Teacher Implementation and the Impact of Game-Based Science Curriculum Materials
ERIC Educational Resources Information Center
Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad
2018-01-01
Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of…
NASA Technical Reports Server (NTRS)
1988-01-01
The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.
Florence Bascom and the Exclusion of Women From Earth Science Curriculum Materials
ERIC Educational Resources Information Center
Arnold, Lois
1975-01-01
Numerous excerpts from present day earth science curriculum materials reveal sexual discrimination. In addition, studies of photographs included in the materials reveal a high male dominance. The significant contributions of one earth scientist, Florence Bascom, are remembered. (CP)
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
NASA Astrophysics Data System (ADS)
2017-01-01
This special issue of Optical Materials honors Professor Georges Boulon (Picture 1) for his leadership as the Editor-in-Chief of the Journal of Optical Materials (2003-2014) and his significant and exceptional contributions to the area of optical materials. He and his team, Drs. Malgorzata Guzik, Dariusz Hreniak and Joanna Cybinska (Picture 2), were responsible for establishing Journal of Optical Materials as a leading journal reporting on the science of optical materials.
Ferguson, V L
2009-08-01
The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior patterns that would otherwise be hidden within a more complex set of material property parameters.
8 CFR 204.5 - Petitions for employment-based immigrants.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., date, and author of the material, and any necessary translation; (iv) Evidence of the alien's... scientific, scholarly, artistic, athletic, or business-related contributions of major significance in the... author of the material, and any necessary translation; (D) Evidence of the alien's participation, either...
Optimizing Resource and Energy Recovery for Municipal Solid Waste Management
Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...
USDA-ARS?s Scientific Manuscript database
Streambank erosion may represent a significant source of sediment and P to overall watershed loads, however, watershed-scale quantification of contributions are rare. In addition, streambanks are often comprised of highly-variable stratigraphic source materials (e.g., alluvial deposits), which may d...
Díaz-García, Almudena; Martínez-García, Carmen; Cotes-Palomino, Teresa
2017-01-01
Action on climate, the environment, and the efficient use of raw materials and resources are important challenges facing our society. Against this backdrop, the construction industry must adapt to new trends and environmentally sustainable construction systems, thus requiring lines of research aimed at keeping energy consumption in new buildings as low as possible. One of the main goals of this research is to efficiently contribute to reducing the amount of residue from olive oil extraction using a two-phase method. This can be achieved by producing alternative structural materials to be used in the construction industry by means of a circular economy. The technical feasibility of adding said residue to ceramic paste was proven by analyzing the changes produced in the physical properties of the paste, which were then compared to the properties of the reference materials manufactured with clay without residue. Results obtained show that the heating value of wet pomace can contribute to the thermal needs of the sintering process, contributing 30% of energy in pieces containing 3% of said material. Likewise, adding larger amounts of wet pomace to the clay body causes a significant decrease in bulk density values. PMID:28772461
Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.
Winters, Nancy; Granuke, Kyle; McCall, Melissa
2015-09-01
To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.
Aldabe, B; Anderson, R; Lyly-Yrjänäinen, M; Parent-Thirion, A; Vermeylen, G; Kelleher, C C; Niedhammer, I
2011-12-01
To analyse the associations between socio-economic status (SES), measured using occupation, and self-reported health, and to examine the contribution of various material, occupational and psychosocial factors to social inequalities in health in Europe. This study was based on data from the European Quality of Life Survey (EQLS) carried out in 2003. The total sample consisted of 6038 and 6383 working men and women in 28 countries in Europe (response rates: 30.3-91.2%). Each set of potential material, occupational and psychosocial mediators included between eight and 11 variables. Statistical analysis was performed using multilevel logistic regression analysis. Significant social differences were observed for self-reported health, manual workers being more likely to be in poor health (OR=1.89, 95% CI 1.46 to 2.46 for men, OR=2.18, 95% CI 1.71 to 2.77 for women). Strong social gradients were found for almost all potential mediating factors, and almost all displayed significant associations with self-reported health. Social differences in health were substantially reduced after adjustment for material, occupational and psychosocial factors, with material factors playing a major role. The four strongest contributions to reducing these differences were found for material deprivation, social exclusion, financial problems and job reward. Taking all mediators into account led to an explanation of the social differences in health by 78-100% for men and women. The association between SES and poor health may be attributed to differential distributions of several dimensions of material, occupational and psychosocial conditions across occupational groups. Interventions targeting different dimensions might result in a reduction in social inequalities in health.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-11
... statute. Certain other material, such as copyrighted material, is not placed on the Internet and will be... 25162, May 12, 2005) (defining, among other things, the phrase ``contribute significantly to... independently of the assessment process; (3) that demonstrate a clear, imminent and substantial danger to the...
Radon exhalation from building materials for decorative use.
Chen, Jing; Rahman, Naureen M; Abu Atiya, Ibrahim
2010-04-01
Long-term exposure to radon increases the risk of developing lung cancer. There is considerable public concern about radon exhalation from building materials and the contribution to indoor radon levels. To address this concern, radon exhalation rates were determined for 53 different samples of drywall, tile and granite available on the Canadian market for interior home decoration. The radon exhalation rates ranged from non-detectable to 312 Bq m(-2) d(-1). Slate tiles and granite slabs had relatively higher radon exhalation rates than other decorative materials, such as ceramic or porcelain tiles. The average radon exhalation rates were 30 Bq m(-2) d(-1) for slate tiles and 42 Bq m(-2) d(-1) for granite slabs of various types and origins. Analysis showed that even if an entire floor was covered with a material having a radon exhalation rate of 300 Bq m(-2) d(-1), it would contribute only 18 Bq m(-3) to a tightly sealed house with an air exchange rate of 0.3 per hour. Generally speaking, building materials used in home decoration make no significant contribution to indoor radon for a house with adequate air exchange. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.
Study and program plan for improved heavy duty gas turbine engine ceramic component development
NASA Technical Reports Server (NTRS)
Helms, H. E.
1977-01-01
Fuel economy in a commercially viable gas turbine engine was demonstrated through use of ceramic materials. Study results show that increased turbine inlet and generator inlet temperatures, through the use of ceramic materials, contribute the greatest amount to achieving fuel economy goals. Improved component efficiencies show significant additional gains in fuel economy.
Stout, David A
2015-01-01
Since the discovery and synthesis of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) over a decade ago, researchers have envisioned and discovered new potential applications for these materials. CNTs and CNFs have rapidly become a platform technology for a variety of uses, including biomedical applications due to their mechanical, electrical, thermal, optical and structural properties. CNTs and CNFs are also advantageous due to their ability to be produced in many different shapes and sizes. Since their discovery, of the many imaginable applications, CNTs and CNFs have gained a significant amount of attention and therapeutic potential in tissue engineering and drug delivery applications. In recent years, CNTs and CNFs have made significant contributions in designing new strategies for, delivery of pharmaceuticals, genes and molecular probes into cells, stem cell therapies and assisting in tissue regeneration. Furthermore, it is widely expressed that these materials will significantly contribute to the next generation of health care technologies in treating diseases and contributing to tissue growth. Hence, this review seeks to explore the recent advancements, current status and limitations of CNTs and CNFs for drug delivery and tissue engineering applications.
Healing of a mechano-responsive material
NASA Astrophysics Data System (ADS)
Vetter, A.; Sander, O.; Duda, G. N.; Weinkamer, R.
2013-12-01
While contribution of physics to model fracture of materials is significant, the “reversed” process of healing is hardly investigated. Inspired by fracture healing that occurs as a self-repair process in nature, e.g. in bone, we computationally study the conditions under which a material can repair itself. In our model the material around a fracture is assumed mechano-responsive: it processes the information of i) local stiffness and ii) local strain and responds by local stiffening. Depending on how information i) and ii) is processed, healing evolves via fundamentally different paths.
Exploring the Contribution of Primary Marine Organic Matter to the Arctic Boundary Layer
NASA Astrophysics Data System (ADS)
Collins, D. B.; Chang, R. Y. W.; Boyer, M.; Abbatt, J.
2016-12-01
The ocean is a significant source of aerosol to the atmosphere, and contributes significantly to the aerosol population especially in remote locations. Both primary and secondary processes connect the ocean to ambient aerosol loadings, but the extent to which the ocean is a source of organic material to the atmosphere is a current topic of scientific debate. The contribution of primary marine aerosol to atmospheric organic matter may have an influence on the water uptake properties and chemical reactivity of primary marine aerosol particles, influencing their climate-relevant properties. In this study, we characterize the contribution of primary marine aerosol to the arctic marine boundary layer using coincident quantitative measurements of freshly-produced sea spray aerosol and ambient marine aerosol to the arctic boundary layer during an expedition aboard the CCGS Amundsen. Sea spray production experiments were conducted during the cruise using a tank fitted with a plunging waterfall apparatus, a technique which has been recently shown to closely mimic the aerosol production behavior of controlled breaking waves. Comparison of the chemical composition of sea spray particles generated from water samples in various locations throughout the Canadian Archipelago will be presented. A tracer analysis of specific compounds known to be important contributors to primary marine organic material are tracked using GC/MS, along with those known to be tracers of biological aerosol and other organic matter sources. Size-segregated trends in tracer concentrations and ratios with inorganic components will be discussed in the context of understanding the contribution of primary organics to the Arctic atmosphere and in comparison with other sources of organic material observed during the ship-board campaign.
NASA Astrophysics Data System (ADS)
Shagatova, N.; Skopal, A.
2015-07-01
In this contribution we derive the velocity profile of the material produced by the giant in the symbiotic binary EG And, and the corresponding mass loss rate. Our analysis revealed a significant enhancement of the wind material along the binary plane, which allows a high efficiency of the wind transfer onto the accreting white dwarf.
Engineering long term clinical success of advanced ceramic prostheses.
Rekow, Dianne; Thompson, Van P
2007-01-01
Biocompatability and, in some applications, esthetics make all-ceramic prostheses compelling choices but despite significant improvements in materials properties and toughening mechanisms, these still have significant failure rates. Factors that contribute to the degradation in strength and survival include material selection and prosthesis design which set the upper limit for performance. However, fabrication operations introduce damage that can be exacerbated by environmental conditions and clinical function. Using all-ceramic dental crowns as an example, experimentally derived models provide insight into the relationships between materials properties and initial critical loads to failure. Analysis of fabrication operations suggests strategies to minimize damage. Environmental conditions can create viscoplastic flow of supporting components which can contribute additional stress within the prosthesis. Fatigue is a particularly challenging problem, not only providing the energy to propagate existing damage but, when combined with the wet environment, can create new damage modes. While much is known, the influence of these new damage modes has not been completely elucidated. The role of complex prosthesis geometry and its interaction with other factors on damage initiation and propagation has yet to be well characterized.
Tolly, Brian T; Kosky, Jenna L; Koht, Antoun; Hemmer, Laura B
2017-02-15
A healthy 26-year-old man with cerebral arteriovenous malformation underwent staged endovascular embolization with Onyx followed by awake craniotomy for resection. The perioperative course was complicated by tachycardia and severe intraoperative hypoxemia requiring significant oxygen supplementation. Postoperative chest computed tomography (CT) revealed hyperattenuating Onyx embolization material within the pulmonary vasculature, and an electrocardiogram indicated possible right heart strain, supporting clinically significant embolism. With awake arteriovenous malformation resection following adjunctive Onyx embolization becoming increasingly employed for lesions involving the eloquent cortex, anesthesiologists need to be aware of pulmonary migration of Onyx material as a potential contributor to significant perioperative hypoxemia.
Recent global trends in structural materials research
NASA Astrophysics Data System (ADS)
Murakami, Hideyuki; Ohmura, Takahito; Nishimura, Toshiyuki
2013-02-01
Structural materials support the basis of global society, such as infrastructure and transportation facilities, and are therefore essential for everyday life. The optimization of such materials allows people to overcome environmental, energy and resource depletion issues on a global scale. The creation and manufacture of structural materials make a large contribution to economies around the world every year. The use of strong, resistant materials can also have profound social effects, providing a better quality of life at both local and national levels. The Great East Japan Earthquake of 11 March 2011 caused significant structural damage in the Tohoku and Kanto regions of Japan. On a global scale, accidents caused by the ageing and failure of structural materials occur on a daily basis. Therefore, the provision and inspection of structural reliability, safety of nuclear power facilities and construction of a secure and safe society hold primary importance for researchers and engineers across the world. Clearly, structural materials need to evolve further to address both existing problems and prepare for new challenges that may be faced in the future. With this in mind, the National Institute for Materials Science (NIMS) organized the 'NIMS Conference 2012' to host an extensive discussion on a variety of global issues related to the future development of structural materials. Ranging from reconstruction following natural disasters, verification of structural reliability, energy-saving materials to fundamental problems accompanying the development of materials for high safety standards, the conference covered many key issues in the materials industry today. All the above topics are reflected in this focus issue of STAM, which introduces recent global trends in structural materials research with contributions from world-leading researchers in this field. This issue covers the development of novel alloys, current methodologies in the characterization of structural materials and fundamental research on structure-property relationships. We are grateful to the authors who contributed to cover these issues, and sincerely hope that our readers will expand their knowledge of emerging international research within the field of structural materials.
X-ray Computed Microtomography technique applied for cementitious materials: A review.
da Silva, Ítalo Batista
2018-04-01
The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Teacher Implementation and the Impact of Game-Based Science Curriculum Materials
NASA Astrophysics Data System (ADS)
Wilson, Christopher D.; Reichsman, Frieda; Mutch-Jones, Karen; Gardner, April; Marchi, Lisa; Kowalski, Susan; Lord, Trudi; Dorsey, Chad
2018-01-01
Research-based digital games hold great potential to be effective tools in supporting next-generation science learning. However, as with all instructional materials, teachers significantly influence their implementation and contribute to their effectiveness. To more fully understand the contributions and challenges of teacher implementation of digital games, we studied the replacement of existing high school biology genetics lessons over a 3- to 6-week period with Geniverse, an immersive, game-like learning environment designed to be used in classrooms. The Geniverse materials infuse virtual experimentation in genetics with a narrative of a quest to heal a genetic disease; incorporate the topics of meiosis and protein synthesis with inheritance; and include the science practices of explanation and argumentation. The research design involved a quasi-experiment with 48 high school teachers and about 2000 students, student science content knowledge and argumentation outcome measures, and analysis using hierarchical linear modeling. Results indicate that when Geniverse was implemented as the designers intended, student learning of genetics content was significantly greater than in the comparison, business-as-usual group. However, a wide range of levels of Geniverse implementation resulted in no significant difference between the groups as a whole. Students' abilities to engage in scientific explanation and argumentation were greater in the Geniverse group, but these differences were not statistically significant. Observation, survey, and interview data indicate a range of barriers to implementation and teacher instructional decisions that may have influenced student outcomes. Implications for the role of the teacher in the implementation of game-based instructional materials are discussed.
Hierarchical Porous Carbon Materials Derived from Sheep Manure for High-Capacity Supercapacitors.
Zhang, Caiyun; Zhu, Xiaohong; Cao, Min; Li, Menglin; Li, Na; Lai, Liuqin; Zhu, Jiliang; Wei, Dacheng
2016-05-10
3 D capacitance: Hierarchical porous carbon-based electrode materials with a composite structure are prepared from a biomass waste by a facile carbonization and activation process without using any additional templates. Benefiting from the composite structure, the ions experience a variety of environments, which contribute significantly to the excellent electrochemical properties of supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Chantell Lynne-Marie
Traditional nuclear materials accounting does not work well for safeguards when applied to pyroprocessing. Alternate methods such as Signature Based Safeguards (SBS) are being investigated. The goal of SBS is real-time/near-real-time detection of anomalous events in the pyroprocessing facility as they could indicate loss of special nuclear material. In high-throughput reprocessing facilities, metric tons of separated material are processed that must be accounted for. Even with very low uncertainties of accountancy measurements (<0.1%) the uncertainty of the material balances is still greater than the desired level. Novel contributions of this work are as follows: (1) significant enhancement of SBS developmentmore » for the salt cleanup process by creating a new gas sparging process model, selecting sensors to monitor normal operation, identifying safeguards-significant off-normal scenarios, and simulating those off-normal events and generating sensor output; (2) further enhancement of SBS development for the electrorefiner by simulating off-normal events caused by changes in salt concentration and identifying which conditions lead to Pu and Cm not tracking throughout the rest of the system; and (3) new contribution in applying statistical techniques to analyze the signatures gained from these two models to help draw real-time conclusions on anomalous events.« less
Numerical methods for analyzing electromagnetic scattering
NASA Technical Reports Server (NTRS)
Lee, S. W.; Lo, Y. T.; Chuang, S. L.; Lee, C. S.
1985-01-01
Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide.
NASA Astrophysics Data System (ADS)
Balasubramaniam, M.; Balakumar, S.
2018-04-01
Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.
Contribution to applications of EBW in instrument techniques
NASA Astrophysics Data System (ADS)
Hrabovsky, Miroslav
1999-07-01
The electron beam welding belongs to so-called physical methods of welding and it is utilized to welding of most materials, that can be arc welded. It is of use there, where one taxing welding technics and structure technologyableless heavily. As a rule, the quality of weld is better than at most first-rate welds being done by inert gas shielded arc welding (WIG, Argoarc). In plant instrumentation, where the limitation of any welded material distortion is of extraordinary importance, this way of welding is significant at welding of thermal-treated Cu-Be alloys, used in measurement technics, structural members from Ti alloys and stainless steels in branches of biomedicine and cryotechnics. This technology positives, especially high weld purity, narrow and deep root penetration, high welding rate, together with low energy consumption, lead to applications and verification of optimum operating mode at welding of frequent materials. In the contribution the results of this proofs of selected welded materials from viewpoint of weld quality, their physical-mechanic properties and microhardness, are presented.
Ellwein, L B; Thulasiraj, R D; Boulter, A R; Dhittal, S P
1998-01-01
The financial viability of programme services and product offerings requires that revenue exceeds expenses. Revenue includes payments for services and products as well as donor cash and in-kind contributions. Expenses reflect consumption of purchased or contributed time and materials and utilization (depreciation) of physical plant facilities and equipment. Standard financial reports contain this revenue and expense information, complemented when necessary by valuation and accounting of in-kind contributions. Since financial statements are prepared using consistent and accepted accounting practices, year-to-year and organization-to-organization comparisons can be made. The use of such financial information is illustrated in this article by determining the unit cost of cataract surgery in two hospitals in Nepal. The proportion of unit cost attributed to personnel, medical supplies, administrative materials, and depreciation varied significantly by institution. These variations are accounted for by examining differences in operational structure and capacity utilization.
Ellwein, L. B.; Thulasiraj, R. D.; Boulter, A. R.; Dhittal, S. P.
1998-01-01
The financial viability of programme services and product offerings requires that revenue exceeds expenses. Revenue includes payments for services and products as well as donor cash and in-kind contributions. Expenses reflect consumption of purchased or contributed time and materials and utilization (depreciation) of physical plant facilities and equipment. Standard financial reports contain this revenue and expense information, complemented when necessary by valuation and accounting of in-kind contributions. Since financial statements are prepared using consistent and accepted accounting practices, year-to-year and organization-to-organization comparisons can be made. The use of such financial information is illustrated in this article by determining the unit cost of cataract surgery in two hospitals in Nepal. The proportion of unit cost attributed to personnel, medical supplies, administrative materials, and depreciation varied significantly by institution. These variations are accounted for by examining differences in operational structure and capacity utilization. PMID:9868836
USE OF NATURAL FILTER MEDIA FOR STORMWATER TREATMENT
The overall objective of this study ws to evaluate the feasibility of low-cost and readily available natural filter material for stormwater treatment. Previous research indicates that urban SW contributes a significant amount of contamination (including heavy metals and PAHs) to ...
Microbial Keratitis: Could Contact Lens Material Affect Disease Pathogenesis?
Evans, David J.; Fleiszig, Suzanne M. J.
2012-01-01
Microbial keratitis is a sight-threatening complication associated with contact lenses. The introduction of silicone hydrogel lens materials with increased oxygen transmission to the ocular surface has not significantly altered the incidence of microbial keratitis. These data suggest that alternate, or additional, predisposing factors involving lens wear must be addressed to reduce or eliminate these infections. The contact lens can provide a surface for microbial growth in situ, and can also influence ocular surface homeostasis through effects on the tear fluid and corneal epithelium. Thus, it is intuitive that future contact lens materials could make a significant contribution to preventing microbial keratitis. Design of the “right” material to prevent microbial keratitis requires understanding the effects of current materials on bacterial virulence in the cornea, and on ocular surface innate defenses. Current knowledge in each of these areas will be presented, with a discussion of future directions needed to understand the influence of lens material on the pathogenesis of microbial keratitis. PMID:23266587
Nuccetelli, Cristina; Leonardi, Federica; Trevisi, Rosabianca
2015-05-01
The role of building materials as a source of gamma radiation has been recognized in the new EU Basic Safety Standards Directive which introduces an index I to screen building materials of radiological concern. This index was developed to account for average concrete values of thickness and density, the main structural characteristics of building materials that have an effect on gamma irradiation. Consequently, this screening procedure could be unfit in case of significantly different density and/or thickness of the building materials under examination. The paper proposes a more accurate and flexible activity concentration index, accounting for the actual density and thickness of building materials. Copyright © 2015 Elsevier Ltd. All rights reserved.
2010-09-01
estimation of total exposure at any toxicological endpoint in the body. This effort is a significant contribution as it highlights future research needs...rigorous modeling of the nanoparticle transport by including physico-chemical properties of engineered particles. Similarly, toxicological dose-response...exposure risks as compared to larger sized particles of the same material. Although the toxicology of a base material may be thoroughly defined, the
1986-02-01
DISPOSAL TO SEA-SURFACE CONTAMINATION IN PUGET SOUND J. T., Hardy Marine Research Laboratory Sequim , Washington C. E. Cowan Pacific Northwest Laboratory...spawning season. ( 1 I -"I CONCLUSIONS AND RECOMMENDATIONS Significant SSM contamination and toxicity already exists in Elliott Bay . Dredge dieposal could...disposal area of 900 ft. Typical contaminant concentrations on dredged material and baseline concentrations in the microlayer of Elliott Bay (Hardy et
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
Housel, Lisa M.; Wang, Lei; Abraham, Alyson; ...
2018-02-19
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Investigation of α-MnO 2 Tunneled Structures as Model Cation Hosts for Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Housel, Lisa M.; Wang, Lei; Abraham, Alyson
Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangling the contributions of distinct properties to the functional electrochemistry. Furthermore, this goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing.
Presence and leaching of bisphenol a (BPA) from dental materials.
Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig
2018-01-01
BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow ® and the fissure sealant DELTON ® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure.
Hull, C C; Crofts, N C
1996-03-01
The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P < 0.0001) of mu t (0.562 +/- 0.010 mm-1 and 0.820 +/- 0.008 mm-1, respectively) than Polycon II (mu t = 0.025 +/- 0.005 mm-1). A comparison between Polycon II and the three hydrated soft contact lens materials showed a significant increase (P < 0.02) in the total attenuation coefficients for the 38% and 55% water content materials, and a weakly significant increase for the 70% water content soft lens material (P < 0.1). On the assumption that the absorption coefficients of these four materials are approximately constant, then this change would be due to an increase in the scattering coefficient of the material and could contribute to an increase in intraocular scatter. No significant difference (P > 0.5) was found between any of the hydrated soft contact lens materials tested.
Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s
NASA Technical Reports Server (NTRS)
Chambers, Joseph R.
2003-01-01
This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a more indepth discussion of the contributions.
Chemical and biological quality of streams at the Indiana Dunes National Lakeshore, Indiana, 1978-80
Hardy, M.A.
1984-01-01
Wetland drainage contributed significant amounts of organic materials to streams and at times increased concentrations of dissolved sulfate and iron. Dissolved-iron concentrations correlated with dissolved-organic-carbon concentrations in yellow-brown water of Kintzele and Derby ditches.
NASA Astrophysics Data System (ADS)
Chen, Wei; Rakhi, R. B.; Alshareef, H. N.
2013-05-01
We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a
Gender contributes to personal research funding success in The Netherlands.
van der Lee, Romy; Ellemers, Naomi
2015-10-06
We examined the application and review materials of three calls (n=2,823) of a prestigious grant for personal research funding in a national full population of early career scientists awarded by the Netherlands Organization for Scientific Research (NWO). Results showed evidence of gender bias in application evaluations and success rates, as well as in language use in instructions and evaluation sheets. Male applicants received significantly more competitive "quality of researcher" evaluations (but not "quality of proposal" evaluations) and had significantly higher application success rates than female applicants. Gender disparities were most prevalent in scientific disciplines with the highest number of applications and with equal gender distribution among the applicants (i.e., life sciences and social sciences). Moreover, content analyses of the instructional and evaluation materials revealed the use of gendered language favoring male applicants. Overall, our data reveal a 4% "loss" of women during the grant review procedure, and illustrate the perpetuation of the funding gap, which contributes to the underrepresentation of women in academia.
Gender contributes to personal research funding success in The Netherlands
van der Lee, Romy; Ellemers, Naomi
2015-01-01
We examined the application and review materials of three calls (n = 2,823) of a prestigious grant for personal research funding in a national full population of early career scientists awarded by the Netherlands Organization for Scientific Research (NWO). Results showed evidence of gender bias in application evaluations and success rates, as well as in language use in instructions and evaluation sheets. Male applicants received significantly more competitive “quality of researcher” evaluations (but not “quality of proposal” evaluations) and had significantly higher application success rates than female applicants. Gender disparities were most prevalent in scientific disciplines with the highest number of applications and with equal gender distribution among the applicants (i.e., life sciences and social sciences). Moreover, content analyses of the instructional and evaluation materials revealed the use of gendered language favoring male applicants. Overall, our data reveal a 4% “loss” of women during the grant review procedure, and illustrate the perpetuation of the funding gap, which contributes to the underrepresentation of women in academia. PMID:26392544
Study of lanthanum aluminate for cost effective electrolyte material for SOFC
NASA Astrophysics Data System (ADS)
Verma, O. N.; Shahi, A. K.; Singh, P.
2018-05-01
The perovskite type electrolyte material LaAlO3 (abbreviated LAO) has been prepared by easy processing of auto-combustion synthesis using lanthanum nitrate and aluminium nitrate salts as precursors and citric acid as the fuel. The XRD analysis reveals that as synthesized material exhibits only single phase having rhombohedral structure. The measured density and theoretical density have been deliberated. The temperature dependent electrical conductivity of LAO increases with increasing the temperature which leads to increased mobility of oxide ion. The major contribution of such a significant value of ionic conductivity of LAO can be inferred to grain boundary resistance.
Third Conference on Fibrous Composites in Flight Vehicle Design, part 1
NASA Technical Reports Server (NTRS)
1976-01-01
The use of fibrous composite materials in the design of aircraft and space vehicle structures and their impact on future vehicle systems are discussed. The topics covered include: flight test work on composite components, design concepts and hardware, specialized applications, operational experience, certification and design criteria. Contributions to the design technology base include data concerning material properties, design procedures, environmental exposure effects, manufacturing procedures, and flight service reliability. By including composites as baseline design materials, significant payoffs are expected in terms of reduced structural weight fractions, longer structural life, reduced fuel consumption, reduced structural complexity, and reduced manufacturing cost.
Extension of similarity test procedures to cooled engine components with insulating ceramic coatings
NASA Technical Reports Server (NTRS)
Gladden, H. J.
1980-01-01
Material thermal conductivity was analyzed for its effect on the thermal performance of air cooled gas turbine components, both with and without a ceramic thermal-barrier material, tested at reduced temperatures and pressures. The analysis shows that neglecting the material thermal conductivity can contribute significant errors when metal-wall-temperature test data taken on a turbine vane are extrapolated to engine conditions. This error in metal temperature for an uncoated vane is of opposite sign from that for a ceramic-coated vane. A correction technique is developed for both ceramic-coated and uncoated components.
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
Seeboth, Arno; Ruhmann, Ralf; Mühling, Olaf
2010-01-01
The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field. PMID:28883374
Plank, Barbara; Eisenmenger, Nina; Schaffartzik, Anke; Wiedenhofer, Dominik
2018-04-03
Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.
Järnström, H; Saarela, K; Kalliokoski, P; Pasanen, A-L
2008-04-01
Emission rates of volatile organic compounds (VOCs) and ammonia measured from six PVC materials and four adhesives in the laboratory were compared to the emission rates measured on site from complete structures. Significantly higher specific emission rates (SERs) were generally measured from the complete structures than from individual materials. There were large differences between different PVC materials in their permeability for VOCs originating from the underlying structure. Glycol ethers and esters from adhesives used in the installation contributed to the emissions from the PVC covered structure. Emissions of 2-ethylhexanol and TXIB (2,2,4-trimethyl-1,3-pentanediol diisobutyrate) were common. High ammonia SERs were measured from single adhesives but their contribution to the emissions from the complete structure did not appear as obvious as for VOCs. The results indicate that three factors affected the VOC emissions from the PVC flooring on a structure: 1) the permeability of the PVC product for VOCs, 2) the VOC emission from the adhesive used, and 3) the VOC emission from the backside of the PVC product.
Optoelectronic properties analysis of Ti-substituted GaP.
Tablero, C
2005-11-08
A study using first principles of the electronic and optical properties of materials derived from a GaP host semiconductor where one Ti atom is substituted for one of the eight P atoms is presented. This material has a metallic intermediate band sandwiched between the valence and conduction bands of the host semiconductor for 0 < or = U < or = 8 eV where U is the Hubbard parameter. The potential of these materials is that when they are used as an absorber of photons in solar cells, the efficiency is increased significantly with respect to that of the host semiconductor. The results show that the main contribution to the intermediate band is the Ti atom and that this material can absorb photons of lower energy than that of the host semiconductor. The efficiency is increased with respect to that of the host semiconductor mainly because of the absorption from the intermediate to conduction band. As U increases, the contribution of the Ti-d orbitals to the intermediate band varies, increasing the d(z2) character at the bottom of the intermediate band.
Fauth, E; Scherthan, H; Zankl, H
2000-11-01
Cultures of human blood lymphocytes from three subjects were incubated with the clastogen mitomycin C (MMC, 500 ng/ml) and the aneugen diethylstilboestrol (DES, 80 microM) 23 h before harvesting, to induce formation of micronuclei (MN) and numerical and structural alterations in metaphase chromosomes. We used fluorescence in situ hybridization (FISH) with painting probes for all human chromosomes to determine which chromosomes had contributed material to the induced MN. MMC treatment induced an approximately 18-fold increase in MN and led to a significant increase in hypodiploidy and structural chromosome aberrations in metaphase preparations. Undercondensation of pericentromeric heterochromatin of chromosomes 9 and 1 occurred in 20-75% of metaphases and FISH disclosed an abundance of material from these chromosomes in induced MN (62-69% from chromosome 9 and 7-12% from chromosome 1). DES treatment of lymphocytes induced a seven-fold increase in MN frequency and four-fold increase in the frequency of numerical aberrations; structural aberrations were not significantly increased. FISH analysis showed that material from all chromosomes was present in DES-induced MN, with material from chromosome 1 present in 16% of MN and material from each other chromosomes being present in 2-10% of MN. Material from chromosomes 14, 19 and 21 was significantly more frequent material from chromosome Y significantly less frequent in DES-treated cells than in controls. The findings of the MMC studies indicate that the heterochromatin block of chromosome 9 is a specific target for MMC-induced undercondensation, which induces a preferential occurrence of chromosome 9 material in MN. DES, in contrast, does not trigger heterochromatin decondensation and fails to induce such a significant appearance of material of particular chromosomes in MN.
Consumption of Pornographic Materials among Hong Kong Early Adolescents: A Replication
Shek, Daniel T. L.; Ma, Cecilia M. S.
2012-01-01
Consumption of pornographic materials was examined in 3,638 secondary 2 students in Hong Kong. Results showed that over 80% of the respondents had never consumed pornographic materials in the past year. Internet pornography was the most common medium that adolescents used when viewing pornographic materials. Males reported a higher level of pornography consumption than did females. Participants who were born in mainland China were more likely to consume pornographic materials than their Hong Kong counterparts. Regardless of the types of pornographic materials, the levels of pornography consumption significantly increased over time. Results also showed that higher levels of positive youth development and better family functioning were concurrently related to a lower level of pornography consumption at secondary 2. The relative contribution of positive youth development and family factors to pornographic material consumption was also explored. PMID:22778698
Consumption of pornographic materials among Hong Kong early adolescents: a replication.
Shek, Daniel T L; Ma, Cecilia M S
2012-01-01
Consumption of pornographic materials was examined in 3,638 secondary 2 students in Hong Kong. Results showed that over 80% of the respondents had never consumed pornographic materials in the past year. Internet pornography was the most common medium that adolescents used when viewing pornographic materials. Males reported a higher level of pornography consumption than did females. Participants who were born in mainland China were more likely to consume pornographic materials than their Hong Kong counterparts. Regardless of the types of pornographic materials, the levels of pornography consumption significantly increased over time. Results also showed that higher levels of positive youth development and better family functioning were concurrently related to a lower level of pornography consumption at secondary 2. The relative contribution of positive youth development and family factors to pornographic material consumption was also explored.
Carbon Nanomaterials in Biological Studies and Biomedicine.
Teradal, Nagappa L; Jelinek, Raz
2017-09-01
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Detecting Disease Biomarkers Using Nanocavities and Nanoparticle Composites
NASA Astrophysics Data System (ADS)
Forster, Robert J.; Mallon, Colm; Devadoss, Anitha; Keyes, Tia E.
2011-08-01
The convergence of electrochemistry, materials, photonics and biomedical science at the nanoscale opens up significant opportunities for developing advanced sensors. In this contribution, we present examples of our use of nanometer dimensioned electrodes, nanocavities and nanoparticle-metallopolymer composites to create high sensitivity detection platforms and materials for detecting proteins and nucleic acids. The application of these approaches in the diagnosis and prognosis of cancers such as neuroblastoma, as well as point-of-care detection of infectious disease, will be discussed.
2010-04-07
Commercialization Pilot Programs – Portable Fuel Analyzer – Non-woven FR Materials – Automatic Test Equipment – Night Vision Fusion • Significant efforts – Sensing...contract with the government". Advertising material , commercial item offer, or contribution, as defined in FAR 15.601 shall not be considered to...systems through the entire lifecycle. Our portfolio includes; •Individual & crew-served weapons ranging from 9 mm handguns to 87mm mortar systems
Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma
2016-01-01
Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666
75 FR 66761 - Agency Information Collection Activities: Final Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
... strengthen sanctions against Iran, the Act contains language prohibiting Ex-Im Bank from: Authoriz[ing] any... refiner that continues to: (A) Provide Iran with significant refined petroleum resources; (B) materially contribute to Iran's capability to import refined petroleum resources; or (C) allow Iran to maintain or...
Transforming the Hidden Curriculum: Gender and the Library Media Center.
ERIC Educational Resources Information Center
Crew, Hilary S.
1998-01-01
Library media specialists are critically positioned to make a significant contribution to instituting gender-fair practices within a school. This article discusses instructional materials, curriculum, and collection development; gender culture and the media center; sports, gender, and different ways of knowing; and science, gender, and different…
Presence and leaching of bisphenol a (BPA) from dental materials
Becher, Rune; Wellendorf, Hanne; Sakhi, Amrit Kaur; Samuelsen, Jan Tore; Thomsen, Cathrine; Bølling, Anette Kocbach; Kopperud, Hilde Molvig
2018-01-01
Abstract BPA has been reported to leach from some resin based dental restorative materials and materials used for orthodontic treatment. To confirm and update previous findings, especially in light of the new temporary lower threshold value for tolerable daily BPA intake, we have investigated the leaching of BPA from 4 composite filling materials, 3 sealants and 2 orthodontic bonding materials. The materials were either uncured and dissolved in methanol or cured. The cured materials were kept in deionized water for 24 hours or 2 weeks. Samples were subsequently analyzed by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS-MS). The composite filling material Tetric EvoFlow® and the fissure sealant DELTON® showed significantly higher levels of BPA leaching compared to control samples for all test conditions (uncured, 24 h leaching and 2 weeks leaching). There were no significant differences in amount of leached BPA for any of the tested materials after 24 hours compared to 2 weeks. These results show that BPA is still released from some dental materials despite the general concern about potential adverse effects of BPA. However, the amounts of BPA were relatively low and most likely represent a very small contribution to the total BPA exposure. PMID:29868625
2014-08-01
Novel functionalized carbon nanotube supercapacitor materials Contribution to the supercapacitor TIF Trisha Huber...Novel functionalized carbon nanotube supercapacitor materials Contribution to the supercapacitor TIF Trisha Huber...presented as a log-log plot. As illustrated, supercapacitors offer performance intermediate between batteries and capacitors in that they exhibit higher
The use of technologies in African programmes of population education.
Krystall, A; Johnston, T
1985-06-01
In Africa South of the Sahara, the most commonly expressed purpose of population education, whether in or out of school, is an improved quality of life for the individual, family, community or nation. Use of the technologies available for population education can contribute to the efficiency and effectiveness of the learning process in a variety of ways. A significant contribution of visual and audiovisual media to population education is the power to stimulate visualization and imaginative comprehension, thereby increasing understanding and inducing affective change. Population education programs in schools and teacher training institutions in sub-Saharan Africa seem to rely heavily on the single technology of the printed text. This paper suggests that the initial priority when selecting materials for population education may be to explore the possible advantages of nontext technologies. Visual material loses its power to influence people's attitudes and actions if they are unable to identify with what they see; in some places, adequate localization may have a linguistic dimension. Basing materials on issues of relevance to specific target groups is only part of the task when the educational intent is behavior change. Pre-testing is necessary to determine the overall relevance of media materials for an intended audience. The assumption that educational media must be produced by educational experts has caused planners to make minimal use of other strategies such as: 1) users as producers and 2) professionals as producers. 4 suggestions to contribute to the quality of population education are: 1) for the 2 regional offices to disseminate all population-related materials used at the national level, 2) training for population educators in media use, 3) initiating and supporting comparisons of various technologies, and 4) assisting users to become producers of their own materials.
IN VITRO INTERACTIONS BETWEEN LACTIC ACID SOLUTION AND ART GLASS-IONOMER CEMENTS
Wang, Linda; Cefaly, Daniela Francisca Gigo; dos Santos, Janaína Lima; dos Santos, Jean Rodrigo; Lauris, José Roberto Pereira; Mondelli, Rafael Francisco Lia; Atta, Maria Teresa
2009-01-01
Objectives: Production of acids such as lactic acid contributes to establish a cariogenic environment that leads to dental substrate demineralization. Fluoride plays an important role in this case and, as fluoride-releasing materials, glass-ionomer cements are expected to contribute to minimize deleterious reactions. This study evaluated interactions of glass-ionomer cements used in atraumatic restorative treatment (ART-GICs) with an aqueous lactic acid solution, testing the null hypotheses that no changes occur in the pH of the solution or on the surface roughness and mass of the ART-GICs when exposed to lactic acid solution over a 6-week period. Material and Methods: Ketac Molar, Fuji IX, Vitro Molar and Magic Glass were tested, and compared to Filtek Z250 and Ketac Fil Plus as control groups. Six specimens of each material were made according to manufacturers' instructions. The pH of the solution and roughness and mass changes of each specimen were determined over 6 weeks. Each specimen was individually stored in 2 mL of 0.02 M lactic acid solution for 1 week, renewing the solution every week. pH of solution and mass of the specimens were monitored weekly, and surface roughness of the specimens was assessed before and at the end of the 6-week acid challenge. pH and mass data were analyzed statistically by repeated measures using one-way ANOVA and Tukey's post-hoc tests for each material. Paired t-tests were used for roughness analysis. Tukey's post-hoc tests were applied to verify differences of final roughness among the materials. Significance level was set at 5%. Results: The null hypotheses were partially rejected. All materials were able to increase the pH of the lactic acid solution and presented rougher surfaces after immersion, while mass change was minimal and generally not statistically significant. Conclusions: These findings can be helpful to predict the performance of these materials under clinical conditions. A protective action against the carious process with significant surface damage due to erosion may be expected. PMID:19668984
Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg
2011-02-01
Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.
Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng
2014-07-01
A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P efficiencies to the yield was in order of P uptake efficiency > P utilization efficiency > P transportation efficiency. The greatest contribution rate of P accumulation to the yield was noticed at the jointing-heading stage with the normal P application while it reached the maximal value at the tillering-jointing stage with the low P application. Therefore, these two stages may be the critical periods to coordinate high yield and high P efficiency in rice.
Multiscale Materials Modeling in an Industrial Environment.
Weiß, Horst; Deglmann, Peter; In 't Veld, Pieter J; Cetinkaya, Murat; Schreiner, Eduard
2016-06-07
In this review, we sketch the materials modeling process in industry. We show that predictive and fast modeling is a prerequisite for successful participation in research and development processes in the chemical industry. Stable and highly automated workflows suitable for handling complex systems are a must. In particular, we review approaches to build and parameterize soft matter systems. By satisfying these prerequisites, efficiency for the development of new materials can be significantly improved, as exemplified here for formulation polymer development. This is in fact in line with recent Materials Genome Initiative efforts sponsored by the US government. Valuable contributions to product development are possible today by combining existing modeling techniques in an intelligent fashion, provided modeling and experiment work hand in hand.
Systems metabolic engineering for chemicals and materials.
Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup
2011-08-01
Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535... will determine whether your drug addiction or alcoholism is a contributing factor material to the... drug addiction or alcoholism, we must determine whether your drug addiction or alcoholism is a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.935... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.935 How we will determine whether your drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2012 CFR
2012-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.935... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.935 How we will determine whether your drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.935... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.935 How we will determine whether your drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535... will determine whether your drug addiction or alcoholism is a contributing factor material to the... drug addiction or alcoholism, we must determine whether your drug addiction or alcoholism is a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535... will determine whether your drug addiction or alcoholism is a contributing factor material to the... drug addiction or alcoholism, we must determine whether your drug addiction or alcoholism is a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535... will determine whether your drug addiction or alcoholism is a contributing factor material to the... drug addiction or alcoholism, we must determine whether your drug addiction or alcoholism is a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.935... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.935 How we will determine whether your drug addiction or alcoholism is a contributing factor material to...
Early detection of materials degradation
NASA Astrophysics Data System (ADS)
Meyendorf, Norbert
2017-02-01
Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.
Role of Omani Parents: Fostering Emergent Literacy Skills
ERIC Educational Resources Information Center
Al-Qaryouti, Ibrahim A.; Kilani, Hashem A.
2015-01-01
The purpose of this study is to document the significance of four practices employed by parents that contribute to such development. Those practices encompassed the availability of materials, activities at home, parent attitude and visits to their child's class. Subjects consisted of 314 male and female parents of kindergarten children in the…
Organic material contributes a significant fraction of PM2.5 mass across all regions of the United States, but state-of-the-art chemical transport models often substantially underpredict measured organic aerosol concentrations. Recent revisions to these models that...
Drivers of Change in Construction Training: How Significant Is the Sustainability Agenda?
ERIC Educational Resources Information Center
Fien, John; Winfree, Tomi
2014-01-01
The construction industry is contributing to the sustainability agenda through numerous strategies to improve energy efficiency in the design, materials, and operating conditions of buildings. However, this is only one driver of change in the construction sector. This article, which takes Australia as a case study, shows that many other drivers…
Teaching Reading Fluency to Struggling Readers: Method, Materials, and Evidence
ERIC Educational Resources Information Center
Rasinski, Timothy; Homan, Susan; Biggs, Marie
2009-01-01
Reading fluency has been identified as a key component in reading and in learning to read. Moreover, a significantly large number of students who experience difficulty in reading manifest difficulties in reading fluency that appear to contribute to their overall struggles in reading. In this article we explore the nature of effective instruction…
What Affect Student Cognitive Style in the Development of Hypermedia Learning System?
ERIC Educational Resources Information Center
Lee, Catherine Hui Min; Cheng, Yuk Wing; Rai, Shri; Depickere, Arnold
2005-01-01
Recent developments in learning technology such as hypermedia is becoming widespread and offer significant contribution to improve the delivery of learning and teaching materials. A key factor in the development of hypermedia learning system is cognitive style (CS) as it relates to users' information processing habits, representing individual…
Advanced High Temperature Structural Seals
NASA Astrophysics Data System (ADS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-10-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark
2002-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.
NASA Technical Reports Server (NTRS)
Harris, Todd S.; Baicu, Catalin F.; Conrad, Chester H.; Koide, Masaaki; Buckley, J. Michael; Barnes, Mary; Cooper, George 4th; Zile, Michael R.
2002-01-01
Recent studies have suggested that pressure overload hypertrophy (POH) alters the viscoelastic properties of individual cardiocytes when studied in isolation. However, whether these changes in cardiocyte properties contribute causally to changes in the material properties of the cardiac muscle as a whole is unknown. Accordingly, a selective, isolated, acute change in cardiocyte constitutive properties was imposed in an in vitro system capable of measuring the resultant effect on the material properties of the composite cardiac muscle. POH caused an increase in both myocardial elastic stiffness, from 20.5 +/- 1.3 to 28.4 +/- 1.8, and viscous damping, from 15.2 +/- 1.1 to 19.8 +/- 1.5 s (normal vs. POH, P < 0.05), respectively. Recent studies have shown that cardiocyte constitutive properties could be acutely altered by depolymerizing the microtubules with colchicine. Colchicine caused a significant decrease in the viscous damping in POH muscles (19.8 +/- 1.5 s at baseline vs. 14.7 +/- 1.3 s after colchicine, P < 0.05). Therefore, myocardial material properties can be altered by selectively changing the constitutive properties of one element within this muscle tissue, the cardiocyte. Changes in the constitutive properties of the cardiocytes themselves contribute to the abnormalities in myocardial stiffness and viscosity that develop during POH.
