Science.gov

Sample records for material decontamination methods

  1. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  2. Non-destructive decontamination of building materials

    NASA Astrophysics Data System (ADS)

    Holecek, Josef; Otahal, Petr

    2015-11-01

    For nondestructive radiation decontamination of surfaces it is necessary to use varnishes, such as ARGONNE, DG1101, DG1108, etc. This text evaluates the use of manufactured strippable coatings for radiation decontamination. To evaluate decontamination capability of such coatings the following varnishes were selected and subsequently used: AZ 1-700 and AXAL 1807S. The varnishes were tested on different building materials surfaces contaminated by short-term radioisotopes of Na-24 or La-140, in water soluble or water insoluble forms. Decontamination quality was assessed by the decontamination efficiency value, defined as the proportion of removed activity to the applied activity. It was found that decontamination efficiency of both used varnishes depends not only on the form of contaminant, but in the case of application of AXAL 1807S varnish it also depends on the method of its application on the contaminated surface. The values of the decontamination efficiency for AZ1-700 varnish range from 46% for decontamination of a soluble form of the radioisotope from concrete surface to 98% for the decontamination of a soluble form of the radioisotope from ceramic tile surface. The decontamination efficiency values determined for AXAL 1807S varnish range from 48% for decontamination of a soluble form of the radioisotope from concrete surface to 96% for decontamination of an insoluble form of the radioisotope from ceramic tile surface. Comparing these values to the values given for the decontaminating varnishes we can conclude that AXAL 1807S varnish is possible to use on all materials, except highly porous materials, such as plasterboard or breeze blocks, or plastic materials. AZ 1-700 varnish can be used for all dry materials except plasterboard.

  3. Method for electrochemical decontamination of radioactive metal

    SciTech Connect

    Ekechukwu, Amy A.

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  4. RUTHENIUM DECONTAMINATION METHOD

    DOEpatents

    Gresky, A.T.

    1960-07-19

    A liquid-liquid extraction method of separating uranium from fission products is given. A small amount of a low molecular weight ketone is added to an acidic aqueous solution containing neutron-irradiated uranium and its associated fission products. The resulting solution is digested and then contacted with an organic liquid that extracts uranium values. The purpose of the step of digesting the aqueous solution in the presence of the ketone is to suppress the extractability of ruthenium.

  5. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    SciTech Connect

    STERN, E.A.; LODGE, J.; JONES, K.W.; CLESCERI, N.L.; FENG, H.; DOUGLAS, W.S.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including the use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.

  6. Evaluation of five decontamination methods for filtering facepiece respirators.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Eimer, Benjamin C; Shaffer, Ronald E

    2009-11-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  7. Evaluation of Five Decontamination Methods for Filtering Facepiece Respirators

    PubMed Central

    Bergman, Michael S.; Eimer, Benjamin C.; Shaffer, Ronald E.

    2009-01-01

    Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP

  8. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  9. Radiological decontamination, survey, and statistical release method for vehicles

    SciTech Connect

    Goodwill, M.E.; Lively, J.W.; Morris, R.L.

    1996-06-01

    Earth-moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium millsite in Monticello, Utah (a cleanup site regulated under the Comprehensive Environmental Response, Compensation, and Liability Act). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site.

  10. Method for the decontamination of metallic surfaces

    DOEpatents

    Purohit, Ankur; Kaminski, Michael D.; Nunez, Luis

    2003-01-01

    A method of decontaminating a radioactively contaminated oxide on a surface. The radioactively contaminated oxide is contacted with a diphosphonic acid solution for a time sufficient to dissolve the oxide and subsequently produce a precipitate containing most of the radioactive values. Thereafter, the diphosphonic solution is separated from the precipitate. HEDPA is the preferred diphosphonic acid and oxidizing and reducing agents are used to initiate precipitation. SFS is the preferred reducing agent.

  11. PROCESS OF DECONTAMINATING MATERIAL CONTAMINATED WITH RADIOACTIVITY

    DOEpatents

    Overholt, D.C.; Peterson, M.D.; Acken, M.F.

