National Transonic Facility Fan Blade prepreg material characterization tests
NASA Technical Reports Server (NTRS)
Klich, P. J.; Richards, W. H.; Ahl, E. L., Jr.
1981-01-01
The test program for the basic prepreg materials used in process development work and planned fabrication of the national transonic facility fan blade is presented. The basic prepreg materials and the design laminate are characterized at 89 K, room temperature, and 366 K. Characterization tests, test equipment, and test data are discussed. Material tests results in the warp direction are given for tensile, compressive, fatigue (tension-tension), interlaminar shear and thermal expansion.
Flexible Material Systems Testing
NASA Technical Reports Server (NTRS)
Lin, John K.; Shook, Lauren S.; Ware, Joanne S.; Welch, Joseph V.
2010-01-01
An experimental program has been undertaken to better characterize the stress-strain characteristics of flexible material systems to support a NASA ground test program for inflatable decelerator material technology. A goal of the current study is to investigate experimental methods for the characterization of coated woven material stiffness. This type of experimental mechanics data would eventually be used to define the material inputs of fluid-structure interaction simulation models. The test methodologies chosen for this stress-strain characterization are presented along with the experimental results.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2004-10-01
The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.
Characterization of deformable materials in the THOR dummy
DOT National Transportation Integrated Search
2000-01-01
Methodologies used to characterize the mechanical behavior of various materials used in the construction of the crash test dummy called THOR (Test device for Human Occupant Restraint) are described. These materials include polyurethane, neoprene, and...
ASTM test methods for composite characterization and evaluation
NASA Technical Reports Server (NTRS)
Masters, John E.
1994-01-01
A discussion of the American Society for Testing and Materials is given. Under the topic of composite materials characterization and evaluation, general industry practice and test methods for textile composites are presented.
Kalman, Lisa V; Datta, Vivekananda; Williams, Mickey; Zook, Justin M; Salit, Marc L; Han, Jin Yeong
2016-11-01
Characterized reference materials (RMs) are needed for clinical laboratory test development and validation, quality control procedures, and proficiency testing to assure their quality. In this article, we review the development and characterization of RMs for clinical molecular genetic tests. We describe various types of RMs and how to access and utilize them, especially focusing on the Genetic Testing Reference Materials Coordination Program (Get-RM) and the Genome in a Bottle (GIAB) Consortium. This review also reinforces the need for collaborative efforts in the clinical genetic testing community to develop additional RMs.
Using Virtual Testing for Characterization of Composite Materials
NASA Astrophysics Data System (ADS)
Harrington, Joseph
Composite materials are finally providing uses hitherto reserved for metals in structural systems applications -- airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. They have high strength-to-weight ratios, are durable and resistant to environmental effects, have high impact strength, and can be manufactured in a variety of shapes. Generalized constitutive models are being developed to accurately model composite systems so they can be used in implicit and explicit finite element analysis. These models require extensive characterization of the composite material as input. The particular constitutive model of interest for this research is a three-dimensional orthotropic elasto-plastic composite material model that requires a total of 12 experimental stress-strain curves, yield stresses, and Young's Modulus and Poisson's ratio in the material directions as input. Sometimes it is not possible to carry out reliable experimental tests needed to characterize the composite material. One solution is using virtual testing to fill the gaps in available experimental data. A Virtual Testing Software System (VTSS) has been developed to address the need for a less restrictive method to characterize a three-dimensional orthotropic composite material. The system takes in the material properties of the constituents and completes all 12 of the necessary characterization tests using finite element (FE) models. Verification and validation test cases demonstrate the capabilities of the VTSS.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh K.; Hagood, Nesbitt W.
2002-07-01
The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.
2010-01-01
Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.
NASA Technical Reports Server (NTRS)
Arnold, J.; Dodson, J.; Laub, B.
1979-01-01
Subscale solid motor nozzles containing a baseline material or low cost materials to be considered as potential replacements for the baseline material are designed and tested. Data are presented from tests of four identically designed 2.5 inch throat diameter nozzles and one 7 inch throat diameter nozzle. The screening of new candidate low cost materials, as well as their thermophysical and thermochemical characterization is also discussed.
Characterization and modeling of a highly-oriented thin film for composite forming
NASA Astrophysics Data System (ADS)
White, K. D.; Sherwood, J. A.
2018-05-01
Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.
Experimental characterization of composites. [load test methods
NASA Technical Reports Server (NTRS)
Bert, C. W.
1975-01-01
The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.
Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank
2013-01-01
Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.
NASA Technical Reports Server (NTRS)
Winter, Michael
2012-01-01
The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative characterization of the material response of ablative materials during arc-jet testing will be discussed.
Nondestructive material characterization
Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.
1991-01-01
A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.
Photothermal characterization of encapsulant materials for photovoltaic modules
NASA Technical Reports Server (NTRS)
Liang, R. H.; Gupta, A.; Distefano, S.
1982-01-01
A photothermal test matrix and a low cost testing apparatus for encapsulant materials of photovoltaic modules were defined. Photothermal studies were conducted to screen and rank existing as well as future encapsulant candidate materials and/or material formulations in terms of their long term physiochemical stability under accelerated photothermal aging conditions. Photothermal characterization of six candidate pottant materials and six candidate outer cover materials were carried out. Principal products of photothermal degradation are identified. Certain critical properties are also monitored as a function of photothermal aging.
Multilayer Pressure Vessel Materials Testing and Analysis Phase 2
NASA Technical Reports Server (NTRS)
Popelar, Carl F.; Cardinal, Joseph W.
2014-01-01
To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report
Statistical characterization of carbon phenolic prepreg materials, volume 1
NASA Technical Reports Server (NTRS)
Beckley, Don A.; Stites, John, Jr.
1988-01-01
The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.
Jensen, Ellen K.; Larsen, Sten Y.; Nygaard, Unni C.; Marioara, Calin D.; Syversen, Tore
2012-01-01
This paper describes an approach for the early combination of material characterization and toxicology testing in order to design carbon nanofiber (CNF) with low toxicity. The aim was to investigate how the adjustment of production parameters and purification procedures can result in a CNF product with low toxicity. Different CNF batches from a pilot plant were characterized with respect to physical properties (chemical composition, specific surface area, morphology, surface chemistry) as well as toxicity by in vitro and in vivo tests. A description of a test battery for both material characterization and toxicity is given. The results illustrate how the adjustment of production parameters and purification, thermal treatment in particular, influence the material characterization as well as the outcome of the toxic tests. The combination of the tests early during product development is a useful and efficient approach when aiming at designing CNF with low toxicity. Early quality and safety characterization, preferably in an iterative process, is expected to be efficient and promising for this purpose. The toxicity tests applied are preliminary tests of low cost and rapid execution. For further studies, effects such as lung inflammation, fibrosis and respiratory cancer are recommended for the more in-depth studies of the mature CNF product.
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
Testing of materials from the Minnesota Cold Regions pavement research test facility
DOT National Transportation Integrated Search
1996-09-01
The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted various laboratory tests on pavement materials from the Mn/ ROAD facility. The tests helped to characterize the behavior of materials under season frost conditions, and ...
Dynamic characterization of high damping viscoelastic materials from vibration test data
NASA Astrophysics Data System (ADS)
Martinez-Agirre, Manex; Elejabarrieta, María Jesús
2011-08-01
The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.
Evaluation of Minimum Asphalt Concrete Thickness Criteria
2008-10-01
9 Figure 6. Dry density versus moisture content for CH material... density measurements. ............................ 24 Figure 18. EPC installation in a crushed gravel base course layer...Construction Materials Materials Characterization Laboratory Testing Field Testing Test Section Construction Hydrometer, Modified Proctor , Specific
Thermal interface material characterization for cryogenic electronic packaging solutions
NASA Astrophysics Data System (ADS)
Dillon, A.; McCusker, K.; Van Dyke, J.; Isler, B.; Christiansen, M.
2017-12-01
As applications of superconducting logic technologies continue to grow, the need for efficient and reliable cryogenic packaging becomes crucial to development and testing. A trade study of materials was done to develop a practical understanding of the properties of interface materials around 4 K. While literature exists for varying interface tests, discrepancies are found in the reported performance of different materials and in the ranges of applied force in which they are optimal. In considering applications extending from top cooling a silicon chip to clamping a heat sink, a range of forces from approximately 44 N to approximately 445 N was chosen for testing different interface materials. For each range of forces a single material was identified to optimize the thermal conductance of the joint. Of the tested interfaces, indium foil clamped at approximately 445 N showed the highest thermal conductance. Results are presented from these characterizations and useful methodologies for efficient testing are defined.
Analytical Ultrasonics in Materials Research and Testing
NASA Technical Reports Server (NTRS)
Vary, A.
1986-01-01
Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Properties and shock response of PMMA
NASA Astrophysics Data System (ADS)
Jordan, Jennifer L.; Casem, Daniel; Moy, Paul; Walter, Timothy
2017-01-01
Polymethylmethacrylate (PMMA) is used widely in shock experiments as a window material and in explosive characterization tests, e.g. gap tests, as a shock mitigation material. In order to simulate the complex loading present in a gap test, the constitutive response of the PMMA must be well understood. However, it is not clear what characterization must be done when the PMMA material is changed, e.g. changing supplier, and the Rohm and Haas Type II UVA PMMA, which was used for many of the calibration experiments, is no longer available. In this paper, we will present characterization results on legacy Rohm and Haas Type II UVA in comparison with a new PMMA grade proposed for use in gap tests. Planar shock experiments are performed to determine the compression and release response.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.
2005-01-01
The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.
Preliminary Validation of Composite Material Constitutive Characterization
John G. Michopoulos; Athanasios lliopoulos; John C. Hermanson; Adrian C. Orifici; Rodney S. Thomson
2012-01-01
This paper is describing the preliminary results of an effort to validate a methodology developed for composite material constitutive characterization. This methodology involves using massive amounts of data produced from multiaxially tested coupons via a 6-DoF robotic system called NRL66.3 developed at the Naval Research Laboratory. The testing is followed by...
NASA Technical Reports Server (NTRS)
Bellomy-Ezell, Jenny; Farmer, Jeff; Breeding, Shawn; Spivey, Reggie
2001-01-01
A compliant, thermal interface material is tested to evaluate its thermal behavior at elevated temperatures, in vacuum conditions, and under varying levels of compression. Preliminary results indicate that the thermal performance of this polymer fiber-based, felt-like material is sufficient to meet thermal extraction requirements for the Quench Module Insert, a Bridgman furnace for microgravity material science investigation. This paper discusses testing and modeling approaches employed, gives of a status of characterization activities and provides preliminary test results.
Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies
NASA Astrophysics Data System (ADS)
Joshi, Vasant; Lee, Gilbert; Santiago, Jaime
2015-06-01
Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.
Establishing the traceability of a uranyl nitrate solution to a standard reference material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, C.H.; Clark, J.P.
1978-01-01
A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Twomore » different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal.« less
Nondestructive evaluation of warm mix asphalt through resonant column testing.
DOT National Transportation Integrated Search
2014-02-01
Non-destructive testing has been used for decades to characterize engineering properties of hot-mix asphalt. Among such tests is the resonant column (RC) test, which is commonly used to characterize soil materials. The resonant column device at Penn ...
NASA Technical Reports Server (NTRS)
Skevington, Jennifer L.
2010-01-01
Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.
NASA Technical Reports Server (NTRS)
Turner, J. E.
1993-01-01
An elastomeric O-ring material is used in the joints of the redesigned solid motors (RSRM's) of the National Space Transportation System (NSTS). The selection of the O-ring material used in the RSRM's was a very thorough process that included efforts by NASA's Marshall Space Flight Center and the Langley Research Center, and the Thiokol Corporation. One of the efforts performed at MSFC was an extensive in-house laboratory test regime to screen potential O-ring materials and ultimately to characterize the elastomeric material that was chosen to be used in the RSRM's. The laboratory tests performed at MSFC are summarized.
Fire tests for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1980-01-01
Large scale, simulated fire tests of aircraft interior materials were carried out in salvaged airliner fuselage. Two "design" fire sources were selected: Jet A fuel ignited in fuselage midsection and trash bag fire. Comparison with six established laboratory fire tests show that some laboratory tests can rank materials according to heat and smoke production, but existing tests do not characterize toxic gas emissions accurately. Report includes test parameters and test details.
Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E.; Luebbe, Elizabeth A.; Moxley, Richard T.; Toji, Lorraine
2014-01-01
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3′ untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. PMID:23680132
NASA Technical Reports Server (NTRS)
Edwards, D. L.; Hubbs, W. S.; Wertz, G. E.; Alstatt, R.; Munafo, Paul (Technical Monitor)
2001-01-01
The usage of solar sails as a propellantless propulsion system has been proposed for many years. The technical challenges associated with solar sails are fabrication of ultralightweight films, deploying the sails and controlling the spacecraft. Integral to all these challenges is the mechanical property integrity of the sail while exposed to the harsh environment of space. This paper describes testing and characterization of a candidate solar sail material, Aluminized Mylar. This material was exposed to a simulated Geosynchronous Transfer Orbit (GTO) and evaluated by measuring thermooptical and mechanical property changes. Testing procedures and results are presented.
Metals combustion in normal gravity and microgravity
NASA Technical Reports Server (NTRS)
Steinberg, Theodore A.; Wilson, D. Bruce; Benz, Frank J.
1993-01-01
The study of the combustion characteristics of metallic materials has been an ongoing area of research at the NASA White Sands Test Facility (WSTF). This research has been in support of both government and industrial operations and deals not only with the combustion of specific metallic materials but also with the relative flammabilities of these materials under similar conditions. Since many of the metallic materials that are characterized at WSTF for aerospace applications are to be used in microgravity environments, it was apparent that the testing of these materials needed to proceed in a microgravity environment. It was believed that burning metallic materials in a microgravity environment would allow the evaluation of the validity of applying normal gravity combustion tests to characterize metallic materials to be used in microgravity environments. It was also anticipated that microgravity testing would provide insight into the general combustion process of metallic materials. The availability of the NASA Lewis Research Center's (LeRC) 2.2-second drop tower provided the necessary facility to accomplish the microgravity portion of the testing while the normal gravity testing was conducted at NASA WSTF. The tests, both at LeRC and WSTF, were conducted in the same instrumented system and utilized the standard metal flammability test of upward propagation burning of cylindrical rod samples.
John G. Michopoulos; John C. Hermanson; Athanasios Iliopoulos
2012-01-01
In this paper we are reporting on the first successful campaign of systematic, automated and massive multiaxial tests for composite material constitutive characterization. The 6 degrees of freedom system developed at the Naval Research Laboratory (NRL) called NRL66.3, was used for this task. This was the inaugural run that served as the validation of the...
Nanorobotic System iTRo for Controllable 1D Micro/nano Material Twisting Test.
Lu, Haojian; Shang, Wanfeng; Wei, Xueyong; Yang, Zhan; Fukuda, Toshio; Shen, Yajing
2017-06-08
In-situ micro/nano characterization is an indispensable methodology for material research. However, the precise in-situ SEM twisting of 1D material with large range is still challenge for current techniques, mainly due to the testing device's large size and the misalignment between specimen and the rotation axis. Herein, we propose an in-situ twist test robot (iTRo) to address the above challenges and realize the precise in-situ SEM twisting test for the first time. Firstly, we developed the iTRo and designed a series of control strategies, including assembly error initialization, triple-image alignment (TIA) method for rotation axis alignment, deformation-based contact detection (DCD) method for sample assembly, and switch control for robots cooperation. After that, we chose three typical 1D material, i.e., magnetic microwire Fe 74 B 13 Si 11 C 2 , glass fiber, and human hair, for twisting test and characterized their properties. The results showed that our approach is able to align the sample to the twisting axis accurately, and it can provide large twisting range, heavy load and high controllability. This work fills the blank of current in-situ mechanical characterization methodologies, which is expected to give significant impact in the fundamental nanomaterial research and practical micro/nano characterization.
NASA Astrophysics Data System (ADS)
Scheffler, Christian; Psyk, Verena; Linnemann, Maik; Tulke, Marc; Brosius, Alexander; Landgrebe, Dirk
2018-05-01
High speed velocity effects in production technology provide a broad range of technological and economic advantages [1, 2]. However, exploiting them necessitates the knowledge of strain rate dependent material behavior in process modelling. In general, high speed material data characterization features several difficulties and requires sophisticated approaches in order to provide reliable material data. This paper proposes two innovative concepts with electromagnetic and pneumatic drive and an approach for material characterization in terms of strain rate dependent flow curves and parameters of failure or damage models. The test setups have been designed for investigations of strain rates up to 105 s-1. In principle, knowledge about the temporary courses and local distributions of stress and strain in the specimen is essential for identifying material characteristics, but short process times, fast changes of the measurement values, small specimen size and frequently limited accessibility of the specimen during the test hinder directly measuring these parameters at high-velocity testing. Therefore, auxiliary test parameters, which are easier to measure, are recorded and used as input data for an inverse numerical simulation that provides the desired material characteristics, e.g. the Johnson-Cook parameters, as a result. These parameters are a force equivalent strain signal on a measurement body and the displacement of the upper specimen edge.
Preparation and Use of Polish Mushroom Proficiency Testing Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polkowska-Motrenko, Halina
2008-08-14
Mushroom reference materials have been prepared and characterized for the use in proficiency tests according to a procedure established within the frame of an IAEA Interregional Technical Cooperation Project. The materials were used for conducting the proficiency tests in Poland in 2005-2007. The results obtained by participating laboratories are presented and discussed.
Lee, Min Wook; An, Seongpil; Yoon, Sam S; Yarin, Alexander L
2018-02-01
Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David
2002-01-01
Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.
Characterization of holding brake friction pad surface after pin-on-plate wear test
NASA Astrophysics Data System (ADS)
Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.
2018-03-01
This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.
Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1990-01-01
The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
Development of fire test methods for airplane interior materials
NASA Technical Reports Server (NTRS)
Tustin, E. A.
1978-01-01
Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.
Characterization of Microporous Insulation, Microsil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.
Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within thismore » report.« less
Kalman, Lisa; Tarleton, Jack; Hitch, Monica; Hegde, Madhuri; Hjelm, Nick; Berry-Kravis, Elizabeth; Zhou, Lili; Hilbert, James E; Luebbe, Elizabeth A; Moxley, Richard T; Toji, Lorraine
2013-07-01
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG triplet repeat in the 3' untranslated region of the DMPK gene that encodes a serine-threonine kinase. Patients with larger repeats tend to have a more severe phenotype. Clinical laboratories require reference and quality control materials for DM1 diagnostic and carrier genetic testing. Well-characterized reference materials are not available. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community, the National Registry of Myotonic Dystrophy and Facioscapulohumeral Muscular Dystrophy Patients and Family Members, and the Coriell Cell Repositories, has established and characterized cell lines from patients with DM1 to create a reference material panel. The CTG repeats in genomic DNA samples from 10 DM1 cell lines were characterized in three clinical genetic testing laboratories using PCR and Southern blot analysis. DMPK alleles in the samples cover four of five DM1 clinical categories: normal (5 to 34 repeats), mild (50 to 100 repeats), classical (101 to 1000 repeats), and congenital (>1000 repeats). We did not identify or establish Coriell cell lines in the premutation range (35 to 49 repeats). These samples are publicly available for quality control, proficiency testing, test development, and research and should help improve the accuracy of DM1 testing. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Functional Characterization of a Novel Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.
2014-07-01
A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.
2017-05-01
a quality program for the standardization of test methods to support comprehensive characterization and comparison of the physical and functional...1 2. MATERIALS AND METHODS ...4 2.8 SPR Methodology
Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.
2006-01-01
Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929
John G. Michopoulos; John G. Hermanson; Athanasios lliopoulos; Samuel Lambrakos; Tomonari Furukawa
2011-01-01
In the present paper we focus on demonstrating the use of design optimization for the constitutive characterization of anisotropic material systems such as polymer matrix composites, with or without damage. All approaches are based on the availability of experimental data originating from mechatronic material testing systems that can expose specimens to...
Seal material development test program
NASA Technical Reports Server (NTRS)
1971-01-01
A program designed to characterize an experimental fluoroelastomer material designated AF-E-124D, is examined. Tests conducted include liquid nitrogen load compression tests, flexure tests and valve seal tests, ambient and elevated temperature compression set tests, and cleaning and flushing fluid exposure tests. The results of these tests indicate the AF-E-124D is a good choice for a cryogenic seal, since it exhibits good low temperature sealing characteristics and resistance to permanent set. The status of this material as an experimental fluorelastomer is stressed and recommended. Activity includes definition and control of critical processing to ensure consistent material properties. Design, fabrication and test of this and other materials is recommended in valve and static seal applications.
NASA Astrophysics Data System (ADS)
Roebben, Gert; Kestens, Vikram; Varga, Zoltan; Charoud-Got, Jean; Ramaye, Yannic; Gollwitzer, Christian; Bartczak, Dorota; Geißler, Daniel; Noble, James; Mazoua, Stéphane; Meeus, Nele; Corbisier, Philippe; Palmai, Marcell; Mihály, Judith; Krumrey, Michael; Davies, Julie; Resch-Genger, Ute; Kumarswami, Neelam; Minelli, Caterina; Sikora, Aneta; Goenaga-Infante, Heidi
2015-10-01
This paper describes the production and characteristics of the nanoparticle test materials prepared for common use in the collaborative research project NanoChOp (Chemical and optical characterisation of nanomaterials in biological systems), in casu suspensions of silica nanoparticles and CdSe/CdS/ZnS quantum dots. This paper is the first to illustrate how to assess whether nanoparticle test materials meet the requirements of a 'reference material' (ISO Guide 30:2015) or rather those of the recently defined category of 'representative test material' (ISO TS 16195:2013). The NanoChOp test materials were investigated with small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and centrifugal liquid sedimentation (CLS) to establish whether they complied with the required monomodal particle size distribution. The presence of impurities, aggregates, agglomerates and viable microorganisms in the suspensions was investigated with DLS, CLS, optical and electron microscopy and via plating on nutrient agar. Suitability of surface functionalization was investigated with attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and via the capacity of the nanoparticles to be fluorescently labeled or to bind antibodies. Between-unit homogeneity and stability were investigated in terms of particle size and zeta potential. This paper shows that only based on the outcome of a detailed characterization process one can raise the status of a test material to representative test material or reference material, and how this status depends on its intended use.
Reaction propagation test. Evaluation of the behavior of nonmetallic materials in hydrogen
NASA Technical Reports Server (NTRS)
Smith, I. D.
1972-01-01
Results of tests conducted to evaluate the behavior of nonmetallic materials in hydrogen are described. The reaction propagation test simulates the conditions resulting from the interaction of an electrical wire in an overload condition in contract with a material in the test medium. The test is designed to evaluate the behavior of a material subjected to an energy input (usually heat) sufficient to cause a reaction which propagates to consume larger quantities of the material. Ten nonmetallic materials were evaluated to establish baseline data on the behavior of nonmetallic materials in hydrogen and to characterize, on an initial basis, one mode of material failure considered to be a factor pertinent to the safe use of a material in hydrogen.
Handbook of photothermal test data on encapsulant materials
NASA Astrophysics Data System (ADS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-05-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
Handbook of photothermal test data on encapsulant materials
NASA Technical Reports Server (NTRS)
Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.
1983-01-01
Laboratory tests performed to characterize candidate encapsulation materials with respect to changes in their physical and chemical properties caused by photothermal aging are described. Several key material properties relating directly to material degradation and deterioration of performance were identified and were monitored as functions of aging conditions and time. A status report on accelerated testing activities is provided and experimental data are presented. It will be updated periodically as more data become available.
2016-04-01
characterized by different methods such as Scanning Electron Microscopy (SEM) or Transmission Electron Microscopy (TEM) and other methods . ERDC SR-16...the surface coating and substrate material used. Adaptations to this test method can be used with a range of nanomaterial / polymer products in which...material rather than the presence of nanomaterial (Golanski et al. 2011). After particles are released, proper characterization is essential to
Interfacial characterization of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Najafian, Sara; Amirkhizi, Alireza V.; Stapleton, Scott
2018-03-01
Flexible Hybrid Electronics (FHEs) are the new generation of electronics combining flexible plastic film substrates with electronic devices. Besides the electrical features, design improvements of FHEs depend on the prediction of their mechanical and failure behavior. Debonding of electronic components from the flexible substrate is one of the most common and critical failures of these devices, therefore, the experimental determination of material and interface properties is of great importance in the prediction of failure mechanisms. Traditional interface characterization involves isolated shear and normal mode tests such as the double cantilever beam (DCB) and end notch flexure (ENF) tests. However, due to the thin, flexible nature of the materials and manufacturing restrictions, tests mirroring traditional interface characterization experiments may not always be possible. The ideal goal of this research is to design experiments such that each mode of fracture is isolated. However, due to the complex nonlinear nature of the response and small geometries of FHEs, design of the proper tests to characterize the interface properties can be significantly time and cost consuming. Hence numerical modeling has been implemented to design these novel characterization experiments. This research involves loading case and specimen geometry parametric studies using numerical modeling to design future experiments where either shear or normal fracture modes are dominant. These virtual experiments will provide a foundation for designing similar tests for many different types of flexible electronics and predicting the failure mechanism independent of the specific FHE materials.
Characterization of Impact Initiation of Aluminum-Based Intermetallic-Forming Reactive Materials
2011-12-01
compressed intermetallic-forming aluminum-based reactive materials upon impact initiation, consisting of equi-volumetric tantalum-aluminum, tungsten-aluminum...18 2.3.4 Dynamic Energy Release Characterization using Pig Test . . . . . . 21 2.3.5 Shock Compression of Reactive Powder Mixtures...is to evaluate the reaction initiation characteristics of quasi-statically compressed intermetallic-forming aluminum-based reactive materials upon
NASA Astrophysics Data System (ADS)
Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar
Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.
NASA Astrophysics Data System (ADS)
Salim, S.; Agusnar, H.; Wirjosentono, B.; Tamrin; Marpaung, H.; Rihayat, T.; Nurhanifa; Adriana
2018-03-01
Plastic polymer is one of the most dominant materials of daily human activities because of its multifunctional nature, light and strong and anti-corrosion so it is easy to apply in various equipment. Plastic is generally derived from petroleum material so it is nonbiodegradable. Therefore, this study aims to create a breakthrough of natural and biodegradable biodegradable plastic materials from plant starch (pisok kepok starch) with the help of 3 types of acid (HNO3, HCl and H2SO4) called Poly Lactid Acid (PLA). PLA is enhanced by mixing with a clay material with a variation of 1, 3 and 5% composition to form a PLA / Clay Nanocomposite material which is expected to have superior properties and resemble conventional plastics in general. Several types of characterization were performed to see the quality of the resulting material including tensile strength test with UTM tool, thermal endurance test with TGA tool, morphological structure test using SEM tool and additional test to see filler clay quality through X-RD tool. Based on the characterization of tensile and thermal test, 5B nanocomposite with addition of 5% clay and HCl acid aid showed the best tensile strength of 36 Mpa and the highest stability was 446,63 oC. Based on the results of morphological analysis of the best samples (5B) showed good interface ties. Meanwhile, based on the results of filler analysis, the opening of clay layer d-spacing occurred at 0.355 nm.
Ecological evaluation of proposed dredged material from St. Andrew Bay, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, H.L.; Word, J.Q.; Kohn, N.P.
1993-10-01
The US Army Corps of Engineers (USACE), Mobile District, requested that the Battelle/Marine Sciences Laboratory (MSL) conduct field sampling and chemical and biological testing to determine the suitability of potential dredged material for open ocean disposal. Sediment from St. Andrew Bay was chemically characterized and evaluated for biological toxicity and bioaccumulation of contaminants. The Tier III guidance for ocean disposal testing requires tests of water column effects (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material). To meet these requirements, the MSL conducted suspended-particulate-phase (SPP) toxicity tests, solid-phase toxicity tests, and bioaccumulation testingmore » on sediment representing potential dredged material from Panama City Harbor. Physical and chemical characterization of sediment to support toxicity and bioaccumulation results was also conducted on both the test and reference sediments. The MSL collected sediment samples from five sites in St. Andrew Bay and one reference site near Lands End Peninsula. The five test sediments and the reference sediment were analyzed for physical and chemical sediment characteristics, SPP chemical contaminants, solid-phase toxicity, SPP toxicity, and bioaccumulation of contaminants.« less
Characterization of the performance of shoe insert materials.
Lewis, G; Tan, T; Shiue, Y S
1991-08-01
It has been widely reported that shoe inserts are an effective interventional modality either for the relief of discomfort to the feet associated with a variety of orthopedic disorders or conditions or simply for comfort. Results from many types of experimental tests have been used to obtain the shock absorption capacity of shoe insert materials. The authors contend in this study that, while shock absorption is a highly desirable property, it is by no means the only that should be used to characterize these materials. Thus, a new index of performance of these materials is proposed. This index is computed from data, obtained in a simple experimental test, on both the shock absorption and energy return performances of the insert material.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Materials Characterization of Electron Beam Melted Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Draper, Susan L.; Lerch, Bradley A.; Telesman, Jack; Martin, Richard E.; Locci, Ivan E.; Garg, Anita; Ring, Andrew J.
2016-01-01
An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed on samples fabricated on an ARCAM A2X EBM machine. The specimens were fabricated under eight separate builds with the material divided into two lots for material testing purposes. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Several nondestructive evaluation (NDE) techniques were utilized to characterize the samples both before and after HIP. The test matrix included tensile, high cycle fatigue, low cycle fatigue, fracture toughness, and fatigue crack growth at cryogenic, room, and elevated temperatures. The mechanical properties of the EBM Ti-6Al-4V are compared to conventional Ti-6Al-4V in the annealed condition. Fractography was performed to determine failure initiation site. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.
NASA Technical Reports Server (NTRS)
Pancoast, Justin; Garrett, William; Moe, Gulia
2015-01-01
A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
High-temperature material characterization for multispectral window
NASA Astrophysics Data System (ADS)
Park, James; Arida, Marvin-Ray; Ku, Zahyun; Jang, Woo-Yong; Urbas, Augustine M.
2017-05-01
A microwave cylindrical cavity combined with a laser has been investigated to characterize the temperature dependence of widow materials in the Air Force Research Laboratory (AFRL). This paper discusses the requirements of high temperature RF material characterizations for transparent ceramic materials, such as ALON, that can potentially be used for multispectral windows. The RF cylindrical resonator was designed and the numerical model was studied to characterize the dielectric constant of materials. The dielectric constant can be extracted from the resonant frequency shift based on the cavity perturbation method (CPM), which is sensitive to the sample size and shape. Laser heating was applied to the material under test (MUT), which could easily be heated above 1000°C by the laser irradiation, in order to conduct CPM at high temperature. The temperature distribution in a material was also analyzed to investigate the impact of the thermal properties and the sample shape.
Viscoelastic characterization of soft biological materials
NASA Astrophysics Data System (ADS)
Nayar, Vinod Timothy
Progressive and irreversible retinal diseases are among the primary causes of blindness in the United States, attacking the cells in the eye that transform environmental light into neural signals for the optic pathway. Medical implants designed to restore visual function to afflicted patients can cause mechanical stress and ultimately damage to the host tissues. Research shows that an accurate understanding of the mechanical properties of the biological tissues can reduce damage and lead to designs with improved safety and efficacy. Prior studies on the mechanical properties of biological tissues show characterization of these materials can be affected by environmental, length-scale, time, mounting, stiffness, size, viscoelastic, and methodological conditions. Using porcine sclera tissue, the effects of environmental, time, and mounting conditions are evaluated when using nanoindentation. Quasi-static tests are used to measure reduced modulus during extended exposure to phosphate-buffered saline (PBS), as well as the chemical and mechanical analysis of mounting the sample to a solid substrate using cyanoacrylate. The less destructive nature of nanoindentation tests allows for variance of tests within a single sample to be compared to the variance between samples. The results indicate that the environmental, time, and mounting conditions can be controlled for using modified nanoindentation procedures for biological samples and are in line with averages modulus values from previous studies but with increased precision. By using the quasi-static and dynamic characterization capabilities of the nanoindentation setup, the additional stiffness and viscoelastic variables are measured. Different quasi-static control methods were evaluated along with maximum load parameters and produced no significant difference in reported reduced modulus values. Dynamic characterization tests varied frequency and quasi-static load, showing that the agar could be modeled as a linearly elastic material. The effects of sample stiffness were evaluated by testing both the quasi-static and dynamic mechanical properties of different concentration agar samples, ranging from 0.5% to 5.0%. The dynamic nanoindentation protocol showed some sensitivity to sample stiffness, but characterization remained consistently applicable to soft biological materials. Comparative experiments were performed on both 0.5% and 5.0% agar as well as porcine eye tissue samples using published dynamic macrocompression standards. By comparing these new tests to those obtained with nanoindentation, the effects due to length-scale, stiffness, size, viscoelastic, and methodological conditions are evaluated. Both testing methodologies can be adapted for the environmental and mounting conditions, but the limitations of standardized macro-scale tests are explored. The factors affecting mechanical characterization of soft and thin viscoelastic biological materials are researched and a comprehensive protocol is presented. This work produces material mechanical properties for use in improving future medical implant designs on a wide variety of biological tissue and materials.
NASA Astrophysics Data System (ADS)
Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu
2015-09-01
Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
NASA Technical Reports Server (NTRS)
Spring, Samuel D.
2006-01-01
This report documents the results of an experimental program conducted on two advanced metallic alloy systems (Rene' 142 directionally solidified alloy (DS) and Rene' N6 single crystal alloy) and the characterization of two distinct internal state variable inelastic constitutive models. The long term objective of the study was to develop a computational life prediction methodology that can integrate the obtained material data. A specialized test matrix for characterizing advanced unified viscoplastic models was specified and conducted. This matrix included strain controlled tensile tests with intermittent relaxtion test with 2 hr hold times, constant stress creep tests, stepped creep tests, mixed creep and plasticity tests, cyclic temperature creep tests and tests in which temperature overloads were present to simulate actual operation conditions for validation of the models. The selected internal state variable models where shown to be capable of representing the material behavior exhibited by the experimental results; however the program ended prior to final validation of the models.
