001-01-01

    Since most advanced material systems (for example metallic-, polymer-, and ceramic-based systems) being currently researched and evaluated are for high-temperature airframe and propulsion system applications, the required constitutive models must account for both reversible and irreversible time-dependent deformations. Furthermore, since an integral part of continuum-based computational methodologies (be they microscale- or macroscale-based) is an accurate and computationally efficient constitutive model to describe the deformation behavior of the materials of interest, extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis of structures. From a more recent and comprehensive perspective, the NASA Glenn Research Center in conjunction with the University of Akron has emphasized concurrently addressing three important and related areas: that is, 1) Mathematical formulation; 2) Algorithmic developments for updating (integrating) the external (e.g., stress) and internal state variables; 3) Parameter estimation for characterizing the model. This concurrent perspective to constitutive modeling has enabled the overcoming of the two major obstacles to fully utilizing these sophisticated time-dependent (hereditary) constitutive models in practical engineering analysis. These obstacles are: 1) Lack of efficient and robust integration algorithms; 2) Difficulties associated with characterizing the large number of required material parameters, particularly when many of these parameters lack obvious or direct physical interpretations.

  16. Characterization of Emissions from Open Burning of Meals ...

    EPA Pesticide Factsheets

    Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that

  17. Effective conductivity of wire mesh reflectors for space deployable antenna systems

    NASA Technical Reports Server (NTRS)

    Davis, William A.

    1994-01-01

    This report summarizes efforts to characterize the measurement of conductive mesh and smooth surfaces using proximity measurements for a dielectric resonator. The resonator operates in the HEM11 mode and is shown to have an evanescent field behavior in the vicinity of the sample surface, raising some question to the validity of measurements requiring near normal incidence on the material. In addition, the slow radial field decay outside of the dielectric resonator validates the sensitivity to the planar supporting structure and potential radiation effects. Though these concerns become apparent along with the sensitivity to the gap between the dielectric and the material surface, the basic concept of the material measurement using dielectric resonators has been verified for useful comparison of material surface properties. The properties, particularly loss, may be obtained by monitoring the resonant frequency along with the resonator quality factor (Q), 3 dB bandwidth, or the midband transmission amplitude. Comparison must be made to known materials to extract the desired data.

  18. Long-Term Durability Analysis of a 100,000+ Hr Stirling Power Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Bowman, Randy R.; Krause, David L.; Halford, Gary R.

    2000-01-01

    DOE and NASA have identified Stirling Radioisotope Power Systems (SRPS) as the power supply for deep space exploration missions the Europa Orbiter and Solar Probe. As a part of this effort, NASA has initiated a long-term durability project for critical hot section components of the Stirling power convertor to qualify flight hardware. This project will develop a life prediction methodology that utilizes short-term (t < 20,000 hr) test data to verify long-term (t > 100,000 hr) design life. The project consists of generating a materials database for the specific heat of alloy, evaluation of critical hermetic sealed joints, life model characterization, and model verification. This paper will describe the qualification methodology being developed and provide a status for this effort.

  19. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  20. Selection and authentication of botanical materials for the development of analytical methods.

    PubMed

    Applequist, Wendy L; Miller, James S

    2013-05-01

    Herbal products, for example botanical dietary supplements, are widely used. Analytical methods are needed to ensure that botanical ingredients used in commercial products are correctly identified and that research materials are of adequate quality and are sufficiently characterized to enable research to be interpreted and replicated. Adulteration of botanical material in commerce is common for some species. The development of analytical methods for specific botanicals, and accurate reporting of research results, depend critically on correct identification of test materials. Conscious efforts must therefore be made to ensure that the botanical identity of test materials is rigorously confirmed and documented through preservation of vouchers, and that their geographic origin and handling are appropriate. Use of material with an associated herbarium voucher that can be botanically identified is always ideal. Indirect methods of authenticating bulk material in commerce, for example use of organoleptic, anatomical, chemical, or molecular characteristics, are not always acceptable for the chemist's purposes. Familiarity with botanical and pharmacognostic literature is necessary to determine what potential adulterants exist and how they may be distinguished.

  1. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    NASA Astrophysics Data System (ADS)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and EXAFS ruled out morphological alterations in the supported nanoparticles. Significant decreases in pore volume and surface area via N2 physisorption put deposition under suspicion and TGA confirmed the presence of organic species in the material. Initial attempts to remove the deposits via calcination were successful, but at the expense of severe nanoparticle growth. GC-MS, NMR and FT-IR helped speciate the deposition, mainly confirming the presence of residual reactant acid. A regeneration scheme was developed to remove these compounds, and subsequent catalyst reuses exhibited high decarboxylation activity. Finally, the Pd-MCF catalyst was applied to a real feedstock: a wastewater-derived brown grease from a poultry rendering facility. Attempts at decarboxylating the raw material failed, so efforts to polish the material via dewaxing and degumming were undertaken. The treatments were able to optimize a three-phase separation, and the resultant polished brown grease was successfully decarboxylated to diesel-length hydrocarbons with high conversions and selectivities.

  2. The Study of High-Speed Surface Dynamics Using a Pulsed Proton Beam

    NASA Astrophysics Data System (ADS)

    Buttler, William; Stone, Benjamin; Oro, David; Dimonte, Guy; Preston, Dean; Cherne, Frank; Germann, Timothy; Terrones, Guillermo; Tupa, Dale

    2011-06-01

    Los Alamos National Laboratory is presently engaged in development and implementation of ejecta source term and transport models for integration into LANL hydrodynamic computer codes. Experimental support for the effort spans a broad array of activities, including ejecta source term measurements from machine roughened Sn surfaces shocked by HE or flyer plates. Because the underlying postulate for ejecta formation is that ejecta are characterized by Richtmyer-Meshkov instability (RMI) phenomena, a key element of the theory and modeling effort centers on validation and verification RMI experiments at the LANSCE Proton Radiography Facility (pRad) to compare with modeled ejecta measurements. Here we present experimental results used to define and validate a physics based ejecta model together with remarkable, unexpected results of Sn instability growth in vacuum and gasses, and Sn and Cu RM growth that reveals the sensitivity of the RM instability to the yield strength of the material, Cu. The motivation of this last subject, RM growth linked to material strength, is to probe the shock pressure regions over which ejecta begins to form. Presenter

  3. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  4. Photoactivated methods for enabling cartilage-to-cartilage tissue fixation

    NASA Astrophysics Data System (ADS)

    Sitterle, Valerie B.; Roberts, David W.

    2003-06-01

    The present study investigates whether photoactivated attachment of cartilage can provide a viable method for more effective repair of damaged articular surfaces by providing an alternative to sutures, barbs, or fibrin glues for initial fixation. Unlike artificial materials, biological constructs do not possess the initial strength for press-fitting and are instead sutured or pinned in place, typically inducing even more tissue trauma. A possible alternative involves the application of a photosensitive material, which is then photoactivated with a laser source to attach the implant and host tissues together in either a photothermal or photochemical process. The photothermal version of this method shows potential, but has been almost entirely applied to vascularized tissues. Cartilage, however, exhibits several characteristics that produce appreciable differences between applying and refining these techniques when compared to previous efforts involving vascularized tissues. Preliminary investigations involving photochemical photosensitizers based on singlet oxygen and electron transfer mechanisms are discussed, and characterization of the photodynamic effects on bulk collagen gels as a simplified model system using FTIR is performed. Previous efforts using photothermal welding applied to cartilaginous tissues are reviewed.

  5. NASA GRC Technology Development Project for a Stirling Radioisotope Power System

    NASA Technical Reports Server (NTRS)

    Thieme, Lanny G.; Schreiber, Jeffrey G.

    2000-01-01

    NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.

  6. Characterizing GEO Titan IIIC Transtage Fragmentations using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Anz-Meador, Phillip; Reyes, Jacqueline A.

    2017-01-01

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  7. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-based and Telescopic Measurements

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Anz-Meador, P.; Reyes, J. A.

    In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  8. Improved silicon carbide for advanced heat engines

    NASA Technical Reports Server (NTRS)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  9. Through-the-wall high-resolution imaging of a human and experimental characterization of the transmission of wall materials

    NASA Astrophysics Data System (ADS)

    Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain

    2008-10-01

    This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.

  10. Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics

    NASA Technical Reports Server (NTRS)

    Cooke, Arther V.

    1996-01-01

    This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.

  11. Structure and hemocompatibility of nanocrystalline titanium nitride produced under glow-discharge conditions

    NASA Astrophysics Data System (ADS)

    Sowińska, Agnieszka; Czarnowska, Elżbieta; Tarnowski, Michał; Witkowska, Justyna; Wierzchoń, Tadeusz

    2018-04-01

    Significant efforts are being made towards developing novel antithrombotic materials. The purpose of the presented study was to characterize two variants of nitrided surface layers produced on alloy Ti-6Al-4V in different areas of low-temperature plasma - at the plasma potential (TiNp) or at the cathode potential (TiNc). The layers were characterized in terms of their microstructure, surface topography and wettability, and platelet response to the environment of different pH. The produced layers were of the TiN + Ti2N + αTiN-type, but the layer produced at the plasma potential was thinner, smoother and had lower surface free energy compared with that produced at the cathode potential. Biological evaluation demonstrated more fibrinogen buildup, less platelet adhesion and aggregation, and fewer strongly activated platelets on the TiNp surface compared with those parameters on the TiNc surface and on the titanium alloy in its initial state. Interestingly, both surface types were significantly resistant to fibrinogen adsorption and platelet adhesion in the environment of lower pH. In conclusion, the nitrided surface layer produced at the plasma potential is a promising material and this basic information is critical for further development of hemocompatible materials.

  12. Automobile Shredder Residues in Italy: characterization and valorization opportunities.

    PubMed

    Fiore, S; Ruffino, B; Zanetti, M C

    2012-08-01

    At the moment Automobile Shredder Residue (ASR) is usually landfilled worldwide, but European draft Directive 2000/53/CE forces the development of alternative solutions, stating the 95%-wt recovery of an End of Life Vehicle (ELV) weight to be fulfilled by 2015. This work describes two industrial tests, each involving 250-300 t of ELVs, in which different pre-shredding operations were performed. The produced ASR materials underwent an extended characterization and some post-shredding processes, consisting of dimensional, magnetic, electrostatic and densimetric separation phases, were tested on laboratory scale, having as main purpose the enhancement of ASR recovery/recycling and the minimization of the landfilled fraction. The gathered results show that accurate depollution and dismantling operations are mandatory to obtain a high quality ASR material which may be recycled/recovered and partially landfilled according to the actual European Union regulations, with particular concern for Lower Heating Value (LHV), heavy metals content and Dissolved Organic Carbon (DOC) as critical parameters. Moreover post-shredding technical solutions foreseeing minimum economic and engineering efforts, therefore realizable in common European ELVs shredding plants, may lead to multi-purposed (material recovery and thermal valorization) opportunities for ASR reuse/recovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Characterization of Elastic-plastic Material Properties for IMC Layer of ENEPIG by Using Reverse Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young

    2010-05-01

    Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.

  14. Are We Underestimating Microplastic Contamination in Aquatic Environments?

    NASA Astrophysics Data System (ADS)

    Conkle, Jeremy L.; Báez Del Valle, Christian D.; Turner, Jeffrey W.

    2018-01-01

    Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most ( 80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g-1 of product or 1649 to 31,266 particles g-1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.

  15. Southern Impact Testing Alliance (SITA)

    NASA Technical Reports Server (NTRS)

    Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian

    2009-01-01

    Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.

  16. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    NASA Astrophysics Data System (ADS)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  17. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; Grover, M.; Hammerberg, J. E.; Hixson, R. S.; Iverson, A. J.; Macrum, G. S.; Morley, K. B.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2007-07-01

    This effort investigates the relation between ejecta production and shock-breakout pressure (PSB) for Sn shocked with a Taylor shockwave (unsupported) to pressures near the solid-on-release/partial melt-on-release phase transition region. The shockwaves were created by detonation of high explosive (HE) PBX-9501 on the front side of Sn coupons. Ejecta production at the backside or free side of the Sn coupons was characterized through use of piezoelectric pins, optical shadowgraphy, x-ray attenuation radiography, and optical-heterodyne velocimetry. Ejecta velocities, dynamic volume densities, and areal densities were then correlated with the shock-breakout pressure of Sn surfaces characterized by roughness average of Ra=16 μin or Ra=32 μin.

  18. Quantitative tunneling spectroscopy of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less

  19. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metalmore » and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.« less

  20. C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali

    2001-01-01

    A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.

  1. Technical reference for the use of the slow crack growth test for modeling and predicting the long-term performance of polyethylene gas pipes. Final report, March 1987-May 1992. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanninen, M.F.; O'Donoghue, P.E.; Popelar, C.F.

    1993-02-01

    The project was undertaken for the purposes of quantifying the Battelle slow crack growth (SCG) test for predicting long-term performance of polyethylene gas distribution pipes, and of demonstrating the applicability of the methodology for use by the gas industry for accelerated characterization testing, thereby bringing the SCG test development effort to a closure. The work has revealed that the Battelle SCG test, and the linear fracture mechanics interpretation that it currently utilizes, is valid for a class of PE materials. The long-term performance of these materials in various operating conditions can therefore be effectively predicted.

  2. Crosslinking and degradation mechanisms in model sealant candidates

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kaufman, J.; Kratzer, R. H.

    1974-01-01

    Heterocyclic ring systems were investigated, triazines and 1,2,4-oxadiazoles. Only a limited effort was extended to the preparation of triazoles. Compounds, n-perfluoroheptyl-s-triazine, a perfluoroether substituted triazine, C3F7OCF(CF3)CF2OCF(CF3) 3C3N3,1,4-bus (5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl -benzene, its perfluoroalkylether substituded analogue, and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and characterized. To eliminate the effect due to a tertiary fluorine present in branched materials, the pure n-alkyl-compounds were prepared. The main starting material, perfluoro-n-octanonitrile, was obtained from commercially available perfluoro-n-octanoic acid via a three step synthesis.

  3. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  4. Fluff-thieving birds sabotage seed dispersal

    PubMed Central

    2017-01-01

    Characterizing many species interactions as mutualisms can be misleading because some members of the interaction derive greater fitness benefits at the expense of other members. We provide detailed natural history data on a suspected bird–plant mutualism in South Africa where many species of birds use fluffy Eriocephalus seed material to construct their nests, potentially dispersing seeds for the plant. We focus on a common bird, Prinia maculosa, which invests heavily in gathering Eriocephalus material. Prinias spent 5 of their median 6-day nest construction period adding seed material to their nests and frequently travelled outside their territory boundary to gather Eriocephalus material. Yet, prinias gathered primarily Eriocephalus fluff and actively avoided gathering seeds. The average prinia nest contained only 6.6 seeds, but contained fluff from 579 seeds. These data suggest that prinias provide limited dispersal benefits to Eriocephalus plants. By contrast, the large amounts of Eriocephalus fluff in prinia nests, and the effort that prinias invest in gathering it, suggest that prinias benefit from constructing their nests with Eriocephalus material. We end by outlining hypotheses for possible fitness benefits that Eriocephalus material could provide prinias and other birds. PMID:28280552

  5. Fluff-thieving birds sabotage seed dispersal.

    PubMed

    Rohwer, Vanya G; Pauw, Anton; Martin, Paul R

    2017-01-01

    Characterizing many species interactions as mutualisms can be misleading because some members of the interaction derive greater fitness benefits at the expense of other members. We provide detailed natural history data on a suspected bird-plant mutualism in South Africa where many species of birds use fluffy Eriocephalus seed material to construct their nests, potentially dispersing seeds for the plant. We focus on a common bird, Prinia maculosa , which invests heavily in gathering Eriocephalus material. Prinias spent 5 of their median 6-day nest construction period adding seed material to their nests and frequently travelled outside their territory boundary to gather Eriocephalus material. Yet, prinias gathered primarily Eriocephalus fluff and actively avoided gathering seeds. The average prinia nest contained only 6.6 seeds, but contained fluff from 579 seeds. These data suggest that prinias provide limited dispersal benefits to Eriocephalus plants. By contrast, the large amounts of Eriocephalus fluff in prinia nests, and the effort that prinias invest in gathering it, suggest that prinias benefit from constructing their nests with Eriocephalus material. We end by outlining hypotheses for possible fitness benefits that Eriocephalus material could provide prinias and other birds.

  6. Bulk and Thin film Properties of Nanoparticle-based Ionic Materials

    NASA Astrophysics Data System (ADS)

    Fang, Jason

    2008-03-01

    Nanoparticle-based ionic materials (NIMS) offer exciting opportunities for research at the forefront of science and engineering. NIMS are hybrid particles comprised of a charged oligomeric corona attached to hard, inorganic nanoparticle cores. Because of their hybrid nature, physical properties --rheological, optical, electrical, thermal - of NIMS can be tailored over an unusually wide range by varying geometric and chemical characteristics of the core and canopy and thermodynamic variables such as temperature and volume fraction. On one end of the spectrum are materials with a high core content, which display properties similar to crystalline solids, stiff waxes, and gels. At the opposite extreme are systems that spontaneously form particle-based fluids characterized by transport properties remarkably similar to simple liquids. In this poster I will present our efforts to synthesize NIMS and discuss their bulk and surface properties. In particular I will discuss our work on preparing smart surfaces using NIMS.

  7. Sheet metals characterization using the virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2018-05-01

    In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.

  8. Report of sampling and analysis results, Addison Army housing units, Addison, Illinois. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-09-01

    The objectives of this sampling and analysis effort include further characterization of environmental contamination identified in an enhanced preliminary assessment carried out in 1989. The specific activities performed at this site were identification, evaluation of the condition, and collection of samples from specific suspected asbestos-containing materials, including floor tiles, pipe run and pipe fitting insulation, dust in the ductwork, and exterior siding, where present. These evaluation were necessary to clarify potential environmental issues identified in the earlier report, prior to the sale or realignment of the property.

  9. Carbon-Phenolic Cages for High-Speed Bearings. Part 1 - Friction and Wear Response of Phenolic Composite Impregnated with a Multiply-Alkylated Cyclopentane (MAC) Lubricant and MoS2 Solid Lubricant

    DTIC Science & Technology

    2003-01-01

    AFRL/MLBT) was the program manager for the overall effort. The carbon -phenolic samples in the program were prepared by Mr. Wei Shih of Allcomp ... Inc ., City of Industry, CA. Mr. Shih also provided the mechanical and thermal property data for the carbon -phenolic specimens. Hitesh Trivedi and...of the program to characterize the material properties. Allcomp Inc ., City of Industry, California supplied all of the test specimens. The

  10. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  11. Achieving a Prioritized Research and Technology Development Portfolio for the Dust Management Project

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Abel, Phillip; Delaune, Paul; Fishman, Julianna; Kohli, Rajiv

    2009-01-01

    Mission architectures for human exploration of the lunar surface continue to advance as well as the definitions of capability needs, best practices and engineering design to mitigate the impact of lunar dust on exposed systems. The NASA DMP has been established as the agency focal point for dust characterization, technology, and simulant development. As described in this paper, the DMP has defined a process for selecting and justifying its R&T portfolio. The technology prioritization process, which is based on a ranking system according to weighted criteria, has been successfully applied to the current DMP dust mitigation technology portfolio. Several key findings emerged from this assessment. Within the dust removal and cleaning technologies group, there are critical technical challenges that must be overcome for these technologies to be implemented for lunar applications. For example, an in-situ source of CO2 on the moon is essential to the CO2 shower technology. Also, significant development effort is required to achieve technology readiness level TRL 6 for the electrostatic cleaning system for removal of particles smaller than 50 pm. The baseline materials related technologies require considerable development just to achieve TRL 6. It is also a nontrivial effort to integrate the materials in hardware for lunar application. At present, there are no terrestrial applications that are readily adaptable to lunar surface applications nor are there any obvious leading candidates. The unique requirements of dust sealing systems for lunar applications suggest an extensive development effort will be necessary to mature dust sealing systems to TRL 6 and beyond. As discussed here, several alternate materials and technologies have achieved high levels of maturity for terrestrial applications and warrant due diligence in ongoing assessment of the technology portfolio. The present assessment is the initial step in an ongoing effort to continually evaluate the DMP technology portfolio and external non-NASA relevant technology developments efforts to maintain an optimal investment profile. At the same time, there is an ongoing review of agency-wide dust-related R&T activities. The results of these ongoing assessments will be reported in future publications.

  12. Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.

    PubMed

    Luther, Joseph M; Pietryga, Jeffrey M

    2013-03-26

    A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.

  13. Analysis of Yttrium-Barium-Copper-Oxide by x ray diffraction and mechanical characterization

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1992-01-01

    The efforts in developing high-temperature superconductor (HTSC) YBa2Cu3O7 electrical leads are to benefit future NASA missions that will carry payloads with sensitive instruments operating at cryogenic temperatures. Present-day leads made of copper or magnesium are responsible for as much as 50 percent of the parasitic heat load on cryogenic systems. A reduction of this load could be achieved by replacing the conventional materials with HTSC ceramic electrical leads. Superconductor quality has become a concern in the industry, as has the development of effective evaluation methods. The factors that need to be examined for these materials include material purity, mechanical properties, and superconducting ability below the critical temperature. We applied several methods to study these factors: thermogravimetric analysis, x-ray diffraction, tensile testing, and laser-generated ultrasound. Our objectives were to determine the average tensile strength and Young's modulus of the HTSC material and to compare them to those values for copper and manganin.

  14. Novel oxygen atom source for material degradation studies

    NASA Technical Reports Server (NTRS)

    Krech, R. H.; Caledonia, G. E.

    1988-01-01

    Physical Sciences Inc. (PSI) has developed a high flux pulsed source of energetic (8 km/s) atomic oxygen to bombard specimens in experiments on the aging and degradation of materials in a low earth orbit environment. The proof-of-concept of the PSI approach was demonstrated in a Phase 1 effort. In Phase 2 a large O-atom testing device (FAST-2) has been developed and characterized. Quantitative erosion testing of materials, components, and even small assemblies (such as solar cell arrays) can be performed with this source to determine which materials and/or components are most vulnerable to atomic oxygen degradation. The source is conservatively rated to irradiate a 100 sq cm area sample at greater than 10(exp 17) atoms/s, at a 10 Hz pulse rate. Samples can be exposed to an atomic oxygen fluence equivalent to the on-orbit ram direction exposure levels incident on Shuttle surfaces at 250 km during a week-long mission in a few hours.

  15. Combined space environment on spacecraft engineering materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan

    1993-01-01

    Spacecraft structures and surface materials exposed to the space environment for extended periods, up to thirty years, have increased potential for damage from long term exposure to the combined space environment including solar ultraviolet radiation, electrons, and protons and orbiting space debris. The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/cm(sup 2)/day and the proton integral fluence is above 1 x 10(exp 9) protons/cm(sup 2)/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of ultraviolet radiation, particularly in the vacuum ultraviolet (less than 200 nm wavelength) is more difficult to characterize at this time. Very little data is available in the literature which can be used for determining the life cycle of a material placed in space for extended durations of time. In order to obtain critical data for planning and designing of spacecraft systems, use of a small vacuum system at the Environmental Effects Facility at MSFC, which can be used for these purposes was used. A special effort was made to build up this capability during the course of this research effort and perform a variety of experiments on materials proposed for the Space Station. A description of the apparatus and the procedure devised to process potential spacecraft materials is included.

  16. Determination Of Constituent Concentration In Fluid Mixtures Using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Galloway, Robert L.; Collins, Jerry C.; Carroll, Frank E.