    1958-09-16

    A process is described for decontaminating metallic objects, such as stainless steel equipment, which consists in contacting such objects with nltric acid in a concentration of 35 to 60% to remove the major portion of the contamination; and thereafter contacting the partially decontaminated object with a second solution containing up to 20% of alkali metal hydroxide and up to 20% sodium tartrate to remove the remaining radioactive contaminats.

  12. Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials.

    PubMed

    Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

    2008-01-01

    Since the US terrorist attacks of September 11, 2001, concern regarding use of chemical, biological, or radiological weapons is heightened. Many victims of such an attack would present directly to health care facilities without first undergoing field decontamination. This article reviews basic tenets and recommendations for health care facility-based decontamination, including regulatory concerns, types of contaminants, comprehensive decontamination procedures (including crowd control, triage, removal of contaminated garments, cleaning of body contaminants, and management of contaminated materials and equipment), and a discussion of methods to achieve preparedness.

  13. Health care facility-based decontamination of victims exposed to chemical, biological, and radiological materials.

    PubMed

    Koenig, Kristi L; Boatright, Connie J; Hancock, John A; Denny, Frank J; Teeter, David S; Kahn, Christopher A; Schultz, Carl H

    2008-01-01

    Since the US terrorist attacks of September 11, 2001, concern regarding use of chemical, biological, or radiological weapons is heightened. Many victims of such an attack would present directly to health care facilities without first undergoing field decontamination. This article reviews basic tenets and recommendations for health care facility-based decontamination, including regulatory concerns, types of contaminants, comprehensive decontamination procedures (including crowd control, triage, removal of contaminated garments, cleaning of body contaminants, and management of contaminated materials and equipment), and a discussion of methods to achieve preparedness. PMID:18082785

  14. Decontamination Methods Used for Dental Burs – A Comparative Study

    PubMed Central

    Hugar, Deepa; Hugar, Santosh; Ranjan, Shashi; Kadani, Megha

    2014-01-01

    Aims and Objectives: Infection control and modes of sterilizations are the key factors to avoid cross transmission of infection in the field of dentistry. Transmission of disease or infection is noted with improper sterilization of reused instruments. Dental burs are the most important tool in any endodontic or conservative procedures of teeth involving tooth contouring, restorative filling procedures and endodontic procedures. Hence, the present study is undertaken to assess the efficacy of different methods of sterilization or decontamination which are routinely used in dental clinics. Materials and Methods: For the present study 96 round diamond burs were selected and divided into 6 groups. These burs were used for the access cavity preparation to get contamination and subjected for bacteriological culture. After getting base line date burs were subjected to manual scrubbing, hot air oven, glass bead sterilizer, ultrasonic cleaner and autoclave to get post decontamination data. Results: The study revealed that mean colony forming units/ml of Streptococcus mutans decreased maximum for autoclave with 80% reduction, for Lactobacilli 76% reduction and for Candida albicans maximum reduction seen for glass bead sterilizer with 74%. Conclusion: Findings of our study revealed that none of the methods used were found to be absolutely efficacious in the decontamination of dental burs. However, among the experimental groups used in the present study, autoclave was found to be the relatively best method. PMID:25121062

  15. DESCALING AND DECONTAMINATING METHOD FOR METALS

    DOEpatents

    Baybarz, R.D.

    1961-04-25

    Oxide scale is removed from the surface of stainless steels and similar metals by contacting the metal under an inert atmosphere with a dilute sulfuric acid solution containing chromous sulfate. The removed oxide scale is either dissolved or disintegrated into a slurry by the solution. Preferred reagent concentrations are 0.3 to 0.5 M chromous sulfate and 0.4 to 0.6 M sulfuric acid. This process is particularly applicable to decontamination of aqueous homogsneous nuclear reactor systems.

  16. The feasibility study of hot cell decontamination by the PFC spray method

    SciTech Connect

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  17. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  18. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    PubMed

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    shorter than that of the unmodified fibers. The presented polymers and method of multilayer coating can lead to a development of self-decontaminating textiles and other materials. PMID:27309383

  19. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    PubMed

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    shorter than that of the unmodified fibers. The presented polymers and method of multilayer coating can lead to a development of self-decontaminating textiles and other materials.