Characterization of Shear Properties for APO/MBI Syntactic Foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod
Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less
NASA Astrophysics Data System (ADS)
Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris
2009-09-01
This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1994-01-01
This document is the detailed test plan for the series of tests enumerated in the preceding section. The purpose of this plan is to present the test objectives, test parameters and procedures, expected performance and data analysis plans, criteria for success, test schedules, and related safety provisions and to describe the test articles, test instrumentation, and test facility requirements. Initial testing will be performed to screen four composite materials for suitability for SSTO LH2 tank loads and environmental conditions. The laminates for this testing will be fabricated by fiber placement, which is the manufacturing approach identified as baseline for the tank wall. Even though hand layup will be involved in fabricating many of the internal structural members of the tank, no hand-layup laminates will be evaluated in the screening or subsequent characterization testing. This decision is based on the understanding that mechanical properties measured for hand-layup material should be at least equivalent to properties measured for fiber-placed material, so that the latter should provide no less than a conservative approximation of the former. A single material will be downselected from these screening tests. This material will be subsequently characterized for impact-damage tolerance and durability under conditions of mechanical and thermal cycling, and to establish a preliminary design database to support ongoing analysis. Next, testing will be performed on critical structural elements fabricated from the selected material. Finally, the 8-foot diameter tank article, containing the critical structural features of the full-scale tank, will be fabricated by fiber placement and tested to verify its structural integrity and LH2 containment.
Portable vibro-acoustic testing system for in situ microstructure characterization and metrology
NASA Astrophysics Data System (ADS)
Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa
2018-04-01
There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.
NASA Astrophysics Data System (ADS)
Xuan, Yue
Background. Soft materials such as polymers and soft tissues have diverse applications in bioengineering, medical care, and industry. Quantitative mechanical characterization of soft materials at multiscales is required to assure that appropriate mechanical properties are presented to support the normal material function. Indentation test has been widely used to characterize soft material. However, the measurement of in situ contact area is always difficult. Method of Approach. A transparent indenter method was introduced to characterize the nonlinear behaviors of soft materials under large deformation. This approach made the direct measurement of contact area and local deformation possible. A microscope was used to capture the contact area evolution as well as the surface deformation. Based on this transparent indenter method, a novel transparent indentation measurement systems has been built and multiple soft materials including polymers and pericardial tissue have been characterized. Seven different indenters have been used to study the strain distribution on the contact surface, inner layer and vertical layer. Finite element models have been built to simulate the hyperelastic and anisotropic material behaviors. Proper material constants were obtained by fitting the experimental results. Results.Homogeneous and anisotropic silicone rubber and porcine pericardial tissue have been examined. Contact area and local deformation were measured by real time imaging the contact interface. The experimental results were compared with the predictions from the Hertzian equations. The accurate measurement of contact area results in more reliable Young's modulus, which is critical for soft materials. For the fiber reinforced anisotropic silicone rubber, the projected contact area under a hemispherical indenter exhibited elliptical shape. The local surface deformation under indenter was mapped using digital image correlation program. Punch test has been applied to thin films of silicone rubber and porcine pericardial tissue and results were analyzed using the same method. Conclusions. The transparent indenter testing system can effectively reduce the material properties measurement error by directly measuring the contact radii. The contact shape can provide valuable information for the anisotropic property of the material. Local surface deformation including contact surface, inner layer and vertical plane can be accurately tracked and mapped to study the strain distribution. The potential usage of the transparent indenter measurement system to investigate biological and biomaterials was verified. The experimental data including the real-time contact area combined with the finite element simulation would be powerful tool to study mechanical properties of soft materials and their relation to microstructure, which has potential in pathologies study such as tissue repair and surgery plan. Key words: transparent indenter, large deformation, soft material, anisotropic.
Statistical distribution of mechanical properties for three graphite-epoxy material systems
NASA Technical Reports Server (NTRS)
Reese, C.; Sorem, J., Jr.
1981-01-01
Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.
Material Characterization for the Analysis of Skin/Stiffener Separation
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Leone, Frank A.; Song, Kyongchan; Ratcliffe, James G.; Rose, Cheryl A.
2017-01-01
Test results show that separation failure in co-cured skin/stiffener interfaces is characterized by dense networks of interacting cracks and crack path migrations that are not present in standard characterization tests for delamination. These crack networks result in measurable large-scale and sub-ply-scale R curve toughening mechanisms, such as fiber bridging, crack migration, and crack delving. Consequently, a number of unknown issues exist regarding the level of analysis detail that is required for sufficient predictive fidelity. The objective of the present paper is to examine some of the difficulties associated with modeling separation failure in stiffened composite structures. A procedure to characterize the interfacial material properties is proposed and the use of simplified models based on empirical interface properties is evaluated.
Total strain version of strainrange partitioning for thermomechanical fatigue at low strains
NASA Technical Reports Server (NTRS)
Halford, G. R.; Saltsman, J. F.
1987-01-01
A new method is proposed for characterizing and predicting the thermal fatigue behavior of materials. The method is based on three innovations in characterizing high temperature material behavior: (1) the bithermal concept of fatigue testing; (2) advanced, nonlinear, cyclic constitutive models; and (3) the total strain version of traditional strainrange partitioning.
A new experimental method for the accelerated characterization of composite materials
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Morris, D. H.; Brinson, H. F.
1978-01-01
The use of composite materials for a variety of practical structural applications is presented and the need for an accelerated characterization procedure is assessed. A new experimental and analytical method is presented which allows the prediction of long term properties from short term tests. Some preliminary experimental results are presented.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1993-01-01
The Advanced Turbine Technologies Application Project (ATTAP) is in the fifth year of a multiyear development program to bring the automotive gas turbine engine to a state at which industry can make commercialization decisions. Activities during the past year included reference powertrain design updates, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Engine design and development included mechanical design, combustion system development, alternate aerodynamic flow testing, and controls development. Design activities included development of the ceramic gasifier turbine static structure, the ceramic gasifier rotor, and the ceramic power turbine rotor. Material characterization efforts included the testing and evaluation of five candidate high temperature ceramic materials. Ceramic component process development and fabrication, with the objective of approaching automotive volumes and costs, continued for the gasifier turbine rotor, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Engine and rig fabrication, testing, and development supported improvements in ceramic component technology. Total test time in 1992 amounted to 599 hours, of which 147 hours were engine testing and 452 were hot rig testing.
Study of the time varying properties of flax fiber reinforced composites
NASA Astrophysics Data System (ADS)
Stochioiu, Constantin; Chettah, Ameur; Piezel, Benoit; Fontaine, Stéphane; Gheorghiu, Horia-Miron
2018-02-01
Bio materials have seen an increase of interest from the scientific community and the industry as a possible future generation of mass produced materials, some of the main arguments being their renewability, low production costs and recyclability. The current work is focused on the experimental data required for the viscoelastic characterization of a composite material. Similar work has been conducted on different types of composite materials by Tuttle and Brinson [1] who verified for a carbon epoxy laminate the possibility of long term predicament of creep. Nordin et al [2] studied paper impregnated with phenol-formaldehyde under compression. Muliana [3] conducted experiments on E-glass/vinyl ester materials. Behavior characterization was based on a model presented by Schapery [4]. The main objective of this work is to understand the mechanical behaviors of bio-laminates structures subjected to long and severe operating conditions. The studied material is a bio composite laminate consisting in long flax fibers embedded in an epoxy resin system. The laminates were obtained from pre-impregnated unidirectional fibers, which were cured though a thermo-compression cycle followed by a post curing cycle. Test specimens were cut down to sizes, with the help of an electric saw. The concerned fiber direction was 0° with sample dimensions of 250x25x2 mm. First, testing consisted in quasi static mechanical tests. Second, to characterize linear viscoelastic behavior of the bio-laminates, creep - recovery tests with multiple load levels have been performed for the chosen fiber direction.
NASA Technical Reports Server (NTRS)
Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.
2008-01-01
An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bouguecha, A.; Bonk, C.; Dykiert, M.
2017-09-01
Magnesium sheet alloys have a great potential as a construction material in the aerospace and automotive industry. However, the current state of research regarding temperature dependent material parameters for the description of the plastic behaviour of magnesium sheet alloys is scarce in literature and accurate statements concerning yield criteria and appropriate characterization tests to describe the plastic behaviour of a magnesium sheet alloy at elevated temperatures in deep drawing processes are to define. Hence, in this paper the plastic behaviour of the well-established magnesium sheet alloy AZ31 has been characterized by means of convenient mechanical tests (e. g. tension, compression and biaxial tests) at temperatures between 180 and 230 °C. In this manner, anisotropic and hardening behaviour as well as differences between the tension-compression asymmetry of the yield locus have been estimated. Furthermore, using the evaluated data from the above mentioned tests, two different yield criteria have been parametrized; the commonly used Hill’48 and an orthotropic yield criterion, CPB2006, which was developed especially for materials with hexagonal close packed lattice structure and is able to describe an asymmetrical yielding behaviour regarding tensile and compressive stress states. Numerical simulations have been finally carried out with both yield functions in order to assess the accuracy of the material models.
Development of processing techniques for advanced thermal protection materials
NASA Technical Reports Server (NTRS)
Selvaduray, Guna S.
1995-01-01
The main purpose of this work has been in the development and characterization of materials for high temperature applications. Thermal Protection Systems (TPS) are constantly being tested, and evaluated for increased thermal shock resistance, high temperature dimensional stability, and tolerance to environmental effects. Materials development was carried out through the use of many different instruments and methods, ranging from extensive elemental analysis to physical attributes testing. The six main focus areas include: (1) protective coatings for carbon/carbon composites; (2) TPS material characterization; (3) improved waterproofing for TPS; (4) modified ceramic insulation for bone implants; (5) improved durability ceramic insulation blankets; and (6) ultra-high temperature ceramics. This report describes the progress made in these research areas during this contract period.
Micromechanical Characterization and Testing of Carbon Based Woven Thermal Protection Materials
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Pham, John T.; Arnold, James O.; Peterson, Keith; Venkatapathy, Ethiraj
2013-01-01
Woven thermal protection system (TPS) materials are one of the enabling technologies for mechanically deployable hypersonic decelerator systems. These materials can be simultaneously used for thermal protection and as structural load bearing members during the entry, descent and landing operations. In order to ensure successful thermal and structural performance during the atmospheric entry, it is important to characterize the properties of these materials, once they have been subjected to entry like conditions. The present paper focuses on mechanical characteristics of pre-and post arc-jet tested woven TPS samples at different scales. It also presents the observations from scanning electron microscope and computed tomography images, and explains the changes in microstructure after being subjected to combined thermal-mechanical loading environments.
Method and system for automated on-chip material and structural certification of MEMS devices
Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.
2003-05-20
A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.
Wormhole Formation in RSRM Nozzle Joint Backfill
NASA Technical Reports Server (NTRS)
Stevens, J.
2000-01-01
The RSRM nozzle uses a barrier of RTV rubber upstream of the nozzle O-ring seals. Post flight inspection of the RSRM nozzle continues to reveal occurrence of "wormholes" into the RTV backfill. The term "wormholes", sometimes called "gas paths", indicates a gas flow path not caused by pre-existing voids, but by a little-understood internal failure mode of the material during motor operation. Fundamental understanding of the mechanics of the RSRM nozzle joints during motor operation, nonlinear viscoelastic characterization of the RTV backfill material, identification of the conditions that predispose the RTV to form wormholes, and screening of candidate replacement materials is being pursued by a joint effort between Thiokol Propulsion, NASA, and the Army Propulsion & Structures Directorate at Redstone Arsenal. The performance of the RTV backfill in the joint is controlled by the joint environment. Joint movement, which applies a tension and shear load on the material, coupled with the introduction of high pressure gas in combination create an environment that exceeds the capability of the material to withstand the wormhole effect. Little data exists to evaluate why the material fails under the modeled joint conditions, so an effort to characterize and evaluate the material under these conditions was undertaken. Viscoelastic property data from characterization testing will anchor structural analysis models. Data over a range of temperatures, environmental pressures, and strain rates was used to develop a nonlinear viscoelastic model to predict material performance, develop criteria for replacement materials, and quantify material properties influencing wormhole growth. Three joint simulation analogs were developed to analyze and validate joint thermal barrier (backfill) material performance. Two exploratory tests focus on detection of wormhole failure under specific motor operating conditions. A "validation" test system provides data to "validate" computer models and predictions. Finally, two candidate replacement materials are being screened and "validated" using the developed test systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCright, R D
1998-06-30
This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less
NASA Astrophysics Data System (ADS)
Vitu, L.; Laforge, N.; Malécot, P.; Boudeau, N.; Manov, S.; Milesi, M.
2018-05-01
Zinc alloys are used in a wide range of application such as electronics, automotive and building construction. Their various shapes are generally obtained by metal forming operation such as stamping. Therefore, it is important to characterize the material with adequate characterization tests. Sheet Bulging Test (SBT) is well recognized in the metal forming community. Different theoretical models of the literature for the evaluation of thickness and radius of the deformed sheet in SBT have been studied in order to get the hardening curve of different materials. These theoretical models present the advantage that the experimental procedure is very simple. But Koç et al. showed their limitation, since the combination of thickness and radius evaluations depend on the material. As Zinc alloys are strongly anisotropic with a special crystalline structure, a procedure is adopted for characterizing the hardening curve of a Zinc alloy. The anisotropy is first studied with tensile test, and SBT with elliptical dies is also investigated. Parallel to this, Digital Image Correlation (DIC) measures are carried out. The results obtained from theoretical models and DIC measures are compared. Measures done on post-mortem specimens complete the comparisons. Finally, DIC measures give better results and the resulting hardening curve of the studied zinc alloy is provided.
Composite Materials Characterization and Development at AFWAL
NASA Technical Reports Server (NTRS)
Browning, C. E.
1984-01-01
The development of test methodology for characterizing matrix dominated failure modes is discussed emphasizing issues of matrix cracking, delamination under static loading, and the relationship of composite properties to matrix properties. Both strength characterization and classical techniques of linear elastic fracture mechanics were examined. Materials development studies are also discussed. Major areas of interest include acetylene-terminated and bismaleimide resins for 350 to 450 deg use, thermoplastics development, and failure resistant composite concepts.
Characterization and Testing of Improved Hydrogen Getter Materials - FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Kevin Mark; Sandoval, Cynthia Wathen
2016-11-07
Organic-based hydrogen getter materials have been in use for many years. These materials are able to prevent the dangerous buildup of hydrogen gas in sealed containers, and are also used to protect surrounding materials from degradation caused by chemical reactions. This document describes these materials.
NASA Technical Reports Server (NTRS)
Hirsch, David B.
2007-01-01
A viewgraph presentation on the flammability of spacecraft materials is shown. The topics include: 1) Spacecraft Fire Safety; 2) Materials Flammability Test; 3) Impetus for enhanced materials flammability characterization; 4) Exploration Atmosphere Working Group Recommendations; 5) Approach; and 6) Status of implementation
Characterization and damage evaluation of advanced materials
NASA Astrophysics Data System (ADS)
Mitrovic, Milan
Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.
Laboratory Characterization of White Masonry Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content...properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order of 10-4 to 10...mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
In situ thermomechanical testing methods for micro/nano-scale materials.
Kang, Wonmo; Merrill, Marriner; Wheeler, Jeffrey M
2017-02-23
The advance of micro/nanotechnology in energy-harvesting, micropower, electronic devices, and transducers for automobile and aerospace applications has led to the need for accurate thermomechanical characterization of micro/nano-scale materials to ensure their reliability and performance. This persistent need has driven various efforts to develop innovative experimental techniques that overcome the critical challenges associated with precise mechanical and thermal control of micro/nano-scale specimens during material characterization. Here we review recent progress in the development of thermomechanical testing methods from miniaturized versions of conventional macroscopic test systems to the current state of the art of in situ uniaxial testing capabilities in electron microscopes utilizing either indentation-based microcompression or integrated microsystems. We discuss the major advantages/disadvantages of these methods with respect to specimen size, range of temperature control, ease of experimentation and resolution of the measurements. We also identify key challenges in each method. Finally, we summarize some of the important discoveries that have been made using in situ thermomechanical testing and the exciting research opportunities still to come in micro/nano-scale materials.
Material Response Characterization
1977-08-01
models fit to vertical UX and TX data and a mean stress tension cutoff criterion. Because tests on the Kayenta sands one materials had revealed a definite...parameters. 9 This data characterizing the anisotropic response of the upper 30 feet of Kayenta material should not just be filed away; it should be used...9. Johnson, J. N., et al, "Anisotropic Mechanical Properties of Kayenta Sandstone (MIXED COMPANY Site) for Ground Motion Calculations," Terra Tek TR
Leaching Environmental Assessment Framework to Evaluate Beneficial Use and Disposal Decisions
LEAF test methods are available for use to characterize the leaching potential over a range of conditions (i.e., pH, liquid-to-solid ratio, and waste form). LEAF characterization tests can be used to evaluate a range of materials to identify leaching behavior across a range of ...
2007-11-01
sediment, exposure to effluent from sediments during placement of material at reuse site, and exposure to leachate after material placement. This...Brannon et al. (1994) describe additional leachate quality tests. ERDC/EL TR-07-27 15 Table 3. Appropriate characterization tests for chemical...33. Dioxins EPA-SW846-8290 and 1630 34. Leachate Quality Test Myers and Brannon 1988 35. Surface Runoff Quality Skogerboe et al. 1987 Notes
Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys
NASA Astrophysics Data System (ADS)
Harvey, Evan; Ladani, Leila
Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckley, D.A.; Stites, J. Jr.
The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.
NASA Astrophysics Data System (ADS)
Liu, Xiaoyu; Allen, Matthew R.; Roache, Nancy F.
2016-09-01
Better understanding the transport mechanisms of organophosphorus flame-retardants (OPFRs) in the residential environment is important to more accurately estimate their indoor exposure and develop risk management strategies that protect human health. This study describes an improved dual small chamber testing method to characterize the sorption of OPFRs on indoor building materials and consumer products. The OPFRs studied were tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCIPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). The test materials and products used as sinks include concrete, ceiling tile, vinyl flooring, carpet, latex painted gypsum wallboard, open cell polyurethane foam, mattress pad and liner, polyester clothing, cotton clothing, and uniform shirt. During the tests, the amount of OPFRs absorbed by the materials at different exposure times was determined simultaneously. OPFRs air concentrations at the inlet and inside the test chamber were monitored. The data were used to rank the sorption strength of the OPFRs on different materials. In general, building materials exhibited relatively stronger sorption strength than clothing textiles. The material-air partition and material phase diffusion coefficients were estimated by fitting a sink model to the sorption concentration data for twelve materials with three OPFRs. They are in the range of 2.72 × 105 to 3.99 × 108 (dimensionless) for the material-air partition coefficients and 1.13 × 10-14 to 5.83 × 10-9 (m2/h) for the material phase diffusion coefficients.
Characterization of 137 Genomic DNA Reference Materials for 28 Pharmacogenetic Genes
Pratt, Victoria M.; Everts, Robin E.; Aggarwal, Praful; Beyer, Brittany N.; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A.; Smith, Chingying Huang; Toji, Lorraine H.; Turner, Amy; Kalman, Lisa V.
2017-01-01
Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention–based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. PMID:26621101
Antibacterial nanosilver coated orthodontic bands with potential implications in dentistry.
Prabha, Rahul Damodaran; Kandasamy, Rajasigamani; Sivaraman, U Sajeev; Nandkumar, Maya A; Nair, Prabha D
2016-10-01
Fixed orthodontic treatment, an indispensable procedure in orthodontics, necessitates insertion of dental bands. Insertion of band material could also introduce a site of plaque retention. It was hypothesized that band materials with slow-release antimicrobial properties could help in sustained infection control, prevention of dental plaque formation and further associated health risks. Considering the known antimicrobial proprieties of silver, a coating of silver nanoparticle (SNP) onto the stainless steel bands was done and characterized for its beneficial properties in the prevention of plaque accumulation. Coatings of SNPs on conventional stainless steel dental bands were prepared using thermal evaporation technology. The coated dental bands were characterized for their physicochemical properties and evaluated for antimicrobial activity and biocompatibility. The physiochemical characterization of band material both coated and uncoated was carried out using scanning electron microscope, energy dispersive spectroscopy, atomic force microscopyand contact angle test. Biocompatibility tests for coated band material were carried using L929 mouse fibroblast cell culture and MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. Antimicrobial activity of coated band material against Gram-positive bacteria was tested. A stable and uniform coating of SNPs was obtained. The coated band materials were biocompatible as well as possessed distinct antimicrobial activity. The SNP coated dental bands could be potential antimicrobial dental bands for future clinical use. Further studies need to be done to validate the efficiency of coated band materials in oral environments.
Examination of a size-change test for photovoltaic encapsulation materials
NASA Astrophysics Data System (ADS)
Miller, David C.; Gu, Xiaohong; Ji, Liang; Kelly, George; Nickel, Nichole; Norum, Paul; Shioda, Tsuyoshi; Tamizhmani, Govindasamy; Wohlgemuth, John H.
2012-10-01
We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/-5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/-5% between laboratories.
Materials characterization study of conductive flexible second surface mirrors
NASA Technical Reports Server (NTRS)
Levadou, F.; Bosma, S. J.; Paillous, A.
1981-01-01
The status of prequalification and qualification work on conductive flexible second surface mirrors is described. The basic material is FEP Teflon witn either aluminium or silver vacuum deposited reflectors. The top layer has been made conductive by deposition of layer of a indium oxide. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties. The results of a prequalification program comprised of decontamination, humidity, thermal cycling, thermal shock and vibration tests are presented. Thermo-optical and electrical properties, the electrostatic behavior of the materials under simulated substorm environment and electrical conductivity at low temperatures are characterized. The effects of simulated ultra violet and particles irradiation on electrical and thermo-optical properties of the materials are also presented.
A Testing Service for Industry
NASA Technical Reports Server (NTRS)
1994-01-01
A small isolated NASA facility provides assistance to industry in the design, testing, and operation of oxygen systems. White Sands Test Facility (WSTF) was originally established to test rocket propulsion systems for the Apollo program. The facility's role was later expanded into testing characterization, flammability and toxicity characteristics of materials. Its materials and components test methods were adopted by the American society for Testing and Materials. When research and testing results became known, industry requested assistance, and in 1980, NASA authorized WSTF to open its facility to private firms, a valuable service, as oxygen systems testing is often too expensive and too hazardous for many companies. Today, some of the best known American industries utilize White Sands testing capabilities.
On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
2003-01-01
A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.
Compression testing of thick-section composite materials
NASA Astrophysics Data System (ADS)
Camponeschi, Eugene T., Jr.
A compression test fixture suitable for testing of composites up to 1 inch in thickness has been developed with a view to the characterization of the effects of constituents, fiber orientation, and thickness, on the compressive response of composites for naval applications. The in-plane moduli, compression strength, failure mechanisms, and both in-plane and through-thickness Poisson's ratios are shown to be independent of material thickness. The predominant failure mechanisms for both materials, namely kink bands and delaminations, are identical to those reported for composite one-tenth the thickness of those presently tested.
Investigation of Basic Mechanisms of Radiation Effects in Carbon-Based Electronic Materials
2017-06-01
materials characterization, and carbon nanotube diodes, FET, and PZT-memory test device structures for electrical measurements. Pre - and post -irradiation...definition (Radiation exposure) Task 2) The grantee shall perform testing to include: - Radiation testing . May be multiple types. - Pre and post -rad...technologies for electronic devices. Experiential radiation testing has included exposure to 10 keV X-rays, 4 MeV protons, heavy ions, and Ultra
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1989-01-01
ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.
Processing and Characterization of Lightweight Syntactic Materials
2016-10-01
into lightweight (aluminum, magnesium) metal matrices via various metal processing methods. The performance of the resulting foam materials under quasi ...18 3.3 Other Alloys 20 4. Testing and Characterization of LSAMs 21 4.1 Finite Element Modeling of the Quasi -static Deformation 21 4.2 Compressive...Response at Quasi -static and High Strain Rates 27 4.2.1 Materials and Methods 27 4.2.2 Results 28 4.2.3 Conclusions 35 4.3 Thermal Properties of
Improved Indentation Test for Measuring Nonlinear Elasticity
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2004-01-01
A cylindrical-punch indentation technique has been developed as a means of measuring the nonlinear elastic responses of materials -- more specifically, for measuring the moduli of elasticity of materials in cases in which these moduli vary with applied loads. This technique offers no advantage for characterizing materials that exhibit purely linear elastic responses (constant moduli of elasticity, independent of applied loads). However, the technique offers a significant advantage for characterizing such important materials as plasma-sprayed thermal-barrier coatings, which, in cyclic loading, exhibit nonlinear elasticity with hysteresis related to compaction and sliding within their microstructures.
Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials
NASA Astrophysics Data System (ADS)
Brennan, R. E.; Green, W. H.
2011-06-01
Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.
NASA Astrophysics Data System (ADS)
Ladani, Leila; Razmi, Jafar
2012-03-01
Continuous miniaturization of microelectronic devices has led the industry to develop interconnects on the order of a few microns for advanced superhigh-density and three-dimensional integrated circuits (3D ICs). At this scale, interconnects that conventionally consist of solder material will completely transform to intermetallic compounds (IMCs) such as Cu6Sn5. IMCs are brittle, unlike conventional solder materials that are ductile in nature; therefore, IMCs do not experience large amounts of plasticity or creep before failure. IMCs have not been fully characterized, and their mechanical and thermomechanical reliability is questioned. This study presents experimental efforts to characterize such material. Sn-based microbonds are fabricated in a controlled environment to assure complete transformation of the bonds to Cu6Sn5 IMC. Microstructural analysis including scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) is utilized to determine the IMC material composition and degree of copper diffusion into the bond area. Specimens are fabricated with different bond thicknesses and in different configurations for various tests. Normal strength of the bonds is measured utilizing double cantilever beam and peeling tests. Shear tests are conducted to quantify the shear strength of the material. Four-point bending tests are conducted to measure the fracture toughness and critical energy release rate. Bonds are fabricated in different sizes, and the size effect is investigated. The shear strength, normal strength, critical energy release rate, and effect of bond size on bond strength are reported.
NASA Astrophysics Data System (ADS)
Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.
2016-04-01
This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.
Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system
NASA Astrophysics Data System (ADS)
Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald
2016-03-01
Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.
Study Of Nondestructive Techniques For Testing Composites
NASA Technical Reports Server (NTRS)
Roth, D.; Kautz, H.; Draper, S.; Bansal, N.; Bowles, K.; Bashyam, M.; Bishop, C.
1995-01-01
Study evaluates some nondestructive methods for characterizing ceramic-, metal-, and polymer-matrix composite materials. Results demonstrated utility of two ultrasonic methods for obtaining quantitative data on microstructural anomalies in composite materials.
Antimicrobial and biological activity of leachate from light curable pulp capping materials.
Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette
2017-09-01
Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical Tests of Reliability of NDE
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.
1987-01-01
Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung
2013-01-01
A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, andmore » optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.« less
Laboratory Characterization of SAM-35 Concrete
2006-09-01
procedures given in American Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet...composition properties of the material. All of the mechanical property tests were conducted quasi -statically with axial strain rates on the order...nondestructive pulse-velocity measurements were performed on each specimen. The TXC tests exhibited a continuous increase in principal stress
On the mechanical characteristics of a self-setting calcium phosphate cement.
Bimis, A; Canal, L P; Karalekas, D; Botsis, J
2017-04-01
To perform a mechanical characterization of a self-setting calcium phosphate cement in function of the immersion time in Ringer solution. Specimens of self-setting calcium phosphate cement were prepared from pure α-TCP powder. The residual strains developed during hardening stage were monitored using an embedded fiber Bragg grating sensor. Additionally, the evolution of the elastic modulus was obtained for the same time period by conducting low-load indentation tests. Micro-computed tomography as well as microscope-assisted inspections were employed to evaluate the porosity in the specimens. Moreover, diametral compression tests were conducted in wet and dried specimens to characterize the material strength. The volume of the estimated porosity and absorbed fluid mass, during the first few minutes of the material's exposure in a wet environment, coincide. The immersion in Ringer solution lead to a noticeable increase in the moduli values. The critical value of stresses obtained from the diametral compression tests were combined with the data from uniaxial compression tests, to suggest a Mohr-Coulomb failure criterion. This study presents different techniques to characterize a self-setting calcium phosphate cement and provides experimental data on porosity, mechanical properties and failure. The investigated material possessed an open porosity at its dried state with negligible residual strains and its Young's modulus, obtained from micro-indentation tests, increased with hardening time. The failure loci may be described by a Mohr-Coulomb criterion, characteristic of soil and rock materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Screening tests for hazard classification of complex waste materials - Selection of methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.
In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-01-01
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-10-30
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.
Characterization and damaging law of CFC for high heat flux actively cooled plasma facing components
NASA Astrophysics Data System (ADS)
Chevet, G.; Martin, E.; Boscary, J.; Camus, G.; Herb, V.; Schlosser, J.; Escourbiac, F.; Missirlian, M.
2011-10-01
The carbon fiber reinforced carbon composite (CFC) Sepcarb N11 has been used in the Tore Supra (TS) tokamak (Cadarache, France) as armour material for the plasma facing components. For the fabrication of the Wendelstein 7-X (W7-X) divertor (Greifswald, Germany), the NB31 material was chosen. For the fabrication of the ITER divertor, two potential CFC candidates are the NB31 and NB41 materials. In the case of Tore Supra, defects such as microcracks or debonding were found at the interface between CFC tile and copper heat sink. A mechanical characterization of the behaviour of N11 and NB31 was undertaken, allowing the identification of a damage model and finite element calculations both for flat tiles (TS and W7-X) and monoblock (ITER) armours. The mechanical responses of these CFC materials were found almost linear under on-axis tensile tests but highly nonlinear under shear tests or off-axis tensile tests. As a consequence, damage develops within the high shear-stress zones.
NASA Astrophysics Data System (ADS)
Okafor, A. Chukwujekwu; Natarajan, Shridhar
2014-02-01
Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.
Methods and instruments for materials testing
NASA Technical Reports Server (NTRS)
Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)
2011-01-01
Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.
Advanced structural analysis of nanoporous materials by thermal response measurements.
Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan
2015-04-07
Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm.
Mechanical response of unidirectional boron/aluminum under combined loading
NASA Technical Reports Server (NTRS)
Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.
1987-01-01
Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.
NASA Astrophysics Data System (ADS)
Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-03-01
This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.
NASA Technical Reports Server (NTRS)
Besser, P. J.
1976-01-01
Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
NASA Astrophysics Data System (ADS)
Kodjo, Apedovi
The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a mass for making non-linearity behaviour in the material, while an ultrasound wave is investigating the medium. Keywords. Concrete, Alkali-silica reaction, Nonlinear acoustics, Nonlinearity, Hysteresis, Damage diagnostics.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Mangels, J. A.
1986-01-01
The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.
NASA Technical Reports Server (NTRS)
1973-01-01
Research projects involving materials research conducted by various international test facilities are reported. Much of the materials research is classified in the following areas: (1) acousto-optic, acousto-electric, and ultrasonic research, (2) research for elucidating transport phenomena in well characterized oxides, (3) research in semiconductor materials and semiconductor devices, (4) the study of interfaces and interfacial phenomena, and (5) materials research relevant to natural resources. Descriptions of the individual research programs are listed alphabetically by the name of the author and show all personnel involved, resulting publications, and associated meeting speeches.
Busignies, Virginie; Mazel, Vincent; Diarra, Harona; Tchoreloff, Pierre
2014-12-30
Although, adhesion at the interface of bilayer tablets is critical for their design it is difficult to characterize this adhesion between layers. In view of this, a new test with an easy implementation was proposed for the characterization of the interface of bilayer tablets. This work is presented as a proof-of-concept study to investigate the reliability of this new test with regard to the effects of some critical process parameters (e.g., compaction pressure applied on each layer) and material attributes (e.g., elasticity of the layered materials) on the interfacial adhesion of bilayer tablets. This was investigated using a design of experiment approach and the results obtained were in good accordance with those obtained with other tests and thus, confirms the potential of such a method for the measurement of the interfacial adhesion of bilayer tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of PLA parts made with AM process
NASA Astrophysics Data System (ADS)
Spina, Roberto; Cavalcante, Bruno; Lavecchia, Fulvio
2018-05-01
The main objective of the presented work is to evaluate the thermal behavior of Poly-lactic acid (PLA) parts made with a Fused Deposition Modelling (FDM) process. By using a robust framework for the testing sequence of PLA parts, with the aim of establishing a standard testing cycle for the optimization of the part performance and quality. The research involves study the materials before and after 3D printing. Two biodegradable PLA polymers are investigated, characterized by different colors (one black and the other transparent). The study starts with the examination of each polymeric material and measurements of its main thermal properties.
Viscoelastic material inversion using Sierra-SD and ROL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Timothy; Aquino, Wilkins; Ridzal, Denis
2014-11-01
In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.
NASA Astrophysics Data System (ADS)
Zavala, Mitchel
Metal-matrix composites (MMCs) are engineered combinations of two or more materials. Tailored properties are achieved by systematic combinations of different constituents. Specialized design and synthesis procedures allow unique sets of material properties in composites. Covetics are a new type of metal-matrix nano-composite (MMnC) material. These materials are formed from FCC metals which are super-saturated with up to 10 wt. % of activated nano-carbon powder. The idea is that the nano-carbon particles will enhance the material properties of the base metal matrix, however most of the physical and mechanical properties of covetics have not been well characterized. The foci of this study are to optimize the covetic casting synthesis process under controlled conditions, to understand and analyze the microstructures of the synthesized copper and aluminum covetic, to provide a thorough analysis of the chemical composition of the synthesized covetic materials, and to characterize physical and mechanical properties of both of these materials using meticulously prepared samples and test procedures.
NASA Technical Reports Server (NTRS)
Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.
1979-01-01
The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.