    1987-01-01

    The primary application of magnetic resonance imaging (MRI) has been qualitative and anatomical evaluation of patient status. Recent efforts to analyze image information for quantitative evaluation centered on two relaxation parameters, Tl and T2, as the descriptors for the image data. In our work we have found that relaxation curves for biologic materials cannot be described by a monoexponential function and that, in a spin echo system, calculated Tl values are dependent on repetition time. This finding is not unexpected since, in physiologic imaging, any region of interest (ROI), is composed of a number of distinct substances and the response of that ROI will be a composite of the constituent materials. The purpose of our study was to develop a method by which the relaxation behaviors of a composite of physiological material might be characterized and use that characterization to determine its constituent materials. We created a phantom in which volumes of several "pure" materials (blood, plasma, saline and oil) were available as well as volumes which contained concentric enclosures of the pure materials. Images were formed at a number of repetition times, ranging from 160 milliseconds to 2 seconds. The image data was then transferred to a VAX 11/750 where regions of interest were marked and the mean image intensity for each ROI at each repetition time was calculated. The resultant relaxation curves of the pure materials formed basis vectors for the composite responses and the fractional content of each material was determined by a least-square error fit to the basis vectors. Excellent agreement was seen between known and measured mixture percentages. Ongoing work is centered around optimizing repetition time selection and accounting for the interaction between species in the mixtures.

  17. Constitutive Theory Developed for Monolithic Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1998-01-01

    With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.

  18. Molecular cooperativity and compatibility via full atomistic simulation

    NASA Astrophysics Data System (ADS)

    Kwan Yang, Kenny

    Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison. This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems. Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules, where the density of cross-linking dictates cooperativity, is used to gauge the effectiveness of the triumvirate of gyration metrics. The metrics are shown to identify the critical number of cross-links that allowed the pair to deform together. The next step involves looking at the cooperativity features on a real system. We investigate a representative collagen molecule (i.e., tropocollagen), where single point mutations are known to produce kinks that create local unfolding. The results indicate that the metrics are effective, serving as a validation of the cooperativity metrics in a palpable material system. Finally a preliminary study on a carbon nanotube and collagen composite is proposed with a long-term objective of understanding the interactions between them as a means to corroborate experimental efforts in reproducing a d-banded collagen fiber. The emerging needs for more robust and resilient structures, as well as sustainable are serving as motivation to think beyond the traditional design methods. The characterization of cooperativity is thus key in materiomics, an emerging field that focuses on developing a "nano-to-macro" synergistic platform, which provides the necessary tools and procedures to validate future structural models and other critical behavior in a holistic manner, from atoms to application.

  19. X-ray techniques for innovation in industry

    PubMed Central

    Lawniczak-Jablonska, Krystyna; Cutler, Jeffrey

    2014-01-01

    The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures. PMID:25485139

  20. Domain switching in single-phase multiferroics

    NASA Astrophysics Data System (ADS)

    Jia, Tingting; Cheng, Zhenxiang; Zhao, Hongyang; Kimura, Hideo

    2018-06-01

    Multiferroics are a time-honoured research subject by reason for their tremendous application potential in the information industry, such as in multi-state information storage devices and new types of sensors. An outburst of studies on multiferroicity has been witnessed in the 21st century, although this field has a long research history since the 19th century. Multiferroicity has now become one of the hottest research topics in condensed matter physics and materials science. Numerous efforts have been made to investigate the cross-coupling phenomena among ferroic orders such as ferroelectricity, (anti-)ferromagnetism, and ferroelasticity, especially the coupling between electric and magnetic orderings that would account for the magnetoelectric (ME) effect in multiferroic materials. The magnetoelectric properties and coupling behavior of single phase multiferroics are dominated by their domain structures. It was also noted that, however, the multiferroic materials exhibit very complicated domain structures. Studies on domain structure characterization and domain switching are a crucial step in the exploration of approaches to the control and manipulation of magnetic (electric) properties using an electric (magnetic) field or other means. In this review, following a concise outline of our current basic knowledge on the magnetoelectric (ME) effect, we summarize some important research activities on domain switching in single-phase multiferroic materials in the form of single crystals and thin films, especially domain switching behavior involving strain and the related physics in the last decade. We also introduce recent developments in characterization techniques for domain structures of ferroelectric or multiferroic materials, which have significantly advanced our understanding of domain switching dynamics and interactions. The effects of a series of issues such as electric field, magnetic field, and stress effects on domain switching are been discussed as well. It is intended that an integrated viewpoint of these issues, as provided here, will further motivate synergistic activities between the various research groups and industry towards the development and characterization of multiferroic materials.

  1. Chemistry and Properties of Imide Oligomers from Phenylethynyl-Containing Diamines

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.

    2000-01-01

    As an extension of work on pendent phenylethynlyl-containing imide oligomer, three new diamines containing pendent phenylethynyl groups were prepared and characterized. These diamines were used to prepare pendent and pendent and terminal phenylethynyl imide oliogomers via the amide acid route in N-methyl-2-pyrrolidinone at a calculated number average molecular weight of 5000 g mol (exp -1). The pendent phenylethynyl groups were randomly distributed along the oliogomer backbone and provided a means of controlling the distance between reactive sites. The imide oligomers were characterized and thermally cured, and the cured polymers evaluated as thin films and compared with materials of similar composition prepared from 3,5-diamino-4'-phenylethynylbenzophenone. This work was performed as part of a continuing research effort to develop structural resins for potential aeronautical applications.

  2. Report on Status of Shipment of High Fluence Austenitic Steel Samples for Characterization and Stress Corrosion Crack Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Scarlett R.; Leonard, Keith J.

    The goal of the Mechanisms of Irradiation Assisted Stress Corrosion Cracking (IASCC) task in the LWRS Program is to conduct experimental research into understanding how multiple variables influence the crack initiation and crack growth in materials subjected to stress under corrosive conditions. This includes understanding the influences of alloy composition, radiation condition, water chemistry and metallurgical starting condition (i.e., previous cold work or heat treatments and the resulting microstructure) has on the behavior of materials. Testing involves crack initiation and growth testing on irradiated specimens of single-variable alloys in simulated Light Water Reactor (LWR) environments, tensile testing, hardness testing, microstructuralmore » and microchemical analysis, and detailed efforts to characterize localized deformation. Combined, these single-variable experiments will provide mechanistic understanding that can be used to identify key operational variables to mitigate or control IASCC, optimize inspection and maintenance schedules to the most susceptible materials/locations, and, in the long-term, design IASCC-resistant materials. In support of this research, efforts are currently underway to arrange shipment of “free” high fluence austenitic alloys available through Électricité de France (EDF) for post irradiation testing at the Oak Ridge National Laboratory (ORNL) and IASCC testing at the University of Michigan. These high fluence materials range in damage values from 45 to 125 displacements per atom (dpa). The samples identified for transport to the United States, which include nine, no-cost, 304, 308 and 316 tensile bars, were relocated from the Research Institute of Atomic Reactors (RIAR) in Dimitrovgrad, Ulyanovsk Oblast, Russia, and received at the Halden Reactor in Halden, Norway, on August 23, 2016. ORNL has been notified that a significant amount of work is required to prepare the samples for further shipment to Oak Ridge, Tennessee. The preliminary work for sample shipment between Halden and Oak Ridge includes fabrication of an inner cask sample container, decontamination and preparation of a Type A container, preparation of new activity calculations, all necessary paperwork, and handling. ORNL will continue to work to track progress of sample preparation and shipment status, and to work toward an agreement that covers material shipping costs between the Halden Reactor and the Oak Ridge National Laboratory.« less

  3. Materials Genome Initiative

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  4. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Anel A.; Shimaoka, Takayuki

    2008-12-15

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used formore » this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m{sup 3}. Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10{sup -10} cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.« less

  5. Analytical study on the suitability of using bentonite coated gravel as a landfill liner material.

    PubMed

    Roberts, Anel A; Shimaoka, Takayuki

    2008-12-01

    This study investigates the feasibility of using bentonite coated gravel (BCG) as a liner material for waste landfills. BCG has proven to be a very effective capping material/method for the remediation of contaminated sediments in aquatic environments. The concept of BCG is similar to that of peanuts/almonds covered with chocolate; each aggregate particle has been covered with the clayey material. Laboratory tests were aimed at evaluating regulated and non-regulated factors for liner materials, i.e., permeability and strength. Tests included X-ray diffraction, methylene blue absorption, compaction, free swelling, permeability, 1D consolidation, triaxial compression and cone penetration. The compactive efforts used for this study were the reduced Proctor, standard Proctor, intermediate Proctor, modified Proctor and super modified Proctor. The compactive energy corresponding to each effort, respectively, is as follows: 355.5, 592.3, 1196.3, 2693.3, and 5386.4 kJ/m(3). Results revealed that even though aggregate content represents 70% of the weight of the material, hydraulic conductivities as low as 6 x 10(-10)cm/s can be achieved when proper compactive efforts are used. Compressibility is very low for this material even at low (or no) compactive efforts. Results also demonstrated how higher compactive efforts can lower the permeability of BCG; however, over-compaction creates fractures in the aggregate core of BCG that could increase permeability. Moreover, higher compactive efforts create higher swelling pressures that could compromise the performance of a barrier constructed using BCG. As a result of this study, moderate compactive efforts, i.e., intermediate Proctor or modified Proctor, are recommended for constructing a BCG barrier. Using moderate compactive efforts, very low hydraulic conductivities, good workability and good trafficability are easily attainable.

  6. Fracture Toughness of Carbon Fiber Composites Containing Various Fiber Sizings and a Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Grimsley, Brian W.; Ratcliffe, James G.; Gordon, Keith L.; Smith, Joseph G.; Siochi, Emilie J.

    2015-01-01

    Ongoing efforts at NASA Langley Research Center (LaRC) have resulted in the identification of several commercially available thermoplastic resin systems which self-heal after ballistic impact and through penetration. One of these resins, polybutylene graft copolymer (PBg), was selected as a matrix for processing with unsized carbon fibers to fabricate reinforced composites for further evaluation. During process development, data from thermo-physical analyses was utilized to determine a processing cycle to fabricate laminate panels, which were analyzed by photo microscopy and acid digestion. The process cycle was further optimized based on these results to fabricate panels for mechanical property characterization. The results of the processing development effort of this composite material, as well as the results of the mechanical property characterization, indicated that bonding between the fiber and PBg was not adequate. Therefore, three sizings were investigated in this work to assess their potential to improve fiber/matrix bonding compared to previously tested unsized IM7 fiber. Unidirectional prepreg was made at NASA LaRC from three sized carbon fibers and utilized to fabricate test coupons that were tested in double cantilever beam configurations to determine GIc fracture toughness.

  7. To relieve the sufferings of humanity, irrespective of party, politics or creed?: conflict, consensus and voluntary hospital provision in Edwardian South Wales.

    PubMed

    Thompson, Steven

    2003-08-01

    This article examines the provision of voluntary hospital facilities for injured workers in the mining valleys of Edwardian South Wales. It considers the co-operation and conflict that characterized efforts to establish hospitals, and examines the attitudes and activities of workers, employers, and other interested groups. Despite certain instances of disagreement and conflict, this article demonstrates the significant levels of co-operation and consensus that characterized the efforts of employers and workers to provide communities with hospital facilities. This co-operation was perhaps surprising considering the bitter industrial conflict and social unrest of that period. The article uses this material to question assertions that hospitals reflect the social and political milieus of the communities in which they were situated and argues that the social relations produced by hospital provision sometimes coincided with wider social and industrial relations, but at other times differed from them or transcended them. Furthermore, the article demonstrates that the co-operation between employers and workers in the provision of hospitals in Edwardian South Wales did not stabilize social and industrial relations in the way that historians of associational voluntarism in other contexts have found.

  8. Semiconductor laser joint study program with Rome Laboratory

    NASA Astrophysics Data System (ADS)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  9. Permeability and flammability study of composite sandwich structures for cryogenic applications

    NASA Astrophysics Data System (ADS)

    Bubacz, Monika

    Fiber reinforced plastics offer advantageous specific strength and stiffness compared to metals and has been identified as candidates for the reusable space transportation systems primary structures including cryogenic tanks. A number of carbon and aramid fiber reinforced plastics have been considered for the liquid hydrogen tanks. Materials selection is based upon mechanical properties and containment performance (long and short term) and upon manufacturing considerations. The liquid hydrogen tank carries shear, torque, end load, and bending moment due to gusts, maneuver, take-off, landing, lift, drag, and fuel sloshing. The tank is pressurized to about 1.5 atmosphere (14.6psi or 0.1 MPa) differential pressure and on ascent maintains the liquid hydrogen at a temperature of 20K. The objective of the research effort into lay the foundation for developing the technology required for reliable prediction of the effects of various design, manufacturing, and service parameters on the susceptibility of composite tanks to develop excessive permeability to cryogenic fuels. Efforts will be expended on developing the materials and structural concepts for the cryogenic tanks that can meet the functional requirements. This will include consideration for double wall composite sandwich structures, with inner wall to meet the cryogenic requirements. The structure will incorporate nanoparticles for properties modifications and developing barriers. The main effort will be extended to tank wall's internal skin design. The main requirements for internal composite stack are: (1) introduction of barrier film (e.g. honeycomb material paper sheet) to reduce the wall permeability to hydrogen, (2) introduction of nanoparticles into laminate resin to prevent micro-cracking or crack propagation. There is a need to characterize and analyze composite sandwich structural damage due to burning and explosion. Better understanding of the flammability and blast resistance of the composite structures needs to be evaluated.

  10. Qualification Status of Non-Asbestos Internal Insulation in the Reusable Solid Rocket Motor Program

    NASA Technical Reports Server (NTRS)

    Clayton, Louie

    2011-01-01

    This paper provides a status of the qualification efforts associated with NASA's RSRMV non-asbestos internal insulation program. For many years, NASA has been actively engaged in removal of asbestos from the shuttle RSRM motors due to occupation health concerns where technicians are working with an EPA banned material. Careful laboratory and subscale testing has lead to the downselect of a organic fiber known as Polybenzimidazol to replace the asbestos fiber filler in the existing synthetic rubber copolymer Nitrile Butadiene - now named PBI/NBR. Manufacturing, processing, and layup of the new material has been a challenge due to the differences in the baseline shuttle RSRM internal insulator properties and PBI/NBR material properties. For this study, data gathering and reduction procedures for thermal and chemical property characterization for the new candidate material are discussed. Difficulties with test procedures, implementation of properties into the Charring Material Ablator (CMA) codes, and results correlation with static motor fire data are provided. After two successful five segment motor firings using the PBI/NBR insulator, performance results for the new material look good and the material should eventually be qualified for man rated use in large solid rocket motor applications.

  11. Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.

    PubMed

    Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S

    1998-01-01

    In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry.

  12. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  13. Structural and functional biological materials: Abalone nacre, sharp materials, and abalone foot adhesion

    NASA Astrophysics Data System (ADS)

    Lin, Albert Yu-Min

    A three-part study of lessons from nature is presented through the examination of various biological materials, with an emphasis on materials from the mollusk Haliotis rufescens, commonly referred to as the red abalone. The three categories presented are: structural hierarchy, self-assembly, and functionality. Ocean mollusk shells are composed of aragonite/calcite crystals interleaved with layers of a visco-elastic protein, having dense, tailored structures with excellent mechanical properties. The complex nano-laminate structure of this bio-composite material is characterized and related to its mechanical properties. Three levels of structural hierarchy are identified: macroscale mesolayers separating larger regions of tiled aragonite, microscale organization of 0.5 mum by 10 mum aragonite bricks; nanoscale mineral bridges passing through 30 nm layers of organic matrix separating individual aragonite tiles. Composition and growth mechanisms of this nanostructure were observed through close examination of laboratory-grown samples using scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Glass slides and nacre pucks were implanted onto the growth surface of living abalone and removed periodically to observe trends in nacre deposition. Various deproteinization and demineralization experiments are used to explore the inorganic and organic components of the nacre's structure. The organic component of the shell is characterized by atomic force microscopy (AFM). The functionality of various biological materials is described and investigated. Two specific types of functionality are characterized, the ability of some materials to cut and puncture through sharp designs, and the ability for some materials to be used as attachment devices. Aspects of cutting materials employed by a broad range of animals were characterized and compared. In respect to the attachment mechanisms the foot of the abalone and the tree frog were investigated. It is discovered that the foot of the abalone applies similar mechanics as that of the gecko foot to adhere to surfaces. Approximately 1011 100 nm diameter fibers found at the base of the foot pedal are found to create Van der Waals interactions along with capillary and suction mechanisms to enable attachment. This reusable adhesive is found to exhibit strength of ˜0.14 MPa. This represents an evolutionary convergence of design from two independent species (the gecko and the abalone) living in extremely dissimilar environments. The presented work provides a summary of an effort to investigate materials found in nature with the hope of inspiring novel technological advances in design.

  14. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  15. Experimental characterization of the constitutive materials of MgB2 multi-filamentary wires for the development of 3D numerical models

    NASA Astrophysics Data System (ADS)

    Escamez, Guillaume; Sirois, Frédéric; Tousignant, Maxime; Badel, Arnaud; Granger, Capucine; Tixador, Pascal; Bruzek, Christian-Éric

    2017-03-01

    Today MgB2 superconducting wires can be manufactured in long lengths at low cost, which makes this material a good candidate for large scale applications. However, because of its relatively low critical temperature (less than 40 K), it is necessary to operate MgB2 devices in a liquid or gaseous helium environment. In this context, losses in the cryogenic environment must be rigorously minimized, otherwise the use of a superconductor is not worthy. An accurate estimation of the losses at the design stage is therefore mandatory in order to allow determining the device architecture that minimizes the losses. In this paper, we present a complete a 3D finite element model of a 36-filament MgB2 wire based on the architecture of the Italian manufacturer Colombus. In order for the model to be as accurate as possible, we made a substantial effort to characterize all constitutive materials of the wire, namely the E-J characteristics of the MgB2 filaments and the electric and magnetic properties (B-H curves) of nickel and monel, which are the two major non-superconducting components of the wire. All properties were characterized as a function of temperature and magnetic field. Limitations of the characterization and of the model are discussed, in particular the difficulty to extract the maximum relative permeability of nickel and monel from the experimental data, as well as the lack of a thin conductive layer model in the 3D finite element method, which prevents us from taking into account the resistive barriers around the MgB2 filaments in the matrix. Two examples of numerical simulations are provided to illustrate the capabilities of the model in its current state.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, Peter C.

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less

  17. Hierarchical multi-scale approach to validation and uncertainty quantification of hyper-spectral image modeling

    NASA Astrophysics Data System (ADS)

    Engel, Dave W.; Reichardt, Thomas A.; Kulp, Thomas J.; Graff, David L.; Thompson, Sandra E.

    2016-05-01

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensor level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.

  18. Synthesis and thermal conductivity of type II silicon clathrates

    NASA Astrophysics Data System (ADS)

    Beekman, M.; Nolas, G. S.

    2006-08-01

    We have synthesized and characterized polycrystalline Na 1Si 136 and Na 8Si 136, compounds possessing the type II clathrate hydrate crystal structure. Resistivity measurements from 10 to 300 K indicate very large resistivities in this temperature range, with activated temperature dependences indicative of relatively large band gap semiconductors. The thermal conductivity is very low; two orders-of-magnitude lower than that of diamond-structure silicon at room temperature. The thermal conductivity of Na 8Si 136 displays a temperature dependence that is atypical of crystalline solids and more indicative of amorphous materials. This work is part of a continuing effort to explore the many different compositions and structure types of clathrates, a class of materials that continues to be of interest for scientific and technological applications.

  19. [Establishing and operating a human biobank. Ethical aspects].

    PubMed

    Jahns, Roland

    2016-03-01

    Particularly in the past decade which has been marked by efforts to foster individualized/personalized medicine the need for well-characterized high-quality collections of human biological material has significantly increased. When establishing and operating a human biobank the interests and the "freedom" of biomedical research must always be weighed against the interests and rights of patients and/or donors; in this process ethical aspects should be considered systematically. In addition, the importance of quality control and quality assurance has largely increased in human biobanking, both from a scientific and even more from an ethical point of view, because donated biological materials are potentially stored for decades and (on request) might serve for currently not foreseeable biomedical research purposes. In addition, the compatibility of national human biobanks with international biobank networks becomes increasingly important.

  20. Performance Characterization and Simulation of Amine-Based Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Watts,Carly; Anderson, Molly; McMillin, Summer; Boerman, Craig; Colunga, Aaron; Vogel, Matthew

    2011-01-01

    Controlling carbon dioxide (CO2) and water (H2O) concentrations in the vapor phase of a space suit is critical to ensuring an astronauts safety, comfortability, and capability to perform extra-vehicular activity (EVA) tasks. Historically, this has been accomplished using lithium hydroxide (LiOH) and metal oxides (MetOx). Lithium hydroxide is a consumable material and requires priming with water before it becomes effective at removing carbon dioxide. MetOx is regenerable through a power-intensive thermal cycle but is significantly heavier on a volume basis than LiOH. As an alternative, amine-based vacuum swing beds are under aggressive development for EVA applications which control atmospheric concentrations of both CO2 and H2O through a fully-regenerative process. The current concept, referred to as the rapid cycle amine (RCA), has resulted in numerous laboratory prototypes. Performance of these prototypes have been assessed and documented from experimental and theoretical perspectives. To support developmental efforts, a first principles model has also been established for the vacuum swing adsorption technology. The efforts documented herein summarize performance characterization and simulation results for several variable metabolic profiles subjected to the RCA. Furthermore, a variety of control methods are explored including timed swing cycles, instantaneous CO2 feedback control, and time-averaged CO2 feedback control. A variety of off-nominal tests are also explored including high/low suit temperatures, increasingly high humidity cases, and dynamic pressure cases simulating the suit pre-breathe protocol. Consequently, this work builds on efforts previous efforts to fully bound the performance of the rapid cycle amine under a variety of nominal and off-nominal conditions.

  1. Biologically inspired technologies using artificial muscles

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  2. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond

    DOE PAGES

    Mannodi-Kanakkithodi, Arun; Chandrasekaran, Anand; Kim, Chiho; ...

    2017-12-19

    The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here,more » we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. As a result, by scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and provide future perspectives and directions for expansions to other polymer subclasses and properties.« less

  3. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannodi-Kanakkithodi, Arun; Chandrasekaran, Anand; Kim, Chiho

    The Materials Genome Initiative (MGI) has heralded a sea change in the philosophy of materials design. In an increasing number of applications, the successful deployment of novel materials has benefited from the use of computational methodologies, data descriptors, and machine learning. Polymers have long suffered from a lack of data on electronic, mechanical, and dielectric properties across large chemical spaces, causing a stagnation in the set of suitable candidates for various applications. Extensive efforts over the last few years have seen the fruitful application of MGI principles toward the accelerated discovery of attractive polymer dielectrics for capacitive energy storage. Here,more » we review these efforts, highlighting the importance of computational data generation and screening, targeted synthesis and characterization, polymer fingerprinting and machine-learning prediction models, and the creation of an online knowledgebase to guide ongoing and future polymer discovery and design. We lay special emphasis on the fingerprinting of polymers in terms of their genome or constituent atomic and molecular fragments, an idea that pays homage to the pioneers of the human genome project who identified the basic building blocks of the human DNA. As a result, by scoping the polymer genome, we present an essential roadmap for the design of polymer dielectrics, and provide future perspectives and directions for expansions to other polymer subclasses and properties.« less

  4. Highly Conducting Molecular Crystals.

    NASA Astrophysics Data System (ADS)

    Whitehead, Roger James

    Available from UMI in association with The British Library. Requires signed TDF. As the result of a wide ranging effort towards the preparation of new electrically conducting molecular crystals, high quality samples were prepared of the organic radical-ion salt (TMTSF)_2SbCl _2F_4 {bis-tetramethyltetraselenafulvalene-dichlorotetrafluoroantimonate(V) }. A collaborative effort to investigate the electronic and structural properties of this material has yielded the necessary depth of information required to give a satisfactory understanding of its rather complicated behaviour. The combination of x-ray structural studies with d.c. transport, reflectance and magnetic measurements has served to underline the importance of crystalline perfection, electronic dimensionality and conduction electron correlation in determining the materials overall behaviour. This thesis describes the method of preparation and characterization of (TMTSF)_2SbCl _2F_4 and the experimental arrangements used to determine the temperature dependence of its ambient pressure electrical conductivity, thermopower and electron spin resonance spectra. The crystal structure and optical reflectance measurements at room temperature are also presented. The results into a study of the low temperature diffraction pattern are described along with the temperature dependence in the static magnetic susceptibility and in the conductivity behaviour under elevated hydrostatic pressures. These findings are rationalized by reference to other materials which show similar behaviour in their electronic and/or structural properties, and also to the various theoretical models currently enjoying favour.