  20. Reactive decontamination formulation

    DOEpatents

    Giletto, Anthony; White, William; Cisar, Alan J.; Hitchens, G. Duncan; Fyffe, James

    2003-05-27

    The present invention provides a universal decontamination formulation and method for detoxifying chemical warfare agents (CWA's) and biological warfare agents (BWA's) without producing any toxic by-products, as well as, decontaminating surfaces that have come into contact with these agents. The formulation includes a sorbent material or gel, a peroxide source, a peroxide activator, and a compound containing a mixture of KHSO.sub.5, KHSO.sub.4 and K.sub.2 SO.sub.4. The formulation is self-decontaminating and once dried can easily be wiped from the surface being decontaminated. A method for decontaminating a surface exposed to chemical or biological agents is also disclosed.

  1. A review of plant decontamination methods: 1988 Update: Final report

    SciTech Connect

    Remark, J.F.

    1989-01-01

    This document updates the state-of-the-art in decontamination technology since the publication of the previous review (EPRI NP- 1128) in May 1981. A brief description of the corrosion-film characteristics is presented as well as corrosion film differences between a BWR and PWR. The generation transportation, activation, and deposition of the radioisotopes found throughout the reactor coolant system is also discussed. Successful, well executed, decontamination campaigns are always preceded by meticulous planning and careful procedure preparation which include contingency operations. The Decontamination Planning and Preparation Section describes the technical planning steps as well as the methodology that should be followed in order to select the optimum decontamination technique for a specific application. A review of a number of the decontamination methods commercialized since 1980 is presented. The basic mechanism for each process is described as well as specific applications of the technology in the fields. Where possible, results obtained in the field are presented. The information was obtained from industry vendors as well as personnel at the plant locations that have utilized the technology. 72 refs., 5 tabs.

  2. Oxidative Decontamination of Tritiated Materials Employing Ozone Gas

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora

    2001-11-12

    The Princeton Plasma Physics Laboratory has developed a process by which to significantly reduce surface and near surface tritium contamination from various materials. The Oxidative Tritium Decontamination System (OTDS) reacts gaseous state ozone (accelerated by presence of catalyst), with tritium entrained/deposited on the surface of components (stainless steel, copper, plastics, ceramics, etc.), for the purpose of activity reduction by means of oxidation-reduction chemistry. In addition to removing surface and near surface tritium contamination from (high monetary value) components for reuse in non-tritium environments, the OTDS has the capability of removing tritium from the surfaces of expendable items, which can then be disposed of in a less expensive fashion. The OTDS can be operated in a batch mode by which up to approximately 40 pounds of tritium contaminated (expendable) items can be processed and decontaminated to levels permissible for free release (less than1,000 dpm/100 cm 2). This paper will discuss the OTDS process, the level of tritium surface contamination removed from various materials, and a technique for ''deep scrubbing'' tritium from subsurface layers.

  3. Performance evaluation of 26 combinations of chemical protective clothing materials and chemicals after repeated exposures and decontaminations.

    PubMed

    Gao, Pengfei; Tomasovic, Beth; Stein, Lauren

    2011-11-01

    Effective decontamination of chemical protective clothing (CPC) is essential for reducing occupational skin diseases and disorders during a reuse scenario. To protect the workforce, the efficacy of decontamination methods and the reusability of CPC need to be evaluated. In this study, performance of 14 CPC materials against 12 liquid chemicals was evaluated based on standardized breakthrough time (BT) and steady-state permeation rate (SSPR). Thermal and water-detergent decontamination methods were used. Exposure/decontamination was repeated up to 11 cycles, or until the material failed, so that further testing became impossible. Changes in BT and SSPRs were determined for each material and chemical combination. There were 20 and 13 combinations that were able to complete 11 cycles with thermal and detergent methods, respectively. By comparing the beginning and ending cycles, mean BT increased 9% with the thermal method but slightly decreased (3.3%) with the detergent method, while mean SSPR decreased 2% with the thermal method, but slightly increased (1.4%) with the detergent method. Less than half of the changes were found statistically different (p < 0.05). Generally, the thermal method had higher decontamination efficacy than the detergent method.