NASA Astrophysics Data System (ADS)
Azmi, H.; Haron, C. H. C.; Ghani, J. A.; Suhaily, M.; Yuzairi, A. R.
2018-04-01
The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false You are disabled and drug addiction or....214 You are disabled and drug addiction or alcoholism is a contributing factor material to the... because you are disabled and drug addiction or alcoholism is a contributing factor material to the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false You are disabled and drug addiction or....214 You are disabled and drug addiction or alcoholism is a contributing factor material to the... because you are disabled and drug addiction or alcoholism is a contributing factor material to the...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false You are disabled and drug addiction or....214 You are disabled and drug addiction or alcoholism is a contributing factor material to the... because you are disabled and drug addiction or alcoholism is a contributing factor material to the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false You are disabled and drug addiction or....214 You are disabled and drug addiction or alcoholism is a contributing factor material to the... because you are disabled and drug addiction or alcoholism is a contributing factor material to the...
Manda, Hortance; Arce, Luana M; Foggie, Tarra; Shah, Pankhil; Grieco, John P; Achee, Nicole L
2011-07-01
Previous studies have identified the behavioral responses of Aedes aegypti to irritant and repellent chemicals that can be exploited to reduce man-vector contact. Maximum efficacy of interventions based on irritant chemical actions will, however, require full knowledge of variables that influence vector resting behavior and how untreated "safe sites" contribute to overall impact. Using a laboratory box assay, resting patterns of two population strains of female Ae. aegypti (THAI and PERU) were evaluated against two material types (cotton and polyester) at various dark:light surface area coverage (SAC) ratio and contrast configuration (horizontal and vertical) under chemical-free and treated conditions. Chemicals evaluated were alphacypermethrin and DDT at varying concentrations. Under chemical-free conditions, dark material had significantly higher resting counts compared to light material at all SAC, and significantly increased when material was in horizontal configuration. Cotton elicited stronger response than polyester. Within the treatment assays, significantly higher resting counts were observed on chemical-treated dark material compared to untreated light fabric. However, compared to matched controls, significantly less resting observations were made on chemical-treated dark material overall. Most importantly, resting observations on untreated light material (or "safe sites") in the treatment assay did not significantly increase for many of the tests, even at 25% SAC. Knockdown rates were ≤5% for all assays. Significantly more observations of flying mosquitoes were made in test assays under chemical-treatment conditions as compared to controls. When preferred Ae. aegypti resting sites are treated with chemicals, even at reduced treatment coverage area, mosquitoes do not simply move to safe sites (untreated areas) following contact with the treated material. Instead, they become agitated, using increased flight as a proxy indicator. It is this contact irritant response that may elicit escape behavior from a treated space and is a focus of exploitation for reducing man-vector contact inside homes.
Density of Spray-Formed Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr
2008-06-01
Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less
NASA Technical Reports Server (NTRS)
Gibson, Frederick W
1956-01-01
Results of an experimental investigation of the structural damping of six full-scale helicopter rotor blades, made to determine the variation of structural damping with materials and methods of construction, are presented. The damping of the blades was determined for the first three flapwise bending modes, first chordwise bending mode, and first torsion mode. The contribution of structural damping to the total damping of the blades is discussed for several aerodynamic conditions in order to point out situations where structural damping is significant.
Overview of CMC Development Activities in NASA's Ultra-Efficient Engine Technology (UEET) Program
NASA Technical Reports Server (NTRS)
Brewer, Dave
2001-01-01
The primary objective of the UEET (Ultra-Efficient Engine Technology) Program is to address two of the most critical propulsion issues: performance/efficiency and reduced emissions. High performance, low emissions engine systems will lead to significant improvement in local air quality, minimum impact on ozone depletion and level to an overall reduction in aviation contribution to global warming. The Materials and Structures for High Performance project will develop and demonstrate advanced high temperature materials to enable high-performance, high efficiency, and environmentally compatible propulsion systems.
Materials for a new generation of vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grobstein, T.
1995-12-31
The Partnership for a New Generation of Vehicles (PNGV) is a national initiative with three goals: first, to significantly improve national competitiveness in manufacturing; second, to implement commercially viable innovations from ongoing research on conventional vehicles, and third, to develop a vehicle to achieve up to three times the fuel efficiency of today`s comparable vehicle (i.e., the 1994 Chrysler Concorde, Ford Taurus, and Chevrolet Lumina). Note this vehicle will have the equivalent customer purchase price of today`s vehicles adjusted for economics, while meeting the customers` needs for quality, performance, and utility. Eight federal agencies are currently contributing to these goals,more » as well as the three principal US automobile manufacturers, numerous automotive component suppliers, research laboratories, and universities. Materials research and development is a significant effort within PNGV. The goals in this area include development of lightweight, recyclable materials for structural applications, high strength, long-life, high temperature materials for engine components, improved materials for alternative propulsion and energy storage systems, and cost-effective process technologies and component fabrication methods. Application of advanced materials to automobiles will involve consideration of diverse factors, including weight savings, affordability, recyclability, crashworthiness, repairability, and manufacturability.« less
Austin, Anna E; Smith, Megan V
2017-01-01
Objectives: Material hardship represents a potential mechanism by which poverty influences the mental health of mothers. This study examined the association between two forms of material hardship, diaper need and food insufficiency, and maternal depressive symptoms. Methods: Data were from a cross-sectional study of 296 urban, pregnant or parenting, low-income women. A linear regression model was used to examine the association of maternal depressive symptoms, measured by the Center for Epidemiologic Studies Depression (CES-D) score, with diaper need and food insufficiency, after adjustment for demographic factors. Results: More than half of women reported diaper need (50.3%) and food insufficiency (54.7%). Nearly one-third of women who reported diaper need did not report food insufficiency (32.2%). In bivariate analyses, diaper need and food insufficiency were associated with maternal CES-D score. In multivariate analyses, women who reported diaper need had a significantly higher CES-D score than women who did not report diaper need (β=3.5, p =0.03). Women who reported food insufficiency did not have a significantly higher CES-D score than women who did not report food insufficiency (β=2.4, p =0.15). Conclusions: Diaper need is a form of material hardship that has received little attention in the research literature. Diapers, unlike food, are currently not an allowable expense in U.S. antipoverty programs. Diaper need may contribute to maternal depressive symptoms, beyond the contribution of other forms of material hardship, because there are no supports in place to provide assistance meeting this basic need. Importantly, diaper need is a malleable factor amenable to public health and policy interventions.
Austin, Anna E.; Smith, Megan V.
2017-01-01
Abstract Objectives: Material hardship represents a potential mechanism by which poverty influences the mental health of mothers. This study examined the association between two forms of material hardship, diaper need and food insufficiency, and maternal depressive symptoms. Methods: Data were from a cross-sectional study of 296 urban, pregnant or parenting, low-income women. A linear regression model was used to examine the association of maternal depressive symptoms, measured by the Center for Epidemiologic Studies Depression (CES-D) score, with diaper need and food insufficiency, after adjustment for demographic factors. Results: More than half of women reported diaper need (50.3%) and food insufficiency (54.7%). Nearly one-third of women who reported diaper need did not report food insufficiency (32.2%). In bivariate analyses, diaper need and food insufficiency were associated with maternal CES-D score. In multivariate analyses, women who reported diaper need had a significantly higher CES-D score than women who did not report diaper need (β=3.5, p=0.03). Women who reported food insufficiency did not have a significantly higher CES-D score than women who did not report food insufficiency (β=2.4, p=0.15). Conclusions: Diaper need is a form of material hardship that has received little attention in the research literature. Diapers, unlike food, are currently not an allowable expense in U.S. antipoverty programs. Diaper need may contribute to maternal depressive symptoms, beyond the contribution of other forms of material hardship, because there are no supports in place to provide assistance meeting this basic need. Importantly, diaper need is a malleable factor amenable to public health and policy interventions. PMID:29082357
Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
Rauda, Iris E; Augustyn, Veronica; Dunn, Bruce; Tolbert, Sarah H
2013-05-21
Growing global energy demands coupled with environmental concerns have increased the need for renewable energy sources. For intermittent renewable sources like solar and wind to become available on demand will require the use of energy storage devices. Batteries and supercapacitors, also known as electrochemical capacitors (ECs), represent the most widely used energy storage devices. Supercapacitors are frequently overlooked as an energy storage technology, however, despite the fact that these devices provide greater power, much faster response times, and longer cycle life than batteries. Their limitation is that the energy density of ECs is significantly lower than that of batteries, and this has limited their potential applications. This Account reviews our recent work on improving pseudocapacitive energy storage performance by tailoring the electrode architecture. We report our studies of mesoporous transition metal oxide architectures that store charge through surface or near-surface redox reactions, a phenomenon termed pseudocapacitance. The faradaic nature of pseudocapacitance leads to significant increases in energy density and thus represents an exciting future direction for ECs. We show that both the choice of material and electrode architecture is important for producing the ideal pseudocapacitor device. Here we first briefly review the current state of electrode architectures for pseudocapacitors, from slurry electrodes to carbon/metal oxide composites. We then describe the synthesis of mesoporous films made with amphiphilic diblock copolymer templating agents, specifically those optimized for pseudocapacitive charge storage. These include films synthesized from nanoparticle building blocks and films made from traditional battery materials. In the case of more traditional battery materials, we focus on using flexible architectures to minimize the strain associated with lithium intercalation, that is, the accumulation of lithium ions or atoms between the layers of cathode or anode materials that occurs as batteries charge and discharge. Electrochemical analysis of these mesoporous films allows for a detailed understanding of the origin of charge storage by separating capacitive contributions from traditional diffusion-controlled intercalation processes. We also discuss methods to separate the two contributions to capacitance: double-layer capacitance and pseudocapacitance. Understanding these contributions should allow the selection of materials with an optimized architecture that maximize the contribution from pseudocapacitance. From our studies, we show that nanocrystal-based nanoporous materials offer an architecture optimized for high levels of redox or surface pseudocapacitance. Interestingly, in some cases, materials engineered to minimize the strain associated with lithium insertion can also show intercalation pseudocapacitance, which is a process where insertion processes become so kinetically facile that they appear capacitive. Finally, we conclude with a summary of simple design rules that should result in high-power, high-energy-density electrode architectures. These design rules include assembling small, nanosized building blocks to maximize electrode surface area; maintaining an interconnected, open mesoporosity to facilitate solvent diffusion; seeking flexibility in electrode structure to facilitate volume expansion during lithium insertion; optimizing crystalline domain size and orientation; and creating effective electron transport pathways.
Kepenekian, Mikaël; Le Guennic, Boris; Robert, Vincent
2009-08-19
We report a comprehensive analysis of the hysteresis behavior in a series of well-characterized spin-crossover Fe(II) materials. On the basis of the available X-ray data and multireference CASSCF (complete active space self-consistent field) calculations, we show that the growth of the hysteresis loop is controlled by electrostatic contributions. These environment effects turn out to be deeply modified as the crystal structure changes along the spin transition. Our theoretical inspection demonstrates the synergy between weak bonds and electrostatic interactions in the growth of hysteresis behavior. Quantitatively, it is suggested that the electrostatic contributions significantly enhance the cooperativity factor while weak bonds are determinant in the structuration of the 3D networks. Our picture does not rely on any parametrization but uses the microscopic information to derive an expression for the cooperativity parameter. The calculated values are in very good agreement with the experimental observations. Such inspection can thus be carried out to anticipate the hysteresis behavior of this intriguing class of materials.
Chemical evolution of Himalayan leucogranites based on an O, U-Pb and Hf study of zircon
NASA Astrophysics Data System (ADS)
Hopkinson, Thomas N.; Warren, Clare J.; Harris, Nigel B. W.; Hammond, Samantha J.; Parrish, Randall R.
2015-04-01
Crustal melting is a characteristic process at convergent plate margins, where crustal rocks are heated and deformed. Miocene leucogranite sheets and plutons are found intruded into the high-grade metasedimentary core (the Greater Himalayan Sequence, GHS) across the Himalayan orogen. Previously-published Himalayan whole-rock data suggest that these leucogranites formed from a purely meta-sedimentary source, isotopically similar to those into which they now intrude. Bulk rock analyses carry inherent uncertainties, however: they may hide contributions from different contributing sources, and post-crystallization processes such as fluid interaction may significantly alter the original chemistry. In contrast, zircon is more able to retain precise information of the contributing sources of the melt from which it crystallises whilst its resistant nature is impervious to post-magmatic processes. This multi-isotope study of Oligocene-Miocene leucogranite zircons from the Bhutan Himalaya, seeks to differentiate between various geochemical processes that contribute to granite formation. Hf and O isotopes are used to detect discrete changes in melt source while U-Pb isotopes provide the timing of zircon crystallisation. Our data show that zircon rims of Himalayan age yield Hf-O signatures that lie within the previously reported whole-rock GHS field, confirming the absence of a discernible mantle contribution to the leucogranite source. Importantly, we document a decrease in the minimum ɛHf values during Himalayan orogenesis through time, correlating to a change in Hf model age from 1.4 Ga to 2.4 Ga. Nd model ages for the older Lesser Himalayan metasediments (LHS) that underthrust the GHS are significantly older than those for the GHS (2.4-2.9 Ga compared with 1.4-2.2 Ga), and as such even minor contributions of LHS material incorporated into a melt would significantly increase the resulting Hf model age. Hence our leucogranite data suggest either a change of source within the GHS over time, or an increasing contribution from older Lesser Himalayan (LHS) material in the melt. This is the first time that an evolutionary trend in the chemistry of Himalayan crustal melts has been recognized. Thus these new data show that, at least in the Himalaya, accessory phase geochemistry can provide more detailed insight into tectonic processes than bulk rock geochemistry.
ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson
2005-04-01
This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2004 through February 2005. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. The major experimental achievement this project period was the characterization of the mercury and fine particle emissions from two modern, large, commercial pulverized coal boilers. This testing completes the field work component of the Source Characterization Activity. This report highlights results from mercury emission measurements made using a dilution sampler. The measurements clearly indicate that mercury is beingmore » transformed from an oxidized to an elemental state within the dilution. However, wall effects are significant making it difficult to determine whether or not these changes occur in the gas phase or due to some interaction with the sampler walls. This report also presents results from an analysis that uses spherical aluminum silicate (SAS) particles as a marker for primary PM{sub 2.5} emitted from coal combustion. Primary emissions from coal combustion contribute only a small fraction of the PM{sub 2.5} mass (less than 1.5% in the summer and less than 3% in the winter) at the Pittsburgh site. Ambient SAS concentrations also appear to be reasonably spatially homogeneous. Finally, SAS emission factors measured at pilot-scale are consistent with measurements made at full-scale. This report also presents results from applying the Unmix and PMF models to estimate the contribution of different sources to the PM{sub 2.5} mass concentrations in Pittsburgh using aerosol composition information. Comparison of the two models shows similar source composition and contribution for five factors: crustal material, nitrate, an Fe, Mn, and Zn factor, specialty steel production, and a cadmium factor. PMF found several additional factors. Comparison between source contributions for the similar factors shows reasonable agreement between the two models. The sulfate factor shows the highest contribution to local PM{sub 2.5} with an annual average contribution of approximately 28% (from PMF). The nitrate, crustal material, and primary OC and EC factors also show significant contributions on the order of 10-14%. The sulfate factor is affected by photochemistry and therefore shows maximum values in summer.« less
Neural correlates of remembering/knowing famous people: an event-related fMRI study.
Denkova, Ekaterina; Botzung, Anne; Manning, Lilianne
2006-01-01
It has been suggested that knowledge about some famous people depends on both a generic semantic component and an autobiographical component [Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory and Cognition, 31, 761-774]. The neuropsychological studies of semantic dementia (SD) and Alzheimer disease (AD) demonstrated that the two aspects are very likely to be mediated by different brain structures, with the episodic component being highly dependent upon the integrity of the medial temporal lobe (MTL) [Westmacott, R., Black, S. E., Freedman, M., & Moscovitch, M. (2004). The contribution of autobiographical significance to semantic memory: Evidence from Alzheimer's disease, semantic dementia, and amnesia. Neuropsychologia, 42, 25-48]. Using an fMRI design in healthy participants, we aimed: (i) to investigate the pattern of brain activations sustaining the autobiographical and the semantic aspects of knowledge about famous persons. Moreover, (ii) we examined if the stimulus material (face/name) influences the lateralisation of the cerebral networks. Our findings suggested that different patterns of activation corresponded to the presence or absence of personal significance linked to semantic knowledge; MTL was engaged only in the former case. Although choice of stimulus material did not influence the hemispheric lateralisation in "classical" terms, it did play a role in engaging different cerebral regions.
Regional mortality by socioeconomic factors in Slovakia: a comparison of 15 years of changes.
Rosicova, Katarina; Bosakova, Lucia; Madarasova Geckova, Andrea; Rosic, Martin; Andrejkovic, Marek; Žežula, Ivan; Groothoff, Johan W; van Dijk, Jitse P
2016-07-19
Like most Central European countries Slovakia has experienced a period of socioeconomic changes and at the same time a decline in the mortality rate. Therefore, the aim is to study socioeconomic factors that changed over time and simultaneously contributed to regional differences in mortality. The associations between selected socioeconomic indicators and the standardised mortality rate in the population aged 20-64 years in the districts of the Slovak Republic in the periods 1997-1998 and 2012-2013 were analysed using linear regression models. A higher proportion of inhabitants in material need, and among males also lower income, significantly contributed to higher standardised mortality in both periods. The unemployment rate did not contribute to this prediction. Between the two periods no significant changes in regional mortality differences by the selected socioeconomic factors were found. Despite the fact that economic growth combined with investments of European structural funds contributed to the improvement of the socioeconomic situation in many districts of Slovakia, there are still districts which remain "poor" and which maintain regional mortality differences.
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.; Franco, M. M.; Reilly, H. F., Jr.
1992-01-01
A significant amount of noise temperature can potentially be generated by currently unknown dissipative losses in the beam waveguide (BWG) shroud. The amount of noise temperature contribution from this source is currently being studied. In conjunction with this study, electrical conductivity measurements were made on samples of the DSS-13 BWG shroud material at 8.420 GHz. The effective conductivities of unpainted and painted samples of the BWG shroud were measured to be 0.01 x 10(exp 7) and 0.0036 x 10(exp 7) mhos/m, respectively. This value may be compared with 5.66 x 10(exp 7) mhos/m for high conductivity copper.
Development of magnetoelectric nanocomposite for soft technology
NASA Astrophysics Data System (ADS)
Bitla, Yugandhar; Chu, Ying-Hao
2018-06-01
The proliferation of flexible and stretchable electronics has led to substantial advancements in principles, material combinations and technologies. The integration of magnetoelectric systems in soft electronics is inevitable by virtue of their extensive applications. Recently, 2D layered materials have emerged as potential candidates due to their excellent flexibility and atomic-scale thickness scalability in addition to their interesting physics. This paper presents a new perspective on the development of magnetoelectric nanocomposites through materials engineering on a pliant mica with excellent mechanical, thermal and chemical stabilities. The unique features of 2D muscovite mica and the power of van der Waals epitaxy are expected to contribute significantly to the emerging transparent soft-technology research applications.
Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin
2014-01-01
Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-03-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-06-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
Cometary material and the origins of life on earth
NASA Technical Reports Server (NTRS)
Lazcano-Araujo, A.; Oro, J.
1981-01-01
The role of cometary material in determining the environmental conditions of the prebiotic earth is reviewed. The organic synthesis pathways that occur in dense interstellar clouds and in comets are examined, and complex organic molecules believed to exist (amino acids, carboxylic acids, purines, pyrimidines and hydrocarbons) based on spectral detections of degradation products are noted. Estimates of the amount of terrestrial volatiles of cometary origin that may have been acquired in collisions during the early history of the earth are considered, and shown to dominate any estimated contributions to terrestrial carbon from other extraterrestrial sources. Current evidence that the origin and early evolution of life began about four billion years ago is discussed in relation to the cometary bombardment processes occurring at the time and the resultant shock waves, reducing atmospheres and reactive chemical species. It is thus concluded that comets contributed significantly to the processes of chemical evolution necessary for the emergence of life on earth.
van Leeuwen, Kees; de Vries, Eli; Koop, Stef; Roest, Kees
2018-05-01
Water is an abundant resource worldwide, but fresh and clean water is scarce in many areas of the world. Increases in water consumption and climate change will affect global water security even further in the near future. With increasing numbers of people living in metropolitan areas, water, energy, and materials need to be used carefully, reused and renewed. Resource scarcity is the driver behind the circular economy. The recovery of materials and energy can add significant new value streams and improve cost recovery and water quality. In this paper, we present the creation of the Energy & Raw Materials Factory (ERMF) of the Dutch Water Authorities, also known as the Resource Factory, as one of the solutions to this global challenge of water in the circular economy. Resources like cellulose, bioplastics, phosphate, alginate-like exopolymers from aerobic granular sludge (bio-ALE), and biomass can be recovered. Bio-ALE is an alginate-like polymer of sugars and proteins and can be used in agriculture and horticulture, the paper industry, medical, and construction industries. The ERMF demands significant investments but the return on investment is high both from a financial and environmental perspective, provided that markets can be realized. Experiences in the Netherlands show that the concept of the ERMF is viable and adds to the creation of a circular economy. Achieving climate neutrality and production of new and promising resources like bio-ALE are possible. The ERMF can contribute to the sustainable development goals (SDGs) of the United Nations on water and sanitation, once fully operational.
Wang, Jying-Nan; Chiu, Ya-Ling; Yu, Haiyan; Hsu, Yuan-Teng
2017-12-21
The online health care community is not just a place for the public to share physician reviews or medical knowledge, but also a physician-patient communication platform. The medical resources of developing countries are relatively inadequate, and the online health care community is a potential solution to alleviate the phenomenon of long hospital queues and the lack of medical resources in rural areas. However, the success of the online health care community depends on online contributions by physicians. The aim of this study is to examine the effect of incentive mechanisms on physician's online contribution behavior in the online health community. We addressed the following questions: (1) from which specialty area are physicians more likely to participate in online health care community activities, (2) what are the factors affecting physician online contributions, and (3) do incentive mechanisms, including psychological and material rewards, result in differences of physician online contributions? We designed a longitudinal study involving a data sample in three waves. All data were collected from the Good Doctor website, which is the largest online health care community in China. We first used descriptive statistics to investigate the physician online contribution behavior in its entirety. Then multiple linear and quadratic regression models were applied to verify the causal relationship between rewards and physician online contribution. Our sample included 40,300 physicians from 3607 different hospitals, 10 different major specialty areas, and 31 different provinces or municipalities. Based on the multiple quadratic regression model, we found that the coefficients of the control variables, past physician online contributions, doctor review rating, clinic title, hospital level, and city level, were .415, .189, -.099, -.106, and -.143, respectively. For the psychological (or material) rewards, the standardized coefficient of the main effect was 0.261 (or 0.688) and the standardized coefficient of the quadratic effect was -0.015 (or -0.049). All estimates were statistically significant (P<.001). Physicians with more past physician online contribution, with higher review ratings, coming from lower level clinics, not coming from tertiary hospitals, and not coming from big cities were more willing to participate in online health care community activities. To promote physician online contribution, it is necessary to establish an appropriate incentive mechanism including psychological and material rewards. Finally, our findings suggest two guidelines for designing a useful incentive mechanism to facilitate physician online contribution. First, material reward is more useful than psychological reward. Second, as indicated by the concave-down-increasing causal relationship between rewards and physician online contribution, although an appropriate reward is effective in encouraging willingness on the part of physicians to contribute to the online health care community, the effect of additional rewards is limited. ©Jying-Nan Wang, Ya-Ling Chiu, Haiyan Yu, Yuan-Teng Hsu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 21.12.2017.
2017-01-01
Background The online health care community is not just a place for the public to share physician reviews or medical knowledge, but also a physician-patient communication platform. The medical resources of developing countries are relatively inadequate, and the online health care community is a potential solution to alleviate the phenomenon of long hospital queues and the lack of medical resources in rural areas. However, the success of the online health care community depends on online contributions by physicians. Objective The aim of this study is to examine the effect of incentive mechanisms on physician’s online contribution behavior in the online health community. We addressed the following questions: (1) from which specialty area are physicians more likely to participate in online health care community activities, (2) what are the factors affecting physician online contributions, and (3) do incentive mechanisms, including psychological and material rewards, result in differences of physician online contributions? Methods We designed a longitudinal study involving a data sample in three waves. All data were collected from the Good Doctor website, which is the largest online health care community in China. We first used descriptive statistics to investigate the physician online contribution behavior in its entirety. Then multiple linear and quadratic regression models were applied to verify the causal relationship between rewards and physician online contribution. Results Our sample included 40,300 physicians from 3607 different hospitals, 10 different major specialty areas, and 31 different provinces or municipalities. Based on the multiple quadratic regression model, we found that the coefficients of the control variables, past physician online contributions, doctor review rating, clinic title, hospital level, and city level, were .415, .189, –.099, –.106, and –.143, respectively. For the psychological (or material) rewards, the standardized coefficient of the main effect was 0.261 (or 0.688) and the standardized coefficient of the quadratic effect was –0.015 (or –0.049). All estimates were statistically significant (P<.001). Conclusions Physicians with more past physician online contribution, with higher review ratings, coming from lower level clinics, not coming from tertiary hospitals, and not coming from big cities were more willing to participate in online health care community activities. To promote physician online contribution, it is necessary to establish an appropriate incentive mechanism including psychological and material rewards. Finally, our findings suggest two guidelines for designing a useful incentive mechanism to facilitate physician online contribution. First, material reward is more useful than psychological reward. Second, as indicated by the concave-down-increasing causal relationship between rewards and physician online contribution, although an appropriate reward is effective in encouraging willingness on the part of physicians to contribute to the online health care community, the effect of additional rewards is limited. PMID:29269344
NASA Astrophysics Data System (ADS)
Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif
2014-12-01
The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ∼1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ∼0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.
Probabilistic micromechanics of woven ceramic matrix composites
NASA Astrophysics Data System (ADS)
Goldsmith, Marlana
Woven ceramic matrix composites are a special class of composite materials that are of current interest for harsh thermo-structural conditions such as those encountered by hypersonic vehicle systems and turbine engine components. Testing of the materials is expensive, especially as materials are constantly redesigned. Randomness in the tow architecture, as well as the randomly shaped and spaced voids that are produced as a result of the manufacturing process, are features that contribute to variability in stiffness and strength. The goal of the research is to lay a foundation in which characteristics of the geometry can be translated into material properties. The research first includes quantifying the architectural variability based on 2D micrographs of a 5 harness satin CVI (Chemical Vapor Infiltration) SiC/SiC composite. The architectural variability is applied to a 2D representative volume element (RVE) in order to evaluate which aspects of the architecture are important to model in order to capture the variability found in the cross sections. Tow width, tow spacing, and tow volume fraction were found to have some effect on the variability, but voids were found to have a large influence on transverse stiffness, and a separate study was conducted to determine which characteristics of the voids are most critical to model. It was found that the projected area of the void perpendicular to the transverse direction and the number of voids modeled had a significant influence on the stiffness. The effect of varying architecture on the variability of in-plane tensile strength was also studied using the Brittle Cracking Model for Concrete in the commercial finite element software, Abaqus. A maximum stress criterion is used to evaluate failure, and the stiffness of failed elements is gradually degraded such that the energy required to open a crack (fracture energy) is dissipated during this degradation process. While the varying architecture did not create variability in the in-plane stiffness, it does contribute significantly to the variability of in-plane strength as measured by a 0.02% offset method. Applying spatially random strengths for the constituents did not contribute to variability in strength as measured by the 0.02% offset. The results of this research may be of interest to those designing materials, as well as those using the material in their design. Having an idea about which characteristics of the architecture affect variability in stiffness may provide guidance to the material designer with respect to which aspects of the architecture can be controlled or improved to decrease the variability of the material properties. The work will also be useful to those desiring to use the complex materials by determining how to link the architectural properties to the mechanical properties with the ultimate goal of reducing the required number of tests.
Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage.
Wu, Zhen-Yue; Ma, Chao; Bai, Yu-Lin; Liu, Yu-Si; Wang, Shi-Feng; Wei, Xiao; Wang, Kai-Xue; Chen, Jie-Sheng
2018-04-03
The development of sustainable and low cost electrode materials for sodium-ion batteries has attracted considerable attention. In this work, a carbon composite material decorated with in situ generated ZnS nanoparticles has been prepared via a simple pyrolysis of the rubber powder from dumped tires. Upon being used as an anode material for sodium-ion batteries, the carbon composite shows a high reversible capacity and rate capability. A capacity as high as 267 mA h g-1 is still retained after 100 cycles at a current density of 50 mA g-1. The well dispersed ZnS nanoparticles in carbon significantly enhance the electrochemical performance. The carbon composites derived from the rubber powder are proposed as promising electrode materials for low-cost, large-scale energy storage devices. This work provides a new and effective method for the reuse of dumped tires, contributing to the recycling of valuable waste resources.
Refractory materials for high-temperature thermoelectric energy conversion
NASA Technical Reports Server (NTRS)
Wood, C.; Emin, D.
1983-01-01
Theoretical work of two decades ago adequately explained the transport behavior and effectively guided the development of thermoelectric materials of high conversion efficiencies of conventional semiconductors (e.g., SiGe alloys). The more significant contributions involved the estimation of optimum doping concentrations, the reduction of thermal conductivity by solid solution doping and the development of a variety of materials with ZT approx. 1 in the temperature range 300 K to 1200 K. ZT approx. 1 is not a theoretical limitation although, experimentally, values in excess of one were not achieved. Work has continued with emphasis on higher temperature energy conversion. A number of promising materials have been discovered in which it appears that ZT 1 is realizable. These materials are divided into two classes: (1) the rare-earth chalcogenides which behave as itinerant highly-degenerate n-type semiconductors at room-temperature, and (2) the boron-rich borides, which exhibit p-type small-polaronic hopping conductivity.
The electrical conductivities of candidate beam-waveguide antenna shroud materials
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.; Franco, M. M.
1994-01-01
The shroud on the beam-waveguide (BWG) antenna at DSS 13 is made from highly magnetic American Society for Testing and Materials (ASTM) A36 steel. Measurements at 8.42 GHz showed that this material (with paint) has a very poor electrical conductivity that is 600 times worse than aluminum. In cases where the BWG mirrors might be slightly misaligned, unintentional illumination and poor electrical conductivity of the shroud walls can cause system noise temperature to be increased significantly. This potential increase of noise temperature contribution can be reduced through the use of better conductivity materials for the shroud walls. An alternative is to attempt to improve the conductivity of the currently used ASTM A36 steel by means of some type of plating, surface treatment, or high-conductivity paints. This article presents the results of a study made to find improved materials for future shrouds and mirror supports.
User applications driven by the community contribution framework MPContribs in the Materials Project
Huck, P.; Gunter, D.; Cholia, S.; ...
2015-10-12
This paper discusses how the MPContribs framework in the Materials Project (MP) allows user-contributed data to be shown and analyzed alongside the core MP database. The MP is a searchable database of electronic structure properties of over 65,000 bulk solid materials, which is accessible through a web-based science-gateway. We describe the motivation for enabling user contributions to the materials data and present the framework's features and challenges in the context of two real applications. These use cases illustrate how scientific collaborations can build applications with their own 'user-contributed' data using MPContribs. The Nanoporous Materials Explorer application provides a unique searchmore » interface to a novel dataset of hundreds of thousands of materials, each with tables of user-contributed values related to material adsorption and density at varying temperature and pressure. The Unified Theoretical and Experimental X-ray Spectroscopy application discusses a full workflow for the association, dissemination, and combined analyses of experimental data from the Advanced Light Source with MP's theoretical core data, using MPContribs tools for data formatting, management, and exploration. The capabilities being developed for these collaborations are serving as the model for how new materials data can be incorporated into the MP website with minimal staff overhead while giving powerful tools for data search and display to the user community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConchie, Seth M.; Crye, Jason Michael; Pena, Kirsten
2015-09-30
This document summarizes the effort to use active-induced time correlation techniques to measure the enrichment of bulk quantities of enriched uranium. In summary, these techniques use an external source to initiate fission chains, and the time distribution of the detected fission chain neutrons is sensitive to the fissile material enrichment. The number of neutrons emitted from a chain is driven by the multiplication of the item, and the enrichment is closely coupled to the multiplication of the item. As the enrichment increases (decreases), the multiplication increases (decreases) if the geometry is held constant. The time distribution of fission chain neutronsmore » is a complex function of the enrichment and material configuration. The enrichment contributes to the probability of a subsequent fission in a chain via the likelihood of fissioning on an even-numbered isotope versus an odd-numbered isotope. The material configuration contributes to the same probability via solid angle effects for neutrons inducing subsequent fissions and the presence of any moderating material. To simplify the ability to accurately measure the enrichment, an associated particle imaging (API) D-T neutron generator and an array of plastic scintillators are used to simultaneously image the item and detect the fission chain neutrons. The image is used to significantly limit the space of enrichment and material configuration and enable the enrichment to be determined unambiguously.« less
Variations in embodied energy and carbon emission intensities of construction materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Omar, Wan-Mohd-Sabki; School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis; Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au
2014-11-15
Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters inmore » material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.« less
Effect of air confinement on thermal contact resistance in nanoscale heat transfer
NASA Astrophysics Data System (ADS)
Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie
2018-03-01
Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.
Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria
2010-01-01
As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.
Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi; Arghavani, David
2016-12-01
Purpose: The goal of this investigation was to characterize the compliance properties in selected polymers used for temporary (provisional crown and bridge) applications. Method: Polymethyl methacrylate (PMMA)- and polyethyl methacrylate (PEMA)-based JET and TRIM II were investigated along with two bisacryl composite resins (LUXATEMP and PROTEMP 3 GARANT). Rectangular samples of the resins were subjected to creep-recovery tests in a dynamic mechanical analyzer at and near the oral temperature (27 °C, 37 °C and 47 °C). The instantaneous (elastic), and time-dependent viscoelastic, and viscoplastic compliance profiles of the materials were determined and analyzed as a function of materials and temperature. Results: Highly significant ( p = 0.0001) differences among means of elastic, viscoelastic and viscoplastic compliance values were found as a function of materials. TRIM II showed an order of magnitude higher viscoplastic deformation than the other three materials (LUXATEMP, PROTEMP 3 GARANT and JET). Conclusions: The results indicate that PEMA is susceptible to significantly greater elastic, viscoelastic, and more importantly to viscoplastic compliant behavior compared with bisacryl composite and PMMA provisional crown and bridge materials. This indicates high-dimensional instability and poor stiffness and resiliency in PEMA appliances vis-à-vis those of PMMA and bisacryl composites.
NASA Astrophysics Data System (ADS)
Seha, S.; Zamberi, J.; Fairu, A. J.
2017-10-01
Material handling system (MHS) is an important part for the productivity plant and has recognized as an integral part of today’s manufacturing system. Currently, MHS has growth tremendously with its technology and equipment type. Based on the case study observation, the issue involving material handling system contribute to the reduction of production efficiency. This paper aims to propose a new design of integration between material handling and manufacturing layout by investigating the influences of layout and material handling system. A method approach tool using Delmia Quest software is introduced and the simulation result is used to assess the influences of the integration between material handling system and manufacturing layout in the performance of automotive assembly line. The result show, the production of assembly line output increases more than 31% from the current system. The source throughput rate average value went up to 252 units per working hour in model 3 and show the effectiveness of the pick-to-light system as efficient storage equipment. Thus, overall result shows, the application of AGV and the pick-to-light system gave a large significant effect in the automotive assembly line. Moreover, the change of layout also shows a large significant improvement to the performance.
The effects of change in spousal power on intimate partner violence among Chinese immigrants.
Jin, Xiaochun; Keat, Jane E
2010-04-01
This study explored how changes in power relations within couples after immigrating from more patriarchal societies contribute to intimate partner violence (IPV). Both subjective decision-making power and objective power bases were examined in Chinese immigrant couples. Batterers and nonviolent men both experienced loss of decision-making power in favor of their spouses postimmigration. For the batterers, this loss appeared materialized by lower gains in education and lack of significant gains in income compared to their spouses. However, it was subjective power loss that was related to the batterers' attitudes toward IPV. The study highlights the significance of understanding changes in power dynamics postimmigration among immigrants and the importance of distinguishing between subjective and material power to better capture power imbalance within couples.
Isotopic Fractionation in Primitive Material: Quantifying the Contribution of Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Charnley, Steven
2010-01-01
Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.
[Types of microbial contaminants in pharmaceutical raw materials].
Martínez-Bermúdez, A; Rodríguez-de Lecea, J; Soto-Esteras, T; Vázquez-Estévez, C; Chena-Cañete, C
1991-01-01
In order to analyze the significance of the microbial content of pharmaceutical raw materials contributed to the finished pharmaceutical products, we have carried out a study of contamination taking into account aerobic bacteria, anaerobic bacteria and fungi. None or only low numbers of pathogenic microorganisms was found in most analyzed products but in some materials, specially those of natural origin, we have detected high bacterial and fungal contamination. Microorganisms of the genus Bacillus have been the aerobic bacteria most frequently isolated; Bifidobacterium and Clostridium were the most common anaerobic bacteria and with respect to the fungi, Penicillium and Aspergillus have been found with the highest frequency. These microorganisms can produce problems in pharmaceutical finished products, due to their enzymatic or toxigenic activities.
Holmes, B A; Kaffa, N; Campbell, K; Sanders, T A B
2012-01-01
Breakfast is an important source of micronutrients in the diet and its consumption has been linked to positive health outcomes. The present analysis investigated the contribution that breakfast cereals make to the nutrient intakes of the materially deprived (low income) UK population. Data for 3728 respondents aged 2 years and over from the UK Low Income Diet and Nutrition Survey (2003-2005) were analysed. Nutrient intakes of consumers and non-consumers of breakfast cereal were compared. Breakfast cereals were consumed by 49% of men, 58% of women, 80% of boys and 80% of girls, and median intakes were: 35, 25, 29 and 21 g/d, respectively. Consumers of breakfast cereals had higher intakes of thiamin, riboflavin, niacin, biotin, folate, vitamin B(6), vitamin B(12), iron and zinc than non-consumers. Breakfast cereal consumption was also related to higher intakes of calcium, attributable to higher milk consumption. The intake of wholegrain and high-fibre breakfast cereals was associated with a higher intake of non-starch polysaccharides. Intakes of niacin, biotin, calcium and zinc were higher but that of vitamin B(6) was lower among consumers of exclusively wholegrain and high-fibre breakfast cereals compared with consumers of other breakfast cereals. There were no significant differences observed in intakes of non-milk extrinsic sugars according to type of breakfast cereal consumed. Breakfast cereals make a significant contribution to the micronutrient intake of the low-income UK population.
20 CFR 416.535 - Underpayments and overpayments.
Code of Federal Regulations, 2011 CFR
2011-04-01
... whose drug addiction or alcoholism is a contributing factor material to the determination of disability. When an individual whose drug addiction or alcoholism is a contributing factor material to the...
20 CFR 416.535 - Underpayments and overpayments.
Code of Federal Regulations, 2014 CFR
2014-04-01
... whose drug addiction or alcoholism is a contributing factor material to the determination of disability. When an individual whose drug addiction or alcoholism is a contributing factor material to the...
20 CFR 416.535 - Underpayments and overpayments.
Code of Federal Regulations, 2012 CFR
2012-04-01
... whose drug addiction or alcoholism is a contributing factor material to the determination of disability. When an individual whose drug addiction or alcoholism is a contributing factor material to the...
20 CFR 416.535 - Underpayments and overpayments.
Code of Federal Regulations, 2013 CFR
2013-04-01
... whose drug addiction or alcoholism is a contributing factor material to the determination of disability. When an individual whose drug addiction or alcoholism is a contributing factor material to the...
In vitro comparison of the radiopacity of cavity lining materials with human dental structures
Pires de Souza, Fernanda CP; Pardini, Luiz C; Cruvinel, Diogo R; Hamida, Hisham M; Garcia, Lucas FR
2010-01-01
Aim: To compare the optical densities (OD) of calcium hydroxide (CH) and glass ionomer cement with the same thicknesses of the dental structures. Materials and Methods: Eighteen specimens of each material, with thicknesses of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 mm were made in a Teflon matrix. To compare the radiopacity of the materials with the dental structures, dental cuts of the first molars, increasing in thickness from 0.5 to 3.0 mm, were obtained. To standardize the radiographs, a transparent acrylic matrix (Standardizing Device) was developed and used. Thirty radiographs were taken, five for each tested material. Results: Statistical analysis (Two-way ANOVA - Bonferroni, P < 0.05) demonstrated that when the materials were compared, there was statistically significant difference between the ODs, only for the thickness of 1.0 mm (P < 0.05). Conclusion: The thickness of the material contributed to its radiopacity, and these materials had to be used in a thickness between 1.5 and 2.0 mm. PMID:20859477
NASA Astrophysics Data System (ADS)
Akkus, Ozan
This dissertation investigates the relation of microdamage to fracture and material property degradation of human cortical bone tissue. Fracture resistance and fatigue crack growth of microcracks were examined experimentally and material property degradation was examined through theoretical modeling. To investigate the contribution of microdamage to static fracture resistance, fracture toughness tests were conducted in the transverse and longitudinal directions to the osteonal orientation of normal bone tissue. Damage accumulation was monitored by acoustic emission during testing and was spatially observed by histological observation following testing. The results suggested that the propagation of the main crack involved weakening of the tissue by diffuse damage at the fracture plane and by formation of linear microcracks away from the fracture plane for the transverse specimens. For the longitudinal specimens, growth of the main crack occurred in the form of separations at lamellar interfaces. Acoustic emission results supported the histological observations. To investigate the contribution of ultrastructure to static fracture resistance, fracture toughness tests were conducted after altering the collagen phase of the bone tissue by gamma radiation. A significant decrease in the fracture toughness, Work-to-Fracture and the amount damage was observed due to irradiation in both crack growth directions. For cortical bone irradiated at 27.5kGy, fracture toughness is reduced due to the inhibition of damage formation at and near the crack tip. Microcrack fatigue crack growth and arrest were investigated through observations of surface cracks during cyclic loading. At the applied cyclic stresses, the microcracks propagated and arrested in less than 10,000 cycles. In addition, the microcracks were observed not to grow beyond a length of 150mum and a DeltaK of 0.5MNm-3/2, supporting a microstructural barrier concept. Finally, the contribution of linear microcracks to material property degradation was examined by developing a theoretical micromechanical damage model. The model was compared to experimentally induced damage in bone tissue. The percent contribution of linear microcracks to the total degradation was predicted to be less than 5%, indicating that diffuse damage or an unidentified form of damage is primarily responsible for material property degradation in human cortical bone tissue.
Code of Federal Regulations, 2014 CFR
2014-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1536... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1536... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...
Code of Federal Regulations, 2012 CFR
2012-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.936... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.936... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2013 CFR
2013-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1536... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...
Code of Federal Regulations, 2012 CFR
2012-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 404.1536... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...
Code of Federal Regulations, 2014 CFR
2014-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.936... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to...
Code of Federal Regulations, 2011 CFR
2011-04-01
... addiction or alcoholism is a contributing factor material to the determination of disability. 416.936... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to...
Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J
2014-01-01
Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.
Khan, Aamar F; Brownson, Dale A C; Foster, Christopher W; Smith, Graham C; Banks, Craig E
2017-05-21
Surfactant exfoliated 2D hexagonal Boron Nitride (2D-hBN) nanosheets are explored as a potential electrochemical sensing platform and evaluated towards the electroanalytical sensing of dopamine (DA) in the presence of the common interferents, ascorbic acid (AA) and uric acid (UA). Surfactant exfoliated 2D-hBN nanosheets (2-4 layers) fabricated using sodium cholate in aqueous media are electrically wired via a drop-casting modification process onto disposable screen-printed graphite electrodes (SPEs). We critically evaluate the performance of these 2D-hBN modified SPEs and demonstrate the effect of 'mass coverage' towards the detection of DA, AA and UA. Previous studies utilising surfactant-free (pristine) 2D-hBN modified SPEs have shown a beneficial effect towards the detection of DA, AA and UA when compared to the underlying/unmodified graphite-based electrode. We show that the fabrication route utilised to prepare 2D-hBN is a vital experimental consideration, such that the beneficial effect previously reported is considerably reduced when surfactant exfoliated 2D-hBN is utilised. We demonstrate for the first time, through implementation of control experiments in the form of surfactant modified graphite electrodes, that sodium cholate is a major contributing factor to the aforementioned detrimental behaviour. The significance here is not in the material per se, but the fundamental knowledge of the surfactant and surface coverage changing the electrochemical properties of the material under investigation. Given the wide variety of ionic and non-ionic surfactants that are utilised in the manufacture of novel 2D materials, the control experiments reported herein need to be performed in order to de-convolute the electrochemical response and effectively evaluate the 'underlying surface/surfactant/2D materials' electrocatalytic contribution.
Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys
NASA Astrophysics Data System (ADS)
Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.