Ballast degradation characterized through triaxial test : research results.
DOT National Transportation Integrated Search
2016-06-01
Transportation Technology Center, Inc. (TTCI) : has supported the development of a large-scale : triaxial test device (Figure 1) for testing ballast : size aggregate materials at the University of : Illinois at Urbana-Champaign (UIUC). This new : tes...
Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications
NASA Astrophysics Data System (ADS)
Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara
2018-04-01
Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.
Carrión, Alicia; Miralles, Ramón; Lara, Guillermo
2014-09-01
In this paper, we present a novel and completely different approach to the problem of scattering material characterization: measuring the degree of predictability of the time series. Measuring predictability can provide information of the signal strength of the deterministic component of the time series in relation to the whole time series acquired. This relationship can provide information about coherent reflections in material grains with respect to the rest of incoherent noises that typically appear in non-destructive testing using ultrasonics. This is a non-parametric technique commonly used in chaos theory that does not require making any kind of assumptions about attenuation profiles. In highly scattering media (low SNR), it has been shown theoretically that the degree of predictability allows material characterization. The experimental results obtained in this work with 32 cement probes of 4 different porosities demonstrate the ability of this technique to do classification. It has also been shown that, in this particular application, the measurement of predictability can be used as an indicator of the percentages of porosity of the test samples with great accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Material characterization of a novel new armour steel
NASA Astrophysics Data System (ADS)
Bester, J. N.; Stumpf, W. E.
2012-08-01
The material characterization of a novel new armour steel with comparison to a leading commercial benchmark alloy is presented. Direct ballistic and experimental comparison is drawn. The 5.56 × 45 mm [M193] and 7.62 × 51 mm [NATO Ball] projectiles were used in a cartridge type high pressure barrel configuration to evaluate the superior plugging resistance of the new steel over a range of plate thicknesses. To characterize the dynamic plasticity of the materials, quasi-static, notched and high temperature tensile tests as well as Split Hopkinson Pressure Bar tests in tension and compression were performed. The open source explicit solver, IMPACT (sourceforge.net) is used in an ongoing numerical and sensitivity analysis of ballistic impact. A simultaneous multi variable fitting algorithm is planned to evaluate several selected numerical material models and show their relative correlation to experimental data. This study as well as micro-metallurgical investigation of adiabatic shear bands and localized deformation zones should result in new insights in to the underlying metallurgical and physical behavior of armour plate steels during ballistic perforation.
Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading
NASA Astrophysics Data System (ADS)
Wade, Bonnie
As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure criterion which is traditionally considered the most important composite material model definition for crush simulation. The modification efforts have also validated the use of the MAT54 failure criterion and post-failure model for crash modeling when its capabilities and limitations are well understood, and for this reason guidelines for using MAT54 for composite crush simulation are presented. This research has effectively (a) developed and demonstrated a procedure that defines a set of experimental crush results that characterize the energy absorption capability of a composite material system, (b) used the experimental results in the development and refinement of a composite material model for crush simulation, (c) explored modifying the material model to improve its use in crush modeling, and (d) provided experimental and modeling guidelines for composite structures under crush at the element-level in the scope of the Building Block Approach.
Environmental effects on FOD resistance of composite fan blade
NASA Technical Reports Server (NTRS)
Murphy, G. C.; Selemme, C. T.
1981-01-01
The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.
Proceedings of the Spacecraft Charging Technology Conference
NASA Technical Reports Server (NTRS)
Pike, C. P. (Editor); Lovell, R. R. (Editor)
1977-01-01
Over 50 papers from the spacecraft charging conference are included on subjects such as: (1) geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, and (5) satellite design and test.
Characterization of NIST food-matrix Standard Reference Materials for their vitamin C content.
Thomas, Jeanice B; Yen, James H; Sharpless, Katherine E
2013-05-01
The vitamin C concentrations in three food-matrix Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST) have been determined by liquid chromatography (LC) with absorbance detection. These materials (SRM 1549a Whole Milk Powder, SRM 1849a Infant/Adult Nutritional Formula, and SRM 3233 Fortified Breakfast Cereal) have been characterized to support analytical measurements made by food processors that are required to provide information about their products' vitamin C content on the labels of products distributed in the United States. The SRMs are primarily intended for use in validating analytical methods for the determination of selected vitamins, elements, fatty acids, and other nutrients in these materials and in similar matrixes. They can also be used for quality assurance in the characterization of test samples or in-house control materials, and for establishing measurement traceability. Within-day precision of the LC method used to measure vitamin C in the food-matrix SRMs characterized in this study ranged from 2.7% to 6.5%.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.
2010-01-01
The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.
NASA Astrophysics Data System (ADS)
Connick, Robert J.
Accurate measurement of normal incident transmission loss is essential for the acoustic characterization of building materials. In this research, a method of measuring normal incidence sound transmission loss proposed by Salissou et al. as a complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is verified. Two sam- ples from the original literature are used to verify the method as well as a Filtros RTM sample. Following the verification, several nano-material Aerogel samples are measured.
A Statistics-Based Material Property Analysis to Support TPS Characterization
NASA Technical Reports Server (NTRS)
Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.
2012-01-01
Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.
Performance testing accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.
The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less
NASA Astrophysics Data System (ADS)
Carey, Shawn Allen
Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the signature analysis program. The load level at which significant damage occurred in the specimens was evaluated using ASME Boiler and Pressure Vessel criteria. AU testing proved inconclusive for characterization of the damage due to common problems associated with AU testing such as: reproducibility difficulties due to degradation of the attachment of the sensors, damage not detected unless in the line of sight between sensors, and large intrinsic variation of the data.
Compact and portable digitally controlled device for testing footwear materials: technical note.
Foto, James G
2008-01-01
Little or no practical decision-making data are available to the foot-care provider regarding the selection of orthotic materials used in therapeutic footwear. A device for simulating in-shoe forefoot conditions for the testing of orthosis materials is described. Materials are tested for their effectiveness by evaluating and comparing stress-strain and dynamic compression fatigue characteristics. The device, called the Cyclical Compression Tester (CCT), has been optimized for size, simplicity of construction, and cost. Application of the device ranges from the clinician deciding the useful life of single- and multidensity orthosis materials to the researcher characterizing materials for finite-element analysis modeling. This real-time CCT device and custom user interface combine to make an evaluation tool useful for testing how the pressure distribution of in-shoe materials changes over time in therapeutic footwear for those with peripheral neuropathy at risk for foot injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groner, D.J.
This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.
ERIC Educational Resources Information Center
Wendell, Kristen Bethke; Lee, Hee-Sun
2010-01-01
Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine…
John G. Michopoulos; John Hermanson; Athanasios Iliopoulos
2014-01-01
The research areas of mutiaxial robotic testing and design optimization have been recently utilized for the purpose of data-driven constitutive characterization of anisotropic material systems. This effort has been enabled by both the progress in the areas of computers and information in engineering as well as the progress in computational automation. Although our...
Study of materials for space processing
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.
NASA Astrophysics Data System (ADS)
Magnacca, Giuliana; Guerretta, Federico; Vizintin, Alen; Benzi, Paola; Valsania, Maria C.; Nisticò, Roberto
2018-01-01
Chitin (a biopolymer obtained from shellfish industry) was used as precursor for the production of biochars obtained via pyrolysis treatments performed at mild conditions (in the 290-540 °C range). Biochars were physicochemical characterized in order to evaluate the pyrolysis-induced effects in terms of both functional groups and material structure. Moreover, such carbonaceous materials were tested as adsorbent substrates for the removal of target molecules from aqueous environment as well as in solid-gas experiments, to measure the adsorption capacities and selectivity toward CO2. Lastly, biochars were also investigated as possible cathode materials in sustainable and low-cost electrochemical energy storage devices, such as lithium-sulphur (Li-S) batteries. Interestingly, experimental results evidenced that such chitin-derived biochars obtained via pyrolysis at mild conditions are sustainable, low-cost and easy scalable alternative materials suitable for both environmental and energetic applications.
Irradiation embrittlement characterization of the EUROFER 97 material
NASA Astrophysics Data System (ADS)
Kytka, M.; Brumovsky, M.; Falcnik, M.
2011-02-01
The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV. Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation. Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm 3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the "Master curve" approach. Moreover, J- R dependencies were determined and analyzed. The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given. Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.
The accelerated characterization of viscoelastic composite materials. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Griffith, W. I.; Morris, D. H.; Brinson, H. F.
1980-01-01
Necessary fundamentals relative to composite materials and viscoelasticity are reviewed. The accelerated characterization techniques of time temperature superposition and time temperature stress superposition are described. An experimental procedure for applying the latter to composites is given along with results obtained on a particular T300/934 graphite/epoxy. The accelerated characterization predictions are found in good agreement with actual long term tests. A postcuring phenomenon is discussed that necessitates thermal conditioning of the specimen prior to testing. A closely related phenomenon of physical aging is described as well as the effect of each on the glass transition temperature and strength. Creep rupture results are provided for a variety of geometries and temperatures for T300/934 graphite/epoxy. The results are found to compare reasonably with a modified kinetic rate theory.
New method for characterization of retroreflective materials
NASA Astrophysics Data System (ADS)
Junior, O. S.; Silva, E. S.; Barros, K. N.; Vitro, J. G.
2018-03-01
The present article aims to propose a new method of analyzing the properties of retroreflective materials using a goniophotometer. The aim is to establish a higher resolution test method with a wide range of viewing angles, taking into account a three-dimensional analysis of the retroreflection of the tested material. The validation was performed by collecting data from specimens collected from materials used in safety clothing and road signs. The approach showed that the results obtained by the proposed method are comparable to the results obtained by the normative protocols, representing an evolution for the metrology of these materials.
Deducing material quality in cast and hot-forged steels by new bending test
NASA Astrophysics Data System (ADS)
Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir
2017-10-01
A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.
2017-01-04
response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining...configurations with a restrained manikin, was evaluated in four different test series . Test Series 1 was conducted to determine the materials and...5 ms TTP. Test Series 2 was conducted to determine the materials and drop heights required for energy attenuation of the seat pan to generate a 4 m
Pratt, Victoria M; Everts, Robin E; Aggarwal, Praful; Beyer, Brittany N; Broeckel, Ulrich; Epstein-Baak, Ruth; Hujsak, Paul; Kornreich, Ruth; Liao, Jun; Lorier, Rachel; Scott, Stuart A; Smith, Chingying Huang; Toji, Lorraine H; Turner, Amy; Kalman, Lisa V
2016-01-01
Pharmacogenetic testing is increasingly available from clinical laboratories. However, only a limited number of quality control and other reference materials are currently available to support clinical testing. To address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, has characterized 137 genomic DNA samples for 28 genes commonly genotyped by pharmacogenetic testing assays (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, DPYD, GSTM1, GSTP1, GSTT1, NAT1, NAT2, SLC15A2, SLC22A2, SLCO1B1, SLCO2B1, TPMT, UGT1A1, UGT2B7, UGT2B15, UGT2B17, and VKORC1). One hundred thirty-seven Coriell cell lines were selected based on ethnic diversity and partial genotype characterization from earlier testing. DNA samples were coded and distributed to volunteer testing laboratories for targeted genotyping using a number of commercially available and laboratory developed tests. Through consensus verification, we confirmed the presence of at least 108 variant pharmacogenetic alleles. These samples are also being characterized by other pharmacogenetic assays, including next-generation sequencing, which will be reported separately. Genotyping results were consistent among laboratories, with most differences in allele assignments attributed to assay design and variability in reported allele nomenclature, particularly for CYP2D6, UGT1A1, and VKORC1. These publicly available samples will help ensure the accuracy of pharmacogenetic testing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Susilawati, Doyan, Aris; Khalilurrahman
2017-01-01
Have been successfully synthesized barium powder doping Manganese hexaferrite with the expected potential as anti-radar material. Synthesis was done by using the co-precipitation method, the variation of the variable x concentrations used were 0; 0.2; 0.4; and 0.6 and calcined at temperatures of 400, 600 and 800°C. Characterization powders of hexaferrite have used XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), LCR (inductance, capacitance, and resistance) meter, and VSM (Vibrating Sample Magnetometer). The higher the concentration and temperature of calcinations given affect the color of the powder. The test results using XRD indicates that it has formed barium hexaferrite phase with a hexagonal crystal structure. Tests using SEM showed that all the constituent elements barium powder hexaferrite by doping Manganese powders have been spread evenly. XRD test results were confirmed by a test using a TEM showing the crystal structure and the powder was sized nano particles. The results from the LCR meter showed that the barium powder hexaferrite by doping Manganese that has been synthesized classified in semiconductor materials. The result from VSM showed that the value of coercivity magnetic powder doped barium hexaferrite Manganese is smaller when compared with barium hexaferrite without doping and belong to the soft magnetic. Based on the results of the synthesis and characterization, we can conclude that the barium powder heksaferrite by doping Manganese potential as a material anti-radar.
Ultrasonic Characterization of Fatigue Cracks in Composite Materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Watson, Jason; Johnson, Devin; Walker, James; Russell, Sam; Thom, Robert (Technical Monitor)
2002-01-01
Microcracking in composite structures due to combined fatigue and cryogenic loading can cause leakage and failure of the structure and can be difficult to detect in-service. In aerospace systems, these leaks may lead to loss of pressure/propellant, increased risk of explosion and possible cryo-pumping. The success of nondestructive evaluation to detect intra-ply microcracking in unlined pressure vessels fabricated from composite materials is critical to the use of composite structures in future space systems. The work presented herein characterizes measurements of intraply fatigue cracking through the thickness of laminated composite material by means of correlation with ultrasonic resonance. Resonant ultrasound spectroscopy provides measurements which are sensitive to both the microscopic and macroscopic properties of the test article. Elastic moduli, acoustic attenuation, and geometry can all be probed. The approach is based on the premise of half-wavelength resonance. The method injects a broadband ultrasonic wave into the test structure using a swept frequency technique. This method provides dramatically increased energy input into the test article, as compared to conventional pulsed ultrasonics. This relative energy increase improves the ability to measure finer details in the materials characterization, such as microcracking and porosity. As the microcrack density increases, more interactions occur with the higher frequency (small wavelength) components of the signal train causing the spectrum to shift toward lower frequencies. Several methods are under investigation to correlate the degree of microcracking from resonance ultrasound measurements on composite test articles including self organizing neural networks, chemometric techniques used in optical spectroscopy and other clustering algorithms.
Statistical Analyses of Raw Material Data for MTM45-1/CF7442A-36% RW: CMH Cure Cycle
NASA Technical Reports Server (NTRS)
Coroneos, Rula; Pai, Shantaram, S.; Murthy, Pappu
2013-01-01
This report describes statistical characterization of physical properties of the composite material system MTM45-1/CF7442A, which has been tested and is currently being considered for use on spacecraft structures. This composite system is made of 6K plain weave graphite fibers in a highly toughened resin system. This report summarizes the distribution types and statistical details of the tests and the conditions for the experimental data generated. These distributions will be used in multivariate regression analyses to help determine material and design allowables for similar material systems and to establish a procedure for other material systems. Additionally, these distributions will be used in future probabilistic analyses of spacecraft structures. The specific properties that are characterized are the ultimate strength, modulus, and Poisson??s ratio by using a commercially available statistical package. Results are displayed using graphical and semigraphical methods and are included in the accompanying appendixes.
Pratt, Victoria M.; Zehnbauer, Barbara; Wilson, Jean Amos; Baak, Ruth; Babic, Nikolina; Bettinotti, Maria; Buller, Arlene; Butz, Ken; Campbell, Matthew; Civalier, Chris; El-Badry, Abdalla; Farkas, Daniel H.; Lyon, Elaine; Mandal, Saptarshi; McKinney, Jason; Muralidharan, Kasinathan; Noll, LeAnne; Sander, Tara; Shabbeer, Junaid; Smith, Chingying; Telatar, Milhan; Toji, Lorraine; Vairavan, Anand; Vance, Carlos; Weck, Karen E.; Wu, Alan H.B.; Yeo, Kiang-Teck J.; Zeller, Markus; Kalman, Lisa
2010-01-01
Pharmacogenetic testing is becoming more common; however, very few quality control and other reference materials that cover alleles commonly included in such assays are currently available. To address these needs, the Centers for Disease Control and Prevention's Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing community and the Coriell Cell Repositories, have characterized a panel of 107 genomic DNA reference materials for five loci (CYP2D6, CYP2C19, CYP2C9, VKORC1, and UGT1A1) that are commonly included in pharmacogenetic testing panels and proficiency testing surveys. Genomic DNA from publicly available cell lines was sent to volunteer laboratories for genotyping. Each sample was tested in three to six laboratories using a variety of commercially available or laboratory-developed platforms. The results were consistent among laboratories, with differences in allele assignments largely related to the manufacturer's assay design and variable nomenclature, especially for CYP2D6. The alleles included in the assay platforms varied, but most were identified in the set of 107 DNA samples. Nine additional pharmacogenetic loci (CYP4F2, EPHX1, ABCB1, HLAB, KIF6, CYP3A4, CYP3A5, TPMT, and DPD) were also tested. These samples are publicly available from Coriell and will be useful for quality assurance, proficiency testing, test development, and research. PMID:20889555
Proceedings of Damping 1993, volume 3
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
Proceedings of Damping 1993, volume 1
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.
Peroni, Marco; Solomos, George; Babcsan, Norbert
2016-01-05
An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general "soft" materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB), a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1-2 mm). The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.
Characterization and Analysis of Triaxially Braided Polymer Composites under Static and Impact Loads
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Blinzler, Brina J.; Kohlman, Lee W.; Binienda, Wieslaw K.
2012-01-01
In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.
Characterizing fretting damage in different test media for cardiovascular device durability testing.
Weaver, J D; Ramirez, L; Sivan, S; Di Prima, M
2018-06-01
In vitro durability tests of cardiovascular devices are often used to evaluate the potential for fretting damage during clinical use. Evaluation of fretting damage is important because severe fretting can concentrate stress and lead to the loss of structural integrity. Most international standards call for the use of phosphate buffered saline (PBS) for such tests although there has been little evidence to date that the use of PBS is appropriate in terms of predicting the amount of fretting damage that would occur in vivo. In order to determine an appropriate test media for in vitro durability tests where fretting damage is being evaluated, we utilized an in vitro test that is relevant to cardiovascular devices both in terms of dimensions and materials (nitinol, cobalt-chromium, and stainless steel) to characterize fretting damage in PBS, deionized water (DIW), and heparinized porcine blood. Overall, tests conducted in blood were found to have increased levels of fretting damage over tests in DIW or PBS, although the magnitude of this difference was smaller than the variability for each test media. Tests conducted in DIW and PBS led to mostly similar amounts of fretting damage with the exception of one material combination where DIW had greatly reduced damage compared to PBS and blood. Differences in fretting damage among materials were also observed with nitinol having less fretting damage than stainless steel or cobalt-chromium. In general, evaluating fretting damage in PBS or DIW may be appropriate although caution should be used when selecting test media and interpreting results given some of the differences observed across different materials. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Herring, Helen M.
2008-01-01
Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.
Compressive evaluation of homogeneous and graded epoxy-glass particulate composites.
Seaglar, J; Rousseau, C-E
2015-04-01
The propagation of stress waves in epoxy-glass particulate composites and graded materials was studied experimentally. Materials tested in this study consisted of an epoxy matrix with various concentrations of spherical glass particles having a mean diameter of 42μm. Plate impact experiments were performed using a gas gun. Embedded within the specimens were manganin stress gauges used to record propagating compressive longitudinal stress waves through the material. High strain rate experiments using a Split Hopkinson Pressure Bar (SHPB) apparatus were also performed to evaluate the dynamic strength of the specimens, while quasi-static compression tests were undertaken to characterize their quasi-static behavior. Ultrasonic wave speed measurements were carried-out in order to obtain additional material properties and characterize the gradation in functionally graded materials (FGM). It was found that low volume fractions of particles are detrimental to the performance of the material under impact loading, while concentrations in the range of about 30 to 45% by volume exhibit characteristics of higher degrees of scattering. This suggests that materials in this latter range would be more effective in the thwarting of destructive shock waves than the homogeneous matrix material. Impact testing of FGM specimens suggests that impact loading on the stiff (high volume fraction) face results in much higher levels of scattering. Therefore, such materials would be effective for use in light weight armor or as shielding materials due to their effective attenuation of mechanical impulses. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Waffle, Lindsay; Godin, Laurent; Harris, Lyal B.; Kontopoulou, M.
2016-05-01
We characterize a set of analogue materials used for centrifuge analogue modelling simulating deformation at different levels in the crust simultaneously. Specifically, we improve the rheological characterization in the linear viscoelastic region of materials for the lower and middle crust, and cohesive synthetic sands without petroleum-binding agents for the upper crust. Viscoelastic materials used in centrifuge analogue modelling demonstrate complex dynamic behaviour, so viscosity alone is insufficient to determine if a material will be an effective analogue. Two series of experiments were conducted using an oscillating bi-conical plate rheometer to measure the storage and loss moduli and complex viscosities of several modelling clays and silicone putties. Tested materials exhibited viscoelastic and shear-thinning behaviour. The silicone putties and some modelling clays demonstrated viscous-dominant behaviour and reached Newtonian plateaus at strain rates < 0.5 × 10-2 s-1, while other modelling clays demonstrated elastic-dominant power-law relationships. Based on these results, the elastic-dominant modelling clay is recommended as an analogue for basement cratons. Inherently cohesive synthetic sands produce fine-detailed fault and fracture patterns, and developed thrust, strike-slip, and extensional faults in simple centrifuge test models. These synthetic sands are recommended as analogues for the brittle upper crust. These new results increase the accuracy of scaling analogue models to prototype. Additionally, with the characterization of three new materials, we propose a complete lithospheric profile of analogue materials for centrifuge modelling, allowing future studies to replicate a broader range of crustal deformation behaviours.
A high temperature testing system for ceramic composites
NASA Technical Reports Server (NTRS)
Hemann, John
1994-01-01
Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-07-30
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
Flowability of granular materials with industrial applications - An experimental approach
NASA Astrophysics Data System (ADS)
Torres-Serra, Joel; Romero, Enrique; Rodríguez-Ferran, Antonio; Caba, Joan; Arderiu, Xavier; Padullés, Josep-Manel; González, Juanjo
2017-06-01
Designing bulk material handling equipment requires a thorough understanding of the mechanical behaviour of powders and grains. Experimental characterization of granular materials is introduced focusing on flowability. A new prototype is presented which performs granular column collapse tests. The device consists of a channel whose design accounts for test inspection using visualization techniques and load measurements. A reservoir is attached where packing state of the granular material can be adjusted before run-off to simulate actual handling conditions by fluidisation and deaeration of the pile. Bulk materials on the market, with a wide range of particle sizes, can be tested with the prototype and the results used for classification in terms of flowability to improve industrial equipment selection processes.
Mechanical Impact Testing: A Statistical Measurement
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Herald, Stephen D.; Davis, S. Eddie
2005-01-01
In the decades since the 1950s, when NASA first developed mechanical impact testing of materials, researchers have continued efforts to gain a better understanding of the chemical, mechanical, and thermodynamic nature of the phenomenon. The impact mechanism is a real combustion ignition mechanism that needs understanding in the design of an oxygen system. The use of test data from this test method has been questioned due to lack of a clear method of application of the data and variability found between tests, material batches, and facilities. This effort explores a large database that has accumulated over a number of years and explores its overall nature. Moreover, testing was performed to determine the statistical nature of the test procedure to help establish sample size guidelines for material characterization. The current method of determining a pass/fail criterion based on either light emission or sound report or material charring is questioned.
Relative toxicity of pyrolysis products of some synthetic polymers
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Slattengren, C. L.; Furst, A.; Kourtides, D. A.; Parker, J. A.
1976-01-01
Nineteen samples of synthetic polymers were evaluated for relative toxicity in the course of characterizing materials intended for aircraft interior applications. The generic polymers included ABS, chlorinated PVC, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polysulfone, polyaryl sulfone, polyether sulfone, polybismaleimide, and polyvinyl fluoride. Test results are presented, and compared in relative rankings with similar results on cellulosic materials and other synthetic polymers. Under these test conditions, the samples of synthetic polymers were either comparable to or significantly less toxic than the samples of commercial cellulosic materials.
NASA Astrophysics Data System (ADS)
Henn, Philipp; Liewald, Mathias; Sindel, Manfred
2018-05-01
As lightweight design as well as crash performance are crucial to future car body design, exact material characterisation is important to use materials at their full potential and reach maximum efficiency. Within the scope of this paper, the potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated. In this test setup for the determination of material failure, a buckling-bending test is coupled with a subsequent tensile test. If prior bending load is critical, tensile strength and elongation in the subsequent tensile test are dramatically reduced. The new test procedure therefore offers an applicable definition of failure as the incapacity of energy consumption in subsequent phases of the crash represents failure of a component. In addition to that, the correlation of loading condition with actual crash scenarios (buckling and free bending) is improved compared to three- point bending test. The potential of newly established bending-tension test procedure to characterise material crashworthiness is investigated in this experimental studys on two aluminium sheet alloys. Experimental results are validated with existing ductility characterisation from edge compression test.
Characterization of gamma field in the JSI TRIGA reactor
NASA Astrophysics Data System (ADS)
Ambrožič, Klemen; Radulović, Vladimir; Snoj, Luka; Gruel, Adrien; Guillou, Mael Le; Blaise, Patrick; Destouches, Christophe; Barbot, Loïc
2018-01-01
Research reactors such as the "Jožzef Stefan" Institute TRIGA reactor have primarily been designed for experimentation and sample irradiation with neutrons. However recent developments in incorporating additional instrumentation for nuclear power plant support and with novel high flux material testing reactor designs, γ field characterization has become of great interest for the characterization of the changes in operational parameters of electronic devices and for the evaluation of γ heating of MTR's structural materials in a representative reactor Γ spectrum. In this paper, we present ongoing work on γ field characterization both experimentally, by performing γ field measurements, and by simulations, using Monte Carlo particle transport codes in conjunction with R2S methodology for delayed γ field characterization.
Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; ...
2014-11-17
In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.
Proceedings of Damping 1993, volume 2
NASA Astrophysics Data System (ADS)
Portis, Bonnie L.
1993-06-01
Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.
The development of radioactive sample surrogates for training and exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martha Finck; Bevin Brush; Dick Jansen
2012-03-01
The development of radioactive sample surrogates for training and exercises Source term information is required for to reconstruct a device used in a dispersed radiological dispersal device. Simulating a radioactive environment to train and exercise sampling and sample characterization methods with suitable sample materials is a continued challenge. The Idaho National Laboratory has developed and permitted a Radioactive Response Training Range (RRTR), an 800 acre test range that is approved for open air dispersal of activated KBr, for training first responders in the entry and exit from radioactively contaminated areas, and testing protocols for environmental sampling and field characterization. Membersmore » from the Department of Defense, Law Enforcement, and the Department of Energy participated in the first contamination exercise that was conducted at the RRTR in the July 2011. The range was contaminated using a short lived radioactive Br-82 isotope (activated KBr). Soil samples contaminated with KBr (dispersed as a solution) and glass particles containing activated potassium bromide that emulated dispersed radioactive materials (such as ceramic-based sealed source materials) were collected to assess environmental sampling and characterization techniques. This presentation summarizes the performance of a radioactive materials surrogate for use as a training aide for nuclear forensics.« less
Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test
NASA Astrophysics Data System (ADS)
Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre
2018-05-01
The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.
NASA Astrophysics Data System (ADS)
Mann, Ruddy; Magnier, Vincent; Serrano-Munoz, Itziar; Brunel, Jean-Francois; Brunel, Florent; Dufrenoy, Philippe; Henrion, Michele
2017-12-01
Friction materials for braking applications are complex composites made of many components to ensure the various performances required (friction coefficient level, low wear, mechanical strength, thermal resistance, etc.). The material is developed empirically by a trial and error approach. With the solicitation, the material evolves and probably also its properties. In the literature, the mechanical behavior of such materials is generally considered as linear elastic and independent of the loading history. This paper describes a methodology to characterize the mechanical behavior of such a heterogeneous material in order to investigate its non-linear mechanical behavior. Results from mechanical tests are implemented into material laws for numerical simulations. Thanks to the instrumentation, some links with the microstructure can also be proposed. The material is made of a metallic matrix embedding graphite and ceramic particles and is manufactured by sintering. It is used for dry friction applications such as high-energy brake for trains, cars and motorcycles. Compression tests are done with digital image correlation to measure full-filled displacement. It allows to calculate strain fields with enough resolution to identify the material heterogeneity and the role of some of the components of the formulation. A behavior model of the material with plasticity and damage is proposed to simulate the non-linear mechanical behavior and is implemented in an FEM code. Results of mechanical test simulations are compared with two types of experiments showing good agreement. This method thus makes it possible to determine mechanical properties at a virgin state but is extensible for characterizing a material having been submitted to braking solicitations.
Fracture Testing of Large-Scale Thin-Sheet Aluminum Alloy (MS Word file)
DOT National Transportation Integrated Search
1996-02-01
Word Document; A series of fracture tests on large-scale, precracked, aluminum alloy panels were carried out to examine and characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were special...
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1988-01-01
The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.
NASA Astrophysics Data System (ADS)
Scapin, M.; Peroni, L.; Fichera, C.; Cambriani, A.
2014-08-01
High chromium ferritic/martensitic steel T91 (9% Cr, 1% Mo), on account of its radiation resistance, is a candidate material for nuclear reactor applications. Its joining by an impact method to create a cold joint is tested in the realm of scoping tests toward the safe operation of nuclear fuels, encapsulated in representative T91 materials. Hitherto, T91 mechanical characterization at high strain rates is relatively unknown, particularly, in relation to impact joining and also to nuclear accidents. In this study, the mechanical characterization of T91 steel was performed in tension by varying the strain-rate (10-3 up to 104 s-1) and temperature (20-800°C) on dog-bone specimens, using standard testing machines or Hopkinson Bar apparati. As expected, the material is both temperature and strain-rate sensitive and different sets of parameters for the Johnson-Cook strength model were extracted via a numerical inverse procedure, in order to obtain the most suitable set to be used in this field of applications.
Thrust chamber material technology program
NASA Technical Reports Server (NTRS)
Andrus, J. S.; Bordeau, R. G.
1989-01-01
This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.
Space radiation resistant transparent polymeric materials
NASA Technical Reports Server (NTRS)
Giori, C.; Yamauchi, T.
1977-01-01
A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.
Murdock, Kyle; Martin, Caitlin; Sun, Wei
2018-01-01
Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA GRC Technology Development Project for a Stirling Radioisotope Power System
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2000-01-01
NASA Glenn Research Center (GRC), the Department of Energy (DOE), and Stirling Technology Company (STC) are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA GRC is conducting an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. A first characterization of the DOE/STC 55-We Stirling Technology Demonstration Convertor (TDC) under the expected launch random vibration environment was recently completed in the NASA GRC Structural Dynamics Laboratory. Two TDCs also completed an initial electromagnetic interference (EMI) characterization at NASA GRC while being tested in a synchronized, opposed configuration. Materials testing is underway to support a life assessment of the heater head, and magnet characterization and aging tests have been initiated. Test facilities are now being established for an independent convertor performance verification and technology development. A preliminary Failure Mode Effect Analysis (FMEA), initial finite element analysis (FEA) for the linear alternator, ionizing radiation survivability assessment, and radiator parametric study have also been completed. This paper will discuss the status, plans, and results to date for these efforts.
Materials Characterization of Electron Beam Melted Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Draper, Susan; Lerch, Brad; Rogers, Richard; Martin, Richard; Locci, Ivan; Garg, Anita
2015-01-01
An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Computed tomography (CT) scans indicated porosity closure during HIP and high-density inclusions scattered throughout the specimens. The results of tensile and high cycle fatigue (HCF) testing are compared to conventional Ti-6Al-4V. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.
NASA Astrophysics Data System (ADS)
Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.
2018-03-01
The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1979-01-01
A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.
Spectral characterization of dielectric materials using terahertz measurement systems
NASA Astrophysics Data System (ADS)
Seligman, Jeffrey M.
The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were measured directly, from which loss tangent, index of refraction, and permittivity was extracted. The test materials were low-loss dielectric slabs ranging in thickness from 1-60 mils. The substrate sheets were PTFE, fiberglass, and epoxy-ceramic composite substrates. The other group was polyethylene plastic sheets (LDPE/HDPE/UMHW) and 3D printer Photopolymers. The results were verified by using several online THz spectral databases and compared to manufacturer data sheets. Permittivity and loss of some of the test samples varied as a function of polarization angle. 0 - 90 degrees of rotation were tested (i.e., H-V, and 45 degrees polarization). Inter-molecular scattering in the composite materials raised the loss considerably. This effect was verified. Standard, well documented, material types were selected for the project for best comparison. These techniques can also be applied to analyze newer substances such as nanodielectrics.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1992-01-01
ATTAP activities during the past year included test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, ceramic component rig testing, and test-bed engine fabrication and testing. Significant technical challenges remain, but all areas exhibited progress. Test-bed engine design and development included engine mechanical design, combustion system design, alternate aerodynamic designs of gasifier scrolls, and engine system integration aimed at upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1372 C (2500 F) structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities completed include the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, ceramic combustors, the ceramic regenerator disk, the ceramic power turbine rotors, and the ceramic/metal power turbine static structure. The material and component characterization efforts included the testing and evaluation of seven candidate materials and three development components. Ceramic component process development and fabrication proceeded for the gasifier turbine rotor, gasifier turbine scroll, gasifier turbine vanes and vane platform, extruded regenerator disks, and thermal insulation. Component rig activities included the development of both rigs and the necessary test procedures, and conduct of rig testing of the ceramic components and assemblies. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that permit the achievement of both program performance and durability goals. Total test time in 1991 amounted to 847 hours, of which 128 hours were engine testing, and 719 were hot rig testing.
Viscoplastic Characterization of Ti-6-4: Experiments
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Arnold, Steven M.