  5. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  6. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  7. Temporal characterization of small arms muzzle flash in the broadband visible

    NASA Astrophysics Data System (ADS)

    Burke, Tom; Bratlie, Duane

    2010-04-01

    The authors have developed a simple system for characterizing the muzzle flash duration of common military small-arms ammunition as a feeder for system design configurations. This paper is a synopsis of the efforts and results of the effort to characterize the broadband optical signature of modern small arms.

  8. Overview of NASA GRC Stirling Technology Development

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey; Thieme, Lanny

    2003-01-01

    The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Depar1ment of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the capability to operate in the vacuum of deep space or in an atmosphere such as on the surface of Mars. High system efficiency is obtained through the use of free-piston Stirling power conversion technology. Power output of the generator will be greater than 100 watts at the beginning of life with the decline in power being largely due to the decay of the plutonium heat source. In suppOl1 of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a near-term technology effort to provide some of the critical data to ensure a successful transition to flight for what will be the first dynamic power system used in space. Initially, a limited number of technical areas were selected for the GRC effort, however this is now being expanded to more thoroughly cover a range of technical issues. The tasks include in-house testing of Stirling convertors and controllers, materials evaluation and heater head life assessment, structural dynamics, electromagnetic interference, organics evaluation, and reliability analysis. Most of these high-level tasks have several subtasks within. There is also an advanced technology effort that is complementary near-term technology effort. Many of the tests make use of the 55-We Technology Demonstration Convel10r (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC's have recently been placed on an extended test with unattended, continuous operation. Heater head life assessment efforts continue, with the material data being refined and the analysis moving toward the system perspective. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. In a parallel effort, higher performance magnets are also being evaluated. A reliability effort is being initiated that will help to guide the development activities with an increased focus on the necessary components and subsystems. Some other disciplines that are active in the GRC technology effort include structural dynamics, linear alternator analysis, EMI/EMC, controls, and mechanical design evaluation. This paper will provide an overview of some of the GRC technical efforts, including the current status, and a description of future efforts.

  9. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  10. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  11. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C; Sediako, Dimitry; Shook, S

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed usingmore » E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.« less

  12. Development Status for the Stennis Space Center LIDAR Product Characterization Range

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Berglund, Judith; Ross, Kenton

    2004-01-01

    The presentation describes efforts to develop a LIDAR in-flight product characterization range at Stennis Space Center as the next phase of the NASA Verification and Validation activities. It describes the status of surveying efforts on targets of interest to LIDAR vendors as well as the potential guidelines that will be used for product characterization.

  13. Biological and environmental interactions of emerging two-dimensional nanomaterials

    PubMed Central

    Wang, Zhongying; Zhu, Wenpeng; Qiu, Yang; Yi, Xin; von dem Bussche, Annette; Kane, Agnes; Gao, Huajian; Koski, Kristie; Hurt, Robert

    2016-01-01

    Two-dimensional materials have become a major focus in materials chemistry research worldwide with substantial efforts centered on synthesis, property characterization, and technological application. These high-aspect ratio sheet-like solids come in a wide array of chemical compositions, crystal phases, and physical forms, and are anticipated to enable a host of future technologies in areas that include electronics, sensors, coatings, barriers, energy storage and conversion, and biomedicine. A parallel effort has begun to understand the biological and environmental interactions of synthetic nanosheets, both to enable the biomedical developments and to ensure human health and safety for all application fields. This review covers the most recent literature on the biological responses to 2D materials and also draws from older literature on natural lamellar minerals to provide additional insight into the essential chemical behaviors. The article proposes a framework for more systematic investigation of biological behavior in the future, rooted in fundamental materials chemistry and physics. That framework considers three fundamental interaction modes: (i) chemical interactions and phase transformations, (ii) electronic and surface redox interactions, and (iii) physical and mechanical interactions that are unique to near-atomically-thin, high-aspect-ratio solids. Two-dimensional materials are shown to exhibit a wide range of behaviors, which reflect the diversity in their chemical compositions, and many are expected to undergo reactive dissolution processes that will be key to understanding their behaviors and interpreting biological response data. The review concludes with a series of recommendations for high-priority research subtopics at the “bio-nanosheet” interface that we hope will enable safe and successful development of technologies related to two-dimensional nanomaterials. PMID:26923057

  14. Characterization of Machine Variability and Progressive Heat Treatment in Selective Laser Melting of Inconel 718

    NASA Technical Reports Server (NTRS)

    Prater, T.; Tilson, W.; Jones, Z.

    2015-01-01

    The absence of an economy of scale in spaceflight hardware makes additive manufacturing an immensely attractive option for propulsion components. As additive manufacturing techniques are increasingly adopted by government and industry to produce propulsion hardware in human-rated systems, significant development efforts are needed to establish these methods as reliable alternatives to conventional subtractive manufacturing. One of the critical challenges facing powder bed fusion techniques in this application is variability between machines used to perform builds. Even with implementation of robust process controls, it is possible for two machines operating at identical parameters with equivalent base materials to produce specimens with slightly different material properties. The machine variability study presented here evaluates 60 specimens of identical geometry built using the same parameters. 30 samples were produced on machine 1 (M1) and the other 30 samples were built on machine 2 (M2). Each of the 30-sample sets were further subdivided into three subsets (with 10 specimens in each subset) to assess the effect of progressive heat treatment on machine variability. The three categories for post-processing were: stress relief, stress relief followed by hot isostatic press (HIP), and stress relief followed by HIP followed by heat treatment per AMS 5664. Each specimen (a round, smooth tensile) was mechanically tested per ASTM E8. Two formal statistical techniques, hypothesis testing for equivalency of means and one-way analysis of variance (ANOVA), were applied to characterize the impact of machine variability and heat treatment on six material properties: tensile stress, yield stress, modulus of elasticity, fracture elongation, and reduction of area. This work represents the type of development effort that is critical as NASA, academia, and the industrial base work collaboratively to establish a path to certification for additively manufactured parts. For future flight programs, NASA and its commercial partners will procure parts from vendors who will use a diverse range of machines to produce parts and, as such, it is essential that the AM community develop a sound understanding of the degree to which machine variability impacts material properties.

  15. Dynamic Mechanical Characterization of Thin Film Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.; Gates, Thomas S. (Technical Monitor)

    2003-01-01

    Many new materials are being produced for aerospace applications with the objective of maximizing certain ideal properties without sacrificing others. Polymer composites in various forms and configurations are being developed in an effort to provide lighter weight construction and better thermal and electrical properties and still maintain adequate strength and stability. To this end, thin film polymer nanocomposites, synthesized for the purpose of influencing electrical conductivity using metal oxide particles as filler without incurring losses in mechanical properties, were examined to determine elastic modulus and degree of dispersion of particles. The effects of various metal oxides on these properties will be discussed.

  16. Estimation of Plutonium-240 Mass in Waste Tanks Using Ultra-Sensitive Detection of Radioactive Xenon Isotopes from Spontaneous Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowyer, Theodore W.; Gesh, Christopher J.; Haas, Daniel A.

    This report details efforts to develop a technique which is able to detect and quantify the mass of 240Pu in waste storage tanks and other enclosed spaces. If the isotopic ratios of the plutonium contained in the enclosed space is also known, then this technique is capable of estimating the total mass of the plutonium without physical sample retrieval and radiochemical analysis of hazardous material. Results utilizing this technique are reported for a Hanford Site waste tank (TX-118) and a well-characterized plutonium sample in a laboratory environment.

  17. Modular reservoir concept for MEMS-based transdermal drug delivery systems

    NASA Astrophysics Data System (ADS)

    Cantwell, Cara T.; Wei, Pinghung; Ziaie, Babak; Rao, Masaru P.

    2014-11-01

    While MEMS-based transdermal drug delivery device development efforts have typically focused on tightly-integrated solutions, we propose an alternate conception based upon a novel, modular drug reservoir approach. By decoupling the drug storage functionality from the rest of the delivery system, this approach seeks to minimize cold chain storage volume, enhance compatibility with conventional pharmaceutical practices, and allow independent optimization of reservoir device design, materials, and fabrication. Herein, we report the design, fabrication, and preliminary characterization of modular reservoirs that demonstrate the virtue of this approach within the application context of transdermal insulin administration for diabetes management.

  18. Low cost solar array project silicon materials task. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Reed, W. H.

    1978-01-01

    Silicon tetrachloride and a reductant (sodium) will be injected into an arc heated mixture of hydrogen and argon, yielding silicon and gaseous sodium chloride. Detailed characterization of the Sonicore sodium injection nozzle, using water as the test fluid was completed. Results indicated that flow rates of 45 gph sodium and 50 scfm argon should produce sufficiently small droplet sizes. The design effort was also completed for the test system preparation which was divided into two categories: (1) system components and (2) test system-laboratory integration.

  19. Metal colloids and semiconductor quantum dots: Linear and nonlinear optical properties

    NASA Technical Reports Server (NTRS)

    Henderson, D. O.; My, R.; Tung, Y.; Ueda, A.; Zhu, J.; Collins, W. E.; Hall, Christopher

    1995-01-01

    One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantion for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. In general the host material is typically a glass such as optical grade silica. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga and As. An emphasis is placed on host guest interactions between the matrix and the implanted ion and how the matrix effects and implantation parameters can be used to obtain designer level optical devices tailored for specific applications. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. In this part of the program, we are particularly interested in characterizing the thermodynamic and optical properties of these non-composite materials. We also address how phase diagram of the confined material is altered by the interfacial properties between the confined material and the pore wall.

  20. Processing and Damage Tolerance of Continuous Carbon Fiber Composites Containing Puncture Self-Healing Thermoplastic Matrix

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Gordon, Keith L.; Czabaj, Michael W.; Cano, Roberto J.; Siochi, Emilie J.

    2012-01-01

    Research at NASA Langley Research Center (NASA LaRC) has identified several commercially available thermoplastic polymers that self-heal after ballistic impact and through-penetration. One of these resins, polybutadiene graft copolymer (PB(sub g)), was processed with unsized IM7 carbon fibers to fabricate reinforced composite material for further evaluation. Temperature dependent characteristics, such as the degradation point, glass transition (T(sub g)), and viscosity of the PBg polymer were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic parallel plate rheology. The PBg resin was processed into approximately equal to 22.0 cm wide unidirectional prepreg tape in the NASA LaRC Advanced Composites Processing Research Laboratory. Data from polymer thermal characterization guided the determination of a processing cycle used to fabricate quasi-isotropic 32-ply laminate panels in various dimensions up to 30.5cm x 30.5cm in a vacuum press. The consolidation quality of these panels was analyzed by optical microscopy and acid digestion. The process cycle was further optimized based on these results and quasi-isotropic, [45/0/-45/90]4S, 15.24cm x 15.24cm laminate panels were fabricated for mechanical property characterization. The compression strength after impact (CAI) of the IM7/pBG composites was measured both before and after an elevated temperature and pressure healing cycle. The results of the processing development effort of this composite material as well as the results of the mechanical property characterization are presented in this paper.

  1. Overview of NASA GRC Stirling Technology Development

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2004-01-01

    The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts.

  2. Chemical Dynamics of nano-Aluminum and Iodine Based Oxidizers

    NASA Astrophysics Data System (ADS)

    Little, Brian; Ridge, Claron; Overdeep, Kyle; Slizewski, Dylan; Lindsay, Michael

    2017-06-01

    As observed in previous studies of nanoenergetic powder composites, micro/nano-structural features such as particle morphology and/or reactant spatial distance are expected to strongly influence properties that govern the combustion behavior of energetic materials (EM). In this study, highly reactive composites containing crystalline iodine (V) oxide or iodate salts with nano-sized aluminum (nAl) were blended by two different processing techniques and then collected as a powder for characterization. Physiochemical techniques such as thermal gravimetric analysis, calorimetry, X-ray diffraction, electron microscopy, high speed photography, pressure profile analysis, temperature programmed reactions, and spectroscopy were employed to characterize these EM with emphasis on correlating the chemical reactivity with inherent structural features and variations in stoichiometry. This work is a continuation of efforts to probe the chemical dynamics of nAl-iodine based composites.

  3. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my; Ubaidillah, E-mail: ubaidillah@uns.ac.id

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmentalmore » Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.« less

  4. What Types of Students' Effort Are Rewarded with High Marks?

    ERIC Educational Resources Information Center

    Kelly, Sean

    2008-01-01

    This analysis of data from the Partnership for Literacy Study investigates the relationship among achievement, effort, and grades. Certainly, grades reward achievement, the mastery of material by students. Research has also suggested that grades are used to reward students for exerting effort to learn material, even if students fall short of…

  5. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    PubMed

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  6. Development and Characterization of A Multiplexed RT-PCR Species Specific Assay for Bovine and one for Porcine Foot-and-Mouth Disease Virus Rule-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S M; Danganan, L; Tammero, L

    2007-08-06

    Lawrence Livermore National Laboratory (LLNL), in collaboration with the Department of Homeland Security (DHS) and the United States Department of Agriculture (USDA), Animal and Plant Health Inspection Services (APHIS) has developed candidate multiplexed assays that may potentially be used within the National Animal Health Laboratory Network (NAHLN), the National Veterinary Services Laboratory (Ames, Iowa) and the Plum Island Animal Disease Center (PIADC). This effort has the ability to improve our nation's capability to discriminate between foreign animal diseases and those that are endemic using a single assay, thereby increasing our ability to protect food and agricultural resources with a diagnosticmore » test which could enhance the nation's capabilities for early detection of a foreign animal disease. In FY2005 with funding from the DHS, LLNL developed the first version (Version 1.0) of a multiplexed (MUX) nucleic-acid-based RT-PCR assay that included signatures for foot-and-mouth disease virus (FMDV) detection with rule-out tests for two other foreign animal diseases (FADs) of swine, Vesicular Exanthema of Swine (VESV) and Swine Vesicular Disease Virus (SVDV), and four other domestic viral diseases Bovine Viral Diarrhea Virus (BVDV), Bovine Herpes Virus 1 (BHV-1), Bluetongue virus (BTV) and Parapox virus complex (which includes Bovine Papular Stomatitis Virus [BPSV], Orf of sheep, and Pseudocowpox). In FY06, LLNL has developed Bovine and Porcine species-specific panel which included existing signatures from Version 1.0 panel as well as new signatures. The MUX RT-PCR porcine assay for detection of FMDV includes the FADs, VESV and SVD in addition to vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome (PRRS). LLNL has also developed a MUX RT-PCR bovine assay for detection of FMDV with rule out tests for the two bovine FADs malignant catarrhal fever (MCF), rinderpest virus (RPV) and the domestic diseases vesicular stomatitis virus (VSV), bovine viral diarrhea virus (BVDV), infectious bovine rhinotracheitus virus (BHV-1), bluetongue virus (BTV), and the Parapox viruses (which are of two bovine types) bovine papular stomatitis virus (BPSV) and psuedocowpox (PCP). A timeline for this development is presented in Table 1. The development of the Version 1.0 panel for FMDV rule-out and the most current efforts aimed to designed species specific panels has spanned over 2 1/2 years with multiple collaborative partnerships. This document provides a summary of the development, testing and performance data at OIE Stage 1 Feasibility into Stage 2 Assay Development and Standardization1 (see Table 2), gathered as of June 30th, 2007 for the porcine and bovine MUX assay panels. We present an overview of the identification and selection of candidate genetic signatures, the assay development process, and preliminary performance data for each of the individual signatures as characterized in the multiplexed format for the porcine and bovine panels. The Stage 1 Feasibility data of the multiplexed panels is presented in this report also includes relevant data acquired from the Version 1.0 panel as supporting information where appropriate. In contrast to last years effort, the development of the bovine and porcine panels is pending additional work to complete analytical characterization of FMDV, VESV, SVD, RPV and MCF. The signature screening process and final panel composition impacts this effort. The unique challenge presented this year was having strict predecessor limitations in completing characterization, where efforts at LLNL must precede efforts at PIADC, such challenges were alleviated in the 2006 reporting by having characterization data from the interlaboratory comparison and at Plum Island under AgDDAP project. We will present an addendum at a later date with additional data on the characterization of the porcine and bovine multiplex assays when that data is available. As a summary report, this document does not provide the details of signature generation, evaluation, and testing, nor does it provide specific methods and materials used. This information has been provided in the separate 488 page Supplementary Materials document.« less

  7. Challenging a bioinformatic tool's ability to detect microbial contaminants using in silico whole genome sequencing data.

    PubMed

    Olson, Nathan D; Zook, Justin M; Morrow, Jayne B; Lin, Nancy J

    2017-01-01

    High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus , Escherichia , and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods.

  8. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  9. Quantum mechanical studies of complex ferroelectric perovskites

    NASA Astrophysics Data System (ADS)

    Ramer, Nicholas John

    In many electronic device applications, there is a need to interconvert electrical energy and other types of energy. Ferroelectric materials, which possess a voltage-dependent polarization, can enable this energy conversion process. Because of the broad interest in ferroelectric materials for these devices, there is a critical research effort, both experimental and theoretical, to understand these materials and aid in the development of materials with improved properties. This thesis presents detailed quantum mechanical investigations of the behavior of a complex ferroelectric perovskite under applied stress. In particular, we have chosen to study the solid solution PbZr1-xTix O3 (PZT). Since the study of ferroelectricity involves understanding both its structural and electronic signatures in materials, it has necessitated the development of a novel theoretical technique which improves the accuracy of the pseudopotentials used in our density functional theory calculations as well as a new method for constructing three-dimensional atomistic responses to small amounts of external stress. To examine the material's behavior under larger amounts of stress, we have studied the behavior of a composition of PZT lying near a structural phase boundary. On either side of the phase boundary, the material is characterized by a different polarization direction and may easily be switched between phases by applying external stress. In addition to stress-induced phase transitions, most ferroelectric materials also have composition dependent phase boundaries. Since different compositions of PZT would require increased computational effort, we have formulated an improved virtual crystal approach that makes tractable the study of the entire composition range. Using this method, we have been able to show for the first time via first-principles calculations, a composition dependent phase transition in a ferroelectric material. This thesis has accomplished three important goals: new theoretical methodology has been developed to enable accurate modeling of complex materials; application of these methods has been demonstrated for the study of ferroelectric oxides; and these investigations have revealed new insights into the relationships between stress, chemical composition, and ferroelectricity in oxides. This set of accomplishments enables the future study of even more complex perovskites and other multi-component systems.

  10. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, C.; Givens, C.; Bhatt, R.

    2003-02-24

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management programmore » based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.« less

  11. Development and In Situ Characterization of New Electrolyte and Electrode materials for Rechargeable Lithium Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X -Q; Xing, X K; Daroux, M

    The object of this project is to develop new electrolyte and cathode materials for rechargeable lithium batteries, especially for lithium ion and lithium polymer batteries. Enhancing performance, reducing cost, and replacing toxic materials by environmentally benign materials, are strategic goals of DOE in lithium battery research. This proposed project will address these goals on two important material studies, namely the new electrolytes and new cathode materials. For the new electrolyte materials, aza based anion receptors as additives, organic lithium salts and plasticizers which have been developed by BNL team under Energy Research programs of DOE, will be evaluated by Gouldmore » for potential use in commercial battery cells. All of these three types of compounds are aimed to enhance the conductivity and lithium transference number of lithium battery electrolytes and reduce the use of toxic salts in these electrolytes. BNL group will be working closely with Gould to further develop these compounds for commercialization. For the cathode material studies, BNL efforts wi U be focused on developing new superior characterization methclds, especially in situ techniques utilize the unique user facility of DOE at BNL, namely the National Synchrotrons Light Source (NSLS). In situ x-ray absorption and x-ray diftlaction spectroscopy will be used to study the relationship between performance and the electronic and structural characteristics of intercalation compounds such as LiNi0 2, LiCo0 2, and LiMn 20 4 spinel. The study will be focused on LiMn 20 4 spinel materials. Gould team will contribute their expertise in choosing the most promising compounds, providing overall performance requirements, and will use the results of this study to guide their procedure for quality control. The knowledge gained through this project will not only benefit Gould and BNL, but will be very valuable to the scientific community in battery research.« less

  12. Hierarchical Multi-Scale Approach To Validation and Uncertainty Quantification of Hyper-Spectral Image Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Reichardt, Thomas A.; Kulp, Thomas J.

    Validating predictive models and quantifying uncertainties inherent in the modeling process is a critical component of the HARD Solids Venture program [1]. Our current research focuses on validating physics-based models predicting the optical properties of solid materials for arbitrary surface morphologies and characterizing the uncertainties in these models. We employ a systematic and hierarchical approach by designing physical experiments and comparing the experimental results with the outputs of computational predictive models. We illustrate this approach through an example comparing a micro-scale forward model to an idealized solid-material system and then propagating the results through a system model to the sensormore » level. Our efforts should enhance detection reliability of the hyper-spectral imaging technique and the confidence in model utilization and model outputs by users and stakeholders.« less

  13. Pyroclastics Northeast of Gassendi Crater: Discovery/Characteristics/Implications

    NASA Technical Reports Server (NTRS)

    Giguere, T. A.; Hawke, B. R.; Trang, D.; Gaddis, L. R.; Lawrence, S. J.; Stopar, J. D.; Gustafson, J. O.; Boyce, J. M.; Gillis-Davis, J. J.

    2017-01-01

    In our ongoing effort to better understand lunar volcanism on the Moon, we are investigating pyroclastic deposits in the Gassendi region. Interest in pyroclastics has remained high due to the availability of high-resolution data (LRO, Kaguya), which is used to build on previous remote sensing studies [e.g., 1, 2, 3] and also extensive studies of lunar pyroclastic glasses [4, 5]. Analyses conducted in the laboratory of pyroclastic spheres from several deposits show that this volcanic material had a greater depth of origin and lesser fractional crystallization than mare basalts [e.g., 4, 6]. Data indicates that pyroclastic glasses are the best examples of primitive materials on the Moon, and they are important for both characterizing the lunar interior and as a starting place for under-standing the origin and evolution of lunar basaltic magmatism [2].

  14. Neutrons and music: Imaging investigation of ancient wind musical instruments

    NASA Astrophysics Data System (ADS)

    Festa, G.; Tardino, G.; Pontecorvo, L.; Mannes, D. C.; Senesi, R.; Gorini, G.; Andreani, C.

    2014-10-01

    A set of seven musical instruments and two instruments cares from the 'Fondo Antico della Biblioteca del Sacro Convento' in Assisi, Italy, were investigated through neutron and X-ray imaging techniques. Historical and scientific interests around ancient musical instruments motivate an intense research effort for their characterization using non-destructive and non-invasive techniques. X-ray and neutron tomography/radiography were applied to the study of composite material samples containing wood, hide and metals. The study was carried out at the NEUTRA beamline, PSI (Paul Scherrer Institute, Switzerland). Results of the measurements provided new information on the composite and multi-scale structure, such as: the internal structure of the samples, position of added materials like metals, wood fiber displays, deformations, presence of adhesives and their spatial distribution and novel insight about construction methods to guide the instruments' restoration process.

  15. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purposemore » of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.« less

  16. Materials for Advanced Ultrasupercritical Steam Turbines Task 3: Materials for Non-Welded Rotors, Buckets, and BoltingMaterials for Advanced Ultrasupercritical Steam Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Deepak

    The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European programmore » characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited for smaller forging and valve internals, bolts, smaller blades. Larger Nimonic 105 forgings, would precipitate y’ during the surface cooling during forging, leading to surface cracks. The associate costs in forging Nimonic 105 to larger sizes [hotter dies, press requirements], were beyond the scope of this task and not investigated further. Haynes®282® has 20 - 25% volume fraction y’ was a choice for large components, albeit untested. A larger ingot diameter is pre-requisite for a larger diameter forging and achieves the “typically” accepted working ratio of 2.5-3:1. However, Haynes®282® is manufactured via a double melt process [VIM-ESR] limited by size [<18-16” diameter], which limited the maximum size of the final forging. The report documents the development of a 24” diameter triple melt ingot, surpassing the current available technology. A second triple melt ingot was manufactured and successfully forged into a 44” diameter disk. The successful developments in triple melting process and the large diameter forging of Haynes®282® resolved the scalability issues and involved the first of its kind attempt in the world for this alloy. The complete characterization of Haynes®282® forging was performed and documented in this report. The dataset from the commercially available Haynes®282® [grain size ASTM 3-4] and the finer grain size disk forging [ASTM 8-9] offer an additional design tradeoff to balance creep and fatigue during the future design process.« less

  17. Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.

    LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less

  18. Applications of XPS in the characterization of Battery materials

    DOE PAGES

    Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming; ...

    2018-05-26

    In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less

  19. Recycling of Aluminum Alloy with Dimox and Rheocasting Functionalize High Performance Structural Foam Composite

    NASA Astrophysics Data System (ADS)

    Rabeeh, Bakr Mohamed

    Great efforts aiming towards the synthesis and the development of structural composite materials. Direct metal oxidation, DIMOX introduced for hybrid composite processing. However, oxidation temperatures around 1100°C lead to the formation of porous ceramic materials. To utilize this porosity intentionally for foam production, a new approach based on synergetic effect of alloying elements, DIMOX and semisolid (rheocsting) processing is developed. A semisolid reaction, rheocasting is introduced to control porosity shape and size. Aluminum alloy 6xxx (automobile scrap pistons) is recycled for this objective and DIMOX at 1100°C for 30 min, then rheocasting, at 750°C for 30 minutes. The effect of α-Fe powder, Mg powder, and Boric acid powder established for the objective of a hybrid structural metal matrix composite in bulk foam matrix. The kinetic of formation of hybrid metal matrix foam composite is introduced. Microstructural and mechanical characterization established for high performance Aluminum foam hybrid composite materials.

  20. Growth and Magnetotransport Properties of Dirac Semimetal Candidate Cu3PdN

    NASA Astrophysics Data System (ADS)

    Quintela, C. X.; Campbell, N.; Harris, D. T.; Shao, D. F.; Xie, L.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    Since the discovery of three-dimensional Dirac semimetals (DSM) Cd3As2 and Na3Bi, many efforts have been made to identify new DSM materials. Recently, nitride antiperovskite Cu3PdN has been proposed by two different groups as a new DSM candidate. However, until now, the experimental realization of bulk Cu3PdN and the study of its electronic properties has been hindered due to the difficulty of synthesizing bulk single crystals of this material. Here, we report the first growth and magnetotransport characterization of epitaxial Cu3PdN thin films on (001) SrTiO3 substrates. Magnetotransport measurements reveal p-type metallic conduction with very low temperature coefficient of the resistance and small non-linear magnetoresistance at low temperatures. The successful growth of Cu3PdN thin films opens the path to investigating the unknown electronic properties of this material, and provides a template for further research on other antiperovskite DSM candidates such as Cu3ZnN.

  1. Applications of XPS in the characterization of Battery materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming

    In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less

  2. Investigation of chemical vapor deposition of garnet films for bubble domain memories

    NASA Technical Reports Server (NTRS)

    Besser, P. J.; Hamilton, T. N.

    1973-01-01

    The important process parameters and control required to grow reproducible device quality ferrimagnetic films by chemical vapor deposition (CVD) were studied. The investigation of the critical parameters in the CVD growth process led to the conclusion that the required reproducibility of film properties cannot be achieved with individually controlled separate metal halide sources. Therefore, the CVD growth effort was directed toward replacement of the halide sources with metallic sources with the ultimate goal being the reproducible growth of complex garnet compositions utilizing a single metal alloy source. The characterization of the YGdGaIG films showed that certain characteristics of this material, primarily the low domain wall energy and the large temperature sensitivity, severely limited its potential as a useful material for bubble domain devices. Consequently, at the time of the change from halide to metallic sources, the target film compositions were shifted to more useful materials such as YGdTmGaIG, YEuGaIG and YSmGaIG.

  3. Derivation of mechanical characteristics for Ni/Au intermetallic surface with SAC305 solder

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong

    2013-03-01

    Many surface finish methods are used to connect a substrate with the electric components of IT products in the micro-packaging process, and various types of lead-free solder have been developed as alternative materials to lead-based solder to reduce environmental contamination. However, there has been little research on the mechanical properties of the inter-metallic surface which is generated in the bumping process between the lead-free solder and surface films such as Ni/Au. The present work is to derive the material properties of a Ni/Au inter-metallic surface with SAC305 solder. A series of indentation tests were carried out by changing four nano-scale indentation depths and two strain rates. Also, a reverse algorithm method was adopted to determine the elastic-plastic stress-strain curve based on the load-displacement curve from the indentation test data. As a result of the material characterization effort, the mean elastic modulus, yield strength and strain hardening exponent of IMC with Ni/Au finish were determined.

  4. Characterization of microstructure and property evolution in advanced cladding and duct: Materials exposed to high dose and elevated temperature

    DOE PAGES

    Allen, Todd R.; Kaoumi, Djamel; Wharry, Janelle P.; ...

    2015-05-20

    Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. Here, the studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocationmore » networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Lastly, transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.« less

  5. Thermal Effects Modeling Developed for Smart Structures

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    1998-01-01

    Applying smart materials in aeropropulsion systems may improve the performance of aircraft engines through a variety of vibration, noise, and shape-control applications. To facilitate the experimental characterization of these smart structures, researchers have been focusing on developing analytical models to account for the coupled mechanical, electrical, and thermal response of these materials. One focus of current research efforts has been directed toward incorporating a comprehensive thermal analysis modeling capability. Typically, temperature affects the behavior of smart materials by three distinct mechanisms: Induction of thermal strains because of coefficient of thermal expansion mismatch 1. Pyroelectric effects on the piezoelectric elements; 2. Temperature-dependent changes in material properties; and 3. Previous analytical models only investigated the first two thermal effects mechanisms. However, since the material properties of piezoelectric materials generally vary greatly with temperature (see the graph), incorporating temperature-dependent material properties will significantly affect the structural deflections, sensory voltages, and stresses. Thus, the current analytical model captures thermal effects arising from all three mechanisms through thermopiezoelectric constitutive equations. These constitutive equations were incorporated into a layerwise laminate theory with the inherent capability to model both the active and sensory response of smart structures in thermal environments. Corresponding finite element equations were formulated and implemented for both the beam and plate elements to provide a comprehensive thermal effects modeling capability.

  6. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.L.; Hawkins, W.L.; Mathews, M.

    This report describes research done at Los Alamos in FY 1993 for the Hydrologic Resources Management Program. The US Department of Energy funds this research through two programs at the Nevada Test Site (NTS): defense and groundwater characterization. Los Alamos personnel have continued to study the high-pressure zone created in the aquifer under Yucca Flat. We analyzed data from a hole in this area (U-7cd) and drilled another hole and installed a water monitoring tube at U-4t. We analyzed water from a number of locations on the NTS where we know there are radionuclides in the groundwater and critiqued themore » effectiveness of this monitoring effort. Our program for analyzing postshot debris continued with material from the last nuclear test in September 1992. We supported both the defense program and the groundwater characterization program by analyzing water samples from their wells and by reviewing documents pertaining to future drilling. We helped develop the analytical methodology to be applied to water samples obtained in the environmental restoration and waste management efforts at the NTS. Los Alamos involvement in the Hydrologic Resources Management Program is reflected in the appended list of documents reviewed, presentations given, papers published, and meetings attended.« less

  7. CRAX/Cassandra Reliability Analysis Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.

    1999-02-10

    Over the past few years Sandia National Laboratories has been moving toward an increased dependence on model- or physics-based analyses as a means to assess the impact of long-term storage on the nuclear weapons stockpile. These deterministic models have also been used to evaluate replacements for aging systems, often involving commercial off-the-shelf components (COTS). In addition, the models have been used to assess the performance of replacement components manufactured via unique, small-lot production runs. In either case, the limited amount of available test data dictates that the only logical course of action to characterize the reliability of these components ismore » to specifically consider the uncertainties in material properties, operating environment etc. within the physics-based (deterministic) model. This not only provides the ability to statistically characterize the expected performance of the component or system, but also provides direction regarding the benefits of additional testing on specific components within the system. An effort was therefore initiated to evaluate the capabilities of existing probabilistic methods and, if required, to develop new analysis methods to support the inclusion of uncertainty in the classical design tools used by analysts and design engineers at Sandia. The primary result of this effort is the CMX (Cassandra Exoskeleton) reliability analysis software.« less

  8. Analysis and Reduction of Complex Networks Under Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanem, Roger G

    2014-07-31

    This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC teammore » consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.« less

  9. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  10. An Improved Thermal Conductivity Polyurethane Composite for a Space Borne 20KV Power Supply

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Haque, Inam

    2005-01-01

    This effort was designed to find a way to reduce the temperature rise of critical components of a 20KV High Voltage Power Supply (HVPS) by improving the overall thermal conductivity of the encapsulated modules. Three strategies were evaluated by developing complete procedures, preparing samples, and performing tests. The three strategies were: 1. Improve the thermal conductivity of the polyurethane encapsulant through the addition of thermally conductive powder while minimizing impact on other characteristics of the encapsulant. 2. Improve the thermal conductivity of the polyurethane encapsulated assembly by the addition of a slab of thermally conductive, electrically insulating material, which is to act as a heat spreader. 3. Employ a more thermally conductive substrate (Al203) with the existing encapsulation scheme. The materials were chosen based on the following criteria: high dielectric breakdown strength; high thermal conductivity, ease of manufacturing, high compliance, and other standard space qualified materials properties (low out-gassing, etc.). An optimized cure was determined by a statistical design of experiments for both filled and unfilled materials. The materials were characterized for the desired properties and a complete process was developed and tested. The thermal performance was substantially improved and the strategies may be used for space flight.

  11. Wellbore Seal Repair Using Nanocomposite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormont, John

    2016-08-31

    Nanocomposite wellbore repair materials have been developed, tested, and modeled through an integrated program of laboratory testing and numerical modeling. Numerous polymer-cement nanocomposites were synthesized as candidate wellbore repair materials using various combinations of base polymers and nanoparticles. Based on tests of bond strength to steel and cement, ductility, stability, flowability, and penetrability in opening of 50 microns and less, we identified Novolac epoxy reinforced with multi-walled carbon nanotubes and/or alumina nanoparticles to be a superior wellbore seal material compared to conventional microfine cements. A system was developed for testing damaged and repaired wellbore specimens comprised of a cement sheathmore » cast on a steel casing. The system allows independent application of confining pressures and casing pressures while gas flow is measured through the specimens along the wellbore axis. Repair with the nanocomposite epoxy base material was successful in dramatically reducing the flow through flaws of various sizes and types, and restoring the specimen comparable to an intact condition. In contrast, repair of damaged specimens with microfine cement was less effective, and the repair degraded with application of stress. Post-test observations confirm the complete penetration and sealing of flaws using the nanocomposite epoxy base material. A number of modeling efforts have supported the material development and testing efforts. We have modeled the steel-repair material interface behavior in detail during slant shear tests, which we used to characterize bond strength of candidate repair materials. A numerical model of the laboratory testing of damaged wellbore specimens was developed. This investigation found that microannulus permeability can satisfactorily be described by a joint model. Finally, a wellbore model has been developed that can be used to evaluate the response of the wellbore system (casing, cement, and microannulus), including the use of either cement or a nanocomposite in the microannulus to represent a repaired system. This wellbore model was successfully coupled with a field-scale model of CO 2 injection, to enable predictions of stress and strains in the wellbore subjected to subsurface changes (i.e. domal uplift) associated with fluid injection.« less

  12. A Lipid Extraction and Analysis Method for Characterizing Soil Microbes in Experiments with Many Samples

    PubMed Central

    Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.

    2017-01-01

    Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639

  13. Illinois highway materials sustainability efforts of 2014.

    DOT National Transportation Integrated Search

    2015-08-01

    This report presents the 2014 sustainability efforts of the Illinois Department of Transportation (IDOT) in : recycling reclaimed materials in highway construction. This report meets the requirements of Illinois : Public Act 097-0314 by documenting I...

  14. Illinois highway materials sustainability efforts of 2013.

    DOT National Transportation Integrated Search

    2014-08-01

    This report presents the sustainability efforts of the Illinois Department of Transportation (IDOT) in : recycling and reclaiming materials for use in highway construction. This report meets the requirements of : Illinois Public Act 097-0314 by docum...

  15. Illinois highway materials sustainability efforts of 2015.

    DOT National Transportation Integrated Search

    2016-08-01

    This report provides a summary of the sustainability efforts of the Illinois Department of Transportation (IDOT) in recycling : reclaimed materials in highway construction during calendar year 2015. This report meets the requirements of Illinois Publ...

  16. Illinois highway materials sustainability efforts of 2016.

    DOT National Transportation Integrated Search

    2017-07-04

    This report provides a summary of the sustainability efforts of the Illinois Department of Transportation (IDOT) in recycling : reclaimed materials in highway construction during calendar year 2016. This report meets the requirements of Illinois Publ...

  17. Asymmetric Semiconductor Nanorod/Oxide Nanoparticle Hybrid Materials: Model Nanomaterials for Light-Activated Formation of Fuels from Sunlight. Formal Progress Report -- Award DE-FG02-05ER15753

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Neal R.

    Executive Summary on Project Accomplishments: We focused our efforts for this project on the synthesis and characterization of semiconductor nanomaterials composed of semiconductor nanorods (NRs - e.g., CdSe, CdSe@CdS, CdS) with metal (Au, Pt, Co) or metal oxide (CoxOy) nanoparticle (NP) “tips.” These systems are attractive model systems where control of spatial, energetic and compositional features of both NRs and NP tips potentially enhances the efficiency of photogeneration and directional transport of charges, and photoelectrochemical conversion of sunlight to fuels. Synthetic methods to control material dimensions (20-200 nm in length), topology (one vs. two NP tips) and NR/NP tip compositionsmore » have been developed in the current project period (Pyun). We also achieved, for the first time in heterostructured nanorod materials, estimates of both valence band energies (E VB) and conduction band energies (E CB), using unique combinations of in vacuuo ultraviolet photoelectron spectroscopy (UPS, Armstrong), and waveguide spectroelectrochemistry (Saavedra), respectively. The spectroelectrochemical measurements in particular provide a unique path to estimation of E CB, and the distribution in E CB brought about by modification of NR composition. The combination of both approaches promises to be universally applicable to the characterization of energetics in nanomaterials of interest both for photovoltaic and sunlight-to-fuel photoelectrochemical assemblies.« less

  18. Microscale synthesis and characterization of polystyrene: NSF-POLYED scholars project

    NASA Technical Reports Server (NTRS)

    Quaal, Karen S.; Wu, Chang-Ning

    1994-01-01

    Polystyrene is a familiar polymer with many commercial uses. Its applications range from the clear, high index of refraction, brittle plastic used to form audio cassette and CD cases to the foamed material used in insulated drink cups and packaging material. Polystyrene constitutes 11 percent of the plastics used in packaging with only High Density Polyethylene (HDPE) and Low Density Polyethylene (LDPE) contributing a larger share: so much polystyrene is used today, it is one of six common plastics that manufacturers have assigned an identification code. The code helps recycling efforts. Polystyrene's code is (PS code 6). During the summer and fall of 1992 several new polymeric experiments were developed by the NSF POLYED Scholars for introduction into the chemistry core curriculum. In this presentation, one such project will be discussed. This laboratory project is recommended for a first or second year laboratory course allowing the introduction of polymeric science to undergraduates at the earliest opportunity. The reliability of the experiments which make up this project and the recognition factor of polystyrene, a material we come in contact with everyday, makes the synthesis and characterization of polystyrene a good choice for the introduction of polymerization to undergraduates. This laboratory project appeals to the varied interests of students enrolled in the typical first year chemistry course and becomes an ideal way to introduce polymers to a wide variety of science and engineering students.

  19. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    NASA Astrophysics Data System (ADS)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  20. Research progress of Ge on insulator grown by rapid melting growth

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wen, Juanjuan; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen

    2018-06-01

    Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal–oxide–semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Key Research and Development Program of China (No. 2017YFA0206404) and the National Natural Science Foundation of China (Nos. 61435013, 61534005, 61534004, 61604146).

  1. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  2. Crystallography of metal–organic frameworks

    PubMed Central

    Gándara, Felipe; Bennett, Thomas D.

    2014-01-01

    Metal–organic frameworks (MOFs) are one of the most intensely studied material types in recent times. Their networks, resulting from the formation of strong bonds between inorganic and organic building units, offer unparalled chemical diversity and pore environments of growing complexity. Therefore, advances in single-crystal X-ray diffraction equipment and techniques are required to characterize materials with increasingly larger surface areas, and more complex linkers. In addition, whilst structure solution from powder diffraction data is possible, the area is much less populated and we detail the current efforts going on here. We also review the growing number of reports on diffraction under non-ambient conditions, including the response of MOF structures to very high pressures. Such experiments are important due to the expected presence of stresses in proposed applications of MOFs – evidence suggesting rich and complex behaviour. Given the entwined and inseparable nature of their structure, properties and applications, it is essential that the field of structural elucidation is able to continue growing and advancing, so as not to provide a rate-limiting step on characterization of their properties and incorporation into devices and applications. This review has been prepared with this in mind. PMID:25485136

  3. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presencemore » of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.« less

  4. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  5. A framework for health-related nanomaterial grouping.

    PubMed

    Gkika, D A; Nolan, J W; Vansant, E F; Vordos, N; Kontogoulidou, C; Mitropoulos, A Ch; Cool, P; Braet, J

    2017-06-01

    Nanotechnology has been in the limelight since its emergence and its products affect everyday lives. Nanomaterials are characterized by features such as size and shape, thus rendering their possible number essentially unlimited, which in turn makes them difficult to study and categorize regarding possible dangers. This work suggests that grouping could allow studying them with limited testing efforts without endangering safety. Initially, the materials are identified and grouped according to their applications in health/medicine, as well as on their environmentally-friendly potential. The materials are then categorized using various toxicity classification methods to identify those with highest risks and group them with others that demonstrate similar behavior. The materials studied show promising uses in diagnostics, drug delivery, biosensors, water purification, oil spill cleaning, emission control and other fields. The toxicity risk assessment shows that the majority pose little to moderate risk, however there are certain materials that can be extremely hazardous or even cause death under specific circumstances. A risk mitigation plan was also developed. Nanomaterials applications, including drug delivery, cancer treatment, waste treatment, solar energy generation etc. can be very beneficiary, but at the same time, these materials can be extremely harmful or even cause death, thus making the need to prioritize research on high risk materials crucial. A clear regulatory framework that addresses both benefits and risks and communicates that information effectively should play an important part in European and worldwide efforts. The risk analysis validated the impression that there is limited research on nanomaterial toxicity risks, which calls for a more organized approach. The framework outlined in this work can be utilized by researchers as well as government bodies, in order to form regulatory policies and adopt a universally accepted labeling system. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tire Crumb Research Study Literature Review / Gap ...

    EPA Pesticide Factsheets

    In order to more fully understand data gaps in human exposure and toxicity to tire crumb materials, ATSDR, CPSC and EPA undertook a collaborative effort in the form of a scientific literature review and subsequent gaps analysis. The first objective of the Literature Review and Gap Analysis (LRGA) collaboration was to identify the existing body of literature related specifically to human exposure to tire crumb materials through the use of synthetic turf athletic fields and playgrounds. The second objective was to characterize and summarize the relevant data from the scientific literature. The final objective was to review the summary information and identify data gaps to build on the current understanding of the state-of-the-science and inform the development of specific research efforts that would be most impactful in the near-term. Because of the need for additional information, the U.S. Environmental Protection Agency (EPA), the Centers for Disease Control and Prevention/Agency for Toxic Substances and Disease Registry (ATSDR), and the U.S. Consumer Product Safety Commission (CPSC) launched a multi-agency action plan to study key environmental human health questions. The Federal Research Action Plan includes numerous activities, including research studies (U.S. EPA, 2016). A key objective of the Action Plan is to identify key knowledge gaps.

  7. Are We Underestimating Microplastic Contamination in Aquatic Environments?

    PubMed

    Conkle, Jeremy L; Báez Del Valle, Christian D; Turner, Jeffrey W

    2018-01-01

    Plastic debris, specifically microplastic in the aquatic environment, is an escalating environmental crisis. Efforts at national scales to reduce or ban microplastics in personal care products are starting to pay off, but this will not affect those materials already in the environment or those that result from unregulated products and materials. To better inform future microplastic research and mitigation efforts this study (1) evaluates methods currently used to quantify microplastics in the environment and (2) characterizes the concentration and size distribution of microplastics in a variety of products. In this study, 50 published aquatic surveys were reviewed and they demonstrated that most (~80%) only account for plastics ≥ 300 μm in diameter. In addition, we surveyed 770 personal care products to determine the occurrence, concentration and size distribution of polyethylene microbeads. Particle concentrations ranged from 1.9 to 71.9 mg g -1 of product or 1649 to 31,266 particles g -1 of product. The large majority ( > 95%) of particles in products surveyed were less than the 300 μm minimum diameter, indicating that previous environmental surveys could be underestimating microplastic contamination. To account for smaller particles as well as microfibers from synthetic textiles, we strongly recommend that future surveys consider methods that materials < 300 μm in diameter.

  8. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aponte, C.I.

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Evenmore » after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.« less

  9. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    NASA Astrophysics Data System (ADS)

    Matlik, John Frederick

    Fretting is a structural damage mechanism arising from a combination of wear, corrosion, and fatigue between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting fatigue cracks pose to damage tolerance and the ensuing structural integrity of aerospace components, a strong motivation exists to develop a quantitative mechanics based understanding of fretting crack nucleation in advanced aerospace alloys. In response to this need, the objective of this work is to characterize the fretting behavior exhibited by a polycrystalline/single crystal nickel contact subjected to elevated frequency and temperature. The effort to meet this objective is two fold: (1) to develop a well-characterized experimental fretting rig to investigate fretting behavior of advanced aerospace alloys at high frequency and high temperature, and (2) to develop the associated contact modeling tools for calculating contact stresses given in-situ experimentally measured remote contact loads. By coupling the experimental results and stress analysis, this effort aims to correlate the fretting crack nucleation behavior with the local contact stresses calculated from the devised three dimensional, anisotropic, dissimilar material contact model. The experimental effort is first motivated by a survey of recent fretting issues and investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.

  10. OpenKIM - Building a Knowledgebase of Interatomic Models

    NASA Astrophysics Data System (ADS)

    Bierbaum, Matthew; Tadmor, Ellad; Elliott, Ryan; Wennblom, Trevor; Alemi, Alexander; Chen, Yan-Jiun; Karls, Daniel; Ludvik, Adam; Sethna, James

    2014-03-01

    The Knowledgebase of Interatomic Models (KIM) is an effort by the computational materials community to provide a standard interface for the development, characterization, and use of interatomic potentials. The KIM project has developed an API between simulation codes and interatomic models written in several different languages including C, Fortran, and Python. This interface is already supported in popular simulation environments such as LAMMPS and ASE, giving quick access to over a hundred compatible potentials that have been contributed so far. To compare and characterize models, we have developed a computational processing pipeline which automatically runs a series of tests for each model in the system, such as phonon dispersion relations and elastic constant calculations. To view the data from these tests, we created a rich set of interactive visualization tools located online. Finally, we created a Web repository to store and share these potentials, tests, and visualizations which can be found at https://openkim.org along with futher information.

  11. Application of CFCC technology to hot gas filtration applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurementmore » of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.« less

  12. Characterization of Nonlinear Rate Dependent Response of Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Volk, Brent; Lagoudas, Dimitris C.; Chen, Yi-Chao; Whitley, Karen S.