2017-07-01
Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.
NASA Astrophysics Data System (ADS)
Monteiro, Mayra; Oliveira, Victor; Santos, Francisco; Barros Neto, Eduardo; Silva, Karyn; Silva, Rayane; Henrique, João; Chibério, Abimaelle
2017-08-01
In order to obtain cassava starch films with improved mechanical properties in relation to the synthetic polymer in the packaging production, a complete factorial design 23 was carried out in order to investigate which factor significantly influences the tensile strength of the biofilm. The factors to be investigated were cassava starch, glycerol and modified clay contents. Modified bentonite clay was used as a filling material of the biofilm. Glycerol was the plasticizer used to thermoplastify cassava starch. The factorial analysis suggested a regression model capable of predicting the optimal mechanical property of the cassava starch film from the maximization of the tensile strength. The reliability of the regression model was tested by the correlation established with the experimental data through the following statistical analyse: Pareto graph. The modified clay was the factor of greater statistical significance on the observed response variable, being the factor that contributed most to the improvement of the mechanical property of the starch film. The factorial experiments showed that the interaction of glycerol with both modified clay and cassava starch was significant for the reduction of biofilm ductility. Modified clay and cassava starch contributed to the maximization of biofilm ductility, while glycerol contributed to the minimization.
Ioannou, Dimitrios; Tempest, Helen G
2015-01-01
Chromosome aneuploidy refers to changes in the chromosome complement of a genome and can include gain or loss of genetic material. The human genome is delicately balanced, and for the most part perturbations in the chromosome complement are often incompatible with embryonic development. The importance and clinical relevance of paternally derived aneuploidy is often overshadowed by the large maternal contribution; as a result, the paternal contribution to pregnancy loss due to chromosome aneuploidy is rarely considered within the clinic. However, there is increasing evidence to suggest that certain men have significantly higher levels of sperm aneuploidy, which is mirrored by an increase in aneuploidy within their embryos and offspring. Therefore, the paternal contribution to aneuploidy at least for some individuals may have greater clinical significance than is currently perceived. Thus, the main focus of this chapter is to provide insights into the origin and clinical relevance of paternally derived aneuploidy. Furthermore, this section will review the general mechanisms through which aneuploidy arises during spermatogenesis and how numerical (whole chromosome) and structural chromosome aberrations (cytogenetically visible or submicroscopic) may lead to clinically relevant aneuploidy potentially resulting in pregnancy loss, congenital malformations, and cognitive impairment.
International trends in solid-state lighting : analyses of the article and patent literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsao, Jeffrey Yeenien; Huey, Mark C.; Boyack, Kevin W.
We present an analysis of the literature of solid-state lighting, based on a comprehensive dataset of 35,851 English-language articles and 12,420 U.S. patents published or issued during the years 1977-2004 in the foundational knowledge domain of electroluminescent materials and phenomena. The dataset was created using a complex, iteratively developed search string. The records in the dataset were then partitioned according to: whether they are articles or patents, their publication or issue date, their national or continental origin, whether the active electroluminescent material was inorganic or organic, and which of a number of emergent knowledge sub-domains they aggregate into on themore » basis of bibliographic coupling. From these partitionings, we performed a number of analyses, including: identification of knowledge sub-domains of historical and recent importance, and trends over time of the contributions of various nations and continents to the knowledge domain and its sub-domains. Among the key results: (1) The knowledge domain as a whole has been growing quickly: the average growth rates of the inorganic and organic knowledge sub-domains have been 8%/yr and 25%/yr, respectively, compared to average growth rates less than 5%/yr for English-language articles and U.S. patents in other knowledge domains. The growth rate of the organic knowledge sub-domain is so high that its historical dominance by the inorganic knowledge sub-domain will, at current trajectories, be reversed in the coming decade. (2) Amongst nations, the U.S. is the largest contributor to the overall knowledge domain, but Japan is on a trajectory to become the largest contributor within the coming half-decade. Amongst continents, Asia became the largest contributor during the past half-decade, overwhelmingly so for the organic knowledge sub-domain. (3) The relative contributions to the article and patent datasets differ for the major continents: North America contributing relatively more patents, Europe contributing relatively more articles, and Asia contributing in a more balanced fashion. (4) For the article dataset, the nations that contribute most in quantity also contribute most in breadth, while the nations that contribute less in quantity concentrate their contributions in particular knowledge sub-domains. For the patent dataset, North America and Europe tend to contribute improvements in end-use applications (e.g., in sensing, phototherapy and communications), while Asia tends to contribute improvements at the materials and chip levels. (5) The knowledge sub-domains that emerge from aggregations based on bibliographic coupling are roughly organized, for articles, by the degree of localization of electrons and holes in the material or phenomenon of interest, and for patents, according to both their emphasis on chips, systems or applications, and their emphasis on organic or inorganic materials. (6) The six 'hottest' topics in the article dataset are: spintronics, AlGaN UV LEDs, nanowires, nanophosphors, polyfluorenes and electrophosphorescence. The nine 'hottest' topics in the patent dataset are: OLED encapsulation, active-matrix displays, multicolor OLEDs, thermal transfer for OLED fabrication, ink-jet printed OLEDs, phosphor-converted LEDs, ornamental LED packages, photocuring and phototherapy, and LED retrofitting lamps. A significant caution in interpreting these results is that they are based on English-language articles and U.S. patents, and hence will tend to over-represent the strength of English-speaking nations (particularly the U.S.), and under-represent the strength of non-English-speaking nations (particularly China).« less
Roofing research and standards development: Fourth volume. ASTM special technical publication 1349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, T.J.; Rossiter, W.J. Jr.
1999-07-01
As the roofing industry has stabilized, a broad variety of roof systems have found general acceptance by the building owners, architects, engineers, contractors, and others who select and install roofs. These roof systems include those based on conventional built-up membranes using glass and synthetic reinforcements, synthetic polymeric membranes using elastomers and thermoplastics, polymer-modified membranes, and sprayed polyurethane foam. ASTM Committee D8 on Roofing, Waterproofing, and Bituminous Materials has contributed significantly in many important ways to the roofing community's stabilization including issuing standard specifications to assist consumers in the selection and use of these systems. This is not surprising, as itmore » has always been among the purpose of D8 to provide standards to assist in the selection and use of low-sloped and steep roofing. The Committee's scope includes development of standards associated with application, inspection, maintenance, and analyses. Some of the issues facing the roofing community today--for example, enhanced system durability, better methods of material characterization, environmental impact, recycling of materials and systems, industry conversation to the S.I. system metric--readily fall within D8's scope. The availability of sound standard can contribute to the resolution of many of these issues.« less
Kailashiya, Jyotsna
2016-01-01
Introduction Although gender difference in aerobic capacity is known, the contributing factors have been researched seldom. Aim To investigate the gender gap and the contribution by percentage Body Fat (BF), Body Mass Index (BMI) and haemoglobin concentration Hb. Materials and Methods The study was conducted on 30 (17 males, 13 females) training status matched young hockey players. Healthy players who were playing upto national level competition were included. BW (Body Weight), BF, BMI, LBM (Lean Body Mass), rHR (restring Heart Rate), HRR (Heart Rate Recovery), Hb, a/rVO2max (absolute/relative), a/rPWC (Physical Work Capacity) and RMR (Resting Metabolic Rate) were measured and analysed. Results There was significant gender difference in the measured parameters. Difference in a/rVO2max remained significant even after controlling for BF, BMI and Hb. Multiple regression and correlation analysis revealed gender difference in VO2max/LBM was due to: BMI(31.91%)>BF(27.60%)>Hb(9.91%). BMI also significantly contributed 3.66% of VO2max/LBM variance, independent of that by gender. Difference in RMR was mainly related to LBM, BF and BMI. Conclusion The study provided an understanding for gender gap in aerobic capacity. Differences in BMI & BF were one of the main reasons. PMID:28050360
Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee
The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC,more » a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, Alan
2007-07-01
Through the Global Partnership the UK continues to make a significant contribution to improve national and global security. Over the past year the UK has continued to implement a wide range of projects across the breadth of its Global Partnership Programme. As well as ensuring the Programme is robust and capable of dealing with new challenges, the UK has cooperated with other donor countries to help them progress projects associated with submarine dismantling, scientist redirection, enhancing nuclear security and Chemical Weapons Destruction. The Global Partnership, although only five years old, has already achieved a great deal. Some 23 states, plusmore » the European Union, are now working closer together under the Global Partnership, and collectively have enhanced global regional and national security by reducing the availability of Weapons of Mass Destruction (WMD) materials and expertise to both states of concern and terrorists. Considerable progress has already been made in, for example: - Improving the security of fissile materials, dangerous biological agents and chemical weapons stocks; - Reducing the number of sites containing radioactive materials; - Working towards closure of reactors still producing weapon-grade plutonium; - Improving nuclear safety to reduce the risks of further, Chernobyl style accidents; - Constructing facilities for destroying Chemical Weapons stocks, and starting actual destruction; - Providing sustainable employment for former WMD scientists to reduce the risk that their expertise will be misused by states or terrorists. By contributing to many of these activities, the UK has helped to make the world safer. This paper reports on the UK's practical and sustainable contribution to the Global Partnership and identifies a number of challenges that remain if it is to have a wider impact on reducing the threats from WMD material. (authors)« less
PREFACE: 4th Global Conference on Materials Science and Engineering (CMSE 2015)
NASA Astrophysics Data System (ADS)
Ruda, H. E.; Khotsianovsky, A.
2015-12-01
IOP Conference Series: Materials Science and Engineering is publishing a volume of conference proceedings that contains a selection of papers presented at the 4th Global Conference on Materials Science and Engineering (CMSE 2015), which is an annual event that started in 2012. CMSE 2015, technically supported by the Institute of Applied Physics and Materials Engineering of University of Macau, organized by Wuhan Advance Materials Society, was successfully held at the University of Macau-new campus located on Hengqin Island from August 3rd-6th, 2015. It aims to bring together leading academic scientists, researchers and scholars to exchange and share their experience and research results on all aspects of Materials Science and Engineering, and to discuss the practical challenges encountered and the solutions adopted. Macau, one of the two special administrative regions of the People's Republic of China, where East meets West, turned out to be an ideal meeting place for domestic and overseas participants of this annual international conference. The conference program included keynote presentations, special sessions, oral and poster contributions. From several hundred submissions, 52 of the most promising and mainstream, IOP-relevant, contributions were included in this volume. The submissions present original ideas or results of general significance, supported by clear reasoning, compelling evidence and methods, theories and practices relevant to the research. The authors state clearly the problems and the significance of their research to theory and practice. Being a successful conference, this event gathered more than 200 qualified and high-level researchers and experts from over 40 countries, including 10 keynote speakers from 6 countries, which created a good platform for worldwide researchers and engineers to enjoy the academic communication. Taking advantage of this opportunity, we would like to thank all participants of this conference, and particularly the authors of all accepted papers for their high quality and fruitful contributions. Special thanks are due to all reviewers for their careful critical reading of the manuscripts and useful comments and suggestions. We do hope that this volume will be beneficial for readers to their future research endeavours and careers. We also gratefully acknowledge tremendous efforts and dedication of many individuals, especially CMSE Conference Secretary Ms. Liu Qin, Editor Anete Ashton and all the Editorial Board members in IOP Publishing for their support in producing the proceedings of this event. Guest Editors: Prof. Harry E. Ruda University of Toronto, Canada Dr. Alexander Khotsianovsky Pisarenko Institute of Problems of Strength of the National Academy of Sciences of Ukraine, Ukraine
Cooper, G J; Townend, D J; Cater, S R; Pearce, B P
1991-01-01
Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear contributing little to the aetiology of the injury.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Bouguecha, A.; Vucetic, M.; Grbic, N.
2016-10-01
A structural concept in multi-material design is used in the automotive industry with the aim of achieving significant weight reductions of conventional car bodies. In this respect, the use of aluminum and short fiber reinforced plastics represents an interesting material combination. A wide acceptance of such a material combination requires a suitable joining technique. Among different joining techniques, clinching represents one of the most appealing alternative for automotive applications. This contribution deals with the FE simulation of the clinching process of two representative materials PA6GF30 and EN AW 5754 using the FE software LS-DYNA. With regard to the material modelling of the aluminum sheet, an isotropic material model based on the von Mises plasticity implemented in LS-DYNA was chosen. Analogous to aluminum, the same material model is used for modelling the short fiber reinforced thermoplastic. Additionally, a semi-analytical model for polymers (SAMP-1) also available in LS-DYNA was taken. Finally, the FEA of clinching process is carried out and the comparison of the simulation results is presented above.
Teacher Knowledge, Curriculum Materials, and Quality of Instruction: Lessons Learned and Open Issues
ERIC Educational Resources Information Center
Hill, Heather C.; Charalambous, Charalambos Y.
2012-01-01
This paper draws on four case studies to perform a cross-case analysis investigating the unique and joint contribution of mathematical knowledge for teaching (MKT) and curriculum materials to instructional quality. As expected, it was found that both MKT and curriculum materials matter for instruction. The contribution of MKT was more prevalent in…
NASA Technical Reports Server (NTRS)
Murakawa, M. (Editor); Miyoshi, K. (Editor); Koga, Y. (Editor); Schaefer, L. (Editor); Tzeng, Y. (Editor)
2003-01-01
These are the Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology Joint Conference held at Epochal Tsukuba International Conference Center from August 18 to 21, 2003. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 175 invited and contributing papers by authors from over 18 countries for presentations at ADC/FCT 2003 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
NASA Technical Reports Server (NTRS)
Charnley, Steven
2009-01-01
Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.
Fire and ecotoxicological aspects of polyurethane rigid foam.
Wittbecker, F W; Giersig, M
2001-01-01
The main characteristics of fire effluents from polyurethane (PUR) foams are comparable to those from natural materials like wood, cork, or wool. This similarity has been demonstrated by comparative data from analytical and toxicological studies. It is therefore presumed that effluents of these materials present similar hazards to human beings and the environment. In almost all fires, dioxins can be found in the smoke and residues. In fires involving PURs, relevant quantities of halogenated dioxins or furans are not to be expected; this has been confirmed by investigations under controlled laboratory conditions. The insulation properties of rigid PUR foam contribute significantly to environmental protection and the conservation of resources. A number of methods for reusing and recycling PUR rigid foam waste have been developed and realized in practise. The possibilities range from reusing the material itself, generating liquid raw materials, and thermal recycling, even for (H)CFC-containing PUR rigid foams, by cocombustion in suitable plants.
Phonon thermal conduction in novel 2D materials.
Xu, Xiangfan; Chen, Jie; Li, Baowen
2016-12-07
Recently, there has been increasing interest in phonon thermal transport in low-dimensional materials, due to the crucial importance of dissipating and managing heat in micro- and nano-electronic devices. Significant progress has been achieved for one-dimensional (1D) systems, both theoretically and experimentally. However, the study of heat conduction in two-dimensional (2D) systems is still in its infancy due to the limited availability of 2D materials and the technical challenges of fabricating suspended samples that are suitable for thermal measurements. In this review, we outline different experimental techniques and theoretical approaches for phonon thermal transport in 2D materials, discuss the problems and challenges of phonon thermal transport measurements and provide a comparison between existing experimental data. Special attention will be given to the effects of size, dimensionality, anisotropy and mode contributions in novel 2D systems, including graphene, boron nitride, MoS 2 , black phosphorous and silicene.
Zhang, Deyi; Zheng, Liweng; Ma, Ying; Lei, Longyan; Li, Qinglin; Li, Yan; Luo, Heming; Feng, Huixia; Hao, Yuan
2014-02-26
In this contribution, nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon (KNOMC) materials with controlled dopant content (10.0-4.6 atom % for nitrogen and 0.94-0.75 atom % for sulfur) are presented, using KIT-6 as the template and pyrrole as the precursor, and its supercapacitive behavior is also investigated. The presented materials exhibit excellent supercapacitive performance by combining electrical double-layer capacitance and pseudocapacitance as well as the enhanced wettability and improved conductivity generated from the incorporation of nitrogen and sulfur into the framework of carbon materials. The specific capacitance of the presented materials reaches 320 F g(-1) at a current density of 1 A g(-1), which is significantly larger than that of the pristine-ordered mesoporous carbon reported in the literature and can even compete with some metal oxides and conducting polymers.
NASA Technical Reports Server (NTRS)
Tzeng, Y. (Editor); Miyoshi, K. (Editor); Yoshikawa, M. (Editor); Murakawa, M. (Editor); Koga, Y. (Editor); Kobashi, K. (Editor); Amaratunga, G. A. J. (Editor)
2001-01-01
These are the Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference hosted by Auburn University from August 6 to 10, 2001. The diamond CVD process was first reported by Dr. Spitsyn in 1981 and Prof. S. Iijima reported his discovery of carbon nanotubes in 1991. In the past years, both diamond-related materials and novel carbon materials have attracted considerable interest by the scientific, technological, and industrial community. Many practical and commercial products of diamond materials are reported in these proceedings. A broad variety of applications of carbon nanotubes and novel carbons have also been explored and demonstrated. Having more than 200 invited and contributing papers by authors from over 20 countries for presentations at ADC/FCT 2001 clearly demonstrates that these materials, due to the combination of their superior properties, are both scientifically amazing and economically significant.
Thermal fatigue durability for advanced propulsion materials
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1989-01-01
A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.
Aluminum: New challenges in downstream activities
NASA Astrophysics Data System (ADS)
Becker, Miklos N.
1999-11-01
During its history, aluminum’s attractive features, such as high strength-to-weight ratio, good electrical mass conductivity, and unique corrosion behavior, have led to a spectacular expansion in its use. The role of aluminum in non-aluminum-based materials is also very important; its contribution to the improvement of magnesium and titanium alloys and to highly complex packaging materials are some of the noteworthy examples. Significant cost reductions on the basic metal production level, near-to-shape fabricating methods, and the well-functioning recycling system are also major contributors to aluminum success. Imminent challenges for the industry are the need for products with very close tolerances on a mass fabricating repetitive basis and just-in-time delivery to original-equipment manufacturers and small users through distributors. A significant part of the challenges remains in the applications area, particularly automotive and aerospace.
NASA Technical Reports Server (NTRS)
Arevidson, A. N.; Sawyer, D. H.; Muller, D. M.
1983-01-01
Dichlorosilane (DCS) was used as the feedstock for an advanced decomposition reactor for silicon production. The advanced reactor had a cool bell jar wall temperature, 300 C, when compared to Siemen's reactors previously used for DCS decomposition. Previous reactors had bell jar wall temperatures of approximately 750 C. The cooler wall temperature allows higher DCS flow rates and concentrations. A silicon deposition rate of 2.28 gm/hr-cm was achieved with power consumption of 59 kWh/kg. Interpretation of data suggests that a 2.8 gm/hr-cm deposition rate is possible. Screening of lower cost materials of construction was done as a separate program segment. Stainless Steel (304 and 316), Hastalloy B, Monel 400 and 1010-Carbon Steel were placed individually in an experimental scale reactor. Silicon was deposited from trichlorosilane feedstock. The resultant silicon was analyzed for electrically active and metallic impurities as well as carbon. No material contributed significant amounts of electrically active or metallic impurities, but all contributed carbon.
Terahertz scattering by two phased media with optically soft scatterers
NASA Astrophysics Data System (ADS)
Kaushik, Mayank; Ng, Brian W.-H.; Fischer, Bernd M.; Abbott, Derek
2012-12-01
Frequency dependent absorption by materials at distinct frequencies in the THz range is commonly used as spectral-fingerprints for identification and classification. For transmission measurements, the substance under study is often mixed with a transparent host material. Refractive index variations arising from the presence of impurities and inconsistencies in the sample's internal structure often cause the incident radiation to scatter. This can significantly distort the measured spectral-fingerprints. In this letter, we present a numerical approach to allay the scattering contribution in THz-TDS measurements, provided the sample's refractive index is known, and reveal the true absorption spectra for a given sample.
NIMS and Empa announce STAM collaboration
NASA Astrophysics Data System (ADS)
Yoshida, Toyonobu; Krug, Harald F.
2014-02-01
In January 2014, the Swiss Federal Laboratories for Materials Science and Technology (Empa) joined the National Institute for Materials Science (NIMS) in collaborative activities on Science and Technology of Advanced Materials (STAM). STAM was founded in 2000. In 2005 NIMS took over the management of its peer review and financial systems, resulting in a continuous rise of the impact of the journal. Empa will provide further support for the editorial management of STAM. In particular, it will establish a European office in Switzerland and reinforce the Editorial Board. From this point of view, I am pleased and excited to have new colleagues from Empa on our Editorial Board, and I believe that this collaboration will bring us a remarkable improvement in the international visibility of STAM and increase the number of paper submissions from Europe. It will expand the topics covered in the journal from traditional fields of materials science with a focus on energy and environmental issues to medical and bioengineering applications, where Empa has a significant expertise. I firmly believe that Empa's participation in publishing STAM will reinforce its position as an open-access journal with a global audience. Together with my colleagues, Yoshio Sakka (NIMS) and Shu Yamaguchi (University of Tokyo), I welcome Harald F Krug as the new Co-Editor-in-Chief of STAM. I am also pleased to learn that the year 2014 not only marks the 15th anniversary of STAM, but also the 150th anniversary of the establishment of diplomatic relations between Japan and Switzerland. Toyonobu Yoshida Advances in materials science are key for the sustainable development of our society. That is why, starting from January 2014, Empa, the Swiss Federal Laboratories for Materials Science and Technology, have engaged in an entirely new field of activity: scientific publishing. As mentioned above, Empa joined NIMS in the publishing of STAM. We have a clear-cut goal in mind: we want to support our sister institute in its efforts to move a renowned scientific journal covering materials science and technology to the next level. To achieve this, we intend to 'diversify' the journal in two ways: firstly, with respect to contributing authors, we would like to attract colleagues from Europe as well as from the US to publish their latest results on groundbreaking and innovative insights into materials science in STAM; secondly, with respect to broadening the scope of the journal, we would like to develop topics in STAM such as biomedical applications or energy devices and systems. More specifically, we would like to offer a forum for discussions on the efficiency and reliability of assay systems, which are used in numerous institutes for investigating the biological safety of new materials. I am convinced that STAM can make significant contributions to the—at least at times—heated debates about widespread use of novel materials and related safety issues. I encourage all of you to join this necessary discussion with opinion papers, reviews and original research contributions. At Empa, we are looking forward to joining the editorial team of STAM to make the journal one of the prime sources for high-quality research on advanced materials and innovative applications. Harald F Krug
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Positrons as interface-sensitive probes of polar semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Makkonen, I.; Snicker, A.; Puska, M. J.; Mäki, J.-M.; Tuomisto, F.
2010-07-01
Group-III nitrides in their wurtzite crystal structure are characterized by large spontaneous polarization and significant piezoelectric contributions in heterostructures formed of these materials. Polarization discontinuities in polar heterostructures grown along the (0001) direction result in huge built-in electric fields on the order of megavolt per centimeter. We choose the III-nitride heterostructures as archetypal representatives of polar heterostructures formed of semiconducting or insulating materials and study the behavior of positrons in these structures using first-principles electronic-structure theory supported by positron annihilation experiments for bulk systems. The strong electric fields drive positrons close to interfaces, which is clearly seen in the predicted momentum distributions of annihilating electron-positron pairs as changes relative to the constituent bulk materials. Implications of the effect to positron defect studies of polar heterostructures are addressed.
NASA Astrophysics Data System (ADS)
Mu, Mulan; Wan, Chaoying; McNally, Tony
2017-12-01
The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.
Analyzing critical material demand: A revised approach.
Nguyen, Ruby Thuy; Fishman, Tomer; Zhao, Fu; Imholte, D D; Graedel, T E
2018-07-15
Apparent consumption has been widely used as a metric to estimate material demand. However, with technology advancement and complexity of material use, this metric has become less useful in tracking material flows, estimating recycling feedstocks, and conducting life cycle assessment of critical materials. We call for future research efforts to focus on building a multi-tiered consumption database for the global trade network of critical materials. This approach will help track how raw materials are processed into major components (e.g., motor assemblies) and eventually incorporated into complete pieces of equipment (e.g., wind turbines). Foreseeable challenges would involve: 1) difficulty in obtaining a comprehensive picture of trade partners due to business sensitive information, 2) complexity of materials going into components of a machine, and 3) difficulty maintaining such a database. We propose ways to address these challenges such as making use of digital design, learning from the experience of building similar databases, and developing a strategy for financial sustainability. We recommend that, with the advancement of information technology, small steps toward building such a database will contribute significantly to our understanding of material flows in society and the associated human impacts on the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Seonghyun; Seo, Janghoo
2016-04-01
Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index.
Everyday attention and lecture retention: the effects of time, fidgeting, and mind wandering.
Farley, James; Risko, Evan F; Kingstone, Alan
2013-01-01
We have all had our thoughts wander from the immediate task at hand. The emerging embodied cognition literature emphasizes the role that the body plays in human thought, and raises the possibility that changes in attentional focus may be associated with changes in body behavior. Recent research has found that when individuals view a lecture, mind wandering increases as a function of time. In the present study we asked whether this decline in attention during lecture viewing was associated with fidgeting. Participants were filmed while they watched a 40-min lecture video, and at regular 5-min intervals provided ratings of their attentiveness. Following the lecture, participant's memory for the material was assessed. Fidgeting behavior was coded from video recordings of each session. Results indicated that attention to, and retention of, lecture material declined as a function of time on task. Critically, and as predicted, fidgeting also increased with time on task. We also found that the relation between fidgeting and retention was significant even when the role of attention was factored into the equation, suggesting that fidgeting makes a unique contribution to retention of lecture material over and above that contributed by an individual's attention. We propose a novel non-attentional stress-based account of fidgeting and how this impacts retention for lecture material over and above changes in levels in mind wandering vis-a-vis changes in attention.
Everyday attention and lecture retention: the effects of time, fidgeting, and mind wandering
Farley, James; Risko, Evan F.; Kingstone, Alan
2013-01-01
We have all had our thoughts wander from the immediate task at hand. The emerging embodied cognition literature emphasizes the role that the body plays in human thought, and raises the possibility that changes in attentional focus may be associated with changes in body behavior. Recent research has found that when individuals view a lecture, mind wandering increases as a function of time. In the present study we asked whether this decline in attention during lecture viewing was associated with fidgeting. Participants were filmed while they watched a 40-min lecture video, and at regular 5-min intervals provided ratings of their attentiveness. Following the lecture, participant's memory for the material was assessed. Fidgeting behavior was coded from video recordings of each session. Results indicated that attention to, and retention of, lecture material declined as a function of time on task. Critically, and as predicted, fidgeting also increased with time on task. We also found that the relation between fidgeting and retention was significant even when the role of attention was factored into the equation, suggesting that fidgeting makes a unique contribution to retention of lecture material over and above that contributed by an individual's attention. We propose a novel non-attentional stress-based account of fidgeting and how this impacts retention for lecture material over and above changes in levels in mind wandering vis-a-vis changes in attention. PMID:24065933
Regional material flow accounting and environmental pressures: the Spanish case.
Sastre, Sergio; Carpintero, Óscar; Lomas, Pedro L
2015-02-17
This paper explores potential contributions of regional material flow accounting to the characterization of environmental pressures. With this aim, patterns of material extraction, trade, consumption, and productivity for the Spanish regions were studied within the 1996-2010 period. The main methodological variation as compared to whole-country based approaches is the inclusion of interregional trade, which can be separately assessed from the international exchanges. Each region was additionally profiled regarding its commercial exchanges with the rest of the regions and the rest of the world and the related environmental pressures. Given its magnitude, interregional trade is a significant source of environmental pressure. Most of the exchanges occur across regions and different extractive and trading patterns also arise at this scale. These differences are particularly great for construction minerals, which in Spain represent the largest share of extracted and consumed materials but do not cover long distances, so their impact is visible mainly at the regional level. During the housing bubble, economic growth did not improve material productivity.
The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.
Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan
2018-04-19
Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.
Beddoe, Rachael; Costanza, Robert; Farley, Joshua; Garza, Eric; Kent, Jennifer; Kubiszewski, Ida; Martinez, Luz; McCowen, Tracy; Murphy, Kathleen; Myers, Norman; Ogden, Zach; Stapleton, Kevin; Woodward, John
2009-01-01
A high and sustainable quality of life is a central goal for humanity. Our current socio-ecological regime and its set of interconnected worldviews, institutions, and technologies all support the goal of unlimited growth of material production and consumption as a proxy for quality of life. However, abundant evidence shows that, beyond a certain threshold, further material growth no longer significantly contributes to improvement in quality of life. Not only does further material growth not meet humanity's central goal, there is mounting evidence that it creates significant roadblocks to sustainability through increasing resource constraints (i.e., peak oil, water limitations) and sink constraints (i.e., climate disruption). Overcoming these roadblocks and creating a sustainable and desirable future will require an integrated, systems level redesign of our socio-ecological regime focused explicitly and directly on the goal of sustainable quality of life rather than the proxy of unlimited material growth. This transition, like all cultural transitions, will occur through an evolutionary process, but one that we, to a certain extent, can control and direct. We suggest an integrated set of worldviews, institutions, and technologies to stimulate and seed this evolutionary redesign of the current socio-ecological regime to achieve global sustainability. PMID:19240221
NASA Astrophysics Data System (ADS)
Jelani, Mohsan; Li, Zewen; Shen, Zhonghua; Sardar, Maryam; Tabassum, Aasma
2017-05-01
The present work reports the investigation of the thermal and mechanical behaviour of aluminium alloys under the combined action of tensile loading and laser irradiations. The two types of aluminium alloys (Al-1060 and Al-6061) are used for the experiments. The continuous wave Ytterbium fibre laser (wavelength 1080 nm) was employed as irradiation source, while tensile loading was provided by tensile testing machine. The effects of various pre-loading and laser power densities on the failure time, temperature distribution and on deformation behaviour of aluminium alloys are analysed. The experimental results represents the significant reduction in failure time and temperature for higher laser powers and for high load values, which implies that preloading may contribute a significant role in the failure of the material at elevated temperature. The reason and characterization of material failure by tensile and laser loading are explored in detail. A comparative behaviour of under tested materials is also investigated. This work suggests that, studies considering only combined loading are not enough to fully understand the mechanical behaviour of under tested materials. For complete characterization, one must consider the effect of heating as well as loading rate.
Chen, Wei; Rakhi, R B; Alshareef, H N
2013-05-21
We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50,000 cycles).
Development of weight/sizing design synthesis computer program. Volume 3: User Manual
NASA Technical Reports Server (NTRS)
Garrison, J. M.
1973-01-01
The user manual for the weight/sizing design synthesis program is presented. The program is applied to an analysis of the basic weight relationships for the space shuttle which contribute significant portions of the inert weight. The relationships measure the parameters of load, geometry, material, and environment. A verbal description of the processes simulated, data input procedures, output data, and values present in the program is included.
Renal Cell Toxicity of Water-Soluble Coal Extracts from the Gulf Coast
NASA Astrophysics Data System (ADS)
Ojeda, A. S.; Ford, S.; Ihnat, M.; Gallucci, R. M.; Philp, P. R.
2017-12-01
In the Gulf Coast, many rural residents rely on private well water for drinking, cooking, and other domestic needs. A large portion of this region contains lignite coal deposits within shallow aquifers that potentially leach organic matter into the water supply. It is proposed that the organic matter leached from low-rank coal deposits contributes to the development of kidney disease, however, little work has been done to investigate the toxicity of coal extracts. In this study, human kidney cells (HK-2) were exposed to water-soluble extracts of Gulf Coast Coals to assess toxicity. Cell viability was measured by direct counts of total and necrotic cells. A dose-response curve was used to generate IC50 values, and the extracts showed significant toxicity that ranged from 0.5% w/v to 3% w/v IC50. The most toxic extract was from Louisiana where coal-derived organic material has been previously linked to high incidents of renal pelvic cancer (RPC). Although the toxic threshold measured in this study is significantly higher than the concentration of organic matter in the groundwater, typically <5 mg/L (0.005% w/v), residents in the affected areas may consume contaminated water over a lifetime. It is possible that the cumulative toxic effects of coal-derived material contribute to the development of disease.
NASA Astrophysics Data System (ADS)
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-12-01
We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-01-01
Abstract We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required. PMID:28804527
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-01-01
We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.
Evaluation of Shielding Performance for Newly Developed Composite Materials
NASA Astrophysics Data System (ADS)
Evans, Beren Richard
This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.
Propolis volatile compounds: chemical diversity and biological activity: a review
2014-01-01
Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573
Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
Cannon, S.H.; Kirkham, R.M.; Parise, M.
2001-01-01
A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the drainage divide, and tan ?? is its gradient. The thresholds vary with different materials. ?? 2001 Elsevier Science B.V. All rights reserved.
Supercapacitors specialities - Materials review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obreja, Vasile V. N.
The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energymore » density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.« less
Supercapacitors specialities - Materials review
NASA Astrophysics Data System (ADS)
Obreja, Vasile V. N.
2014-06-01
The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.
In-situ Production of High Density Polyethylene and Other Useful Materials on Mars
NASA Technical Reports Server (NTRS)
Flynn, Michael
2005-01-01
This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.
Material system for tailorable white light emission and method for making thereof
Smith, Christine A.; Lee, Howard W.
2004-08-10
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
Material system for tailorable white light emission and method for making thereof
Smith, Christine A [Livermore, CA; Lee, Howard W. H. [Fremont, CA
2009-05-19
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
Harris, Debra D
2015-01-01
Three flooring materials, terrazzo, rubber, and carpet tile, in patient unit corridors were compared for absorption of sound, comfort, light reflectance, employee perceptions and preferences, and patient satisfaction. Environmental stressors, such as noise and ergonomic factors, effect healthcare workers and patients, contributing to increased fatigue, anxiety and stress, decreased productivity, and patient safety and satisfaction. A longitudinal comparative cohort study comparing three types of flooring assessed sound levels, healthcare worker responses, and patient Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings over 42 weeks. A linear mixed model analysis was conducted to determine significant differences between the means for participant responses and objective sound meter data during all three phases of the study. A significant difference was found for sound levels between flooring type for equivalent continuous sound levels. Carpet tile performed better for sound attenuation by absorption, reducing sound levels 3.14 dBA. Preferences for flooring materials changed over the course of the study. The HCAHPS ratings aligned with the sound meter data showing that patients perceived the noise levels to be lower with carpet tiles, improving patient satisfaction ratings. Perceptions for healthcare staff and patients were aligned with the sound meter data. Carpet tile provides sound absorption that affects sound levels and influences occupant's perceptions of environmental factors that contribute to the quality of the indoor environment. Flooring that provides comfort underfoot, easy cleanability, and sound absorption influence healthcare worker job satisfaction and patient satisfaction with their patient experience. © The Author(s) 2015.
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity
Jackson, Daniel J.; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M.; Fleck, Claudia
2017-01-01
Abstract Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. PMID:28961798
Zhang, Cuihong; Zhao, Chunxia; Liu, Xiangyu; Wei, Qianwei; Luo, Shusheng; Guo, Sufang; Zhang, Jingxu; Wang, Xiaoli; Scherpbier, Robert W
2017-12-08
Previous studies about inequality in children's health focused more on physical health than the neurodevelopment. In this study, we aimed to evaluate the inequality in early childhood neurodevelopment in poor rural China and explore the contributions of socioeconomic factors to the inequality. Information of 2120 children aged 0 to 35 months and their households in six poor rural counties of China was collected during July - September, 2013. Age and Stages Questionnaire-Chinese version, concentration index and decomposition analysis were used to assess the neurodevelopment of early childhood, measure its inequality and evaluate the contributions of socioeconomic factors to the inequality, respectively. The prevalence of suspected developmental delay in children under 35 months of age in six poor rural counties of China was nearly 40%, with the concentration index of -0.0877. Household economic status, caregivers' depressive symptoms, learning material and family support for learning were significantly associated with children's suspected developmental delay, and explained 34.1, 14.1, 8.9 and 7.0% of the inequality in early childhood neurodevelopment, respectively. The early childhood neurodevelopment in the surveyed area is poor and unfair. Factors including household economic status, caregivers' depressive symptoms, learning material and family support for learning are significantly associated with children's suspected developmental delay and early developmental inequality. The results highlight the urgent need of monitoring child neurodevelopment in poor rural areas. Interventions targeting the caregivers' depressive symptoms, providing learning material and developmental appropriate stimulating activities may help improve early childhood neurodevelopment and reduce its inequality.
Weathering of radiocaesium contamination on urban streets, walls and roofs.
Andersson, K G; Roed, J; Fogh, C L
2002-01-01
Recent investigations in Russia have emphasised the significance of dose contributions from contamination on urban streets and roof pavings, and, typically to a lesser extent, walls in the urban environment. The crucial factor determining the magnitude of these contributions is the retention of the contamination by the different types of urban surface. Since the Chernobyl accident, a series of long-term field studies has been carried out on urban streets, walls and roofs, to examine the weathering processes of 137Cs on the various surface types. The derived time-functions are applied to estimate resultant long-term doses to inhabitants of an urban centre. The paper highlights the effect on caesium retention of surface material characteristics.
Biodegradable and compostable alternatives to conventional plastics.
Song, J H; Murphy, R J; Narayan, R; Davies, G B H
2009-07-27
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.
Composite Silica Aerogels Opacified with Titania
NASA Technical Reports Server (NTRS)
Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill
2009-01-01
A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.
Extrinsic Contribution and Instability Properties in Lead-Based and Lead-Free Piezoceramics
García, José Eduardo
2015-01-01
Piezoceramic materials generally exhibit a notable instability of their functional properties when they work under real external conditions. This undesirable effect, known as nonlinear behavior, is mostly associated with the extrinsic contribution to material response. In this article, the role of the ferroelectric domain walls’ motion in the nonlinear response in the most workable lead-based and lead-free piezoceramics is reviewed. Initially, the extrinsic origin of the nonlinear response is discussed in terms of the temperature dependence of material response. The influence of the crystallographic phase and of the phase boundaries on the material response are then reviewed. Subsequently, the impact of the defects created by doping in order to control the extrinsic contribution is discussed as a way of tuning material properties. Finally, some aspects related to the grain-size effect on the nonlinear response of piezoceramics are surveyed. PMID:28793681
Ethical pharmaceutical promotion and communications worldwide: codes and regulations
2014-01-01
The international pharmaceutical industry has made significant efforts towards ensuring compliant and ethical communication and interaction with physicians and patients. This article presents the current status of the worldwide governance of communication practices by pharmaceutical companies, concentrating on prescription-only medicines. It analyzes legislative, regulatory, and code-based compliance control mechanisms and highlights significant developments, including the 2006 and 2012 revisions of the International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Code of Practice. Developments in international controls, largely built upon long-established rules relating to the quality of advertising material, have contributed to clarifying the scope of acceptable company interactions with healthcare professionals. This article aims to provide policy makers, particularly in developing countries, with an overview of the evolution of mechanisms governing the communication practices, such as the distribution of promotional or scientific material and interactions with healthcare stakeholders, relating to prescription-only medicines. PMID:24679064
Ethical pharmaceutical promotion and communications worldwide: codes and regulations.
Francer, Jeffrey; Izquierdo, Jose Zamarriego; Music, Tamara; Narsai, Kirti; Nikidis, Chrisoula; Simmonds, Heather; Woods, Paul
2014-03-29
The international pharmaceutical industry has made significant efforts towards ensuring compliant and ethical communication and interaction with physicians and patients. This article presents the current status of the worldwide governance of communication practices by pharmaceutical companies, concentrating on prescription-only medicines. It analyzes legislative, regulatory, and code-based compliance control mechanisms and highlights significant developments, including the 2006 and 2012 revisions of the International Federation of Pharmaceutical Manufacturers and Associations (IFPMA) Code of Practice.Developments in international controls, largely built upon long-established rules relating to the quality of advertising material, have contributed to clarifying the scope of acceptable company interactions with healthcare professionals. This article aims to provide policy makers, particularly in developing countries, with an overview of the evolution of mechanisms governing the communication practices, such as the distribution of promotional or scientific material and interactions with healthcare stakeholders, relating to prescription-only medicines.
NASA Astrophysics Data System (ADS)
Janowitz, Christoph; Schmeißer, Dieter
2018-04-01
In high-temperature superconductors with a layered crystal structure, the copper-oxygen planes are commonly considered to dominate the electronic properties around the Fermi energy. As a consequence, out-of-plane contributions are often neglected in the description of these materials. Here we report on a resonant photoemission study of Pb0,4Bi1,6Sr2,0CaCu2O8 ((Pb, Bi)-2212) and Pb0,6Bi1,4Sr1.5La0.5CuO6 ((Pb, Bi)-2201)) single crystals to unravel the resonant decay mechanisms at the Cu2p absorption edge. We find evidence for a pronounced polarization dependence caused by two different Auger processes for in-plane and out-of-plane orientations. We deduce that the lowest energy valence state—which is involved in the two Auger processes—consists of three-dimensional contributions by admixed out-of-plane Sr, Bi, and O2p states. It also suggests that the doping-induced charge density is dynamic, fluctuating within the Cu-O plane, and spills out perpendicular to it. This suggests that out-of-plane electronic degrees of freedom should be included in future consistent theoretical models of these materials.
Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry.
Arachchige, Indika U; Armatas, Gerasimos S; Biswas, Kanishka; Subrahmanyam, Kota S; Latturner, Susan; Malliakas, Christos D; Manos, Manolis J; Oh, Youngtak; Polychronopoulou, Kyriaki; P Poudeu, Pierre F; Trikalitis, Pantelis N; Zhang, Qichun; Zhao, Li-Dong; Peter, Sebastian C
2017-07-17
Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.
A review into the use of ceramics in microbial fuel cells.
Winfield, Jonathan; Gajda, Iwona; Greenman, John; Ieropoulos, Ioannis
2016-09-01
Microbial fuel cells (MFCs) offer great promise as a technology that can produce electricity whilst at the same time treat wastewater. Although significant progress has been made in recent years, the requirement for cheaper materials has prevented the technology from wider, out-of-the-lab, implementation. Recently, researchers have started using ceramics with encouraging results, suggesting that this inexpensive material might be the solution for propelling MFC technology towards real world applications. Studies have demonstrated that ceramics can provide stability, improve power and treatment efficiencies, create a better environment for the electro-active bacteria and contribute towards resource recovery. This review discusses progress to date using ceramics as (i) the structural material, (ii) the medium for ion exchange and (iii) the electrode for MFCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Biocontaining: Purification, Restoration, and Meaning-Making.
Chapple, Helen; Schenck, David
2017-01-01
Biocontaining during the recent Ebola outbreak served to affirm the social significance of biomedicine, even though it had little measurable effect on the pandemic itself. Taking up key insights of Mary Douglas and Victor Turner concerning the essential meaning-making tasks of culture, this article discusses how biocontaining as an activity contributed to the work of social reassurance and meaning-making in U.S. and global society during the crisis. The analysis is based in significant part on fieldwork done at the Nebraska Biocontainment Unit (NBU), study of NBU educational materials, and follow-up conversations with personnel staffing that unit.
Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J
2011-10-01
The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 μm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].
Materials Presented at the MU-SPIN Eighth Annual User's Conference
NASA Technical Reports Server (NTRS)
Harrington, James, Jr.; Shukla, Pooja; Brown, Robin
1999-01-01
The goal of NASA's many outreach programs is to promote to the general public an understanding of how NASA makes significant contributions to American education systems and to institutions dedicated to improving science literacy. This newsletter provides one vehicle for reporting how applications and hardware used for space science and other NASA research and development can be adapted for use by teachers and their students and by non-NASA organizations.
Hybrid Wound Filaments for Greater Resistance to Impacts
NASA Technical Reports Server (NTRS)
DeLay, Thomas K.; Patterson, James E.; Olson, Michael A.
2008-01-01
A hybrid material containing wound filaments made of a hybrid of high-strength carbon fibers and poly(phenylene benzobisoxazole) [PBO] fibers is discussed. This hybrid material is chosen in an effort to increase the ability of the pressure vessel to resist damage by low-speed impacts (e.g., dropping of tools on the vessel or bumping of the vessel against hard objects during installation and use) without significantly increasing the weight of the vessel. While the basic concept of hybridizing fibers in filament-wound structures is not new, the use of hybridization to increase resistance to impacts is an innovation, and can be expected to be of interest in the composite-pressure-vessel industry. The precise types and the proportions of the high-strength carbon fibers and the PBO fibers in the hybrid are chosen, along with the filament-winding pattern, to maximize the advantageous effects and minimize the disadvantageous effects of each material. In particular, one seeks to (1) take advantage of the ability of the carbon fibers to resist stress rupture while minimizing their contribution to vulnerability of the vessel to impact damage and (2) take advantage of the toughness of the PBO fibers while minimizing their contribution to vulnerability of the vessel to stress rupture. Experiments on prototype vessels fabricated according to this concept have shown promising results. At the time of reporting the information for this article, research toward understanding and optimizing the performances of PBO fibers so as to minimize their contribution to vulnerability of the pressure vessel to stress rupture had yet to be performed.
Greenhouse gas emission footprints and energy use benchmarks for eight U.S. cities.