  4. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine.

    PubMed

    Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V

    2012-01-01

    This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective. PMID

  5. Decontamination of clothing and building materials associated with the clandestine production of methamphetamine.

    PubMed

    Serrano, Kate A; Martyny, John W; Kofford, Shalece; Contreras, John R; Van Dyke, Mike V

    2012-01-01

    This study was designed to determine how easily methamphetamine can be removed from clothing and building materials, utilizing different cleaning materials and methods. The study also addressed the penetration of methamphetamine into drywall and the ability of paints to encapsulate the methamphetamine on drywall. Clothing and building materials were contaminated in a stainless steel chamber by aerosolizing methamphetamine in a beaker heater. The amount of methamphetamine surface contamination was determined by sampling a grid pattern on the material prior to attempting to clean the materials. After cleaning, the materials were again sampled, and the degree of decontamination noted. We found that household clothing and response gear worn by first responders was easily decontaminated using a household detergent in a household washing machine. A single wash removed over 95% of the methamphetamine from these materials. The study also indicated that methamphetamine-contaminated, smooth non-porous surfaces can be easily cleaned to below detectable levels using only mild cleaners. More porous surfaces such as plywood and drywall were unlikely to be decontaminated to below regulatory levels even with three washes using a mild cleaner. This may be due to methamphetamine penetration into the paint on these surfaces. Evaluation of methamphetamine contamination on drywall indicated that approximately 40% of the methamphetamine was removed using a wipe, while another 60% remained in the paint layer. Stronger cleaners such as those with active ingredients including sodium hypochlorite or quaternary ammonia and commercial decontamination agents were more effective than mild detergent-based cleaners and may reduce methamphetamine contamination to below regulatory levels. Results from the encapsulation studies indicate that sprayed on oil-based paint will encapsulate methamphetamine on drywall and plywood surfaces up to 4.5 months, while latex paints were less effective.

  6. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  7. A Comparative Study of Methods To Validate Formaldehyde Decontamination of Biological Safety Cabinets

    PubMed Central

    Munro, Kerry; Lanser, Janice; Flower, Robert

    1999-01-01

    Methods of validation of formaldehyde decontamination of biological safety cabinets were compared. Decontamination of metal strips inoculated with Mycobacterium bovis, poliovirus, or Bacillus spp. spores was compared with the results obtained with three biological indicators. Conditions for successful decontamination, particularly relative humidity, were defined. The Attest 1291 biological indicator was the only biological indicator which was an aid in the detection of gross decontamination failure. PMID:9925635

  8. Foam and gel methods for the decontamination of metallic surfaces

    DOEpatents

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  9. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, L.A.

    1996-08-13

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  10. Method for decontamination of radioactive metal surfaces

    DOEpatents

    Bray, Lane A.

    1996-01-01

    Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

  11. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  12. DECONTAMINATING AND PROCESSING DREDGED MATERIAL FOR BENEFICIAL USE

    SciTech Connect

    CLESCERI,N.L.; STERN,E.A.; FENG,H.; JONES,K.W.

    2000-07-01

    Management of contaminated dredged material is a major problem in the Port of New York and New Jersey. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency-Region 2, the US Army Corps of Engineers-New York District, the US Department of Energy-Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has gone through phased testing of commercial technologies at the bench scale (15 liters) and pilot scale (1.5--500 m{sup 3}) levels. Several technologies are now going forward to large-scale demonstrations that are intended to treat from 23,000 to 60,000 m{sup 3}. Selections of the technologies were made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  13. Decontamination and Recycling of Radioactive Material from Retired Components

    SciTech Connect

    Bushart, S.P.; Wood, C.J.; Bradbury, D.; Elder, G.