2016-01-01
As part of a continued effort to improve the understanding of material time-dependent response, a series of mechanical tests have been conducted on the titanium alloy, Ti-6Al-4V. Tensile, creep, and stress relaxation tests were performed over a wide range of temperatures and strain rates to engage various amounts of time-dependent behavior. Additional tests were conducted that involved loading steps, overloads, dwell periods, and block loading segments to characterize the interaction between plasticity and time-dependent behavior. These data will be used to characterize a recently developed, viscoelastoplastic constitutive model with a goal toward better estimates of aerospace component behavior, resulting in improved safety.
New Coll-HA/BT composite materials for hard tissue engineering.
Zanfir, Andrei Vlad; Voicu, Georgeta; Busuioc, Cristina; Jinga, Sorin Ion; Albu, Madalina Georgiana; Iordache, Florin
2016-05-01
The integration of ceramic powders in composite materials for bone scaffolds can improve the osseointegration process. This work was aimed to the synthesis and characterization of new collagen-hydroxyapatite/barium titanate (Coll-HA/BT) composite materials starting from barium titanate (BT) nanopowder, hydroxyapatite (HA) nanopowder and collagen (Coll) gel. BT nanopowder was produced by combining two wet-chemical approaches, sol-gel and hydrothermal methods. The resulting materials were characterized in terms of phase composition and microstructure by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Moreover, the biocompatibility and bioactivity of the composite materials were assessed by in vitro tests. The synthesized BT particles exhibit an average size of around 35 nm and a spherical morphology, with a pseudo-cubic or tetragonal symmetry. The diffraction spectra of Coll-HA and Coll-HA/BT composite materials indicate a pronounced interaction between Col and the mineral phases, meaning a good mineralization of Col fibres. As well, the in vitro tests highlight excellent osteoinductive properties for all biological samples, especially for Coll-HA/BT composite materials, fact that can be attributed to the ferromagnetic properties of BT. Copyright © 2016 Elsevier B.V. All rights reserved.
Cryogenic thermal conductivity measurements on candidate materials for space missions
NASA Astrophysics Data System (ADS)
Tuttle, James; Canavan, Edgar; Jahromi, Amir
2017-12-01
Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. It is common for NASA engineers to propose new candidate materials which have not been totally characterized at cryogenic temperatures. In many cases a material's cryogenic thermal conductivity must be known before selecting it for a specific space-flight application. We developed a test facility in 2004 at NASA's Goddard Space Flight Center to measure the longitudinal thermal conductivity of materials at temperatures between 4 and 300 K, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for ten engineered materials, including alloys, polymers, composites, and a ceramic.
The effects of space radiation on a chemically modified graphite-epoxy composite material
NASA Technical Reports Server (NTRS)
Reed, S. M.; Herakovich, C. T.; Sykes, G. F.
1986-01-01
The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.
Li, Cui; Guan, Fushi; Dai, Zhihong; Jiang, Hui; Wen, Fang; Lu, Lianshou; Wang, Zaishi
2011-05-01
To prepare anti-Brucella abortus serum used for calibrate the agglutination test follwing the national standard, 4 anti-Brucella abortus sera were obtained from 4 cows infected with Brucella abortus naturally. By potency testing, the third serum was selected. Sterility, vaccum degree, residual moisture, uniformity and stability of this standard material were tested and proved to meet the national standard. Referring to the international standard, RBT (Rose-Bengal plate agglutination test), SAT (standard tube agglutination) and CFT (complement fixation test) titers of this standard material were measured to be 1:160 "+" 1:2 400 "++" and 1:800 "++", which are identical with the collaborative assay results. International unit of the standard material is 4 000 IU/mL.
Assessing Reliability of Cold Spray Sputter Targets in Photovoltaic Manufacturing
NASA Astrophysics Data System (ADS)
Hardikar, Kedar; Vlcek, Johannes; Bheemreddy, Venkata; Juliano, Daniel
2017-10-01
Cold spray has been used to manufacture more than 800 Cu-In-Ga (CIG) sputter targets for deposition of high-efficiency photovoltaic thin films. It is a preferred technique since it enables high deposit purity and transfer of non-equilibrium alloy states to the target material. In this work, an integrated approach to reliability assessment of such targets with deposit weight in excess of 50 lb. is undertaken, involving thermal-mechanical characterization of the material in as-deposited condition, characterization of the interface adhesion on cylindrical substrate in as-deposited condition, and developing means to assess target integrity under thermal-mechanical loads during the physical vapor deposition (PVD) sputtering process. Mechanical characterization of cold spray deposited CIG alloy is accomplished through the use of indentation testing and adaptation of Brazilian disk test. A custom lever test was developed to characterize adhesion along the cylindrical interface between the CIG deposit and cylindrical substrate, overcoming limitations of current standards. A cohesive zone model for crack initiation and propagation at the deposit interface is developed and validated using the lever test and later used to simulate the potential catastrophic target failure in the PVD process. It is shown that this approach enables reliability assessment of sputter targets and improves robustness.
NASA Technical Reports Server (NTRS)
Cowardin, H.
2017-01-01
In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.
Characterization of exposure and dose of man made vitreous fiber in experimental studies.
Hamilton, R D; Miiller, W C; Christensen, D R; Anderson, R; Hesterberg, T W
1994-01-01
The use of fibrous test materials in in vivo experiments introduces a number of significant problems not associated with nonfibrous particulates. The key to all aspects of the experiment is the accurate characterization of the test material in terms of fiber length, diameter, particulate content, and chemistry. All data related to fiber properties must be collected in a statistically sound manner to eliminate potential bias. Procedures similar to those outlined by the National Institute of Occupational Safety and Health (NIOSH) or the World Health Organization (WHO) must be the basis of any fiber characterization. The test material to which the animal is exposed must be processed to maximize the amount of respirable fiber and to minimize particulate content. The complex relationship among the characteristics of the test material, the properties of the delivery system, and the actual dose that reaches the target tissue in the lung makes verification of dose essential. In the case of man-made vitreous fibers (MMVF), dose verification through recovery of fiber from exposed animals is a complex task. The potential for high fiber solubility makes many of the conventional techniques for tissue preservation and digestion inappropriate. Processes based on the minimum use of aggressive chemicals, such as cold storage and low temperature ashing, are potentially useful for a wide range of inorganic fibers. Any processes used to assess fiber exposure and dose must be carefully validated to establish that the chemical and physical characteristics of the fibers have not been changed and that the dose to the target tissue is completely and accurately described. PMID:7882912
NASA Technical Reports Server (NTRS)
Gradl, Paul R.; Valentine, Peter G.
2017-01-01
Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.
2010-12-01
satellite incorporation are explored by assembly and experimentation. Research on pseudoelastic material properties , analytical predictions, and...are explored by assembly and experimentation. Research on pseudoelastic material properties , analytical predictions, and tests of coupling strengths...20 Table 2. Material Properties Used in Micro-Coupling Predicted Strength Calculations
Thermal Protection Materials and Systems: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.
2013-01-01
Thermal protection materials and systems (TPS) protect vehicles from the heat generated when entering a planetary atmosphere. NASA has developed many TPS systems over the years for vehicle ranging from planetary probes to crewed vehicles. The goal for all TPS is efficient and reliable performance. Efficient means using the right material for the environment and minimizing the mass of the heat shield without compromising safety. Efficiency is critical if the payload such as science experiments is to be maximized on a particular vehicle. Reliable means that we understand and can predict performance of the material. Although much characterization and testing of materials is performed to qualify and certify them for flight, it is not possible to completely recreate the reentry conditions in test facilities, and flight-testing
Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.
2009-01-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.
Material characterization and defect inspection in ultrasound images
NASA Astrophysics Data System (ADS)
Zmola, Carl; Segal, Andrew C.; Lovewell, Brian; Mahdavieh, Jacob; Ross, Joseph; Nash, Charles
1992-08-01
The use of ultrasonic imaging to analyze defects and characterize materials is critical in the development of non-destructive testing and non-destructive evaluation (NDT/NDE) tools for manufacturing. To develop better quality control and reliability in the manufacturing environment advanced image processing techniques are useful. For example, through the use of texture filtering on ultrasound images, we have been able to filter characteristic textures from highly textured C-scan images of materials. The materials have highly regular characteristic textures which are of the same resolution and dynamic range as other important features within the image. By applying texture filters and adaptively modifying their filter response, we have examined a family of filters for removing these textures.
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests
Hampton, Jesse; Gutierrez, Marte; Matzar, Luis; ...
2018-06-11
Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and information concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs frommore » several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of understanding the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. Lastly, it was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.« less
Laboratory Characterization of Solid Grade SW Brick
2007-08-01
Society for Testing and Materials (ASTM) D 2216 (ASTM 2002e). Based on the appropriate values of posttest water content, wet density, and an assumed...strain path (UX/SP) tests. In addition to the mechanical property tests, nondestructive pulse-velocity measurements were performed on each specimen...Figure 3. Spring-arm lateral deformeter mounted on test specimen
MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD
Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...
Characterization Tests for Mineral Fillers Related to Performance of Asphalt Paving Mixtures
DOT National Transportation Integrated Search
1988-01-01
Various studies have shown that the properties of mineral filler, especially the material passing 0.075 mm (No. 200) sieve (generally called P200 material), have a significant effect on the performance of asphalt paving mixtures in terms of permanent...
Chambers, Robert S.; Tandon, Rajan; Stavig, Mark E.
2015-07-07
In this study, to analyze the stresses and strains generated during the solidification of glass-forming materials, stress and volume relaxation must be predicted accurately. Although the modeling attributes required to depict physical aging in organic glassy thermosets strongly resemble the structural relaxation in inorganic glasses, the historical modeling approaches have been distinctly different. To determine whether a common constitutive framework can be applied to both classes of materials, the nonlinear viscoelastic simplified potential energy clock (SPEC) model, developed originally for glassy thermosets, was calibrated for the Schott 8061 inorganic glass and used to analyze a number of tests. A practicalmore » methodology for material characterization and model calibration is discussed, and the structural relaxation mechanism is interpreted in the context of SPEC model constitutive equations. SPEC predictions compared to inorganic glass data collected from thermal strain measurements and creep tests demonstrate the ability to achieve engineering accuracy and make the SPEC model feasible for engineering applications involving a much broader class of glassy materials.« less
Bailey, Stacyann; Vashishth, Deepak
2018-06-18
The mechanical integrity of bone is determined by the direct measurement of bone mechanical properties. This article presents an overview of the current, most common, and new and upcoming experimental approaches for the mechanical characterization of bone. The key outcome variables of mechanical testing, as well as interpretations of the results in the context of bone structure and biology are also discussed. Quasi-static tests are the most commonly used for determining the resistance to structural failure by a single load at the organ (whole bone) level. The resistance to crack initiation or growth by fracture toughness testing and fatigue loading offers additional and more direct characterization of tissue material properties. Non-traditional indentation techniques and in situ testing are being increasingly used to probe the material properties of bone ultrastructure. Destructive ex vivo testing or clinical surrogate measures are considered to be the gold standard for estimating fracture risk. The type of mechanical test used for a particular investigation depends on the length scale of interest, where the outcome variables are influenced by the interrelationship between bone structure and composition. Advancement in the sensitivity of mechanical characterization techniques to detect changes in bone at the levels subjected to modifications by aging, disease, and/or pharmaceutical treatment is required. As such, a number of techniques are now available to aid our understanding of the factors that contribute to fracture risk.
Material growth and characterization directed toward improving III-V heterojunction solar cells
NASA Technical Reports Server (NTRS)
Stefanakos, E. K.; Alexander, W. E.; Collis, W.; Abul-Fadl, A.
1979-01-01
In addition to the existing materials growth laboratory, the photolithographic facility and the device testing facility were completed. The majority of equipment for data acquisition, solar cell testing, materials growth and device characterization were received and are being put into operation. In the research part of the program, GaAs and GaA1As layers were grown reproducibly on GaAs substrates. These grown layers were characterized as to surface morphology, thickness and thickness uniformity. The liquid phase epitaxial growth process was used to fabricate p-n junctions in Ga(1-x)A1(x)As. Sequential deposition of two alloy layers was accomplished and detailed analysis of the effect of substrate quality and dopant on the GaA1As layer quality is presented. Finally, solar cell structures were formed by growing a thin p-GaA1As layer upon an epitaxial n-GaA1As layer. The energy gap corresponding to the long wavelength cutoff of the spectral response characteristic was 1.51-1.63 eV. Theoretical calculations of the spectral response were matched to the measured response.
Characterization and fabrication of target materials for RIB generation
NASA Astrophysics Data System (ADS)
Welton, R. F.; Janney, M. A.; Mueller, P. E.; Ortman, W. K.; Rauniyar, R.; Stracener, D. W.; Williams, C. L.
2001-07-01
This report discusses two techniques developed at the Oak Ridge National Laboratory (ORNL) that are employed for the fabrication and characterization of targets used in the production of Radioactive Ion Beams (RIBs). First, our method of in-house fabrication of uranium carbide targets is discussed. We have found that remarkably uniform coatings of UC2 can be formed on the microstructure of porous C matrices. The technique has been used to form UC2 layers on highly thermally conductive graphitic foams. Targets fabricated in this fashion have been tested under low-intensity proton bombardment and yields of selected radioactive species are reported. This report also describes an off-line test stand for the investigation of effusive and diffusive transport in RIB target/ion sources. Permeation rates of gases and vapors passing through a high temperature membrane or through an effusive channel constructed from the material under investigation are recorded. Diffusion coefficients and adsorption enthalpies, which characterize the interaction of RIB species with materials of the target/ion source, are extracted from the time profile of the recorded data. Examples of diffusion, effusion, and conductance measurements are provided.
Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter
2006-01-01
A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.
Song, Wei; Cao, Yang; Wang, Dandan; Hou, Guojun; Shen, Zaihua; Zhang, Shuangbao
2015-01-01
As a large producer and consumer of wood building materials, China suffers product formaldehyde emissions (PFE) but lacks systematic investigations and basic data on Chinese standard emission tests (CST), so this paper presented a first effort on this issue. The PFE of fiberboards, particleboards, blockboards, floorings, and parquets manufactured in Beijing region were characterized by the perforator extraction method (PE), 9–11 L and 40 L desiccator methods (D9, D40), and environmental chamber method (EC) of the Chinese national standard GB 18580; based on statistics of PFE data, measurement uncertainties in CST were evaluated by the Monte Carlo method; moreover, PFE data correlations between tests were established. Results showed: (1) Different tests may give slightly different evaluations on product quality. In PE and D9 tests, blockboards and parquets reached E1 grade for PFE, which can be directly used in indoor environment; but in D40 and EC tests, floorings and parquets achieved E1. (2) In multiple tests, PFE data characterized by PE, D9, and D40 complied with Gaussian distributions, while those characterized by EC followed log-normal distributions. Uncertainties in CST were overall low, with uncertainties for 20 material-method combinations all below 7.5%, and the average uncertainty for each method under 3.5%, thus being acceptable in engineering application. A more complicated material structure and a larger test scale caused higher uncertainties. (3) Conventional linear models applied to correlating PFE values between PE, D9, and EC, with R2 all over 0.840, while novel logarithmic (exponential) models can work better for correlations involving D40, with R2 all beyond 0.901. This research preliminarily demonstrated the effectiveness of CST, where results for D40 presented greater similarities to EC—the currently most reliable test for PFE, thus highlighting the potential of Chinese D40 as a more practical approach in production control and risk assessment. PMID:26656316
Namani, R.; Feng, Y.; Okamoto, R. J.; Jesuraj, N.; Sakiyama-Elbert, S. E.; Genin, G. M.; Bayly, P. V.
2012-01-01
The mechanical characterization of soft anisotropic materials is a fundamental challenge because of difficulties in applying mechanical loads to soft matter and the need to combine information from multiple tests. A method to characterize the linear elastic properties of transversely isotropic soft materials is proposed, based on the combination of dynamic shear testing (DST) and asymmetric indentation. The procedure was demonstrated by characterizing a nearly incompressible transversely isotropic soft material. A soft gel with controlled anisotropy was obtained by polymerizing a mixture of fibrinogen and thrombin solutions in a high field magnet (B = 11.7 T); fibrils in the resulting gel were predominantly aligned parallel to the magnetic field. Aligned fibrin gels were subject to dynamic (20–40 Hz) shear deformation in two orthogonal directions. The shear storage modulus was 1.08 ± 0. 42 kPa (mean ± std. dev.) for shear in a plane parallel to the dominant fiber direction, and 0.58 ± 0.21 kPa for shear in the plane of isotropy. Gels were indented by a rectangular tip of a large aspect ratio, aligned either parallel or perpendicular to the normal to the plane of transverse isotropy. Aligned fibrin gels appeared stiffer when indented with the long axis of a rectangular tip perpendicular to the dominant fiber direction. Three-dimensional numerical simulations of asymmetric indentation were used to determine the relationship between direction-dependent differences in indentation stiffness and material parameters. This approach enables the estimation of a complete set of parameters for an incompressible, transversely isotropic, linear elastic material. PMID:22757501
Hydrogen-related challenges for the steelmaker: the search for proper testing
NASA Astrophysics Data System (ADS)
Thiessen, R. G.
2017-06-01
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE. This article is part of the themed issue 'The challenges of hydrogen and metals'.
2011 Final Report - Nano-Oxide Photocatalysis for Solar Energy Conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eckstein, James N.; Suslick, Kenneth S.
2011-10-19
We have very recently discovered a new hydrogen-producing photocatalyst is BiNbO4. BiNbO4 powders prepared by solid state reaction were tested for photocatalytic activity in methanol solutions under UV irradiation. When the material is tested without the presence of a Pt co-catalyst, photocatalytic activity for H2 evolution is superior to that of TiO2. It was also found that BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt.more » % Pt loading, photodegradation is essentially absent. BiNbO4 photodegrades into metallic Bi and reduced Nb oxides after use; materials were characterized by SEM, XRD, and XPS. Adding Pt to the surface of the photocatalyst increases photocatalytic activity and importantly, helps to prevent photodegradation of the oxide material. With 1 wt. % Pt loading, photodegradation is essentially absent.« less
Hydrogen-related challenges for the steelmaker: the search for proper testing.
Thiessen, R G
2017-07-28
The modern steelmaker of advanced high-strength steels has always been challenged with the conflicting targets of increased strength while maintaining or improving ductility. These new steels help the transportation sector, including the automotive sector, to achieve the goals of increased passenger safety and reduced emissions. With increasing tensile strengths, certain steels exhibit an increased sensitivity towards hydrogen embrittlement (HE). The ability to characterize the material's sensitivity in an as-delivered condition has been developed and accepted (SEP1970), but the complexity of the stress states that can induce an embrittlement together with the wide range of applications for high-strength steels make the development of a standardized test for HE under in-service conditions extremely challenging. Some proposals for evaluating the material's sensitivity give an advantage to materials with a low starting ductility. Despite this, newly developed materials can have a higher original elongation with only a moderate reduction in elongation due to hydrogen. This work presents a characterization of new materials and their sensitivity towards HE.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).
Concerns have been raised about the safety of recycled rubber tire crumbs used in synthetic turf fields and playgrounds in the United States. To support federal efforts to better characterize recycled tire-derived surface materials, dynamic small chamber tests were conducted at...
Yu, Kejing; Wang, Menglei; Wu, Junqing; Qian, Kun; Sun, Jie; Lu, Xuefeng
2016-01-01
The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF) composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM) and optical microscopy (OM). The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA) indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials. PMID:28335217
Sheldon, E M; Downar, J B
2000-08-15
Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.
Electromagnetic Characterization Of Metallic Sensory Alloy
NASA Technical Reports Server (NTRS)
Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob
2012-01-01
Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.
NASA Technical Reports Server (NTRS)
Black, W. E.
1972-01-01
The studies presented are directed toward establishing criteria for a niobium alloy thermal protection system for the space shuttle. Evaluation of three niobium alloys and two silicon coatings for heat shield configurations culminated in the selection of two coating/substrate combinations for environmental criteria and material characterization tests. Specimens were exposed to boost and reentry temperatures, pressure, and loads simulating a space shuttle orbiter flight profile.
Electromagnetic characterization of metallic sensory alloy
NASA Astrophysics Data System (ADS)
Wincheski, Buzz; Simpson, John; Wallace, Terryl; Newman, Andy; Leser, Paul; Lahue, Rob
2013-01-01
Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.
Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure
Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy
2015-01-01
Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented. PMID:28793477
Derchi, Giacomo; Manca, Enrico; Shayganpour, Amirreza; Barone, Antonio; Diaspro, Alberto; Salerno, Marco
2015-01-01
We investigated the temporal response of four dental impression materials, namely three siloxanes (Imprint 4, Flexitime, Aquasil) and one polyether (Impregum). The null hypothesis was that the nominal working times are confirmed by instrumental laboratory tests. We also aimed to identify alternative techniques with strong physical-chemical background for the assessment of temporal response. Traditional characterization was carried out by shark fin test device and durometer at both ambient and body temperature. Additionally, Fourier-transform infrared spectroscopy was performed at room temperature. From shark fin height and Shore hardness versus time the working time and the setting time of the materials were evaluated, respectively. These were in reasonable agreement with the nominal values, except for Impregum, which showed longer working time. Spectroscopy confirmed the different character of the two types of materials, and provided for Imprint 4 and Aquasil an independent evaluation of both evolution times, consistent with the results of the other techniques. Shark fin test and durometer measurements showed deviations in setting time, low sensitivity to temperature for Flexitime, and longer working time at higher temperature for Impregum. Deviations of working time appear in operating conditions from what specified by the manufacturers. Fourier-transform infrared spectroscopy can provide insight in the correlation between material properties and their composition and structure.
Polymeric Packaging for Fully Implantable Wireless Neural Microsensors
Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.
2014-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999
NASA Astrophysics Data System (ADS)
Llorens-Chiralt, R.; Weiss, P.; Mikonsaari, I.
2014-05-01
Material characterization is one of the key steps when conductive polymers are developed. The dispersion of carbon nanotubes (CNTs) in a polymeric matrix using melt mixing influence final composite properties. The compounding becomes trial and error using a huge amount of materials, spending time and money to obtain competitive composites. Traditional methods to carry out electrical conductivity characterization include compression and injection molding. Both methods need extra equipments and moulds to obtain standard bars. This study aims to investigate the accuracy of the data obtained from absolute resistance recorded during the melt compounding, using an on-line setup developed by our group, and to correlate these values with off-line characterization and processing parameters (screw/barrel configuration, throughput, screw speed, temperature profile and CNTs percentage). Compounds developed with different percentages of multi walled carbon nanotubes (MWCNTs) and polycarbonate has been characterized during and after extrusion. Measurements, on-line resistance and off-line resistivity, showed parallel response and reproducibility, confirming method validity. The significance of the results obtained stems from the fact that we are able to measure on-line resistance and to change compounding parameters during production to achieve reference values reducing production/testing cost and ensuring material quality. Also, this method removes errors which can be found in test bars development, showing better correlation with compounding parameters.
Preparation and characterization of porous Mg-Zn-Ca alloy by space holder technique
NASA Astrophysics Data System (ADS)
Annur, D.; Lestari, Franciska P.; Erryani, A.; Sijabat, Fernando A.; G. P. Astawa, I. N.; Kartika, I.
2018-04-01
Magnesium had been recently researched as a future biodegradable implant material. In the recent study, porous Mg-Zn-Ca alloys were developed using space holder technique in powder metallurgy process. Carbamide (10-20%wt) was added into Mg-6Zn-1Ca (in wt%) alloy system as a space holder to create porous structure material. Sintering process was done in a tube furnace under Argon atmosphere in 610 °C for 5 hours. Porous structure of the resulted alloy was examined using Scanning Electron Microscope (SEM), while the phase formation was characterized by X-ray diffraction analysis (XRD). Further, mechanical properties of porous Mg-Zn-Ca alloy was examined through compression testing. Microstructure characterization showed higher content of Carbamide in the alloy would give different type of pores. However, compression test showed that mechanical properties of Mg-Zn-Ca alloy would decrease significantly when higher content of carbamide was added.
NASA Astrophysics Data System (ADS)
Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.
2016-10-01
The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.
Material Property Characterization of AS4/VRM-34 Textile Laminates
NASA Technical Reports Server (NTRS)
Grenoble, Ray W.; Johnston, William M
2013-01-01
Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.
Compatibility testing of spacecraft materials and space-storable liquid propellants
NASA Technical Reports Server (NTRS)
Constantino, L. L.; Denson, J. R.; Krishnan, C. S.; Toy, A.
1974-01-01
Compatibility measurements were made for aluminum 2219-T87 alloy and titanium 6Al-4V alloy in the presence of liquid fluorine and flox. Results of post test characterization after exposure durations of 61 and 70 weeks are presented. Results of the total test program are analyzed.
Thermal Performance Testing of Cryogenic Insulation Systems
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, Stan D.; Scholtens, Brekke E.
2007-01-01
Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications.
Evaluation of the mechanical properties of electroslag refined iron alloys
NASA Technical Reports Server (NTRS)
Bhat, G. K.
1976-01-01
Nitronic 40 (21Cr-6N-9Mn), HY-130, 9Ni-4Co, and D-6 alloys were prepared and evaluated in the form of 15.2 mm thick plates. Smooth bar tensile tests, double-edge sharp notch fracture toughness tests Charpy V-notch impact tests were conducted on appropriate heat treated specimens of the four steel plates at 22 C, -50 C, -100 C, -150 C, and -196 C. Similar material characterization, including metallographic evaluation studies on air melt and vacuum arc melt grades of same four alloy steels were conducted for comparative purposes. A cost analysis of manufacturing plates of air melt, electroslag remelt and vacuum arc remelt grades was performed. The results of both material characterization and cost analyses pointed out certain special benefits of electroslag processing iron base alloys.
NASA Astrophysics Data System (ADS)
Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma
2017-05-01
The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.
Ye, Xuan; Cui, Zhiguo; Fang, Huajun; Li, Xide
2017-01-01
We report a novel material testing system (MTS) that uses hierarchical designs for in-situ mechanical characterization of multiscale materials. This MTS is adaptable for use in optical microscopes (OMs) and scanning electron microscopes (SEMs). The system consists of a microscale material testing module (m-MTM) and a nanoscale material testing module (n-MTM). The MTS can measure mechanical properties of materials with characteristic lengths ranging from millimeters to tens of nanometers, while load capacity can vary from several hundred micronewtons to several nanonewtons. The m-MTM is integrated using piezoelectric motors and piezoelectric stacks/tubes to form coarse and fine testing modules, with specimen length from millimeters to several micrometers, and displacement distances of 12 mm with 0.2 µm resolution for coarse level and 8 µm with 1 nm resolution for fine level. The n-MTM is fabricated using microelectromechanical system technology to form active and passive components and realizes material testing for specimen lengths ranging from several hundred micrometers to tens of nanometers. The system’s capabilities are demonstrated by in-situ OM and SEM testing of the system’s performance and mechanical properties measurements of carbon fibers and metallic microwires. In-situ multiscale deformation tests of Bacillus subtilis filaments are also presented. PMID:28777341
NASA Astrophysics Data System (ADS)
Böttcher, J.; Jahn, M.; Tatzko, S.
2017-12-01
Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly
Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties ofmore » specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.« less
Optimization study of direct morphology observation by cold field emission SEM without gold coating.
He, Dan; Fu, Cheng; Xue, Zhigang
2018-06-01
Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ajay, K. M.; Dinesh, M. N.
2018-02-01
Various activated carbon based electrode materials with different surface areas was prepared on stainless steel based refillable super capacitor model using spin coating. Bio Synthesized Activated Carbon (BSAC), Activated Carbon (AC) and Graphite powder are chosen as electrode materials in this paper. Electrode materials prepared using binder solution which is 6% by wt. polyvinylidene difluoride, 94% by wt. dimethyl fluoride. 3M concentrated KOH solution is used as aqueous electrolyte with PVDF thin film as separator. It is tested for electrochemical characterizations and material characterizations. It is observed that the Specific capacitance of Graphite, Biosynthesized active carbon and Commercially available activated carbon are 16.1F g-1, 53.4F g-1 and 107.6F g-1 respectively at 5mV s-1 scan rate.
Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A
Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less
Vegas, I; Ibañez, J A; San José, J T; Urzelai, A
2008-01-01
The objective of the study is to analyze the technical suitability of using secondary materials from three waste flows (construction and demolition waste (CDW), Waelz slag and municipal solid waste incineration (MSWI) bottom ash), under the regulations and standards governing the use of materials for road construction. A detailed technical characterization of the materials was carried out according to Spanish General Technical Specifications for Road Construction (PG3). The results show that Waelz slag can be adequate for using in granular structural layers, while CDW fits better as granular material in roadbeds. Likewise, fresh MSWI bottom ash can be used as roadbed material as long as it does not contain a high concentration of soluble salts. This paper also discusses the adequacy of using certain traditional test methods for natural soils when characterizing secondary materials for use as aggregates in road construction.
Tightly Coupled Mechanistic Study of Materials in the Extreme Space Environment
2016-10-11
to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin), material response at the atomistic level...Space Environment Group has worked to examine spacecraft contamination issues from the perspective of non- equilibrium gas dynamics (Levin...material response at the atomistic level (Rajan), high fidelity gas -surface chemistry models (van Duin), and experiments to characterize and test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Y. F.
2012-04-30
The objective of this project is to examine safety aspects of candidate hydrogen storage materials and systems being developed in the DOE Hydrogen Program. As a result of this effort, the general DOE safety target will be given useful meaning by establishing a link between the characteristics of new storage materials and the satisfaction of safety criteria. This will be accomplished through the development and application of formal risk analysis methods, standardized materials testing, chemical reactivity characterization, novel risk mitigation approaches and subscale system demonstration. The project also will collaborate with other DOE and international activities in materials based hydrogenmore » storage safety to provide a larger, highly coordinated effort.« less
Mechanical Property Allowables Generated for the Solid Rocket Booster Composite Note Cap
NASA Technical Reports Server (NTRS)
Hodge, A. J.
2000-01-01
Mechanical property characterization was performed on AS4/3501-6 graphite/epoxy and SC350G syntactic foam for the SRB Composite Nose Cap Shuttle Upgrades Project. Lamina level properties for the graphite/epoxy were determined at room temperature, 240 F, 350 F, 480 F, 600 F, and 350 F after a cycle to 600 F. Graphite/epoxy samples were moisture conditioned prior to testing. The syntactic foam material was tested at room temperature, 350 F, and 480 F. A high-temperature test facility was developed at MSFC. Testing was performed with quartz lamp heaters and high resistance heater strips. The thermal history profile of the nose cap was simulated in order to test materials at various times during launch. A correlation study was performed with Southern Research Institute to confirm the test methodology and validity of test results. A-basis allowables were generated from the results of testing on three lots of material.
Component Reliability Testing of Long-Life Sorption Cryocoolers
NASA Technical Reports Server (NTRS)
Bard, S.; Wu, J.; Karlmann, P.; Mirate, C.; Wade, L.
1994-01-01
This paper summarizes ongoing experiments characterizing the ability of critical sorption cryocooler components to achieve highly reliable operation for long-life space missions. Test data obtained over the past several years at JPL are entirely consistent with achieving ten year life for sorption compressors, electrical heaters, container materials, valves, and various sorbent materials suitable for driving 8 to 180 K refrigeration stages. Test results for various compressor systems are reported. Planned future tests necessary to gain a detailed understanding of the sensitivity of cooler performance and component life to operating constraints, design configurations, and fabrication, assembly and handling techniques, are also discussed.
NASA Technical Reports Server (NTRS)
Kanner, Howard S.; Stuckey, C. Irvin; Davis, Darrell W.; Davis, Darrell (Technical Monitor)
2002-01-01
Ablatable Thermal Protection System (TPS) coatings are used on the Space Shuttle Vehicle Solid Rocket Boosters in order to protect the aluminum structure from experiencing excessive temperatures. The methodology used to characterize the recession of such materials is outlined. Details of the tests, including the facility, test articles and test article processing are also presented. The recession rates are collapsed into an empirical power-law relation. A design curve is defined using a 95-percentile student-t distribution. based on the nominal results. Actual test results are presented for the current acreage TPS material used.
Composite armored vehicle advanced technology demonstator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.
1996-12-31
Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less
NASA-STD-6001B Test 1 Upward Flame Propagation; Sample Length Impact on MOC Investigation
NASA Technical Reports Server (NTRS)
Harper, Susana Tapia; Juarez, Alfredo; Woods, Brenton L.; Beeson, Harold D.
2017-01-01
Understanding the combustion behavior of materials in the elevated oxygen environments of habitable spacecraft is of utmost importance to crew safety and mission success. Currently, certification for unrestricted flight usage of a material with respect to flammability involves passing the Upward Flame Propagation Test of NASA-STD-6001B (Test 1). This test evaluates materials in a standardized test configuration for two failure criteria: self-extinguishment within 15 cm (6 in.) and the propensity of flame propagation by means of flaming material transfer. By the NASA standard, full-length samples are 30 cm (12 in.) in length; however, factors independent of the test method such as limited material availability or various nonstandard test configurations limit the full pretest sample lengths available for test. This paper characterizes the dependence, if any, of pretest sample length on NASA-STD-6001B Test 1 results. Testing was performed using the Maximum Oxygen Concentration (MOC) Threshold Method to obtain a data set for each sample length tested. In addition, various material types, including cloth (Nomex), foam (TA-301) and solids (Ultem), were tested to investigate potential effects of test specimen types. Though additional data needs to be generated to provide statistical confidence, preliminary findings are that use of variable sample lengths has minimal impact on NASA-STD-6001B flammability performance and MOC determination.