Hillman, Tim; Ramaswami, Anu
2010-03-15
A hybrid life cycle-based trans-boundary greenhouse gas (GHG) emissions footprint is elucidated at the city-scale and evaluated for 8 US cities. The method incorporates end-uses of energy within city boundaries, plus cross-boundary demand for airline/freight transport and embodied energy of four key urban materials [food, water, energy (fuels), and shelter (cement)], essential for life in all cities. These cross-boundary activities contributed 47% on average more than the in-boundary GHG contributions traditionally reported for cities, indicating significant truncation at city boundaries of GHG emissions associated with urban activities. Incorporating cross-boundary contributions created convergence in per capita GHG emissions from the city-scale (average 23.7 mt-CO(2)e/capita) to the national-scale (24.5 mt-CO(2)e/capita), suggesting that six key cross-boundary activities may suffice to yield a holistic GHG emission footprint for cities, with important policy ramifications. Average GHG contributions from various human activity sectors include buildings/facilities energy use (47.1%), regional surface transport (20.8%), food production (14.7%), transport fuel production (6.4%), airline transport (4.8%), long-distance freight trucking (2.8%), cement production (2.2%), and water/wastewater/waste processing (1.3%). Energy-, travel-, and key materials-consumption efficiency metrics are elucidated in these sectors; these consumption metrics are observed to be largely similar across the eight U.S. cities and consistent with national/regional averages.
The effects of compressive preloads on the compression-after-impact strength of carbon/epoxy
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Lance, D. G.
1992-01-01
A preloading device was used to examine the effects of compressive prestress on the compression-after-impact (CAI) strength of 16-ply, quasi-isotropic carbon epoxy test coupons. T300/934 material was evaluated at preloads from 200 to 4000 lb at impact energies from 1 to 9 joules. IM7/8551-7 material was evaluated at preloads from 4000 to 10,000 lb at impact energies from 4 to 16 joules. Advanced design of experiments methodology was used to design and evaluate the test matrices. The results showed that no statistically significant change in CAI strength could be contributed to the amount of compressive preload applied to the specimen.
NASA Technical Reports Server (NTRS)
Arndt, Nicholas T.; Goldstein, Steven L.
1988-01-01
A mechanism is presented for recycling of lower continental material back into the mantle. Picritic magmas, possible parental to volumious continental volcanics such as the Karoo and Deccan, became trapped at the Moho, where they interacted with and become contaminated by lower crustal materials. Upon crystallization, the magmas differentiated into lower ultramafic cumulate zones and upper gabbroic-anorthositic zones. The ultramafic cumulates are denser than underlying mantle and sink, carrying lower crustal components as trapped liquid, as xenoliths or rafts, and as constituents of cumulate minerals. This model provides a potentially significant crust-mantle differentiation mechanism, and may also represent a contributing factor in crustal recycling, possibly important in producing some OIB reservoirs.
A nuclear method to measure spallation by thermal cycling of protective surface layers
NASA Astrophysics Data System (ADS)
Stroosnijder, M. F.; Macchi, G.
1995-05-01
After a general introduction on spallation by thermal cycling, the principle of Thin Layer Activation (TLA) is outlined. A practical setup to measure spallation of protective surface layers by thermal cycling using TLA is discussed. Its use is illustrated with the study of the spallation behaviour of an advanced thermal barrier coating. It is shown that among the various benefits, TLA has a direct relation to material loss and shows a significant increase in sensitivity over other test methods. Due to its intrinsic properties, TLA can contribute to a greater scientific understanding of material degradation by thermal cycling and it can provide a more reliable assessment of the service lives of technical components.
Isotopic Analysis and Evolved Gases
NASA Technical Reports Server (NTRS)
Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry
1996-01-01
Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.
Rekola, J; Lassila, L V J; Nganga, S; Ylä-Soininmäki, A; Fleming, G J P; Grenman, R; Aho, A J; Vallittu, P K
2014-01-01
Wood has been used as a model material for the development of novel fiber-reinforced composite bone substitute biomaterials. In previous studies heat treatment of wood was perceived to significantly increase the osteoconductivity of implanted wood material. The objective of this study was to examine some of the changing attributes of wood materials that may contribute to improved biological responses gained with heat treatment. Untreated and 140°C and 200°C heat-treated downy birch (Betula pubescens Ehrh.) were used as the wood materials. Surface roughness and the effect of pre-measurement grinding were measured with contact and non-contact profilometry. Liquid interaction was assessed with a dipping test using two manufactured liquids (simulated blood) as well as human blood. SEM was used to visualize possible heat treatment-induced changes in the hierarchical structure of wood. The surface roughness was observed to significantly decrease with heat treatment. Grinding methods had more influence on the surface contour and roughness than heat treatment. The penetration of the human blood in the 200°C heat-treated exceeded that in the untreated and 140°C heat-treated materials. SEM showed no significant change due to heat treatment in the dry-state morphology of the wood. The results of the liquid penetration test support previous findings in literature concerning the effects of heat treatment on the biological response to implanted wood. Heat-treatment has only a marginal effect on the surface contour of wood. The highly specialized liquid conveyance system of wood may serve as a biomimetic model for the further development of tailored fiber-composite materials.
Women with previous stress fractures show reduced bone material strength
Duarte Sosa, Daysi; Fink Eriksen, Erik
2016-01-01
Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.
2012-02-01
Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael
2013-04-01
The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.
Effect of phase change material on the heat transfer rate of different building materials
NASA Astrophysics Data System (ADS)
Hasan, Mushfiq; Alam, Shahnur; Ahmed, Dewan Hasan
2017-12-01
Phase change material (PCM) is widely known as latent heat storage. A comprehensive study is carried out to investigate the effect of PCM on heat transfer rate of building materials. Paraffin is used as PCM along with different conventional building materials to investigate the heat transfer rate from the heated region to the cold region. PCM is placed along with the three different types of building materials like plaster which is well know building material in urban areas and wood and straw which are commonly used in rural areas for roofing as well as wall panel material and investigated the heat transfer rate. An experimental setup was constructed with number of rectangular shape aluminum detachable casing (as cavity) and placed side by side. Series of rectangular cavity filled with convent ional building materials and PCM and these were placed in between two chambers filled with water at different temperature. Building materials and PCM were placed in different cavities with different combinations and investigated the heat transfer rate. The results show that using the PCM along with other building materials can be used to maintain lower temperature at the inner wall and chamber of the cold region. Moreover, the placement or orientation of the building materials and PCM make significant contribution to heat transfer rate from the heated zone to the cold zone.
Bacterial endotoxin adhesion to different types of orthodontic adhesives
ROMUALDO, Priscilla Coutinho; GUERRA, Thaís Rodrigues; ROMANO, Fábio Lourenço; da SILVA, Raquel Assed Bezerra; BRANDÃO, Izaíra Tincani; SILVA, Célio Lopes; da SILVA, Lea Assed Bezerra; NELSON-FILHO, Paulo
2017-01-01
Abstract Bacterial endotoxin (LPS) adhesion to orthodontic brackets is a known contributing factor to inflammation of the adjacent gingival tissues. Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials. PMID:28877283
Closed-form solution of the Ogden-Hill's compressible hyperelastic model for ramp loading
NASA Astrophysics Data System (ADS)
Berezvai, Szabolcs; Kossa, Attila
2017-05-01
This article deals with the visco-hyperelastic modelling approach for compressible polymer foam materials. Polymer foams can exhibit large elastic strains and displacements in case of volumetric compression. In addition, they often show significant rate-dependent properties. This material behaviour can be accurately modelled using the visco-hyperelastic approach, in which the large strain viscoelastic description is combined with the rate-independent hyperelastic material model. In case of polymer foams, the most widely used compressible hyperelastic material model, the so-called Ogden-Hill's model, was applied, which is implemented in the commercial finite element (FE) software Abaqus. The visco-hyperelastic model is defined in hereditary integral form, therefore, obtaining a closed-form solution for the stress is not a trivial task. However, the parameter-fitting procedure could be much faster and accurate if closed-form solution exists. In this contribution, exact stress solutions are derived in case of uniaxial, biaxial and volumetric compression loading cases using ramp-loading history. The analytical stress solutions are compared with the stress results in Abaqus using FE analysis. In order to highlight the benefits of the analytical closed-form solution during the parameter-fitting process experimental work has been carried out on a particular open-cell memory foam material. The results of the material identification process shows significant accuracy improvement in the fitting procedure by applying the derived analytical solutions compared to the so-called separated approach applied in the engineering practice.
Anisotropic evaluation of synthetic surgical meshes.
Saberski, E R; Orenstein, S B; Novitsky, Y W
2011-02-01
The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.
Beyond local effective material properties for metamaterials
NASA Astrophysics Data System (ADS)
Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.
2018-02-01
To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.
NASA Astrophysics Data System (ADS)
Said, M.
Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.
Adams, Alison E. M.; Randall, Shelby; Traustadóttir, Tinna
2015-01-01
Two sections of an introductory microbiology course were taught by one instructor. One was taught through a hybrid format and the other through a traditional format. Students were randomly assigned to the two sections. Both sections were provided with identical lecture materials, in-class worksheets, in-class assessments, and extra credit opportunities; the main difference was in the way the lecture material was delivered—online for the hybrid section and in person for the traditional section. Analysis of final grades revealed that students in the traditional section did significantly better than those in the hybrid section (p < 0.001). There was a significant main effect of class standing (p < 0.01). When performance in the two sections was compared for each class year separately, the differences were only significant for sophomores (p < 0.001); freshmen, juniors, and seniors did not perform differently in the hybrid versus the traditional section. An anonymous midterm survey suggested factors likely contributing to the overall lower success of students in the hybrid section: some students in the hybrid section did not take lecture notes and/or use the audio component of the online lectures, suggesting minimal interaction with the lecture material for these students. PMID:25713096
Pappa, Evelina; Chatzikonstantinidou, Simela; Chalkiopoulos, George; Papadopoulos, Angelos; Niakas, Dimitris
2015-06-12
The aim was to assess the health-related quality of life (HRQL) of the Roma and further to detect the significant determinants that are associated with their HRQL. The cross-sectional study involved 1068 Roma adults living in settlements (mean age 36). HRQL was measured by the Greek version of SF-36 Health Survey and further socio-demographic characteristics (sex, age, marital status, education, permanent occupation etc.) and housing conditions (stable housing, access to basic amenities such as drinkable water, drainage, electricity which compose material deprivation) were involved. Non parametric tests and multiple linear regression models were applied to identify the factors that have significant association with HRQL. After controlling for socio-demographic characteristics, health status and housing conditions, sex, age, education, chronic diseases, stable housing and material deprivation were found to be significant determinants of the Roma's HRQL. Men reported significantly better health than women as well as those who attended school compared to the illiterate. Chronic diseases were remarkably associated with poor HRQL from 10 units in MH (Mental Health) to 34 units in RP (Role Physical). Material deprivation was related to lower GH (General Health), and VT (Vitality) scores and higher RP (Role Physical) and RE (Role Emotional) scores. Chronic conditions and illiteracy are two key areas that contribute significantly to worse HRQL. Policies should be part of a comprehensive and holistic strategy for the Roma through intervention to education, housing and public health.
EDITORIAL: Special cluster on Dielectrics for Emerging Technologies
NASA Astrophysics Data System (ADS)
Clarke, R.; Youngs, I.; Stevens, G.
2004-02-01
The 2003 Conference on Dielectrics for Emerging Technologies was organised by the Institute of Physics Dielectrics Group as one of the participating conferences at the IOP Physics Congress held at Heriot-Watt University between 23 and 27 March 2003. This was the second annual conference of the new Dielectrics Group, which was formed from the former Dielectrics Society in October 2001. The conference policy remains unchanged, with the Group adopting an interdisciplinary and broadband approach to studies of the interaction of electromagnetic fields with materials. This policy is well exemplified by the papers that were delivered at this conference. The aims of the conference were three-fold: to provide a forum for the presentation of leading-edge research on emerging electromagnetic materials, to present developments on the use of dielectrics in emerging technologies and to broaden the debate on metamaterials in the UK, especially in relation to their potential applications. The metamaterials of interest here are macro- or meso-scopically structured materials that offer novel modes of electromagnetic field interaction, thereby widening the range of effective dielectric properties available to us for novel technological applications. They include `negative refractive index materials', `left handed materials', `photonic' or `electromagnetic band-gap materials' and actively-controlled or `smart' electromagnetic materials. Significant metamaterial applications are anticipated in the development of `perfect' lenses, filters, wavefront-conditioning layers and in improved metrology. The conference focussed additionally on dielectrics in support of electronics, photonics and optics, nano-materials, composites and structures, and the development of tuneable dielectrics and resonators for future applications in telecommunications. We are pleased to report that the conference was successful in achieving its objectives, thirty-four oral papers were delivered and twenty-three poster papers presented, many of which provoked significant debate. All contributions and the vigorous discussions held in this predominantly international forum testify to the health and vigour of this branch of materials physics and engineering. We were particularly pleased on this occasion to have the opportunity to run joint conference sessions with the `Structured Optical Materials' and `Electrostatics' conferences, which were run in parallel at the Congress. Electromagnetic materials science is inherently a cross-spectrum discipline and these sessions demonstrated the considerable overlap of technical interests and research from DC to optical frequencies. We are delighted to have the privilege of presenting eleven of the papers from the conference in this special cluster of Journal of Physics D: Applied Physics. Between them they capture the wide range of topics that were covered at the conference. The field of dielectric materials characterisation was well represented and amongst many other topics it included the study of nano-composites, represented here by the papers of Pelster et al and Hussain et al. Composite dielectrics at all scales lie at the centre of most new research into emerging applications and the paper by Bowler and that of Tuncer are also concerned with the understanding and characterisation of such materials. The understanding of the nature and distribution of space charge has always been a core dielectric study and a contribution to this field is made here by the paper of Marat-Mendes et al. Processing is a major factor that governs the properties of all dielectric materials---but this is particularly true in the case of sintered low-loss ceramics. The paper of Pullar et al adds to our knowledge in this important area. The remit of the conference led to the discussion of a very wide range of potential applications. One such is the use of dielectrophoretic forces for separating particles in suspensions (e.g. in pharmaceutical and diagnostic applications). The paper by Flores-Rodriguez and Markz presents a study on one aspect of this discipline. Presentations on meta- and structured materials at the conference are represented here in two papers: those of Shamonina and Solymar and of Zhou, Chan and Sheng, while a study in the closely allied area of band-gap materials is presented in the paper by Schuster and Klein. The final paper from the conference in this special cluster is concerned with an end-use application: the use of tuneable dielectric resonators in base-stations for future mobile telecoms networks. The paper by Krupka et al describes a magnetic approach to such tuning. In the longer term we sincerely hope that both the conference and these papers will prove to have made a significant contribution to the development and uses of dielectrics, and their metamaterial derivatives, in advanced technological applications. It is noteworthy that as a result of the success of this conference, the 2004 annual conference will be on the subject of `Dielectrics at Meso- and Nano-Scales'. We would like to take this opportunity to express our sincere thanks to all who participated in the conference for their contributions and we would like to express our particular thanks to the authors of the papers in this special cluster of Journal of Physics D: Applied Physics.
Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin
2013-01-01
Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co2−xFexO5+δ, which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm−2 at 600°C, representing an important step toward commercially viable SOFC technologies. PMID:23945630
Diverse Electron-Induced Optical Emissions from Space Observatory Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Dennison, J.R.; Jensen, Amberly Evans; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert
2013-01-01
Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (<1 s) arcing, resulting from electrostatic discharge; and (iii) intermediate-duration (100 s) glow-termed "flares". We discuss how the electron currents and arcing-as well as light emission absolute intensity and frequency-depend on electron beam energy, power, and flux and the temperature and thickness of different bulk (polyimides, epoxy resins, and silica glasses) and composite dielectric materials (disordered SiO2 thin films, carbon- and fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.
Choi, Sihyuk; Yoo, Seonyoung; Kim, Jiyoun; Park, Seonhye; Jun, Areum; Sengodan, Sivaprakash; Kim, Junyoung; Shin, Jeeyoung; Jeong, Hu Young; Choi, YongMan; Kim, Guntae; Liu, Meilin
2013-01-01
Solid oxide fuel cells (SOFC) are the cleanest, most efficient, and cost-effective option for direct conversion to electricity of a wide variety of fuels. While significant progress has been made in anode materials with enhanced tolerance to coking and contaminant poisoning, cathodic polarization still contributes considerably to energy loss, more so at lower operating temperatures. Here we report a synergistic effect of co-doping in a cation-ordered double-perovskite material, PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ), which has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions. Test cells based on these cathode materials demonstrate peak power densities ~2.2 W cm(-2) at 600°C, representing an important step toward commercially viable SOFC technologies.
Room scatter effects in Total Skin Electron Irradiation: Monte Carlo simulation study.
Nevelsky, Alexander; Borzov, Egor; Daniel, Shahar; Bar-Deroma, Raquel
2017-01-01
Total Skin Electron Irradiation (TSEI) is a complex technique which usually involves the use of large electron fields and the dual-field approach. In this situation, many electrons scattered from the treatment room floor are produced. However, no investigations of the effect of scattered electrons in TSEI treatments have been reported. The purpose of this work was to study the contribution of floor scattered electrons to skin dose during TSEI treatment using Monte Carlo (MC) simulations. All MC simulations were performed with the EGSnrc code. Influence of beam energy, dual-field angle, and floor material on the contribution of floor scatter was investigated. Spectrum of the scattered electrons was calculated. Measurements of dose profile were performed in order to verify MC calculations. Floor scatter dependency on the floor material was observed (at 20 cm from the floor, scatter contribution was about 21%, 18%, 15%, and 12% for iron, concrete, PVC, and water, respectively). Although total dose profiles exhibited slight variation as functions of beam energy and dual-field angle, no dependence of the floor scatter contribution on the beam energy or dual-field angle was found. The spectrum of the scattered electrons was almost uniform between a few hundred KeV to 4 MeV, and then decreased linearly to 6 MeV. For the TSEI technique, dose contribution due to the electrons scattered from the room floor may be clinically significant and should be taken into account during design and commissioning phases. MC calculations can be used for this task. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Stock dynamics and emission pathways of the global aluminum cycle
NASA Astrophysics Data System (ADS)
Müller, Daniel B.; Liu, Gang; Bangs, Colton
Climate change mitigation in the materials sector faces a twin challenge: satisfying rapidly rising global demand for materials while significantly curbing greenhouse-gas emissions. Process efficiency improvement and recycling can contribute to reducing emissions per material output; however, long-term material demand and scrap availability for recycling depend fundamentally on the dynamics of societies' stocks of products in use, an issue that has been largely neglected in climate science. Here, we show that aluminium in-use stock patterns set essential boundary conditions for future emission pathways, which has significant implications for mitigation priority setting. If developing countries follow industrialized countries in their aluminium stock patterns, a 50% emission reduction by 2050 below 2000 levels cannot be reached even under very optimistic recycling and technology assumptions. The target can be reached only if future global per-capita aluminium stocks saturate at a level much lower than that in present major industrialized countries. As long as global in-use stocks are growing rapidly, radical new technologies in primary production (for example, inert anode and carbon capture and storage) have the greatest impact in emission reduction; however, their window of opportunity is closing once the stocks begin to saturate and the largest reduction potential shifts to post-consumer scrap recycling.
Shimazaki, Takashi; Takenaka, Koji
2015-12-01
Little is known about dissemination strategies that contribute to health information recognition. This study examined (a) health campaign exposure and awareness (slogan and logo recognition); (b) perceived communication channels; (c) differences between perceptions of researcher-developed and enhancement community health information materials; and (d) differences in campaign awareness and communication channels, according to Japanese community demographic characteristics. A cross-sectional survey (N = 508) was conducted in Tokigawa, Japan, in 2013. The Small Change Campaign focused on increasing physical activity and improving dietary habits. Information dissemination was carried out using leaflets, newsletters, posters, website, local public relations magazines, health classes, events, and online newsletters. The participants completed a survey assessing their campaign awareness (i.e., slogan and logo) and exposure to the informational materials presented during the campaign. Fewer than half (45.4%) knew the slogan, and only 24.4% were aware of the logo. Public relations magazines, leaflets, and newsletters were significantly better-perceived health communication channels. Researcher-developed and enhancement community health information materials were equally recognized (p = .34, w = .08). Furthermore, women and those who were employed were significantly more aware of the slogan, logo, and communication materials. Further research should explore effective communication strategies for community-based health promotion intervention via randomized control trials. © 2015 Society for Public Health Education.
Structure and mechanical behavior of human hair.
Yu, Yang; Yang, Wen; Wang, Bin; Meyers, Marc André
2017-04-01
The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated. Hair exhibits a high tensile strength, 150-270MPa, which is significantly dependent on strain rate and humidity. The strain-rate sensitivity, approximately 0.06-0.1, is comparable to that of other keratinous materials and common synthetic polymers. The structures of the internal cortex and surface cuticle are affected by the large tensile extension. One distinguishing feature, the unwinding of the α-helix and the possible transformation to β-sheet structure of keratin under tension, which affects the ductility of hair, is analytically evaluated and incorporated into a constitutive equation. A good agreement with the experimental results is obtained. This model elucidates the tensile response of the α-keratin fibers. The contributions of elastic and plastic strains on reloading are evaluated and correlated to structural changes. Copyright © 2016 Elsevier B.V. All rights reserved.
Superconducting radio-frequency cavities made from medium and low-purity niobium ingots
Ciovati, Gianluigi; Dhakal, Pashupati; Myneni, Ganapati R.
2016-04-07
Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q 0-values. In this contribution we present the results from cryogenic RF tests of 1.3–1.5 GHz single-cell cavities made of ingot Nbmore » of medium (RRR = 100–150) and low (RRR = 60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with an average Q 0-value of 2 × 10 10 at 2 K after standard processing treatments. As a result, the performances of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching.« less
Factors influencing pre-service physics teachers' skills of writing teaching materials
NASA Astrophysics Data System (ADS)
Sinaga, Parlindungan
2016-02-01
Writing teaching materials is one of the generic pedagogical skills. Teachers and pre-service teachers should be trained to have the skills of writing teaching materials. This study examines the factors that influence the skills of writing in the disciplines among pre-service physics teachers. This study in particular aims to contribute to the development of science writing in the disciplines and to the organization of workshops on writing teaching materials for pre-service teachers. The problems of this research are formulated in the question of what are the factors that influence the skills of pre-service physics teachers in writing teaching materials. The research adopted mixed methods with embedded experimental design. The research subjects were 18 students enrolled in the school physics course. The instruments used consisted of conceptual understanding tests, learning strategy questionnaire, tests of the multiple representation skills, and one-on-one semi- structured interview. Results of data analysis show that the ability and skills of writing physics teaching materials of the pre- service physics teachers are determined by the factors of conceptual understanding of the subject matter with a contribution of 20%, the skills of making multiple representations of concepts with a contribution of 9.8% and students' self-regulation and learning strategy with a contribution of 33.5%. There are other factors that have not been investigated in this study; therefore, it is recommended that future research conduct further investigation on other factors that influence pre-service teachers' skills in writing physics teaching materials.
NASA Astrophysics Data System (ADS)
González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo
2017-01-01
The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.
NASA Astrophysics Data System (ADS)
Saeli, Manfredi; Novais, Rui M.; Seabra, Maria Paula; Labrincha, João A.
2017-11-01
Sustainability in construction is a major concern worldwide, due to the huge volume of materials and energy consumed by this sector. Associated supplementing industries (e.g. Portland cement production) constitute a significant source of CO2 emissions and global warming. Valorisation and reuse of industrial wastes and by-products make geopolymers a solid and sustainable via to be followed as a valid alternative to Portland cement. In this work the mix design of a green fly ash-based geopolymer is evaluated as an environmentally friendly construction material. In the pursuit of sustainability, wastes from a regional kraft pulp industry are exploited for the material processing. Furthermore, a simple, reproducible, and low-cost manufacture is used. The mix design is hence optimised in order to improve the desirable mechanical performance of the material intended for structural applications in construction. Tests indicate that geopolymers may efficiently substitute the ordinary Portland cement as a mortar/concrete binder. Furthermore, valorisation and reuse of wastes in geopolymers is a suboptimal way of gaining financial surplus for the involved industrial players, while contributes for the implementation of a desirable circular economy.
Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.
1999-01-01
The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12qq lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity. Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3.9qq, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.
NASA Technical Reports Server (NTRS)
Green, R. H.
1972-01-01
In 1969 the Jet Propulsion Laboratory undertook an investigation to determine which of its space-derived capabilities could make significant contributions to the improvement of health care delivery in the U.S. The area of planetary quarantine was identified as one of high relevance. Two studies were conducted in this connection. The first study, which could contribute to infection reduction and control, was concerned with conversion of infection implicated complex, nonheat sterilizable equipment to dry heat, sterilizable equipment by changes in design and materials of construction. The second study area related to hospital acquired infection is clean room technology. A definite investigation has been performed to demonstrate and statistically evaluate performance under controlled conditions.
Goulding, F S; Stone, Y
1970-10-16
The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.
Stellan Hjertén’s contribution to the development of monolithic stationary phases
Svec, Frantisek
2009-01-01
This overview is presented to celebrate birthday of one of the luminaries of the separation science and my friend – Stellan Hjertén. He made significant contributions to a variety of areas in the separation science such as electrophoresis, liquid chromatography, and capillary electrochromatography to name just a few. Since the scope of his work was enormous, this review will focus only on a single aspect of his scientific activities, design and applications of monolithic materials. During the years starting from 1989, Stellan Hjertén published many excellent papers concerning the preparation of acrylamide chemistry-based monoliths and their use in both micro-HPLC and capillary electrochromatography. The following text details his works in field. PMID:18383033
Mycological Research: instructions and guidelines for authors.
Hawksworth, David L
2007-01-01
Instructions and guidelines for authors submitting papers to Mycological Research are provided. The journal is international and covers all fields of mycology, both fundamental and applied. It publishes news items, reviews, original papers, and book reviews. Contributions should be of interest to a wide spectrum of mycologists or make significant novel contributions. Papers with particularly exciting results are fast-tracked and prioritized for publication. Submission must be made online via the Elsevier Editorial System (ees.elsevier.com/mycres); hard copy submissions are no longer accepted. Information is provided on: scope and timeliness; submission of articles; manuscript preparation; tables; illustrations; spellings, numbers, chemical symbols, and abbreviations; voucher material; molecular data; taxonomic data; references; the decision-making process; copyright; author's copies; proofs; and further questions.
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
Biodegradable and compostable alternatives to conventional plastics
Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.
2009-01-01
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060
Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity.
Jackson, Daniel J; Reim, Laurin; Randow, Clemens; Cerveau, Nicolas; Degnan, Bernard M; Fleck, Claudia
2017-11-01
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent "GS" domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
NASA Technical Reports Server (NTRS)
Milos, Frank S.
2011-01-01
In most previous work at NASA Ames Research Center, ablation predictions for carbonaceous materials were obtained using a species thermodynamics database developed by Aerotherm Corporation. This database is derived mostly from the JANAF thermochemical tables. However, the CEA thermodynamics database, also used by NASA, is considered more up to date. In this work, the FIAT code was modified to use CEA-based curve fits for species thermodynamics, then analyses using both the JANAF and CEA thermodynamics were performed for carbon and carbon phenolic materials over a range of test conditions. The ablation predictions are comparable at lower heat fluxes where the dominant mechanism is carbon oxidation. However, the predictions begin to diverge in the sublimation regime, with the CEA model predicting lower recession. The disagreement is more significant for carbon phenolic than for carbon, and this difference is attributed to hydrocarbon species that may contribute to the ablation rate.
Culture and art: Importance of art practice, not aesthetics, to early human culture.
Zaidel, Dahlia W
2018-01-01
Art is expressed in multiple formats in today's human cultures. Physical traces of stone tools and other archaeological landmarks suggest early nonart cultural behavior and symbolic cognition in the early Homo sapiens (HS) who emerged ~300,000-200,000 years ago in Africa. Fundamental to art expression is the neural underpinning for symbolic cognition, and material art is considered its prime example. However, prior to producing material art, HS could have exploited symbolically through art-rooted biological neural pathways for social purpose, namely, those controlling interpersonal motoric coordination and sound codependence. Aesthetics would not have been the primary purpose; arguments for group dance and rhythmical musical sounds are offered here. In addition, triggers for symbolic body painting are discussed. These cultural art formats could well have preceded material art and would have enhanced unity, inclusiveness, and cooperative behavior, contributing significantly to already existing nonart cultural practices. © 2018 Elsevier B.V. All rights reserved.
Quantized circular photogalvanic effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.
2017-07-01
The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.
Elasticity Solution of an Adhesively Bonded Cover Plate of Various Geometries
NASA Technical Reports Server (NTRS)
Aksel, G. N.; Erdogan, F.
1985-01-01
The plane strain of adhesively bonded structures consisting of two different isotropic adherends is considered. By expressing the x-y components of the displacements in terms of Fourier integrals and using the corresponding boundary and continuity conditions, the integral equations for the general problem are obtained and solved numerically by applying Gauss-Chebyshev integration scheme. The shear and the normal stresses in the adhesive are calculated for various geometries and material properties for a stiffened plate under uniaxial tension. Numerical results involving the stress intensity factors and the strain energy release rate are presented. The closed-form expressions for the Fredholm kernels are provided to obtain the solution for an arbitrary geometry and material properties. For the general geometry, the contribution of the normal stress is quite significant, while for symmetric geometries, the shear stress is dominant, the normal stress vanishes if the adherends are of the same material and the same thickness.
de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.
Synthesis of monoclinic potassium niobate nanowires that are stable at room temperature.
Kim, Seungwook; Lee, Ju-Hyuck; Lee, Jaeyeon; Kim, Sang-Woo; Kim, Myung Hwa; Park, Sungnam; Chung, Haegeun; Kim, Yong-Il; Kim, Woong
2013-01-09
We report the synthesis of KNbO(3) nanowires (NWs) with a monoclinic phase, a phase not observed in bulk KNbO(3) materials. The monoclinic NWs can be synthesized via a hydrothermal method using metallic Nb as a precursor. The NWs are metastable, and thermal treatment at ∼450 °C changed the monoclinic phase into the orthorhombic phase, which is the most stable phase of KNbO(3) at room temperature. Furthermore, we fabricated energy-harvesting nanogenerators by vertically aligning the NWs on SrTiO(3) substrates. The monoclinic NWs showed significantly better energy conversion characteristics than orthorhombic NWs. Moreover, the frequency-doubling efficiency of the monoclinic NWs was ∼3 times higher than that of orthorhombic NWs. This work may contribute to the synthesis of materials with new crystalline structures and hence improve the properties of the materials for various applications.
National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards
NASA Astrophysics Data System (ADS)
Rabin, Michael W.
2009-12-01
As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.
Steel Fibre Reinforced Concrete Simulation with the SPH Method
NASA Astrophysics Data System (ADS)
Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip
2017-10-01
Steel fibre reinforced concrete (SFRC) is very popular in many branches of civil engineering. Thanks to its increased ductility, it is able to resist various types of loading. When designing a structure, the mechanical behaviour of SFRC can be described by currently available material models (with equivalent material for example) and therefore no problems arise with numerical simulations. But in many scenarios, e.g. high speed loading, it would be a mistake to use such an equivalent material. Physical modelling of the steel fibres used in concrete is usually problematic, though. It is necessary to consider the fact that mesh-based methods are very unsuitable for high-speed simulations with regard to the issues that occur due to the effect of excessive mesh deformation. So-called meshfree methods are much more suitable for this purpose. The Smoothed Particle Hydrodynamics (SPH) method is currently the best choice, thanks to its advantages. However, a numerical defect known as tensile instability may appear when the SPH method is used. It causes the development of numerical (false) cracks, making simulations of ductile types of failure significantly more difficult to perform. The contribution therefore deals with the description of a procedure for avoiding this defect and successfully simulating the behaviour of SFRC with the SPH method. The essence of the problem lies in the choice of coordinates and the description of the integration domain derived from them - spatial (Eulerian kernel) or material coordinates (Lagrangian kernel). The contribution describes the behaviour of both formulations. Conclusions are drawn from the fundamental tasks, and the contribution additionally demonstrates the functionality of SFRC simulations. The random generation of steel fibres and their inclusion in simulations are also discussed. The functionality of the method is supported by the results of pressure test simulations which compare various levels of fibre reinforcement of SFRC specimens.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Order 13382, ``Blocking Property of Weapons of Mass Destruction Proliferators and Their Supporters... materially contributed to, or pose a risk of materially contributing to, the proliferation of weapons of mass destruction or their means of delivery (including missiles capable of delivering such weapons), including any...
Gustafsson, Per E; Hammarström, Anne; San Sebastian, Miguel
2015-08-01
Disadvantage, originating in one's residential context or in one's past life course, has been shown to impact on health in adulthood. There is however little research on the accumulated health impact of both neighbourhood and individual conditions over the life course. This study aims to examine whether the accumulation of contextual and individual disadvantages from adolescence to middle-age predicts functional somatic symptoms (FSS) in middle-age, taking baseline health into account. The sample is the age 16, 21, 30 and 42 surveys of the prospective Northern Swedish Cohort, with analytical sample size n = 910 (85% of the original cohort). FSS at age 16 and 42, and cumulative socioeconomic disadvantage, social adversity and material adversity between 16 and 42 years were operationalized from questionnaires, and cumulative neighbourhood disadvantage between 16 and 42 years from register data. Results showed accumulation of disadvantages jointly explained 9-12% of FSS variance. In the total sample, cumulative neighbourhood and socioeconomic disadvantage significantly predicted FSS at age 42 in the total sample. In women, neighbourhood disadvantage but not socioeconomic disadvantage contributed significantly, whereas in men, socioeconomic but not neighbourhood disadvantage contributed significantly. In all analyses, associations were largely explained by the parallel accumulation of social and material adversities, but not by symptoms at baseline. In conclusion, the accumulation of diverse forms of disadvantages together plays an important role for somatic complaints in adulthood, independently of baseline health. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Jiabi; Shen, Jian
2017-11-01
Driven by estuarine circulation, material released from lower Chesapeake Bay tributaries has the potential to be transported to the upper Bay. How far and what fraction of the material from tributaries can be carried to the upper estuary have not been quantitatively investigated. For an estuary system with multiple tributaries, the relative contribution from each tributary can provide valuable information for source assessment and fate prediction for riverine materials and passive moving organisms. We conducted long-term numerical simulations using multiple passive tracers that are independently released in the headwater of five main rivers (i.e., Susquehanna, Potomac, Rappahannock, York, and James Rivers) and calculated the relative contribution of each river to the total material in the mainstem. The results show that discharge from Susquehanna River exerts the dominant control on the riverine material throughout the entire mainstem. Despite the smaller contribution from the lower-middle Bay tributaries to the total materials in the mainstem, materials released from these rivers have a high potential to be transported to the middle-upper Bay through the bottom inflow by the persistent estuarine circulation. The fraction of the tributary material transported to the upper Bay depends on the location of the tributary. Materials released near the mouth are subject to a rapid flushing process, small retention time, and strong shelf current. Our results reveal three distinct spatial patterns for materials released from the main river, tributary, and coastal oceans. This study highlights the important control of estuarine circulation over horizontal and vertical distributions of materials in the mainstem.
NASA Astrophysics Data System (ADS)
Moreno-Barriga, Fabián; Acosta, José A.; Ángeles Muñoz, M.; Faz, Ángel; Zornoza, Raúl
2017-04-01
Creation of Technosols by use of different materials can be a sustainable strategy to reclaim mine tailings spread on the environment. A proper selection of materials is critical to efficiently contribute to soil creation, with development of soil structure, organic matter stabilization and stimulation of microbial growth. For this purpose, a short-term incubation experiment was designed with biochars derived from different feedstocks, added to tailings alone or in combination with marble waste (MaW). We aimed to assess the effects of the different materials on the evolution of C and N contents and pools, greenhouse gas (GHG) emissions, aggregate stability, and microbial biomass and activity. Results showed that carbonates provided by MaW increased pH around the target value of 8, with significant decrease in salinity by precipitation of soluble salts. Organic C and total N remained stable during the incubation, with high recalcitrant indices. Labile and soluble C and N pools were low in Technosols, with no differences with unamended tailings at the end of incubation. All biochars increased aggregate stability with regard to control by 40%, with no effect of addition of MaW. Biochars significantly increased microbial biomass C during the first 7 days of incubation; however, from this date, there were no significant differences with unamended tailings. The β-glucosidase activity was below detection limit in all samples, while arylesterase activity increased in biochar-amended samples favored by increases in pH. CO2 emissions were not significantly affected by any amendment, while N2O emissions increased with the addition of biochars with lower recalcitrance. CH4 emissions decreased in all Technosols receiving biochar. Thus, the combined use of biochar and MaW contributed to soil C sequestration and improved soil structure. However, labile sources of organic compounds would be needed to stimulate microbial populations in the Technosols. Acknowledgements This work was supported by Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) [grant number 18920/JLI/13].
A Novel Method for Characterizing Beam Hardening Artifacts in Cone-beam Computed Tomographic Images.
Fox, Aaron; Basrani, Bettina; Kishen, Anil; Lam, Ernest W N
2018-05-01
The beam hardening (BH) artifact produced by root filling materials in cone-beam computed tomographic (CBCT) images is influenced by their radiologic K absorption edge values. The purpose of this study was to describe a novel technique to characterize BH artifacts in CBCT images produced by 3 root canal filling materials and to evaluate the effects of a zirconium (Zr)-based root filling material with a lower K edge (17.99 keV) on the production of BH artifacts. The palatal root canals of 3 phantom model teeth were prepared and root filled with gutta-percha (GP), a Zr root filling material, and calcium hydroxide paste. Each phantom tooth was individually imaged using the CS 9000 CBCT unit (Carestream, Atlanta, GA). The "light" and "dark" components of the BH artifacts were quantified separately using ImageJ software (National Institutes of Health, Bethesda, MD) in 3 regions of the root. Mixed-design analysis of variance was used to evaluate differences in the artifact area for the light and dark elements of the BH artifacts. A statistically significant difference in the area of the dark portion of the BH artifact was found between all fill materials and in all regions of the phantom tooth root (P < .05). GP generated a significantly greater dark but not light artifact area compared with Zr (P < .05). Moreover, statistically significant differences between the areas of both the light and dark artifacts were observed within all regions of the tooth root, with the greatest artifact being generated in the coronal third of the root (P < .001). Root canal filling materials with lower K edge material properties reduce BH artifacts along the entire length of the root canal and reduce the contribution of the dark artifact. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Performance limiting processes in room temperature thallium bromide radiation detectors
NASA Astrophysics Data System (ADS)
Datta, Amlan; Becla, Piotr; Moed, Demi; Motakef, Shariar
2015-09-01
Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues are needed to be addressed before deployment of this material for long-term field applications. In this paper, the relevance and, scientific and technological progress made towards solving these challenges for TlBr have been discussed. The possible research pathways to mitigate the concerns related to this material have been analyzed and clearly established. Findings from novel experiments performed at CapeSym have revealed that the most significant factors for achieving long-term performance stability for TlBr devices involve physical and chemical conditions of the surface, residual stress, and choice of metal contacts. Palladium electrodes on TlBr devices resulted in a 20-fold improvement in the device lifetime when compared to its Br-etched Pt counterpart. Electron and hole contributions towards the spectroscopic response of the TlBr detector significantly depend on the interaction position of the incoming radiation and was clearly observed in this study. TlBr device fabrication techniques need significant improvement in order to attain reliable, repeatable, and stable, long-term performance.
Marini, Federico; de Beer, Dalene; Walters, Nico A; de Villiers, André; Joubert, Elizabeth; Walczak, Beata
2017-03-17
An ultimate goal of investigations of rooibos plant material subjected to different stages of fermentation is to identify the chemical changes taking place in the phenolic composition, using an untargeted approach and chromatographic fingerprints. Realization of this goal requires, among others, identification of the main components of the plant material involved in chemical reactions during the fermentation process. Quantitative chromatographic data for the compounds for extracts of green, semi-fermented and fermented rooibos form the basis of preliminary study following a targeted approach. The aim is to estimate whether treatment has a significant effect based on all quantified compounds and to identify the compounds, which contribute significantly to it. Analysis of variance is performed using modern multivariate methods such as ANOVA-Simultaneous Component Analysis, ANOVA - Target Projection and regularized MANOVA. This study is the first one in which all three approaches are compared and evaluated. For the data studied, all tree methods reveal the same significance of the fermentation effect on the extract compositions, but they lead to its different interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Oude Groeniger, Joost; Kamphuis, Carlijn B; Mackenbach, Johan P; van Lenthe, Frank J
2017-11-01
We examined whether using repeatedly measured material and behavioral factors contributed differently to socioeconomic inequalities in all-cause mortality compared to one baseline measurement. Data from the Dutch prospective GLOBE cohort were linked to mortality register data (1991-2013; N = 4,851). Socioeconomic position was measured at baseline by educational level and occupation. Material factors (financial difficulties, housing tenure, health insurance) and behavioral factors (smoking, leisure time physical activity, sports participation, and body mass index) were self-reported in 1991, 1997, and 2004. Cox proportional hazards regression and bootstrap methods were used to examine the contribution of baseline-only and time-varying risk factors to socioeconomic inequalities in mortality. Men and women in the lowest educational and occupational groups were at an increased risk of dying compared to the highest groups. The contribution of material factors to socioeconomic inequalities in mortality was smaller when multiple instead of baseline-only measurements were used (25%-65% vs. 49%-93%). The contribution of behavioral factors was larger when multiple measurements were used (39%-51% vs. 19%-40%). Inclusion of time-dependent risk factors contributes to understanding socioeconomic inequalities in mortality, but careful examination of the underlying mechanisms and suitability of the model is required. Copyright © 2017 Elsevier Inc. All rights reserved.
Self-Assembled Carbon-Polyoxometalate Composites for Electrochemical Capacitors
NASA Astrophysics Data System (ADS)
Genovese, Matthew
The development of high performance yet cost effective energy storage devices is critical for enabling the growth of important emerging sectors from the internet of things to grid integration of renewable energy. Material costs are by far the largest contributor to the overall cost of energy storage devices and thus research into cost effective energy storage materials will play an important role in developing technology to meet real world storage demands. In this thesis, low cost high performance composite electrode materials for supercapacitors (SCs) have been developed through the surface modification of electrochemically double layer capacitive (EDLC) carbon substrates with pseudocapacitive Polyoxometalates (POMs). Significant fundamental contributions have been made to the understanding of all components of the composite electrode including the POM active layer, cation linker, and carbon substrate. The interaction of different POM chemistries in solution has been studied to elucidate the novel ways in which these molecules combine and the mechanism underlying this combination. A more thorough understanding regarding the cation linker's role in electrode fabrication has been developed through examining the linker properties which most strongly affect electrode performance. The development of porosity in biomass derived carbon materials has also been examined leading to important insights regarding the effect of substrate porosity on POM modification and electrochemical properties. These fundamental contributions enabled the design and performance optimization of POM-carbon composite SC electrodes. Understanding how POMs combine in solution, allowed for the development of mixed POM molecular coatings with tunable electrochemical properties. These molecular coatings were used to modify low cost biomass derived carbon substrates that had been structurally optimized to accommodate POM molecules. The resulting electrode composites utilizing low cost materials fabricated through simple scalable techniques demonstrated (i) high capacitance (361 F g-1), (ii) close to ideal pseudocapacitive behavior, (iii) stable cycling, and (iv) good rate performance.
Virtual ellipsometry on layered micro-facet surfaces.
Wang, Chi; Wilkie, Alexander; Harcuba, Petr; Novosad, Lukas
2017-09-18
Microfacet-based BRDF models are a common tool to describe light scattering from glossy surfaces. Apart from their wide-ranging applications in optics, such models also play a significant role in computer graphics for photorealistic rendering purposes. In this paper, we mainly investigate the computer graphics aspect of this technology, and present a polarisation-aware brute force simulation of light interaction with both single and multiple layered micro-facet surfaces. Such surface models are commonly used in computer graphics, but the resulting BRDF is ultimately often only approximated. Recently, there has been work to try to make these approximations more accurate, and to better understand the behaviour of existing analytical models. However, these brute force verification attempts still emitted the polarisation state of light and, as we found out, this renders them prone to mis-estimating the shape of the resulting BRDF lobe for some particular material types, such as smooth layered dielectric surfaces. For these materials, non-polarising computations can mis-estimate some areas of the resulting BRDF shape by up to 23%. But we also identified some other material types, such as dielectric layers over rough conductors, for which the difference turned out to be almost negligible. The main contribution of our work is to clearly demonstrate that the effect of polarisation is important for accurate simulation of certain material types, and that there are also other common materials for which it can apparently be ignored. As this required a BRDF simulator that we could rely on, a secondary contribution is that we went to considerable lengths to validate our software. We compare it against a state-of-art model from graphics, a library from optics, and also against ellipsometric measurements of real surface samples.
EMISSION OF ORGANIC SUBSTANCES FROM INDOOR SURFACE MATERIALS
A wide variety of surface materials in buildings can release organic compounds. Examples include building materials, furnishings, maintenance materials, clothing, and paper products. These sources contribute substantially to the hundreds of organic compounds that have been measur...
Hot/Wet Open Hole Compression Strength of Carbon/Epoxy Laminates for Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
2009-01-01
This Technical Memorandum examines the effects of heat and absorbed moisture on the open hole compression strength of carbon/epoxy laminates with the material and layup intended for the Ares I composite interstage. The knockdown due to temperature, amount of moisture absorbed, and the interaction between these two are examined. Results show that temperature is much more critical than the amount of moisture absorbed. The environmental knockdown factor was found to be low for this material and layup and thus obtaining a statistically significant number for this value needs to be weighed against a program s cost and schedule since basis values, damage tolerance, and safety factors all contribute much more to the overall knockdown factor.