    2007-07-01

    This paper describes the development of the EPRI DFDX (Decontamination For Decommissioning, electrochemical ion exchange) process for the chemical decontamination of reactor coolant systems and components. A US patent has been awarded and a plant, conforming to exacting nuclear industry standards, has been constructed to demonstrate the process at a number of sites. The plant has completed successful demonstration tests at Studsvik in Sweden and Dounreay in Scotland. The R and D phase for this technology is now complete, and the plant is now in commercial operation in the United Kingdom. (authors)

  14. Method of decontaminating a contaminated fluid by using photocatalytic particles

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald (Inventor); Ratcliff, Matthew A. (Inventor)

    1994-01-01

    A system for decontaminating the contaminated fluid by using photocatalytic particles. The system includes a reactor tank for holding the contaminated fluid and the photocatalytic particles suspended in the contaminated fluid to form a slurry. Light irradiates the surface of the slurry, thereby activating the photocatalytic properties of the particles. The system also includes stirring blades for continuously agitating the irradiated fluid surface and for maintaining the particles in a suspended state within the fluid. The system also includes a cross flow filter for segregating the fluid (after decomposition) from the semiconductor powder. The cross flow filter is occasionally back flushed to remove any semiconductor powder that might have caked on the filter. The semiconductor powder may be recirculated back to the tank for reuse, or may be stored for future use. A series of such systems may be used to gradually decompose a chemical in the fluid. Preferably, the fluid is pretreated to remove certain metal ions which interfere with the photocatalytic process. Such pretreatment may be accomplished by dispersing semiconductor particles within the fluid, which adsorb ions or photodeposit the metal as the free metal or its insoluble oxide or hydroxide, and then removing the semiconductor particles together with the adsorbed metal ions/oxides/hydroxide/free metal from the fluid. A method of decontaminating a contaminated fluid is also disclosed.

  15. Chemical decontamination of BWR fuel and core materials

    SciTech Connect

    Beauregard, R.J. )

    1989-09-01

    A previous EPRI project decontaminated two discharged BWR fuel assemblies using the AP-LOMI and AP-CAN-DECON processes at Commonwealth Edison's Quad-Cities Nuclear Power Site. The two decontaminated assemblies and a third control assembly were shipped to the B W Hot Cell Facility in Lynchburg, Virginia. The three assemblies were partially disassembled in the hot cells and several rods extracted for nondestructive oxide measurement and visual examination. Various components were removed from the two decontaminated fuel assemblies for destructive examination to search for possible deleterious effects of chemical cleaning. The AP-LOMI process removed essentially all of the crud which normally covers a BWR bundle and channel. The AP-CAN-DECON process removed most of the crud, but left a thin layer on the rods and components in the central region of the bundle between the top and bottom spacer grids. Neither decontamination process appeared to damage the Zircaloy-2 fuel and water rods, or the Zircaloy-4 channels and spacers. An adherent zirconium oxide layer still covered all of the Zircaloy surfaces which were examined. The increase in hydrogen content of the channels and fuel rods was low. The AP-LOMI process did not appear to damage the Inconel X-750 fuel rod expansion springs, spacer lantern springs or channel finger spring. A thin, adherent oxide layer was found on all components.

  16. Method and apparatus for the in situ decontamination of underground water with the aid of solar energy

    DOEpatents

    Bench, Thomas R.; McCann, Larry D.

    1989-01-01

    A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.

  17. CATALYTIC ENZYME-BASED METHODS FOR WATER TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION

    EPA Science Inventory

    Current chemistry-based decontaminants for chemical or biological warfare agents and related toxic materials are caustic and have the potential for causing material and environmental damage. In addition, most are bulk liquids that require significant logistics and storage capabil...

  18. Development of a Complimentary Low Temperature Decontamination Technique for Spacecraft Materials

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Bennett, Allan; Walker, James; Fowler, Chantal; Weber, Christina; Rohr, Thomas; Kminek, Gerhard