    2007-01-01

    Shape Memory Polymers (SMPs) are a class of polymers, which can undergo deformation in a flexible state at elevated temperatures, and when cooled below the glass transition temperature, while retaining their deformed shape, will enter and remain in a rigid state. Upon heating above the glass transition temperature, the shape memory polymer will return to its original, unaltered shape. SMPs have been reported to recover strains of over 400%. It is important to understand the stress and strain recovery behavior of SMPs to better develop constitutive models which predict material behavior. Initial modeling efforts did not account for large deformations beyond 25% strain. However, a model under current development is capable of describing large deformations of the material. This model considers the coexisting active (rubber) and frozen (glass) phases of the polymer, as well as the transitions between the material phases. The constitutive equations at the continuum level are established with internal state variables to describe the microstructural changes associated with the phase transitions. For small deformations, the model reduces to a linear model that agrees with those reported in the literature. Thermomechanical characterization is necessary for the development, calibration, and validation of a constitutive model. The experimental data reported in this paper will assist in model development by providing a better understanding of the stress and strain recovery behavior of the material. This paper presents the testing techniques used to characterize the thermomechanical material properties of a shape memory polymer (SMP) and also presents the resulting data. An innovative visual-photographic apparatus, known as a Vision Image Correlation (VIC) system was used to measure the strain. The details of this technique will also be presented in this paper. A series of tensile tests were performed on specimens such that strain levels of 10, 25, 50, and 100% were applied to the material while it was above its glass transition temperature. After deforming the material to a specified applied strain, the material was then cooled to below the glass transition temperature (Tg) while retaining the deformed shape. Finally, the specimen was heated again to above the transition temperature, and the resulting shape recovery profile was measured. Results show that strain recovery occurs at a nonlinear rate with respect to time. Results also indicate that the ratio of recoverable strain/applied strain increases as the applied strain increases.

  13. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  14. CO 2 Binding Organic Liquids Gas Capture with Polarity Swing Assisted Regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heldebrant, David

    This report outlines the comprehensive bench-scale testing of the CO 2-binding organic liquids (CO 2BOLs) solvent platform and its unique Polarity Swing Assisted Regeneration (PSAR). This study outlines all efforts on a candidate CO 2BOL solvent molecule, including solvent synthesis, material characterization, preliminary toxicology studies, and measurement of all physical, thermodynamic and kinetic data, including bench-scale testing. Equilibrium and kinetic models and analysis were made using Aspen Plus™. Preliminary process configurations, a technoeconomic assessment and solvent performance projections for separating CO 2 from a subcritical coal-fired power plant are compared to the U.S. Department of Energy's Case 10 monoethanolamine baseline.

  15. Affordable MMICs for Air Force systems

    NASA Astrophysics Data System (ADS)

    Kemerley, Robert T.; Fayette, Daniel F.

    1991-05-01

    The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.

  16. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  17. Nevada Test Site Environmental Report 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy A. Wills

    2006-10-01

    The Nevada Test Site Environmental Report 2005 (NTSER) was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NTS Environmental Management System and characterize its performance, and (6) highlight significantmore » environmental programs and efforts.« less

  18. Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties

    PubMed Central

    Runge, M. Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J.

    2011-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivate of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of the previously studied PCLF (PCLFDEG) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLFPPD) or glycerol (PCLFGLY). PCLFPPD is linear and resembles the previously studied PCLFDEG, while PCLFGLY is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLFPPD has material properties similar to the previously studied PCLFDEG. The branched PCLFGLY exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate FDA approvable sterilization method is addressed. This study shows that autoclave sterilization on PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. PMID:21911087

  19. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Development of a standard reference material for Cr(vi) in contaminated soil

    USGS Publications Warehouse

    Nagourney, S.J.; Wilson, S.A.; Buckley, B.; Kingston, H.M.S.; Yang, S.-Y.; Long, S.E.

    2008-01-01

    Over the last several decades, considerable contamination by hexavalent chromium has resulted from the land disposal of Chromite Ore Processing Residue (COPR). COPR contains a number of hexavalent chromium-bearing compounds that were produced in high temperature industrial processes. Concern over the carcinogenic potential of this chromium species, and its environmental mobility, has resulted in efforts to remediate these waste sites. To provide support to analytical measurements of hexavalent chromium, a candidate National Institute of Standards and Technology (NIST) Standard Reference Material?? (SRM 2701), having a hexavalent chromium content of approximately 500 mg kg -1, has been developed using material collected from a waste site in Hudson County, New Jersey, USA. The collection, processing, preparation and preliminary physico-chemical characterization of the material are discussed. A two-phase multi-laboratory testing study was carried out to provide data on material homogeneity and to assess the stability of the material over the duration of the study. The study was designed to incorporate several United States Environmental Protection Agency (USEPA) determinative methods for hexavalent chromium, including Method 6800 which is based on speciated isotope dilution mass spectrometry (SIDMS), an approach which can account for chromium species inter-conversion during the extraction and measurement sequence. This journal is ?? The Royal Society of Chemistry 2008.

  1. MISSE 6, 7 and 8 Materials Sample Experiments from the International Space Station Materials and Processes Team

    NASA Technical Reports Server (NTRS)

    Kravchenko, Michael; ORourke, Mary Jane; Golden, Johnny; Finckenor, Miria; Leatherwood, Michael; Alred, John

    2010-01-01

    The International Space Station Materials and Processes (ISS M&P) team has multiple material samples on MISSE 6, 7 and 8 to observe Low Earth Orbit (LEO) environmental effects on Space Station materials. Optical properties, thickness/mass loss, surface elemental analysis, visual and microscopic analysis for surface change are some of the techniques employed in this investigation. The ISS M&P team has participated in previous MISSE activities in order to better characterize the LEO effects on Space Station materials. This investigation will further this effort. Results for the following MISSE 6 samples materials will be presented: a comparison of anodize and chemical conversion coatings on various aluminum alloys, electroless nickel; AZ93 white ceramic thermal control coating with and without Teflon; Hyzod(TM) polycarbonate used to temporarily protect ISS windows; Russian quartz window material; reformulated Teflon (TM) coated Beta Cloth (Teflon TM without perfluorooctanoic acid (PFOA)) and a Dutch version of beta cloth. Discussion for current and future MISSE materials experiments will be presented. MISSE 7 samples are: deionized water sealed anodized aluminum Photofoil(TM); indium tin oxide (ITO)- coated Kapton(TM) used as thermo-optical surfaces; mechanically scribed tin-plated beryllium-copper samples for "tin pest" growth ( alpha/Beta transformation); Crew Exploration Vehicle (CEV) parachute soft goods. MISSE 8 sample: exposed "scrim cloth" (fiberglass weave) from the ISS solar array wing material, Davlyn fiberglass sleeve material, Permacel and Intertape protective tapes, and ITO-coated Kapton.

  2. Round robin test on the measurement of the specific heat of solar salt

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; González-Aguilar, José; Julia, José Enrique; Navarrete, Nuria; Faik, Abdessamad; Bauer, Thomas; Bonk, Alexander; Navarro, María Elena; Ding, Yulong; Uranga, Nerea; Veca, Elisabetta; Sau, Salvatore; Giménez, Pau; García, Pierre; Burgaleta, Juan Ignacio

    2017-06-01

    Solar salt (SS), a well-known non-eutectic mixture of sodium nitrate (60% w/w) and potassium nitrate (40% w/w), is commonly used either as Thermal Energy Storage (TES) material (double tank technology) or Heat Transfer Fluid (HTF) (solar tower) in modern CSP plants worldwide. The specific heat (cp, kJ kg-1 °C-1) of SS is a very important property in order to support the design of new CSP Plants or develop novel materials based on SS. A high scientific effort has been dedicated to perform a suitable thermophysical characterization of this material. However, there is still a great discrepancy among the cp values reported by different authors1. These differences may be due to either experimental errors (random or systematic) or divergences in the starting material (grade of purity, presence of impurities and/or water). In order to avoid the second source of uncertainty (the starting material), a Round Robin Test (RRT) was proposed starting from a common material. In this way, the different methods from each laboratory could be compared. The study should lay the foundations for the establishment of a systematic procedure for the measurement of the specific heat of this kind of materials. Nine institutions, research centers and companies, accepted the proposal and are contributing with their results. The initiative was organized within the Workshop SolarPACES Task III - Material activity.

  3. Optimization of sensor introduction into laminated composite materials

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Nemat-Nasser, Sia

    2008-03-01

    This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.

  4. Development and evaluation of a university campus-based food safety media campaign for young adults.

    PubMed

    Abbot, Jaclyn Maurer; Policastro, Peggy; Bruhn, Christine; Schaffner, Donald W; Byrd-Bredbenner, Carol

    2012-06-01

    Food safety information campaigns are more likely to be most effective if the messages are tailored to the needs of a specific audience. Designing effective campaigns involves careful study of the target population and working with them using a community-based participatory research model. Thus, the development of the campaign materials for a university campus-based food safety media campaign for young adults followed intense efforts of working with the target audience to gather the baseline data needed to characterize this audience, to identify the most salient messages for college students, and to create materials and events that would resonate with them. This campaign was implemented and evaluated on eight university campuses in the United States. The results indicate that the campaign significantly increased self-ratings of food safety knowledge and skill, actual food safety knowledge, food safety self-efficacy, stage of change for safe food handling, and reported hand washing behaviors of a geographically and racially diverse group of college students. The positive study outcomes support the value of engaging in these research and development efforts and reflect the usefulness of the audience-specific materials and activities developed for the campaign. The findings also demonstrate the versatility and utility of the materials on different campuses. Developing health media campaigns specifically for unique populations is key to ensuring health messages reach the target audience and, even more importantly, appeal to them. The detailed overview of the development of a food safety media campaign aimed at young adults presented in this article illustrates how health professionals can work with their target population to develop a focused, effective health promotion campaign.

  5. Fatigue Damage Assessment Leveraging Nondestructive Evaluation Data

    NASA Astrophysics Data System (ADS)

    Mazur, K.; Wisner, B.; Kontsos, A.

    2018-05-01

    Fatigue in materials depends on several microstructural parameters. The length and time scales involved in such processes have been investigated by characterization methods that target microstructural effects or that rely on specimen-level observations. Combinations of in situ and ex situ techniques are also used to correlate microstructural changes to bulk properties. We present herein an effort to directly link local changes with specimen-level fatigue damage assessment. To achieve this goal, grain-scale observations in an aluminum alloy are linked with deformation measurements made by digital image correlation and with acoustic emission monitoring obtained from inside the scanning electron microscope. Damage assessment is attempted using a data-processing framework that involves noise removal, data reduction, and classification. The results demonstrate that nondestructive evaluation combined with small-scale testing can provide a means for fatigue damage assessment applicable to a broad range of materials and testing conditions.

  6. Software Package Completed for Alloy Design at the Atomic Level

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Abel, Phillip B.; Good, Brian S.

    2001-01-01

    As a result of a multidisciplinary effort involving solid-state physics, quantum mechanics, and materials and surface science, the first version of a software package dedicated to the atomistic analysis of multicomponent systems was recently completed. Based on the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of alloy and surface energetics, this package includes modules devoted to the analysis of many essential features that characterize any given alloy or surface system, including (1) surface structure analysis, (2) surface segregation, (3) surface alloying, (4) bulk crystalline material properties and atomic defect structures, and (5) thermal processes that allow us to perform phase diagram calculations. All the modules of this Alloy Design Workbench 1.0 (ADW 1.0) are designed to run in PC and workstation environments, and their operation and performance are substantially linked to the needs of the user and the specific application.

  7. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  8. Relativistic theory of surficial Love numbers

    NASA Astrophysics Data System (ADS)

    Landry, Philippe; Poisson, Eric

    2014-06-01

    A relativistic theory of surficial Love numbers, which characterize the surface deformation of a body subjected to tidal forces, was initiated by Damour and Nagar. We revisit this effort in order to extend it, clarify some of its aspects, and simplify its computational implementation. First, we refine the definition of surficial Love numbers proposed by Damour and Nagar and formulate it directly in terms of the deformed curvature of the body's surface, a meaningful geometrical quantity. Second, we develop a unified theory of surficial Love numbers that applies equally well to material bodies and black holes. Third, we derive a compactness-dependent relation between the surficial and (electric-type) gravitational Love numbers of a perfect-fluid body and show that it reduces to the familiar Newtonian relation when the compactness is small. And fourth, we simplify the tasks associated with the practical computation of the surficial and gravitational Love numbers for a material body.

  9. Principles of Genetic Circuit Design

    PubMed Central

    Brophy, Jennifer A.N.; Voigt, Christopher A.

    2014-01-01

    Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials. PMID:24781324

  10. Analytical chemistry at the interface between materials science and biology

    NASA Astrophysics Data System (ADS)

    O'Brien, Janese Christine

    This work describes several research efforts that lie at the new interfaces between analytical chemistry and other disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry's newest forays into these disciplines. This dissertation is divided into six chapters. Chapter 1 is an introductory chapter that provides background information pertinent to several key aspects of the work contained in this dissertation. Chapter 2 describes the synthesis and characterization of electrically conductive sol-gels derived from the acid-catalyzed hydrolysis of a vanadium alkoxide. Specifically, this chapter describes our attempts to increase the conductivity of vanadium sol-gels by optimizing the acidic and drying conditions used during synthesis. Chapter 3 reports the construction of novel antigenic immunosensing platforms of increased epitope density using Fab'-SH antibody fragments on gold. Here, X-ray photoelectron spectroscopy (XPS), thin-layer cell (TLC) and confocal fluorescence spectroscopies, and scanning force microscopy (SFM) are employed to characterize the fragment-substrate interaction, to quantify epitope density, and to demonstrate fragment viability and specificity. Chapter 4 presents a novel method for creating and interrogating double-stranded DNA (dsDNA) microarrays suitable for screening protein:dsDNA interactions. Using the restriction enzyme ECoR1, we demonstrate the ability of the atomic force microscope (AFM) to detect changes in topography that result from the enzymatic cleavage of dsDNA microarrays containing the correct recognition sequence. Chapter 5 explores more fully the microarray fabrication process described in Chapter 4. Specifically, experiments characterizing the effect of deposition conditions on oligonucleotide topography and as well as those that describe array density optimization are presented. Chapter 6 presents general conclusions from the work recorded in this dissertation and speculates on its extension.

  11. Thin polymeric films for building biohybrid microrobots.

    PubMed

    Ricotti, Leonardo; Fujie, Toshinori

    2017-03-06

    This paper aims to describe the disruptive potential that polymeric thin films have in the field of biohybrid devices and to review the recent efforts in this area. Thin (thickness  <  1 mm) and ultra-thin (thickness  <  1 µm) matrices possess a series of intriguing features, such as large surface area/volume ratio, high flexibility, chemical and physical surface tailorability, etc. This enables the fabrication of advanced bio/non-bio interfaces able to efficiently drive cell-material interactions, which are the key for optimizing biohybrid device performances. Thin films can thus represent suitable platforms on which living and artificial elements are coupled, with the aim of exploiting the unique features of living cells/tissues. This may allow to carry out certain tasks, not achievable with fully artificial technologies. In the paper, after a description of the desirable chemical/physical cues to be targeted and of the fabrication, functionalization and characterization procedures to be used for thin and ultra-thin films, the state-of-the-art of biohybrid microrobots based on micro/nano-membranes are described and discussed. The research efforts in this field are rather recent and they focus on: (1) self-beating cells (such as cardiomyocytes) able to induce a relatively large deformation of the underlying substrates, but affected by a limited controllability by external users; (2) skeletal muscle cells, more difficult to engineer in mature and functional contractile tissues, but featured by a higher controllability. In this context, the different materials used and the performances achieved are analyzed. Despite recent interesting advancements and signs of maturity of this research field, important scientific and technological steps are still needed. In the paper some possible future perspectives are described, mainly concerning thin film manipulation and assembly in multilayer 3D systems, new advanced materials to be used for the fabrication of thin films, cell engineering opportunities and modelling/computational efforts.

  12. Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?

    PubMed Central

    Warheit, David B

    2018-01-01

    Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≤10 -9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author’s opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing. PMID:29636906

  13. Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years?

    PubMed

    Warheit, David B

    2018-01-01

    Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≤10 -9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author's opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing.

  14. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  15. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  16. Challenging a bioinformatic tool’s ability to detect microbial contaminants using in silico whole genome sequencing data

    PubMed Central

    Zook, Justin M.; Morrow, Jayne B.; Lin, Nancy J.

    2017-01-01

    High sensitivity methods such as next generation sequencing and polymerase chain reaction (PCR) are adversely impacted by organismal and DNA contaminants. Current methods for detecting contaminants in microbial materials (genomic DNA and cultures) are not sensitive enough and require either a known or culturable contaminant. Whole genome sequencing (WGS) is a promising approach for detecting contaminants due to its sensitivity and lack of need for a priori assumptions about the contaminant. Prior to applying WGS, we must first understand its limitations for detecting contaminants and potential for false positives. Herein we demonstrate and characterize a WGS-based approach to detect organismal contaminants using an existing metagenomic taxonomic classification algorithm. Simulated WGS datasets from ten genera as individuals and binary mixtures of eight organisms at varying ratios were analyzed to evaluate the role of contaminant concentration and taxonomy on detection. For the individual genomes the false positive contaminants reported depended on the genus, with Staphylococcus, Escherichia, and Shigella having the highest proportion of false positives. For nearly all binary mixtures the contaminant was detected in the in-silico datasets at the equivalent of 1 in 1,000 cells, though F. tularensis was not detected in any of the simulated contaminant mixtures and Y. pestis was only detected at the equivalent of one in 10 cells. Once a WGS method for detecting contaminants is characterized, it can be applied to evaluate microbial material purity, in efforts to ensure that contaminants are characterized in microbial materials used to validate pathogen detection assays, generate genome assemblies for database submission, and benchmark sequencing methods. PMID:28924496

  17. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  18. Overview of the multifaceted activities towards development and deployment of nuclear-grade FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A

    2016-01-01

    A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less

  19. The war on drugs in sport: a perspective from the front-line.

    PubMed

    Mendoza, John

    2002-07-01

    Recent international developments have served to solidify the international approach to doping in sport. The development of the World Anti-Doping Agency (WADA) has resulted in new, coordinated efforts to address this important sport issue. An array of new efforts and initiatives has been initiated by the new agency. The Sydney and Salt Lake City Olympics were characterized by intensive efforts to minimize doping. The antidoping environment is evolving rapidly, and several profoundly important developments will take place in the immediate future. To outline the challenges, opportunities, and changing circumstances of the current antidoping environment so that sport medicine practitioners might understand the context in which a variety of new initiatives and approaches will develop. At the same time, to ensure that practitioners understand the importance of appropriately developed and delivered antidoping policies, programs, and procedures, and the need for their harmonization. To ensure that sport medicine practitioners appreciate the need for a comprehensive approach to doping control, i.e., programs that include much more than drug testing. A review of relevant policy documents derived from a variety of sport and antidoping organizations; selected references drawn from MEDLINE; and materials prepared by colleagues drawn from the international antidoping community. The increased global effort to address doping is welcome. It will require that several critical issues be addressed that will test the resolve of all involved.

  20. Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul H; Narlesky, Joshua E; Worl, Laura A

    2010-01-01

    The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performancemore » of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.« less

  1. Technical prospects for utilizing extraterrestrial propellants for space exploration

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.

    1991-01-01

    NASA's LeRC has supported several efforts to understand how lunar and Martian produced propellants can be used to their best advantage for space exploration propulsion. A discussion of these efforts and their results is presented. A Manned Mars Mission Analysis Study identified that a more thorough technology base for propellant production is required before the the net economic benefits of in situ propellants can be determined. Evaluation of the materials available on the moon indicated metal/oxygen combinations are the most promising lunar propellants. A hazard analysis determined that several lunar metal/LOX monopropellants could be safely worked with in small quantities, and a characterization study was initiated to determine the physical and chemical properties of potential lunar monopropellant formulations. A bipropellant metal/oxygen subscale test engine which utilizes pneumatic injection of powdered metal is being pursued as an alternative to the monopropellant systems. The technology for utilizing carbon monoxide/oxygen, a potential Martian propellant, was studied in subscale ignition and rocket performance experiments.

  2. Silicon-on ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Grung, B. L.; Heaps, J. D.; Schmit, F. M.; Schuldt, S. B.; Zook, J. D.

    1981-01-01

    The technical feasibility of producing solar-cell-quality sheet silicon to meet the Department of Energy (DOE) 1986 overall price goal of $0.70/watt was investigated. With the silicon-on-ceramic (SOC) approach, a low-cost ceramic substrate is coated with large-grain polycrystalline silicon by unidirectional solidification of molten silicon. This effort was divided into several areas of investigation in order to most efficiently meet the goals of the program. These areas include: (1) dip-coating; (2) continuous coating designated SCIM-coating, and acronym for Silicon Coating by an Inverted Meniscus (SCIM); (3) material characterization; (4) cell fabrication and evaluation; and (5) theoretical analysis. Both coating approaches were successful in producing thin layers of large grain, solar-cell-quality silicon. The dip-coating approach was initially investigated and considerable effort was given to this technique. The SCIM technique was adopted because of its scale-up potential and its capability to produce more conventiently large areas of SOC.

  3. Characterization Efforts in a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.

    2016-12-01

    The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  5. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  6. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  7. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  8. Quantitative proteomic analysis in breast cancer.

    PubMed

    Tabchy, A; Hennessy, B T; Gonzalez-Angulo, A M; Bernstam, F M; Lu, Y; Mills, G B

    2011-02-01

    Much progress has recently been made in the genomic and transcriptional characterization of tumors. However, historically the characterization of cells at the protein level has suffered limitations in reproducibility, scalability and robustness. Recent technological advances have made it possible to accurately and reproducibly portray the global levels and active states of cellular proteins. Protein microarrays examine the native post-translational conformations of proteins including activated phosphorylated states, in a comprehensive high-throughput mode, and can map activated pathways and networks of proteins inside the cells. The reverse-phase protein microarray (RPPA) offers a unique opportunity to study signal transduction networks in small biological samples such as human biopsy material and can provide critical information for therapeutic decision-making and the monitoring of patients for targeted molecular medicine. By providing the key missing link to the story generated from genomic and gene expression characterization efforts, functional proteomics offer the promise of a comprehensive understanding of cancer. Several initial successes in breast cancer are showing that such information is clinically relevant. Copyright 2011 Prous Science, S.A.U. or its licensors. All rights reserved.

  9. Characterization of UOP IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NYMAN, MAY D.; NENOFF, TINA M.; HEADLEY, THOMAS J.

    2001-06-01

    As a participating national lab in the inter-institutional effort to resolve performance issues of the non-elutable ion exchange technology for Cs extraction, they have carried out a series of characterization studies of UOP IONSIV{reg_sign} IE-911 and its component parts. IE-911 is a bound form (zirconium hydroxide-binder) of crystalline silicotitanate (CST) ion exchanger. The crystalline silicotitanate removes Cs from solutions by selective ion exchange. The performance issues of primary concern are: (1) excessive Nb leaching and subsequent precipitation of column-plugging Nb-oxide material, and (2) precipitation of aluminosilicate on IE-911 pellet surfaces, which may be initiated by dissolution of Si from themore » IE-911, thus creating a supersaturated solution with respect to silica. In this work, they have identified and characterized Si- and Nb-oxide based impurity phases in IE-911, which are the most likely sources of leachable Si and Nb, respectively. Furthermore, they have determined the criteria and mechanism for removal from IE-911 of the Nb-based impurity phase that is responsible for the Nb-oxide column plugging incidents.« less

  10. Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert C. Runkle; David L. Chichester; Scott J. Thompson

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important formore » nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.« less

  11. Rattling nucleons: New developments in active interrogation of special nuclear material

    NASA Astrophysics Data System (ADS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding—special nuclear material itself, incidental materials, or intentional shielding—and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  12. Design rules for phase-change materials in data storage applications.

    PubMed

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.