Savoca, Mark E.; Sadorf, Eric M.; Linhart, S. Mike; Akers, Kim K.B.
2000-01-01
Factors other than land use may contribute to observed differences in water quality between and within agricultural and urban areas. Nitrate, atrazine, deethylatrazine, and deisopropylatrazine concentrations were significantly higher in shallow wells with sample intervals nearer the water table and in wells with thinner cumulative clay thickness above the sample intervals. These relations suggest that longer flow paths allow for greater residence time and increase opportunities for sorption, degradation, and dispersion, which may contribute to decreases in nutrient and pesticide concentrations with depth. Nitrogen speciation was influenced by redox conditions. Nitrate concentrations were significantly higher in ground water with dissolved-oxygen concentrations in excess of 0.5 milligram per liter. Ammonia concentrations were higher in ground water with dissolved-oxygen concentrations of 0.5 milligram per liter or less; however, this relation was not statistically significant. The amount of available organic matter may limit denitrification rates. Elevated nitrate concentrations (greater than 2.0 mg/L) were significantly related to lower dissolved organic carbon concentrations in water samples from both agricultural and urban areas. A similar relation between nitrate concentrations (in water) and organic carbon concentrations (in aquifer material) also was observed but was not statistically significant.
NASA Astrophysics Data System (ADS)
Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.
2014-02-01
Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.
Janzen, Bonnie; Hellsten, Laurie-Ann M
2018-04-24
The contribution of unpaid family work quality to understanding social inequalities in women's mental health has been understudied and further limited by a scarcity of psychometrically sound instruments available to measure family work. Therefore, using a multi-item scale of family work quality with evidence of validity and reliability, the overall aim of the present study was to determine whether psychosocial qualities of unpaid family work contribute to educational inequities in women's mental health. Study participants in this cross-sectional study were 512 employed partnered mothers living in a Canadian province and recruited from an online research panel. The dependent variable was psychological distress. In addition to a 28-item measure assessing five dimensions of unpaid family work quality, independent variables included material deprivation, job decision latitude, job demands and several measures of the work-family interface. Multiple linear regression was the primary analysis. Compared to women with high school or less, university educated women reported lower psychological distress [b = - 2.23 (SE = 0.50) p = 0.001]. The introduction of material deprivation into the model resulted in the largest reduction to the education disparity (51%), followed by equity in responsibility for unpaid family work (25%), family-to-work facilitation (22%), and decision latitude in paid work (21%). When entered simultaneously into the final model, the association between education and psychological distress was reduced by 70% and became statistically non-significant [b = - 0.68 (SE = 0.47) p = 0.10]. In addition to the more established mechanisms of material conditions and decision latitude to explain mental health disparities, inequity in responsibility for unpaid family work may also play a role.
Could the Mantle Under Island Arcs Contribute to Long Wavelength Magnetic Anomalies?
NASA Astrophysics Data System (ADS)
Friedman, S. A.; Ferre, E. C.; Martin-Hernandez, F.; Feinberg, J. M.; Conder, J. A.
2016-12-01
Some island arcs show significant long-wavelength positive magnetic anomalies with potential sources in the mantle wedge while others do not. Here we compare the magnetic properties of mantle xenoliths form metasomatized mantle wedges with counterparts from pristine unaltered mantle and we discuss the role mantle processes may play in producing these anomalies. Samples for this study originate from four localities displaying different degrees of metasomatism, as evidenced by the presence of phlogophite, pargasite, and secondary minerals (olv, cpx, opx): a) Five samples from Ichinomegata crater, Megata volcano, in NE Japan are characteristically lherzolitic with metasomatic pargasite present; b) Six samples from Kurose, SW Japan are mainly harzburgites that contain rare, late stage metasomatic sulfides; c) Ten samples from the Iraya volcano, Batan Island, in the Philippines are lherzolites, harzburgites, and dunites that contain metasomatic olivine, orthopyroxene, clinopyroxene and pargasite; and d) Ten samples from Avacha and Shiveluch volcanoes in Kamchatka, consists of unaltered harzburgites supported by an LOI <1%. Sample localities come from subduction zones of the western Pacific Ocean, where the angle of subduction varies (from 10° in SW Japan to 55° in the Kamchatka and Taiwan-Luzon arcs). When present, ferromagnetic minerals include stoichiometric magnetite with occasional pyrrhotite only in metasomatized samples. Ultimately, metasomatized mantle material has a Koenigsberger ratio less than 1.0 indicating it would not primarily contribute to satellite-altitude magnetic anomalies. While unaltered mantle material may produce a Koenigsberger ratio greater than 1.0, and would thus, contribute to long wavelength magnetic anomalies. The presence of both metasomatized and unaltered mantle material beneath island arcs would be supportive of the positive magnetic anomaly found in some subduction zones.
Tasnim, Tasnim; Dasvarma, Gouranga; Mwanri, Lillian
2017-09-01
The prevalence of underweight in children under 5 years of age is anomalously high in Konawe District, Southeast Sulawesi Province, Indonesia. This state of affairs may be related to poor housing conditions, such as limited access to clean water, the absence of a sanitary latrine, and the use of poor housing materials. Therefore, this study aimed to examine the effect of housing conditions on underweight in under-5 children in Konawe District. This study was conducted in 2013 in 5 health centres in Konawe District, Southeast Sulawesi Province, and used a case-control study design. The study recruited 400 under-5 children, including 100 of whom were cases and 300 of whom were age-matched controls (1:3). Cases were underweight children, while the controls were children with a normal nutritional status. The independent variables were the availability and types of water and latrine facilities and housing materials (roof, wall, and floor). The statistical analysis used Cox regression. A lack of water availability (odds ratio [OR], 5.0; 95% confidence interval [CI], 2.7 to 9.5; p<0.001), a lack of latrine availability in the home (OR, 2.5; 95% CI, 1.5 to 4.0; p<0.001), and poor-quality roofing materials (OR, 1.7; 95% CI, 1.1 to 2.7; p<0.02) significantly contributed to underweight in children. In contrast, the walls and the floors did not contribute to under-5 year children being underweight (p=0.09 and p=0.71, respectively). Sanitation facilities and roofing were identified as important factors to address in order to improve children's nutritional status. Children's health status was directly impacted by food intake via their nutritional status.
Transient and residual stresses in large castings, taking time effects into account
NASA Astrophysics Data System (ADS)
Thorborg, J.; Klinkhammer, J.; Heitzer, M.
2012-07-01
Casting of large scale steel and iron parts leads to long solidification and cooling times. Solid mechanical calculations for these castings have to take the time scale of the process into account, in order to predict the transient and residual stress levels with a reasonable accuracy. This paper presents a study on the modelling of the thermo-mechanical conditions in the cast material using a unified approach to describe the constitutive behaviour. This means a classical splitting of the mechanical strain into an elastic and an inelastic contribution, where the inelastic strain is only formulated in the deviatoric space in terms of the J2 invariant. At high temperatures, creep is pronounced. Since the cooling time is long, the model includes a type of Norton's power law to integrate the significant contribution of creep to the inelastic strains. At these temperature levels, annealing effects are also dominant and hence no hardening is modelled. However, at intermediate and lower temperature levels, hardening is more pronounced and isotropic hardening is considered. Different hardening models have been studied and selected based on their ability to describe the behaviour at the different temperature levels. At the lower temperature levels, time effects decrease and the formulation reduces to a time independent formulation, like classical J2-flow theory. Several tensile and creep experiments have been made at different temperature levels to provide input data for selecting the appropriate contributions to the material model. The measurements have furthermore been used as input for extracting material data for the model. The numerical model is applied on different industrial examples to verify the agreement between measured and calculated deformations.
Keitel, Wolfgang; Olsson, Leif; Matteson, Eric L.
2016-01-01
Objective To elucidate the connections between balneology and rheumatology in the founding period of the discipline of rheumatology, and describe the contributions of Max Hirsch, MD in the formation of professional rheumatology societies. Material and Methods Historical documents from the medical history collection of Vogelsang–Gommern, Germany, and original personal documents of the Hirsch family and information from the medical and historical period literature were used in developing this report. Results The first efforts at organizing rheumatology as a recognized clinical and academic discipline took place in the 1920s. Many of the first proponents were balneologists who cared for patients with chronic arthritic conditions without the benefit of effective medications. Max Hirsch, MD was a major figure in the development of modern rheumatology as it emerged from the provenance of balneology and orthopedics as a recognized organized medical discipline, contributing to the founding of the German Society for Rheumatology and the International League Against Rheumatism. Conclusion Max Hirsch made significant contributions to scientific and organized rheumatology in the early days of the discipline. His contributions to the field and his fate as a Jewish physician have only recently come to light. PMID:27733939
NASA Astrophysics Data System (ADS)
Zhou, Yarong; Yang, Xu; Pan, Dongmei; Wang, Binglei
2018-04-01
Flexoelectricity, the coupling of strain gradient and polarization, exists in all the dielectric materials and numerous models have been proposed to study this mechanism. However, the contribution of strain gradient elasticity has typically been underestimated. In this work, inspired by the one-length scale parameter model developed by Deng et al. [19], we incorporate three length-scale parameters to carefully capture the contribution of the purely mechanical strain gradients on flexoelectricity. This three-parameter model is more flexible and could be applied to investigate the flexoelectricity in a wide range of complicated deformations. Accordingly, we carry out our analysis by studying a dielectric nanobeam under different boundary conditions. We show that the strain gradient elasticity and flexoelectricity have apparent size effects and significant influence on the electromechanical response. In particular, the strain gradient effects could significantly reduce the energy efficiency, indicating their importance and necessity. This work may be helpful in understanding the mechanism of flexoelectricity at the nanoscale and sheds light on the flexoelectricity energy harvesting.
Wilson, Scott P; Verlis, Krista M
2017-04-15
Marine debris is one of the most significant issues facing oceans worldwide. The sources of this debris vary depending on proximity to urban centres and the nature of activities within an area. This paper examines the influence of tourism in the southern Great Barrier Reef (GBR), and its contribution to litter levels in the region. By conducting beach debris surveys on occupied and unoccupied islands, this study found that debris was prevalent throughout the region with significant differences in material types between locations. The greatest source of debris from publically accessible islands was tourist-related, with this source also influencing debris loads on nearby uninhabited islands. A focus on debris at Heron Island, showed that sites close to amenities had greater levels of tourist-sourced items like cigarette butts. These findings indicate the contribution of tourists to this problem and that working with operators and managers is needed to minimise visitor impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
Petrologic implications of plate tectonics.
Yoder, H S
1971-07-30
Petrologists can make significant contributions to the plate tectonic concept. Fixing the stability fields of the principal rock types involved will provide the limits of pressure and temperature of the various environments. Experimental determination of the partition coefficients of the trace elements will be helpful. Studies of the partial melting behavior of possible parental materials in the absence and presence of water, especially the undersaturated region, will contribute to the understanding of magma production. Experimental observations on the rheological properties of the peridotites below and just above the solidus will lead to a better evaluation of the convective mechanism. Measurement of the fundamental properties of rocks, such as the density of solids and liquids at high pressures and temperatures, would contribute to understanding the concepts of diapiric rise, magma segregation, and the low-velocity zone. Broader rock sampling of the oceanic areas of all environments will do much to define the petrologic provinces. The field petrologist specializing in the Paleozoic regions and Precambrian shields can contribute by examining those regions for old plate boundaries and devising new criteria for their recognition.
Children's Freedom: A. S. Neill and the Evolution of the Summerhill Idea.
ERIC Educational Resources Information Center
Hemmings, Ray
This book is a critical evaluation of A. S. Neill's contribution to educational theory and practice. The study includes some biographical material, but this material is introduced to provide a focus for Neill's ideas. The author devotes special attention to Neill's contributions to the psychological aspects of freedom within the social and…
Next Generation Anodes for Lithium-Ion Batteries: Thermodynamic Understanding and Abuse Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
The objectives of this report are as follows: elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and Understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.
Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations
Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...
2016-04-01
Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO 3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancymore » is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less
Influence of non-collisional laser heating on the electron dynamics in dielectric materials
NASA Astrophysics Data System (ADS)
Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.
2016-12-01
The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.
High Resolution, Large Deformation 3D Traction Force Microscopy
López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian
2014-01-01
Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435
Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J
2011-12-01
The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.
Molecular mechanisms of methicillin resistance in Staphylococcus aureus.
Domínguez, M A; Liñares, J; Martín, R
1997-09-01
Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.
1991-05-06
the dimensions of single molecules, i.e., less than 10 nm. Oil Slick - An oil slick is caused when petroleum products are spilled on the sea. These... products and has a connotation implying that the substance is man-made. A detergent is a specific type of surfactant. Surfactants can form...increases the rate of tra .sport of surface-active material to the sea surface and may contribute significantly to the production of slicks observed behind
Material Separation Using Dual-Energy CT: Current and Emerging Applications.
Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V
2016-01-01
Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.
Obruca, Stanislav; Marova, Ivana; Vojtova, Lucy
2011-07-01
In this work we investigated the degradation process ofpolyether-polyol-based polyurethane (PUR) elastomeric films in the presence of a mixed thermophilic culture as a model of a natural bacterial consortium. The presence of PUR material in cultivation medium resulted in delayed but intensive growth of the bacterial culture. The unusually long lag phase was caused by the release of unreacted polyether polyol and tin catalyst from the material. The lag phase was significantly shortened and the biodegradability of PUR materials was enhanced by partial replacement (10%) of polyether polyol with biopolymers (carboxymethyl cellulose, hydroxyethyl cellulose, acetyl cellulose and actylated starch). The process of material degradation consisted of two steps. First, the materials were mechanically disrupted and, second, the bacterial culture was able to utilize abiotic degradation products, which resulted in supported bacterial growth. Direct utilization of PUR by the bacterial culture was observed as well, but the bacterial culture contributed only slightly to the total mass losses. The only exception was PUR material modified by acetyl cellulose. In this case, direct biodegradation represented the major mechanism of material decomposition. Moreover, PUR material modified by acetyl cellulose did not tend to undergo abiotic degradation. In conclusion, the modification of PUR by proper biopolymers is a promising strategy for reducing potential negative effects of waste PUR materials on the environment and enhancing their biodegradability.
Burger, Pauline; Stacey, Rebecca J; Bowden, Stephen A; Hacke, Marei; Parnell, John
2016-01-01
The 7th century ship-burial at Sutton Hoo is famous for the spectacular treasure discovered when it was first excavated in 1939. The finds include gold and garnet jewellery, silverware, coins and ceremonial armour of broad geographical provenance which make a vital contribution to understanding the political landscape of early medieval Northern Europe. Fragments of black organic material found scattered within the burial were originally identified as 'Stockholm Tar' and linked to waterproofing and maintenance of the ship. Here we present new scientific analyses undertaken to re-evaluate the nature and origin of these materials, leading to the identification of a previously unrecognised prestige material among the treasure: bitumen from the Middle East. Whether the bitumen was gifted as diplomatic gesture or acquired through trading links, its presence in the burial attests to the far-reaching network within which the elite of the region operated at this time. If the bitumen was worked into objects, either alone or in composite with other materials, then their significance within the burial would certainly have been strongly linked to their form or purpose. But the novelty of the material itself may have added to the exotic appeal. Archaeological finds of bitumen from this and earlier periods in Britain are extremely rare, despite the abundance of natural sources of bitumen within Great Britain. This find provides the first material evidence indicating that the extensively exploited Middle Eastern bitumen sources were traded northward beyond the Mediterranean to reach northern Europe and the British Isles.
Bowden, Stephen A.; Hacke, Marei; Parnell, John
2016-01-01
The 7th century ship-burial at Sutton Hoo is famous for the spectacular treasure discovered when it was first excavated in 1939. The finds include gold and garnet jewellery, silverware, coins and ceremonial armour of broad geographical provenance which make a vital contribution to understanding the political landscape of early medieval Northern Europe. Fragments of black organic material found scattered within the burial were originally identified as ‘Stockholm Tar’ and linked to waterproofing and maintenance of the ship. Here we present new scientific analyses undertaken to re-evaluate the nature and origin of these materials, leading to the identification of a previously unrecognised prestige material among the treasure: bitumen from the Middle East. Whether the bitumen was gifted as diplomatic gesture or acquired through trading links, its presence in the burial attests to the far-reaching network within which the elite of the region operated at this time. If the bitumen was worked into objects, either alone or in composite with other materials, then their significance within the burial would certainly have been strongly linked to their form or purpose. But the novelty of the material itself may have added to the exotic appeal. Archaeological finds of bitumen from this and earlier periods in Britain are extremely rare, despite the abundance of natural sources of bitumen within Great Britain. This find provides the first material evidence indicating that the extensively exploited Middle Eastern bitumen sources were traded northward beyond the Mediterranean to reach northern Europe and the British Isles. PMID:27906999
Trask, Jennifer R; Harbourt, Christopher M; Miller, Paul; Cox, Megan; Jones, Russell; Hendley, Paul; Lam, Chung
2014-02-01
The use of pesticides by homeowners or pest-control operators in urban settings is common, yet contributions of washoff from these materials are not easily understood. In the present study, cypermethrin, formulated as Cynoff EC (emulsifiable concentrate) and Cynoff WP (wettable powder) insecticides, was applied at typical rates to 10 different building material surfaces to examine its washoff potential from each surface. Using an indoor rainfall simulator, a 1-h rainfall event was generated and washoff samples were collected from 3 replicates of each surface type. Washoff was analyzed for cypermethrin using gas chromatography-negative chemical ionization mass spectrometry. An analysis of variance for a split-plot design was performed. Many building materials had similar water runoff masses, but asphalt resulted in significantly reduced average water runoff masses (73% less). The Cynoff WP formulation generally produced greater cypermethrin washoff than the Cynoff EC formulation. In addition, results for both the WP and EC formulations indicated that smoother surfaces such as vinyl and aluminum siding had higher washoff (1.0-14.1% mean percentage of applied mass). Cypermethrin washoff from rough absorptive surfaces like concrete and stucco was lower and ranged from 0.1 to 1.3% and from 0 to 0.2%, respectively, mean percentage of applied mass. Both building material surface and formulation play a significant role in cypermethrin washoff. © 2013 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
Selected papers from the 11th European Conference on Applied Superconductivity (EUCAS 2013)
NASA Astrophysics Data System (ADS)
Ferdeghini, Carlo; Putti, Marina
2014-04-01
The 11th edition of the European Conference on Applied Superconductivity (EUCAS) was held in Genoa (15-19 September 2013) and registered the participation of more than one thousand attendants from over 40 countries. During the conference seven plenary lectures, 23 invited, and 203 oral contributions and 550 posters have been presented, all focused on recent developments in the field of superconductivity applications. This issue of Superconductor Science Technology is a collection of some of the plenary and invited contributions. Moreover, the winners of the EUCAS prizes (the electronics prize dedicated to the memory of Antonio Barone), and the most significant oral contributions selected by the 125 chairs involved in the organization, have been invited to submit their papers. The remaining papers presented at the conference will be published in the Journal Physics Conference Series, edited by S Farinon, G Lamura, A Malagoli and I Pallecchi. The papers have been organized into the four traditional topics of interest of EUCAS, namely materials, wires and tapes, large scale applications, and electronics. The plenary lectures on these four topics have been collected: Potential of iron-based superconductors for practical materials in the future (J Shimoyama), Coated conductors for power applications: materials challenges (J Obradors), Challenges and status of ITER conductor production (A Devred), and the Impact of superconducting devices in imaging in neuroscience (G L Romani). We hope that this issue will let you taste the flavours, hear the sounds and see the colours of this exciting EUCAS edition. The very large participation in EUCAS 2013 has allowed debates on a wide range of topics, starting from the most basic studies on emergent materials up to the new developments in electronics and large scale applications. A round table on HTS Conductors was experimented for the first time gathering material scientists, wire manufacturers and device builders in a stimulating, broad and overcrowded discussion. We believe that this volume will also provide a useful update on the state of the art in the applications of superconductivity. We would like to conclude by thanking the various committees for their great contribution to the organization of EUCAS 2013: the International Advisory Board for the choice of plenary speakers, the Program Committee (and, in particular, the program co- chairs G Balestrino, G Grasso, P Fabbricatore, and S Pagano) which took the full load of the scientific program definition, and, especially, the members of the Local Organizing Committee that, with their enthusiastic support, have allowed us to carry out this successful EUCAS 2013 edition.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Technical Reports Server (NTRS)
Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.
1993-01-01
As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.
Influence of the first wall material on the particle fuelling in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Lunt, T.; Reimold, F.; Wolfrum, E.; Carralero, D.; Feng, Y.; Schmid, K.; the ASDEX Upgrade Team
2017-05-01
In the period from 2002 to 2007 the material of the plasma facing components (PFCs) of ASDEX Upgrade (AUG) was changed from carbon (C) to tungsten (W). Comparing the measured density profiles of low-density L-mode discharges with little or no gas puff before and after this modification, a significantly higher pedestal-top density was found for W PFCs together with a steeper gradient and a lower pedestal temperature. This change can be explained by larger particle- and energy reflection coefficients for D on W compared to D on C, as shown by EMC3-EIRENE simulations of AUG discharges in similar conditions on a computational grid extending to the main chamber first wall. In the simulations, a change of the wall material at fixed separatrix density indeed shows that for W PFCs more neutrals cross the separatrix, resulting in a steeper density gradient. Analysis of the source resolved and poloidally resolved neutral flux densities across the separatrix show a dominant contribution of the divertor targets to the fuelling profile in the simulation of the low density case. Increasing the density decreases the electron temperature at the target and therefore the potential drop in the electrostatic sheath as well as the energy of the ions impinging on the surface. Neutrals with ∼eV energies, able to reach the separatrix, are then only produced via molecular dissociation processes in the plasma volume independently of the PFC material. Also the contribution of the main chamber PFCs to the fuelling is observed to increase at higher densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Yang, Feng; Hu, Hongru
A new type of carbon nanofiber (CNF) dominated electrode materials decorated with dilute NiO particles (NiO/CNF) has been in situ fabricated by direct pyrolysis of Ni, Zn-containing metal organic framework fibers, which are skillfully constructed by assembling different proportional NiCl2·6H2O and Zn(Ac)2·2H2O with trimesic acid in the presence of N,N-dimethylformamide. With elegant combination of advantages of CNF and evenly dispersed NiO particles, as well as successful modulation of conductivity and porosity of final composites, our NiO/CNF composites display well-defined capacitive features. A high capacitance of 14926 F g–1 was obtained in 6 M KOH electrolyte when the contribution from 0.43more » wt% NiO was considered alone, contributing to over 35% of the total capacitance (234 F g–1 ). This significantly exceeds its theoretical specific capacitance of 2584 F g–1. It has been established from the Ragone plot that a largest energy density of 33.4 Wh kg–1 was obtained at the current density of 0.25 A g–1. Furthermore, such composite electrode materials show good rate capability and outstanding cycling stability up to 5000 times (only 10% loss). The present study provides a brand-new approach to design a high capacitance and stable supercapacitor electrode and the concept is extendable to other composite materials. Keywords: Metal organic framework; Nickel oxide; Carbon nanofiber; In situ synthesis; Capacitance« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less
Microbial Removals by a Novel Biofilter Water Treatment System
Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L.; Conrad, Ken E.; Longstaff, Stephanie; Kuennen, Roy W.; Rose, Joan B.
2015-01-01
Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1–2 log10 reductions. Future work is recommended to determine field viability. PMID:25758649
Low blood cell counts in wild Japanese monkeys after the Fukushima Daiichi nuclear disaster.
Ochiai, Kazuhiko; Hayama, Shin-ichi; Nakiri, Sachie; Nakanishi, Setsuko; Ishii, Naomi; Uno, Taiki; Kato, Takuya; Konno, Fumiharu; Kawamoto, Yoshi; Tsuchida, Shuichi; Omi, Toshinori
2014-07-24
In April 2012 we carried out a 1-year hematological study on a population of wild Japanese monkeys inhabiting the forest area of Fukushima City. This area is located 70 km from the Fukushima Daiichi Nuclear Power Plant (NPP), which released a large amount of radioactive material into the environment following the Great East Japan Earthquake of 2011. For comparison, we examined monkeys inhabiting the Shimokita Peninsula in Aomori Prefecture, located approximately 400 km from the NPP. Total muscle cesium concentration in Fukushima monkeys was in the range of 78-1778 Bq/kg, whereas the level of cesium was below the detection limit in all Shimokita monkeys. Compared with Shimokita monkeys, Fukushima monkeys had significantly low white and red blood cell counts, hemoglobin, and hematocrit, and the white blood cell count in immature monkeys showed a significant negative correlation with muscle cesium concentration. These results suggest that the exposure to some form of radioactive material contributed to hematological changes in Fukushima monkeys.
Low blood cell counts in wild Japanese monkeys after the Fukushima Daiichi nuclear disaster
Ochiai, Kazuhiko; Hayama, Shin-ichi; Nakiri, Sachie; Nakanishi, Setsuko; Ishii, Naomi; Uno, Taiki; Kato, Takuya; Konno, Fumiharu; Kawamoto, Yoshi; Tsuchida, Shuichi; Omi, Toshinori
2014-01-01
In April 2012 we carried out a 1-year hematological study on a population of wild Japanese monkeys inhabiting the forest area of Fukushima City. This area is located 70 km from the Fukushima Daiichi Nuclear Power Plant (NPP), which released a large amount of radioactive material into the environment following the Great East Japan Earthquake of 2011. For comparison, we examined monkeys inhabiting the Shimokita Peninsula in Aomori Prefecture, located approximately 400 km from the NPP. Total muscle cesium concentration in Fukushima monkeys was in the range of 78–1778 Bq/kg, whereas the level of cesium was below the detection limit in all Shimokita monkeys. Compared with Shimokita monkeys, Fukushima monkeys had significantly low white and red blood cell counts, hemoglobin, and hematocrit, and the white blood cell count in immature monkeys showed a significant negative correlation with muscle cesium concentration. These results suggest that the exposure to some form of radioactive material contributed to hematological changes in Fukushima monkeys. PMID:25060710
Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki
2015-10-01
Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal Analysis and Testing of Candidate Materials for PAIDAE Inflatable Aeroshell
NASA Technical Reports Server (NTRS)
DelCorso, Joseph A.; Bruce, Walter E., III; Liles, Kaitlin A.; Hughes, Stephen J.
2009-01-01
The Program to Advance Inflatable-Decelerators for Atmospheric Entry (PAIDAE) is a NASA project tasked with developing and evaluating viable inflatable-decelerator aeroshell geometries and materials. Thermal analysis of material layups supporting an inflatable aeroshell was completed in order to identify expected material response, failure times, and to establish an experimental test matrix to keep barrier layer materials from reaching critical temperature limits during thermal soak. Material layups were then tested in the 8- foot High Temperature Tunnel (8'HTT), where they were subjected to hypersonic aerothermal heating conditions, similar to those expected for a Mars entry. This paper presents a broad overview of the thermal analysis supporting multiple materials, and layup configurations tested in the 8'HTT at flight conditions similar to those that would be experienced during Mars entry trajectories. Direct comparison of TPS samples tested in the 8'HTT verify that the thermal model accurately predicted temperature profiles when there are up to four materials in the test layup. As the number of material layers in each test layup increase (greater than 4), the accuracy of the prediction decreases significantly. The inaccuracy of the model predictions for layups with more than four material layers is believed to be a result of the contact resistance values used throughout the model being inaccurate. In addition, the harsh environment of the 8'HTT, including hot gas penetrating through the material layers, could also be a contributing factor.
A Market Model for Evaluating Technologies That Impact Critical-Material Intensity
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.; Vedantam, Aditya
2016-07-01
A recent Critical Materials Strategy report highlighted the supply chain risk associated with neodymium and dysprosium, which are used in the manufacturing of neodymium-iron-boron permanent magnets (PM). In response, the Critical Materials Institute is developing innovative strategies to increase and diversify primary production, develop substitutes, reduce material intensity and recycle critical materials. Our goal in this paper is to propose an economic model to quantify the impact of one of these strategies, material intensity reduction. Technologies that reduce material intensity impact the economics of magnet manufacturing in multiple ways because of: (1) the lower quantity of critical material required per unit PM, (2) more efficient use of limited supply, and (3) the potential impact on manufacturing cost. However, the net benefit of these technologies to a magnet manufacturer is an outcome of an internal production decision subject to market demand characteristics, availability and resource constraints. Our contribution in this paper shows how a manufacturer's production economics moves from a region of being supply-constrained, to a region enabling the market optimal production quantity, to a region being constrained by resources other than critical materials, as the critical material intensity changes. Key insights for engineers and material scientists are: (1) material intensity reduction can have a significant market impact, (2) benefits to manufacturers are non-linear in the material intensity reduction, (3) there exists a threshold value for material intensity reduction that can be calculated for any target PM application, and (4) there is value for new intellectual property (IP) when existing manufacturing technology is IP-protected.
Advanced High Temperature Structural Seals
NASA Technical Reports Server (NTRS)
Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)
2000-01-01
This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.
Biologically inspired technologies using artificial muscles
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2005-01-01
After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.
Next Generation Anodes for Lithium Ion Batteries: Thermodynamic Understanding and Abuse Performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenton, Kyle R.; Allcorn, Eric; Nagasubramanian, Ganesan
The objectives of this project are to elucidate degradation mechanisms, decomposition products, and abuse response for next generation silicon based anodes; and understand the contribution of various materials properties and cell build parameters towards thermal runaway enthalpies. Quantify the contributions from various cell parameters such as particle size, composition, state of charge (SOC), electrolyte to active materials ratio, etc.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false How we will determine whether your drug addiction or alcoholism is a contributing factor material to the determination of disability. 404.1535 Section 404.1535 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND DISABILITY INSURANCE (1950- ) Determining Disability...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false How we will determine whether your drug addiction or alcoholism is a contributing factor material to the determination of disability. 416.935 Section 416.935 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Determining Disability...
The structural science of functional materials.
Catlow, C Richard A
2018-01-01
The growing complexity of functional materials and the major challenges this poses to structural science are discussed. The diversity of structural materials science and the contributions that computation is making to the field are highlighted.
TOPICAL REVIEW: First principles studies of multiferroic materials
NASA Astrophysics Data System (ADS)
Picozzi, Silvia; Ederer, Claude
2009-07-01
Multiferroics, materials where spontaneous long-range magnetic and dipolar orders coexist, represent an attractive class of compounds, which combine rich and fascinating fundamental physics with a technologically appealing potential for applications in the general area of spintronics. Ab initio calculations have significantly contributed to recent progress in this area, by elucidating different mechanisms for multiferroicity and providing essential information on various compounds where these effects are manifestly at play. In particular, here we present examples of density-functional theory investigations for two main classes of materials: (a) multiferroics where ferroelectricity is driven by hybridization or purely structural effects, with BiFeO3 as the prototype material, and (b) multiferroics where ferroelectricity is driven by correlation effects and is strongly linked to electronic degrees of freedom such as spin-, charge-, or orbital-ordering, with rare-earth manganites as prototypes. As for the first class of multiferroics, first principles calculations are shown to provide an accurate qualitative and quantitative description of the physics in BiFeO3, ranging from the prediction of large ferroelectric polarization and weak ferromagnetism, over the effect of epitaxial strain, to the identification of possible scenarios for coupling between ferroelectric and magnetic order. For the second class of multiferroics, ab initio calculations have shown that, in those cases where spin-ordering breaks inversion symmetry (e.g. in antiferromagnetic E-type HoMnO3), the magnetically induced ferroelectric polarization can be as large as a few µC cm-2. The examples presented point the way to several possible avenues for future research: on the technological side, first principles simulations can contribute to a rational materials design, aimed at identifying spintronic materials that exhibit ferromagnetism and ferroelectricity at or above room temperature. On the fundamental side, ab initio approaches can be used to explore new mechanisms for ferroelectricity by exploiting electronic correlations that are at play in transition metal oxides, and by suggesting ways to maximize the strength of these effects as well as the corresponding ordering temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa
Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less
Mechanical Characterization and Material Modeling of Diabetic Aortas in a Rabbit Model.
Tong, Jianhua; Yang, F; Li, X; Xu, X; Wang, G X
2018-03-01
Diabetes has been recognized as a major risk factor to cause macrovascular diseases and plays a key role in aortic wall remodeling. However, the effects of diabetes on elastic properties of aortas remain largely unknown and quantitative mechanical data are lacking. Thirty adult rabbits (1.6-2.2 kg) were collected and the type 1 diabetic rabbit model was induced by injection of alloxan. A total of 15 control and 15 diabetic rabbit (abdominal) aortas were harvested. Uniaxial and biaxial tensile tests were performed to measure ultimate tensile strength and to characterize biaxial mechanical behaviors of the aortas. A material model was fitted to the biaxial experimental data to obtain constitutive parameters. Histological and mass fraction analyses were performed to investigate the underlying microstructure and dry weight percentages of elastin and collagen in the control and the diabetic aortas. No statistically significant difference was found in ultimate tensile strength between the control and the diabetic aortas. Regarding biaxial mechanical responses, the diabetic aortas exhibited significantly lower extensibility and significantly higher tissue stiffness than the control aortas. Notably, tissue stiffening occurred in both circumferential and axial directions for the diabetic aortas; however, mechanical anisotropy does not change significantly. The material model was able to fit biaxial experimental data very well. Histology showed that a number of isolated foam cells were embedded in the diabetic aortas and hyperplasia of collagen was identified. The dry weight percentages of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the diabetes impairs elastic properties and alters microstructure of the aortas and consequently, these changes may further contribute to complex aortic wall remodeling.
Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state
NASA Astrophysics Data System (ADS)
Arutyunov, K. Yu.
2008-02-01
We present a phenomenological model that qualitatively explains negative magnetoresistance in quasi-one-dimensional superconducting channels in the resistive state. The model is based on the assumption that fluctuations of the order parameter (phase slips) are responsible for the finite effective resistance of a narrow superconducting wire sufficiently close to the critical temperature. Each fluctuation is accompanied by an instantaneous formation of a quasi-normal region, of the order of the non-equilibrium quasiparticle relaxation length, ‘pinned’ to the core of the phase slip. The effective time-averaged voltage measured in experiments is a sum of two terms. The first is the conventional contribution associated with the rate of the fluctuations via the Josephson relation. The second term is the Ohmic contribution of this quasi-normal region. Depending on the material properties of the wire, there might be a range of magnetic fields where the first term is not significantly affected, while the second term is effectively suppressed, contributing to the experimentally observed negative magnetoresistance.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
Significance of ITER IWS Material Selection and Qualification
NASA Astrophysics Data System (ADS)
Mehta, Bhoomi K.; Raval, Jigar; Maheshwari, Abha; Laad, Rahul; Singh, Gurlovleen; Pathak, Haresh
2017-04-01
In-Wall Shielding (IWS) is one of the important components of ITER Vacuum Vessel (VV) which fills the space between double walls of VV with cooling water. Procurement Arrangement (PA) for IWS has been signed with Indian Domestic Agency (INDA). Procurement of IWS materials, fabrication of IWS blocks and its delivery to respective Domestic Agency (DA) and ITER Organization (IO) are the main scope of this PA. Hence, INDIA is the only country which is contributing to VV IWS among all seven ITER partners. The main functions of the IWS are to provide Neutron Shielding with blanket, VV shells and water during plasma operations and to reduce ripple of the Toroidal Magnetic Field. To meet these functional requirements IWS blocks are made up of special materials (Borated Steels SS304 B4 & SS304 B7, Ferritic Steels SS 430, Austenitic Steel SS 316 L (N)-IG, XM-19 and Inconel-625) which are qualified, reliable and traceable for the design assessment. The choice of these materials has a significant influence on performance, maintainability, licensing, detailed design parameters and waste disposal. The main reasons for the materials selected for IWS are its high mechanical strength at operating temperatures, water chemistry properties, excellent fabrication characteristics and low cost relative to other similar materials. All the materials are qualified with respect to their respective codes (ASTM/EN standards with additional requirements as described in RCC-MR code 2007) and ITER requirements. Agreed Notified Body (ANB) has control conformity of materials certificates with approved material specification and traceability procedure for Safety Important Component (SIC). The procurement strategy for all the IWS materials has been developed in close collaboration with IO, ANB and Industries as per Product Procurement Specification (PPS). The R&D for sample, bulk material production, testing, inspection and handling as required are carried out by IN DA and IO. At present almost all IWS materials (∼2500 Tons) has been procured by IN DA with spares to manufacture ∼9000 IWS blocks. This paper summarizes IWS material selection, qualification and procurement processes in detail.
2015-12-01
The material flow account of Tangshan City was established by material flow analysis (MFA) method to analyze the periodical characteristics of material input and output in the operation of economy-environment system, and the impact of material input and output intensities on economic development. Using econometric model, the long-term interaction mechanism and relationship among the indexes of gross domestic product (GDP) , direct material input (DMI), domestic processed output (DPO) were investigated after unit root hypothesis test, Johansen cointegration test, vector error correction model, impulse response function and variance decomposition. The results showed that during 1992-2011, DMI and DPO both increased, and the growth rate of DMI was higher than that of DPO. The input intensity of DMI increased, while the intensity of DPO fell in volatility. Long-term stable cointegration relationship existed between GDP, DMI and DPO. Their interaction relationship showed a trend from fluctuation to gradual ste adiness. DMI and DPO had strong, positive impacts on economic development in short-term, but the economy-environment system gradually weakened these effects by short-term dynamically adjusting indicators inside and outside of the system. Ultimately, the system showed a long-term equilibrium relationship. The effect of economic scale on economy was gradually increasing. After decomposing the contribution of each index to GDP, it was found that DMI's contribution grew, GDP's contribution declined, DPO's contribution changed little. On the whole, the economic development of Tangshan City has followed the traditional production path of resource-based city, mostly depending on the material input which caused high energy consumption and serous environmental pollution.
44 CFR 312.6 - Materials and facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Materials and facilities. 312... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR NATURAL DISASTER PURPOSES § 312.6 Materials and facilities. FEMA also contributes to the development and...
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
Coupar, I. M.; Taylor, D. A.
1982-01-01
1 Whole brain and regional brain levels of prostaglandin E2 (PGE2)-like material have been determined following administration of delta 9-tetrahydrocannabinol (delta 9 -THC) in rats. 2 Intravenous administration of delta 9-THC 2 mg/kg, resulted in marked behavioural changes and hypothermia. The behavioural changes consisted mainly of catatonia (most apparent at 30 min after administration of delta 9-THC), followed by sedation (most evident at 60 min). Hypothermia was marked from 30 min after administration of delta 9-THC. 3 delta 9-THC did not after the whole brain levels of PGE2-like material 30, 60 or 120 min after administration. 4 delta 9-THC did not alter the levels of PGE2-like material in the medulla oblongata/pons, midbrain, cortex and cerebellum, 30 min after administration. However, there was a significant reduction of PGE2-like material in the hypothalamus, 30 min after delta 9-THC. 5 It is suggested that the delta 9-THC-induced decrease in hypothalamic PGE2-like material may contribute to the hypothermia observed following delta 9-THC administration. PMID:6282371
Levin, E. M.; Iowa State Univ., Ames, IA; Kramer, M. J.; ...
2016-07-14
Composition and crystal structure of complex materials can significantly change the Seebeck effect, i.e., heat to electrical energy conversion, which is utilized in thermoelectric materials. Despite decades of studies of various thermoelectric materials and their application, the fundamental understanding of this effect still is limited. One of the most efficient groups of thermoelectric materials is based on GeTe, where Ge is replaced by [Ag + Sb], i.e., Ag xSb xGe 50-2xTe 50 alloys, traditionally shown as (GeTe) m(AgSbTe 2) 100-m (TAGS-m series). Here, in this article, we report on the discovery of two unique phenomena in TAGS materials attributed tomore » the effects from [Ag + Sb] atoms: (i) a linear relation between the Seebeck coefficient and rhombohedral lattice distortion, and (ii) resonance-like temperature-induced behavior of the contribution to the Seebeck coefficient produced by [Ag + Sb] atoms. Finally, our findings show that heat to electrical energy conversion strongly depends on the temperature- and compositionally-induced rhombohedral to cubic transformation where [Ag + Sb] atoms play a crucial mediating role.« less
1996 NRC annual report. Volume 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, andmore » research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions.« less
NASA Astrophysics Data System (ADS)
Husin, Saiful; Abdullah, Riza, Medyan; Afifuddin, Mochammad
2017-11-01
Risk can be defined as consequences which possible happened inscrutably. Although an activity has planned as good as possible, but it keep contains uncertainty. Implementation of construction project was encountering various risk impacts from a number of risk factors. This study was intended to analyze the impacts of construction cost to for contractor firms as construction project executor related to the factors of manpower, material and equipment. The study was using data obtained from questionnaires distributed to 15 large qualification contractor firms. The period of study classified into conflict period (2000-2004), post tsunami disaster rehabilitation and reconstruction period (2005-2009), and post rehabilitation and reconstruction period (2010-present). The statistical analysis of severity index and variance used to analyze the data. The three risk factors reviewed generally affected the cost in a medium impact. The high impact occurred in minor variables, which are `increase in material prices', `theft of materials', and `the fuel scarcity'. In overall, the three risk factors and the observed period contributed significant impact on construction costs.
Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials
NASA Astrophysics Data System (ADS)
Kang, Ee-Seul; Kim, Da-Seul; Suhito, Intan Rosalina; Choo, Sung-Sik; Kim, Seung-Jae; Song, Inbeom; Kim, Tae-Hyung
2017-01-01
In the field of regenerative medicine, stem cells are highly promising due to their innate ability to generate multiple types of cells that could replace/repair damaged parts of human organs and tissues. It has been reported that both in vitro and in vivo function/survival of stem cells could significantly be improved by utilizing functional materials such as biodegradable polymers, metal composites, nanopatterns and nanohybrid particles. Of various biocompatible materials available for use in stem cell-based therapy and research, carbon-based materials—including fullerenes graphene/graphene oxide and carbon nanotubes—have been found to possess unique physicochemical characteristics that contribute to the effective guidance of stem cell differentiation into specific lineages. In this review, we discuss a number of previous reports that investigated the use of carbon-based materials to control stem cell behavior, with a particular focus on their immense potential to guide the osteogenesis of mesenchymal stem cells (MSCs). We hope that this review will provide information on the full potential of using various carbon-based materials in stem cell-mediated regenerative therapy, particularly for bone regeneration and repair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori
2015-02-01
In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less
Brown, William D.; Barry, Katherine L.
2016-01-01
Models of the evolution of sexual cannibalism argue that males may offset the cost of cannibalism if components of the male body are directly allocated to the eggs that they fertilize. We tested this idea in the praying mantid Tenodera sinensis. Males and females were fed differently radiolabelled crickets and allowed to mate. Half of the pairs progressed to sexual cannibalism and we prevented cannibalism in the other half. We assess the relative allocation of both male-derived somatic materials and ejaculate materials into the eggs and soma of the female. Our results show that male somatic investment contributes to production of offspring. The eggs and reproductive tissues of cannibalistic females contained significantly more male-derived amino acids than those of non-cannibalistic females, and there was an increase in the number of eggs produced subsequent to sexual cannibalism. Sexual cannibalism thus increases male material investment in offspring. We also show that males provide substantial investment via the ejaculate, with males passing about 25% of their radiolabelled amino acids to females via the ejaculate even in the absence of cannibalism. PMID:27358366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansfield, N.J.
1992-01-01
The increasing number of hazardous materials accidents in the United States has resulted in new federal regulations addressing the emergency response activities associated with chemical releases. A significant part of these new federal standards (29 CFR 1910.120 and 40 CFR Part 311) requires compliance with specific criteria by all personnel involved in a hazardous material emergency. This study investigated alternative lesson design models applicable to instruction for hazardous material emergencies. A specialized design checklist was created based on the work of Gagne, Briggs, and Wager (1988), Merrill (1987), and Clark (1989). This checklist was used in the development of lessonmore » plan templates for the hazardous materials incident commander course. Qualitative data for establishing learning objectives was collected by conducting a needs assessment and a job analysis of the incident commander position. Incident commanders from 14 public and private organizations participated in the needs assessment process. Technical information for the lessons was collected from appropriate governmental agencies. The implementation of the checklist and lesson plans can contribute to assuring quality training for incident commanders throughout the United States.« less
Interlaminar shear fracture toughness and fatigue thresholds for composite materials
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.
1987-01-01
Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.
High pressure research using muons at the Paul Scherrer Institute
NASA Astrophysics Data System (ADS)
Khasanov, R.; Guguchia, Z.; Maisuradze, A.; Andreica, D.; Elender, M.; Raselli, A.; Shermadini, Z.; Goko, T.; Knecht, F.; Morenzoni, E.; Amato, A.
2016-04-01
Pressure, together with temperature and magnetic field, is an important thermodynamical parameter in physics. Investigating the response of a compound or of a material to pressure allows to elucidate ground states, investigate their interplay and interactions and determine microscopic parameters. Pressure tuning is used to establish phase diagrams, study phase transitions and identify critical points. Muon spin rotation/relaxation (μSR) is now a standard technique making increasing significant contribution in condensed matter physics, material science research and other fields. In this review, we will discuss specific requirements and challenges to perform μSR experiments under pressure, introduce the high pressure muon facility at the Paul Scherrer Institute (PSI, Switzerland) and present selected results obtained by combining the sensitivity of the μSR technique with pressure.