    Dry heat microbial reduction (DHMR) is one of the current processes used to ensure that the microbial burden of a spacecraft lander meets the predetermined levels set out within the COSPAR policy regarding planetary protection. DHMR involves heating the craft or compo-nents to approximately 110-125C for over 6-30hrs, and was previously used to decontaminate the entire Viking lander spacecraft and parts of almost all other spacecrafts sent to Mars after-wards. This process, whilst proving effective and reproducible is not compatible with the some highly sensitive sensor and electronic components of a modern spacecraft. For these components an alternative method for low temperature decontamination needs to be identified. The Health Protection Agency, UK, investigated three gaseous decontamination technologies in a project funded by European Space Agency. These technologies consisted of two hydrogen peroxide technologies (Vapour Hydrogen Peroxide, Steris Inc. and Hydrogen Peroxide Vapour, Bioquell Ltd.) and one chlorine dioxide (ClorDiSys) system. The technologies were chosen after a comprehensive literature study identified them as the most suitable technologies for the decontamination process. An environmental chamber (20m3 ) was used as the test chamber to expose two commercially available biological indicators, three naturally occurring organisms chosen by ESA and a range of spacecraft materials to each of the technologies. The commercial biological indicators, Bacil-lus atrophaeus and Geobacillus sterothermophilus, were exposed to 3 varying concentrations of each of the technologies in order to attempt to achieve a 6-log reduction in recoverable organ-isms. After these results were obtained the most efficacious cycle was chosen for each technology and the naturally occurring organisms and materials to be tested were exposed to three cy-cles. Whilst the microbial enumeration was completed at the HPA, material compatibility was undertaken at ESTEC and residue

  19. SAFETY STUDIES TO MEASURE EXOTHERMIC REACTIONS OF SPENT PLUTONIUM CONTAMINATION CHEMICALS USING WET AND DRY DECONTAMINATION METHODS

    SciTech Connect

    Hopkins, Andrea M.; Jackson, George W.; Minette, Michael J.; Ewalt, John R.; Cooper, Thurman D.; Scott, Paul A.; Jones, Susan A.; Scheele, Randall D.; Charboneau, Stacy L.

    2005-10-12

    heat to the containers from ambient conditions during storage especially during the summer months. Treatability tests under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) were used to assess the use of certain chemicals and wipes (wet method) and chemical-gel matrices (dry method) during the decontamination process. Chemicals being considered for decontamination of gloveboxes at PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial decontamination agents such as RadPro? , Glygel? and ASPIGEL 100?. As part of the treatability study, Fluor and the Pacific Northwest National Laboratory (PNNL) personnel have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials. From these wet and dry method treatability studies, certain limiting conditions have been defined that will aid in assuring safe operations and waste packaging during the decommissioning and waste disposition process.

  20. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY.

    SciTech Connect

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01

    The Port of New York and New Jersey ranks first in the United States in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  1. DECONTAMINATION OF DREDGED MATERIAL FROM THE PORT OF NEW YORK AND NEW JERSEY

    SciTech Connect

    JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

    1999-06-01

    The Port of New York and New Jersey ranks first in the US in volume of petroleum products handled each year. In addition, many refineries are in operation on the New Jersey side of the Port. These activities have led to the discharge of significant amounts of petroleum hydrocarbons into the waters of the New York/New Jersey region. Intense industrial and commercial activities have also brought about major inputs of other organic and inorganic contaminants as would be expected in an industrialized, heavily populated urban port. Sediments that then are contaminated are a major problem for the region since they can no longer be disposed of by the traditional method of ocean disposal following the dredging operations required for the efficient operation of the Port. Decontamination and beneficial reuse of the dredged materials is one component of a comprehensive dredged material management plan being developed by the US Army Corps of Engineers. A demonstration decontamination project extending from bench- to field-scale operations is now in progress in the Port, and its current status and relevance for other regions is summarized.

  2. Laser ablation system, and method of decontaminating surfaces

    DOEpatents

    Ferguson, Russell L.; Edelson, Martin C.; Pang, Ho-ming

    1998-07-14

    A laser ablation system comprising a laser head providing a laser output; a flexible fiber optic cable optically coupled to the laser output and transmitting laser light; an output optics assembly including a nozzle through which laser light passes; an exhaust tube in communication with the nozzle; and a blower generating a vacuum on the exhaust tube. A method of decontaminating a surface comprising the following steps: providing an acousto-optic, Q-switched Nd:YAG laser light ablation system having a fiber optically coupled output optics assembly; and operating the laser light ablation system to produce an irradiance greater than 1.times.10.sup.7 W/cm.sup.2, and a pulse width between 80 and 170 ns.