    PubMed

    Ramo, Nicole L; Shetye, Snehal S; Streijger, Femke; Lee, Jae H T; Troyer, Kevin L; Kwon, Brian K; Cripton, Peter; Puttlitz, Christian M

    2018-03-01

    Despite efforts to simulate the in vivo environment, post-mortem degradation and lack of blood perfusion complicate the use of ex vivo derived material models in computational studies of spinal cord injury. In order to quantify the mechanical changes that manifest ex vivo, the viscoelastic behavior of in vivo and ex vivo porcine spinal cord samples were compared. Stress-relaxation data from each condition were fit to a non-linear viscoelastic model using a novel characterization technique called the direct fit method. To validate the presented material models, the parameters obtained for each condition were used to predict the respective dynamic cyclic response. Both ex vivo and in vivo samples displayed non-linear viscoelastic behavior with a significant increase in relaxation with applied strain. However, at all three strain magnitudes compared, ex vivo samples experienced a higher stress and greater relaxation than in vivo samples. Significant differences between model parameters also showed distinct relaxation behaviors, especially in non-linear relaxation modulus components associated with the short-term response (0.1-1 s). The results of this study underscore the necessity of utilizing material models developed from in vivo experimental data for studies of spinal cord injury, where the time-dependent properties are critical. The ability of each material model to accurately predict the dynamic cyclic response validates the presented methodology and supports the use of the in vivo model in future high-resolution finite element modeling efforts. Neural tissues (such as the brain and spinal cord) display time-dependent, or viscoelastic, mechanical behavior making it difficult to model how they respond to various loading conditions, including injury. Methods that aim to characterize the behavior of the spinal cord almost exclusively use ex vivo cadaveric or animal samples, despite evidence that time after death affects the behavior compared to that in a living animal (in vivo response). Therefore, this study directly compared the mechanical response of ex vivo and in vivo samples to quantify these differences for the first time. This will allow researchers to draw more accurate conclusions about spinal cord injuries based on ex vivo data (which are easier to obtain) and emphasizes the importance of future in vivo experimental animal work. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials

    NASA Astrophysics Data System (ADS)

    Sengezer, Engin C.; Seidel, Gary D.

    2016-04-01

    The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.

  15. Physical, Hydraulic, and Transport Properties of Sediments and Engineered Materials Associated with Hanford Immobilized Low-Activity Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Zhang, Z. F.; Meyer, Philip D.

    2015-02-28

    Current plans for treatment and disposal of immobilized low-activity waste (ILAW) from Hanford’s underground waste storage tanks include vitrification and storage of the glass waste form in a nearsurface disposal facility. This Integrated Disposal Facility (IDF) is located in the 200 East Area of the Hanford Central Plateau. Performance assessment (PA) of the IDF requires numerical modeling of subsurface flow and reactive transport processes over very long periods (thousands of years). The models used to predict facility performance require parameters describing various physical, hydraulic, and transport properties. This report provides updated estimates of physical, hydraulic, and transport properties and parametersmore » for both near- and far-field materials, intended for use in future IDF PA modeling efforts. Previous work on physical and hydraulic property characterization for earlier IDF PA analyses is reviewed and summarized. For near-field materials, portions of this document and parameter estimates are taken from an earlier data package. For far-field materials, a critical review is provided of methodologies used in previous data packages. Alternative methods are described and associated parameters are provided.« less

  16. Radiological Threat Reduction (RTR) program : implementing physical security to protect large radioactive sources worldwide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Daniel L.

    2004-11-01

    The U.S. Department of Energy's Radiological Threat Reduction (RTR) Program strives to reduce the threat of a Radiological Dispersion Device (RDD) incident that could affect U.S. interests worldwide. Sandia National Laboratories supports the RTR program on many different levels. Sandia works directly with DOE to develop strategies, including the selection of countries to receive support and the identification of radioactive materials to be protected. Sandia also works with DOE in the development of guidelines and in training DOE project managers in physical protection principles. Other support to DOE includes performing rapid assessments and providing guidance for establishing foreign regulatory andmore » knowledge infrastructure. Sandia works directly with foreign governments to establish cooperative agreements necessary to implement the RTR Program efforts to protect radioactive sources. Once necessary agreements are in place, Sandia works with in-country organizations to implement various security related initiatives, such as installing security systems and searching for (and securing) orphaned radioactive sources. The radioactive materials of interest to the RTR program include Cobalt 60, Cesium 137, Strontium 90, Iridium 192, Radium 226, Plutonium 238, Americium 241, Californium 252, and Others. Security systems are implemented using a standardized approach that provides consistency through out the RTR program efforts at Sandia. The approach incorporates a series of major tasks that overlap in order to provide continuity. The major task sequence is to: Establish in-country contacts - integrators, Obtain material characterizations, Perform site assessments and vulnerability assessments, Develop upgrade plans, Procure and install equipment, Conduct acceptance testing and performance testing, Develop procedures, and Conduct training. Other tasks are incorporated as appropriate and commonly include such as support of reconfiguring infrastructure, and developing security plans, etc. This standardized approach is applied to specific country and regional needs. Recent examples (FY 2003-2004) include foreign missions to Lithuania, Russian Federation Navy, Russia - PNPI, Greece (joint mission with IAEA), Tanzania, Iraq, Chile, Ecuador, and Egypt. Some of the ambitions and results of the RTR program may be characterized by the successes in Lithuania, Greece, and Russia.« less

  17. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box are briefly described. India has also initiated the development of fusion grade superconductors. Success achieved in the fabrication of Nb3Sn based multi-filamentary wires using the internal tin process and cable-in-conduit-conductors is also briefly presented.

  18. Emerging developments in the standardized chemical characterization of indoor air quality.

    PubMed

    Nehr, Sascha; Hösen, Elisabeth; Tanabe, Shin-Ichi

    2017-01-01

    Despite the fact that the special characteristics of indoor air pollution make closed environments quite different from outdoor environments, the conceptual ideas for assessing air quality indoors and outdoors are similar. Therefore, the elaboration of International Standards for air quality characterization in view of controlling indoor air quality should resort to this common basis. In this short review we describe the possibilities of standardization of tools dedicated to indoor air quality characterization with a focus on the tools permitting to study the indoor air chemistry. The link between indoor exposure and health as well as the critical processes driving the indoor air quality are introduced. Available International Standards for the assessment of indoor air quality are depicted. The standards comprise requirements for the sampling on site, the analytical procedures, and the determination of material emissions. To date, these standardized procedures assure that indoor air, settled dust and material samples are analyzed in a comparable manner. However, existing International Standards exclusively specify conventional, event-driven target-screening using discontinuous measurement methods for long-lived pollutants. Therefore, this review draws a parallel between physico-chemical processes in indoor and outdoor environments. The achievements in atmospheric sciences also improve our understanding of indoor environments. The community of atmospheric scientists can be both ideal and supporter for researchers in the area of indoor air quality characterization. This short review concludes with propositions for future standardization activities for the chemical characterization of indoor air quality. Future standardization efforts should focus on: (i) the elaboration of standardized measurement methods and measurement strategies for online monitoring of long-lived and short-lived pollutants, (ii) the assessment of the potential and the limitations of non-target screening, (iii) the paradigm shift from event-driven investigations to systematic approaches to characterize indoor environments, and (iv) the development of tools for policy implementation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nonlinear Constitutive Relations for High Temperature Application, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.

  20. Multiscale Issues and Simulation-Based Science and Engineering for Materials-by-Design

    DTIC Science & Technology

    2010-05-15

    planning and execution of programs to achieve the vision of ? material -by-design?. A key part of this effort has been to examine modeling at the mesoscale...15. SUBJECT TERMS Modelling & Simulation, Materials Design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18...planning and execution of programs to achieve the vision of “ material -by-design”. A key part of this effort has been to examine modeling at the mesoscale. A

  1. Thermomechanical force application

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Abbassi, P.; Afifi, F.; Chen, W. E. W.; Khandhar, P. K.; Ono, D. Y.

    1987-01-01

    The present work conducted in Summer 1987 continues investigations on Thermal Components for 1.8 K Space Cryogenics (Grant NAG 1-412 of 1986). The topics addressed are plug characterization efforts in a small pore size regime of sintered metal plugs, characterization in the nonlinear regime, temperature profiles in a heat supply unit for a fountain effect pump and modeling efforts.

  2. Behavioral modeling of human choices reveals dissociable effects of physical effort and temporal delay on reward devaluation.

    PubMed

    Klein-Flügge, Miriam C; Kennerley, Steven W; Saraiva, Ana C; Penny, Will D; Bestmann, Sven

    2015-03-01

    There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity.

  3. Behavioral Modeling of Human Choices Reveals Dissociable Effects of Physical Effort and Temporal Delay on Reward Devaluation

    PubMed Central

    Klein-Flügge, Miriam C.; Kennerley, Steven W.; Saraiva, Ana C.; Penny, Will D.; Bestmann, Sven

    2015-01-01

    There has been considerable interest from the fields of biology, economics, psychology, and ecology about how decision costs decrease the value of rewarding outcomes. For example, formal descriptions of how reward value changes with increasing temporal delays allow for quantifying individual decision preferences, as in animal species populating different habitats, or normal and clinical human populations. Strikingly, it remains largely unclear how humans evaluate rewards when these are tied to energetic costs, despite the surge of interest in the neural basis of effort-guided decision-making and the prevalence of disorders showing a diminished willingness to exert effort (e.g., depression). One common assumption is that effort discounts reward in a similar way to delay. Here we challenge this assumption by formally comparing competing hypotheses about effort and delay discounting. We used a design specifically optimized to compare discounting behavior for both effort and delay over a wide range of decision costs (Experiment 1). We then additionally characterized the profile of effort discounting free of model assumptions (Experiment 2). Contrary to previous reports, in both experiments effort costs devalued reward in a manner opposite to delay, with small devaluations for lower efforts, and progressively larger devaluations for higher effort-levels (concave shape). Bayesian model comparison confirmed that delay-choices were best predicted by a hyperbolic model, with the largest reward devaluations occurring at shorter delays. In contrast, an altogether different relationship was observed for effort-choices, which were best described by a model of inverse sigmoidal shape that is initially concave. Our results provide a novel characterization of human effort discounting behavior and its first dissociation from delay discounting. This enables accurate modelling of cost-benefit decisions, a prerequisite for the investigation of the neural underpinnings of effort-guided choice and for understanding the deficits in clinical disorders characterized by behavioral inactivity. PMID:25816114

  4. QuEST: Qualifying Environmentally Sustainable Technologies, Volume 8

    NASA Technical Reports Server (NTRS)

    Ross, Kai T.

    2013-01-01

    Articles in this issue inlude: (1) TEERM Partners with GSDO Program, (2) Materials Management and Substitution Efforts, (3) Recycling and Pollution Control Efforts, and (4) Alternative Energy Efforts.

  5. Development of a Dual-Particle Imaging System for Nonproliferation Applications

    NASA Astrophysics Data System (ADS)

    Poitrasson-Riviere, Alexis Pierre Valere

    A rising concern in our society is preventing the proliferation of nuclear weapons and fissionable material. This prevention can be incorporated at multiple levels, from the use of nuclear safeguards in nuclear facilities to the detection of threat objects in the field. At any level, systems used for such tasks need to be specially designed for use with Special Nuclear Material (SNM) which is defined by the NRC as plutonium and uranium enriched in U-233 or U-235 isotopes. These radioactive materials have the particularity of emitting both fast neutrons and gamma rays; thus, systems able to detect both particles simultaneously are particularly desirable. In the field of nuclear nonproliferation and safeguards, detection systems capable of accurately imaging various sources of radiation can greatly simplify any monitoring or detection task. The localization of the radiation sources can allow users of the system to focus their efforts on the areas of interest, whether it be for radiation detection or radiation characterization. This thesis describes the development of a dual-particle imaging system at the University of Michigan to address these technical challenges. The imaging system relies on the use of organic liquid scintillators that can detect both fast neutrons and gamma rays, and inorganic NaI(Tl) scintillators that are not very sensitive to neutrons yet yield photoelectric absorptions from gamma rays. A prototype of the imaging system has been constructed and operated. The system will aid the remote monitoring of nuclear materials within facilities, and it has the scalability for standoff detection in the field. A software suite has been developed to analyze measured data in real time, in an effort to obtain a system as close to field-ready as possible. The system's performance has been tested with various materials of interest, such as MOX and plutonium metal, measured at the PERLA facility of the Joint Research Center in Ispra, Italy. The robust and versatile imaging system is an attractive alternative to the current imaging systems.

  6. Defects in electro-optically active polymer solids

    NASA Technical Reports Server (NTRS)

    Martin, David C.

    1993-01-01

    There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).

  7. Finite Element Simulations for Investigating the Effects of Specimen Geometry in Superplastic Tensile Tests

    NASA Astrophysics Data System (ADS)

    Nazzal, Mohammad; Abu-Farha, Fadi; Curtis, Richard

    2011-08-01

    Characterizing the behavior of superplastic materials is largely based on the uniaxial tensile test; yet the unique nature of these materials requires a particularly tailored testing methodology, different to that used with conventional materials. One of the crucial testing facets is the specimen geometry, which has a great impact on the outcome of a superplastic tensile test, as a result of the associated extreme conditions. And while researchers agree that it should take a notably different form than the typical dog-bone shape; there is no universal agreement on the specimen's particular size and dimensions, as evident by the disparities in test specimens used in the various superplastic testing efforts found throughout the literature. In view of that, this article is dedicated to understanding the effects of specimen geometry on the superplastic behavior of the material during tensile testing. Deformation of the Ti6Al4V titanium alloy is FE simulated based on a multitude of specimen geometries, covering a wide range of gauge length, gauge width, grip length, and grip width values. The study provides key insights on the influences of each geometrical parameter as well as their interactions, and provides recommendations on selecting the specimen's proportions for accurate and unified tensile testing of superplastic materials.

  8. Resolving the optical anisotropy of low-symmetry 2D materials.

    PubMed

    Shen, Wanfu; Hu, Chunguang; Tao, Jin; Liu, Jun; Fan, Shuangqing; Wei, Yaxu; An, Chunhua; Chen, Jiancui; Wu, Sen; Li, Yanning; Liu, Jing; Zhang, Daihua; Sun, Lidong; Hu, Xiaotang

    2018-05-03

    Optical anisotropy is one of the most fundamental physical characteristics of emerging low-symmetry two-dimensional (2D) materials. It provides abundant structural information and is crucial for creating diverse nanoscale devices. Here, we have proposed an azimuth-resolved microscopic approach to directly resolve the normalized optical difference along two orthogonal directions at normal incidence. The differential principle ensures that the approach is only sensitive to anisotropic samples and immune to isotropic materials. We studied the optical anisotropy of bare and encapsulated black phosphorus (BP) and unveiled the interference effect on optical anisotropy, which is critical for practical applications in optical and optoelectronic devices. A multi-phase model based on the scattering matrix method was developed to account for the interference effect and then the crystallographic directions were unambiguously determined. Our result also suggests that the optical anisotropy is a probe to measure the thickness with monolayer resolution. Furthermore, the optical anisotropy of rhenium disulfide (ReS2), another class of anisotropic 2D materials, with a 1T distorted crystal structure, was investigated, which demonstrates that our approach is suitable for other anisotropic 2D materials. This technique is ideal for optical anisotropy characterization and will inspire future efforts in BP and related anisotropic 2D nanomaterials for engineering new conceptual nanodevices.

  9. The NISTmAb Reference Material 8671 lifecycle management and quality plan.

    PubMed

    Schiel, John E; Turner, Abigail

    2018-03-01

    Comprehensive analysis of monoclonal antibody therapeutics involves an ever expanding cadre of technologies. Lifecycle-appropriate application of current and emerging techniques requires rigorous testing followed by discussion between industry and regulators in a pre-competitive space, an effort that may be facilitated by a widely available test metric. Biopharmaceutical quality materials, however, are often difficult to access and/or are protected by intellectual property rights. The NISTmAb, humanized IgG1κ Reference Material 8671 (RM 8671), has been established with the intent of filling that void. The NISTmAb embodies the quality and characteristics of a typical biopharmaceutical product, is widely available to the biopharmaceutical community, and is an open innovation tool for development and dissemination of results. The NISTmAb lifecyle management plan described herein provides a hierarchical strategy for maintenance of quality over time through rigorous method qualification detailed in additional submissions in the current publication series. The NISTmAb RM 8671 is a representative monoclonal antibody material and provides a means to continually evaluate current best practices, promote innovative approaches, and inform regulatory paradigms as technology advances. Graphical abstract The NISTmAb Reference Material (RM) 8671 is intended to be an industry standard monoclonal antibody for pre-competitive harmonization of best practices and designing next generation characterization technologies for identity, quality, and stability testing.

  10. Fabrication of High Temperature Cermet Materials for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Panda, Binayak; Shah, Sandeep

    2005-01-01

    Processing techniques are being developed to fabricate refractory metal and ceramic cermet materials for Nuclear Thermal Propulsion (NTP). Significant advances have been made in the area of high-temperature cermet fuel processing since RoverNERVA. Cermet materials offer several advantages such as retention of fission products and fuels, thermal shock resistance, hydrogen compatibility, high conductivity, and high strength. Recent NASA h d e d research has demonstrated the net shape fabrication of W-Re-HfC and other refractory metal and ceramic components that are similar to UN/W-Re cermet fuels. This effort is focused on basic research and characterization to identify the most promising compositions and processing techniques. A particular emphasis is being placed on low cost processes to fabricate near net shape parts of practical size. Several processing methods including Vacuum Plasma Spray (VPS) and conventional PM processes are being evaluated to fabricate material property samples and components. Surrogate W-Re/ZrN cermet fuel materials are being used to develop processing techniques for both coated and uncoated ceramic particles. After process optimization, depleted uranium-based cermets will be fabricated and tested to evaluate mechanical, thermal, and hot H2 erosion properties. This paper provides details on the current results of the project.

  11. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  12. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Riley, Brian J.

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii)more » development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.« less

  13. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    NASA Astrophysics Data System (ADS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  14. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE PAGES

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; ...

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  15. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  16. Photoluminescent SBA-16 Rhombic Dodecahedral Particles: Assembly, Characterization, and ab Initio Modeling.

    PubMed

    Ruso, Juan M; Pardo, Victor; Sartuqui, Javier; Gravina, Noel; D'Elía, Noelia L; Pieroni, Olga I; Messina, Paula V

    2015-06-17

    Nowadays, the use of polyhedral instead of spherical particles as building blocks of engineering new materials has become an area of particular effort in the scientific community. Therefore, fabricating in a reproducible manner large amounts of uniform crystal-like particles is a huge challenge. In this work we report a low reagent-consuming binary surfactant templated method mediated by a hydrothermal treatment as a facile and controllable route for the synthesis of crystal-like rombdodecahedral particles exhibiting SBA-16 mesoporosity. It was determined that the hydrothermal treatment conditions were a key point upon the final material morphology, surface area, microporosity, wall thickness, and mesopore width. As a consequence of their internal mesoporosity order, rhombic dodecahedral synthesized particles exhibited highly efficient ultraviolet absorptions and photoluminescence emissions at room temperature. Conducting experimental and theoretical comparative studies allowed us to infer that the presence of intrinsic defects confined into an ordered mesoporous structure plays a very important role in semiconductor materials. The information presented here is expected to be useful, giving new, accurate information, for the construction of novel technological devices.

  17. External heating of electrical cables and auto-ignition investigation.

    PubMed

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Screening tests for hazard classification of complex waste materials - Selection of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.

    In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less

  19. Synthesis and Characterization of Novel Transition Metal Chalcogenide Phases for Energy Storage, Energy Conversion and Optoelectronics

    NASA Astrophysics Data System (ADS)

    Chen, Erica Maxine

    Today's energy needs are primarily provided by fossil fuels, which are harvested from the earth. Consuming fossil fuels to provide energy for civilization releases products into the atmosphere that contribute to climate change. Ongoing efforts to combat the existential crisis which climate change presents many of the emerging and commercialized technologies for solar, thermoelectric and battery applications involve transition metal chalcogenides. Some of the materials used for these applications are expensive and rare, such as gallium, vanadium and indium, or have no merits towards environmental stewardship, such as cadmium and lead. Thus, the purpose of this work is to further the ongoing effort to discover and develop new materials which are able to meet or exceed benchmarks for their application. This work focuses on the development of various metal chalcogenide material systems featuring d-block transition metals selected for their contribution to alter structure and properties. Various thermal, electronic and optical properties can be changed through substitution or doping with additional elements to affect to the base composition or as part of a gradient composition series. After an extensive description of experimental methods which describe the associated materials synthesis, processing and characterization techniques in chapter 2, chapter 3 explores the Cu4-xLixS 2 phases for their contribution as further evidence in the formation of lithiated copper sulfide phases as part of the intercalation reaction before being converted to the binaries copper and lithium sulfide. Chapter 4 documents the development of Cu4TiSe4, a novel material with potential for thin-film photovoltaic technologies with its band gap in the range where the solar spectrum is the most bountiful (Eg,indirect = 1.16 eV, Eg,direct = 1.34 eV), an outstanding optical absorbance ( > 10-4 cm-1) outperforming commercially successful materials in the solar spectrum, and suitable for thin-film fabrication. Chapter 5 describes a brief study in utilizing elemental substitution in Cu4TiSe4 to alter the band gap by replacing sulfur into the selenium site. In this study, the amount of selenium which may be substituted without deviating from the parent Cu4TiSe4 structure is 16 % at and the direct band gap is alterable from 1.34 eV to 1.64 eV as determined from conducting tauc analysis on the diffuse reflectance spectra. The last experimental work in Chapter 6 covers the development of a chemical substitution series between the end compounds Cu3NbS 4 and Cu3NbSe4. Through powdered x-ray diffraction of the series, it was found that for substituting less than 25% of the sulfur with selenium, the powdered patterns more closely resembled Cu3NbS 4 and with shift which may see further development and application in optoelectronic devices such as LEDs. Finally, Chapter 7 provides further guidance in the research which this thesis may serve as a springboard for the development of ultra-high efficiency, low-cost, environmentally friendly and thin photovoltaics as well as mention other characterization methods which are necessary to diagnose and elucidate complications.

  20. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.

  1. Nano-engineered Multiwall Carbon Nanotube-copper Composite Thermal Interface Material for Efficient Heat Conduction

    NASA Technical Reports Server (NTRS)

    Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.

    2005-01-01

    Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.

  2. Report: Pollution Prevention: Effectiveness of EPA’s Efforts to Encourage Purchase of Recycled Goods Has Not Been Demonstrated

    EPA Pesticide Factsheets

    Report #2003-P-00013, Sept 22, 2003. In an effort to prevent pollution and conserve natural resources and virgin materials, Congress requires that the Federal Government’s purchasing power be used to steer materials away from disposal toward recycling.

  3. Influence of Shockwave Profile on Ejection of Micron-Scale Material From Shocked Tin Surfaces

    NASA Astrophysics Data System (ADS)

    Zellner, Michael; Hammerberg, Jim; Hixson, Robert; Olson, Russel; Rigg, Paulo; Stevens, Gerald; Turley, William; Buttler, William

    2008-03-01

    This effort investigates the relation between shock-pulse shape and the amount of micron-scale fragments ejected (ejecta) upon shock release at the metal/vacuum interface of shocked Sn targets. Two shock-pulse shapes are considered: a supported shock created by impacting a Sn target with a sabot that was accelerated using a powder gun; and an unsupported or triangular-shaped Taylor shockwave, created by detonation of high explosive that was press-fit to the front-side of the Sn target. Ejecta production at the back-side or free-side of the Sn coupons were characterized through use of piezoelectric pins, Asay foil, optical shadowgraphy, and X-ray attenuation.

  4. Laboratory Information Management System (LIMS): A case study

    NASA Technical Reports Server (NTRS)

    Crandall, Karen S.; Auping, Judith V.; Megargle, Robert G.

    1987-01-01

    In the late 70's, a refurbishment of the analytical laboratories serving the Materials Division at NASA Lewis Research Center was undertaken. As part of the modernization efforts, a Laboratory Information Management System (LIMS) was to be included. Preliminary studies indicated a custom-designed system as the best choice in order to satisfy all of the requirements. A scaled down version of the original design has been in operation since 1984. The LIMS, a combination of computer hardware, provides the chemical characterization laboratory with an information data base, a report generator, a user interface, and networking capabilities. This paper is an account of the processes involved in designing and implementing that LIMS.