Technology development activities for housing research animals on Space Station Freedom
NASA Technical Reports Server (NTRS)
Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.
1991-01-01
The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.
Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.
NASA Astrophysics Data System (ADS)
Zepecki, S., III; Dean, A. F.; Pisut, D.
2017-12-01
NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.
Analytical model for the threshold voltage of III-V nanowire transistors including quantum effects
NASA Astrophysics Data System (ADS)
Marin, E. G.; Ruiz, F. G.; Tienda-Luna, I. M.; Godoy, A.; Gámiz, F.
2014-02-01
In this work we propose an analytical model for the threshold voltage (VT) of III-V cylindrical nanowires, that takes into consideration the two dimensional quantum confinement of the carriers, the Fermi-Dirac statistics, the wave-function penetration into the gate insulator and the non-parabolicity of the conduction band structure. A simple expression for VT is obtained assuming some suitable approximations. The model results are compared to those of a 2D self consistent Schrödinger-Poisson solver, demonstrating a good fit for different III-V materials, insulator thicknesses and nanowire sizes with diameter down to 5 nm. The VT dependence on the confinement effective mass is discussed. The different contributions to VT are analyzed showing significant variations among different III-V materials.
A mature Bosch CO2 reduction technology. [for long-duration space missions
NASA Technical Reports Server (NTRS)
King, C. D.; Holmes, R. F.
1976-01-01
The reduction of CO2 is one of the steps in closing the oxygen loop for long-duration manned space missions. Several units utilizing the Bosch process, which catalytically reduces CO2 with hydrogen, have been built and operated during the past decade. Each contributed substantial information affecting subsequent designs. Early challenges were primarily concerned with carbon control, materials durability, and reliability of reaction initiation. These were followed by concern about power consumption, expendable weight, volume, and process rate control. Suitable materials and techniques for carbon containment and process reliability have been demonstrated. Power requirements have been reduced by almost an order of magnitude. Methods for significant reductions in expendable weight and volume have been developed. The technology is at a state of maturity directly applicable to designs for space missions.
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.
2008-01-01
A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth s magnetosheath. The light curve of the O VII (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.36). The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.
Vaillant, Eric R; Parks, Brent G; Camire, Lyn M; Hinton, Richard Y
2017-11-01
The aim of this article is to compare diameter and stiffness, displacement, and strain in a five-strand versus four-strand hamstring graft for anterior cruciate ligament reconstruction. Eight matched pairs of lower extremities underwent four-strand or five-strand hamstring graft reconstruction. Diameter was significantly higher in the five-strand versus the four-strand construct ( p = 0.002). No significant difference was found between the groups in construct displacement or stiffness. Significantly higher strain was observed in the inner limb versus the outer limb in the four-strand construct ( p = 0.001) and in the inner limb versus the fifth limb in the 5-strand construct ( p = 0.004). A fifth limb added to a four-strand hamstring graft significantly increased graft diameter but did not significantly change stiffness or displacement, suggesting that attachment of additional graft material via suture did not provide for full incorporation of the added limb into the graft at time zero. The inner limb in both constructs absorbed significantly greater load than did other limbs. The use of suture to attach additional material to a four-strand hamstring graft may not contribute to improved biomechanical qualities of the graft at time zero. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Mixing of Marine and Terrestrial Sources of Strontium in Coastal Environments
NASA Astrophysics Data System (ADS)
Ryan, Saskia; Crowley, Quentin; Deegan, Eileen; Snoeck, Christophe
2017-04-01
87Sr/86Sr from bulk soils, soil extracts and plant material have been used to investigate and quantify the extent of marine-derived Sr in the terrestrial biosphere. Samples were collected along coastal transects and 87Sr/86Sr biosphere values (plant and soil) converge to marine values with increasing proximity to the coast. R2values indicate highly significant trends in certain regions. The National Soils Database (NSDB), TELLUS and TELLUS Border datasets, all of which are geochemical surveys have been employed to further test the extent of marine elemental contribution. Collectively these data cover all of Ireland and Northern Ireland, with varying degrees of sampling density. A strong spatial correlation exists between the Chemical Index of Alteration (CIA; (Al2O3-(CaO*+Na2O)-K2O)) in topsoil (CIA <60; 27% n = 11651) and areas of blanket peat. The enrichment of Ca and Na in these regions would suggest a significant marine geochemical contribution. Topsoil CIA can therefore be used to identify areas likely to feature significant marine inputs and identify regions where the 87Sr/86Sr budget may deviate from bedrock values.
Haptic identification of objects and their depictions.
Klatzky, R L; Loomis, J M; Lederman, S J; Wake, H; Fujita, N
1993-08-01
Haptic identification of real objects is superior to that of raised two-dimensional (2-D) depictions. Three explanations of real-object superiority were investigated: contribution of material information, contribution of 3-D shape and size, and greater potential for integration across the fingers. In Experiment 1, subjects, while wearing gloves that gently attenuated material information, haptically identified real objects that provided reduced cues to compliance, mass, and part motion. The gloves permitted exploration with free hand movement, a single outstretched finger, or five outstretched fingers. Performance decreased over these three conditions but was superior to identification of pictures of the same objects in all cases, indicating the contribution of 3-D structure and integration across the fingers. Picture performance was also better with five fingers than with one. In Experiment 2, the subjects wore open-fingered gloves, which provided them with material information. Consequently, the effect of type of exploration was substantially reduced but not eliminated. Material compensates somewhat for limited access to object structure but is not the primary basis for haptic object identification.
Lindsay, L.; Kuang, Y.
2017-03-13
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
Caza, Nicole; Belleville, Sylvie
2008-05-01
Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.
NASA Astrophysics Data System (ADS)
Lindsay, L.; Kuang, Y.
2017-03-01
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.
Physical performance of biodegradable films intended for antimicrobial food packaging.
Marcos, Begonya; Aymerich, Teresa; Monfort, Josep M; Garriga, Margarita
2010-10-01
Antimicrobial films were prepared by including enterocins to alginate, polyvinyl alcohol (PVOH), and zein films. The physical performance of the films was assessed by measuring color, microstructure (SEM), water vapor permeability (WVP), and tensile properties. All studied biopolymers showed poor WVP and limited tensile properties. PVOH showed the best performance exhibiting the lowest WVP values, higher tensile properties, and flexibility among studied biopolymers. SEM of antimicrobial films showed increased presence of voids and pores as a consequence of enterocin addition. However, changes in microstructure did not disturb WVP of films. Moreover, enterocin-containing films showed slight improvement compared to control films. Addition of enterocins to PVOH films had a plasticizing effect, by reducing its tensile strength and increasing the strain at break. The presence of enterocins had an important effect on tensile properties of zein films by significantly reducing its brittleness. Addition of enterocins, thus, proved not to disturb the physical performance of studied biopolymers. Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste. Practical Application: Development of new antimicrobial biodegradable packaging materials may contribute to improving food safety while reducing environmental impact derived from packaging waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, L.; Kuang, Y.
Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. We present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first principles calculations. We also use graphane, a buckled graphene backbone with covalently bonded Hydrogen atoms on both sides, as the base material and vary the mass of the Hydrogen atoms to simulate the effect of mass variance from other functional groups. We find non-monotonic behavior of κ with increasing mass of the functional group and an unusual cross-over from acoustic-dominated tomore » optic-dominated thermal transport behavior. We connect this cross-over to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection symmetry based scattering selection rule responsible for their large contributions in graphene. Our work demonstrates the potential for manipulation and engineering of thermal transport properties in two dimensional materials toward targeted applications.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false You are disabled and drug addiction or alcoholism is a contributing factor material to the determination of disability. 416.214 Section 416.214 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY INCOME FOR THE AGED, BLIND, AND DISABLED Eligibility Reasons Why You May Not...
The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G
The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner themore » deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean exhaust. In addition, thermal aging and sulfur poisoning are shown to produce minimal contributions to the overall deactivation. Consequently, performance of aged DOCs after soot removal is observed to be comparable to that of a fresh catalyst under our testing conditions.« less
NASA Astrophysics Data System (ADS)
Khanna, Om Shervan
The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different mineralogical phases within CKDs. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (<5%) and calcium langbeinite (<5%). The dissolution of ionic species and composition of the liquid phase play an important role in PC hydration. The dissolved ion contributions from CKDs were compared to PC using dilute stirred suspensions at 10 minutes and it was found that the ion contributions from CKDs are qualitatively the same as the ion contributions from PC, with the exception of chloride ions. The second objective was to utilize the material characterization analysis to determine the relationships among the composition properties of CKD-PC blends and their effects on fresh and hardened properties. The study found that CKDs from preheater/precalciner kilns have different effects on workability and heat evolution than CKDs from wet and long-dry kilns due to the presence of very reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ˜0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.
Koltun, G.F.; Helsel, Dennis R.
1986-01-01
Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contain significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentrations in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected for their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and iron concentrations. Technique-related differences in copper concentrations most likely resulted from contamination of air-elutriated samples by a feed tip on the elutriator apparatus. No technique-related differences were observed in chromium, manganese, or zinc concentrations. Although air elutriation was the most expensive sizefractioning technique investigated, samples fractioned by this technique appeared to provide a superior level of discrimination between metal concentrations present in the bottom materials of the two sites. Sieving was an adequate lower-cost but more laborintensive alternative.
Photoinduced random molecular reorientation by nonradiative energy relaxation: An experimental test
NASA Astrophysics Data System (ADS)
Manzo, C.; Paparo, D.; Marrucci, L.
2004-11-01
By measuring the time-resolved fluorescence depolarization as a function of light excitation wavelength we address the question of a possible photoinduced orientational randomization of amino-anthraquinone dyes in liquid solutions. We find no significant dependence within the experimental uncertainties of both the initial molecule anisotropy and of the subsequent rotational diffusion dynamics on the photon energy. This indicates that this effect, if present, must be very small. A simple model of photoinduced local heating and corresponding enhanced rotational diffusion is in accordance with this result. This null result rules out some recent proposals that photoinduced local heating may contribute significantly to molecular reorientation effects in different materials. A small but statistically significant effect of photon energy is instead found in the excited-state lifetime of the dye.
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.; ...
2016-01-14
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Mechanics of Granular Materials (MGM)
NASA Technical Reports Server (NTRS)
Alshibli, Khalid A.; Costes, Nicholas C.; Porter, Ronald F.
1996-01-01
The constitutive behavior of uncemented granular materials such as strength, stiffness, and localization of deformations are to a large extend derived from interparticle friction transmitted between solid particles and particle groups. Interparticle forces are highly dependent on gravitational body forces. At very low effective confining pressures, the true nature of the Mohr envelope, which defines the Mohr-Coulomb failure criterion for soils, as well as the relative contribution of each of non-frictional components to soil's shear strength cannot be evaluated in terrestrial laboratories. Because of the impossibility of eliminating gravitational body forces on earth, the weight of soil grains develops interparticle compressive stresses which mask true soil constitutive behavior even in the smallest samples of models. Therefore the microgravity environment induced by near-earth orbits of spacecraft provides unique experimental opportunities for testing theories related to the mechanical behavior of terrestrial granular materials. Such materials may include cohesionless soils, industrial powders, crushed coal, etc. This paper will describe the microgravity experiment, 'Mechanics of Granular Materials (MGM)', scheduled to be flown on Space Shuttle-MIR missions. The paper will describe the experiment's hardware, instrumentation, specimen preparation procedures, testing procedures in flight, as well as a brief summary of the post-mission analysis. It is expected that the experimental results will significantly improve the understanding of the behavior of granular materials under very low effective stress levels.
Material and shape perception based on two types of intensity gradient information
Nishida, Shin'ya
2018-01-01
Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644
Towards uniformly dispersed battery electrode composite materials: Characteristics and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yo Han Kwon; Takeuchi, Esther S.; Huie, Matthew M.
Battery electrodes are complex mesoscale systems comprised of electroactive components, conductive additives, and binders. In this report, methods for processing electrodes with dispersion of the components are described. To investigate the degree of material dispersion, a spin-coating technique was adopted to provide a thin, uniform layer that enabled observation of the morphology. Distinct differences in the distribution profile of the electrode components arising from individual materials physical affinities were readily identified. Hansen solubility parameter (HSP) analysis revealed pertinent surface interactions associated with materials dispersivity. Further studies demonstrated that HSPs can provide an effective strategy to identify surface modification approaches formore » improved dispersions of battery electrode materials. Specifically, introduction of surfactantlike functionality such as oleic acid (OA) capping and P3HT-conjugated polymer wrapping on the surface of nanomaterials significantly enhanced material dispersity over the composite electrode. The approach to the surface treatment on the basis of HSP study can facilitate design of composite electrodes with uniformly dispersed morphology and may contribute to enhancing their electrical and electrochemical behaviors. The conductivity of the composites and their electrochemical performance was also characterized. In conclusion, the study illustrates the importance of considering electronic conductivity, electron transfer, and ion transport in the design of environments incorporating active nanomaterials.« less
Renal stone risk assessment during Space Shuttle flights
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Pietrzyk, R. A.; Pak, C. Y.
1997-01-01
PURPOSE: The metabolic and environmental factors influencing renal stone formation before, during, and after Space Shuttle flights were assessed. We established the contributing roles of dietary factors in relationship to the urinary risk factors associated with renal stone formation. MATERIALS AND METHODS: 24-hr. urine samples were collected prior to, during space flight, and following landing. Urinary and dietary factors associated with renal stone formation were analyzed and the relative urinary supersaturation of calcium oxalate, calcium phosphate (brushite), sodium urate, struvite and uric acid were calculated. RESULTS: Urinary composition changed during flight to favor the crystallization of calcium-forming salts. Factors that contributed to increased potential for stone formation during space flight were significant reductions in urinary pH and increases in urinary calcium. Urinary output and citrate, a potent inhibitor of calcium-containing stones, were slightly reduced during space flight. Dietary intakes were significantly reduced for a number of variables, including fluid, energy, protein, potassium, phosphorus and magnesium. CONCLUSIONS: This is the first in-flight characterization of the renal stone forming potential in astronauts. With the examination of urinary components and nutritional factors, it was possible to determine the factors that contributed to increased risk or protected from risk. In spite of the protective components, the negative contributions to renal stone risk predominated and resulted in a urinary environment that favored the supersaturation of stone-forming salts. Dietary and pharmacologic therapies need to be assessed to minimize the potential for renal stone formation in astronauts during/after space flight.
Is Science Built on the Shoulders of Women? A Study of Gender Differences in Contributorship.
Macaluso, Benoit; Larivière, Vincent; Sugimoto, Thomas; Sugimoto, Cassidy R
2016-08-01
Women remain underrepresented in the production of scientific literature, and relatively little is known regarding the labor roles played by women in the production of knowledge. This study examined labor roles by gender using contributorship data from science and medical journals published by the Public Library of Science (PLOS), which require each author to indicate their contribution to one or more of the following tasks: (1) analyzed the data, (2) conceived and designed the experiments, (3) contributed reagents/materials/analysis tools, (4) performed the experiments, and (5) wrote the paper. The authors analyzed contribution data from more than 85,000 articles published between 2008 and 2013 in PLOS journals with respect to gender using both descriptive and regression analyses. Gender was a significant variable in determining the likelihood of performing a certain task associated with authorship. Women were significantly more likely to be associated with performing experiments, and men were more likely to be associated with all other authorship roles. This holds true controlling for academic age: Although experimentation was associated with academically younger scholars, the gap between male and female contribution to this task remained constant across academic age. Inequalities were observed in the distribution of scientific labor roles. These disparities have implications for the production of scholarly knowledge, the evaluation of scholars, and the ethical conduct of science. Adopting the practice of identifying contributorship rather than authorship in scientific journals will allow for greater transparency, accountability, and equitable allocation of resources.
Viscoelastic properties of orthodontic adhesives used for lingual fixed retainer bonding.
Papadogiannis, D; Iliadi, A; Bradley, T G; Silikas, N; Eliades, G; Eliades, T
2017-01-01
To evaluate the viscoelastic properties of two experimental BPA-free and one BisGMA-based orthodontic resin composite adhesives for bonding fixed retainers. A commercially available BisGMA-based (TXA: Transbond LR) and two bisphenol A-free experimental adhesives (EXA and EXB) were included in the study. The viscoelastic behavior of the adhesives was evaluated under static and dynamic conditions at dry and wet states and at various temperatures (21, 37, 50°C). The parameters determined were shear modulus (G), Young's modulus (E) under static testing and storage modulus (G 1 ), loss tangent (tanδ) and dynamic viscosity (n*) under dynamic testing. Statistical analysis was performed by 2-way ANOVA and Bonferroni post-hoc tests (α=0.05). For static testing, a significant difference was found within material and storage condition variables and a significant interaction between the two independent variables (p<0.001 for G and E). EXA demonstrated the highest G and E values at 21°C/dry group. Dry specimens showed the highest G and E values, but with no significant difference from 21°C/wet specimens, except EXA in G. Wet storage at higher temperatures (37°C and 50°C) adversely affected all the materials to a degree ranging from 40 to 60% (p<0.001). For dynamic testing, a significant difference was also found in material and testing condition groups, with a significant interaction between the two independent variables (p<0.001 for G 1 and n*, p<0.01 for tanδ). Reduction in G 1 , and n* values, and increase in tanδ values were encountered at increased water temperatures. The apparent detrimental effect of high temperature on the reduction of properties of adhesives may contribute to the loss of stiffness of the fixed retainer configuration under ordinary clinical conditions with unfavorable effects on tooth position and stability of the orthodontic treatment result. Copyright © 2016 The Academy of Dental Materials. All rights reserved.
Hazardous Material Transportation Risks in the Puget Sound Region
DOT National Transportation Integrated Search
1981-09-01
In order to contribute to workable hazardous materials accident prevention and response systems, public safety risks of transporting hazardous materials in the Central Puget Sound Region of Washington State are determined. Risk spectrums are obtained...
Sources of personal exposure to fine particles in Toronto, Ontario, Canada.
Kim, David; Sass-Kortsak, Andrea; Purdham, James T; Dales, Robert E; Brook, Jeffrey R
2005-08-01
Individuals are exposed to particulate matter from both indoor and outdoor sources. The aim of this study was to compare the relative contributions of three sources of personal exposure to fine particles (PM2.5) by using chemical tracers. The study design incorporated repeated 24-hr personal exposure measurements of air pollution from 28 cardiac-compromised residents of Toronto, Ontario, Canada. Each study participant wore the Rupprecht & Patashnick ChemPass Personal Sampling System 1 day a week for a maximum of 10 weeks. During their individual exposure measurement days the subjects reported to have spent an average of 89% of their time indoors. Particle phase elemental carbon, sulfate, and calcium personal exposure data were used in a mixed-effects model as tracers for outdoor PM2.5 from traffic-related combustion, regional, and local crustal materials, respectively. These three sources were found to contribute 13% +/- 10%, 17% +/- 16%, and 7% +/- 6% of PM2.5 exposures. The remaining fraction of the personal PM2.5 is hypothesized to be predominantly related to indoor sources. For comparison, central site outdoor PM2.5 measurements for the same dates as personal measurements were used to construct a receptor model using the same three tracers. In this case, traffic-related combustion, regional, and local crustal materials were found to contribute 19% +/- 17%, 52% +/- 22%, and 10% +/- 7%, respectively. Our results indicate that the three outdoor PM2.5 sources considered are statistically significant contributors to personal exposure to PM2.5. Our results also suggest that among the Toronto subjects, who spent a considerable amount of time indoors, exposure to outdoor PM2.5 includes a greater relative contribution from combustion sources compared with outdoor PM2.5 measurements where regional sources are the dominant contributor.
On Critical States, Rupture States and Interlocking Strength of Granular Materials.
Szalwinski, Chris M
2017-07-27
The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.
Kurtze, Nanna; Eikemo, Terje A; Kamphuis, Carlijn B M
2013-04-01
Behavioural, material and psychosocial risk factors may explain educational inequalities in general health. To what extent these risk factors have similar or different contributions to educational inequalities in mental health is unknown. Data were derived from the Norwegian Survey of Level of Living from 2005, comprising 5791 respondents aged ≥ 25 years. The study objectives were addressed by means of a series of logistic regression analyses in which we examined: (i) educational inequalities in self-reported general and mental health; (ii) the associations between behavioural, material and psychosocial risk factors and general and mental health, controlled for sex, age and education; and (iii) the contribution of risk factors to the observed health gradients. The lower educated were more likely to be in poor health [odds ratio (OR): 3.46 (95% confidence interval, CI: 2.84-4.21)] and to be in poor mental health [OR: 1.41 (95% CI: 1.12-1.78)] than the highest educated. The joint contribution of behavioural, material and psychosocial risk factors explained all the variations of mental health inequalities, whereas these were able to explain ~40% of the inequalities in general health. Both behavioural and material risk factors contributed substantially to the explanation of general and mental health inequalities, whereas the psychosocial risk factor (i.e. having close persons to communicate with) only seemed to make a larger difference for the explanation of mental health inequalities. Policies and interventions to reduce health inequalities should have a broad focus. Combined strategies should be applied to improve physical activity, decrease smoking and improve material and psychosocial conditions among lower educated groups, to achieve the true potential of reducing inequalities in both general and mental health.
Gamburzew, Axel; Darcel, Nicolas; Gazan, Rozenn; Dubois, Christophe; Maillot, Matthieu; Tomé, Daniel; Raffin, Sandrine; Darmon, Nicole
2016-09-27
Consumers often do not understand nutrition labels or do not perceive their usefulness. In addition, price can be a barrier to healthy food choices, especially for socio-economically disadvantaged individuals. A 6-month intervention combined shelf labeling and marketing strategies (signage, prime placement, taste testing) to draw attention to inexpensive foods with good nutritional quality in two stores located in a disadvantaged neighborhood in Marseille (France). The inexpensive foods with good nutritional quality were identified based on their nutrient profile and their price. Their contribution to customers' spending on food was assessed in the two intervention stores and in two control stores during the intervention, as well as in the year preceding the intervention (n = 6625). Exit survey (n = 259) and in-depth survey (n = 116) were used to assess customers' awareness of and perceived usefulness of the program, knowledge of nutrition, understanding of the labeling system, as well as placement-, taste- and preparation-related attractiveness of promoted products. Matched purchasing data were used to assess the contribution of promoted products to total food spending for each customer who participated in the in-depth survey. The contribution of inexpensive foods with good nutritional quality to customers' total food spending increased between 2013 and 2014 for both the control stores and the intervention stores. This increase was significantly higher in the intervention stores than in the control stores for fruits and vegetables (p = 0.001) and for starches (p = 0.011). The exit survey revealed that 31 % of customers had seen the intervention materials; this percentage increased significantly at the end of the intervention (p < 0.001). The in-depth survey showed that customers who had seen the intervention materials scored significantly higher on quizzes assessing nutrition knowledge (p < 0.001) and understanding of the labeling system (p = 0.024). A social marketing intervention aimed at increasing the visibility and attractiveness of inexpensive foods with good nutritional quality may improve food purchasing behaviors in disadvantaged neighborhoods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2015-01-12
A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significantmore » effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar, 2013) to report the framework and findings in tropocollagen-hydroxyapatite based idealized biomaterial interfaces. PHYSICAL FINDINGS 1. Analyses using experiments have revealed that in the case of bone thermal conductivity and thermal diffusivity at micron scale shows significant dependence on compressive stress and temperature. Overall, there is a decrease with respect to increase in temperature and increase with respect to increase in compressive stress. Bio-molecular simulations on idealized tropocollagen-hydroxyapatite interfaces confirm such findings. However, simulations also reveal that thermal diffusivity and thermal conductivity can be significantly tailored by interfacial orientation. More importantly, in inorganic materials, interfaces contribute to reduce thermal conductivity and diffusivity. However, analyses here reveal that both can be increased despite presence of a lot of interfaces. 2. Based on significant role played by interfaces in affecting bone thermal properties, a crustacean-exoskeleton system is examined for thermal diffusivity using the newly developed setup. Special emphasis here is on this system since such arrangement is found to be common in fresh water shrimp as well as in some deep water organisms surviving in environment extremes. Experiments reveal that in such system thermal diffusivity is highly tailorable. 3. Overall, experiments and models have established that in biomaterial interfaces a counterintuitive role of interfaces in mediating thermal conduction as a function of stress and temperature is possible in contrast to inorganic materials where interfaces almost always lead to reduction of thermal conductivity as a function of such factors. More investigations are underway to reveal physical origins of such counter-physical characteristics. Such principles can be significantly useful in developing new and innovative bioenergy and inorganic energy systems where heat dissipation significantly affects system performance.« less
NASA Astrophysics Data System (ADS)
Hafsi, Fouad; Kriker, Abdelouahed; Abani, Said
2017-02-01
Algerian Desert areas were characterized by very hot climate in summer and very cold in winter. The most widely used building material in these areas are concrete, mortar cement, which has a bad thermal insulation, causing a significant increase in cooling and heating costs; in order to avoid this problem it become a must to replace these materials with a good thermal isolation material and lower production cost. This work is part of the evaluation of local materials by improving their performance in the field of thermal insulation, which is considered a first step in the development of new local materials to be used in the construction field, the material used in this study is the gypsum reinforced with date palm fiber. In fact, Algeria has extraordinary resources in natural fibers (from Palm, Abaca, Hemp…) but without any large valorization in building materials. The aim of this work is then to characterization of those date palm fibers in new building materials approved for use in the construction of buildings in the desert areas. The date palm fibers were added to samples of the gypsum material in the form of cutting layers at different volume fraction, so as to determine the extent of their impact in the improvement of the thermal performance. The results were very satisfactory, reaching improvement rate of 16% for samples gypsum reinforced with single cut fiber form, and 32% of the samples reinforced with fiber in the form of layers.
Soil and building material as main sources of indoor radon in Băiţa-Ştei radon prone area (Romania).
Cosma, Constantin; Cucoş-Dinu, Alexandra; Papp, Botond; Begy, Robert; Sainz, Carlos
2013-02-01
Radon contributes to over than 50% of the natural radiation dose received by people. In radon risk areas this contribution can be as high as 90-95%, leading to an exposure to natural radiation 5-10 times higher than normal. This work presents results from radon measurements (indoor, soil and exhalation from building materials) in Băiţa-Ştei, a former uranium exploitation area in NW Romania. In this region, indoor radon concentrations found were as high as 5000 Bq m(-3) and soil radon levels ranged from 20 to 500 kBq m(-3). An important contribution from building materials to indoor radon was also observed. Our results indicate two independent sources of indoor radon in the surveyed houses of this region. One source is coming from the soil and regular building materials, and the second source being uranium waste and local radium reached material used in building construction. The soil as source of indoor radon shows high radon potential in 80% of the investigated area. Some local building materials reveal high radon exhalation rate (up to 80 mBq kg(-1) h(-1) from a sandy-gravel material, ten times higher than normal material). These measurements were used for the radon risk classification of this area by combining the radon potential of the soil with the additional component from building materials. Our results indicate that Băiţa-Ştei area can be categorized as a radon prone area. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, John G., Jr.
1992-01-01
NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.
A METHOD TO IMPROVE DOSE ASSESSMENT BY RECONSTRUCTION OF THE COMPLETE ISOTOPES INVENTORY.
Bonin, Alice; Tsilanizara, Aimé
2017-06-01
Radiation shielding assessments may underestimate the expected dose if some isotopes at trace level are not considered in the isotopes inventory of the shielded radioactive materials. Indeed, information about traces is not often available. Nevertheless, the activation of some minor isotopic traces may significantly contribute to the dose build-up. This paper presents a new method (Isotopes Inventory Reconstruction-IIR) estimating the concentration of the minor isotopes in the irradiated material at the beginning of the cooling period. The method requires the solution of the inverse problem describing the irradiated material's decay. In a mixture of an irradiated uranium-plutonium oxide shielded by a set-up made of stainless-steel, porous polyethylene plaster and lead methyl methacrylate, the comparison between different methods proves that the IIR-method allows better assessment of the dose than other approximate methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fancello, Eduardo Alberto
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures. PMID:29056968
Fiber reinforced PMR polyimide composites
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1978-01-01
Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.
Accelerating materials discovery through the development of polymer databases
NASA Astrophysics Data System (ADS)
Audus, Debra
In our line of business we create chemical solutions for a wide range of applications, such as home and personal care, printing and packaging, automotive and structural coatings, and structural plastics and foams applications. In this environment, stable and highly automated workflows suitable to handle complex systems are a must. By satisfying these prerequisites, efficiency for the development of new materials can be significantly improved by combining modeling and experimental approaches. This is in fact in line with recent Materials Genome Initiative efforts sponsored by the US administration. From our experience, we know, that valuable contributions to product development are possible today by combining existing modeling techniques in an intelligent fashion, provided modeling and experiment work closely together. In my presentation I intend to review approaches to build and parameterize soft matter systems. As an example of our standard workflow, I will show a few applications, which include the design of a stabilizer molecule for dispersing polymer particles and the simulation of polystyrene dispersions.
Technical approaches to reducing the threat of nuclear terrorism
NASA Astrophysics Data System (ADS)
Priedhorsky, William C.
2005-04-01
The threat of a nuclear attack on the United States by terrorists using a smuggled weapon is now considered more likely than an attack by a nuclear-armed ballistic missle. Consequently it is important to understand what can be done to detect and intercept a nuclear weapon being smuggled into the United States. A significant quantity of smuggled nuclear material has been intercepted already, but science and technology have so far contributed little to its interception. The critical special nuclear materials, plutonium and highly enriched uranium, are only weakly radioactive and detection of their radioactivity is limited both by atmospheric attenuation and by competition with natural backgrounds. Although many schemes for long-range detection of radioactivity have been proposed, none so far appears feasible. Detection of nuclear radiation can be improved using new technologies and sensing systems, but it will still be possible only at relatively small distances. Consequently the best approach to containing dangerous nuclear materials is at their sources; containment within lengthy borders and large areas is extremely difficult.
NASA Astrophysics Data System (ADS)
Gong, Xing; Li, Rui; Sun, Maozhou; Ren, Qisen; Liu, Tong; Short, Michael P.
2016-12-01
Accelerator-driven systems (ADS) are a promising approach for nuclear waste disposal. Nevertheless, the principal candidate materials proposed for ADS construction, such as the ferritic/martensitic steel, T91, and austenitic stainless steels, 316L and 15-15Ti, are not fully compatible with the liquid lead-bismuth eutectic (LBE) coolant. Under some operating conditions, liquid metal embrittlement (LME) or liquid metal corrosion (LMC) may occur in these steels when exposed to LBE. These environmentally-induced material degradation effects pose a threat to ADS reactor safety, as failure of the materials could initiate a severe accident, in which fission products are released into the coolant. Meanwhile, parallel efforts to develop accident-tolerant fuels (ATF) in light water reactors (LWRs) could provide both general materials design philosophies and specific material solutions to the ADS program. In this paper, the potential contributions of the ATF materials development program to the ADS materials qualification program are evaluated and discussed in terms of service conditions and materials performance requirements. Several specific areas where coordinated development may benefit both programs, including composite materials and selected coatings, are discussed.
Miller, Lee; Guerra, Aldo Benjamin; Bidros, Rafi Sirop; Trahan, Christopher; Baratta, Richard; Metzinger, Stephen Eric
2005-07-01
Hydroxyapatite cement is a relatively new biomaterial that has found widespread use in craniomaxillofacial surgery. Despite its common usage, complication rates as high as 32% have been reported. When failed implants are removed, implant fracture has been cited as a potential cause of failure. The purpose of this study was to evaluate resistance to fracture among 4 commercially available hydroxyapatite cement formulations. The materials tested included Norian Craniofacial Repair System (carbonated apatite cement) (AO North America, Devon, PA), Norian CRS Fast Set Putty (carbonated apatite cement) (AO North America), BoneSource (hydroxyapatite cement) (Stryker Leibinger, Portage, MI), and Mimix (hydroxyapatite cement) (Walter Lorenz Surgical, Inc, Jacksonville, FL). To ensure consistency, all materials were embedded in acrylic wells. Each material was placed into a well 2.54 cm in diameter and 0.953 cm in thickness. The materials were prepared per manufacturer specifications. All materials were incubated at 37.0 degrees C, in 6% CO2, 100% humidity for 36 hours. Using the Bionix MTS Test System, a 12-mm-diameter probe applied incremental force to the center of the disk at a rate of 0.1 mm per second. The transmitted force was measured using a Bionix MTS Axial-Torsional Load Transducer for each disk. The force which resulted in fracture was recorded for each material. Ten disks of each material were processed by this method, for a total of 40 disks. The significance of resistance to fracture for the 4 compounds was analyzed using 1-way analysis of variance with post hoc Scheffe method. Mean fracture force with related P values was plotted for direct comparison of group outcomes. Material type contributed significantly to variance in fracture force for the biomaterials studied. Norian CRS required the greatest mean fracture force (1385 N, SD+/-292 N), followed by Norian CRS Fast Set Putty (1143 N, SD+/-193 N). Mimix required a mean fracture force of 740 N, SD+/-79 N. BoneSource required a mean fracture force of 558 N, SD+/-150 N. Mimix and BoneSource required significantly less force for fracture when compared with Norian CRS and Fast Set Putty (P<0.01). Comparisons of fracture load resistance between 4 commonly used bone substitute materials have not been previously reported. Increasing biomaterial strength may reduce complications resulting from reinjury to cranioplasty sites. In this model, Norian CRS and Norian CRS Fast Set Putty demonstrated a significantly greater resistance to fracture when compared with BoneSource and Mimix.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
NASA Astrophysics Data System (ADS)
Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.
2014-04-01
We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon-polaritons to overall heat conduction.
Ted Geballe: A lifetime of contributions to superconductivity
NASA Astrophysics Data System (ADS)
Stewart, G. R.
2015-07-01
The editors have dedicated this special issue on superconducting materials "to Ted Geballe in honor of his numerous seminal contributions to the field of superconducting materials over more than 60 years, on the year of his 95th birthday." Here, as an executive summary, are just a few highlights of his research in superconductivity, leavened with some anecdotes, and ending with some of Ted's general insights and words of wisdom.
1980-09-01
data alone, one might speculate thatx perhaps PGBx caused anoxexia and that this contributed to the weight loss and reduction in blood glucose...expressed as such. The molecular weight of material which we used (Preparation #25) was taken to be 2150. All dilutions of the drug, prior to its...identical to those described in the footnotes to Table 1.dNumber of hearts in each group. Calculated on the basis of tissue wet weight Significant (P<O.05
Handbook for industrial noise control
NASA Technical Reports Server (NTRS)
1981-01-01
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
Spectral signature variations, atmospheric scintillations and sensor parameters
NASA Astrophysics Data System (ADS)
Berger, Henry; Neander, John
2002-11-01
The spectral signature of a material is the curve of power density vs. wavelength (λ) obtained from measurements of reflected light. It is used, among other things, for the identification of targets in remotely acquired images. Sometimes, however, unpredictable distortions may prevent this. In only a few cases have such distortions been explained. We propose some reasonable arguments that in a significant number of circumstances, atmospheric turbulence may contribute to such spectral signature distortion. We propose, based on this model, what appears to be one method that could combat such distortion.
Handbook for industrial noise control
NASA Astrophysics Data System (ADS)
The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.
Elevated-Temperature Tensile-Testing of Foil-Gage Metals
NASA Technical Reports Server (NTRS)
Blackburn, L. B.; Ellingsworth, J. R.
1986-01-01
Automated system for measuring strain in metal foils at temperatures above 500 degrees F (260 degrees C) uses mechanical extensometer and displacement transducer. System includes counterbalance feature, which eliminates weight contribution of extensometer and reduces grip pressure required for attachment to specimen. Counterbalancing feature overcomes two major difficulties in using extensometers with foil-gage specimens: (1) Weight of extensometer and transducer represents significant fraction of total load applied to specimen and may actually damage it; and (2) grip pressure required for attachment of extensometer to specimens may induce bending stresses in foil-gage materials.
NASA Astrophysics Data System (ADS)
Ohta, Hiromi; Maruyama, Megumi; Tanabe, Yoko; Hara, Toshiko; Nishino, Yoshihiko; Tsujino, Yoshio; Morita, Eishin; Kobayashi, Shotai; Shido, Osamu
2008-05-01
We investigated the effects of redecoration of a hospital isolation room with natural materials on thermoregulatory, cardiovascular and hormonal parameters of healthy subjects staying in the room. Two isolation rooms with almost bilaterally-symmetrical arrangements were used. One room (RD) was redecorated with wood paneling and Japanese paper, while the other (CN) was unchanged (with concrete walls). Seven healthy male subjects stayed in each room for over 24 h in the cold season. Their rectal temperature (Tre) and heart rate, and the room temperature (Ta) and relative humidity were continuously measured. Arterial blood pressures, arterial vascular compliance, thermal sensation and thermal comfort were measured every 4 h except during sleeping. Blood was sampled after the stay in the rooms. In RD, Ta was significantly higher by about 0.4°C and relative humidity was lower by about 5% than in CN. Diurnal Tre levels of subjects in RD significantly differed from those in CN, i.e., Tres were significantly higher in RD than in CN especially in the evening. In RD, the subjects felt more thermally-comfortable than in CN. Redecoration had minimal effects on cardiovascular parameters. Plasma levels of catecholamines and antidiuretic hormone did not differ, while plasma cortisol level was significantly lower after staying in RD than in CN by nearly 20%. The results indicate that, in the cold season, redecoration with natural materials improves the thermal environment of the room and contributes to maintaining core temperature of denizens at preferable levels. It also seems that redecoration of room could attenuate stress levels of isolated subjects.
Attending to insects: Francis Willughby and John Ray
Ogilvie, Brian W.
2012-01-01
Francis Willughby and John Ray were at the forefront of the natural history of insects in the second half of the seventeenth century. Willughby in particular had a deep interest in insects' metamorphosis, behaviour and diversity, an interest that he passed on to his friend and mentor Ray. By examining Willughby's contributions to John Wilkins's Essay towards a Real Character (1668) and Ray's Methodus insectorum (1705) and Historia insectorum (1710), which contained substantial material from Willughby's manuscript history of insects, one may reconstruct how the two naturalists studied insects, their innovative use of metamorphosis in insect classification, and the sheer diversity of insect forms that they described on the basis of their own collections and those of London and Oxford virtuosi. Imperfect as it was, Historia insectorum was recognized by contemporaries as a significant contribution to the emerging field of entomology.
Caudill, Lester; Hill, April; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics. PMID:20810953
Caudill, Lester; Hill, April; Hoke, Kathy; Lipan, Ovidiu
2010-01-01
Funded by innovative programs at the National Science Foundation and the Howard Hughes Medical Institute, University of Richmond faculty in biology, chemistry, mathematics, physics, and computer science teamed up to offer first- and second-year students the opportunity to contribute to vibrant, interdisciplinary research projects. The result was not only good science but also good science that motivated and informed course development. Here, we describe four recent undergraduate research projects involving students and faculty in biology, physics, mathematics, and computer science and how each contributed in significant ways to the conception and implementation of our new Integrated Quantitative Science course, a course for first-year students that integrates the material in the first course of the major in each of biology, chemistry, mathematics, computer science, and physics.
NASA Astrophysics Data System (ADS)
Geiger, Philipp T.; Khansur, Neamul H.; Riess, Kevin; Martin, Alexander; Hinterstein, Manuel; Webber, Kyle G.
2018-02-01
Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.
Mattheys, K; Bambra, C; Warren, J; Kasim, A; Akhter, N
2016-12-01
Since 2010, the UK has pursued a policy of austerity characterised by public spending cuts and welfare changes. There has been speculation - but little actual research - about the effects of this policy on health inequalities. This paper reports on a case study of local health inequalities in the local authority of Stockton-on-Tees in the North East of England, an area characterised by high spatial and socio-economic inequalities. The paper presents baseline findings from a prospective cohort study of inequalities in mental health and mental wellbeing between the most and least deprived areas of Stockton-on-Tees. This is the first quantitative study to explore local mental health inequalities during the current period of austerity and the first UK study to empirically examine the relative contributions of material, psychosocial and behavioural determinants in explaining the gap. Using a stratified random sampling technique, the data was analysed using multi-level models that explore the gap in mental health and wellbeing between people from the most and least deprived areas of the local authority, and the relative contributions of material, psychosocial and behavioural factors to this gap. The main findings indicate that there is a significant gap in mental health between the two areas, and that material and psychosocial factors appear to underpin this gap. The findings are discussed in relation to the context of the continuing programme of welfare changes and public spending cuts in the UK.
On the feasibility to perform integral transmission experiments in the GELINA target hall at IRMM
NASA Astrophysics Data System (ADS)
Leconte, Pierre; Jean, Cyrille De Saint; Geslot, Benoit; Plompen, Arjan; Belloni, Francesca; Nyman, Markus
2017-09-01
Shielding experiments are relevant to validate elastic and inelastic scattering cross sections in the fast energy range. In this paper, we are focusing on the possibility to use the pulsed white neutron time-of-flight facility GELINA to perform this kind of measurement. Several issues need to be addressed: neutron source intensity, room return effect, distance of the materials to be irradiated from the source, and the sensitivity of various reaction rate distributions through the material to different input cross sections. MCNP6 and TRIPOLI4 calculations of the outgoing neutron spectrum are compared, based on electron/positron/gamma/neutron simulations. A first guess of an integral transmission experiment through a 238U slab is considered. It shows that a 10 cm thickness of uranium is sufficient to reach a high sensitivity to the 238U inelastic scattering cross section in the [2-5 MeV] energy range, with small contributions from elastic and fission cross sections. This experiment would contribute to reduce the uncertainty on this nuclear data, which has a significant impact on the power distribution in large commercial reactors. Other materials that would be relevant for the ASTRID 4th generation prototype reactor are also tested, showing that a sufficient sensitivity to nuclear data would be obtained by using a 50 to 100cm thick slab of side 60x60cm. This study concludes on the feasibility and interest of such experiments in the target hall of the GELINA facility.
Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Collins, TImothy J.
2006-01-01
Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.
Hoods-Moonsammy, Vyonne J; Owen, Peter; Howes, Dale G
2014-01-01
The purpose of this study was to compare the capacity of different impression materials to accurately reproduce the positions of five implant analogs on a master model by comparing the resulting cast with the stainless steel master model. The study was motivated by the knowledge that distortions can occur during impression making and the pouring of casts and that this distortion may produce inaccuracies of subsequent restorations, especially long-span castings for implant superstructures. The master model was a stainless steel model with five implant analogs. The impression materials used were impression plaster (Plastogum, Harry J Bosworth), a polyether (Impregum Penta, 3M ESPE), and two polyvinyl siloxane (PVS) materials (Aquasil Monophase and Aquasil putty with light-body wash, Dentsply). Five impressions were made with each impression material and cast in die stone under strictly controlled laboratory conditions. The positions of the implants on the master model, the impression copings, and the implant analogs in the subsequent casts were measured using a coordinate measuring machine that measures within 4 μm of accuracy. Statistical analyses indicated that distortion occurred in all of the impression materials, but inconsistently. The PVS monophase material reproduced the master model most accurately. Although there was no significant distortion between the impressions and the master model or between the impressions and their casts, there were distortions between the master model and the master casts, which highlighted the cumulative effects of the distortions. The polyether material proved to be the most reliable in terms of predictability. The impression plaster displayed cumulative distortion, and the PVS putty with light body showed the least reliability. Some of the distortions observed are of clinical significance and likely to contribute to a lack of passive fit of any superstructure. The inaccuracy of these analog materials and procedures suggested that greater predictability may lie in digital technology.
NASA Astrophysics Data System (ADS)
McIntosh, Scott W.; Tian, Hui; Sechler, Marybeth; De Pontieu, Bart
2012-04-01
This analysis begins to explore the complex chromosphere-corona mass cycle using a blend of imaging and spectroscopic diagnostics. Single Gaussian fits (SGFs) to hot emission line profiles (formed above 1 MK) at the base of coronal loop structures indicate material blueshifts of 5-10 km s-1, while cool emission line profiles (formed below 1 MK) yield redshifts of a similar magnitude—indicating, to zeroth order, that a temperature-dependent bifurcating flow exists on coronal structures. Image sequences of the same region reveal weakly emitting upward propagating disturbances in both hot and cool emission with apparent speeds of 50-150 km s-1. Spectroscopic observations indicate that these propagating disturbances produce a weak emission component in the blue wing at commensurate speed, but that they contribute only a few percent to the (ensemble) emission line profile in a single spatio-temporal resolution element. Subsequent analysis of imaging data shows material "draining" slowly (~10 km s-1) out of the corona, but only in the cooler passbands. We interpret the draining as the return flow of coronal material at the end of the complex chromosphere-corona mass cycle. Further, we suggest that the efficient radiative cooling of the draining material produces a significant contribution to the red wing of cool emission lines that is ultimately responsible for their systematic redshift as derived from an SGF when compared to those formed in hotter (conductively dominated) domains. The presence of counterstreaming flows complicates the line profiles, their interpretation, and asymmetry diagnoses, but allows a different physical picture of the lower corona to develop.