  3. Considerations for selecting personal protective equipment for hazardous materials decontamination.

    PubMed

    Lehmann, Jeff

    2002-09-01

    PPE is necessary to protect staff and to deliver rapid and efficient care to patients contaminated with HAZMAT chemicals. Planning for HAZMAT cases includes learning about the common chemicals in the area, what resources are available to care for victims, identifying a decontamination area, and providing PPE to protect employees and other patients. A customized service can be used to meet OSHA standards and reduce costs. Ongoing training will be an important part of any HAZMAT program.

  4. Considerations for selecting personal protective equipment for hazardous materials decontamination.

    PubMed

    Lehmann, Jeff

    2002-09-01

    PPE is necessary to protect staff and to deliver rapid and efficient care to patients contaminated with HAZMAT chemicals. Planning for HAZMAT cases includes learning about the common chemicals in the area, what resources are available to care for victims, identifying a decontamination area, and providing PPE to protect employees and other patients. A customized service can be used to meet OSHA standards and reduce costs. Ongoing training will be an important part of any HAZMAT program. PMID:12685463

  5. Comparison of Decontamination Methods for Human Skin Grafts.

    PubMed

    Mann-Salinas, Elizabeth A; Joyner, Denar D; Guymon, Charles H; Ward, Catherine L; Rathbone, Christopher R; Jones, John A; Akers, Kevin S

    2015-01-01

    Skin grafts intended for autologous transplant may be dropped on the operating room floor during handling. The authors examined optimal procedures for decontaminating tissue intended for burn surgery. Porcine skin (5 × 5 cm sections) harvested from expired animals using standard procedures was inoculated with either 10(6) CFU/ml Staphylococcus aureus or Klebsiella pneumoniae. Decontaminating strategies were compared: 10% povidone iodine, 0.04% chlorhexidine, or 50 U/ml bacitracin for injection, and mechanical agitation using normal saline or sterile water; each agent was applied for 60 seconds. Each skin section was blended and plated on agar for bacterial enumeration using the spread plate method. Tissue viability was evaluated in parallel using a cell viability reagent, along with a control (heat at 200 °C for 5 min). Bacterial counts were log transformed; one-way ANOVA with Tukey-Kramer HSD analysis were performed. Concentration of organisms <10(5) CFU/g was considered clinically insignificant colonization. Eight donors provided 21 S. aureus and six K. pneumoniae samples. After exposure, mean organism concentration (CFU/g) was <10(5) for povidone iodine (S. aureus 2.83 × 10(4); K. pneumoniae 1.85 × 10(4)), chlorhexidine (S. aureus 4.52 × 10(4); K. pneumoniae 1.77 × 10(4)), and normal saline (K. pneumoniae 8.76 × 10(4)) treated groups. After log transform, only povidone iodine and chlorhexidine were found to be different from control in both groups. Viability was decreased in the positive control group, but not in treatment groups. Agents routinely used for surgical skin prep (povidone iodine and chlorhexidine), reduced both Gram-positive and Gram-negative contamination in tissue intended for skin grafting procedures. Antiseptic treatments did not impair the cellular viability of porcine skin.

  6. Method and coating composition for protecting and decontaminating surfaces

    DOEpatents

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  7. METHOD AND COATING COMPOSITION FOR PROTECTING AND DECONTAMINATING SURFACES

    DOEpatents

    Overhold, D.C.; Peterson, M.D.

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is presented. This coating is placed on the surface before use and is soluble in waters allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  8. Decontamination of Genesis Array Materials by UV Ozone Cleaning

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Burnett, D. S.; Rodriquez, M. C.; Sestak, S.; Allton, J. H.; Stansbery, E. K.