Application of Raman Spectroscopy for Nondestructive Evaluation of Composite Materials
NASA Technical Reports Server (NTRS)
Washer, Glenn A.; Brooks, Thomas M. B.; Saulsberry, Regor
2007-01-01
This paper will present an overview of efforts to investigate the application of Raman spectroscopy for the characterization of Kevlar materials. Raman spectroscopy is a laser technique that is sensitive to molecular interactions in materials such as Kevlar, graphite and carbon used in composite materials. The overall goal of this research reported here is to evaluate Raman spectroscopy as a potential nondestructive evaluation (NDE) tool for the detection of stress rupture in Kevlar composite over-wrapped pressure vessels (COPVs). Characterization of the Raman spectra of Kevlar yarn and strands will be presented and compared with analytical models provided in the literature. Results of testing to investigate the effects of creep and high-temperature aging on the Raman spectra will be presented.
NASA Technical Reports Server (NTRS)
Clayton, Joseph P.; Tinker, Michael L.
1991-01-01
This paper describes experimental and analytical characterization of a new flexible thermal protection material known as Tailorable Advanced Blanket Insulation (TABI). This material utilizes a three-dimensional ceramic fabric core structure and an insulation filler. TABI is the leading candidate for use in deployable aeroassisted vehicle designs. Such designs require extensive structural modeling, and the most significant in-plane material properties necessary for model development are measured and analytically verified in this study. Unique test methods are developed for damping measurements. Mathematical models are developed for verification of the experimental modulus and damping data, and finally, transverse properties are described in terms of the inplane properties through use of a 12-dof finite difference model of a simple TABI configuration.
High density circuit technology, part 2
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
A multilevel metal interconnection system for very large scale integration (VLSI) systems utilizing polyimides as the interlayer dielectric material is described. A complete characterization of polyimide materials is given as well as experimental methods accomplished using a double level metal test pattern. A low temperature, double exposure polyimide patterning procedure is also presented.
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2011-01-01
Reliable delamination characterization data for laminated composites are needed for input in analytical models of structures to predict delamination onset and growth. The double-cantilevered beam (DCB) specimen is used to measure fracture toughness, GIc, and strain energy release rate, GImax, for delamination onset and growth in laminated composites under mode I loading. The current study was conducted as part of an ASTM Round Robin activity to evaluate a proposed testing standard for Mode I fatigue delamination propagation. Static and fatigue tests were conducted on specimens of IM7/977-3 and G40-800/5276-1 graphite/epoxies, and S2/5216 glass/epoxy DCB specimens to evaluate the draft standard "Standard Test Method for Mode I Fatigue Delamination Propagation of Unidirectional Fiber-Reinforced Polymer Matrix Composites." Static results were used to generate a delamination resistance curve, GIR, for each material, which was used to determine the effects of fiber-bridging on the delamination growth data. All three materials were tested in fatigue at a cyclic GImax level equal to 90% of the fracture toughness, GIc, to determine the delamination growth rate. Two different data reduction methods, a 2-point and a 7-point fit, were used and the resulting Paris Law equations were compared. Growth rate results were normalized by the delamination resistance curve for each material and compared to the nonnormalized results. Paris Law exponents were found to decrease by 5.4% to 46.2% due to normalizing the growth data. Additional specimens of the IM7/977-3 material were tested at 3 lower cyclic GImax levels to compare the effect of loading level on delamination growth rates. The IM7/977-3 tests were also used to determine the delamination threshold curve for that material. The results show that tests at a range of loading levels are necessary to describe the complete delamination behavior of this material.
High strain rate characterization of soft materials: past, present and possible futures
NASA Astrophysics Data System (ADS)
Siviour, Clive
2015-06-01
The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.
NASA Astrophysics Data System (ADS)
Nikmatin, Siti; Rudwiyanti, Jerry R.; Prasetyo, Kurnia W.; Yedi, Dwi A.
2015-01-01
The utilization of Bio-nanocomposite material that was derived from pineapple leaf fiber as filler and tapioca starch with plasticizer glycerol as a matrix for food packaging can reduce the use of plastic that usually was made from petroleum materials. It is important to develop and producethis environmental friendly plastic because of limited availability of petroleum nowadays. The process of synthesize and characterization tapioca starch with the plasticizer glycerol bionanocomposites using print method had been conducted. There were 3 samples with different filler concentration variation; 3%, 4% and 5%.The results of mechanical test from each sample showed that bio-nanocomposite with 5% filler concentration was the optimum sample with 4.6320 MPa for tensile strength test and 24.87% for the elongation test. Based on the result of optical test for each sample was gained that along with the increasing of concentration filler would make the absorbance value of the sample became decreased, bio-nanocomposite with 5% filler concentration had several peaks with low absorbance values. The first peak was in 253 nm of wavelength regionwith absorbance of 0.131%, and the second peak was in 343 nmwavelength region and absorbance was 0.087%.
Concentrated Solar Thermoelectric Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Ren, Zhifeng
2015-07-09
The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accuratemore » measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.« less
Fabrication and Characterization of SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Lach, Cynthia L.; Cano, Robert J.
2001-01-01
Results from an effort to fabrication shape memory alloy hybrid composite (SMAHC) test specimens and characterize the material system are presented in this study. The SMAHC specimens are conventional composite structures with an embedded SMA constituent. The fabrication and characterization work was undertaken to better understand the mechanics of the material system, address fabrication issues cited in the literature, and provide specimens for experimental validation of a recently developed thermomechanical model for SMAHC structures. Processes and hardware developed for fabrication of the SMAHC specimens are described. Fabrication of a SMA14C laminate with quasi-isotropic lamination and ribbon-type Nitinol actuators embedded in the 0' layers is presented. Beam specimens are machined from the laminate and are the focus of recent work, but the processes and hardware are readily extensible to more practical structures. Results of thermomechanical property testing on the composite matrix and Nitinol ribbon are presented. Test results from the Nitinol include stress-strain behavior, modulus versus temperature. and constrained recovery stress versus temperature and thermal cycle. Complex thermomechanical behaviors of the Nitinol and composite matrix are demonstrated, which have significant implications for modeling of SMAHC structures.
Ion irradiation testing and characterization of FeCrAl candidate alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew
2014-10-29
The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less
Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.
Development of indirect ring tension test for fracture characterization of asphalt mixtures
NASA Astrophysics Data System (ADS)
Zeinali Siavashani, Alireza
Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from the distress survey which was conducted on the pavements after five years of service. The maximum allowable crack size analysis revealed that a significant improvement could be realized in terms of the pavements performance if the HMA were to be compacted to a higher density. Finally, the IRT fracture test data were compared to the results of the disk-shaped compact [DC(t)] test. The results of the two tests showed a strong correlation; however, the IRT test seemed to be more repeatable. KEYWORDS: Asphalt Pavement, Low-Temperature Cracking, Fracture Mechanics, Material Characterization, Laboratory Testing.
High Temperature Properties of an Alumina Enhanced Thermal Barrier
NASA Technical Reports Server (NTRS)
Leiser, Daniel B.; Smith, Marnell; Keating, Elizabeth A.
1987-01-01
The heatshield material requirements for future space vehicles (Aerobraking Orbital Transfer Vehicle & National Aerospace Plane) will depend upon the desired flight capability, configuration and location on the vehicle. These requirements will be more demanding and different from those derived for the materials used in the Shuttle Orbiter thermal protection system. Research was therefore initiated into improving the thermal efficiency of this class of materials by first characterizing their thermal and structural capabilities. Alternate material systems have been developed, tested, and compared with the baseline Shuttle system. This research resulted in the development of several very low density, high porosity (80-90%) materials with enhanced durability and temperature capability. One of the developments was a family of materials referred to as Fibrous Refractory Composite Insulation (FRCI) utilizing a mixture of fibers, each serving a unique purpose. One composition of the FRCI family with two fibers was adopted as a baseline material for use on the third and fourth Orbiters in selected areas due to its strength at a lower density compared to earlier materials. A further improvement in the FRCI family of materials is the Alumina Enhanced Thermal Barrier (AETB), a three-fiber composite. It has a higher temperature capability (composition dependent) than the baseline FRCI as proven by convective heating tests of one composition. AETB was studied to better characterize its performance at high temperature and the mechanisms by which its properties change. In conclusion, the shrinkage of AETB is a factor of six better than baseline FRCI at 1260 C (2300 F) with about a 20% improvement in mechanical properties. This improvement could translate into a 110 C (200 F) higher temperature capability in use as a heat shield material, but further testing in a convective heating environment is required to determine the actual improvement attainable.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, T. J.; Winterbottom, W. L.
1986-01-01
Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.
Ion beam plume and efflux characterization flight experiment study. [space shuttle payload
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.
1977-01-01
A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.
High throughput workflow for coacervate formation and characterization in shampoo systems.
Kalantar, T H; Tucker, C J; Zalusky, A S; Boomgaard, T A; Wilson, B E; Ladika, M; Jordan, S L; Li, W K; Zhang, X; Goh, C G
2007-01-01
Cationic cellulosic polymers find wide utility as benefit agents in shampoo. Deposition of these polymers onto hair has been shown to mend split-ends, improve appearance and wet combing, as well as provide controlled delivery of insoluble actives. The deposition is thought to be enhanced by the formation of a polymer/surfactant complex that phase-separates from the bulk solution upon dilution. A standard characterization method has been developed to characterize the coacervate formation upon dilution, but the test is time and material prohibitive. We have developed a semi-automated high throughput workflow to characterize the coacervate-forming behavior of different shampoo formulations. A procedure that allows testing of real use shampoo dilutions without first formulating a complete shampoo was identified. This procedure was adapted to a Tecan liquid handler by optimizing the parameters for liquid dispensing as well as for mixing. The high throughput workflow enabled preparation and testing of hundreds of formulations with different types and levels of cationic cellulosic polymers and surfactants, and for each formulation a haze diagram was constructed. Optimal formulations and their dilutions that give substantial coacervate formation (determined by haze measurements) were identified. Results from this high throughput workflow were shown to reproduce standard haze and bench-top turbidity measurements, and this workflow has the advantages of using less material and allowing more variables to be tested with significant time savings.
Interfacial modulus mapping of layered dental ceramics using nanoindentation
Bushby, Andrew J; P'ng, Ken MY; Wilson, Rory M
2016-01-01
PURPOSE The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load – partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X – ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces. PMID:28018566
NASA Technical Reports Server (NTRS)
Wilt, David M.
2004-01-01
The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.
NASA Astrophysics Data System (ADS)
Tan, Eugene Wie Loon
1999-09-01
The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation) analyses of the flexure and beam specimens were also performed. These progressive failure analyses more closely approximated flexural behavior under actual testing conditions by reducing the elastic moduli of elements that were considered to have partially or totally failed. Individual element failures were predicted using the maximum stress, Tsai-Hill and Tsai-Wu failure criteria. Excellent predictions of flexural behavior were attributed to the progressive failure analyses combined with an appropriate failure criterion, and the reliable input material properties that were generated.
M. Yung Photo of Matthew M. Yung Matthew Yung Senior Engineer, Catalysis & Reaction Engineering comprehensive reaction testing and materials characterization (e.g., kinetic experiments, spectroscopy
Vegetable Fibers for Composite Materials In Constructive Sector
NASA Astrophysics Data System (ADS)
Giglio, Francesca; Savoja, Giulia
2017-08-01
The aim of the research is to study and to test bio-mixture for laminas to use in construction field components. Composite materials are becoming more common in different sectors, but their embodied energy is an environmental problem. For this, in recent years, the researchers investigate new mixtures for composites, in particular with vegetable fibers and bio-based epoxy resin. The research carried out different laboratory tests for material and mechanical characterization, starting from the analysis of vegetable fibers, and arriving to test different kind of laminas with sundry fabrics and bio-based epoxy resin. In the most general organization of the theme, the research has the overall objective to contribute to reduce composites environmental impacts, with the promotion of local production chains about innovative materials from renewable and sustainable sources.
Long Duration Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Hickman, Robert; Dobson, Chris; Clifton, Scooter
2007-01-01
An arc-heater driven hyper-thermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to .produce high-temperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low cost test facility for the purpose of investigating and characterizing candidate fuel/structural materials and improving associated processing/fabrication techniques. Design and engineering development efforts are fully summarized, and facility operating characteristics are reported as determined from a series of baseline performance mapping runs and long duration capability demonstration tests.
A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahnschaffe, S.D.; Lords, R.E.; Kneff, D.W.
1995-09-01
This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.
Characterization of the electromechanical properties of EAP materials
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh
2001-01-01
Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.
Characterization of NIES CRM No. 23 Tea Leaves II for the determination of multielements.
Mori, Ikuko; Ukachi, Miyuki; Nagano, Kimiyo; Ito, Hiroyasu; Yoshinaga, Jun; Nishikawa, Masataka
2010-05-01
A candidate environmental certified reference material (CRM) for the determination of multielements in tea leaves and materials of similar matrix, NIES CRM No. 23 Tea Leaves II, has been developed and characterized by the National Institute for Environmental Studies (NIES), Japan. The origin of the material was tea leaves, which were ground, sieved through a 106-microm mesh, homogenized, and then subdivided into amber glass bottles. The results of homogeneity and stability tests indicated that the material was sufficiently homogeneous and stable for use as a reference material. The property values of the material were statistically determined based on chemical analyses by a network of laboratories using a wide range of methods. Sixteen laboratories participated in the characterization, and nine certified values and five reference values were obtained. These property values of the candidate CRM, which are expressed as mass fractions, were close to the median and/or mean values of the mass fractions of elements in various tea products. The candidate CRM is appropriate for use in analytical quality control and in the evaluation of methods used in the analysis of tea and materials of similar matrix.
Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis
NASA Astrophysics Data System (ADS)
Pavan Kumar, T.; Prabhakar Reddy, P.
2017-08-01
Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the weldments and compared for determining the weld quality.
Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties
NASA Astrophysics Data System (ADS)
Miers, Collier Stephen
The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.
Amoroso, Jake W.; Marra, James; Dandeneau, Christopher S.; ...
2017-01-18
The first scaled proof-of-principle cold crucible induction melter (CCIM) test to process a multiphase ceramic waste form from a simulated combined (Cs/Sr, lanthanide and transition metal fission products) commercial used nuclear fuel waste stream was recently conducted in the United States. X-ray diffraction, 2-D X-ray absorption near edge structure (XANES), electron microscopy, inductively coupled plasma-atomic emission spectroscopy (and inductively coupled plasma-mass spectroscopy for Cs), and product consistency tests were used to characterize the fabricated CCIM material. Characterization analyses confirmed that a crystalline ceramic with a desirable phase assemblage was produced from a melt using a CCIM. We identified primary hollandite,more » pyrochlore/zirconolite, and perovskite phases in addition to minor phases rich in Fe, Al, or Cs. The material produced in the CCIM was chemically homogeneous and displayed a uniform phase assemblage with acceptable aqueous chemical durability.« less
Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2015-01-01
To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.
Characterization of Nanoporous Materials with Atom Probe Tomography.
Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten
2015-06-01
A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.
Hygrothermal properties of composites
NASA Technical Reports Server (NTRS)
Arsenovic, Petar
1996-01-01
The testing procedure and acceptance criteria for outgassing selection of materials to be used in spacecraft has been reviewed. Outgassing testing should be conducted according to ASTM Standard E 595-90. In general, materials with CVCM less than or equal to 0.10% and TML less than or equal to 1.00% are acceptable for space applications. Next, test data on several types of graphite-epoxy composite materials are presented over time at various relative humidity levels at room temperature for moisture absorption, and under vacuum at several temperatures for moisture desorption (outgassing). The data can be accurately represented by simple equations which are useful for materials characterization. Finally, a laser dilatometer systems of extremely high sensitivity and accuracy was assembled and used to measure the coefficient of thermal expansion (CTE) of several types of graphite-epoxy structures, culminating in the ability to perform loading and thermal expansion tests on a prototype optical bench.
NASA Astrophysics Data System (ADS)
Various papers on AE from composite materials are presented. Among the individual topics addressed are: acoustic analysis of tranverse lamina cracking in CFRP laminates under tensile loading, characterization of fiber failure in graphite-epoxy (G/E) composites, application of AE in the study of microfissure damage to composite used in the aeronautic and space industries, interfacial shear properties and AE behavior of model aluminum and titanium matrix composites, amplitude distribution modelling and ultimate strength prediction of ASTM D-3039 G/E tensile specimens, AE prefailure warning system for composite structural tests, characterization of failure mechanisms in G/E tensile tests specimens using AE data, development of a standard testing procedure to yield an AE vs. strain curve, benchmark exercise on AE measurements from carbon fiber-epoxy composites. Also discussed are: interpretation of optically detected AE signals, acoustic emission monitoring of fracture process of SiC/Al composites under cyclic loading, application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels, AE for high temperature monitoring of processing of carbon/carbon composite, monitoring the resistance welding of thermoplastic composites through AE, plate wave AE composite materials, determination of the elastic properties of composite materials using simulated AE signals, AE source location in thin plates using cross-correlation, propagation of flexural mode AE signals in Gr/Ep composite plates.
Earth-based construction material field tests characterization in the Alto Douro Wine Region
NASA Astrophysics Data System (ADS)
Cardoso, Rui; Pinto, Jorge; Paiva, Anabela; Lanzinha, João Carlos
2017-12-01
The Alto Douro Wine Region, located in the northeast of Portugal, a UNESCO World Heritage Site, presents an abundant vernacular building heritage. This building technology is based on a timber framed structure filled with a composite earth-based material. A lack of scientific studies related to this technology is evident, furthermore, principally in rural areas, this traditional building stock is highly deteriorated and damaged because of the rareness of conservation and strengthening works, which is partly related to the non-engineered character of this technology and to the knowledge loosed on that technique. Those aspects motivated the writing of this paper, whose main purpose is the physical and chemical characterization of the earth-based material applied in the tabique buildings of that region through field tests. Consequently, experimental work was conducted and the results obtained allowed, among others, the proposal of a series of adequate field tests. At our knowledge, this is the first time field tests are undertaken for tabique technology. This information will provide the means to assess the suitability of a given earth-based material with regards to this technology. The knowledge from this study could also be very useful for the development of future normative documents and as a reference for architects and engineers that work with this technology to guide and regulate future conservation, rehabilitation or construction processes helping to preserve this important legacy.
DOT National Transportation Integrated Search
2005-09-01
This document describes a procedure for verifying a dynamic testing system (closed-loop servohydraulic). The procedure is divided into three general phases: (1) electronic system performance verification, (2) calibration check and overall system perf...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneshige, Michael J.; Rabbi, Md Fazle; Kaneshige, Michael J.
2017-12-01
Simulant polymer bonded explosives are widely used to simulate the mechanical response of real energetic materials. In this paper, the fracture resistance of a simulant polymer bo nded explosive (PBX) is experimentally investigated. The simulant is composed of 80 wt.% soda lime glass beads (SLGB) and 20 wt.% high impact Polystyrene 825 (HIPS). Brazilian disk tests are performed to characterize the tensile and compressive properties. Fracture toughness and energy tests are performed in the semi - circular bending (SCB) configuration on 80, 81, 82, and 83 wt % SLGB compositions. Digital image correlation is performed to record the surface displacementsmore » and calculate surface strains during testing. The m icromechanical behavior of ductile and brittle fracture are evaluated using digital microscopy and scanning electron microscopy of the fracture surface. It is determined that (i) the manufacturing process produces a credible simulant of PBX properties, and (ii) the SCB test measures fracture resistance with a reasonable coefficient of variation.« less
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-06-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Hageman, Philip L.
2007-01-01
The U. S. Geological Survey (USGS) has developed a fast (5-minute), effective, simple, and cost-effective leach test that can be used to simulate the reactions that occur when materials are leached by water. The USGS Field Leach Test has been used to predict, assess, and characterize the geochemical interactions between water and a broad variety of geologic and environmental matrices. Examples of some of the samples leached include metal mine wastes, various types of dusts, biosolids (processed sewage sludge), flood and wetland sediments, volcanic ash, forest-fire burned soils, and many other diverse matrices. The Field Leach Test has been an integral part of these investigations and has demonstrated its value as a geochemical characterization tool. It has enabled investigators to identify which constituents are water reactive, soluble, mobilized, and made bioaccessible because of leaching by water, and to understand potential impacts of these interactions on the surrounding environment.
Non-contact tensile viscoelastic characterization of microscale biological materials
NASA Astrophysics Data System (ADS)
Li, Yuhui; Hong, Yuan; Xu, Guang-Kui; Liu, Shaobao; Shi, Qiang; Tang, Deding; Yang, Hui; Genin, Guy M.; Lu, Tian Jian; Xu, Feng
2018-01-01
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron length-scale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.
2004-01-01
Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.
An Additive Manufacturing Test Artifact
Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan
2014-01-01
A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039
Oxygen electrodes for rechargeable alkaline fuel cells
NASA Technical Reports Server (NTRS)
Swette, Larry; Giner, Jose
1987-01-01
Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization.
Alberto, Nélia; Fonseca, Maria A; Neto, Victor; Nogueira, Rogério; Oliveira, Mónica; Moreira, Rui
2017-11-11
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology's success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application.
Incorporation of Fiber Bragg Sensors for Shape Memory Polyurethanes Characterization
Nogueira, Rogério; Moreira, Rui
2017-01-01
Shape memory polyurethanes (SMPUs) are thermally activated shape memory materials, which can be used as actuators or sensors in applications including aerospace, aeronautics, automobiles or the biomedical industry. The accurate characterization of the memory effect of these materials is therefore mandatory for the technology’s success. The shape memory characterization is normally accomplished using mechanical testing coupled with a heat source, where a detailed knowledge of the heat cycle and its influence on the material properties is paramount but difficult to monitor. In this work, fiber Bragg grating (FBG) sensors were embedded into SMPU samples aiming to study and characterize its shape memory effect. The samples were obtained by injection molding, and the entire processing cycle was successfully monitored, providing a process global quality signature. Moreover, the integrity and functionality of the FBG sensors were maintained during and after the embedding process, demonstrating the feasibility of the technology chosen for the purpose envisaged. The results of the shape memory effect characterization demonstrate a good correlation between the reflected FBG peak with the temperature and induced strain, proving that this technology is suitable for this particular application. PMID:29137136
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
NASA Glenn Research Center Support of the ASRG Project
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Wong, Wayne A.
2014-01-01
A high efficiency radioisotope power system is being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company (LMSSC) to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with DOELockheed Martin to produce ASC-F flight units, and one with GRC for the production of ASC-E3 engineering unit pathfinders that are built to the flight design. In support of those contracts, GRC provided testing, materials expertise, government furnished equipment, inspections, and related data products to DOELockheed Martin and Sunpower. The technical support includes material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests have been performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests have been used to characterize performance under operating conditions that are representative of various mission conditions. Technology transfers enhanced contractor capabilities for specialized production processes and tests. Despite termination of flight ASRG contract, NASA continues to develop the high efficiency ASC conversion technology under the ASC-E3 contract. This paper describes key government furnished services performed for ASRG and future tests used to provide data for ongoing reliability assessments.
Workshop on standards in biomass for energy and chemicals: proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milne, T.A.
1984-11-01
In the course of reviewing standards literature, visiting prominent laboratories and research groups, attending biomass meetings and corresponding widely, a whole set of standards needs was identified, the most prominent of which were: biomass standard reference materials, research materials and sample banks; special collections of microorganisms, clonal material, algae, etc.; standard methods of characterization of substrates and biomass fuels; standard tests and methods for the conversion and end-use of biomass; standard protocols for the description, harvesting, preparation, storage, and measurement of productivity of biomass materials in the energy context; glossaries of terms; development of special tests for assay of enzymaticmore » activity and related processes. There was also a recognition of the need for government, professional and industry support of concensus standards development and the dissemination of information on standards. Some 45 biomass researchers and managers met with key NBS staff to identify and prioritize standards needs. This was done through three working panels: the Panel on Standard Reference Materials (SRM's), Research Materials (RM's), and Sample Banks; the Panel on Production and Characterization; and the Panel on Tests and Methods for Conversion and End Use. This report gives a summary of the action items in standards development recommended unanimously by the workshop attendees. The proceedings of the workshop, and an appendix, contain an extensive written record of the findings of the workshop panelists and others regarding presently existing standards and standards issues and needs. Separate abstracts have been prepared for selected papers for inclusion in the Energy Database.« less
NASA Astrophysics Data System (ADS)
Gabriel, Mark Joseph
Typical cracks in composite materials are hard to detect, because they may be very small or occur inside the material. This study investigates the development and characterization of carbon fiber and an ionomer, self-healing, laminate composite, enhanced with stitched artificial muscle elements. Although the carbon fiber is used as a structural reinforcement, the carbon fiber can also act as a resistive heating element in order to activate the healing elements in a Close-Then-Heal (CTH) approach. However in this study, hot air in an oven was used to activate the, SurlynRTM 8940, self-healing matrix. Artificial muscle was prepared from commercial fishing line to stitch reinforce the carbon laminate composite in the Z plane. Holes were drilled into the final composite and the muscle was stitched into the composite for active reinforcement. Differential scanning calorimetry was used to characterize the matrix and fishing line properties. The resulting smart composite was subjected to low velocity impact tests and consequential damage before healing in an oven, followed by three point bending flexure tests. Cracks in the carbon fiber reinforcement formed more easily than expected after impact because the holes were drilled to facilitate the muscle stitching. The matrix material could heal, but the reinforcement carbon could not. Several equipment issues and failures limited the amount of samples that could be created to continue testing with new parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Catanach; Larry Hill; Herbert Harry
1999-10-01
The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radialmore » wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.« less
2008-08-05
metallic) materials, which fragment under certain dynamic loading conditions into small particles, which can chemically react with a suitable ambient ...medium, such as shock heated ambient air or hot detonation products. Such materials could be effectively used to devise new or improved weapons with...test is blue. The impacto conditions of the the center of the the opposite surfa reflection of the w Figure 6.1: Example o specimen. Another aspect
Characterization of Time-Dependent Behavior of Ramming Paste Used in an Aluminum Electrolysis Cell
NASA Astrophysics Data System (ADS)
Orangi, Sakineh; Picard, Donald; Alamdari, Houshang; Ziegler, Donald; Fafard, Mario
2015-12-01
A new methodology was proposed for the characterization of time-dependent behavior of materials in order to develop a constitutive model. The material used for the characterization was ramming paste, a porous material used in an aluminum electrolysis cell, which is baked in place under varying loads induced by the thermal expansion of other components of the cell. In order to develop a constitutive model representing the paste mechanical behavior, it was necessary to get some insight into its behavior using samples which had been baked at different temperatures ranging from 200 to 1000 °C. Creep stages, effect of testing temperature on the creep, creep-recovery, as well as nonlinear creep were observed for designing a constitutive law. Uniaxial creep-recovery tests were carried out at two temperatures on the baked paste: ambient and higher. Results showed that the shape of creep curves was similar to a typical creep; recovery happened and the creep was shown to be nonlinear. Those experimental observations and the identification of nonlinear parameters of developed constitutive model demonstrated that the baked paste experiences nonlinear viscoelastic-viscoplastic behavior at different temperatures.
NASA Technical Reports Server (NTRS)
Powers, William O.
1987-01-01
A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.
Characterization of Three Berry Standard Reference Materials for Nutrients
Wood, Laura J.; Sharpless, Katherine E.; Pichon, Monique; Porter, Barbara J.; Yen, James H.; Ehling, Stefan
2011-01-01
The National Institute of Standards and Technology (NIST) has been working with the National Institutes of Health Office of Dietary Supplements to produce Standard Reference Materials (SRMs) of interest to analysts of dietary supplements. Some of these SRMs are traditional foods including SRM 3281 Cranberry (Fruit), SRM 3282 Low-Calorie Cranberry Juice Cocktail, and SRM 3287 Blueberry (Fruit), which have been characterized for nine nutritional elements and sugars. The blueberries have also been characterized for proximates, two water-soluble vitamins, and amino acids. These new materials are intended for use in method development and validation as well as for quality assurance and traceability when assigning values to in-house control materials. Foods can be difficult to analyze because of matrix effects. With the addition of these three new SRMs, it is now possible to more closely match controls to matrices and analyte levels for fruit and vegetable test samples. Several nutritional elements in these three SRMs are present at lower levels than those in other food-matrix SRMs. PMID:21688777
Robotic and Multiaxial Testing for the Constitutive Characterization of Composites
John Michopoulos; Athanasios Iliopoulos; John Hermanson
2012-01-01
As wind energy production drives the manufacturing of wind turbine blades, the utilization of glass and carbon fiber composites as a material of choice continuousiy increases. Consequently, the needs for accurate structural design and material qualification and certification as well as the needs for aging predictions furlher underline the need for accurate constitutive...
Carboxymethylated-, hydroxypropylsulfonated- and quaternized xylan derivative films
Ivan Simkovic; Ivan Kelnar; Iveta Uhliarikova; Raniero Mdndichi; Anurag Mandalika; Thomas Elder
2014-01-01
Under alkaline/water conditions carboxymethyl, 2-hydroxypropylsulfonate and trimethylammonium-2-hydroxypropyl groups were introduced into xylan in one step with the goal to prepare film specimens. The materials were characterized by NMR, SEC-MALS, TG/DTG/DTA, AFM and mechanical testing. The properties of triple, double and mono-substituted materials were compared. The...
NASA Astrophysics Data System (ADS)
Denishev, K.
2016-10-01
This is a review of a part of the work of the Technological Design Group at Technical University of Sofia, Faculty of Electronic Engineering and Technologies, Department of Microelectronics. It is dealing with piezoelectric polymer materials and their application in different microsystems (MEMS) and Energy Harvesting Devices (EHD), some organic materials and their applications in organic (OLED) displays, some transparent conductive materials etc. The metal oxides Lead Zirconium Titanate (PZT) and Zinc Oxide (ZnO) are used as piezoelectric layers - driving part of different sensors, actuators and EHD. These materials are studied in term of their performance in dependence on the deposition conditions and parameters. They were deposited as thin films by using RF Sputtering System. As technological substrates, glass plates and Polyethylenetherephtalate (PET) foils were used. For characterization of the materials, a test structure, based on Surface Acoustic Waves (SAW), was designed and prepared. The layers were characterized by Fourier Transform Infrared spectroscopy (FTIR). The piezoelectric response was tested at variety of mechanical loads (tensile strain, stress) in static and dynamic (multiple bending) mode. The single-layered and double-layered structures were prepared for piezoelectric efficiency increase. A structure of piezoelectric energy transformer is proposed and investigated.
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Tuissi, A.
2017-03-01
Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.
Macro Scale Independently Homogenized Subcells for Modeling Braided Composites
NASA Technical Reports Server (NTRS)
Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.
2012-01-01
An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.
Interlaminar shear fracture toughness and fatigue thresholds for composite materials
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.
1987-01-01
Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.
An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras
NASA Astrophysics Data System (ADS)
Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore
2017-10-01
The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.
Dynamic characterization and modeling of potting materials for electronics assemblies
NASA Astrophysics Data System (ADS)
Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.
2017-01-01
Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.
Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.
Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar
2017-10-01
Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.
NASA Technical Reports Server (NTRS)
Sankar, S.; Livas, J.
2016-01-01
We describe our efforts to fabricate, test and characterize a prototype telescope for the eLISA mission. Much of our work has centered on the modeling and measurement of scattered light performance. This work also builds on a previous demonstration of a high dimensional stability metering structure using particular choices of materials and interfaces. We will discuss ongoing plans to merge these two separate demonstrations into a single telescope design demonstrating both stray light and dimensional stability requirements simultaneously.
Use of atomic force microscopy for characterizing damage evolution during fatigue
NASA Astrophysics Data System (ADS)
Cretegny, Laurent
2000-10-01
A study of the development of surface fatigue damage in PH 13-8 Mo stainless steel and copper by atomic force microscopy (AFM) was performed. AFM observations allow highly automated, quantitative characterization of surface deformation with a resolution of 5 nm or better, which is ideal for understanding fatigue damage evolution. A secondary objective was to establish a correlation between fatigue life exhausted and impedance spectroscopy. Strain controlled fatigue tests were conducted both in high and low cycle fatigue regimes, and interruptions of the fatigue tests allowed characterizing the evolution of the surface upset at various life-fractions. In the low strain amplitude tests on stainless steel (Deltaepsilonpl/2 = 0.0026%), surface damage occurred in the shape of narrow streaks at the interface between martensite laths where reverted austenite was present. The streaks eventually coalesced to form crack nuclei. In high strain amplitude tests (Deltaepsilon pl/2 = 0.049%), fatigue surface damage was essentially dominated by the formation of extrusions. In copper, both low (Deltaepsilonpl/2 = 0.061%) and high (Deltaepsilonpl/2 = 0.134%) strain amplitude tests showed the formation of slip bands (mainly extrusions) across entire grains. Protrusions were present only in copper specimens tested at the high strain amplitude. Crack nucleation in the low strain amplitude tests occurred in both materials at the interface between a region that sustained a high level of deformation and one with little evidence of surface upset. This commonality between these two materials that are otherwise very dissimilar in nature suggests a universal scheme for location of fatigue crack nucleation sites during HCF. A procedure was developed in this study to quantitatively characterize the amount of irreversible surface strain. The proposed formalism is applicable to any material, independently of the type of surface damage, and leads to a criterion for crack nucleation based on physical evidence of surface damage. A correlation between fatigue damage and impedance spectroscopy measurements was shown in copper, in particular during the primary cyclic hardening stage. The measurements were however less sensitive to the development of surface upset that occurred beyond that stage.
Scanning microwave microscopy technique for nanoscale characterization of magnetic materials
NASA Astrophysics Data System (ADS)
Joseph, C. H.; Sardi, G. M.; Tuca, S. S.; Gramse, G.; Lucibello, A.; Proietti, E.; Kienberger, F.; Marcelli, R.
2016-12-01
In this work, microwave characterization of magnetic materials using the scanning microwave microscopy (SMM) technique is presented. The capabilities of the SMM are employed for analyzing and imaging local magnetic properties of the materials under test at the nanoscale. The analyses are performed by acquiring both amplitude and phase of the reflected microwave signal. The changes in the reflection coefficient S11 are related to the local properties of the material under investigation, and the changes in its magnetic properties have been studied as a function of an external DC magnetic bias. Yttrium iron garnet (YIG) films deposited by RF sputtering and grown by liquid phase epitaxial (LPE) on gadolinium gallium garnet (GGG) substrates and permalloy samples have been characterized. An equivalent electromagnetic transmission line model is discussed for the quantitative analysis of the local magnetic properties. We also observed the hysteretic behavior of the reflection coefficient S11 with an external bias field. The imaging and spectroscopy analysis on the experimental results are evidently indicating the possibilities of measuring local changes in the intrinsic magnetic properties on the surface of the material.