Xu, Hui Qiu; Huang, Yin Hua; Wu, Zhi Feng; Cheng, Jiong; Li, Cheng
2016-10-01
Based on 641 agricultural top soil samples (0-20 cm) and land use map in 2005 of Guangzhou, we used single-factor pollution indices and Pearson/Spearman correlation and partial redundancy analyses and quantified the soil contamination with As and Cd and their relationships with landscape heterogeneity at three grid scales of 2 km×2 km, 5 km×5 km, and 10 km×10 km as well as the determinant landscape heterogeneity factors at a certain grid scale. 5.3% and 7.2% of soil samples were contaminated with As and Cd, respectively. At the three scales, the agricultural soil As and Cd contamination were generally significantly correlated with parent materials' composition, river/road density and landscape patterns of several land use types, indicating the parent materials, sewage irrigation and human activities (e.g., industrial and traffic activities, and the additions of pesticides and fertilizers) were possibly the main input pathways of trace metals. Three subsets of landscape heterogeneity variables (i.e., parent materials, distance-density variables, and landscape patterns) could explain 12.7%-42.9% of the variation of soil contamination with As and Cd, of which the explanatory power increased with the grid scale and the determinant factors varied with scales. Parent materials had higher contribution to the variations of soil contamination at the 2 and 10 km grid scales, while the contributions of landscape patterns and distance-density variables generally increased with the grid scale. Adjusting the distribution of cropland and optimizing the landscape pattern of land use types are important ways to reduce soil contamination at local scales, which urban planners and decision makers should pay more attention to.
Chemical characterization of iron-mediated soil organic matter stabilization in tropical subsoils
NASA Astrophysics Data System (ADS)
Coward, E.; Plante, A. F.; Thompson, A.
2015-12-01
Tropical forest soils contribute disproportionately to the poorly-characterized and persistent deep soil carbon (C) pool. Highly-weathered and often extending one to two meters deep, these soils also contain an abundance of semicrystalline, Fe- and Al-containing short-range-order (SRO) minerals, metastable derivatives of framework silicate and ferromagnesian parent materials. SRO minerals are capable of soil organic matter (SOM) stabilization through sorption or co-precipitation, a faculty enhanced by their high specific surface area (SSA). As such, SRO-mediated organomineral associations may prove a critical, yet matrix-selective, driver of SOM stabilization capacity in tropical soils, particularly at depth. Surface (0-20 cm) and subsoil (50-80 cm) samples were taken from 20 quantitative soil pits dug in the Luquillo Critical Zone Observatory, located in northeast Puerto Rico. Soils were stratified across granodiorite and volcaniclastic parent materials, spanning primary mineral contents of 5 to 40%. Selective dissolution procedures were used to isolate distinct forms of Fe-C interactions: (1) sodium pyrophosphate to isolate organo-mineral complexes, (2) hydroxylamine and (3) oxalate to isolate SRO phases, and (4) inorganic dithionite to isolate crystalline Fe oxides. Extracts were analysed for dissolved organic C (DOC) and Fe and Al concentrations to estimate SOM associated with each mineral phase. Soils were also subjected to SSA analysis, 57Fe-Mössbauer spectroscopy and X-ray diffraction before and after extraction to determine the contribution of extracted mineral phases to SOM stabilization capacity. Preliminary results indicate a dominance of secondary (hydr)oxides and kaolin minerals in surface soils, strongly driven by parent material. With depth, however, we observe a marked shift towards SRO mineral phases across both parent materials, suggesting that SRO-mediated organomineral associations are significant contributors to observed C storage in tropical subsoils.
An ultra-low background PMT for liquid xenon detectors
Akerib, D. S.; Bai, X.; Bernard, E.; ...
2012-11-15
Results are presented from radioactivity screening of two models of photomultiplier tubes designed for use in current and future liquid xenon experiments. The Hamamatsu 5.6 cm diameter R8778 PMT, used in the LUX dark matter experiment, has yielded a positive detection of four common radioactive isotopes: 238U, 232Th, 40K, and 60Co. Screening of LUX materials has rendered backgrounds from other detector materials subdominant to the R8778 contribution. A prototype Hamamatsu 7.6 cm diameter R11410 MOD PMT has also been screened, with benchmark isotope counts measured at <0.4 238U / <0.3 232Th / < 8.3 40K / 2.0+-0.2 60Co mBq/PMT. This represents a large reduction, equal to a change of xmore » $$\\frac{1}{24}$$ 238U / x $$\\frac{1}{9}$$ 232Th / x $$\\frac{1}{8}$$ 40K per PMT, between R8778 and R11410 MOD, concurrent with a doubling of the photocathode surface area (4.5 cm to 6.4 cm diameter). 60Co measurements are comparable between the PMTs, but can be significantly reduced in future R11410 MOD units through further material selection. Assuming PMT activity equal to the measured 90% upper limits, Monte Carlo estimates indicate that replacement of R8778 PMTs with R11410 MOD PMTs will change LUX PMT electron recoil background contributions by a factor of x $$\\frac{1}{25}$$ after further material selection for 60Co reduction, and nuclear recoil backgrounds by a factor of \\times $$\\frac{1}{36}$$. The strong reduction in backgrounds below the measured R8778 levels makes the R11410 MOD a very competitive technology for use in large-scale liquid xenon detectors.« less
Award for Distinguished Contributions to Education and Training in psychology.
2017-12-01
This award is given by the Board of Educational Affairs in recognition of the efforts of psychologists who have made distinguished contributions to education and training, who have produced imaginative innovations, or who have been involved in the developmental phases of programs in education and training in psychology. These contributions might include important research on education and training; the development of effective materials for instruction; the establishment of workshops, conferences, or networks of communication for education and training; achievement and leadership in administration that facilitates education and training; or activity in professional organizations that promote excellence. The Award for Distinguished Contributions to Education and Training in psychology recognizes a specific contribution to education and training. The Career designation is added to the award at the discretion of the Education and Training Awards Committee to recognize continuous significant contributions made over a lifelong career in psychology. This year the Education and Training Awards Committee selected a psychologist for the Career designation. The 2017 recipients of the APA Education and Training Contributions Awards were selected by the 2016 Education and Training Awards Committee appointed by the Board of Educational Affairs (BEA). Members of the 2016 Education and Training Awards Committee were Erica Wise, PhD (Chair); Ron Rozensky, PhD; Jane D. Halonen, PhD; Sharon Berry, PhD (Chair Elect); Emil Rodolfa, PhD; and Sylvia A. Rosenfield, PhD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Award for Distinguished Contributions to Education and Training in Psychology.
2016-11-01
This award is given by the Board of Educational Affairs in recognition of the efforts of psychologists who have made distinguished contributions to education and training, who have produced imaginative innovations, or who have been involved in the developmental phases of programs in education and training in psychology. These contributions might include important research on education and training; the development of effective materials for instruction; the establishment of workshops, conferences, or networks of communication for education and training; achievement and leadership in administration that facilitates education and training; or activity in professional organizations that promote excellence. The Award for Distinguished Contributions to Education and Training in psychology recognizes a specific contribution to education and training. The Career designation is added to the award at the discretion of the Education and Training Awards Committee to recognize continuous significant contributions made over a lifelong career in psychology. This year the Education and Training Awards Committee selected a psychologist for the Career designation. The 2016 recipients of the APA Education and Training Contributions Awards were selected by the 2015 Education and Training Awards Committee appointed by the Board of Educational Affairs (BEA). Members of the 2015 Education and Training Awards Committee were Sharon L. Berry, PhD (Chair); Arthur C. Graesser, PhD; and Thomas R. Kratochwill, PhD; Erica Wise, PhD (Chair-Elect); Ron Rozensky, PhD; and Jane Halonen, PhD. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Leshabari, Sebalda C; Koniz-Booher, Peggy; Astrøm, Anne N; de Paoli, Marina M; Moland, Karen M
2006-10-03
This paper describes the process used to develop an integrated set of culturally sensitive, evidence-based counselling tools (job aids) by using qualitative participatory research. The aim of the intervention was to contribute to improving infant feeding counselling services for HIV positive women in the Kilimanjaro Region of Tanzania. Formative research using a combination of qualitative methods preceded the development of the intervention and mapped existing practices, perceptions and attitudes towards HIV and infant feeding (HIV/IF) among mothers, counsellors and community members. Intervention Mapping (IM) protocol guided the development of the overall intervention strategy. Theories of behaviour change, a review of the international HIV/IF guidelines and formative research findings contributed to the definition of performance and learning objectives. Key communication messages and colourful graphic illustrations related to infant feeding in the context of HIV were then developed and/or adapted from existing generic materials. Draft materials were field tested with intended audiences and subjected to stakeholder technical review. An integrated set of infant feeding counselling tools, referred to as 'job aids', was developed and included brochures on feeding methods that were found to be socially and culturally acceptable, a Question and Answer Guide for counsellors, a counselling card on the risk of transmission of HIV, and an infant feeding toolbox for demonstration. Each brochure describes the steps to ensure safer infant feeding using simple language and images based on local ideas and resources. The brochures are meant to serve as both a reference material during infant feeding counselling in the ongoing prevention of mother to child transmission (pMTCT) of HIV programme and as take home material for the mother. The study underscores the importance of formative research and a systematic theory based approach to developing an intervention aimed at improving counselling and changing customary feeding practices. The identification of perceived barriers and facilitators for change contributed to developing the key counselling messages and graphics, reflecting the socio-economic reality, cultural beliefs and norms of mothers and their significant others.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wu, Y.; WANG, C.; Jin, Z.
2015-12-01
Large-scale oceanic/continental subduction introduces a range of crustal materials into the Earth's mantle. These subducted material will be gravitationally trapped in the deep mantle when they have been transported to a depth of greater than ~250-300 km ("depth of no return"). However, little is known about the fate of these trapped continental material. Here, we conduct experimental study on a natural continental rock which compositionally similar to the average upper continental crust (UCC) over a pressure and temperature range of 9-16 GPa and 1300-1800 oC to constraint the fate of these trapped continental materials. The experimental results demonstrate that subducted UCC produces ~20-30 wt% K-rich melt (>55 wt% SiO2) in the upper mantle (9-13 GPa). The melting residue is mainly composed of coesite/stishovite + clinopyroxene + kyanite. In contrast, partial melting of subducted UCC in the MTZ produces ~10 wt% K-rich melt (<50 wt% SiO2), together with stishovite, clinopyroxene, K-Hollandite, garnet and CAS-phase as the residue phases. The melting residue phases achieve densities greater than the surrounding mantle, which provides a driving force for descending across the 410 km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of MTZ, leaving the descended residues being accumulated above the 660 km seismic discontinuity and may contribute to the stagnated "second continent". On the other hand, the melt is ~0.3-0.7 g/cm3 less dense than the surrounding mantle and provides a buoyancy force for the ascending of melt to shallow depth. The ascending melt preserves a significant portion of the bulk-rock REEs and LILEs. Thus, chemical reaction between the melt and the surrounding mantle would leads to a variably metasomatised mantle. Re-melting of the metasomatised mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, through subduction, stagnation, partial melting and melt segregation of continental crust may create EM-sources and"second continent" at shallow depth and the base of the MTZ respectively, which may contribute to the observed geochemical/geophysical heterogeneity in Earth's interior.
Leshabari, Sebalda C; Koniz-Booher, Peggy; Åstrøm, Anne N; de Paoli, Marina M; Moland, Karen M
2006-01-01
Background This paper describes the process used to develop an integrated set of culturally sensitive, evidence-based counselling tools (job aids) by using qualitative participatory research. The aim of the intervention was to contribute to improving infant feeding counselling services for HIV positive women in the Kilimanjaro Region of Tanzania. Methods Formative research using a combination of qualitative methods preceded the development of the intervention and mapped existing practices, perceptions and attitudes towards HIV and infant feeding (HIV/IF) among mothers, counsellors and community members. Intervention Mapping (IM) protocol guided the development of the overall intervention strategy. Theories of behaviour change, a review of the international HIV/IF guidelines and formative research findings contributed to the definition of performance and learning objectives. Key communication messages and colourful graphic illustrations related to infant feeding in the context of HIV were then developed and/or adapted from existing generic materials. Draft materials were field tested with intended audiences and subjected to stakeholder technical review. Results An integrated set of infant feeding counselling tools, referred to as 'job aids', was developed and included brochures on feeding methods that were found to be socially and culturally acceptable, a Question and Answer Guide for counsellors, a counselling card on the risk of transmission of HIV, and an infant feeding toolbox for demonstration. Each brochure describes the steps to ensure safer infant feeding using simple language and images based on local ideas and resources. The brochures are meant to serve as both a reference material during infant feeding counselling in the ongoing prevention of mother to child transmission (pMTCT) of HIV programme and as take home material for the mother. Conclusion The study underscores the importance of formative research and a systematic theory based approach to developing an intervention aimed at improving counselling and changing customary feeding practices. The identification of perceived barriers and facilitators for change contributed to developing the key counselling messages and graphics, reflecting the socio-economic reality, cultural beliefs and norms of mothers and their significant others. PMID:17018140
NASA Astrophysics Data System (ADS)
Bryant, Rob; Cheng, Shuying; Doerr, Stefan H.; Wright, Chris J.; Bayer, Julia V.; Williams, Rhodri P.
2010-05-01
Organic coatings on mineral particles will mask the physic-chemical properties of the underlying mineral surface. Surface images and force measurements obtained using atomic force microscopy (AFM) provide information about the nature of and variability in surfaces properties at the micro- to nano-scale. As AFM technology and data processing advance it is anticipated that a significant amount of information will be obtained simultaneously from individual contacts made at high frequency in non-contact or tapping mode operation. For present purposes the surfaces of model materials (smooth glass surfaces and acid-washed sand (AWS)) provide an indication of the dependency of the so-called AFM phase image on the topographic image (which is obtained synoptically). Pixel wise correlation of these images reveals how the modulation of an AFM probe is affected when topographic features are encountered. Adsorption of soil-derived humic acid (HA) or lecithin (LE), used here as an example for natural organic material, on these surfaces provides a soft and compliant, albeit partial, covering on the mineral which modifies the topography and the response of an AFM tip as it partially indents the soft regions (which contributes depth to the phase image). This produces a broadening on the data domain in the topographic/phase scatter diagram. Two dimensional classifications of these data, together with those obtained from sand particles drawn from water repellent and wettable soils, suggest that these large adsorbate molecules appear to have little preference to attach to particular topographic features or elevations. It appears that they may effectively remain on the surface at the point of initial contact. If organic adsorbates present a hydrophobic outer surface, then it seems possible that elevated features will not be immune from this and provide scope for a local, albeit, small contribution to the expression of super-hydrophobicity. It is therefore speculated here that the water repellency of a soil is the result of not only of particle surface chemistry and soil pore space geometry, but also of the micro-topography generated by organic material adsorbed on particle surfaces.
NASA Astrophysics Data System (ADS)
Xiang, Bo; Zhang, Jun
2018-01-01
For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.
Dyslipidemia and Diabetes Increase the OPG/TRAIL Ratio in the Cardiovascular System.
Toffoli, Barbara; Fabris, Bruno; Bartelloni, Giacomo; Bossi, Fleur; Bernardi, Stella
2016-01-01
Background . Dyslipidemia and diabetes are two of the most well established risk factors for the development of cardiovascular disease (CVD). Both of them usually activate a complex range of pathogenic pathways leading to organ damage. Here we hypothesized that dyslipidemia and diabetes could affect osteoprotegerin (OPG) and TNF-related apoptosis-inducing ligand (TRAIL) expression in the vessels and the heart. Materials and Methods . Gene and protein expression of OPG, TRAIL, and OPG/TRAIL ratio were quantified in the aorta and the hearts of control mice, dyslipidemic mice, and diabetic mice. Results . Diabetes significantly increased OPG and the OPG/TRAIL ratio expression in the aorta, while dyslipidemia was the major determinant of the changes observed in the heart, where it significantly increased OPG and reduced TRAIL expression, thus increasing cardiac OPG/TRAIL ratio. Conclusions . This work shows that both dyslipidemia and diabetes affect OPG/TRAIL ratio in the cardiovascular system. This could contribute to the changes in circulating OPG/TRAIL which are observed in patients with diabetes and CVD. Most importantly, these changes could mediate/contribute to atherosclerosis development and cardiac remodeling.
Decreased oxidative stress may contribute to the disease process in placenta accreta
Öztaş, Efser; Özler, Sibel; Ergin, Merve; Erel, Özcan; Gümüş Güler, Başak; Çağlar, Ali Turhan; Yücel, Aykan; Uygur, Dilek; Danışman, Nuri
2017-08-23
Background/aim: The main aim of this study was to investigate serum total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), and arylesterase levels in pregnant women with placenta accreta and to compare those with age-matched healthy pregnant women. Materials and methods: A total of 27 pregnant women who had clinically and pathologically proven placenta accreta and 30 age- and BMI- matched healthy pregnant women were enrolled in this case control study. Maternal serum TOS, TAS, OSI, and arylesterase levels were evaluated using logistic regression analysis to determine if there was an association with abnormal placental invasion or not. Results: Decreased OSI (OR= 0.999, 95%CI: 0.998-1.000, P = 0.035) and increased arylesterase levels (OR= 0.981, 95%CI: 0.970-0.993, P = 0.001) were significantly associated with the presence of placenta accreta. Maternal serum TOS, TAS, OSI, and arylesterase levels were not predictive for adverse perinatal outcomes (P > 0.05). Conclusions: Decreased OSI and increased arylesterase levels are significantly associated with placenta accreta and may contribute to the abnormal invasion process.
Superconducting cavity material for the European XFEL
NASA Astrophysics Data System (ADS)
Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.
2015-08-01
Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.
Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory
Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa; ...
2016-11-11
Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. Here, we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We comparemore » self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. Furthermore, the highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. We have observed this asymmetry in heating and is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.« less
Sun, Ming; Wang, Bin; Li, Yu Long; Wang, Ai Yong; Dong, Jing; Ma, Tian Yu; Ban, Yan Li
2016-04-22
By using stable isotope techniques, we analyzed the carbon and nitrogen stable isotope ratios of Rhopilema esculentum Kishinouye and its potential feed materials in Liaodong Bay of Bohai Sea, aiming to identify potential food sources and trophic levels of R. esculentum . The results showed that the δ 13 C and δ 15 N values for R. esculentum ranged from -20.27‰ to -23.06‰ (ave raged at -21.33‰), and from 6.82‰ to 10.03‰ (averaged at 8.25‰), respectively. The main food sources for R. esculentum included suspended materials, phytoplankton, fish eggs, zooplankton (≤1000 μm), zooplankton (1000-1500 μm), zooplankton (>1500 μm), among which, zooplankton (≤1000 μm) was the most important food source and contributed 71%-88% of the total food sources, followed by zooplankton (>1500 μm) (6%-19%), zooplankton (1000-1500 μm) (0%-22%), suspended materials (0%-10%), phytoplankton(0%-8%) and fish eggs (0%-2%). A Pearson correlation test indicated that there was significant negative relationship between the diameter and δ 13 C value of R. esculentum (P<0.05), while no significant correlation was found between its diameter and δ 15 N value (P>0.05). The trophic level of R. esculentum ranged from 2.79 to 3.88 depending on diameter classes,with a mean valu of 3.28 These results indicated that R. esculentum plays a key role in controlling microzooplankton in the Liaodong Bay, which is significant for providing deeper understanding into the tropic structure of biological communities as well as into the material cycles and energy flow of entire ecosystem in the Liaodong Bay.
Zeng, Xianlai; Li, Jinhui
2014-04-30
Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.
Blackbody Cavity for Calibrations at 200 to 273 K
NASA Technical Reports Server (NTRS)
Howell, Dane; Ryan, Robert; Ryan, Jim; Henderson, Doug; Clayton, Larry
2004-01-01
A laboratory blackbody cavity has been designed and built for calibrating infrared radiometers used to measure radiant temperatures in the range from about 200 to about 273 K. In this below-room-temperature range, scattering of background infrared radiation from room-temperature surfaces could, potentially, contribute significantly to the spectral radiance of the blackbody cavity, thereby contributing a significant error to the radiant temperature used as the calibration value. The present blackbody cavity is of an established type in which multiple reflections from a combination of conical and cylindrical black-coated walls are exploited to obtain an effective emissivity greater than the emissivity value of the coating material on a flat exposed surface. The coating material in this case is a flat black paint that has an emissivity of approximately of 0.91 in the thermal spectral range and was selected over other, higher-emissivity materials because of its ability to withstand thermal cycling. We found many black coatings cracked and flaked after thermal cycling due to differences in the coefficient of expansion differences. On the basis of theoretical calculations, the effective emissivity is expected to approach 0.999. The cylindrical/conical shell enclosing the cavity is machined from copper, which is chosen for its high thermal conductivity. In use, the shell is oriented vertically, open end facing up, and inserted in a Dewar flask filled with isopropyl alcohol/dry-ice slush. A flange at the open end of the shell is supported by a thermally insulating ring on the lip of the Dewar flask. The slush cools the shell (and thus the black-body cavity) to the desired temperature. Typically, the slush starts at a temperature of about 194 K. The slush is stirred and warmed by bubbling dry air or nitrogen through it, thereby gradually increasing the temperature through the aforementioned calibration range during an interval of several hours. The temperature of the slush is monitored by use of a precise thermocouple probe.
Lessard, Benoît H; White, Robin T; Al-Amar, Mohammad; Plint, Trevor; Castrucci, Jeffrey S; Josey, David S; Lu, Zheng-Hong; Bender, Timothy P
2015-03-11
In this study, we have assessed the potential application of dichloro silicon phthalocyanine (Cl2-SiPc) and dichloro germanium phthalocyanine (Cl2-GePc) in modern planar heterojunction organic photovoltaic (PHJ OPV) devices. We have determined that Cl2-SiPc can act as an electron donating material when paired with C60 and that Cl2-SiPc or Cl2-GePc can also act as an electron acceptor material when paired with pentacene. These two materials enabled the harvesting of triplet energy resulting from the singlet fission process in pentacene. However, contributions to the generation of photocurrent were observed for Cl2-SiPc with no evidence of photocurrent contribution from Cl2-GePc. The result of our initial assessment established the potential for the application of SiPc and GePc in PHJ OPV devices. Thereafter, bis(pentafluoro phenoxy) silicon phthalocyanine (F10-SiPc) and bis(pentafluoro phenoxy) germanium phthalocyanine (F10-GePc) were synthesized and characterized. During thermal processing, it was discovered that F10-SiPc and F10-GePc underwent a reaction forming small amounts of difluoro SiPc (F2-SiPc) and difluoro GePc (F2-GePc). This undesirable reaction could be circumvented for F10-SiPc but not for F10-GePc. Using single crystal X-ray diffraction, it was determined that F10-SiPc has significantly enhanced π-π interactions compared with that of Cl2-SiPc, which had little to none. Unoptimized PHJ OPV devices based on F10-SiPc were fabricated and directly compared to those constructed from Cl2-SiPc, and in all cases, PHJ OPV devices based on F10-SiPc had significantly improved device characteristics compared to Cl2-SiPc.
Fungal accumulation of metals from building materials during brown rot wood decay.
Hastrup, Anne Christine Steenkjær; Jensen, Bo; Jellison, Jody
2014-08-01
This study analyzes the accumulation and translocation of metal ions in wood during the degradation performed by one strain of each of the three brown rot fungi; Serpula lacrymans, Meruliporia incrassata and Coniophora puteana. These fungi species are inhabitants of the built environment where the prevention and understanding of fungal decay is of high priority. This study focuses on the influence of various building materials in relation to fungal growth and metal uptake. Changes in the concentration of iron, manganese, calcium and copper ions in the decayed wood were analyzed by induced coupled plasma spectroscopy and related to wood weight loss and oxalic acid accumulation. Metal transport into the fungal inoculated wood was found to be dependent on the individual strain/species. The S. lacrymans strain caused a significant increase in total iron whereas the concentration of copper ions in the wood appeared decreased after 10 weeks of decay. Wood inoculated with the M. incrassata isolate showed the contrary tendency with high copper accumulation and low iron increase despite similar weight losses for the two strains. However, significantly lower oxalic acid accumulation was recorded in M. incrassata degraded wood. The addition of a building material resulted in increased weight loss in wood degraded by C. puteana in the soil-block test; however, this could not be directly linked specifically to the accumulation of any of the four metals recorded. The accumulation of oxalic acid seemed to influence the iron uptake. The study assessing the influence of the presence of soil and glass in the soil-block test revealed that soil contributed the majority of the metals for uptake by the fungi and contributed to increased weight loss. The varying uptake observed among the three brown rot fungi strains toward the four metals analyzed may be related to the specific non-enzymatic and enzymatic properties including bio-chelators employed by each of the species during wood decay.
Important features of Sustainable Aggregate Resource Management
Solar, Slavko V.; Shields, Deborah J.; Langer, William H.
2004-01-01
Every society, whether developed, developing or in a phase of renewal following governmental change, requires stable, adequate and secure supplies of natural resources. In the latter case, there could be significant need for construction materials for rebuilding infrastructure, industrial capacity, and housing. It is essential that these large-volume materials be provided in a rational manner that maximizes their societal contribution and minimizes environmental impacts. We describe an approach to resource management based on the principles of sustainable developed. Sustainable Aggregate Resource Management offers a way of addressing the conflicting needs and interests of environmental, economic, and social systems. Sustainability is an ethics based concept that utilizes science and democratic processes to reach acceptable agreements and tradeoffs among interests, while acknowledging the fundamental importance of the environment and social goods. We discuss the features of sustainable aggregate resource management.
Depressing thermal conductivity of fullerene by caging rare gas
NASA Astrophysics Data System (ADS)
Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong
2016-01-01
We have investigated the thermal conductivity of C60 and its derivatives caged with rare gas by using the nonequilibrium molecular dynamics method. It is reported that embedding C60 with different rare gas atoms has a significant impact on its thermal conductivity. We analyze the phenomenon through the phonon spectra of rare gas atom and the C-C bonds length of C60. When the number of atoms inside the C60 increases, the phonon spectra band width of rare gas expands and the length of C-C bonds becomes longer, which contributes to the depression of the thermal conductivity of C60. The method is applied to control the thermal conductivity of C60 chains, which maybe a kind of potential materials in thermal circuits. Our results also provide a controllable method for the thermal management in nanoscale materials.
Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming
2018-04-01
A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.
Acoustophoretic contactless transport and handling of matter
NASA Astrophysics Data System (ADS)
Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos
2013-11-01
Levitation and controlled motion of matter in air, has a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a novel acoustophoretic concept, for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects (volume 0.1-10 μl) . The independence of the handling principle from special material properties (magnetic, optical or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. The dynamics of droplets and particles collision is studied numerically and experimentally. The findings show that the secondary acoustic force gives a significant contribution to the samples impact velocity. We thank the Swiss National Science Foundation (Grant 144397) for financial support.
NASA Astrophysics Data System (ADS)
Varghese, Julian
This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLEJWAS,THOMAS E.; SANDERS,THOMAS L.; EAGAN,ROBERT J.
2000-01-01
Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadershipmore » or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity.« less
Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E
2015-12-22
Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (<100 nm) particles for comparative studies of their cytotoxic potential in macrophage (THP-1) and lung epithelial (BEAS-2B) cell lines. We found that nanosized III-V arsenides, including GaAs and InAs, could induce significantly more cytotoxicity over a 24-72 h observation period. In contrast, GaP and InP particulates of all sizes as well as ionic GaCl3 and InCl3 were substantially less hazardous. The principal mechanism of III-V arsenide nanoparticle toxicity is dissolution and shedding of toxic As(III) and, to a lesser extent, As(V) ions. GaAs dissolves in the cell culture medium as well as in acidifying intracellular compartments, while InAs dissolves (more slowly) inside cells. Chelation of released As by 2,3-dimercapto-1-propanesulfonic acid interfered in GaAs toxicity. Collectively, these results demonstrate that III-V arsenides, GaAs and InAs nanoparticles, contribute in a major way to the toxicity of III-V materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.
NASA Astrophysics Data System (ADS)
Thibault, D.; Roy, S.; Wong, C. S.; Bishop, J. K.
1999-11-01
In the present study we examine factors that affect the downward flux of biogenic carbon in the NE subarctic Pacific, one of the important high-nutrient-low-chlorophyll (HNLC) regions in the open ocean. We focus on the role of mesozooplankton, since their seasonal peaks in biomass and growth are in phase with the seasonal variations in the downward POC fluxes, whereas phytoplankton biomass is more-or-less uniform year-round. The relative importance of mesozooplankton and algal sinking was examined using the pigment composition of material accumulated in short-term free-drifting sediment traps positioned just below the upper stratified surface layer (ca. 100-200 m). This was compared with the phytoplankton composition in the surface waters, and with the grazing activity (gut pigments and fecal pellet production rates) of the most abundant large copepods. We also examined whether the relationships between the downward flux of carbon and pelagic processes were similar in the coastal, continental margin and offshore HNLC regions of the NE subarctic Pacific, the latter represented by Ocean Station Papa (OSP). Our results show that grazing had a variable impact on the downward flux of biogenic carbon. Carbon-transformed pheopigments (particularly pyropheophorbide a, frequently associated with copepod grazing) represented up to 13% of the total downward POC flux inshore (in May 1996) and 8-9% at OSP in May and February 1996, respectively. This flux of pheopigments was accompanied by a large potential input of fecal pellets from large copepods (as estimated from defecation rates of freshly collected animals) only in May 1996 at OSP, suggesting that pheopigments came from other sources (other herbivores, senescing algae) in February. The larger flux of pheopigments in May was probably related to the abundance of mesozooplankton at that time of the year. During summer (August 1996), both the flux of pheopigments and the potential input of fecal pellets from large copepods were negligible at OSP, consistent with more intense pelagic recycling reported in other studies. Inshore, the flux of carbon-transformed pheopigments was slightly higher than at OSP, and its contribution to the downward POC flux in May 1996 was twice that in August 1996. In contrast, the potential input of feces carbon was higher in August than in May 1996, again suggesting other sources for pheopigments found in the traps. The contribution of sinking phytoplankton to the downward biogenic flux was negligible in summer, when prymnesiophytes (indicated by the presence of 19'-hexanoyloxyfucoxanthin) and pelagophytes (19'-butanoyloxyfucoxanthin-containing) dominated in surface offshore waters. The contribution of sinking algae was maximal (9%) in winter (February 1996) at OSP, when fucoxanthin (mainly a diatom marker) dominated the carotenoid composition in the traps and when the abundance of diatoms in surface waters showed its seasonal maximum for this station. Inshore, the low contribution of diatoms (fucoxanthin) to the sinking fluxes may have resulted from inadequate sampling (i.e. the spring bloom may have been missed). Overall, we conclude that: (a) large copepods significantly influenced the downward POC flux only during spring at OSP; (b) unidentified herbivores (e.g. salps, pteropods) producing pigmented, fast-sinking fecal material likely had an important impact during winter; (c) algal sinking made a small contribution to the downward POC flux (maximum in winter); and (d) neither algal sinking nor mesozooplankton grazing had a significant influence on the downward flux of biogenic material in summer at OSP.
NASA Astrophysics Data System (ADS)
Elfgen, S.; Franck, D.; Hameyer, K.
2018-04-01
Magnetic measurements are indispensable for the characterization of soft magnetic material used e.g. in electrical machines. Characteristic values are used as quality control during production and for the parametrization of material models. Uncertainties and errors in the measurements are reflected directly in the parameters of the material models. This can result in over-dimensioning and inaccuracies in simulations for the design of electrical machines. Therefore, existing influencing factors in the characterization of soft magnetic materials are named and their resulting uncertainties contributions studied. The analysis of the resulting uncertainty contributions can serve the operator as additional selection criteria for different measuring sensors. The investigation is performed for measurements within and outside the currently prescribed standard, using a Single sheet tester and its impact on the identification of iron loss parameter is studied.
Mussel-Inspired Coating and Adhesion for Rechargeable Batteries: A Review.
Jeong, You Kyeong; Park, Sung Hyeon; Choi, Jang Wook
2018-03-07
A significant effort is currently being invested to improve the electrochemical performance of classical lithium-ion batteries (LIBs) or to accelerate the advent of new chemistry-based post-LIBs. Regardless of the governing chemistry associated with charge storage, stable electrode-electrolyte interface and wet-adhesion among the electrode particles are universally desired for rechargeable batteries adopting liquid electrolytes. In this regard, recent studies have witnessed the usefulness of mussel-inspired polydopamine or catechol functional group in modifying the key battery components, such as active material, separator, and binder. In particular, the uniform conformal coating capability of polydopamine protects active materials from unwanted side reactions with electrolytes and increases the wettability of separators with electrolytes, both of which significantly contribute to the improvement of key battery properties. The wet-adhesion originating from catechol functional groups also largely increases the cycle lives of emerging high-capacity electrodes accompanied by huge volume expansion. This review summarizes the representative examples of mussel-inspired approaches in rechargeable batteries and offers central design principles of relevant coating and adhesion processes.
Smart structure for small wind turbine blade
NASA Astrophysics Data System (ADS)
Supeni, E. E.; Epaarachchi, J. A.; Islam, M. M.; Lau, K. T.
2013-08-01
Wind energy is seen as a viable alternative energy option for future energy demand. The blades of wind turbines are generally regarded as the most critical component of the wind turbine system. Ultimately, the blades act as the prime mover of the whole system which interacts with the wind flow during the production of energy. During wind turbine operation the wind loading cause the deflection of the wind turbine blade which can be significant and affect the turbine efficiency. Such a deflection in wind blade not only will result in lower performance in electrical power generation but also increase of material degradation due high fatigue life and can significantly shorten the longevity for the wind turbine material. In harnessing stiffness of the blade will contribute massive weight factor and consequently excessive bending moment. To overcome this excessive deflection due to wind loading on the blade, it is feasible to use shape memory alloy (SMA) wires which has ability take the blade back to its optimal operational shape. This paper details analytical and experimental work being carried out to minimize blade flapping deflection using SMA.
Microbial removals by a novel biofilter water treatment system.
Wendt, Christopher; Ives, Rebecca; Hoyt, Anne L; Conrad, Ken E; Longstaff, Stephanie; Kuennen, Roy W; Rose, Joan B
2015-04-01
Two point-of-use drinking water treatment systems designed using a carbon filter and foam material as a possible alternative to traditional biosand systems were evaluated for removal of bacteria, protozoa, and viruses. Two configurations were tested: the foam material was positioned vertically around the carbon filter in the sleeve unit or horizontally in the disk unit. The filtration systems were challenged with Cryptosporidium parvum, Raoultella terrigena, and bacteriophages P22 and MS2 before and after biofilm development to determine average log reduction (ALR) for each organism and the role of the biofilm. There was no significant difference in performance between the two designs, and both designs showed significant levels of removal (at least 4 log10 reduction in viruses, 6 log10 for protozoa, and 8 log10 for bacteria). Removal levels meet or exceeded Environmental Protection Agency (EPA) standards for microbial purifiers. Exploratory test results suggested that mature biofilm formation contributed 1-2 log10 reductions. Future work is recommended to determine field viability. © The American Society of Tropical Medicine and Hygiene.
Initial experimental evaluation of crud-resistant materials for light water reactors
NASA Astrophysics Data System (ADS)
Dumnernchanvanit, I.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Carlson, M. B.; Hussey, D.; Short, M. P.
2018-01-01
The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud causes serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each assumes that it will always be present. In this study, we report on the development of crud-resistant materials as fuel cladding coatings, to reduce or eliminate these problems altogether. Integrated loop testing experiments at flowing LWR conditions show significantly reduced crud adhesion and surface crud coverage, respectively, for TiC and ZrN coatings compared to ZrO2. The loop testing results roughly agree with the London dispersion component of van der Waals force predictions, suggesting that they contribute most significantly to the adhesion of crud to fuel cladding in out-of-pile conditions. These results motivate a new look at ways of reducing crud, thus avoiding many expensive LWR operational issues.
Correlation between low level fluctuations in the x ray background and faint galaxies
NASA Technical Reports Server (NTRS)
Tolstoy, Eline; Griffiths, R. E.
1993-01-01
A correlation between low-level x-ray fluctuations in the cosmic x-ray background flux and the large numbers of galaxies found in deep optical imaging, to m(sub v) is less than or equal to 24 - 26, is desired. These (faint) galaxies by their morphology and color in deep multi-color CCD images and plate material were optically identified. Statistically significant correlations between these galaxies and low-level x-ray fluctuations at the same positions in multiple deep Einstein HRI observations in PAVO and in a ROSAT PSPC field were searched for. Our aim is to test the hypothesis that faint 'star burst' galaxies might contribute significantly to the cosmic x-ray background (at approximately 1 keV).
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
44 CFR 312.6 - Materials and facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR... to, and does not detract from attack-related civil defense preparedness: (a) Materials provided and... contributions under the Act. (e) Equipment loaned or granted to the States for civil defense purposes (e.g...
44 CFR 312.6 - Materials and facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR... to, and does not detract from attack-related civil defense preparedness: (a) Materials provided and... contributions under the Act. (e) Equipment loaned or granted to the States for civil defense purposes (e.g...
44 CFR 312.6 - Materials and facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR... to, and does not detract from attack-related civil defense preparedness: (a) Materials provided and... contributions under the Act. (e) Equipment loaned or granted to the States for civil defense purposes (e.g...
44 CFR 312.6 - Materials and facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR... to, and does not detract from attack-related civil defense preparedness: (a) Materials provided and... contributions under the Act. (e) Equipment loaned or granted to the States for civil defense purposes (e.g...
14 CFR § 1240.108 - Reconsideration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CONTRIBUTIONS Awards for Scientific and Technical Contributions § 1240.108 Reconsideration. (a) With respect to..., authorities, arguments, and any additional material on which it relies. (c) Upon filing of the reconsideration...
Hogg, Abigail
2017-01-01
Objective. To examine how instructor-developed reading material relates to pre-class time spent preparing for the readiness assurance process (RAP) in a team-based learning (TBL) course. Methods. Students within pharmacokinetics and physiology were asked to self-report the amount of time spent studying for the RAP. Correlation analysis and multilevel linear regression techniques were used to identify factors within the pre-class reading material that contribute to self-reported study time. Results. On average students spent 3.2 hours preparing for a section of material in the TBL format. The ratio of predicted reading time, based on reading speed and word count, and self-reported study time was greater than 1:3. Self-reported study time was positively correlated with word count, number of tables and figures, and overall page length. For predictors of self-reported study time, topic difficulty and number of figures were negative predictors whereas word count and number of self-assessments were positive predictors. Conclusion. Factors related to reading material are moderate predictors of self-reported student study time for an accountability assessment. A more significant finding is student self-reported study time is much greater than the time predicted by simple word count. PMID:28970604
Lappe, Claudia; Bodeck, Sabine; Lappe, Markus; Pantev, Christo
2017-01-01
Predictive mechanisms in the human brain can be investigated using markers for prediction violations like the mismatch negativity (MMN). Short-term piano training increases the MMN for melodic and rhythmic deviations in the training material. This increase occurs only when the material is actually played, not when it is only perceived through listening, suggesting that learning predictions about upcoming musical events are derived from motor involvement. However, music is often performed in concert with others. In this case, predictions about upcoming actions from a partner are a crucial part of the performance. In the present experiment, we use magnetoencephalography (MEG) to measure MMNs to deviations in one's own and a partner's musical material after both engaged in musical duet training. Event-related field (ERF) results revealed that the MMN increased significantly for own and partner material suggesting a neural representation of the partner's part in a duet situation. Source analysis using beamforming revealed common activations in auditory, inferior frontal, and parietal areas, similar to previous results for single players, but also a pronounced contribution from the cerebellum. In addition, activation of the precuneus and the medial frontal cortex was observed, presumably related to the need to distinguish between own and partner material.
Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao
2018-05-25
Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.
Persky, Adam M; Hogg, Abigail
2017-08-01
Objective. To examine how instructor-developed reading material relates to pre-class time spent preparing for the readiness assurance process (RAP) in a team-based learning (TBL) course. Methods. Students within pharmacokinetics and physiology were asked to self-report the amount of time spent studying for the RAP. Correlation analysis and multilevel linear regression techniques were used to identify factors within the pre-class reading material that contribute to self-reported study time. Results. On average students spent 3.2 hours preparing for a section of material in the TBL format. The ratio of predicted reading time, based on reading speed and word count, and self-reported study time was greater than 1:3. Self-reported study time was positively correlated with word count, number of tables and figures, and overall page length. For predictors of self-reported study time, topic difficulty and number of figures were negative predictors whereas word count and number of self-assessments were positive predictors. Conclusion. Factors related to reading material are moderate predictors of self-reported student study time for an accountability assessment. A more significant finding is student self-reported study time is much greater than the time predicted by simple word count.
Li, Mei; Ma, Chao; Zhu, Qian-Cheng; Xu, Shu-Mao; Wei, Xiao; Wu, Yong-Min; Tang, Wei-Ping; Wang, Kai-Xue; Chen, Jie-Sheng
2017-04-11
Sodium-ion batteries have attracted considerable attention in recent years. In order to promote the practical application of sodium-ion batteries, the electrochemical performances, such as specific capacity, reversibility, and rate capability of the anode materials, should be further improved. In this work, a Fe 2 O 3 /C composite with a well-ordered mesoporous structure is prepared via a facile co-impregnation method by using mesoporous silica SBA-15 as a hard template. When used as an anode material for sodium-ion batteries, the well-ordered mesoporous structure ensures fast mass transport kinetics. The presence of nano-sized Fe 2 O 3 particles confined within the carbon walls significantly enhances the specific capacity of the composite. The carbon walls in the composite act not only as an active material contributing to the specific capacity, but also as a conductive matrix improving the cycling stability of Fe 2 O 3 nanoparticles. As a result, the well-ordered mesoporous Fe 2 O 3 /C composite exhibits high specific capacity, excellent cycleability, and high rate capability. It is proposed that this simple co-impregnation method is applicable for the preparation of well-ordered mesoporous transition oxide/carbon composite electrode materials for high performance sodium-ion and lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Lo, I.-Hsuan; Tzelepi, Athanasia; Patterson, Eann A.; Yeh, Tsung-Kuang
2018-04-01
Graphite is used in the cores of gas-cooled reactors as both the neutron moderator and a structural material, and traditional and novel graphite materials are being studied worldwide for applications in Generation IV reactors. In this study, the oxidation characteristics of petroleum-based IG-110 and pitch-based IG-430 graphite pellets in helium and air environments at temperatures ranging from 700 to 1600 °C were investigated. The oxidation rates and activation energies were determined based on mass loss measurements in a series of oxidation tests. The surface morphology was characterized by scanning electron microscopy. Although the thermal oxidation mechanism was previously considered to be the same for all temperatures higher than 1000 °C, the significant increases in oxidation rate observed at very high temperatures suggest that the oxidation behavior of the selected graphite materials at temperatures higher than 1200 °C is different. This work demonstrates that changes in surface morphology and in oxidation rate of the filler particles in the graphite materials are more prominent at temperatures above 1200 °C. Furthermore, possible intrinsic factors contributing to the oxidation of the two graphite materials at different temperature ranges are discussed taking account of the dominant role played by temperature.
LMSC PUBLISHED CONTRIBUTIONS, 1966 IMPRINTS: A CITATION BIBLIOGRAPHY,
PHYSICS, BIBLIOGRAPHIES), (*AERONAUTICS, BIBLIOGRAPHIES), (*ASTRONAUTICS, BIBLIOGRAPHIES), (* MATERIALS , BIBLIOGRAPHIES), (*ELECTRONICS...BIBLIOGRAPHIES), (*ENGINEERING, BIBLIOGRAPHIES), ASTROPHYSICS, NUCLEAR PHYSICS, MECHANICS, METALLURGY, CERAMIC MATERIALS , SOLID STATE PHYSICS, INFORMATION RETRIEVAL, PROPULSION SYSTEMS, BIONICS, REPORTS
Biomaterials for intervertebral disc regeneration and repair.
Bowles, Robert D; Setton, Lori A
2017-06-01
The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vennin, S; Desyatova, A; Turner, J A; Watson, P A; Lappe, J M; Recker, R R; Akhter, M P
2017-04-01
Osteoporotic (low-trauma) fractures are a significant public health problem. Over 50% of women over 50yrs. of age will suffer an osteoporotic fracture in their remaining lifetimes. While current therapies reduce skeletal fracture risk by maintaining or increasing bone density, additional information is needed that includes the intrinsic material strength properties of bone tissue to help develop better treatments, since measurements of bone density account for no more than ~50% of fracture risk. The hypothesis tested here is that postmenopausal women who have sustained osteoporotic fractures have reduced bone quality, as indicated with measures of intrinsic material properties compared to those who have not fractured. Transiliac biopsies (N=120) were collected from fracturing (N=60, Cases) and non-fracturing postmenopausal women (N=60, age- and BMD-matched Controls) to measure intrinsic material properties using the nano-indentation technique. Each biopsy specimen was embedded in epoxy resin and then ground, polished and used for the nano-indentation testing. After calibration, multiple indentations were made using quasi-static (hardness, modulus) and dynamic (storage and loss moduli) testing protocols. Multiple indentations allowed the median and variance to be computed for each type of measurement for each specimen. Cases were found to have significantly lower median values for cortical hardness and indentation modulus. In addition, cases showed significantly less within-specimen variability in cortical modulus, cortical hardness, cortical storage modulus and trabecular hardness, and more within-specimen variability in trabecular loss modulus. Multivariate modeling indicated the presence of significant independent mechanical effects of cortical loss modulus, along with variability of cortical storage modulus, cortical loss modulus, and trabecular hardness. These results suggest mechanical heterogeneity of bone tissue may contribute to fracture resistance. Although the magnitudes of differences in the intrinsic properties were not overwhelming, this is the first comprehensive study to investigate, and compare the intrinsic properties of bone tissue in fracturing and non-fracturing postmenopausal women. Copyright © 2017 Elsevier Inc. All rights reserved.