  5. Error driven remeshing strategy in an elastic-plastic shakedown problem

    NASA Astrophysics Data System (ADS)

    Pazdanowski, Michał J.

    2018-01-01

    A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated the existence of areas characterized by extremely high gradients and rapid changes of sign over small areas in the stress field sought. In order to account for these changes in sign, relatively dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and drive the mesh regeneration algorithm by selected error indicators.

  6. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications

    PubMed Central

    Liang, Yingkai; Kiick, Kristi L.

    2014-01-01

    Heparin plays an important role in many biological processes, via its interaction with various proteins, and hydrogels and nanoparticles comprising heparin exhibit attractive properties such as anticoagulant activity, growth factor binding, as well as antiangiogenic and apoptotic effects, making them great candidates for emerging applications. Accordingly, this review summarizes recent efforts in the preparation of heparin-based hydrogels and formation of nanoparticles, as well as the characterization of their properties and applications. The challenges and future perspectives for heparin-based materials are also discussed. Prospects are promising for heparin-containing polymeric biomaterials in diverse applications ranging from cell carriers for promoting cell differentiation to nanoparticle therapeutics for cancer treatment. PMID:23911941

  7. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  8. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    PubMed

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Park, C.; Ounaies, Z.; Watson, K. A.; Pawlowski, K.; Lowther, S. E.; Connell, J. W.; Siochi, E. J.; Harrison, J. S.; St.Clair, T. L.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Polymer-single wall carbon nanotube (SWNT) composite films were prepared and characterized as part of an effort to develop polymeric materials with improved combinations of properties for potential use on future spacecraft. Next generation spacecraft will require ultra-lightweight materials that possess specific and unique combinations of properties such as radiation and atomic oxygen resistance, low solar absorptivity, high thermal emissitivity, electrical conductivity, tear resistance, ability to be folded and seamed, and good mechanical properties. The objective of this work is to incorporate sufficient electrical conductivity into space durable polyimides to mitigate static charge build-up. The challenge is to obtain this level of conductivity (10(exp -8) S/cm) without degrading other properties of importance, particularly optical transparency. Several different approaches were attempted to fully disperse the SWNTs into the polymer matrix. These included high shear mixing, sonication, and synthesizing the polymers in the presence of pre-dispersed SWNTs. Acceptable levels of conductivity were obtained at loading levels less than one tenth weight percent SWNT without significantly sacrificing optical properties. Characterization of the nanocomposite films and the effect of SWNT concentration and dispersion on the conductivity, solar absorptivity, thermal emissivity, mechanical and thermal properties were discussed. Fibers and non-woven porous mats of SWNT reinforced polymer nanocomposite were produced using electrospinning.

  10. Characterization of ceria electrolyte in solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Milliken, Christopher Edward

    The goal of this research effort is to characterize cation doped cerium dioxide for use as an electrolyte material in solid oxide fuel cell applications. A variety of analytical techniques including thermogravimetric analysis, controlled atmosphere dilatometry, and AC/DC electronic measurements on single cells and stacks have been coupled with thermodynamic calculations to evaluate the suitability of several doping schemes. The results of this analysis indicate that doping CeOsb2 with 20% SmOsb{1.5} or codoping with 19% GdOsb{1.5} + 1% PrOsb{1.83} provides the best combination of stability and performance. Under dual atmosphere fuel cell conditions, these dopants do not provide sufficient stabilization energy to prevent the reduction of ceria. A significant oxygen leakage current can be expected, particularly near open circuit conditions. Incorporation of 10% SrO provides similar short-term advantages to the lanthanide doped system but this electrolyte material undergoes an irreversible degradation mechanism that results in cell failure within 1500 hours of test. Under fuel cell conditions, the maximum efficiency of such systems in stacks will be below 40% at 200 mW/cmsp2 when operated on humidified hydrogen fuels. This compares to an expected efficiency of 45-50% at a similar power density for nonmixed conducting electrolyte (e.g., YSZ).

  11. Supplying materials needed for grain growth characterizations of nano-grained UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Miao, Yinbin; Yun, Di

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructuremore » based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO 2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO 2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.« less

  12. Brittle materials at high-loading rates: an open area of research

    NASA Astrophysics Data System (ADS)

    Forquin, Pascal

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  13. Brittle materials at high-loading rates: an open area of research

    PubMed Central

    2017-01-01

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956517

  14. Brittle materials at high-loading rates: an open area of research.

    PubMed

    Forquin, Pascal

    2017-01-28

    Brittle materials are extensively used in many civil and military applications involving high-strain-rate loadings such as: blasting or percussive drilling of rocks, ballistic impact against ceramic armour or transparent windshields, plastic explosives used to damage or destroy concrete structures, soft or hard impacts against concrete structures and so on. With all of these applications, brittle materials are subjected to intense loadings characterized by medium to extremely high strain rates (few tens to several tens of thousands per second) leading to extreme and/or specific damage modes such as multiple fragmentation, dynamic cracking, pore collapse, shearing, mode II fracturing and/or microplasticity mechanisms in the material. Additionally, brittle materials exhibit complex features such as a strong strain-rate sensitivity and confining pressure sensitivity that justify expending greater research efforts to understand these complex features. Currently, the most popular dynamic testing techniques used for this are based on the use of split Hopkinson pressure bar methodologies and/or plate-impact testing methods. However, these methods do have some critical limitations and drawbacks when used to investigate the behaviour of brittle materials at high loading rates. The present theme issue of Philosophical Transactions A provides an overview of the latest experimental methods and numerical tools that are currently being developed to investigate the behaviour of brittle materials at high loading rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  15. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  16. Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties.

    PubMed

    Runge, M Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J

    2012-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivative of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of PCLF (PCLF(DEG)) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLF(PPD)) or glycerol (PCLF(GLY)). PCLF(PPD) is linear and resembles the previously studied PCLF(DEG), while PCLF(GLY) is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLF(PPD) has material properties similar to the previously studied PCLF(DEG). The branched PCLF(GLY) exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate Food and Drug Administration approvable sterilization method is addressed. This study shows that autoclave sterilization of PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physicalmore » property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were fabricated for both room temperature proof-of-concept evaluations and high temperature testing. Evaluations have been performed jointly by the INL and the French Alternative Energies and Atomic Energy Commission (CEA), both in Idaho Falls (USA) and in Cadarache (France), in the framework of a collaborative program for instrumentation of Material Testing Reactors. Initial tests were conducted on samples with a large range of thermal conductivities and temperatures ranging from 20 deg. C to 600 deg. C. Particularly, tests were recently performed on a sample having thermal conductivity and dimensions similar to UO{sub 2} and MOX nuclear fuels, in order to validate the ability of this sensor to operate for in-pile characterization of Light Water Reactors fuels. The results of the tests already completed at INL and CEA indicate that the Transient Hot Wire Needle Probe offers an enhanced method for in-pile detection of thermal conductivity. (authors)« less

  18. On-Going Laboratory Efforts to Quantitatively Address Clay Abundance on Mars

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Bishop, Janice L.; Brown, Adrian J.; Blake, David F.; Bristow, Thomas F.

    2012-01-01

    Data obtained at visible and near-infrared wavelengths by OMEGA on MarsExpress and CRISM on MRO provide definitive evidence for the presence of phyllosilicates and other hydrated phases on Mars. A diverse range of both Fe/Mg-OH and Al-OH-bearing phyllosilicates were identified including the smectites, nontronite, saponite, and montmorillonite. In order to constrain the abundances of these phyllosilicates spectral analyses of mixtures are needed. We report on our on-going effort to enable the quantitative evaluation of the abundance of hydrated-hydroxylated silicates when they are contained in mixtures. We include two component mixtures of hydrated/hydroxylated silicates with each other and with two analogs for other martian materials; pyroxene (enstatite) and palagonitic soil (an alteration product of basaltic glass). For the hydrated-hydroxylated silicates we include saponite and montmorillonite (Mg- and Al- rich smectites). We prepared three size separates of each end-member for study: 20-45, 63-90, and 125-150 µm. As the second phase of our effort we used scanning electron microscopy imaging and x-ray diffraction to characterize the grain size distribution, and structural nature, respectively, of the mixtures. Visible and near-infrared reflectance spectra of the 63-90 micrometers grain size of the mixture samples are shown in Figure 1. We discuss the results of our measurements of these mixtures.

  19. Using Tabulated Experimental Data to Drive an Orthotropic Elasto-Plastic Three-Dimensional Model for Impact Analysis

    NASA Technical Reports Server (NTRS)

    Hoffarth, C.; Khaled, B.; Rajan, S. D.; Goldberg, R.; Carney, K.; DuBois, P.; Blankenhorn, Gunther

    2016-01-01

    An orthotropic elasto-plastic-damage three-dimensional model with tabulated input has been developed to analyze the impact response of composite materials. The theory has been implemented as MAT 213 into a tailored version of LS-DYNA being developed under a joint effort of the FAA and NASA and has the following features: (a) the theory addresses any composite architecture that can be experimentally characterized as an orthotropic material and includes rate and temperature sensitivities, (b) the formulation is applicable for solid as well as shell element implementations and utilizes input data in a tabulated form directly from processed experimental data, (c) deformation and damage mechanics are both accounted for within the material model, (d) failure criteria are established that are functions of strain and damage parameters, and mesh size dependence is included, and (e) the theory can be efficiently implemented into a commercial code for both sequential and parallel executions. The salient features of the theory as implemented in LS-DYNA are illustrated using a widely used composite - the T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber/resin unidirectional composite. First, the experimental tests to characterize the deformation, damage and failure parameters in the material behavior are discussed. Second, the MAT213 input model and implementation details are presented with particular attention given to procedures that have been incorporated to ensure that the yield surfaces in the rate and temperature dependent plasticity model are convex. Finally, the paper concludes with a validation test designed to test the stability, accuracy and efficiency of the implemented model.

  20. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Schwarze, Gene E.; Nieda, Janis M.

    2005-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  1. Overview of NASA Magnet and Linear Alternator Research Efforts

    NASA Astrophysics Data System (ADS)

    Geng, Steven M.; Niedra, Janis M.; Schwarze, Gene E.

    2005-02-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center are developing a high-efficiency, 110 watt Stirling Radioisotope Generator (SRG110) for NASA Space Science missions. NASA Glenn is conducting in-house research on rare earth permanent magnets and on linear alternators to assist in developing a free-piston Stirling convertor for the SRG110 and for developing advanced technology. The permanent magnet research efforts include magnet characterization, short-term magnet aging tests, and long-term magnet aging tests. Linear alternator research efforts have begun just recently at GRC with the characterization of a moving iron type linear alternator using GRC's alternator test rig. This paper reports on the progress and future plans of GRC's magnet and linear alternator research efforts.

  2. Spectroscopic Data for Characterizing the Atmospheres of Exoplanetsand Assigning Astronomical Spectra

    NASA Astrophysics Data System (ADS)

    Lee, Timothy J.

    2018-06-01

    In this talk I will discuss laboratory and computational efforts to provide detailed line list data for use in characterizing the atmospheres of planets, exoplanets, and other astrophysical objects such as dwarf stars. The discussion will cover significant efforts on stable molecules routinely found in atmospheres such as CO2, NH3, H2O, and SO2. In addition, there will be some discussion towards efforts to provide more limited line lists or simulated spectra for molecules that might be present in trace amounts, but would be very significant if identified, such as possible biosignatures. How these efforts may provide insight into astronomical observations, especially with the upcoming James Webb Space Telescope, will also be discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, G.; Kips, R.; Lindvall, R.

    The CUP-2 uranium ore concentrate (UOC) standard reference material, a powder, was produced at the Blind River uranium refinery of Eldorado Resources Ltd. in Canada in 1986. This material was produced as part of a joint effort by the Canadian Certified Reference Materials Project and the Canadian Uranium Producers Metallurgical Committee to develop a certified reference material for uranium concentration and the concentration of several impurity constituents. This standard was developed to satisfy the requirements of the UOC mining and milling industry, and was characterized with this purpose in mind. To produce CUP-2, approximately 25 kg of UOC derived frommore » the Blind River uranium refinery was blended, homogenized, and assessed for homogeneity by X-ray fluorescence (XRF) analysis. The homogenized material was then packaged into bottles, containing 50 g of material each, and distributed for analysis to laboratories in 1986. The CUP-2 UOC standard was characterized by an interlaboratory analysis program involving eight member laboratories, six commercial laboratories, and three additional volunteer laboratories. Each laboratory provided five replicate results on up to 17 analytes, including total uranium concentration, and moisture content. The selection of analytical technique was left to each participating laboratory. Uranium was reported on an “as-received” basis; all other analytes (besides moisture content) were reported on a “dry-weight” basis. A bottle of 25g of CUP-2 UOC standard as described above was purchased by LLNL and characterized by the LLNL Nuclear Forensics Group. Non-destructive and destructive analytical techniques were applied to the UOC sample. Information obtained from short-term techniques such as photography, gamma spectrometry, and scanning electron microscopy were used to guide the performance of longer-term techniques such as ICP-MS. Some techniques, such as XRF and ICP-MS, provided complementary types of data. The results indicate that the CUP-2 standard has a natural isotopic ratio, and does not appear to have been isotopically enriched or depleted in any way, and was not contaminated by a source of uranium with a non-natural isotopic composition. Furthermore, the lack of 233U and 236U above the instrumental detection limit indicates that this sample was not exposed to a neutron flux, which would have generated one or both of these isotopes in measurable concentrations.« less

  4. Ford/BASF/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veenstra, Mike; Purewal, Justin; Xu, Chunchuan

    Widespread adoption of hydrogen as a vehicular fuel depends critically on the development of low-cost, on-board hydrogen storage technologies capable of achieving high energy densities and fast kinetics for hydrogen uptake and release. As present-day technologies -- which rely on physical storage methods such as compressed hydrogen -- are incapable of attaining established Department of Energy (DOE) targets, development of materials-based approaches for storing hydrogen have garnered increasing attention. Material-based storage technologies have potential to store hydrogen beyond twice the density of liquid hydrogen. To hasten development of these ‘hydride’ materials, the DOE previously established three centers of excellence formore » materials storage R&D associated with the key classes of materials: metal hydrides, chemical hydrogen, and adsorbents. While these centers made progress in identifying new storage materials, the challenges associated with the engineering of the system around a candidate storage material are in need of further advancement. In 2009 the DOE established the Hydrogen Storage Engineering Center of Excellence with the objective of developing innovative engineering concepts for materials-based hydrogen storage systems. As a partner in the Hydrogen Storage Engineering Center of Excellence, the Ford-UM-BASF team conducted a multi-faceted research program that addresses key engineering challenges associated with the development of materials-based hydrogen storage systems. First, we developed a novel framework that allowed for a material-based hydrogen storage system to be modeled and operated within a virtual fuel cell vehicle. This effort resulted in the ability to assess dynamic operating parameters and interactions between the storage system and fuel cell power plant, including the evaluation of performance throughout various drive cycles. Second, we engaged in cost modeling of various incarnations of the storage systems. This analysis revealed cost gaps and opportunities that identified a storage system that was lower cost than a 700 bar compressed system. Finally, we led the HSECoE efforts devoted to characterizing and enhancing metal organic framework (MOF) storage materials. This report serves as a final documentation of the Ford-UM-BASF project contributions to the HSECoE during the 6-year timeframe of the Center. The activities of the HSECoE have impacted the broader goals of the DOE-EERE and USDRIVE, leading to improved understanding in the engineering of materials-based hydrogen storage systems. This knowledge is a prerequisite to the development of a commercially-viable hydrogen storage system.« less

  5. UMAT Implementation of Coupled, Multilevel, Structural Deformation and Damage Analysis of General Hereditary Materials

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Saleeb, A. F.; Wilt, T. E.; Trowbridge, D.

    2000-01-01

    Extensive research efforts have been made over the years on the phenomenological representations of constitutive material behavior in the inelastic analysis and life assessment of structures composed of advanced monolithic and composite (CMC, MMC, and PMC) materials. Recently, emphasis has been placed on concurrently addressing three important and related areas of constitutive and degradation modeling; i.e. (i) mathematical formulation, (ii) algorithmic developments for the updating (integrating) of external (e.g. stress) and internal state variable, as well as (iii) parameter estimation for the characterization of the specific model. This concurrent perspective has resulted in; i) the formulation of a fully-associative viscoelastoplastic model (GVIPS), (ii) development of an efficient implicit integration and it's associative, symmetric, consistent tangent stiffness matrix algorithm for integration of the underlying rate flow/evolutionary equations, and iii) a robust, stand-alone, Constitutive Material Parameter Estimator (COMPARE) for automatically characterizing the various time-dependent, nonlinear, material models. Furthermore, to provide a robust multi-scale framework for the deformation and life analysis of structures composed of composite materials, NASA Glenn has aggressively pursued the development of a sufficiently general, accurate, and efficient micromechanics approach known as the generalized method of cells (GMC). This work has resulted in the development of MAC/GMC, a stand-alone micromechanics analysis tool that can easily and accurately design/analyze multiphase (composite) materials subjected to complex histories. MAC/GMC admits generalized, physically based, deformation and damage models for each constituent and provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that comprise the material. Consequently, MAC/GMC can be incorporated directly into a structural finite element code like ABAQUS for cost-effective, micromechanics based, large-scale component design and analysis. Our primary objective here is to report on these recent works conducted over the past decade, in the context of their incorporation into ABAQUS through the various user subroutines. Representative results will be shown to demonstrate the features of the developed schemes.

  6. Characterization of Space Shuttle Thermal Protection System (TPS) Materials for Return-to-Flight following the Shuttle Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Wingard, Doug

    2006-01-01

    During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom a simulated PAL ramp panel. It was found that the smooth rind on the foam facing the cable tray did significantly affect the properties of foam at the PAL ramp surface. The smooth rind increased the storage modulus E' of the foam as much as 20- 40% over a temperature range of -145 to 95 C. Because of foam loss fiom the PAL ramp, future Shuttle flights were grounded indefinitely to allow further testing to better understand foam properties. The decision was also made to remove foam from the LH2 PAL, ramp. Other RTF efforts prior to the launch of Discovery included

  7. Predictive Capability Maturity Model for computational modeling and simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronauticsmore » and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.« less

  8. Level 3 material characterization of NARC HRPF, HRHU, HRHF, and HRPU

    NASA Technical Reports Server (NTRS)

    Tobias, Mark E.

    1993-01-01

    The North American Rayon Corporation (NARC) precursor was developed, qualified, and characterized for Space Shuttle nozzle carbon-cloth phenolic ablative materials in three distinct phases. The characterization phase includes thermal and structural material property analysis and comparisons. This report documents the thermal and structural material property characterization performed by Southern Research Institute (SRI) on the two NARC baseline and two crossover materials.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, D.M.; Coggins, T.L.; Marsh, J.

    Numerous efforts are funded by US agencies (DOE, DoD, DHS) for development of novel radiation sensing and measurement systems. An effort has been undertaken to develop a flexible shielding system compatible with a variety of sources (beta, X-ray, gamma, and neutron) that can be highly characterized using conventional radiation detection and measurement systems. Sources available for use in this system include americium-beryllium (AmBe), plutonium-beryllium (PuBe), strontium-90 (Sr-90), californium-252 (Cf-252), krypton-85 (Kr-85), americium-241 (Am-241), and depleted uranium (DU). Shielding can be varied by utilization of materials that include lexan, water, oil, lead, and polyethylene. Arrangements and geometries of source(s) and shieldingmore » can produce symmetrical or asymmetrical radiation fields. The system has been developed to facilitate accurately repeatable configurations. Measurement positions are similarly capable of being accurately re-created. Stand-off measurement positions can be accurately re-established using differential global positioning system (GPS) navigation. Instruments used to characterize individual measurement locations include a variety of sodium iodide (NaI(Tl)) (3 x 3 inch, 4 x 4 x 16 inch, Fidler) and lithium iodide (LiI(Eu)) detectors (for use with multichannel analyzer software) and detectors for use with traditional hand held survey meters such as boron trifluoride (BF{sub 3}), helium-3 ({sup 3}He), and Geiger-Mueller (GM) tubes. Also available are Global Dosimetry thermoluminescent dosimeters (TLDs), CR39 neutron chips, and film badges. Data will be presented comparing measurement techniques with shielding/source configurations. The system is demonstrated to provide a highly functional process for comparison/characterization of various detector types relative to controllable radiation types and levels. Particular attention has been paid to use of neutron sources and measurements. (authors)« less

  10. Predictors and Impact of Self-Reported Suboptimal Effort on Estimates of Prevalence of HIV-Associated Neurocognitive Disorders.

    PubMed

    Levine, Andrew J; Martin, Eileen; Sacktor, Ned; Munro, Cynthia; Becker, James

    2017-06-01

    Prevalence estimates of HIV-associated neurocognitive disorders (HAND) may be inflated. Estimates are determined via cohort studies in which participants may apply suboptimal effort on neurocognitive testing, thereby inflating estimates. Additionally, fluctuating HAND severity over time may be related to inconsistent effort. To address these hypotheses, we characterized effort in the Multicenter AIDS Cohort Study. After neurocognitive testing, 935 participants (525 HIV- and 410 HIV+) completed the visual analog effort scale (VAES), rating their effort from 0% to 100%. Those with <100% then indicated the reason(s) for suboptimal effort. K-means cluster analysis established 3 groups: high (mean = 97%), moderate (79%), and low effort (51%). Rates of HAND and other characteristics were compared between the groups. Linear regression examined the predictors of VAES score. Data from 57 participants who completed the VAES at 2 visits were analyzed to characterize the longitudinal relationship between effort and HAND severity. Fifty-two percent of participants reported suboptimal effort (<100%), with no difference between serostatus groups. Common reasons included "tired" (43%) and "distracted" (36%). The lowest effort group had greater asymptomatic neurocognitive impairment and minor neurocognitive disorder diagnosis (25% and 33%) as compared with the moderate (23% and 15%) and the high (12% and 9%) effort groups. Predictors of suboptimal effort were self-reported memory impairment, African American race, and cocaine use. Change in effort between baseline and follow-up correlated with change in HAND severity. Suboptimal effort seems to inflate estimated HAND prevalence and explain fluctuation of severity over time. A simple modification of study protocols to optimize effort is indicated by the results.

  11. QuEST: Qualifying Environmentally Sustainable Technologies

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2012-01-01

    Articles in this issue inlude: (1) Foundation of Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) Technology Evaluation is Testing and Qualification, (2) Materials Management and Substitution Efforts, (3 Recycling and Pollution Control Efforts, and (4) Remediation Efforts

  12. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  13. Production, characterization and operation of Ge enriched BEGe detectors in GERDA

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Andreotti, E.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Becerici-Schmidt, N.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Budjáš, D.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; Domula, A.; Egorov, V.; Falkenstein, R.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gotti, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Ioannucci, L.; Janicskó Csáthy, J.; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Klimenko, A.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Misiaszek, M.; Nemchenok, I.; Nisi, S.; O'Shaughnessy, C.; Palioselitis, D.; Pandola, L.; Pelczar, K.; Pessina, G.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salathe, M.; Schmitt, C.; Schreiner, J.; Schulz, O.; Schütz, A.-K.; Schwingenheuer, B.; Schönert, S.; Shevchik, E.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Strecker, H.; Ur, C. A.; Vanhoefer, L.; Vasenko, A. A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zavarise, P.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2015-02-01

    The GERmanium Detector Array ( Gerda) at the Gran Sasso Underground Laboratory (LNGS) searches for the neutrinoless double beta decay () of Ge. Germanium detectors made of material with an enriched Ge fraction act simultaneously as sources and detectors for this decay. During Phase I of theexperiment mainly refurbished semi-coaxial Ge detectors from former experiments were used. For the upcoming Phase II, 30 new Ge enriched detectors of broad energy germanium (BEGe)-type were produced. A subgroup of these detectors has already been deployed in Gerda during Phase I. The present paper reviews the complete production chain of these BEGe detectors including isotopic enrichment, purification, crystal growth and diode production. The efforts in optimizing the mass yield and in minimizing the exposure of the Ge enriched germanium to cosmic radiation during processing are described. Furthermore, characterization measurements in vacuum cryostats of the first subgroup of seven BEGe detectors and their long-term behavior in liquid argon are discussed. The detector performance fulfills the requirements needed for the physics goals of Gerda Phase II.