Test and Analysis of Solid Rocket Motor Nozzle Ablative Materials
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2017-01-01
Asbestos free solid motor internal insulation samples were tested at the MSFC Hyperthermal Facility. Objectives of the test were to gather data for analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Instrumentation included use of total calorimeters, thermocouples, and a surface pyrometer for surface temperature measurement. Post-test sample forensics involved measurement of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero-thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.
Weisemann, Jasmin; Krez, Nadja; Fiebig, Uwe; Worbs, Sylvia; Skiba, Martin; Endermann, Tanja; Dorner, Martin B; Bergström, Tomas; Muñoz, Amalia; Zegers, Ingrid; Müller, Christian; Jenkinson, Stephen P; Avondet, Marc-Andre; Delbrassinne, Laurence; Denayer, Sarah; Zeleny, Reinhard; Schimmel, Heinz; Åstot, Crister; Dorner, Brigitte G; Rummel, Andreas
2015-11-26
The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1-F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A₁, B₁ and E₁, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A₁, B₁, E₁ and F₁ were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1-F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium.
Characterization of Damage Accumulation in a C/SiC Composite at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Telesman, Jack; Verrilli, Mike; Ghosn, Louis; Kantzos, Pete
1997-01-01
This research is part of a program aimed to evaluate and demonstrate the ability of candidate CMC materials for a variety of applications in reusable launch vehicles. The life and durability of these materials in rocket and engine applications are of major concern and there is a need to develop and validate life prediction methodology. In this study, material characterization and mechanical testing was performed in order to identify the failure modes, degradation mechanisms, and progression of damage in a C/SiC composite at elevated temperatures. The motivation for this work is to provide the relevant damage information that will form the basis for the development of a physically based life prediction methodology.
Residual Ductility and Microstructural Evolution in Continuous-Bending-under-Tension of AA-6022-T4
Zecevic, Milovan; Roemer, Timothy J.; Knezevic, Marko; Korkolis, Yannis P.; Kinsey, Brad L.
2016-01-01
A ubiquitous experiment to characterize the formability of sheet metal is the simple tension test. Past research has shown that if the material is repeatedly bent and unbent during this test (i.e., Continuous-Bending-under-Tension, CBT), the percent elongation at failure can significantly increase. In this paper, this phenomenon is evaluated in detail for AA-6022-T4 sheets using a custom-built CBT device. In particular, the residual ductility of specimens that are subjected to CBT processing is investigated. This is achieved by subjecting a specimen to CBT processing and then creating subsize tensile test and microstructural samples from the specimens after varying numbers of CBT cycles. Interestingly, the engineering stress initially increases after CBT processing to a certain number of cycles, but then decreases with less elongation achieved for increasing numbers of CBT cycles. Additionally, a detailed microstructure and texture characterization are performed using standard scanning electron microscopy and electron backscattered diffraction imaging. The results show that the material under CBT preserves high integrity to large plastic strains due to a uniform distribution of damage formation and evolution in the material. The ability to delay ductile fracture during the CBT process to large plastic strains, results in formation of a strong <111> fiber texture throughout the material. PMID:28773257
Vessel V-7 and V-8 repair and characterization of insert material. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domian, H.A.
1984-05-01
Pieces of Type SA508-2 steel, specially tempered to produce a high-impact-transition temperature, were welded in the side walls of Intermediate Test Vessels V-7 and V-8. These vessels are to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized-Thermal-Shock (PTS) Project of the Heavy-Section Steel Technology (HSST) Program. A comparable piece of forging taken from the same source and heat treated with the vessels was characterized for its mechanical properties to provide data for use in the PTS tests.
NASA Technical Reports Server (NTRS)
Olson, S. L.; Beeson, H.; Haas, J.
2001-01-01
One of the performance goals for NASA's enterprise of Human Exploration and Development of Space (HEDS) is to develop methods, data bases, and validating tests for material flammability characterization, hazard reduction, and fire detection/suppression strategies for spacecraft and extraterrestrial habitats. This work addresses these needs by applying the fundamental knowledge gained from low stretch experiments to the development of a normal gravity low stretch material flammability test method. The concept of the apparatus being developed uses the low stretch geometry to simulate the conditions of the extraterrestrial environment through proper scaling of the sample dimensions to reduce the buoyant stretch in normal gravity. The apparatus uses controlled forced-air flow to augment the low stretch to levels which simulate Lunar or Martian gravity levels. In addition, the effect of imposed radiant heat flux on material flammability can be studied with the cone heater. After breadboard testing, the apparatus will be integrated into NASA's White Sands Test Facility's Atmosphere-Controlled Cone Calorimeter for evaluation as a new materials screening test method.
Safwat, Engie; Hassan, Mohammad L; Saniour, Sayed; Zaki, Dalia Yehia; Eldeftar, Mervat; Saba, Dalia; Zazou, Mohamed
2018-05-01
Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2011-11-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2012-05-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
Characterization of Contamination Generation Characteristics of Satellite Materials
1989-11-22
higher than ambient because of sorption interactions between outgassed species and the chamber walls. In the mass collection method, the mate ’al sample...data run being acquired or the processing of previously acquired data. The Wiley/JNBS standard mass spectra library containing over 70,000 compounds ...outgassing for the specific test material. Outgasslng from materials such as adhesives and potting compounds is diffusion- controlled, so the outgaving rate
Mechanical properties of a fiberglass prepreg system at cryogenic and other temperatures
NASA Technical Reports Server (NTRS)
Klich, P. J.; Cockrell, C. E.
1982-01-01
The compressor driving the flow in the National Transonic Facility, which is nearing completion at the Langley Research Center, has 25 fiberglass blades. E-glass cloth with a pre-impregnated epoxy resin has been selected as the material for the fan blades because of its low cost, high damping, and fatigue resistance. A complete characterization is presented of this fan blade fiberglass system at temperatures of 367 K, room temperature, and 89 K. The characterization test results suggest that the material follows the general trends of metals and other glass-reinforced plastics at cryogenic temperatures. A slight diminution in strength was observed at the elevated temperature. The tests included the following: tensile, compression, fatigue, inplane shear, interlaminar shear, thermal expansion, creep, and thermal cycle.
NASA Astrophysics Data System (ADS)
Lander, Michael L.
2003-05-01
The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.
Study of erosion characterization of carbon fiber reinforced composite material
NASA Astrophysics Data System (ADS)
Debnath, Uttam Kumar; Chowdhury, Mohammad Asaduzzaman; Kowser, Md. Arefin; Mia, Md. Shahin
2017-06-01
Carbon fiber composite materials are widely used at different engineering and industrial applications there are good physical, mechanical, chemical properties and light weight. Erosion behavior of materials depends on various factors such as impact angle, particle velocity, particle size, particle shape, particle type, particle flux, temperature of the tested materials. Among these factors impact angle and particle velocity have been recognized as two parameters that noticeably influence the erosion rates of all tested materials. Irregular shaped sand (SiO2) particles of various sizes (200-300 µm, 400-500 µm, and 500-600 µm) were selected erosive element. Tested conditions such as impingement angles between 15 degree to 90 degree, impact velocities between 30-50 m/sec, and stand-off distances 15-25 mm at surrounding room temperature were maintained. The highest level of erosion of the tested composite is obtained at 60° impact angle, which signifies the semi-ductile behavior of this material. Erosion showed increasing trend with impact velocity and decreasing nature in relation to stand-off distance. Surface damage was analyzed using SEM to examine the nature of the erosive wear mechanism.
Comportement dynamique d'alliages a memoire de forme et application aux composites-AMF
NASA Astrophysics Data System (ADS)
de Santis, Silvio
Meeting current industrial, governmental and international standards regarding vibration and noise levels is a challenging task facing many engineers. These specifications are present in just about all fields of engineering, from aerospace to marine transportation, from automotive to railway transportation, from computer equipment to industrial working environments. An appropriate use of the remarkable properties of high damping metals (HIDAMETS) and shape memory alloy (SMA) reinforced composites emerges as a possible solution to these problems. Among many obstacles to overcome in developing such a technology, the implementation of reliable and adequate characterization techniques to determine dynamic properties of these materials appears to be of prime importance. The research efforts presented in this thesis are aimed at developing advanced techniques to characterize the dynamic behavior of HIDAMETS and SMA reinforced composites. These characterization results lead to the enhancement of numerical (finite element) and/or analytical methods for the simulation of dynamic responses of structures made of these materials. In particular, the research work has focused on three themes: the numerical and experimental validation of applying a characterization procedure developed for traditional composites to SMA reinforced composites; the development of a test bench for uniaxial hysteresis characterization of HIDAMETS in the medium frequency range; the hysteresis characterization and modeling of manganese copper (MnCu) and nickel titanium samples. The results obtained in the course of these efforts show that the characterization technique developed for traditional composites at the University of Brussels is sufficiently precise to successfully predict natural frequencies of complex SMA reinforced composite structures. Using the characterization to predict structural damping ratios, we observe a bias error in the prediction with respect to experimental results although the relative values between modes are consistent. Regarding the development of the test bench for uniaxial hysteresis characterization of HIDAMETS, results suggest that with the introduction of a few minor enhancements and with particular experimental precautions, the test bench can play an important role in characterizing HIDAMETS dynamic properties at various frequencies and strain amplitudes and in understanding micro mechanical mechanisms responsible for energy dissipation. Finally, uniaxial hysteresis loops and related parameters have been obtained with MnCu and NiTi samples. A material model based on dual kriging interpolation that expresses the tangent stiffness along these hysteresis loops as a function of strain and strain amplitude has also been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siranosian, Antranik Antonio; Schembri, Philip Edward; Luscher, Darby Jon
The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferredmore » from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso-scale composite modeling framework, applicable to many composite materials, and the corresponding macroscale testing and test data interrogation techniques to support model calibration.« less
Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.
Boverhof, Darrell R; David, Raymond M
2010-02-01
Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop "rules of thumb" that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.
NASA Astrophysics Data System (ADS)
Nazzal, Mohammad; Abu-Farha, Fadi; Curtis, Richard
2011-08-01
Characterizing the behavior of superplastic materials is largely based on the uniaxial tensile test; yet the unique nature of these materials requires a particularly tailored testing methodology, different to that used with conventional materials. One of the crucial testing facets is the specimen geometry, which has a great impact on the outcome of a superplastic tensile test, as a result of the associated extreme conditions. And while researchers agree that it should take a notably different form than the typical dog-bone shape; there is no universal agreement on the specimen's particular size and dimensions, as evident by the disparities in test specimens used in the various superplastic testing efforts found throughout the literature. In view of that, this article is dedicated to understanding the effects of specimen geometry on the superplastic behavior of the material during tensile testing. Deformation of the Ti6Al4V titanium alloy is FE simulated based on a multitude of specimen geometries, covering a wide range of gauge length, gauge width, grip length, and grip width values. The study provides key insights on the influences of each geometrical parameter as well as their interactions, and provides recommendations on selecting the specimen's proportions for accurate and unified tensile testing of superplastic materials.
Mir Contamination Observations and Implications to the International Space Station
NASA Technical Reports Server (NTRS)
Soares, Carlos; Mikatarian, Ron
2000-01-01
A series of external contamination measurements were made on the Russian Mir Space Station. The Mir external contamination observations summarized in this paper were essential in assessing the system level impact of Russian Segment induced contamination on the International Space Station (ISS). Mir contamination observations include results from a series of flight experiments: CNES Comes-Aragatz, retrieved NASA camera bracket, Euro-Mir '95 ICA, retrieved NASA Trek blanket, Russian Astra-II, Mir Solar Array Return Experiment (SARE), etc. Results from these experiments were studied in detail to characterize Mir induced contamination. In conjunction with Mir contamination observations, Russian materials samples were tested for condensable outgassing rates in the U.S. These test results were essential in the characterization of Mir contamination sources. Once Mir contamination sources were identified and characterized, activities to assess the implications to ISS were implemented. As a result, modifications in Russian materials selection and/or usage were implemented to control contamination and mitigate risk to ISS.
Copoly(Imide Siloxane) Abhesive Materials with Varied Siloxane Oligomer Length
NASA Technical Reports Server (NTRS)
Wohl, Christopher J.; Atkins, Brad M.; Belcher, Marcus A.; Connell, John W.
2010-01-01
Incorporation of PDMS moieties into a polyimide matrix lowered the surface energy resulting in enhanced adhesive interactions. Polyimide siloxane materials were generated using amine-terminated PDMS oligomers of different lengths to study changes in surface migration behavior, phase segregation, mechanical, thermal, and optical properties. These materials were characterized using contact angle goniometry, tensile testing, and differential scanning calorimetry. The surface migration behavior of the PDMS component depended upon the siloxane molecular weight as indicated by distinct relationships between PDMS chain length and advancing water contact angles. Similar correlations were observed for percent elongation values obtained from tensile testing, while the addition of PDMS reduced the modulus. High fidelity topographical modification via laser ablation patterning further reduced the polyimide siloxane surface energy. Initial particulate adhesion testing experiments demonstrated that polyimide siloxane materials exhibited greater abhesive interactions relative to their respective homopolyimides.
Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617
NASA Astrophysics Data System (ADS)
Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.
2014-02-01
Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.
Tension fatigue of glass/epoxy and graphite/epoxy tapered laminates
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.; Obrien, T. Kevin; Salpekar, Satish A.
1990-01-01
Symmetric tapered laminates with internally dropped plies were tested with two different layups and two materials, S2/SP250 glass/epoxy and IM6/1827I graphite/epoxy. The specimens were loaded in cyclic tension until they delaminated unstably. Each combination of material and layup had a unique failure mode. Calculated values of strain energy release rate, G, from a finite element analysis model of delamination along the taper, and for delamination from a matrix ply crack, were used with mode I fatigue characterization data from tests of the tested materials to calculate expected delamination onset loads. Calculated values were compared to the experimental results. The comparison showed that when the calculated G was chosen according to the observed delamination failures, the agreement between the calculated and measured delamination onset loads was reasonable for each combination of layup and material.
Cryogenic Insulation Standard Data and Methodologies Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Fesmire, James; Swanger, Adam
2015-01-01
Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of foam insulation materials was performed by NASA Kennedy Space Center and LeTourneau University. The initial focus was ambient pressure cryogenic boil off testing using the Cryostat-400 flat-plate instrument. Completion of a test facility at LETU has enabled direct, comparative testing, using identical cryostat instruments and methods, and the production of standard thermal data sets for a number of materials under sub-ambient conditions. The two sets of measurements were analyzed and indicate there is reasonable agreement between the two laboratories. Based on cryogenic boiloff calorimetry, new equipment and methods for testing thermal insulation systems have been successfully developed. These boiloff instruments (or cryostats) include both flat plate and cylindrical models and are applicable to a wide range of different materials under a wide range of test conditions. Test measurements are generally made at large temperature difference (boundary temperatures of 293 K and 78 K are typical) and include the full vacuum pressure range. Results are generally reported in effective thermal conductivity (ke) and mean heat flux (q) through the insulation system. The new cryostat instruments provide an effective and reliable way to characterize the thermal performance of materials under subambient conditions. Proven in through thousands of tests of hundreds of material systems, they have supported a wide range of aerospace, industry, and research projects. Boiloff testing technology is not just for cryogenic testing but is a cost effective, field-representative methodology to test any material or system for applications at sub-ambient temperatures. This technology, when adequately coupled with a technical standards basis, can provide a cost-effective, field-representative methodology to test any material or system for applications at sub-ambient to cryogenic temperatures. A growing need for energy efficiency and cryogenic applications is creating a worldwide demand for improved thermal insulation systems for low temperatures. The need for thermal characterization of these systems and materials raises a corresponding need for insulation test standards and thermal data targeted for cryogenic-vacuum applications. Such standards have a strong correlation to energy, transportation, and environment and the advancement of new materials technologies in these areas. In conjunction with this project, two new standards on cryogenic insulation were recently published by ASTM International: C1774 and C740. Following the requirements of NPR 7120.10, Technical Standards for NASA Programs and Projects, the appropriate information in this report can be provided to the NASA Chief Engineer as input for NASA's annual report to NIST, as required by OMB Circular No. A-119, describing NASA's use of voluntary consensus standards and participation in the development of voluntary consensus standards and bodies.
Characterization of the new neutron imaging and materials science facility IMAT
NASA Astrophysics Data System (ADS)
Minniti, Triestino; Watanabe, Kenichi; Burca, Genoveva; Pooley, Daniel E.; Kockelmann, Winfried
2018-04-01
IMAT is a new cold neutron imaging and diffraction instrument located at the second target station of the pulsed neutron spallation source ISIS, UK. A broad range of materials science and materials testing areas will be covered by IMAT. We present the characterization of the imaging part, including the energy-selective and energy-dispersive imaging options, and provide the basic parameters of the radiography and tomography instrument. In particular, detailed studies on mono and bi-dimensional neutron beam flux profiles, neutron flux as a function of the neutron wavelength, spatial and energy dependent neutron beam uniformities, guide artifacts, divergence and spatial resolution, and neutron pulse widths are provided. An accurate characterization of the neutron beam at the sample position, located 56 m from the source, is required to optimize collection of radiographic and tomographic data sets and for performing energy-dispersive neutron imaging via time-of-flight methods in particular.
Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392
NASA Astrophysics Data System (ADS)
Ukhrowiyah, Nuril; Setyaningsih, Novi; Hikmawati, Dyah; Yasin, Moh
2017-05-01
Synthesis of breast-phantom-based on gelatine-glutaraldehyde-TiO2 as testing material of breast cancer diagnosis using Near Infrared-Diffuse Optical Tomography (NIR-DOT) is presented. Glutaraldehyde (GA) is added to obtain optimum breast phantom which has same elasticity modulus with mammae. First, synthesis is conducted by mixing gelatine with various amounts of 1 g, 2 g and 3 g with saline solution on 40° C temperature for 30 minutes until they become homogenous. Next, GA with concentration of 0.5 and 1.0% is added. The characterization includes FTIR test, physical test, and mechanical test used to identify group of gelatine’s functions. Elasticity modulus of breast phantom of gelatine composition 2 g and 0.5% GA is obtained at 53.46 kPA which is the approximation of mammae culture elasticity. This composition is chosen to synthesise the next step. In the second step, TiO2 is added with variation of 0.01 g, 0.015 g, 0.02 g, 0.025 g, and 0,03 g. With this variation, it is aimed to get a breast phantom providing image with optimum absorption. The test of this material uses Differential Scanning Calorimetry (DSC), homogeneity test, and analysis of coefficient absorption. The result shows the sample has a good thermal property in the range of 40 - 70° C with a good homogeneity and absorption coefficient of 0.4 mm-1.
Evaluation of CVI SiC/SiC Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.
2017-01-01
Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.
Overview of Heatshield for Extreme Entry Environment Technology (HEEET)
NASA Technical Reports Server (NTRS)
Driver, David M.; Ellerby, Donald T.; Gasch, Matthew J.; Mahzari, Milad; Milos, Frank S.; Nishioka, Owen S.; Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Young, Zion W.; Gage, Peter J.;
2018-01-01
The Heatshield for Extreme Entry Environment Technology (HEEET) projects objective is to mature a 3-D Woven Thermal Protection System (TPS) to Technical Readiness Level (TRL) 6 to support future NASA missions to destinations such as Venus and Saturn. The scope of the project, status of which will be discussed, encompasses development of manufacturing and integration processes, fabrication of a prototype 1m diameter engineering test unit (ETU) that will undergo a series of structural tests, characterizing material aerothermal performance including development of a material response model, and structural testing and analysis to develop tools to support design and establish system capability.
NASA Astrophysics Data System (ADS)
Rosado-Fuentes, A.; Arango-Galvan, C.; Arciniega-Ceballos, A.; Hernández-Quintero, J. E.; Mendo-Perez, G.
2017-12-01
A controlled shallow test site (CSTS) has been constructed at the UNAM Geomagnetic Observatory in Teoloyucan, central Mexico. The objective of the CSTS is to have a controlled place to test new developments and arrays that can be used for archaeological and engineering exploration, as well as to calibrate instruments, train students and for future research. The CSTS was built far enough not to influence the geomagnetic sensors and not be affected by noise sources. Special attention was given to the distribution and geometry of buried materials as well as the instruments used. Before the CSTS was built, a combination of near-surface, non-invasive geophysical techniques was performed to characterize the area of 20 by 32 meters. The methods include magnetometry, electromagnetic induction, ground penetrating radar (GPR), electrical resistivity tomography (ERT) and seismic refraction tomography (SRT). The GPR, SRT and ERT results show relatively flat interfaces. In general, the vertical gradient of the total magnetic field and the electric conductivity have very small variations, showing only one strong magnetic dipole associated to a shallow anomaly. These results indicate that the area is ideal for the construction of the test site. The CSTS consists on buried structures made with different materials and geometries (cubes, cylinders and tubes) commonly used as construction materials in Mexico since Pre-Hispanic times. These materials include concrete, reinforced concrete, wood, brick, adobe, basalt, tezontle and also empty space for controlling responses. The CSTS is versatile enough to be reshaped considering new geometries or materials and to conduct further investigations.
Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables
NASA Technical Reports Server (NTRS)
Johnson, D. W.; Curry, D. M.; Kelly, R. E.
1986-01-01
Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.
Preparation of TiO2-ZnO and its activity test in sonophotocatalytic degradation of phenol
NASA Astrophysics Data System (ADS)
Fatimah, Is; Novitasari
2016-02-01
Synthesis of TiO2-ZnO and its activity test in Sono photocatalysis degradation of phenol has been conducted. The synthesis was performed by the sol-gel mechanism by using titanium isopropoxide and zinc acetate as precursors with the Ti: Zn ratio of 5:1. Characterization of material were conducted by x-ray diffraction analysis, surface area analysis and also diffuse reflectance UV-Visible spectrophotometry. The material obtained from the synthesis was tested in photocatalysis, Sono catalysis and Sono photocatalysis degradation of phenol solution. Results showed that material exhibited the activity of varied mechanism o- phenol degradation. In advance, the Sono photocatalysis degradation produced the synergy index of 1.169 compared to both photocatalysis and Sono catalysis.
Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua
2014-08-26
Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.
Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua
2014-01-01
Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181
Oxygen Compatibility Testing of Composite Materials
NASA Technical Reports Server (NTRS)
Engel, Carl D.; Watkins, Casey N.
2006-01-01
Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.
Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas
2017-07-01
Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rauh, A.; Hinterhölzl, R.; Drechsler, K.
2012-05-01
In the automotive industry, finite element simulation is widely used to ensure crashworthiness. Mechanical material data over wide strain rate and temperature ranges are required as a basis. This work proposes a method reducing the cost of mechanical material characterization by using the time-temperature superposition principle on elastomeric adhesives. The method is based on the time and temperature interdependence which is characteristic for mechanical properties of polymers. Based on the assumption that polymers behave similarly at high strain rates and at low temperatures, a temperature-dominated test program is suggested, which can be used to deduce strain rate dependent material behavior at different reference temperatures. The temperature shift factor is found by means of dynamic mechanical analysis according to the WLF-equation, named after Williams, Landel and Ferry. The principle is applied to the viscoelastic properties as well as to the failure properties of the polymer. The applicability is validated with high strain rate tests.
Vannozzi, Lorenzo; Ricotti, Leonardo; Santaniello, Tommaso; Terencio, Tercio; Oropesa-Nunez, Reinier; Canale, Claudio; Borghi, Francesca; Menciassi, Arianna; Lenardi, Cristina; Gerges, Irini
2017-11-01
The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric properties and long-term stability through cyclic compressions, in a strain range reflecting the contraction extent of natural muscles. Preliminary in vitro tests revealed a preferential adhesion of C2C12 skeletal muscle cells over the softer, rougher and more porous structures. All the material formulations showed low cytotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2009-10-01
This report documents the results of a study that was conducted to characterize the behavior of geogrid reinforced base : course materials. The research was conducted through an experimental testing and numerical modeling programs. The : experimental...
Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets
NASA Astrophysics Data System (ADS)
Raab, A. E.; Berger, E.; Freudenthaler, J.; Leomann, F.; Walch, C.
2011-05-01
Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry1,2,3. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago1. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesive and abrasive tool wear. First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test. All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.
Tribology and Tool Wear of Hot Dip Galvanized Zinc Magnesium Alloys on Cold Rolled Steel Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, A. E.; Berger, E.; Freudenthaler, J.
Recently zinc based coatings on cold rolled steel with improved functionality in terms of forming and/or corrosion behaviour have been intensively investigated in the steel industry. One of the most promising products are zinc magnesium alloys produced in hot dip galvanizing process. These coatings were already introduced in construction industry a few years ago. With some modifications the improved properties of the coating are also interesting for automotive industry. In the present work the tribological potential of hot dip galvanized zinc magnesium coatings (HDG/ZM) produced at an industrial line under regular production, was studied in terms of sliding properties, adhesivemore » and abrasive tool wear.First a short introduction into surface morphology of HDG/ZM will be given. For the tribological characterization of the material, which is the main topic of the contribution, different tests were performed on hot dip galvanised zinc magnesium material and results were compared with classic hot dip galvanized zinc coating (HDG/Z). The investigations are mainly based on the strip draw test which allows the determination of the friction coefficient directly by using a constant contact pressure. Deep drawing property was tested by forming model cups. The abrasive tool wear was tested using a standard test for material used in automotive industry. The adhesive tool wear was investigated by characterizing the coating material transferred to the tool in the strip draw test.All performed tests show an improved drawability of HDG/ZM compared to classical HDG/Z reference material. However the most promising difference between HDG/ZM and HDG/Z is that galling was found to be less for HDG/ZM than for HDG/Z. Therefore HDG/ZM is an interesting system not only with respect to corrosion protection but also in terms of tribology and provides clear advantages in formability.« less
Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated
NASA Technical Reports Server (NTRS)
1996-01-01
Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.
Characterization of Friction Joints Subjected to High Levels of Random Vibration
NASA Technical Reports Server (NTRS)
deSantos, Omar; MacNeal, Paul
2012-01-01
This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.
NASA Technical Reports Server (NTRS)
Stanley, D. C.; Huff, T. L.
2003-01-01
The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.
Characterization and antimicrobial performance of nano silver coatings on leather materials
Lkhagvajav, N.; Koizhaiganova, M.; Yasa, I.; Çelik, E.; Sari, Ö.
2015-01-01
In this study, the characterization and the antimicrobial properties of nano silver (nAg) coating on leather were investigated. For this purpose, turbidity, viscosity and pH of nAg solutions prepared by the sol-gel method were measured. The formation of films from these solutions was characterized according to temperature by Differential Thermal Analysis-Thermogravimetry (DTA-TG) equipment. The surface morphology of treated leathers was observed using Scanning Electron Microscopy (SEM). The antimicrobial performance of nAg coatings on leather materials to the test microorganisms as Escherichia coli , Staphylococcus aureus , Candida albicans and Aspergillius niger was evaluated by the application of qualitative (Agar overlay method) and quantitative (percentage of microbial reduction) tests. According to qualitative test results it was found that 20 μg/cm 2 and higher concentrations of nAg on the leather samples were effective against all microorganisms tested. Moreover, quantitative test results showed that leather samples treated with 20 μg/cm 2 of nAg demonstrated the highest antibacterial activity against E. coli with 99.25% bacterium removal, whereas a 10 μg/cm 2 concentration of nAg on leather was enough to exhibit the excellent percentage reduction against S. aureus of 99.91%. The results are promising for the use of colloidal nano silver solution on lining leather as antimicrobial coating. PMID:26221087
NASA Technical Reports Server (NTRS)
Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming
2014-01-01
Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.
Optimization of wood plastic composite decks
NASA Astrophysics Data System (ADS)
Ravivarman, S.; Venkatesh, G. S.; Karmarkar, A.; Shivkumar N., D.; Abhilash R., M.
2018-04-01
Wood Plastic Composite (WPC) is a new class of natural fibre based composite material that contains plastic matrix reinforced with wood fibres or wood flour. In the present work, Wood Plastic Composite was prepared with 70-wt% of wood flour reinforced in polypropylene matrix. Mechanical characterization of the composite was done by carrying out laboratory tests such as tensile test and flexural test as per the American Society for Testing and Materials (ASTM) standards. Computer Aided Design (CAD) model of the laboratory test specimen (tensile test) was created and explicit finite element analysis was carried out on the finite element model in non-linear Explicit FE code LS - DYNA. The piecewise linear plasticity (MAT 24) material model was identified as a suitable model in LS-DYNA material library, describing the material behavior of the developed composite. The composite structures for decking application in construction industry were then optimized for cross sectional area and distance between two successive supports (span length) by carrying out various numerical experiments in LS-DYNA. The optimized WPC deck (Elliptical channel-2 E10) has 45% reduced weight than the baseline model (solid cross-section) considered in this study with the load carrying capacity meeting acceptance criterion (allowable deflection & stress) for outdoor decking application.
Thermal/acoustical aircraft insulation material
NASA Technical Reports Server (NTRS)
Struzik, E. A.; Kunz, R.; Lin, R.
1975-01-01
Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.
Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization
NASA Technical Reports Server (NTRS)
VanderWal, Randy L.
2008-01-01
Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.
Determining shear modulus of thin wood composite materials using a cantilever beam vibration method
Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan
2016-01-01
Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...
John Michopoulos; Athanasios Iliopoulos; John Hermanson
2012-01-01
As wind energy production drives the manufacturing of wind turbine blades, the utilization of glass and carbon fiber composites as a material of choice continuously increases. Consequently, the needs for accurate structural design and material qualification and certification as well as the needs for aging predictions further underline the need for accurate constitutive...
Characterization of Candidate Solar Sail Material Exposed to Space Environmental Effects
NASA Technical Reports Server (NTRS)
Edwards, David; Hovater, Mary; Hubbs, Whitney; Wertz, George; Hollerman, William; Gray, Perry
2003-01-01
Solar sailing is a unique form of propulsion where a spacecraft gains momentum from incident photons. Solar sails are not limited by reaction mass and provide continual acceleration, reduced only by the lifetime of the lightweight film in the space environment and the distance to the Sun. Once thought to be difficult or impossible, solar sailing has come out of science fiction and into the realm of possibility. Any spacecraft using this method would need to deploy a thin sail that could be as large as many kilometers in extent. The availability of strong, ultra lightweight, and radiation resistant materials will determine the future of solar sailing. The National Aeronautics and Space Administration's Marshall Space Flight Center (MSFC) is concentrating research into the utilization of ultra lightweight materials for spacecraft propulsion. The Space Environmental Effects Team at MSFC is actively characterizing candidate solar sail material to evaluate the thermo-optical and mechanical properties after exposure to space environmental effects. This paper will describe the exposure of candidate solar sail materials to emulated space environmental effects including energetic electrons, combined electrons and Ultraviolet radiation, and hypervelocity impact of irradiated solar sail material. This paper will describe the testing procedure and the material characterization results of this investigation.
Chassignole, B; Duwig, V; Ploix, M-A; Guy, P; El Guerjouma, R
2009-12-01
Multipass welds made in austenitic stainless steel, in the primary circuit of nuclear power plants with pressurized water reactors, are characterized by an anisotropic and heterogeneous structure that disturbs the ultrasonic propagation and makes ultrasonic non-destructive testing difficult. The ATHENA 2D finite element simulation code was developed to help understand the various physical phenomena at play. In this paper, we shall describe the attenuation model implemented in this code to give an account of wave scattering phenomenon through polycrystalline materials. This model is in particular based on the optimization of two tensors that characterize this material on the basis of experimental values of ultrasonic velocities attenuation coefficients. Three experimental configurations, two of which are representative of the industrial welds assessment case, are studied in view of validating the model through comparison with the simulation results. We shall thus provide a quantitative proof that taking into account the attenuation in the ATHENA code dramatically improves the results in terms of the amplitude of the echoes. The association of the code and detailed characterization of a weld's structure constitutes a remarkable breakthrough in the interpretation of the ultrasonic testing on this type of component.
Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems
NASA Astrophysics Data System (ADS)
Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul
2014-07-01
Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.
Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael
2011-01-01
This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.
Procedure improves line pipe Charpy test interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenfeld, M.J.
1997-04-14
The Charpy V-notch (CVN) impact test is a method of characterizing a line-pipe material`s notch toughness and resistance to fracture growth. Although CVN testing of line pipe material is routine, test results are sometimes misinterpreted because of specimen size and load rate on actual toughness transition behavior. These effects are readily accounted for by a simple mathematical procedure, offered here, which enables extrapolation of the full-scale transition curve from as little as a single subsize specimen test. This procedure is useful when the toughness transition curve is incomplete or nonexistent. Toughness data may be incomplete because the API 5L toughnessmore » test establishes minimum performance at a single temperature, which does not reveal the full transition curve. Toughness data may be nonexistent because the first requirements for toughness testing of line pipe appeared in the 16th Edition of API 5LX in 1969, and those requirements remain at the option of the purchaser today.« less
On the characterization of the heterogeneous mechanical response of human brain tissue.
Forte, Antonio E; Gentleman, Stephen M; Dini, Daniele
2017-06-01
The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.
An environmentally safe and effective paint removal process for aircraft
NASA Astrophysics Data System (ADS)
Kozol, Joseph
2001-03-01
To reduce hazardous waste from fleet and depot aircraft paint stripping and to conform to regulations banning toxic chemical paint strippers, the U.S. Naval Air Systems Team (materials division, depots, and head-quarters) teamed with the U.S. Air Force at Warner Robins Air Logistics Center for concept development, characterization, and demonstration of a mature, advanced paint-removal system, the Boeing xenon/flashlamp CO2 (Flashjet®) process. Extensive metallic and composite-materials testing was conducted. This paper describes the development and characterization program leading to authorization of the process for use on fixed-wing navy aircraft.