Southwood, Frenette; Van Dulm, Ondene
2015-02-10
South African speech-language therapists (SLTs) currently do not reflect the country's linguistic and cultural diversity. The question arises as to who might be better equipped currently to provide services to multilingual populations: SLTs with more clinical experience in such contexts, or recently trained SLTs who are themselves linguistically and culturally diverse and whose training programmes deliberately focused on multilingualism and multiculturalism? To investigate whether length of clinical experience influenced: number of bilingual children treated, languages spoken by these children, languages in which assessment and remediation can be offered, assessment instrument(s) favoured, and languages in which therapy material is required. From questionnaires completed by 243 Health Professions Council of South Africa (HPCSA)-registered SLTs who treat children with language problems, two groups were drawn:71 more experienced (ME) respondents (20+ years of experience) and 79 less experienced (LE) respondents (maximum 5 years of experience). The groups did not differ significantly with regard to (1) number of children(monolingual or bilingual) with language difficulties seen, (2) number of respondents seeing child clients who have Afrikaans or an African language as home language, (3) number of respondents who can offer intervention in Afrikaans or English and (4) number of respondents who reported needing therapy material in Afrikaans or English. However, significantly more ME than LE respondents reported seeing first language child speakers of English, whereas significantly more LE than ME respondents could provide services, and required therapy material, in African languages. More LE than ME SLTs could offer remediation in an African language, but there were few other significant differences between the two groups. There is still an absence of appropriate assessment and remediation material for Afrikaans and African languages, but the increased number of African language speakers entering the profession may contribute to better service delivery to the diverse South African population.
Southwood, Frenette; van Dulm, Ondene
2015-01-01
Background South African speech-language therapists (SLTs) currently do not reflect the country's linguistic and cultural diversity. The question arises as to who might be better equipped currently to provide services to multilingual populations: SLTs with more clinical experience in such contexts, or recently trained SLTs who are themselves linguistically and culturally diverse and whose training programmes deliberately focused on multilingualism and multiculturalism? Aims To investigate whether length of clinical experience influenced: number of bilingual children treated, languages spoken by these children, languages in which assessment and remediation can be offered, assessment instrument(s) favoured, and languages in which therapy material is required. Method From questionnaires completed by 243 Health Professions Council of South Africa (HPCSA)-registered SLTs who treat children with language problems, two groups were drawn: 71 more experienced (ME) respondents (20+ years of experience) and 79 less experienced (LE) respondents (maximum 5 years of experience). Results The groups did not differ significantly with regard to (1) number of children (monolingual or bilingual) with language difficulties seen, (2) number of respondents seeing child clients who have Afrikaans or an African language as home language, (3) number of respondents who can offer intervention in Afrikaans or English and (4) number of respondents who reported needing therapy material in Afrikaans or English. However, significantly more ME than LE respondents reported seeing first language child speakers of English, whereas significantly more LE than ME respondents could provide services, and required therapy material, in African languages. Conclusion More LE than ME SLTs could offer remediation in an African language, but there were few other significant differences between the two groups. There is still an absence of appropriate assessment and remediation material for Afrikaans and African languages, but the increased number of African language speakers entering the profession may contribute to better service delivery to the diverse South African population. PMID:26304212
Microbial contributions to the persistence of coral reefs.
Webster, Nicole S; Reusch, Thorsten B H
2017-10-01
On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.
Yan, Ge; Kim, Guebuem
2017-10-17
Brown carbon (BrC) plays a significant role in the Earth's radiative balance, yet its sources and chemical composition remain poorly understood. In this work, we investigated BrC in the atmospheric environment of Seoul by characterizing dissolved organic matter in precipitation using excitation-emission matrix (EEM) fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). The two independent fluorescent components identified by PARAFAC were attributed to humic-like substance (HULIS) and biologically derived material based on their significant correlations with measured HULIS isolated using solid-phase extraction and total hydrolyzable tyrosine. The year-long observation shows that HULIS contributes to 66 ± 13% of total fluorescence intensity of our samples on average. By using dual carbon ( 13 C and 14 C) isotopic analysis conducted on isolated HULIS, the HULIS fraction of BrC was found to be primarily derived from biomass burning and emission of terrestrial biogenic gases and particles (>70%), with minor contributions from fossil-fuel combustion. The knowledge derived from this study could contribute to the establishment of a characterizing system of BrC components identified by EEM spectroscopy. Our work demonstrates that, EEM fluorescence spectroscopy is a powerful tool in BrC study, on the basis of its chromophore resolving power, allowing investigation into individual components of BrC by other organic matter characterization techniques.
Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea
NASA Astrophysics Data System (ADS)
Huang, S.; Conte, M. H.
2009-01-01
Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.
20 CFR 404.315 - Who is entitled to disability benefits?
Code of Federal Regulations, 2013 CFR
2013-04-01
... against reentitlement to disability benefits if drug addiction or alcoholism is a contributing factor... drug addiction or alcoholism is a contributing factor material to the determination of disability and...
20 CFR 404.315 - Who is entitled to disability benefits?
Code of Federal Regulations, 2014 CFR
2014-04-01
... against reentitlement to disability benefits if drug addiction or alcoholism is a contributing factor... drug addiction or alcoholism is a contributing factor material to the determination of disability and...
20 CFR 404.315 - Who is entitled to disability benefits?
Code of Federal Regulations, 2012 CFR
2012-04-01
... against reentitlement to disability benefits if drug addiction or alcoholism is a contributing factor... drug addiction or alcoholism is a contributing factor material to the determination of disability and...
20 CFR 404.315 - Who is entitled to disability benefits?
Code of Federal Regulations, 2011 CFR
2011-04-01
... against reentitlement to disability benefits if drug addiction or alcoholism is a contributing factor... drug addiction or alcoholism is a contributing factor material to the determination of disability and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tammy J. Harrell; Troy D. Topping; Haiming Wen
2014-12-01
Additions of Sc to an Al-Mg matrix were investigated, paying particular attention to the influence of Al3Sc precipitates and other dispersoids, as well as grain size, on mechanical behavior. Prior studies have shown that Sc significantly increases the strength of coarse-grained Al-Mg alloys. Prompted by these findings, we hypothesized that it would be of fundamental and technological interest to study the behavior of Sc additions to an ultrafine-grained (UFG) microstructure (e.g., 100’s nm). Accordingly, we investigated the microstructural evolution and mechanical behavior of a cryomilled ultrafine grained Al-5Mg-0.4Sc (wt pct) and compared the results to those of an equivalent fine-grainedmore » material (FG) produced by powder metallurgy. Experimental materials were consolidated by hot isostatic pressing (HIP’ing) followed by extrusion or dual mode dynamic forging. Under identical processing conditions, UFG materials generate large Al3Sc precipitates with an average diameter of 154 nm and spaced approximately 1 to 3 µm apart, while precipitates in the FG materials have a diameter of 24 nm and are spaced 50 to 200 nm apart. The strengthening mechanisms are calculated for all materials and it is determined that the greatest strengthening contributions for the UFG and FG materials are Mg-O/N dispersion strengthening and precipitate strengthening, respectively.« less
Merrild, Hanna; Larsen, Anna W; Christensen, Thomas H
2012-05-01
Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.
In vitro chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction.
Jannasch, Maren; Weigel, Tobias; Engelhardt, Lisa; Wiezoreck, Judith; Gaetzner, Sabine; Walles, Heike; Schmitz, Tobias; Hansmann, Jan
2017-01-01
Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned in vitro test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages. Embedded in a biomimetic three-dimensional collagen hydrogel, chemotaxis of fibroblasts in the direction of macrophage-material-conditioned cell culture supernatant was analyzed by live cell imaging. A combination of statistical analysis with a complementary parameterized random walk model allowed quantitative and qualitative characterization of the cellular walk process. We thereby identified an increasing macrophage-mediated chemotactic potential ranking of biomaterials from glass over polytetrafluorethylene to titanium. To address long-term effects of bio-material-resident macrophages on fibroblasts in a three-dimensional microenvironment, we further studied tissue remodeling by applying macrophage-material-conditioned medium on fibrous in vitro tissue models. A high correlation of the in vitro tissue model to state of the art in vivo study data was found. Titanium exhibited a significantly lower tissue remodeling capacity compared to polytetrafluorethylene. With this approach, we identified a material dependency of both chemotaxis and tissue remodeling processes, strengthening knowledge on their specific contribution to the foreign body reaction.
Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity
Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J
2017-01-01
Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials. PMID:28584407
Leaching of Conductive Species: Implications to Measurements of Electrical Resistivity.
Spragg, R; Jones, S; Bu, Y; Lu, Y; Bentz, D; Snyder, K; Weiss, J
2017-05-01
Electrical tests have been used to characterize the microstructure of porous materials, the measured electrical response being determined by the contribution of the microstructure (porosity and tortuosity) and the electrical properties of the solution (conductivity of the pore solution) inside the pores of the material. This study has shown how differences in concentration between the pore solution (i.e., the solution in the pores) and the storage solution surrounding the test specimen leads to significant transport (leaching) of the conductive ionic species between the pore solution and the storage solution. Leaching influences the resistivity of the pore solution, thereby influencing electrical measurements on the bulk material from either a surface or uniaxial bulk resistance test. This paper has three main conclusions: 1.) Leaching of conductive species does occur with concentration gradients and that a diffusion based approach can be used to estimate the time scale associated with this change. 2.) Leaching of ions in the pore solution can influence resistivity measurements, and the ratio of surface to uniaxial resistivity can be used as a method to assess the presence of leaching and 3.) An estimation of the magnitude of leaching for standardized tests of cementitious materials.
A Pontential Agriculture Waste Material as Coagulant Aid: Cassava Peel
NASA Astrophysics Data System (ADS)
Othman, N.; Abd-Rahim, N.-S.; Tuan-Besar, S.-N.-F.; Mohd-Asharuddin, S.; Kumar, V.
2018-02-01
All A large amount of cassava peel waste is generated annually by small and medium scale industries. This has led to a new policy of complete utilization of raw materials so that there will be little or no residue left that could pose pollution problems. Conversion of these by-products into a material that poses an ability to remove toxic pollutant would increase the market value and ultimately benefits the producers. This study investigated the characteristics of cassava peel as a coagulant aid material and optimization process using the cassava peel was explored through coagulation and flocculation. This research had highlighted that the Cassava peels contain sugars in the form of polysaccharides such as starch and holocellulose. The FTIR results revealed that amino acids containing abundant of carboxyl, hydroxyl and amino groups which has significant capabilities in removing pollutants. Whereas analysis by XRF spectrometry indicated that the CP samples contain Fe2O3 and Al2O3 which might contribute to its coagulation ability. The optimum condition allowed Cassava peel and alum removed high turbidity up to 90. This natural coagulant from cassava peel is found to be an alternative coagulant aid to reduce the usage of chemical coagulants
Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga
NASA Technical Reports Server (NTRS)
Cobb, S. D.; Szofran, F. R.; Volz, M. P.
1999-01-01
Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.
Waste to energy--key element for sustainable waste management.
Brunner, Paul H; Rechberger, Helmut
2015-03-01
Human activities inevitably result in wastes. The higher the material turnover, and the more complex and divers the materials produced, the more challenging it is for waste management to reach the goals of "protection of men and environment" and "resource conservation". Waste incineration, introduced originally for volume reduction and hygienic reasons, went through a long and intense development. Together with prevention and recycling measures, waste to energy (WTE) facilities contribute significantly to reaching the goals of waste management. Sophisticated air pollution control (APC) devices ensure that emissions are environmentally safe. Incinerators are crucial and unique for the complete destruction of hazardous organic materials, to reduce risks due to pathogenic microorganisms and viruses, and for concentrating valuable as well as toxic metals in certain fractions. Bottom ash and APC residues have become new sources of secondary metals, hence incineration has become a materials recycling facility, too. WTE plants are supporting decisions about waste and environmental management: They can routinely and cost effectively supply information about chemical waste composition as well as about the ratio of biogenic to fossil carbon in MSW and off-gas. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu
2018-01-01
Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064
Brown, William D; Barry, Katherine L
2016-06-29
Models of the evolution of sexual cannibalism argue that males may offset the cost of cannibalism if components of the male body are directly allocated to the eggs that they fertilize. We tested this idea in the praying mantid Tenodera sinensis Males and females were fed differently radiolabelled crickets and allowed to mate. Half of the pairs progressed to sexual cannibalism and we prevented cannibalism in the other half. We assess the relative allocation of both male-derived somatic materials and ejaculate materials into the eggs and soma of the female. Our results show that male somatic investment contributes to production of offspring. The eggs and reproductive tissues of cannibalistic females contained significantly more male-derived amino acids than those of non-cannibalistic females, and there was an increase in the number of eggs produced subsequent to sexual cannibalism. Sexual cannibalism thus increases male material investment in offspring. We also show that males provide substantial investment via the ejaculate, with males passing about 25% of their radiolabelled amino acids to females via the ejaculate even in the absence of cannibalism. © 2016 The Author(s).
Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu
2018-01-01
Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.
Analysis of Specular Reflections Off Geostationary Satellites
NASA Astrophysics Data System (ADS)
Jolley, A.
2016-09-01
Many photometric studies of artificial satellites have attempted to define procedures that minimise the size of datasets required to infer information about satellites. However, it is unclear whether deliberately limiting the size of datasets significantly reduces the potential for information to be derived from them. In 2013 an experiment was conducted using a 14 inch Celestron CG-14 telescope to gain multiple night-long, high temporal resolution datasets of six geostationary satellites [1]. This experiment produced evidence of complex variations in the spectral energy distribution (SED) of reflections off satellite surface materials, particularly during specular reflections. Importantly, specific features relating to the SED variations could only be detected with high temporal resolution data. An update is provided regarding the nature of SED and colour variations during specular reflections, including how some of the variables involved contribute to these variations. Results show that care must be taken when comparing observed spectra to a spectral library for the purpose of material identification; a spectral library that uses wavelength as the only variable will be unable to capture changes that occur to a material's reflected spectra with changing illumination and observation geometry. Conversely, colour variations with changing illumination and observation geometry might provide an alternative means of determining material types.
Use of loading-unloading compression curves in medical device design
NASA Astrophysics Data System (ADS)
Ciornei, M. C.; Alaci, S.; Ciornei, F. C.; Romanu, I. C.
2017-08-01
The paper presents a method and experimental results regarding mechanical testing of soft materials. In order to characterize the mechanical behaviour of technological materials used in prosthesis, a large number of material constants are required, as well as the comparison to the original. The present paper proposes as methodology the comparison between compression loading-unloading curves corresponding to a soft biological tissue and to a synthetic material. To this purpose, a device was designed based on the principle of the dynamic harness test. A moving load is considered and the force upon the indenter is controlled for loading-unloading phases. The load and specimen deformation are simultaneously recorded. A significant contribution of this paper is the interpolation of experimental data by power law functions, a difficult task because of the instability of the system of equations to be optimized. Finding the interpolation function was simplified, from solving a system of transcendental equations to solving a unique equation. The characteristic parameters of the experimentally curves must be compared to the ones corresponding to actual tissue. The tests were performed for two cases: first, using a spherical punch, and second, for a flat-ended cylindrical punch.
NASA Technical Reports Server (NTRS)
2004-01-01
This mosaic image from the microscopic imager on the Mars Exploration Rover Opportunity shows the rock abrasion tool target, 'London.' The image was taken by the Mars Exploration Rover Opportunity on its 149th sol on Mars (June 24, 2004). Scientists 'read' the geology of the image from bottom to top, with the youngest material pictured at the bottom of the image and the oldest material in the layers pictured at the top. Millimeter-scale layers run horizontally across the exposed surface, with two sliced sphere-like objects, or 'blueberries' on the upper left and upper right sides of the impression. This material is similar to the evaporative material found in 'Eagle Crater.' However, the intense review of these layers in Endurance Crater is, in essence, deepening the water story authored by ancient Mars. In Eagle Crater, the effects of water were traced down a matter of centimeters. Endurance Crater's depth has allowed the tracing of water's telltale marks up to meters. Another process that significantly affects martian terrain is muddying the water story a bit. Although it is clear that the layers in Endurance were affected by water, it is also evident that Aeolian, or wind, processes have contributed to the makeup of the crater.Wang, Lin-Yan; Tang, Yu-Ping; Liu, Xin; Ge, Ya-Hui; Li, Shu-Jiao; Shang, Er-Xin; Duan, Jin-Ao
2014-04-01
To establish a method for studying efficacious materials of traditional Chinese medicines from an overall perspective. Carthamus tinctorius was taken the example. Its major components were depleted by preparing liquid chromatography. Afterwards, the samples with major components depleted were evaluated for their antioxidant effect, so as to compare and analyze the major efficacious materials of C. tinctorius with antioxidant activity and the contributions. Seven major components were depleted from C. tinctorius samples, and six of them were identified with MS data and control comparison. After all of the samples including depleted materials are compared and evaluated for their antioxidant effect, the findings showed that hydroxysafflor yellow A, anhydrosafflor yellow B and 6-hydroxykaempferol-3, 6-di-O-glucoside-7-O-glucuronide were the major efficacious materials. This study explored a novel and effective method for studying efficacious materials of traditional Chinese medicines. Through this method, we could explain the direct and indirect contributions of different components to the efficacy of traditional Chinese medicines, and make the efficacious material expression of traditional Chinese medicines clearer.
Conservation of strategic metals
NASA Technical Reports Server (NTRS)
Stephens, J. R.
1982-01-01
A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.
NASA Astrophysics Data System (ADS)
Zhan, Qi; Wang, Xin; Mu, Baozhong; Xu, Jie; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan
2016-10-01
Dangerous materials inspection is an important technique to confirm dangerous materials crimes. It has significant impact on the prohibition of dangerous materials-related crimes and the spread of dangerous materials. Lobster-Eye Optical Imaging System is a kind of dangerous materials detection device which mainly takes advantage of backscatter X-ray. The strength of the system is its applicability to access only one side of an object, and to detect dangerous materials without disturbing the surroundings of the target material. The device uses Compton scattered x-rays to create computerized outlines of suspected objects during security detection process. Due to the grid structure of the bionic object glass, which imitate the eye of a lobster, grids contribute to the main image noise during the imaging process. At the same time, when used to inspect structured or dense materials, the image is plagued by superposition artifacts and limited by attenuation and noise. With the goal of achieving high quality images which could be used for dangerous materials detection and further analysis, we developed effective image process methods applied to the system. The first aspect of the image process is the denoising and enhancing edge contrast process, during the process, we apply deconvolution algorithm to remove the grids and other noises. After image processing, we achieve high signal-to-noise ratio image. The second part is to reconstruct image from low dose X-ray exposure condition. We developed a kind of interpolation method to achieve the goal. The last aspect is the region of interest (ROI) extraction process, which could be used to help identifying dangerous materials mixed with complex backgrounds. The methods demonstrated in the paper have the potential to improve the sensitivity and quality of x-ray backscatter system imaging.
Topology Optimization - Engineering Contribution to Architectural Design
NASA Astrophysics Data System (ADS)
Tajs-Zielińska, Katarzyna; Bochenek, Bogdan
2017-10-01
The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.
Lewis materials research and technology: An overview
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1987-01-01
The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. An overview of the division staff, facilities, past history, recent progress, and future interests is presented.
NASA. Lewis Research Center materials research and technology: An overview
NASA Technical Reports Server (NTRS)
Grisaffe, Salvatore J.
1990-01-01
The Materials Division at the Lewis Research Center has a long record of contributions to both materials and process technology as well as to the understanding of key high-temperature phenomena. This paper overviews the division staff, facilities, past history, recent progress, and future interests.
Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack
1999-01-01
The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.
Raieli, Vincenzo; Correnti, E; Sandullo, A; Romano, M; Marchese, F; Loiacono, C; Brighina, Filippo
It is crucial that all headache specialists receive adequate training. Considering the unsatisfactory results obtained with standard updating courses and the growing need for continuing professional education, a digital platform was developed as a training tool. The platform has been active since 1 October 2014. It is readily accessible to doctors by free registration. Users have access to all the material available on the platform, which includes scientific articles, e-books, presentations and images. Users can share their own material and clinical cases directly. At the time of this study, the platform had 37 users. In the second year following its launch 316 files were downloaded and five discussions were started. These saw 22 contributions. Fifteen of the 37 members did not perform any action on the platform. In total, 74 files were uploaded in the second year of activity, but 90% of the contributions came from a very small group of users. There were no significant differences in use of the platform between members of the Italian Society for the Study of Headache and other specialists. Even though the platform appears to be an easily accessible, interactive and inexpensive instrument, the higher number of downloads than uploads suggests that it is used passively.
Yang, Y.; Van Metre, P.C.; Mahler, B.J.; Wilson, J.T.; Ligouis, B.; Razzaque, M.; Schaeffer, D.J.; Werth, C.J.
2010-01-01
Carbonaceous material (CM) particles are the principal vectors transporting polycyclic aromatic hydrocarbons (PAHs) into urban waters via runoff; however, characteristics of CM particles in urban watersheds and their relative contributions to PAH contamination remain unclear. Our objectives were to identify the sources and distribution of CM particles in an urban watershed and to determine the types of CMs that were the dominant sources of PAHs in the lake and stream sediments. Samples of soils, parking lot and street dust, and streambed and lake sediment were collected from the Lake Como watershed in Fort Worth, Texas. Characteristics of CM particles determined by organic petrography and a significant correlation between PAH concentrations and organic carbon in coal tar, asphalt, and soot indicate that these three CM particle types are the major sources and carriers of PAHs in the watershed. Estimates of the distribution of PAHs in CM particles indicate that coal-tar pitch, usedinsomepavementsealcoats, isadominant source of PAHs in the watershed, and contributes as much as 99% of the PAHs in sealed parking lot dust, 92% in unsealed parking lot dust, 88% in commercial area soil, 71% in streambed sediment, and 84% in surficial lake sediment. ?? 2010 American Chemical Society.
Composite Cryotank Technologies and Demonstration
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.
Fate of Ice Grains in Saturn's Ionosphere
NASA Astrophysics Data System (ADS)
Hamil, O.; Cravens, T. E.; Reedy, N. L.; Sakai, S.
2018-02-01
It has been proposed that the rings of Saturn can contribute both material (i.e., water) and energy to its upper atmosphere and ionosphere. Ionospheric models require the presence of molecular species such as water that can chemically remove ionospheric protons, which otherwise are associated with electron densities that greatly exceed those from observation. These models adopt topside fluxes of water molecules. Other models have shown that ice grains from Saturn's rings can impact the atmosphere, but the effects of these grains have not been previously studied. In the current paper, we model how ice grains deposit both material and energy in Saturn's upper atmosphere as a function of grain size, initial velocity (at the "top" of the atmosphere, defined at an altitude above the cloud tops of 3,000 km), and incident angle. Typical grain speeds are expected to be roughly 15-25 km/s. Grains with radii on the order of 1-10 nm deposit most of their energy in the altitude range of 1,700-1,900 km, and can vaporize, depending on initial velocity and impact angle, contributing water mass to the upper atmosphere. We show that grains in this radius range do not significantly vaporize in our model at initial velocities lower than about 20 km/s.
Doulgeraki, Agapi I; Di Ciccio, Pierluigi; Ianieri, Adriana; Nychas, George-John E
2017-01-01
There is increasing concern about the public health impact of methicillin-resistant Staphylococcus aureus. Food and animal are vectors of transmission, but the contribution of a contaminated environment is not well characterized. With regard to this, staphylococcal biofilms serve as a virulence factor, allowing MRSA strains to adhere to surfaces and other materials used in the food industry. Methicillin resistance and biofilm-forming capacity may contribute to the success of S. aureus as a human pathogen in both health care and community settings and the food production chain. This review summarizes current knowledge about the significance of food- and animal-derived MRSA strains and provides data on attachment and biofilm formation of MRSA. In addition, the impact of quorum sensing on MRSA gene expression and biofilm formation is examined. Copyright © 2016. Published by Elsevier Masson SAS.
Albert, Ryan J; McLaughlin, Christine; Falatko, Debra
2014-10-15
Fish hold effluent and the effluent produced from the cleaning of fish holds may contain organic material resulting from the degradation of seafood and cleaning products (e.g., soaps and detergents). This effluent is often discharged by vessels into near shore waters and, therefore, could have the potential to contribute to water pollution in bays and estuaries. We characterized effluent from commercial fishing vessels with holds containing refrigerated seawater, ice slurry, or chipped ice. Concentrations of trace heavy metals, wet chemistry parameters, and nutrients in effluent were compared to screening benchmarks to determine if there is a reasonable potential for effluent discharge to contribute to nonattainment of water quality standards. Most analytes (67%) exceeded their benchmark concentration and, therefore, may have the potential to pose risk to human health or the environment if discharges are in significant quantities or there are many vessels discharging in the same areas. Published by Elsevier Ltd.
Nanoscale electron transport at the surface of a topological insulator.
Bauer, Sebastian; Bobisch, Christian A
2016-04-21
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Nanoscale electron transport at the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Bauer, Sebastian; Bobisch, Christian A.
2016-04-01
The use of three-dimensional topological insulators for disruptive technologies critically depends on the dissipationless transport of electrons at the surface, because of the suppression of backscattering at defects. However, in real devices, defects are unavoidable and scattering at angles other than 180° is allowed for such materials. Until now, this has been studied indirectly by bulk measurements and by the analysis of the local density of states in close vicinity to defect sites. Here, we directly measure the nanoscale voltage drop caused by the scattering at step edges, which occurs if a lateral current flows along a three-dimensional topological insulator. The experiments were performed using scanning tunnelling potentiometry for thin Bi2Se3 films. So far, the observed voltage drops are small because of large contributions of the bulk to the electronic transport. However, for the use of ideal topological insulating thin films in devices, these contributions would play a significant role.
Muon radiolysis affected by density inhomogeneity in near-critical fluids.
Cormier, P J; Alcorn, C; Legate, G; Ghandi, K
2014-04-01
In this article we show the significant tunability of radiation chemistry in supercritical ethane and to a lesser extent in near critical CO2. The information was obtained by studies of muonium (Mu = μ(+)e(-)), which is formed by the thermalization of positive muons in different materials. The studies of the proportions of three fractions of muon polarization, PMu, diamagnetic PD and lost fraction, PL provided the information on radiolysis processes involved in muon thermalization. Our studies include three different supercritical fluids, water, ethane and carbon dioxide. A combination of mobile electrons and other radiolysis products such as (•)C2H5 contribute to interesting behavior at densities ∼40% above the critical point in ethane. In carbon dioxide, an increase in electron mobility contributes to the lost fraction. The hydrated electron in water is responsible for the lost fraction and decreases the muonium fraction.
Summertime conditions of a muddy estuarine environment: the EsCoSed project contribution.
Brocchini, Maurizio; Calantoni, Joseph; Reed, Allen H; Postacchini, Matteo; Lorenzoni, Carlo; Russo, Aniello; Mancinelli, Alessandro; Corvaro, Sara; Moriconi, Giacomo; Soldini, Luciano
2015-01-01
As part of the Estuarine Cohesive Sediments (EsCoSed) project, a field experiment was performed in a highly engineered environment, acting as a natural laboratory, to study the physico-chemical properties of estuarine sediments and the associated hydro-morphodynamics during different seasons. The present contribution focuses on the results obtained from the summertime monitoring of the most downstream part of the Misa River (Senigallia, Italy). The measured hydrodynamics suggested a strong interaction between river current, wave forcing and tidal motion; flow velocities, affected by wind waves traveling upstream, changed significantly along the water column in both direction and magnitude. Surficial salinities in the estuary were low in the upper reaches of the estuary and exceeded 10 psu before the river mouth. Montmorillonite dominated the clay mineral assemblage, suggesting that large, low density flocs with high settling velocities (>1 mm s(-1)) may dominate the suspended aggregate materials.
All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duranceau, C. M.; Spangenberger, J. S.; Vehicle Recycling Partnership, LLC)
A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways tomore » reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.« less
Factors contributing to the temperature beneath plaster or fiberglass cast material
Hutchinson, Michael J; Hutchinson, Mark R
2008-01-01
Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851
Complex band structure and electronic transmission eigenchannels
NASA Astrophysics Data System (ADS)
Jensen, Anders; Strange, Mikkel; Smidstrup, Søren; Stokbro, Kurt; Solomon, Gemma C.; Reuter, Matthew G.
2017-12-01
It is natural to characterize materials in transport junctions by their conductance length dependence, β. Theoretical estimations of β are made employing two primary theories: complex band structure and density functional theory (DFT) Landauer transport. It has previously been shown that the β value derived from total Landauer transmission can be related to the β value from the smallest |ki| complex band; however, it is an open question whether there is a deeper relationship between the two. Here we probe the details of the relationship between transmission and complex band structure, in this case individual eigenchannel transmissions and different complex bands. We present calculations of decay constants for the two most conductive states as determined by complex band structure and standard DFT Landauer transport calculations for one semi-conductor and two molecular junctions. The molecular junctions show that both the length dependence of the total transmission and the individual transmission eigenvalues can be, almost always, found through the complex band structure. The complex band structure of the semi-conducting material, however, does not predict the length dependence of the total transmission but only of the individual channels, at some k-points, due to multiple channels contributing to transmission. We also observe instances of vertical bands, some of which are the smallest |ki| complex bands, that do not contribute to transport. By understanding the deeper relationship between complex bands and individual transmission eigenchannels, we can make a general statement about when the previously accepted wisdom linking transmission and complex band structure will fail, namely, when multiple channels contribute significantly to the transmission.
Comparing the Quality of Crowdsourced Data Contributed by Expert and Non-Experts
See, Linda; Comber, Alexis; Salk, Carl; Fritz, Steffen; van der Velde, Marijn; Perger, Christoph; Schill, Christian; McCallum, Ian; Kraxner, Florian; Obersteiner, Michael
2013-01-01
There is currently a lack of in-situ environmental data for the calibration and validation of remotely sensed products and for the development and verification of models. Crowdsourcing is increasingly being seen as one potentially powerful way of increasing the supply of in-situ data but there are a number of concerns over the subsequent use of the data, in particular over data quality. This paper examined crowdsourced data from the Geo-Wiki crowdsourcing tool for land cover validation to determine whether there were significant differences in quality between the answers provided by experts and non-experts in the domain of remote sensing and therefore the extent to which crowdsourced data describing human impact and land cover can be used in further scientific research. The results showed that there was little difference between experts and non-experts in identifying human impact although results varied by land cover while experts were better than non-experts in identifying the land cover type. This suggests the need to create training materials with more examples in those areas where difficulties in identification were encountered, and to offer some method for contributors to reflect on the information they contribute, perhaps by feeding back the evaluations of their contributed data or by making additional training materials available. Accuracies were also found to be higher when the volunteers were more consistent in their responses at a given location and when they indicated higher confidence, which suggests that these additional pieces of information could be used in the development of robust measures of quality in the future. PMID:23936126
Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma
2016-11-15
Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH₂O EC-10, ECH₂O EC-20, ECH₂O EC-5, and ECH₂O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH₂O EC-5 and ECH₂O TE, which also performed surprisingly well in saline conditions.
Matula, Svatopluk; Báťková, Kamila; Legese, Wossenu Lemma
2016-01-01
Non-destructive soil water content determination is a fundamental component for many agricultural and environmental applications. The accuracy and costs of the sensors define the measurement scheme and the ability to fit the natural heterogeneous conditions. The aim of this study was to evaluate five commercially available and relatively cheap sensors usually grouped with impedance and FDR sensors. ThetaProbe ML2x (impedance) and ECH2O EC-10, ECH2O EC-20, ECH2O EC-5, and ECH2O TE (all FDR) were tested on silica sand and loess of defined characteristics under controlled laboratory conditions. The calibrations were carried out in nine consecutive soil water contents from dry to saturated conditions (pure water and saline water). The gravimetric method was used as a reference method for the statistical evaluation (ANOVA with significance level 0.05). Generally, the results showed that our own calibrations led to more accurate soil moisture estimates. Variance component analysis arranged the factors contributing to the total variation as follows: calibration (contributed 42%), sensor type (contributed 29%), material (contributed 18%), and dry bulk density (contributed 11%). All the tested sensors performed very well within the whole range of water content, especially the sensors ECH2O EC-5 and ECH2O TE, which also performed surprisingly well in saline conditions. PMID:27854263
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates
Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency. PMID:27936135
Identifying Major Transitions in the Evolution of Lithic Cutting Edge Production Rates.
Muller, Antoine; Clarkson, Chris
2016-01-01
The notion that the evolution of core reduction strategies involved increasing efficiency in cutting edge production is prevalent in narratives of hominin technological evolution. Yet a number of studies comparing two different knapping technologies have found no significant differences in edge production. Using digital analysis methods we present an investigation of raw material efficiency in eight core technologies broadly representative of the long-term evolution of lithic technology. These are bipolar, multiplatform, discoidal, biface, Levallois, prismatic blade, punch blade and pressure blade production. Raw material efficiency is assessed by the ratio of cutting edge length to original core mass. We also examine which flake attributes contribute to maximising raw material efficiency, as well as compare the difference between expert and intermediate knappers in terms of cutting edge produced per gram of core. We identify a gradual increase in raw material efficiency over the broad sweep of lithic technological evolution. The results indicate that the most significant transition in efficiency likely took place with the introduction of small foliate biface, Levallois and prismatic blade knapping, all introduced in the Middle Stone Age / Middle Palaeolithic among early Homo sapiens and Neanderthals. This suggests that no difference in raw material efficiency existed between these species. With prismatic blade technology securely dated to the Middle Palaeolithic, by including the more recent punch and pressure blade technology our results dispel the notion that the transition to the Upper Palaeolithic was accompanied by an increase in efficiency. However, further increases in cutting edge efficiency are evident, with pressure blades possessing the highest efficiency in this study, indicating that late/epi-Palaeolithic and Neolithic blade technologies further increased efficiency.
Effect of environmental and material factors on the response of nanocomposite foam impact sensors
NASA Astrophysics Data System (ADS)
Bird, Evan; Merrell, Jake; Rosquist, Parker; Martineau, Adin; Bowden, Anton; Seeley, Matthew; Fullwood, David
2018-05-01
Nanocomposite foam (NCF) is a multifunctional material that can be used to measure impact. Interactions between the flexible polymer matrix and conductive particles dispersed throughout it produce a voltage signal under dynamic strain, which correlates to the magnitude of impact. Though promising in applications requiring both impact sensing and energy absorption, NCF’s voltage response has been observed to suffer from significant signal drift. This paper investigates several causes of variance in the response of NCF sensors to consistent impacts. These effects can be classified into three general types: recoverable transient effects (such as those relating to viscoelasticity or capacitive charging), environmental drift (due to humidity and temperature), and permanent signal decay from material degradation. The motivation for the study arises from various potential repeat-impact applications where periodic recalibration of the sensor would be difficult (such as a gait-tracking insole in use for a marathon event). A cyclic drop testing machine was used to apply consistent impacts to NCF, and drift resulting from each factor (in ranges typical of an insole environment) was experimentally isolated. Models representing each factor’s contribution to signal drift are presented. Of the factors investigated, humidity and temperature caused the most significant drift, with permanent material degradation accounting for only minor decay in voltage response. Transient effects were also observed, with a characteristic ‘warm-up’ (or ‘charging’) time required for the NCF to achieve steady-state; this phenomenon, and the related ‘recovery’ time for the material to return to its original state, were determined. The resultant data can be leveraged to implement a correction algorithm or other drift-compensating method to retain an NCF sensor’s accuracy in both long and short data collection scenarios.
Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.
Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J
2016-09-20
Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in situ and ex situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. Full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales.
The Contribution of VET Student Placement to Innovation in Host Organisations--Support Document
ERIC Educational Resources Information Center
Hodge, Steven; Smith, Raymond; Field, Jenny; Flynn, Matthew
2017-01-01
This document gathers material used in the research project entitled: "The Contribution of VET Student Placement to Innovation in Host Organisations" that was not presented in the main report. The project sought to explore the question, "What is the contribution of the VET student placement process to innovation in host…
Interactions of DNA coated upconversion nanoparticles with 2D materials
NASA Astrophysics Data System (ADS)
Giust, Davide; Lucío, María. Isabel; Muskens, Otto L.; Kanaras, Antonios G.
2018-02-01
In this work we investigated the nature of quenching between different types of 2D materials (WS2, MoS2 and graphene oxide) and oligonucleotide coated-upconversion nanoparticles. This study contributes towards the efficient design of biosensors based on 2D materials and DNA-coated upconversion nanoparticles.
We can quantify source areas contributing material to a location during various time periods as resource sheds. Various kinds of resource sheds and their source material distributions are defined. For watershed hydrology, we compute resource sheds and their source material distri...
1995-08-01
national center of excellence in structural materials research, as applied to Army systems . Its contributions to materials science and technology are...1970s. Watertown played a major role in applying S-2 glass, Kevlar and Spectra to Army systems . The desirable properties in a fiber for armor...of the latest technology which can be applied to Army systems , but also to guide the R&D and to stir the competitive juices of industry. More recent
Wang, Li Feng; He, Run Lian; Yang, Lin; Chen, Ya Mei; Liu, Yang; Zhang, Jian
2016-11-18
Soil fauna is an important biological factor in regulation litter decomposition. In order to quantify the contributions of soil fauna to the mass losses of litter of two dominant species fir (Abies faxoniana) and rhododendron (Rhododendron lapponicum) in the alpine timberline ecotone (coniferous forest-timberline-alpine meadow) of western Sichuan, China, a field litterbag experiment was conducted from May 2013 to November 2014. Samples of air-dried leaf litter were placed in nylon litterbags of two different mesh sizes, i.e. 3.00 mm (with the soil animals) and 0.04 mm (excluded the soil animals). The results showed that the decomposition rate of A. faxoniana (k: 0.209-0.243) was higher than that of R. lapponicum (k: 0.173-0.189) across the timberline ecotone. Soil fauna had significant contributions to litter decomposition of two species, the contributions of soil fauna to mass loss showed a decreasing trend with increasing altitude. From the coniferous forest to the alpine meadow, the mass losses caused by soil fauna for the fir litter accounted for 15.2%, 13.2% and 9.8%, respectively and that for the rhododendron litter accounted for 20.1%, 17.5% and 12.4%, respectively. Meanwhile, the daily average contributions caused by soil fauna for the fir and rhododendron litter decomposition accounted for 0.17%, 0.13%, 0.12% and 0.26%, 0.25%, 0.23%, respectively. Relatively, soil fauna had more influence on alpine rhododendron decomposition. Two-way ANOVA showed that species, altitude and their interaction had significant impact on the litter mass loss and decomposition rate caused by soil fauna. The daily average contribution caused by soil fauna for the fir and rhododendron litter decomposition accounted for 0.25% and 0.44% in the first growing season, then 0.10% and 0.19% in the second growing season, both were higher than that of snow-covered season (0.07% and 0.12%). Regression analysis showed that the environmental factors (daily average temperature, freezing and thawing cycles and snow thickness) explained 42.7% and 50.9% in the mass loss as well as 43.2% and 55.6% in the contribution rate of fir and rhododendron litter decomposition. These results suggest that soil fauna contributes strongly to litter decomposition in the alpine ecosystem, and it is of great significance to thorough understanding and recognizing material cycle through the role of soil fauna in the litter decomposition.
Molecular Design, Structures, and Activity of Antimicrobial Peptide-Mimetic Polymers
Takahashi, Haruko; Palermo, Edmund F.; Yasuhara, Kazuma; Caputo, Gregory A.
2014-01-01
There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications. PMID:23832766
Surface oxygen micropatterns on glow discharge polymer targets by photo irradiation
Reynolds, Hannah; Baxamusa, Salmaan; Haan, Steven W.; ...
2016-02-24
Recent simulations predict surface oxygen may be a significant source of disruptive perturbations in the implosion process of glow-discharge polymers (GDP) ablators at the National Ignition Facility. GDP material held in ambient atmospheric conditions showed an increase in mass when stored in light transparent containers, which suggests that photo exposure is a driving force for oxygen absorption. To investigate if surface oxygen is a contributing factor of disruptive perturbations during implosion, we developed a method to imprint a periodic micropattern of oxygen on the surface of GDP and used it to fabricate a flat sample for empirical testing.
The role of light microscopy in aerospace analytical laboratories
NASA Technical Reports Server (NTRS)
Crutcher, E. R.
1977-01-01
Light microscopy has greatly reduced analytical flow time and added new dimensions to laboratory capability. Aerospace analytical laboratories are often confronted with problems involving contamination, wear, or material inhomogeneity. The detection of potential problems and the solution of those that develop necessitate the most sensitive and selective applications of sophisticated analytical techniques and instrumentation. This inevitably involves light microscopy. The microscope can characterize and often identify the cause of a problem in 5-15 minutes with confirmatory tests generally less than one hour. Light microscopy has and will make a very significant contribution to the analytical capabilities of aerospace laboratories.
Acute and chronic alveolitis/osteomyelitis ("lumpy jaw") in small exotic ruminants.
Wiggs, R B; Lobprise, H B
1994-10-01
Tooth-related abscesses in small captive ruminants are most likely foreign body-induced periodontic-endodontic lesions. The instigating cause may be abnormal texture of dietary material. Bacteria, though probably not the initiating cause, significantly contribute to pathology and morbidity. Extraction of severely affected teeth is an effective although sometimes challenging mode of treatment. Periodically complications may arise, which vary in difficulty of treatment. Prevention may be the alteration of the major forage component of the diet to textures that are less coarse and stemmy, and the alleviation of any crowding and sanitation problems.
Attosecond electron pulses for 4D diffraction and microscopy
Baum, Peter; Zewail, Ahmed H.
2007-01-01
In this contribution, we consider the advancement of ultrafast electron diffraction and microscopy to cover the attosecond time domain. The concept is centered on the compression of femtosecond electron packets to trains of 15-attosecond pulses by the use of the ponderomotive force in synthesized gratings of optical fields. Such attosecond electron pulses are significantly shorter than those achievable with extreme UV light sources near 25 nm (≈50 eV) and have the potential for applications in the visualization of ultrafast electron dynamics, especially of atomic structures, clusters of atoms, and some materials. PMID:18000040
20 CFR 404.350 - Who is entitled to child's benefits?
Code of Federal Regulations, 2014 CFR
2014-04-01
..., and your disability was based on a finding that drug addiction or alcoholism was a contributing factor... months, drug addiction or alcoholism is a contributing factor material to the later determination of...
20 CFR 404.350 - Who is entitled to child's benefits?
Code of Federal Regulations, 2012 CFR
2012-04-01
..., and your disability was based on a finding that drug addiction or alcoholism was a contributing factor... months, drug addiction or alcoholism is a contributing factor material to the later determination of...
20 CFR 404.350 - Who is entitled to child's benefits?
Code of Federal Regulations, 2011 CFR
2011-04-01
..., and your disability was based on a finding that drug addiction or alcoholism was a contributing factor... months, drug addiction or alcoholism is a contributing factor material to the later determination of...
20 CFR 404.350 - Who is entitled to child's benefits?
Code of Federal Regulations, 2013 CFR
2013-04-01
..., and your disability was based on a finding that drug addiction or alcoholism was a contributing factor... months, drug addiction or alcoholism is a contributing factor material to the later determination of...
The structure of steady shock waves in porous metals
NASA Astrophysics Data System (ADS)
Czarnota, Christophe; Molinari, Alain; Mercier, Sébastien
2017-10-01
The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.
Bed failure induced by internal solitary waves
NASA Astrophysics Data System (ADS)
Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.
2017-07-01
The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.
Welch, Kevin D; Green, Benedict T; Gardner, Dale R; Cook, Daniel; Pfister, James A; Stegelmeier, Bryan L; Panter, Kip E; Davis, T Zane
2010-04-01
To determine the contribution of 7,8-methylenedioxylycoctonine (MDL)-type alkaloids to the toxic effects of tall larkspur (Delphinium spp) consumption in cattle. Sixteen 2-year-old Angus steers. Plant material from 3 populations of tall larkspur that contained different concentration ratios of MDL-type-to-N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-type alkaloids was collected, dried, and finely ground. For each plant population, a dose of ground plant material that would elicit similar clinical signs of toxicosis in cattle after oral administration was determined on the basis of the plants' MSAL-type alkaloid concentration. Cattle were treated via oral gavage with single doses of ground plant material from each of the 3 populations of tall larkspur; each animal underwent 1 to 3 single-dose treatments (> or = 21-day interval between treatments). Heart rate was recorded immediately before (baseline) and 24 hours after each larkspur treatment. Tall larkspur populations with a lower MDL-type-to-MSAL-type alkaloid concentration ratio required a greater amount of MSAL-type alkaloids to cause the expected clinical signs of toxicosis (including increased heart rate) in cattle. Results indicated that the typically less toxic MDL-type alkaloids contributed in a significant manner to the toxic effects of tall larkspur in steers. Consequently, both the concentration of MSAL-type alkaloids and the total concentration of MSAL- and MDL-type alkaloids should be determined when assessing the relative toxicity of tall larkspur populations. These results provide valuable information to determine the risk of toxicosis in cattle grazing on tall larkspur-infested rangelands.