  14. Development and Application of a Three-Dimensional Finite Element Vapor Intrusion Model

    PubMed Central

    Pennell, Kelly G.; Bozkurt, Ozgur; Suuberg, Eric M.

    2010-01-01

    Details of a three-dimensional finite element model of soil vapor intrusion, including the overall modeling process and the stepwise approach, are provided. The model is a quantitative modeling tool that can help guide vapor intrusion characterization efforts. It solves the soil gas continuity equation coupled with the chemical transport equation, allowing for both advective and diffusive transport. Three-dimensional pressure, velocity, and chemical concentration fields are produced from the model. Results from simulations involving common site features, such as impervious surfaces, porous foundation sub-base material, and adjacent structures are summarized herein. The results suggest that site-specific features are important to consider when characterizing vapor intrusion risks. More importantly, the results suggest that soil gas or subslab gas samples taken without proper regard for particular site features may not be suitable for evaluating vapor intrusion risks; rather, careful attention needs to be given to the many factors that affect chemical transport into and around buildings. PMID:19418819

  15. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    PubMed

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  16. Characterization of Impact Initiation of Aluminum-Based Powder Compacts

    NASA Astrophysics Data System (ADS)

    Tucker, Michael; Dixon, Sean; Thadhani, Naresh

    2011-06-01

    Impact initiation of reactions in quasi-statically pressed powder compacts of Al-Ni, Al-Ta, and Al-W powder compacts is investigated in an effort to characterize the differences in the energy threshold as a function of materials system, volumetric distribution, and environment. The powder compacts were mounted in front of a copper projectile and impacted onto a steel anvil using a 7.62 mm gas gun at velocities up to 500 m/s. The experiments were conducted in ambient environment, as well as under a 50 millitorr vacuum. The IMACON 200 framing camera was used to observe the transient powder compact densification and deformation states, as well as a signature of reaction based on light emission. Evidence of reaction was also confirmed based on post-mortem XRD analysis of the recovered residue. The effective kinetic energy, dissipated in processes leading to reaction initiation was estimated and correlated with reactivity of the various compacts as a function of composition and environment.

  17. Computer programs to characterize alloys and predict cyclic life using the total strain version of strainrange partitioning: Tutorial and users manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.

    1992-01-01

    This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.

  18. Understanding deviations in lithographic patterns near interfaces: Characterization of bottom anti-reflective coatings (BARC) and the BARC resist interface

    NASA Astrophysics Data System (ADS)

    Lenhart, Joseph L.; Fischer, Daniel; Sambasivan, Sharadha; Lin, Eric K.; Wu, Wen-Li; Guerrero, Douglas J.; Wang, Yubao; Puligadda, Rama

    2007-02-01

    Interactions between a bottom anti-reflective coating (BARC) and a photoresist can critically impact lithographic patterns. For example, a lithographic pattern can shrink or spread near a BARC interface, a process called undercutting or footing respectively, due to incompatibility between the two materials. Experiments were conducted on two industrial BARC coatings in an effort to determine the impact of BARC surface chemistry on the footing and undercutting phenomena. The BARC coatings were characterized by near edge X-ray absorption fine structure (NEXAFS), contact angle measurements, and neutron and X-ray reflectivity. Contact angle measurement using a variety of fluids showed that the fluid contact angles were independent of the type of BARC coating or the BARC processing temperature. NEXAFS measurements showed that the surface chemistry of each BARC was also independent of the processing temperature. These results suggest that acid-base interactions at the BARC-resist interface are not the cause of the footing-undercutting phenomena encountered in lithographic patterns.

  19. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Astrophysics Data System (ADS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-08-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  20. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  1. DEVELOPMENT OF PLUTONIUM-BEARING FUEL MATERIALS. Progress Report, October 1-December 31, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    Continued effort is reported on preparation and characterization of PuO/ sub 2/ and UO/sub 2/-- PuO/sub 2/ mixtures. Sintering and characterization of pellets for irradiation tests was emphasized, and efforts were also devoted to plasma torch production of spherical PuO /sub 2/ and coating of oxide materials. PuO/sub 2/ produced by the oxalate process from low concentration feed contains agglomerates which are not readily broken down, while that produced from normal feed contains larger agglomerates which are easily dispersed ultrasonically, and are more easily calcined. The water filtration method for determining total porosity of powders was adapted for use withmore » PuO/sub 2/. Moisture pickup studies show that the problems encountered with PuO/sub 2/ are similar to those found in handling ceramic-grade UO/. Reproducibility tests carried out on UO/sub 2/--PuO/ sub 2/ mixtures indicate that production methods are satisfactory. Lab-scale experiments on production of PuO/sub 2/-- UO/sub 2/feed for the plasma torch indicate that further work is worthwhile. Adaptation of a potentiometric filtration for Pu is reported. A twophase microstructure found in PuO/ after sintering in N6% H atmosphere was identified as PuO/sub 2/ and cubic Pu/sub 2/O/ sub 3/. Spherical particles were produced in the plasma torch using crushed or preformed high-fired particles. Spherical particles of PuO/sub 2/ were also produced by a multi-step process of drying, pressing, granulation, sizing, shaping, and sintering. Reactor physics studies were continued to determine the effect of cross section assumptions on the calculated behavior of Pu-fueled near- thermal reactor systems. It was concluded that relatively long core life (reactivity limiting) is attainable with these systems. (J.R.D.)« less

  2. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  3. Microgravity Processing of Oxide Superconductors

    NASA Technical Reports Server (NTRS)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  4. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F.; Flach, G.

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data asmore » it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.« less

  5. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle

    NASA Technical Reports Server (NTRS)

    Spellman, Regina L.

    2003-01-01

    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design process, the failure prediction was used to help gain acceptance and confidence in this new tool. The correlated models and process were to be used to analyze the full BWB-LSV airframe design. The analysis and correlation with test results of the proof of concept box is presented here, including the comparison of the Nastran and Hypersizer results.

  6. Determining the mechanical constitutive properties of metals as a function of strain rate and temperature: A combined experimental and modeling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I. M. Robertson; A. Beaudoin; J. Lambros

    2004-01-05

    OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also providemore » input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct observation of specific mechanisms of micro-plasticity, as these will indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. In this annual report, we describe the progress made in the first year of this program.« less

  7. Exemplar for simulation challenges: Large-deformation micromechanics of Sylgard 184/glass microballoon syntactic foams.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Judith Alice; Long, Kevin Nicholas

    2018-05-01

    Sylgard® 184/Glass Microballoon (GMB) potting material is currently used in many NW systems. Analysts need a macroscale constitutive model that can predict material behavior under complex loading and damage evolution. To address this need, ongoing modeling and experimental efforts have focused on study of damage evolution in these materials. Micromechanical finite element simulations that resolve individual GMB and matrix components promote discovery and better understanding of the material behavior. With these simulations, we can study the role of the GMB volume fraction, time-dependent damage, behavior under confined vs. unconfined compression, and the effects of partial damage. These simulations are challengingmore » and push the boundaries of capability even with the high performance computing tools available at Sandia. We summarize the major challenges and the current state of this modeling effort, as an exemplar of micromechanical modeling needs that can motivate advances in future computing efforts.« less

  8. Status of Activities to Implement a Sustainable System of MC&A Equipment and Methodological Support at Rosatom Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.D. Sanders

    Under the U.S.-Russian Material Protection, Control and Accounting (MPC&A) Program, the Material Control and Accounting Measurements (MCAM) Project has supported a joint U.S.-Russian effort to coordinate improvements of the Russian MC&A measurement system. These efforts have resulted in the development of a MC&A Equipment and Methodological Support (MEMS) Strategic Plan (SP), developed by the Russian MEM Working Group. The MEMS SP covers implementation of MC&A measurement equipment, as well as the development, attestation and implementation of measurement methodologies and reference materials at the facility and industry levels. This paper provides an overview of the activities conducted under the MEMS SP,more » as well as a status on current efforts to develop reference materials, implement destructive and nondestructive assay measurement methodologies, and implement sample exchange, scrap and holdup measurement programs across Russian nuclear facilities.« less

  9. Retention of Text Material under Cued and Uncued Recall and Open and Closed Book Conditions

    ERIC Educational Resources Information Center

    Nevid, Jeffrey S.; Pyun, Yea Seul; Cheney, Brianna

    2016-01-01

    Evidence supports the benefits of effortful processing in strengthening retention of newly learned material. The present study compared two forms of effortful processing, uncued (free) recall and cued recall, under both open and closed book conditions, on both immediate and delayed (one-week) test performance. Participants read a section of a…

  10. How to Defuse Censorship: Implementing 404.2 of the Standards for Accreditation of Montana Schools, 4th Ed.

    ERIC Educational Resources Information Center

    Bechtold, Brian; And Others

    To help defuse censorship efforts, this booklet identifies issues and strategies for handling censorship efforts and provides the instructional materials selection policies of two Montana school districts. The booklet also includes sample forms for a citizen requesting reconsideration of materials and for a school media committee's reconsideration…

  11. 48 CFR 2052.216-70 - Level of effort.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Level of effort. 2052.216... Level of effort. As prescribed at 2016.307-70(a) the contracting officer shall insert the following..., time and materials, or labor hours basis. Level of Effort (JAN 1993) The NRC's estimate of the total...

  12. New NIST sediment SRM for inorganic analysis.

    PubMed

    Zeisler, Rolf

    2004-03-01

    NIST maintains a portfolio of more than 1300 standard reference materials (SRM), more than a third of these relating to measurements in the biological and environmental fields. As part of the continuous renewal and replacement efforts, a set of new marine sediments has been recently developed covering organic and inorganic determinations. This paper describes the steps taken in sample preparation, homogeneity assay, and analytical characterization and certification with specific emphasis on SRM 2702 inorganics in marine sediment. Neutron activation analysis showed the SRM to be highly homogeneous, opening the possibility for use with solid sampling techniques. The certificate provides certified mass fraction values for 25 elements, reference values for eight elements, and information values for 11 elements, covering most of the priority pollutants with small uncertainties of only several percent relative. The values were obtained by combining results from different laboratories and techniques using a Bayesian statistical model. An intercomparison carried out in field laboratories with the material before certification illustrates a high commutability of this SRM.

  13. Development of thermoplastic composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.

    1992-01-01

    Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Steve M.; Manni, S.; Shao, Junping

    BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less

  15. BaSn 2 : A wide-gap strong topological insulator

    DOE PAGES

    Young, Steve M.; Manni, S.; Shao, Junping; ...

    2017-02-15

    BaSn 2 has been shown to form as layers of buckled stanene intercalated by barium ions. However, despite an apparently straightforward synthesis and significant interest in stanene as a topological material, BaSn 2 has been left largely unexplored, and has only recently been recognized as a potential topological insulator. Belonging to neither the lead nor bismuth chalcogenide families, it would represent a unique manifestation of the topological insulating phase. Here in this paper, we present a detailed investigation of BaSn 2, using both ab initio and experimental methods. First-principles calculations demonstrate that this overlooked material is indeed a strong, wide-gapmore » topological insulator with a bulk band gap of 200 meV. We characterize the surface state dependence on termination chemistry, providing guidance for experimental efforts to measure and manipulate its topological properties. Additionally, through ab initio modeling and synthesis experiments, we explore the stability and accessibility of this phase, revealing a complicated phase diagram that indicates a challenging path to obtaining single crystals.« less

  16. Chemically Deposited Thin-Film Solar Cell Materials

    NASA Technical Reports Server (NTRS)

    Raffaelle, R.; Junek, W.; Gorse, J.; Thompson, T.; Harris, J.; Hehemann, D.; Hepp, A.; Rybicki, G.

    2005-01-01

    We have been working on the development of thin film photovoltaic solar cell materials that can be produced entirely by wet chemical methods on low-cost flexible substrates. P-type copper indium diselenide (CIS) absorber layers have been deposited via electrochemical deposition. Similar techniques have also allowed us to incorporate both Ga and S into the CIS structure, in order to increase its optical bandgap. The ability to deposit similar absorber layers with a variety of bandgaps is essential to our efforts to develop a multi-junction thin-film solar cell. Chemical bath deposition methods were used to deposit a cadmium sulfide (CdS) buffer layers on our CIS-based absorber layers. Window contacts were made to these CdS/CIS junctions by the electrodeposition of zinc oxide (ZnO). Structural and elemental determinations of the individual ZnO, CdS and CIS-based films via transmission spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy and energy dispersive spectroscopy will be presented. The electrical characterization of the resulting devices will be discussed.

  17. Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields

    NASA Technical Reports Server (NTRS)

    Neuner, G. J.; Delano, C. B.

    1976-01-01

    An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.

  18. Durability of a continuous strand mat polymeric composite for automotive structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failuremore » behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.« less

  19. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  20. Nanotube Production and Applications at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Files, Bradley; Arepalli, Sivaram; Scott, Carl; Holmes, William; Nicholson, Leonard S. (Technical Monitor)

    2000-01-01

    Promise of applications of carbon nanotubes has led to an intense effort at NASA/JSC, especially in the area of nanotube composites. Using the extraordinary mechanical strength of nanotubes, NASA hopes to design this revolutionary lightweight material for use in aerospace applications. Current research focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical applications. In pursuit of these goals, we have set up both laser and arc production processes for nanotubes. An in-depth diagnostic study of the plasma plume in front of the laser target has been studied to try to determine nanotube growth mechanisms. Complementary studies of characterization of nanotube product have added to knowledge of growth conditions. Results of our preliminary experiments in incorporating nanotubes into composites will be presented. Morphology and mechanical properties of the nanotubes composites will be discussed.

  1. Applications of CCTO supercapacitor in energy storage and electronics

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, W. A.; Tate, J.; Bandyopadhyay, A. K.; Sutanto, I.; Sprissler, S.; Lin, S.

    2013-06-01

    Since the discovery of colossal dielectric constant in CCTO supercapacitor in 2000, development of its practical application to energy storage has been of great interest. In spite of intensive efforts, there has been thus far, no report of proven application. The object of this research is to understand the reason for this lack of success and to find ways to overcome this limitation. Reported herein is the synthesis of our research in ceramic processing of this material and its characterization, particularly with the objective of identifying potential applications. Experimental results have shown that CCTO's permittivity and loss tangent, the two most essential dielectric parameters of fundamental importance for the efficiency of a capacitor device, are intrinsically coupled. They increase or decrease in tandem. Therefore, efforts to simultaneously retain the high permittivity while minimizing the loss tangent of CCTO might not succeed unless an entirely non-typical approach is taken for processing this material. Based on the experimental results and their analysis, it has been identified that it is possible to produce CCTO bulk ceramics with conventional processes having properties that can be exploited for fabricating an efficient energy storage device (EDS). We have additionally identified that CCTO can be used for the development of efficient solid state capacitors of Class II type comparable to the widely used barium titanate (BT) capacitors. Based on high temperature studies of the resistivity and the Seebeck coefficient it is found that CCTO is a wide bandgap n-type semiconductor material which could be used for high temperature electronics. The temperature dependence of the linear thermal expansion of CCTO shows the presence of possible phase changes at 220 and 770 °C the origin of which remains unexplained.

  2. Flight Data Entry, Descent, and Landing (EDL) Repository

    NASA Technical Reports Server (NTRS)

    Martinez, Elmain M.; Winterhalter, Daniel

    2012-01-01

    Dr. Daniel Winterhalter, NASA Engineering and Safety Center Chief Engineer at the Jet Propulsion Laboratory, requested the NASA Engineering and Safety Center sponsor a 3-year effort to collect entry, descent, and landing material and to establish a NASA-wide archive to serve the material. The principle focus of this task was to identify entry, descent, and landing repository material that was at risk of being permanently lost due to damage, decay, and undocumented storage. To provide NASA-wide access to this material, a web-based digital archive was created. This document contains the outcome of the effort.

  3. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  4. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  5. Examining Occupational Health and Safety Disparities Using National Data: A Cause for Continuing Concern

    PubMed Central

    Steege, Andrea L.; Baron, Sherry L.; Marsh, Suzanne M.; Menéndez, Cammie Chaumont; Myers, John R.

    2015-01-01

    Background Occupational status, a core component of socioeconomic status, plays a critical role in the well-being of U.S. workers. Identifying work-related disparities can help target prevention efforts. Methods Bureau of Labor Statistics workplace data were used to characterize high-risk occupations and examine relationships between demographic and work-related variables and fatality. Results Employment in high-injury/illness occupations was independently associated with being male, Black, ≤high school degree, foreign-birth, and low-wages. Adjusted fatal occupational injury rate ratios for 2005–2009 were elevated for males, older workers, and several industries and occupations. Agriculture/forestry/fishing and mining industries and transportation and materials moving occupations had the highest rate ratios. Homicide rate ratios were elevated for Black, American Indian/Alaska Native/Asian/Pacific Islanders, and foreign-born workers. Conclusions These findings highlight the importance of understanding patterns of disparities of workplace injuries, illnesses and fatalities. Results can improve intervention efforts by developing programs that better meet the needs of the increasingly diverse U.S. workforce. PMID:24436156

  6. High performance low cost interconnections for flip chip attachment with electrically conductive adhesive. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    This final report is a compilation of final reports from each of the groups participating in the program. The main three groups involved in this effort are the Thomas J. Watson Research Center of IBM Corporation in Yorktown Heights, New York, Assembly Process Design of IBM Corporation in Endicott, New York, and SMT Laboratory of Universal Instruments Corporation in Binghamton, New York. The group at the research center focused on the conductive adhesive materials development and characterization. The group in process development focused on processing of the Polymer-Metal-Solvent Paste (PMSP) to form conductive adhesive bumps, formation of the Polymer-Metal Compositemore » (PMC) on semiconductor devices and study of the bonding process to circuitized organic carriers, and the long term durability and reliability of joints formed using the process. The group at Universal Instruments focused on development of an equipment set and bonding parameters for the equipment to produce bond assembly tooling. Reports of each of these individual groups are presented here reviewing their technical efforts and achievements.« less

  7. Examining occupational health and safety disparities using national data: a cause for continuing concern.

    PubMed

    Steege, Andrea L; Baron, Sherry L; Marsh, Suzanne M; Menéndez, Cammie Chaumont; Myers, John R

    2014-05-01

    Occupational status, a core component of socioeconomic status, plays a critical role in the well-being of U.S. workers. Identifying work-related disparities can help target prevention efforts. Bureau of Labor Statistics workplace data were used to characterize high-risk occupations and examine relationships between demographic and work-related variables and fatality. Employment in high-injury/illness occupations was independently associated with being male, Black, ≤high school degree, foreign-birth, and low-wages. Adjusted fatal occupational injury rate ratios for 2005-2009 were elevated for males, older workers, and several industries and occupations. Agriculture/forestry/fishing and mining industries and transportation and materials moving occupations had the highest rate ratios. Homicide rate ratios were elevated for Black, American Indian/Alaska Native/Asian/Pacific Islanders, and foreign-born workers. These findings highlight the importance of understanding patterns of disparities of workplace injuries, illnesses and fatalities. Results can improve intervention efforts by developing programs that better meet the needs of the increasingly diverse U.S. workforce. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  8. Afraid to Start Because the Outcome is Uncertain?: Social Site Characterization as a Tool for Informing Public Engagement Efforts

    USGS Publications Warehouse

    Wade, S.; Greenberg, S.

    2009-01-01

    This paper introduces the concept of social site characterization as a parallel effort to technical site characterization to be used in evaluating and planning carbon dioxides capture and storage (CCS) projects. Social site characterization, much like technical site characterization, relies on a series of iterative investigations into public attitudes towards a CCS project and the factors that will shape those views. This paper also suggests ways it can be used to design approaches for actively engaging stakeholders and communities in the deployment of CCS projects. This work is informed by observing the site selection process for FutureGen and the implementation of research projects under the Regional Carbon Sequestration Partnership Program. ?? 2009 Elsevier Ltd. All rights reserved.

  9. Sampling effort needed to estimate condition and species richness in the Ohio River, USA

    EPA Science Inventory

    The level of sampling effort required to characterize fish assemblage condition in a river for the purposes of bioassessment may be estimated via different approaches. However, the goal with any approach is to determine the minimum level of effort necessary to reach some specific...

  10. Engine environmental effects on composite behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1980-01-01

    A series of programs were conducted to investigate and develop the application of composite materials to turbojet engines. A significant part of that effort was directed to establishing the impact resistance and defect growth chracteristics of composite materials over the wide range of environmental conditions found in commercial turbojet engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes are summarized.

  11. Nonlinear Constitutive Relations for High Temperature Applications, 1986

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of the symposium was to review the state-of-the-art in nonlinear constitutive modeling of high temperature materials for aeronautics applications and to identify the need for future research and development efforts in this area. Through this symposium, it was recognized that considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications. In the aerospace industry this need is further prompted by recent advances in high temperature materials technology and new demands on material and component performance.

  12. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  13. TAP Report - Southwest Idaho Juniper Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gresham, Garold Linn

    There is explicit need for characterization of the materials for possible commercialization as little characterization data exists. Pinyon-juniper woodlands are a major ecosystem type found in the Southwest and the Intermountain West regions of the United States including Nevada, Idaho and Oregon. These widespread ecosystems are characterized by the presence of several different species of pinyon and juniper as the dominant plant cover. Since the 1800s, pinyon-juniper woodlands have rapidly expanded their range at the expense of existing ecosystems. Additionally, existing woodlands have become denser, progressively creating potential fire hazards as seen in the Soda Fire, which burned more thanmore » 400 sq. miles. Land managers responsible for these areas often desire to reduce pinyon-juniper coverage on their lands for a variety of reasons, as stated in the Working Group objectives. However, the cost of clearing thinning pinyon-juniper stands can be prohibitive. One reason for this is the lack of utilization options for the resulting biomass that could help recover some of the cost of pinyon-juniper stand management. The goal of this TAP effort was to assess the feedstock characteristics of biomass from a juniper harvested from Owyhee County to evaluate possible fuel and conversion utilization options.« less

  14. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.

    PubMed

    Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D

    2016-05-06

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  16. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE PAGES

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...

    2016-03-03

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  17. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6*

    PubMed Central

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.

    2016-01-01

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872

  18. Fracture behavior of W based materials. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, J.E.

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ``heavy alloy`` and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed inmore » two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general.« less

  19. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst

    NASA Astrophysics Data System (ADS)

    Robertson, D. K.; Mathias, D. L.

    2017-03-01

    Simulations of asteroid airburst are being conducted to obtain best estimates of damage areas and assess sensitivity to variables for asteroid characterization and mitigation efforts. The simulations presented here employed the ALE3D hydrocode to examine the breakup and energy deposition of asteroids entering the Earth's atmosphere, using the Chelyabinsk meteor as a test case. This paper examines the effect of increasingly complex material models on the energy deposition profile. Modeling the meteor as a rock having a single strength can reproduce airburst altitude and energy deposition reasonably well but is not representative of real rock masses (large bodies of material). Accounting for a yield curve that includes different tensile, shear, and compressive strengths shows that shear strength determines the burst altitude. Including yield curves and compaction of porous spaces in the material changes the detailed mechanics of the breakup but only has a limited effect on the burst altitude and energy deposition. Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the material strength. Weak asteroids, even though they structurally fail at high altitude, require the increased pressure at lower altitude to disrupt and disperse the rubble. As a result, a wide range of weaker asteroid strengths produce peak energy deposition at a similar altitude.

  20. Semiconductor Characterization: from Growth to Manufacturing

    NASA Astrophysics Data System (ADS)

    Colombo, Luigi

    The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.

Top