Analytical Chemistry Developmental Work Using a 243Am Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Khalil J.; Stanley, Floyd E.; Porterfield, Donivan R.
2015-02-24
This project seeks to reestablish our analytical capability to characterize Am bulk material and develop a reference material suitable to characterizing the purity and assay of 241Am oxide for industrial use. The tasks associated with this phase of the project included conducting initial separations experiments, developing thermal ionization mass spectrometry capability using the 243Am isotope as an isotope dilution spike , optimizing the spike for the determination of 241Pu- 241 Am radiochemistry, and, additionally, developing and testing a methodology which can detect trace to ultra- trace levels of Pu (both assay and isotopics) in bulk Am samples .
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
Finger materials for air cushion vehicles. Volume 1: Flexible coatings for finger materials
NASA Astrophysics Data System (ADS)
Conn, P. K.; Snell, I. C.; Klemens, W.
1984-12-01
Twenty polymer formulations from ten selected gum rubber polymers or polymer blends and fourteen formulations of castable liquid polyurethane polymers were characterized as coatings for the coated fabric that is the type material used to make flexible fingers for air cushion vehicles. The formulations were screened for crack growth and flexural fatigue resistance; the results were compared to results from a natural rubber/cisabutadiene blend control coating. In addition, selected polymers were evaluated with primary and secondary characterization tests and the results compared to results from the control formulation. One polymer also was used to evaluate the use of a reticulated carbon black to improve thermal conductivity. Several polymers had better crack growth resistance and a number had better flexural fatique resistance than the control polymer. A clorinated polyethylene polymer coated on nylon fabric had properties equivalent to the control polymer coated on nylon fabric. Hysteresis tests at different rates of deformation yielded results which suggested that the standard tests may not identify polymers with improved performance on air cushion vehicles. Woven fabric, knit, and mat structures were evaluated as reinforcements for polymer coatings; the knit and mat structures were not as efficient on a strength-to-weight basis as woven fabrics.
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
Thermoelastic analysis of solar cell arrays and their material properties
NASA Technical Reports Server (NTRS)
Salama, M. A.; Rowe, W. M.; Yasui, R. K.
1973-01-01
A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.
Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, H.
2015-01-01
Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.
Characterization of Glass Fiber Separator Material for Lithium Batteries
NASA Technical Reports Server (NTRS)
Subbarao, S.; Frank, H.
1984-01-01
Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.
Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure
Fernández, Victoria; Khayet, Mohamed
2015-01-01
Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study. PMID:26217362
NASA Astrophysics Data System (ADS)
Shangguan, Enbo; Chang, Zhaorong; Tang, Hongwei; Yuan, Xiao-Zi; Wang, Haijiang
In this paper we compare the behavior of non-spherical and spherical β-Ni(OH) 2 as cathode materials for Ni-MH batteries in an attempt to explore the effect of microstructure and surface properties of β-Ni(OH) 2 on their electrochemical performances. Non-spherical β-Ni(OH) 2 powders with a high-density are synthesized using a simple polyacrylamide (PAM) assisted two-step drying method. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric/differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET) testing, laser particle size analysis, and tap-density testing are used to characterize the physical properties of the synthesized products. Electrochemical characterization, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and a charge/discharge test, is also performed. The results show that the non-spherical β-Ni(OH) 2 materials exhibit an irregular tabular shape and a dense solid structure, which contains many overlapped sheet nano crystalline grains, and have a high density of structural disorder and a large specific surface area. Compared with the spherical β-Ni(OH) 2, the non-spherical β-Ni(OH) 2 materials have an enhanced discharge capacity, higher discharge potential plateau and superior cycle stability. This performance improvement can be attributable to a higher proton diffusion coefficient (4.26 × 10 -9 cm 2 s -1), better reaction reversibility, and lower electrochemical impedance of the synthesized material.
de Ávila, Renato Ivan; Teixeira, Gabriel Campos; Veloso, Danillo Fabrini Maciel Costa; Moreira, Larissa Cleres; Lima, Eliana Martins; Valadares, Marize Campos
2017-12-01
This study evaluated the applicability of a modified Direct Peptide Reactivity Assay (DPRA) (OECD N° 442C, 2015) through the 10-fold reduction of reaction volume (micro-DPRA, mDPRA) for skin sensitization evaluation of six commercial glyphosate-containing formulations. In addition, another modification of DPRA was proposed by adding a UVA (5J/cm 2 ) irradiation step, namely photo-mDPRA, to better characterize (photo)sensitizer materials. The phototoxicity profile of pesticides was also evaluated using the 3T3 Neutral Red Uptake Phototoxicity Test (3T3-NRU-PT) (OECD N° 432, 2004). The mDPRA could represent an environmentally acceptable test approach, since it reduces costs and organic waste. Peptide depletion was greater in photo-mDPRA and changed the reactivity class of each test material, in comparison to mDPRA. Thus, the association of mDPRA with photo-mDPRA was better for correctly characterizing human (photo)sensitizer substances and pesticides. In general, cysteine depletion was greater than that of lysine for all materials tested in both mDPRA and photo-mDPRA. Furthermore, while 3T3-NRU-PT is unable to predict (photo)sensitizers, it was capable of correctly identifying the phototoxic potential of the tested agrochemical formulations. In conclusion, mDPRA plus photo-mDPRA and 3T3-NRU-PT seem to be preliminary non-animal test batteries for skin (photo)sensitization/phototoxicity assessment of chemicals, agrochemical formulations and their ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of HMA mixtures containing Sasobit.
DOT National Transportation Integrated Search
2009-07-01
This limited study provided a laboratory and field comparative evaluation of PG 76-22 HMA : hot mix asphalt (HMA) mixture and a mixture containing the additive Sasobit. The : fundamental material characterization testing (asphalt cement binde...
High-Temperature Strain Sensing for Aerospace Applications
NASA Technical Reports Server (NTRS)
Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.
2008-01-01
Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.
NASA Technical Reports Server (NTRS)
Greivenkamp, John E. (Editor); Young, Matt (Editor)
1989-01-01
Various papers on surface characterization and testing are presented. Individual topics addressed include: simple Hartmann test data interpretation, optimum configuration of the Offner null corrector, system for phase-shifting interferometry in the presence of vibration, fringe variation and visibility in speckle-shearing interferometry, functional integral representation of rough surfaces, calibration of surface heights in an interferometric optical profiler, image formation in common path differential profilometers, SEM of optical surfaces, measuring surface profiles with scanning tunneling microscopes, surface profile measurements of curved parts, high-resolution optical profiler, scanning heterodyne interferometer with immunity from microphonics, real-time crystal axis measurements of semiconductor materials, radial metrology with a panoramic annular lens, surface analysis for the characterization of defects in thin-film processes, Spacelab Optical Viewport glass assembly optical test program for the Starlab mission, scanning differential intensity and phase system for optical metrology.
Morandi, Paolo; Hak, Sanja; Magenes, Guido
2018-02-01
This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.
Experimental characterization of meteoric material exposed to a high enthalpy flow in the Plasmatron
NASA Astrophysics Data System (ADS)
Zavalan, Luiza; Bariselli, Federico; Barros Dias, Bruno; Helber, Bernd; Magin, Thierry
2017-04-01
Meteoroids, disintegrated during their entry in the atmosphere, contribute massively to the input of cosmic metals to Earth. Yet, this phenomenon is not well understood. Experimental studies on meteor material degradation in high enthalpy facilities are scarce and often do not provide quantitative data which are necessary for the validation of the simulation tools. In this work, we tried to duplicate typical meteor flight conditions in a ground testing facility to analyze the thermo-chemical degradation mechanisms by reproducing the stagnation point region conditions. The VKI Plasmatron is one of the most powerful induction-coupled plasma wind-tunnels in the world. It represents an important tool for the characterization of ceramic and ablative materials employed in the fabrication of Thermal Protection Systems (TPS) of spacecraft. The testing methodology and measurement techniques used for TPS characterization were adapted for the investigation of evaporation and melting in samples of basalt (meteorite surrogate) and ordinary chondrite. The materials were exposed to stagnation point heat fluxes of 1 MW/m2 and 3 MW/m2. During the test, numerous local pockets were formed at the surface of the samples by the emergence of gas bubbles. Images recorded through a digital 14bit CCD camera system clearly revealed the frothing of the surface for both tested materials. This process appeared to be more heterogeneous for the basaltic samples than for the ordinary chondritic material. Surface temperature measurements obtained via a two-color pyrometer showed a maximum surface temperature in the range between 2160 and 2490 Kelvins. Some of the basaltic samples fractured during the tests. This is probably due to the strong thermal gradients experienced by the material in these harsh conditions. Therefore, the surface temperature measurements suffered sudden drops in correspondence with the fracturing time. Emission spectra of air and ablated species were collected with resolution in time and space thanks to a set-up counting three synchronized spectrometers with different line of sights. The spectra indicated dominant radiating molecules in the range from 240 to 450 nm [CN Violet and N2+ (1-)]. By analyzing the spectra of all tests, it was observed that the most volatile components Na and K were released more efficiently than the Si, Fe, Ca, Mg and Ti components. Also, some ionized atoms (Ca II, Mg II and Fe II) were identified, the lines of Ca II being the strongest in the range from 350 to 450 nm. The differences in composition between the two materials was highlighted by tracking the emission histories of the neutral elements. For example, the emission of the Si line (288.2 nm) was almost null for the ordinary chondrite compared to the basalt. Moreover, iron lines, which were present in the spectra collected for the ordinary chondrite, were not visible for basalt. These results are consistent with the different chemical composition of both materials.
ERIC Educational Resources Information Center
Borko, Hilda; Stecher, Brian; Kuffner, Karin
2007-01-01
This document includes the final data collection and scoring tools created by the "Scoop" project, a five-year project funded through the Center for Evaluation, Standards,and Student Testing (CRESST), to develop an alternative approach for characterizing classroom practice. The goal of the project was to use artifacts and related materials to…
NASA Astrophysics Data System (ADS)
Ramulu, M.; Rogers, E.
1994-04-01
The predominant machining application with graphite/epoxy composite materials in aerospace industry is peripheral trimming. The computer numerically controlled (CNC) high speed routers required to do edge trimming work are generally scheduled for production work in industry and are not available for extensive cutter testing. Therefore, an experimental method of simulating the conditions of periphery trim using a lathe is developed in this paper. The validity of the test technique will be demonstrated by conducting carbide tool wear tests under dry cutting conditions. The experimental results will be analyzed to characterize the wear behavior of carbide cutting tools in machining the composite materials.
Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils
NASA Astrophysics Data System (ADS)
Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.
2014-01-01
Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.
Characterizing the stretch-flangeability of hot rolled multiphase steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, N.; Butcher, C.; Worswick, M.
2013-12-16
Hole expansion tests are commonly used to characterize the edge stretching limit of a material. Traditionally, a conical punch is used to expand a punched hole until a through-thickness crack appears. However, many automotive stretch flanging operations involve in-plane edge stretching that is best captured with a flat punch. In this paper, hole expansion tests were carried out on two different hot-rolled multiphase steels using both flat and conical punches. The fracture mechanisms for both punch types were investigated using scanning electron microscopy (SEM)
Weisemann, Jasmin; Krez, Nadja; Fiebig, Uwe; Worbs, Sylvia; Skiba, Martin; Endermann, Tanja; Dorner, Martin B.; Bergström, Tomas; Muñoz, Amalia; Zegers, Ingrid; Müller, Christian; Jenkinson, Stephen P.; Avondet, Marc-Andre; Delbrassinne, Laurence; Denayer, Sarah; Zeleny, Reinhard; Schimmel, Heinz; Åstot, Crister; Dorner, Brigitte G.; Rummel, Andreas
2015-01-01
The detection and identification of botulinum neurotoxins (BoNT) is complex due to the existence of seven serotypes, derived mosaic toxins and more than 40 subtypes. Expert laboratories currently use different technical approaches to detect, identify and quantify BoNT, but due to the lack of (certified) reference materials, analytical results can hardly be compared. In this study, the six BoNT/A1–F1 prototypes were successfully produced by recombinant techniques, facilitating handling, as well as improving purity, yield, reproducibility and biosafety. All six BoNTs were quantitatively nicked into active di-chain toxins linked by a disulfide bridge. The materials were thoroughly characterized with respect to purity, identity, protein concentration, catalytic and biological activities. For BoNT/A1, B1 and E1, serotypes pathogenic to humans, the catalytic activity and the precise protein concentration were determined by Endopep-mass spectrometry and validated amino acid analysis, respectively. In addition, BoNT/A1, B1, E1 and F1 were successfully detected by immunological assays, unambiguously identified by mass spectrometric-based methods, and their specific activities were assigned by the mouse LD50 bioassay. The potencies of all six BoNT/A1–F1 were quantified by the ex vivo mouse phrenic nerve hemidiaphragm assay, allowing a direct comparison. In conclusion, highly pure recombinant BoNT reference materials were produced, thoroughly characterized and employed as spiking material in a worldwide BoNT proficiency test organized by the EQuATox consortium. PMID:26703728
Development and Sliding Wear Response of Epoxy Composites Filled with Coal Mine Overburden Material
NASA Astrophysics Data System (ADS)
Das, Prithika; Satapathy, Alok; Mishra, M. K.
2018-03-01
The paper reports on development and characterization of epoxy based composites filled with micro-sized mine overburden material. Coal mine overburden material is typically highly heterogeneous and is considered as waste material. For excavating each ton of coal, roughly 5 tons of overburden materials are removed and is dumped nearby occupying large space. Gainful utilization of this waste is a major challenge. In the present work, this material is used as filler materials in making a new class of epoxy matrix composites. Composites with different weight proportions of fillers (0, 10, 20, 30 and 40) wt. % are prepared by hand layup technique. Compression tests are performed as per corresponding ASTM standards to assess the compressive strength of these composites. Further, dry sliding tests are performed following ASTM G99 standards using a pin on disk machine. A design of experiment approach based on Taguchi’s L16 orthogonal arrays is adopted. Tests are performed at different sliding velocities for multiple sliding distances under varying normal loads. Specific wear rates of the composites under different test conditions are obtained. The analysis of the test results revealed that the filler content and the sliding velocity are the most predominant control factors affecting the wear rate. This work thus, opens up a new avenue for the value added utilization of coal mine overburden material.
Characterization of the Tribological Behavior of Oxide-Based NanoMaterials: Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenske, George
2017-01-04
Under the Argonne/Pixelligent cooperative research and development agreement (CRADA – C1200801), Argonne performed labscale tribological tests on proprietary nano-sized ZrO 2 material developed by Pixelligent. Pixelligent utilized their proprietary process to prepare variants with different surfactants at different loadings in different carrier fluids for testing and evaluation at Argonne. Argonne applied a range of benchtop tribological test rigs to evaluate friction and wear under a range of conditions (contact geometry, loads, speeds, and temperature) that simulated a broad range of conditions experienced in engines and driveline components. Post-test analysis of worn surfaces provided information on the structure and chemistry ofmore » the tribofilms produced during the tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanninen, M.F.; O'Donoghue, P.E.; Popelar, C.F.
1993-02-01
The project was undertaken for the purposes of quantifying the Battelle slow crack growth (SCG) test for predicting long-term performance of polyethylene gas distribution pipes, and of demonstrating the applicability of the methodology for use by the gas industry for accelerated characterization testing, thereby bringing the SCG test development effort to a closure. The work has revealed that the Battelle SCG test, and the linear fracture mechanics interpretation that it currently utilizes, is valid for a class of PE materials. The long-term performance of these materials in various operating conditions can therefore be effectively predicted.
Arc Jet Test and Analysis of Asbestos Free Solid Rocket Motor Nozzle Dome Ablative Materials
NASA Technical Reports Server (NTRS)
Clayton, J. Louie
2017-01-01
Asbestos free solid motor internal insulation samples were recently tested at the MSFC Hyperthermal Arc Jet Facility. Objectives of the test were to gather data for solid rocket motor analog characterization of ablative and in-depth thermal performance of rubber materials subject to high enthalpy/pressure flow conditions. Tests were conducted over a range of convective heat fluxes for both inert and chemically reactive sub-sonic free stream gas flow. Active instrumentation included use of total calorimeters, in-depth thermocouples, and a surface pyrometer for in-situ surface temperature measurement. Post-test sample forensics involved determination of eroded depth, charred depth, total sample weight loss, and documentation of the general condition of the eroded profile. A complete Charring Material Ablator (CMA) style aero thermal analysis was conducted for the test matrix and results compared to the measured data. In general, comparisons were possible for a number of the cases and the results show a limited predictive ability to model accurately both the ablative response and the in-depth temperature profiles. Lessons learned and modeling recommendations are made regarding future testing and modeling improvements that will increase understanding of the basic chemistry/physics associated with the complicated material ablation process of rubber materials.
Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R
2000-08-01
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.
In Situ Test Method for the Electrostatic Characterization of Lunar Dust
NASA Technical Reports Server (NTRS)
Buhler, C. R.; Calle, Carlos I.; CLements, S. J.; Mantovani, J.; Ritz, M. I.
2007-01-01
This paper serves to illustrate the testing methods necessary to classify the electrostatic properties of lunar dust using in situ instrumentation and the required techniques therein. A review of electrostatic classification of lunar simulant materials is provided as is its relevance to the success of future human lunar missions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... the following methods: NRC's Public Document Room (PDR): The public may examine and have copied, for a... Manager, Fuel Manufacturing Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear... systems. The SNM would be used as test objects for concept demonstrations and characterization testing...
BURNER RIG TESTING OF A500 C/SiC
2018-03-17
test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used
NASA Astrophysics Data System (ADS)
Röhrig, C.; Scheffer, T.; Diebels, S.
2017-09-01
Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.
DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2015-01-01
To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.
A Comparison of Quasi-Static Indentation and Drop-Weight Impact Testing on Carbon-Epoxy Laminates
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
2001-01-01
The project had two objectives: 1) The primary objective was to characterize damage tolerance of composite materials. To accomplish this, polymer matrix composites were to be subjected to static indentation as well as low-velocity impacts and the results analyzed. 2) A second objective was to investigate the effects of laser shock peening on the damage tolerance of aerospace materials, such as aluminum alloys, in terms of crack nucleation and crack propagation. The impact testing was proposed to be performed using a Dynatup drop tower. The specimens were to be placed over a square opening in a steel platen and impacted with a hemispherical tup. The damage was to be characterized in the laminate specimens. The damage tolerance of aerospace alloys was to be studied by conducting fatigue tests on aluminum alloy specimens with prior shock peening treatment. The crack length was to be monitored by a microscope and the crack propagation rate, da/dN, determined.
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
Habib, Ahasan; Sathish, Venkatachalem; Mallik, Sanku; Khoda, Bashir
2018-01-01
Three-dimensional (3D) bio-printing is a revolutionary technology to reproduce a 3D functional living tissue scaffold in-vitro through controlled layer-by-layer deposition of biomaterials along with high precision positioning of cells. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material. However, the mechanical integrity of a hydrogel material, especially in 3D scaffold architecture, is an issue. In this research, a novel hybrid hydrogel, that is, sodium alginate with carboxymethyl cellulose (CMC) is developed and systematic quantitative characterization tests are conducted to validate its printability, shape fidelity and cell viability. The outcome of the rheological and mechanical test, filament collapse and fusion test demonstrate the favorable shape fidelity. Three-dimensional scaffold structures are fabricated with the pancreatic cancer cell, BxPC3 and the 86% cell viability is recorded after 23 days. This hybrid hydrogel can be a potential biomaterial in 3D bioprinting process and the outlined characterization techniques open an avenue directing reproducible printability and shape fidelity. PMID:29558424
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization.
Khatri, Bilal; Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-25
In this work, a 3D printed polymer-metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young's modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization
Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas
2018-01-01
In this work, a 3D printed polymer–metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young’s modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators. PMID:29370112
Characterization and Modeling of Asphalt Binder Fatigue
NASA Astrophysics Data System (ADS)
Safaei, Farinaz
Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.
Composite structural materials. [aircraft structures
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1980-01-01
The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.
Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips
NASA Technical Reports Server (NTRS)
2000-01-01
This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.
Cluster 1: commercializing additive manufacturing—hurdles in materials characterization and testing
Roach, R. A.; Gardner, S. H.
2017-10-20
A major challenge in the commercialization of additive manufactured (AM) materials and processes is the ability to achieve acceptance of processes and products. There has been some progress towards acceptance has been made by adapting legacy qualification paradigms to match with the very limited process control and monitoring offered by AM machines. The opportunity for in-situ measurement can provide process monitoring and control perhaps changing the way we qualify parts however it is limited by lack of adequate process measurement methods. New measurement techniques, sensors and correlations to relevant phenomena are needed that enable process control and monitoring for consistentlymore » producing high quality articles. Beyond process data we need to characterize uncertainties of performance in all aspects of material, process and final part. These are prerequisites to achieving articles that are indeed worthy of materials characterization efforts that establish a microstructural reference of desirable performance through process-structure-property relations. Only then can industry apply physics based understanding of the material, part and process to probabilistically predict performance of an AM part. Our paper provides a brief overview, discussion of hurdles and key areas where R&D investment is needed.« less
Cluster 1: commercializing additive manufacturing—hurdles in materials characterization and testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, R. A.; Gardner, S. H.
A major challenge in the commercialization of additive manufactured (AM) materials and processes is the ability to achieve acceptance of processes and products. There has been some progress towards acceptance has been made by adapting legacy qualification paradigms to match with the very limited process control and monitoring offered by AM machines. The opportunity for in-situ measurement can provide process monitoring and control perhaps changing the way we qualify parts however it is limited by lack of adequate process measurement methods. New measurement techniques, sensors and correlations to relevant phenomena are needed that enable process control and monitoring for consistentlymore » producing high quality articles. Beyond process data we need to characterize uncertainties of performance in all aspects of material, process and final part. These are prerequisites to achieving articles that are indeed worthy of materials characterization efforts that establish a microstructural reference of desirable performance through process-structure-property relations. Only then can industry apply physics based understanding of the material, part and process to probabilistically predict performance of an AM part. Our paper provides a brief overview, discussion of hurdles and key areas where R&D investment is needed.« less
Statistical and sampling issues when using multiple particle tracking
NASA Astrophysics Data System (ADS)
Savin, Thierry; Doyle, Patrick S.
2007-08-01
Video microscopy can be used to simultaneously track several microparticles embedded in a complex material. The trajectories are used to extract a sample of displacements at random locations in the material. From this sample, averaged quantities characterizing the dynamics of the probes are calculated to evaluate structural and/or mechanical properties of the assessed material. However, the sampling of measured displacements in heterogeneous systems is singular because the volume of observation with video microscopy is finite. By carefully characterizing the sampling design in the experimental output of the multiple particle tracking technique, we derive estimators for the mean and variance of the probes’ dynamics that are independent of the peculiar statistical characteristics. We expose stringent tests of these estimators using simulated and experimental complex systems with a known heterogeneous structure. Up to a certain fundamental limitation, which we characterize through a material degree of sampling by the embedded probe tracking, these estimators can be applied to quantify the heterogeneity of a material, providing an original and intelligible kind of information on complex fluid properties. More generally, we show that the precise assessment of the statistics in the multiple particle tracking output sample of observations is essential in order to provide accurate unbiased measurements.
High-Temperature Storage Testing of ACF Attached Sensor Structures
Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura
2015-01-01
Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735
Damage accumulation in closed cross-section, laminated, composite structures
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants. Space structures typically have closed cross-sections, absent of free edges. As a result, composite material characterization data generated using finite width flat specimens does not accurately reflect the performance of the composite materials used in a closed cross-section structural configuration. Several investigators have recognized the need to develop characterization techniques for composite materials in closed cross-sectioned structures. In these investigations test methods were developed and cylindrical specimens were evaluated. The behavior of the cylindrical specimens were observed to depart from behavior typical of flat coupons. However, no attempts were made to identify and monitor the progression of damage in these cylindrical specimens during loading. The identification and monitoring of damage is fundamental to the characterization of composite materials in closed cross-section configurations. In the study reported here, a closed cross-sectioned test method was developed to monitor damage progression in 2 in. diameter cylindrical specimens and 1.5 in. finite width flat coupons subjected to quasi-static, tensile loading conditions. Damage in these specimen configurations was monitored using pulse echo ultrasonic, acoustic emission, and X-ray techniques.
Southern Impact Testing Alliance (SITA)
NASA Technical Reports Server (NTRS)
Hubbs, Whitney; Roebuck, Brian; Zwiener, Mark; Wells, Brian
2009-01-01
Efforts to form this Alliance began in 2008 to showcase the impact testing capabilities within the southern United States. Impact testing customers can utilize SITA partner capabilities to provide supporting data during all program phases-materials/component/ flight hardware design, development, and qualification. This approach would allow programs to reduce risk by providing low cost testing during early development to flush out possible problems before moving on to larger scale1 higher cost testing. Various SITA partners would participate in impact testing depending on program phase-materials characterization, component/subsystem characterization, full-scale system testing for qualification. SITA partners would collaborate with the customer to develop an integrated test approach during early program phases. Modeling and analysis validation can start with small-scale testing to ensure a level of confidence for the next step large or full-scale conclusive test shots. Impact Testing Facility (ITF) was established and began its research in spacecraft debris shielding in the early 1960's and played a malor role in the International Space Station debris shield development. As a result of return to flight testing after the loss of STS-107 (Columbia) MSFC ITF realized the need to expand their capabilities beyond meteoroid and space debris impact testing. MSFC partnered with the Department of Defense and academic institutions as collaborative efforts to gain and share knowledge that would benefit the Space Agency as well as the DoD. MSFC ITF current capabilities include: Hypervelocity impact testing, ballistic impact testing, and environmental impact testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.; Asner, David M.
PNNL has developed and continues to develop innovative methods for characterizing irradiated materials from nuclear reactors and particle accelerators for various clients and collaborators around the world. The continued development of these methods, in addition to the ability to perform unique scientific investigations of the effects of radiation on materials could be greatly enhanced with easy access to irradiation facilities. A Tunable Irradiation Testbed with customized targets (a 30 MeV, 1mA cyclotron or similar coupled to a unique target system) is shown to provide a much more flexible and cost-effective source of irradiating particles than a test reactor or isotopicmore » source. The configuration investigated was a single shielded building with multiple beam lines from a small, flexible, high flux irradiation source. Potential applications investigated were the characterization of radiation damage to materials applicable to advanced reactors, fusion reactor, legacy waste, (via neutron spectra tailored to HTGR, molten salt, LWR, LMR, fusion environments); 252Cf replacement; characterization of radiation damage to materials of interest to High Energy Physics to enable the neutrino program; and research into production of short lived isotopes for potential medical and other applications.« less
Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Luginbühl, Werner; Kremp, Anke; Suikkanen, Sanna; Kankaanpää, Harri; Burrell, Stephen; Söderström, Martin; Vanninen, Paula
2015-01-01
A saxitoxin (STX) proficiency test (PT) was organized as part of the Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk (EQuATox) project. The aim of this PT was to provide an evaluation of existing methods and the European laboratories’ capabilities for the analysis of STX and some of its analogues in real samples. Homogenized mussel material and algal cell materials containing paralytic shellfish poisoning (PSP) toxins were produced as reference sample matrices. The reference material was characterized using various analytical methods. Acidified algal extract samples at two concentration levels were prepared from a bulk culture of PSP toxins producing dinoflagellate Alexandrium ostenfeldii. The homogeneity and stability of the prepared PT samples were studied and found to be fit-for-purpose. Thereafter, eight STX PT samples were sent to ten participating laboratories from eight countries. The PT offered the participating laboratories the possibility to assess their performance regarding the qualitative and quantitative detection of PSP toxins. Various techniques such as official Association of Official Analytical Chemists (AOAC) methods, immunoassays, and liquid chromatography-mass spectrometry were used for sample analyses. PMID:26602927
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2015-01-01
Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, P. C.; Strout, S.; Reynolds, J. G.
Incidents caused by fire and other thermal events can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Thus, it is important to understand the response of energetic materials to thermal insults. The One-Dimensional-Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory (LLNL) has been used for decades to characterize thermal safety of energetic materials. In this study, an integration of a pressure monitoring element has been added into the ODTX system (P-ODTX) to perform thermal explosion (cook-off) experiments (thermal runaway) on PETN powder, PBX-9407, LX-10-2, LX-17-1, and detonator samples (cupmore » tests). The P-ODTX testing generates useful data (thermal explosion temperature, thermal explosion time, and gas pressures) to assist with the thermal safety assessment of relevant energetic materials and components. This report summarizes the results of P-ODTX experiments that were performed from May 2015 to July 2017. Recent upgrades to the data acquisition system allows for rapid pressure monitoring in microsecond intervals during thermal explosion. These pressure data are also included in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiaro, P.J.
A series of tests were performed at Oak Ridge National Laboratory (ORNL) to evaluate and characterize the radiological response of a ''Cricket'' radiation detection system. The ''Cricket'' is manufactured by RAD/COMM Systems Corp., which is located in Ontario, Canada. The system is designed to detect radioactive material that may be contained in scrap metal. The Cricket's detection unit is mounted to the base of a grappler and monitors material, while the grappler's tines hold the material. It can also be used to scan material in an attempt to isolate radioactive material if an alarm occurs. Testing was performed at themore » Environmental Effects Laboratory located at ORNL and operated by the Engineering Science and Technology Division. Tests performed included the following: (1) Background stability, (2) Energy response using {sup 241}Am, {sup 137}Cs, and {sup 60}Co, (3) Surface uniformity, (4) Angular dependence, (5) Alarm actuation, (6) Alarm threshold vs. background, (7) Shielding, (8) Response to {sup 235}U, (9) Response to neutrons using unmoderated {sup 252}Cf, and (10) Response to transient radiation. This report presents a summary of the test results. Background measurements were obtained prior to the performance of each individual test.« less
1994-09-01
materials. Also, available data from drilling rates in the mining and tunneling industries (Howarth and Rowlands 1987, Somerton 1959) indicate a...selected uniform natural rock materials and several man -made rock simulants were used to obtain drilling parameter records for materials of known...Dredging Seminar, Atlantic City, NJ, May 1993. Western Dredging Association (WEDA) and Texas A&M University. Somerton , W. H. (1959). "A laboratory study of
A Novel Solid State Ultracapacitor
NASA Technical Reports Server (NTRS)
Cortes-Pena, A. Y.; Rolin, T. D.; Hill, C. W.
2017-01-01
Novel dielectric materials were researched to develop an internal barrier layer capacitor that is fully solid state. These materials included reduced nanoparticles of barium titanate that were coated with various atomic layer deposited oxides. The nanoparticle powders were then densified into pellets and characterized using a dielectric test fixture over a frequency range of 20 Hz to 2 MHz. Densification and sintering were evaluated using scanning electron microscopic techniques. Ultimately, the samples showing the most promising electrical characteristics of permittivity, dissipation factor and equivalent series resistance were chosen to manufacture devices for subsequent testing.
Impression Testing of Self-Healing Polymers
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Huber, Amy
2005-01-01
As part of the BIOSANT program (biologically-inspired smart nanotechnology), scientists at NASA-Langley have identified a "self-healing" plastic that spontaneously closes the hole left by the passage of a bullet. To understand and generalize the phenomenon in question, the mechanical properties responsible for this ability are being explored. Low-rate impression testing was chosen to characterize post-yield material properties, and it turned out that materials that heal following ballistic puncture also show up to 80% healing of the low-rate impression. Preliminary results on the effects of temperature and rate of puncture are presented.
Using the split Hopkinson pressure bar to validate material models.
Church, Philip; Cornish, Rory; Cullis, Ian; Gould, Peter; Lewtas, Ian
2014-08-28
This paper gives a discussion of the use of the split-Hopkinson bar with particular reference to the requirements of materials modelling at QinetiQ. This is to deploy validated material models for numerical simulations that are physically based and have as little characterization overhead as possible. In order to have confidence that the models have a wide range of applicability, this means, at most, characterizing the models at low rate and then validating them at high rate. The split Hopkinson pressure bar (SHPB) is ideal for this purpose. It is also a very useful tool for analysing material behaviour under non-shock wave loading. This means understanding the output of the test and developing techniques for reliable comparison of simulations with SHPB data. For materials other than metals comparison with an output stress v strain curve is not sufficient as the assumptions built into the classical analysis are generally violated. The method described in this paper compares the simulations with as much validation data as can be derived from deployed instrumentation including the raw strain gauge data on the input and output bars, which avoids any assumptions about stress equilibrium. One has to take into account Pochhammer-Chree oscillations and their effect on the specimen and recognize that this is itself also a valuable validation test of the material model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Guasp, Edwin; Manzo, Michelle A.
1997-01-01
Secondary alkaline batteries, such as nickel-cadmium and silver-zinc, are commonly used for aerospace applications. The uniform evaluation and comparison of separator properties for these systems is dependent upon the measurement techniques. This manual presents a series of standard test procedures that can be used to evaluate, compare, and select separator materials for use in alkaline batteries. Detailed test procedures evaluating the following characteristics are included in this manual: physical measurements of thickness and area weight, dimensional stability measurements, electrolyte retention, resistivity, permeability as measured via bubble pressure, surface evaluation via SEM, chemical stability, and tensile strength.
Characterization of Triaxial Braided Composite Material Properties for Impact Simulation
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.
2009-01-01
The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.
From the promotion of biodiversity to the Recovery of organic waste
NASA Astrophysics Data System (ADS)
Jammoukh, Mustapha; Mansouri, Khalifa; Salhi, Bachir
2018-05-01
This article presents an empirical research to classify a new renewable resource material, as opposed to eco-composites, it has been neglected by the materials specialist. This classification is based on the typology of elastic behavior demonstrated by tensile tests. In addition, some identifying criterions of the usefulness of this material were examined. To justify the relevance of this classification, curves from the extension of tests focusing on the virgin material, illustrate significant results of the review. Obtained from waste, having a significant recycling possibilities and potential from renewable resources, bio-mechanically characterized loads will be injected into polymeric materials of different categories. All in the perspective of promoting changes in thermomechanical properties, whether static or dynamic; such as resistance to corrosion, heat, wear… They result in functional changes such as security, relief, coatings and stability…
MISSE 6-Testing Materials in Space
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S; Kinard, William H.
2008-01-01
The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment by placing them in space environment for several months. In this paper, a few materials and components from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These include laser and optical elements for photonic devices. The pre-characterized MISSE 6 materials were packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment.
Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas.
Xie, Jiangkun; Yan, Naiqiang; Qu, Zan; Yang, Shijian
2012-01-01
Porous Cu-BTC material was synthesized by the solvothermal method. Powder X-ray diffraction (PXRD) was used to test the phase purity of the synthesized material and investigate its structural stability under the influence of flue gas components. The thermal stability of the material was determined through thermal gravimetric (TG) analysis. Scanning electron microscopy (SEM) was employed to study the microstructure of the material. Cu-BTC was demonstrated not only to have high CO2 adsorption capacity but also good selectivity of CO2 over N2 by means of packed bed tests. The adsorption capacity of Cu-BTC for CO2 was about 69 mL/g at 22 degrees C. The influence of the main flue gas components on the CO2 capacity of the material were discussed as well.
Ramadan, Sherif; Paul, Narinder; Naguib, Hani E
2018-04-01
A simple myocardial analogue material has great potential to help researchers in the creation of medical CT Imaging phantoms. This work aims to outline a Bis(2-ethylhexyl) phthalate (DEHP) plasticizer/PVC material to achieve this. DEHP-PVC was manufactured in three ratios, 75, 80, and 85% DEHP by heating at 110 °C for 10 min to promote DEHP-PVC binding followed by heating at 150 °C to melt the blend. The material was then tested utilizing FTIR, tensile testing, dynamic mechanical analysis and imaged with computed tomography. The FTIR testing finds the presence of C-CL and carbonyl bonds that demonstrate the binding required in this plasticized material. The tensile testing finds a modulus of 180-20 kPa that increases with the proportion of plasticizer. The dynamic mechanical analysis finds a linear increase in viscoelastic properties with a storage/loss modulus of 6/.5-120/18 kPa. Finally, the CT number of the material increases with higher PVC content from 55 to 144HU. The 80% DEHP-PVC ratio meets the mechanical and CT properties necessary to function as a myocardial tissue analogue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Sokolov, Mikhail A; Nanstad, Randy K
Material fracture toughness in the fully ductile region can be described by a J-integral vs. crack growth resistance curve (J-R curve). As a conventional J-R curve measurement method, the elastic unloading compliance (EUC) method becomes impractical for elevated temperature testing due to relaxation of the material and friction induced back-up shape of the J-R curve. One alternative solution of J-R curve testing applies the Direct Current Potential Drop (DCPD) technique for measuring crack extension. However, besides crack growth, potential drop can also be influenced by plastic deformation, crack tip blunting, etc., and uncertainties exist in the current DCPD methodology especiallymore » in differentiating potential drop due to stable crack growth and due to material deformation. Thus, using DCPD for J-R curve determination remains a challenging task. In this study, a new adjustment procedure for applying DCPD to derive the J-R curve has been developed for conventional fracture toughness specimens, including compact tension, three-point bend, and disk-shaped compact specimens. Data analysis has been performed on Oak Ridge National Laboratory (ORNL) and American Society for Testing and Materials (ASTM) interlaboratory results covering different specimen thicknesses, test temperatures, and materials, to evaluate the applicability of the new DCPD adjustment procedure for J-R curve characterization. After applying the newly-developed procedure, direct comparison between the DCPD method and the normalization method on the same specimens indicated close agreement for the overall J-R curves, as well as the provisional values of fracture toughness near the onset of ductile crack extension, Jq, and of tearing modulus.« less
Cryogenic properties of dispersion strengthened copper for high magnetic fields
NASA Astrophysics Data System (ADS)
Toplosky, V. J.; Han, K.; Walsh, R. P.; Swenson, C. A.
2014-01-01
Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.
NASA Technical Reports Server (NTRS)
Elliott, Holly A.; Dudley, Kenneth L.; Smith, Joseph G.; Connell, John W.; Ghose, Sayata; Watson, Kent A.; Sun, Keun J.
2009-01-01
The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electrical material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver(Ag), platinum(Pt) and palladium(Pd) with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The present study is focused on silver decorated MWCNTs dispersed in a polyimide matrix. The Ag-containing MWCNTs were melt mixed into Ultem(TradeMark) and the mixture extruded as ribbons. The extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electrical and electromagnetic properties at 8-12 GHz. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity (epsilon ) and loss factor (epsilon") indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offers a new class of materials with potential applications in electronics, microwave engineering and optics.
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Dudley, Kenneth L.; Elliott, Holly A.; Smith, Joseph G.; Connell, John W.
2009-01-01
The measurement of observable electromagnetic phenomena in materials and their derived intrinsic electric material properties are of prime importance in the discovery and development of material systems for electronic and aerospace applications. Nanocomposite materials comprised of metal decorated multi-walled carbon nanotubes (MWCNTs) were prepared by a facile method and characterized. Metal particles such as silver, platinum and palladium with diameters ranging from less than 5 to over 50 nanometers were distributed randomly on the MWCNTs. The metal-containing MWCNTs were then melt mixed into a polymer matrix and the mixture extruded as ribbons. These extruded ribbons exhibited a moderate to high degree of MWCNT alignment as determined by HRSEM. These ribbons were then fabricated into test specimens while maintaining MWCNT alignment and subsequently characterized for electromagnetic properties at 8-12 GHz. The present study is focused on silver decorated MWCNTs dispersed in an Ultem polyimide matrix. The results of the electromagnetic characterization showed that certain sample configurations exhibited a decoupling of the permittivity and loss factor (?? and ??) indicating that these properties could be tailored within certain limits. The decoupling and independent control of these fundamental electrical material parameters offer a new class of materials with potential applications in electronics, microwave engineering and optics.
Cost-Efficient Storage of Cryogens
NASA Technical Reports Server (NTRS)
Fesmire, J. E.; Sass, J. P.; Nagy, Z.; Sojoumer, S. J.; Morris, D. L.; Augustynowicz, S. D.
2007-01-01
NASA's cryogenic infrastructure that supports launch vehicle operations and propulsion testing is reaching an age where major refurbishment will soon be required. Key elements of this infrastructure are the large double-walled cryogenic storage tanks used for both space vehicle launch operations and rocket propulsion testing at the various NASA field centers. Perlite powder has historically been the insulation material of choice for these large storage tank applications. New bulk-fill insulation materials, including glass bubbles and aerogel beads, have been shown to provide improved thermal and mechanical performance. A research testing program was conducted to investigate the thermal performance benefits as well as to identify operational considerations and associated risks associated with the application of these new materials in large cryogenic storage tanks. The program was divided into three main areas: material testing (thermal conductivity and physical characterization), tank demonstration testing (liquid nitrogen and liquid hydrogen), and system studies (thermal modeling, economic analysis, and insulation changeout). The results of this research work show that more energy-efficient insulation solutions are possible for large-scale cryogenic storage tanks worldwide and summarize the operational requirements that should be considered for these applications.
Development of an Input Suite for an Orthotropic Composite Material Model
NASA Technical Reports Server (NTRS)
Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther
2017-01-01
An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.
Development of a thermal acoustical aircraft insulation material
NASA Technical Reports Server (NTRS)
Lin, R. Y.; Struzik, E. A.
1974-01-01
A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements.
Evaluation of HMA mixtures containing Sasobit.
DOT National Transportation Integrated Search
2009-07-01
This limited study provided a laboratory and field comparative evaluation of PG 76-22 HMA hot mix asphalt (HMA) mixture and a mixture containing the additive Sasobit. The fundamental material characterization testing (asphalt cement binder rh...
Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests
NASA Technical Reports Server (NTRS)
Cowardin, Heather
2016-01-01
The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.
NASA Astrophysics Data System (ADS)
Sun, W.; Cai, Y. G.; Feng, Y. M.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.
2018-01-01
Alpine regions account for about 27.9% of total land area in China. Northeast China, Inner Mongolia, Northwest China and other regions are located in alpine regions, wherein the above regions are rich in energy. However, the low-temperature impact embrittlement temperature of traditional PVC cable materials is between -15°C and -20°C, which is far lower than actual operation requirements. Cable insulation and sheath are always damaged during cable laying in alpine regions. Therefore, it is urgent to develop low-temperature-resistant cables applicable to low-temperature environment in alpine regions, and safe and stable operation of power grids in the alpine regions can be guaranteed. In the paper, cold-resistant PVC formula systems were mainly trial-manufactured and studied. Appropriate production technologies and formulas were determined through selecting raw materials and modified materials. The low-temperature impact embrittlement temperature was adjusted below -50°C under the precondition that PVC cable materials met national standard property requirements. Cold-resistant PVC cable materials were prepared, which were characterized by excellent physical and mechanical properties, and sound extrusion process, and cold-resistant PVC cable materials can meet production requirements of low-temperature-resistant cables. Meanwhile, the prepared cold-resistant cable material was used for extruding finished product cables and trial-manufacturing sample cables. Type tests of low temperature elongation ratio, 15min withstand voltage, etc. were completed for 35kV and lower sample cables in Mohe Low-temperature Test Site. All properties were consistent with standard requirements.
The construction of life prediction models for the design of Stirling engine heater components
NASA Technical Reports Server (NTRS)
Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.
1983-01-01
The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVoto, Douglas J; Major, Joshua; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees Celcius to 125 degrees Celcius. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Degradation Characterization of Thermal Interface Greases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Major, Joshua; Narumanchi, Sreekant V; Paret, Paul P
Thermal interface materials (TIMs) are used in power electronics packaging to minimize thermal resistance between the heat generating component and the heat sink. Thermal greases are one such class. The conformability and thin bond line thickness (BLT) of these TIMs can potentially provide low thermal resistance throughout the operation lifetime of a component. However, their performance degrades over time due to pump-out and dry-out during thermal and power cycling. The reliability performance of greases through operational cycling needs to be quantified to develop new materials with superior properties. NREL, in collaboration with DuPont, has performed thermal and reliability characterization ofmore » several commercially available thermal greases. Initial bulk and contact thermal resistance of grease samples were measured, and then the thermal degradation that occurred due to pump-out and dry-out during temperature cycling was monitored. The thermal resistances of five different grease materials were evaluated using NREL's steady-state thermal resistance tester based on the ASTM test method D5470. Greases were then applied, utilizing a 2.5 cm x 2.5 cm stencil, between invar and aluminum plates to compare the thermomechanical performance of the materials in a representative test fixture. Scanning Acoustic microscopy, thermal, and compositional analyses were performed periodically during thermal cycling from -40 degrees C to 125 degrees C. Completion of this characterization has allowed for a comprehensive evaluation of thermal greases both for their initial bulk and contact thermal performance, as well as their degradation mechanisms under accelerated thermal cycling conditions.« less
Small scale mechanical characterization of thin foil materials via pin load microtesting
Wheeler, Robert; Pandey, Amit; Shyam, Amit; ...
2015-05-06
In situ scanning electron microscope (SEM) experiments, where small-scale mechanical tests are conducted on micro- and nanosized specimens, allow direct visualization of elastic and plastic responses over the entirety of the volume being deformed. This enables precise spatial and temporal correlation of slip events contributing to the plastic flow evidenced in a stress–strain curve. A new pin-loading methodology has been employed, in situ within the SEM, to conduct microtensile tests on thin polycrystalline metal foils. This approach can be tailored to a specific foil whose particular grain size may range from microns to tens of microns. Manufacture of the specializedmore » pin grip was accomplished via silicon photolithography-based processing followed by subsequent focused ion beam finishing. Microtensile specimen preparation was achieved by combining a stencil mask methodology employing broad ion beam sputtering along with focused ion beam milling in the study of several metallic foil materials. Finite-element analyses were performed to characterize the stress and strain distributions in the pin grip and micro-specimen under load. Furthermore, under appropriately conceived test conditions, uniaxial stress–strain responses measured within these foils by pin-load microtensile testing exhibit properties consistent with larger scale tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allain, Jean Paul
2014-08-08
This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.
Biological materials: a materials science approach.
Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M
2011-07-01
The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.
Impact of the formaldehyde concentration in the air on the sink effect of a coating material
NASA Astrophysics Data System (ADS)
Tiffonnet, Anne-Lise; Tourreilles, Céline; Duforestel, Thierry
2018-02-01
This study aims to characterize, from a numerical modelling, the sorption behaviour of a material (a plasticised flooring material) when it is exposed to a pollutant commonly encountered in indoor environments (formaldehyde). It deals with the influence of the pollutant concentration in the room air on the sink effect of the material. The numerical simulations are based on a macroscopic modelling using experimental test results obtained elsewhere. The consequences on the room inertia are also discussed, and analogies between mass transfer and heat transfer are highlighted.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Gilland, James H.; Haag, Thomas W.; Mackey, Jonathan; Yim, John; Pinero, Luis; Williams, George; Peterson, Peter; Herman, Daniel
2017-01-01
NASA's Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5kW Technology Demonstration Unit-3 (TDU-3) has been the subject of extensive technology maturation in preparation for flight system development. Detailed performance, stability, and plume characterization tests of the thruster were performed at NASA GRC's Vacuum Facility 5 (VF-5). The TDU-3 thruster implements a magnetic topology that is identical to TDU-1. The TDU-3 boron nitride silica composite discharge channel material is different than the TDU-1 heritage boron nitride discharge channel material. Performance and stability characterization of the TDU-3 thruster was performed at discharge voltages between 300V and 600V and at discharge currents between 5A and 21.8A. The thruster performance and stability were assessed for varying magnetic field strength, cathode flow fractions between 5% and 9%, varying harness inductance, and for reverse magnet polarity. Performance characterization test results indicate that the TDU-3 thruster performance is in family with the TDU-1 levels. TDU-3's thrust efficiency of 65% and specific impulse of 2,800sec at 600V and 12.5kW exceed performance levels of SOA Hall thrusters. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations (discharge current peak-to-peak and root mean square magnitudes), discharge current waveform power spectral density analysis, and maps of the current-voltage-magnetic field. Stability characterization test results indicate a stability profile similar to TDU-1. Finally, comparison of the TDU-1 and TDU-3 plume profiles found that there were negligible differences in the plasma plume characteristics between the TDU with heritage boron nitride versus the boron nitride silica composite discharge channel.
NASA Technical Reports Server (NTRS)
Castelli, Michael G.
1990-01-01
A number of viscoplastic constitutive models were developed to describe deformation behavior under complex combinations of thermal and mechanical loading. Questions remain, however, regarding the validity of procedures used to characterize these models for specific structural alloys. One area of concern is that the majority of experimental data available for this purpose are determined under isothermal conditions. This experimental study is aimed at determining whether viscoplastic constitutive theories characterized using an isothermal data base can adequately model material response under the complex thermomechanical loading conditions typical of power generation service. The approach adopted was to conduct a series of carefully controlled thermomechanical experiments on a nickel-based superalloy, Hastelloy Alloy X. Previous investigations had shown that this material experiences metallurgical instabilities leading to complex hardening behavior, termed dynamic strain aging. Investigating this phenomenon under full thermomechanical conditions leads to a number of challenging experimental difficulties which up to the present work were unresolved. To correct this situation, a number of advances were made in thermomechanical testing techniques. Advanced methods for dynamic temperature gradient control, phasing control and thermal strain compensation were developed and incorporated into real time test control software. These advances allowed the thermomechanical data to be analyzed with minimal experimental uncertainty. The thermomechanical results were evaluated on both a phenomenological and microstructural basis. Phenomenological results revealed that the thermomechanical hardening trends were not bounded by those displayed under isothermal conditions. For the case of Hastelloy Alloy X (and similar dynamic strain aging materials), this strongly suggests that some form of thermomechanical testing is necessary when characterizing a thermoviscoplastic deformation model. Transmission electron microscopy was used to study the microstructural physics, and analyze the unique phenomenological behavior.
Ecotoxicological characterization of hazardous wastes.
Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T
2008-06-01
In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michiels, Steven, E-mail: michiels.steven@kuleuven
Purpose: 3D printing technology is investigated for the purpose of patient immobilization during proton therapy. It potentially enables a merge of patient immobilization, bolus range shifting, and other functions into one single patient-specific structure. In this first step, a set of 3D printed materials is characterized in detail, in terms of structural and radiological properties, elemental composition, directional dependence, and structural changes induced by radiation damage. These data will serve as inputs for the design of 3D printed immobilization structure prototypes. Methods: Using four different 3D printing techniques, in total eight materials were subjected to testing. Samples with a nominalmore » dimension of 20 × 20 × 80 mm{sup 3} were 3D printed. The geometrical printing accuracy of each test sample was measured with a dial gage. To assess the mechanical response of the samples, standardized compression tests were performed to determine the Young’s modulus. To investigate the effect of radiation on the mechanical response, the mechanical tests were performed both prior and after the administration of clinically relevant dose levels (70 Gy), multiplied with a safety factor of 1.4. Dual energy computed tomography (DECT) methods were used to calculate the relative electron density to water ρ{sub e}, the effective atomic number Z{sub eff}, and the proton stopping power ratio (SPR) to water SPR. In order to validate the DECT based calculation of radiological properties, beam measurements were performed on the 3D printed samples as well. Photon irradiations were performed to measure the photon linear attenuation coefficients, while proton irradiations were performed to measure the proton range shift of the samples. The directional dependence of these properties was investigated by performing the irradiations for different orientations of the samples. Results: The printed test objects showed reduced geometric printing accuracy for 2 materials (deviation > 0.25 mm). Compression tests yielded Young’s moduli ranging from 0.6 to 2940 MPa. No deterioration in the mechanical response was observed after exposure of the samples to 100 Gy in a therapeutic MV photon beam. The DECT-based characterization yielded Z{sub eff} ranging from 5.91 to 10.43. The SPR and ρ{sub e} both ranged from 0.6 to 1.22. The measured photon attenuation coefficients at clinical energies scaled linearly with ρ{sub e}. Good agreement was seen between the DECT estimated SPR and the measured range shift, except for the higher Z{sub eff}. As opposed to the photon attenuation, the proton range shifting appeared to be printing orientation dependent for certain materials. Conclusions: In this study, the first step toward 3D printed, multifunctional immobilization was performed, by going through a candidate clinical workflow for the first time: from the material printing to DECT characterization with a verification through beam measurements. Besides a proof of concept for beam modification, the mechanical response of printed materials was also investigated to assess their capabilities for positioning functionality. For the studied set of printing techniques and materials, a wide variety of mechanical and radiological properties can be selected from for the intended purpose. Moreover the elaborated hybrid DECT methods aid in performing in-house quality assurance of 3D printed components, as these methods enable the estimation of the radiological properties relevant for use in radiation therapy.« less
NASA Astrophysics Data System (ADS)
Smith, James A.; Lacy, Jeffrey M.; Scott, Clark L.; Benefiel, Bradley C.; Lévesque, Daniel; Monchalin, Jean-Pierre; Lord, Martin
2018-04-01
As part of the U.S. High Performance Research Reactor program, a laser shock test system is being developed by the Idaho National Laboratory (INL) to characterize interface strength in innovative plate fuel for research reactors around the world. The INL has been working with National Research Council Canada (NRC) on this project for the last five years. One of the concerns is the difficulty of calibrating and standardizing the laser shock technique. A recent analytical study and testing support the use of the Hugoniot Elastic Limit (HEL) in materials as a robust and simple benchmark to compare stresses generated by different laser shock systems. Using a non-contact laser velocimeter based on a solid Fabry-Perot etalon, the systems at NRC and INL show that the back-surface velocity reached at the HEL is consistent, and independent of the laser power used. In this work, the laser velocimeter of the NRC system is tested against a fast rotating wheel to verify accuracy and determine best operating conditions. A round robin test between the two laser shock systems on plates of different aluminum alloys is presented that shows the consistent characterization of the aluminum alloys based on the HEL velocities as well as determines the bias between the systems. The effects of setup parameters on other characteristics of the back-surface velocity trace and corresponding stress wave are also discussed.
NASA Astrophysics Data System (ADS)
Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger
2016-12-01
Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.
NASA Astrophysics Data System (ADS)
Pollak, Randall D.
Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the experimental data for the dual-phase Ti-6Al-4V and were applied to the beta annealed variant in order to estimate stress-life behavior using a small-sample approach. Based on this research, designers should be better able to make reliable estimates of fatigue strength parameters using small-sample testing.
A hydrostatic stress-dependent anisotropic model of viscoplasticity
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Tao, Q.; Verrilli, M. J.
1994-01-01
A hydrostatic stress-dependent, anisotropic model of viscoplasticity is formulated as an extension of Bodner's model. This represents a further extension of the isotropic Bodner model over that made to anisotropy by Robinson and MitiKavuma. Account is made of the inelastic deformation that can occur in metallic composites under hydrostatic stress. A procedure for determining the material parameters is identified that is virtually identical to the established characterization procedure for the original Bodner model. Characterization can be achieved using longitudinal/transverse tensile and shear tests and hydrostatic stress tests; alternatively, four off-axis tensile tests can be used. Conditions for a yield stress minimum under off-axis tension are discussed. The model is applied to a W/Cu composite; characterization is made using off-axis tensile data generated at NASA Lewis Research Center (LeRC).
Material characterization using ultrasound tomography
NASA Astrophysics Data System (ADS)
Falardeau, Timothe; Belanger, Pierre
2018-04-01
Characterization of material properties can be performed using a wide array of methods e.g. X-ray diffraction or tensile testing. Each method leads to a limited set of material properties. This paper is interested in using ultrasound tomography to map speed of sound inside a material sample. The velocity inside the sample is directly related to its elastic properties. Recent develop-ments in ultrasound diffraction tomography have enabled velocity mapping of high velocity contrast objects using a combination of bent-ray time-of-flight tomography and diffraction tomography. In this study, ultrasound diffraction tomography was investigated using simulations in human bone phantoms. A finite element model was developed to assess the influence of the frequency, the number of transduction positions and the distance from the sample as well as to adapt the imaging algorithm. The average velocity in both regions of the bone phantoms were within 5% of the true value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
NASA Astrophysics Data System (ADS)
Nilsson, S.; Jänis, A.; Gustafsson, M.; Kjellgren, J.; Sume, Ain
2008-10-01
This paper describes the research efforts made at the Swedish Defence Research Agency (FOI) concerning through-the-wall imaging radar, as well as fundamental characterization of various wall materials. These activities are a part of two FOI-projects concerning security sensors in the aspects of Military Operations in Urban Terrain (MOUT) and Homeland Defence. Through-the-wall high resolution imaging of a human between 28-40 GHz has been performed at FOI. The UWB radar that was used is normally a member of the instrumentation of the FOI outdoor RCS test range Lilla Gåra. The armed test person was standing behind different kinds of walls. The radar images were generated by stepping the turntable in azimuth and elevation. The angular resolution in the near-field was improved by refocusing the parabolic antennas, which in combination with the large bandwidth (12 GHz) gave extremely high resolution radar images. A 3D visualization of the person even exposed the handgun tucked into one hip pocket. A qualitative comparison between the experimental results and simulation results (physical optics-based method) will also be presented. The second part of this paper describes results from activities at FOI concerning material characterization in the 2-110 GHz region. The transmission of building, packing and clothing materials has been experimentally determined. The wide-band measurements in free space were carried out with a scalar network analyzer. In this paper results from these characterizations will be presented. Furthermore, an experimental investigation will be reported of how the transmission properties for some moisted materials change as a function of water content and frequency. We will also show experimental results of how the transmission properties of a pine panel are affected when the surface is coated with a thin surface layer of water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiaro, PJ
The Environmental Effects Laboratory of the Engineering Science and Technology Division of Oak Ridge National Laboratory performed a series of tests to further evaluate and characterize the radiological response of a ''Cricket'' radiation detection system. The Cricket, manufactured by Rad/Comm Systems Corporation of Ontario, Canada, is designed to detect radioactive material that may be contained in scrap metal. The Cricket's detection unit is designed to be mounted to the base of a grappler, allowing it to monitor material while the material is being held by the grappler tines. The Cricket was tested for background stability, energy response, spherical response, surfacemore » uniformity, angular dependence, and alarm actuation. Some of these tests were repeated from a prior test of a Cricket at the Environmental Effects Laboratory as reported in ORNL/TM-2002/94. Routine environmental tests--normal temperature and relatively humidity--were also performed as part of this testing process. Overall, the Cricket performed well during the testing process. The design of the instrument and the inherent photon energy of the radionuclides had some affect on portions of the tests but do not detract from the value-added benefits of the Cricket's detection capabilities.« less
Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan
2015-01-01
Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631
NASA Technical Reports Server (NTRS)
Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)
1992-01-01
The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.
On-Chip Hardware for Cell Monitoring: Contact Imaging and Notch Filtering
2005-07-07
a polymer carrier. Spectrophotometer chosen and purchased for testing optical filters and materials. Characterization and comparison of fabricated...reproducibility of behavior. Multi-level SU8 process developed. Optimization of actuator for closing vial lids and development of lid sealing technology is...bending angles characterized as a function of temperature in NaDBS solution. " Photopatternable polymers are a viable interim packaging solution; through
Laboratory study of PCBs transport from primary sources to ...
The sorption of airborne polychlorinated biphenyls (PCBs) by twenty building materials and their subsequent re-emission (desorption) from concrete were investigated using two 53-L environmental chambers connected in series with a field-collected caulk in the source chamber serving as a stable source of PCBs and building materials in the test chamber. During the tests, the PCB concentrations in the outlet air of the test chamber were monitored and the building materials were removed from the test chamber at different times to determine their PCB content. Among the materials tested, a petroleum-based paint, a latex paint, and a certain type of carpet were among the strongest sinks. Solvent-free epoxy coating, certain types of flooring materials, and brick were among the weakest sinks. For a given sink material, PCB congeners with lower vapor pressures were sorbed in larger quantities. Rough estimates of the partition and diffusion coefficients were obtained by applying a sink model to the data acquired from the chamber studies. A desorption test with the concrete panels showed that re-emission is a slow process, suggesting that PCB sinks, e.g. concrete, can release PCBs into the air for a prolonged period of time (years or decades). This study could fill some of the data gaps associated with the characterization of PCB sinks in contaminated buildings. This paper summarizes the laboratory research results for PCB transport from primary sources to PCB sinks, includ
Tissue Anisotropy Modeling Using Soft Composite Materials.
Chanda, Arnab; Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications.
Tissue Anisotropy Modeling Using Soft Composite Materials
Callaway, Christian
2018-01-01
Soft tissues in general exhibit anisotropic mechanical behavior, which varies in three dimensions based on the location of the tissue in the body. In the past, there have been few attempts to numerically model tissue anisotropy using composite-based formulations (involving fibers embedded within a matrix material). However, so far, tissue anisotropy has not been modeled experimentally. In the current work, novel elastomer-based soft composite materials were developed in the form of experimental test coupons, to model the macroscopic anisotropy in tissue mechanical properties. A soft elastomer matrix was fabricated, and fibers made of a stiffer elastomer material were embedded within the matrix material to generate the test coupons. The coupons were tested on a mechanical testing machine, and the resulting stress-versus-stretch responses were studied. The fiber volume fraction (FVF), fiber spacing, and orientations were varied to estimate the changes in the mechanical responses. The mechanical behavior of the soft composites was characterized using hyperelastic material models such as Mooney-Rivlin's, Humphrey's, and Veronda-Westmann's model and also compared with the anisotropic mechanical behavior of the human skin, pelvic tissues, and brain tissues. This work lays the foundation for the experimental modelling of tissue anisotropy, which combined with microscopic studies on tissues can lead to refinements in the simulation of localized fiber distribution and orientations, and enable the development of biofidelic anisotropic tissue phantom materials for various tissue engineering and testing applications. PMID:29853996
Experimental and numerical characterization of expanded glass granules
NASA Astrophysics Data System (ADS)
Chaudry, Mohsin Ali; Woitzik, Christian; Düster, Alexander; Wriggers, Peter
2018-07-01
In this paper, the material response of expanded glass granules at different scales and under different boundary conditions is investigated. At grain scale, single particle tests can be used to determine properties like Young's modulus or crushing strength. With experiments like triaxial and oedometer tests, it is possible to examine the bulk mechanical behaviour of the granular material. Our experimental investigation is complemented by a numerical simulation where the discrete element method is used to compute the mechanical behaviour of such materials. In order to improve the simulation quality, effects such as rolling resistance, inelastic behaviour, damage, and crushing are also included in the discrete element method. Furthermore, the variation of the material properties of granules is modelled by a statistical distribution and included in our numerical simulation.
Finnish spectrolite as high-dose gamma detector
NASA Astrophysics Data System (ADS)
Antonio, Patrícia L.; Caldas, Linda V. E.
2015-11-01
A natural material called spectrolite, from Finland, was studied in this work. The purpose was to test it in gamma radiation beams to verify its performance as a high-dose detector. From this material, pellets were manufactured with two different concentrations of Teflon and spectrolite, and their responses were verified using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). The TL and OSL signals were evaluated by means of characterization tests of the material response, after exposure to a nominal absorbed dose interval of 5 Gy to 10 kGy. The results obtained, for both concentrations, showed a good performance of this material in beams of high-dose gamma radiation. Both techniques were utilized in order to investigate the properties of the spectrolite+Teflon samples for different applications.
Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2013-01-01
Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.
ATF Neutron Irradiation Program Technical Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geringer, J. W.; Katoh, Yutai
The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less
Characterization of aerosols and fibers emitted from composite materials combustion.
Chivas-Joly, C; Gaie-Levrel, F; Motzkus, C; Ducourtieux, S; Delvallée, A; De Lagos, F; Nevé, S Le; Gutierrez, J; Lopez-Cuesta, J-M
2016-01-15
This work investigates the aerosols emitted during combustion of aircraft and naval structural composite materials (epoxy resin/carbon fibers and vinyl ester/glass fibers and carbon nanotubes). Combustion tests were performed at lab-scale using a modified cone calorimeter. The aerosols emitted have been characterized using various metrological devices devoted to the analysis of aerosols. The influence of the nature of polymer matrices, the incorporation of fibers and carbon nanotubes as well as glass reinforcements on the number concentration and the size distribution of airborne particles produced, was studied in the 5 nm-10 μm range. Incorporation of carbon fibers into epoxy resin significantly reduced the total particle number concentration. In addition, the interlaced orientation of carbon fibers limited the particles production compared to the composites with unidirectional one. The carbon nanotubes loading in vinyl ester resin composites influenced the total particles production during the flaming combustion with changes during kinetics emission. Predominant populations of airborne particles generated during combustion of all tested composites were characterized by a PN50 following by PN(100-500). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge
2017-09-01
Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.
Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang
2017-02-04
Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Portanova, Marc A.
1995-01-01
This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chopra, O. K.; Soppet, W. K.
2010-02-16
Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less
RP-1 Thermal Stability and Copper Based Materials Compatibility Study
NASA Technical Reports Server (NTRS)
Stiegemeier, B. R.; Meyer, M. L.; Driscoll, E.
2005-01-01
A series of electrically heated tube tests was performed at the NASA Glenn Research Center s Heated Tube Facility to investigate the effect that sulfur content, test duration, and tube material play in the overall thermal stability and materials compatibility characteristics of RP-1. Scanning-electron microscopic (SEM) analysis in conjunction with energy dispersive spectroscopy (EDS) were used to characterize the condition of the tube inner wall surface and any carbon deposition or corrosion formed during these runs. Results of the parametric study indicate that tests with standard RP-1 (total sulfur -23 ppm) and pure copper tubing are characterized by a depostion/deposit shedding process producing local wall temperature swings as high as 500 F. The effect of this shedding is to keep total carbon deposition levels relatively constant for run times from 20 minutes up to 5 hours, though increasing tube pressure drops were observed in all runs. Reduction in the total sulfur content of the fuel from 23 ppm to less than 0.1 ppm resulted in the elimination of deposit shedding, local wall temperature variation, and the tube pressure drop increases that were observed in standard sulfur level RP-1 tests. The copper alloy GRCop-84, a copper alloy developed specifically for high heat flux applications, was found to exhibit higher carbon deposition levels compared to identical tests performed in pure copper tubes. Results of the study are consistent with previously published heated tube data which indicates that small changes in fuel total sulfur content can lead to significant differences in the thermal stability of kerosene type fuels and their compatibility with copper based materials. In conjunction with the existing thermal stability database, these findings give insight into the feasibility of cooling a long life, high performance, high-pressure liquid rocket combustor and nozzle with RP-1.
NASA Astrophysics Data System (ADS)
Suwandi, Agri; Soemardi, Tresna P.; Kiswanto, Gandjar; Kusumaningsih, Widjajalaksmi; I. Gusti Agung I. G., W.
2018-02-01
Prostheses products must undergo simulation and physical testing, before clinical testing. Finite element method is a preliminary simulation for in vivo test. The method visualizes the magnitude of the compressive force and the critical location of the Total Knee Replacement (TKR) prostheses design. In vitro testing is classified as physical testing for prostheses product. The test is conducted to evaluate the potential failure of the product and the characteristics of the prostheses TKR material. Friction and wear testing are part of the in vivo test. Motion of knee joints, which results in the phenomena of extension and deflection in the femoral and tibia insert, is represented by friction and wear testing. Friction and wear tests aim to obtain an approximate lifetime in normal and extreme load patterns as characterized by the shape of the friction surface area. The lifetime estimation requires friction and wear full-scale testing equipments for TKR prostheses products. These are necessary in obtaining initial data on potential product failures and characterizing of the material based on the ASTM F2724-08 standards. Based on the testing result and statistical analysis data, the average wear rate value per year is 2.19 × 10-3 mg/MC, with a 10 % safety limit of volume and 14,400 cycles times, for 15 hours moving nonstop then the prediction of wear life of the component tibia insert is ± 10 years.
NASA Astrophysics Data System (ADS)
Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.
2018-03-01
Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.