    2007-01-01

    Shortly after the NASA Genesis Mission sample return capsule returned to earth on September 8, 2004, the science team discovered that all nine ultra-pure semiconductor materials were contaminated with a thin molecular organic film approximately 0 to 100 angstroms thick. The organic contaminate layer, possibly a silicone, situated on the surface of the materials is speculated to have formed by condensation of organic matter from spacecraft off-gassing at the Lagrange 1 halo orbit during times of solar exposure. While the valuable solar wind atoms are safely secured directly below this organic contamination and/or native oxide layer in approximately the first 1000 angstroms of the ultra-pure material substrate, some analytical techniques that precisely measure solar wind elemental abundances require the removal of this organic contaminate. In 2005, Genesis science team laboratories began to develop various methods for removing the organic thin film without removing the precious material substrate that contained the solar wind atoms. Stephen Sestak and colleagues at Open University first experimented with ultraviolet radiation ozone (UV/O3) cleaning of several non-flight and flown Genesis silicon wafer fragments under a pure flowing oxygen environment. The UV/O3 technique was able to successfully remove organic contamination without etching into the bulk material substrate. At NASA Johnson Space Center Genesis Curation Laboratory, we have installed an UV/O3 cleaning devise in an ambient air environment to further experimentally test the removal of the organic contamination on Genesis wafer materials. Preliminary results from XPS analysis show that the UV/O3 cleaning instrument is a good non-destructive method for removing carbon contamination from flown Genesis array samples. However, spectroscopic ellipsometry results show little change in the thickness of the surface film. All experiments to date have shown UV/O3 cleaning method to be the best non-destructive method

  9. Suitability of different construction materials for use in aseptic processing environments decontaminated with gaseous hydrogen peroxide.

    PubMed

    Unger, Beatriz; Rauschnabel, Uta; Düthorn, Berthold; Kottke, Volker; Hertel, Christian; Rauschnabel, Johannes

    2007-01-01

    The purpose of this study is to examine the behavior of different materials towards the microbial inactivation kinetic of gaseous hydrogen peroxide. Samples of 49 materials potentially used in aseptic processing environments were inoculated with 106 spores of Geobacillus stearothermophilus ATCC #12980 and exposed to defined periods using a reproducible hydrogen peroxide bio-decontamination cycle. The inactivation characteristic of each material was investigated by means of repeated D-value calculations. The results demonstrate that different materials show highly variable performance regarding the inactivation pattern of spores on each particular surface. Not only the chemical composition of the material but also differences in manufacturing processes and surface treatments were found to have an effect on the resistance of the test organisms. From the data obtained it is concluded that some correlation exists between the calculated D-values and roughness as well as wettability of the materials. Best- and worst-case materials were identified, and the dependence of specific decontamination characteristics on material properties was investigated. It is suggested to integrate studies regarding the inactivation characteristics of incorporated materials into the construction process of new aseptic processing systems bio-decontaminated with hydrogen peroxide. PMID:17933208

  10. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOEpatents

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  11. Impact of three biological decontamination methods on filtering facepiece respirator fit, odor, comfort, and donning ease.

    PubMed

    Viscusi, Dennis J; Bergman, Michael S; Novak, Debra A; Faulkner, Kimberly A; Palmiero, Andrew; Powell, Jeffrey; Shaffer, Ronald E

    2011-07-01

    The objective of this study was to determine if ultraviolet germicidal irradiation (UVGI), moist heat incubation (MHI), or microwave-generated steam (MGS) decontamination affects the fitting characteristics, odor, comfort, or donning ease of six N95 filtering facepiece respirator (FFR) models. For each model, 10 experienced test subjects qualified for the study by passing a standard OSHA quantitative fit test. Once qualified, each subject performed a series of fit tests to assess respirator fit and completed surveys to evaluate odor, comfort, and donning ease with FFRs that were not decontaminated (controls) and with FFRs of the same model that had been decontaminated. Respirator fit was quantitatively measured using a multidonning protocol with the TSI PORTACOUNT Plus and the N95 Companion accessory (designed to count only particles resulting from face to face-seal leakage). Participants' subjective appraisals of the respirator's odor, comfort, and donning ease were captured using a visual analog scale survey. Wilcoxon signed rank tests compared median values for fit, odor, comfort, and donning ease for each FFR and decontamination method against their respective controls for a given model. Two of the six FFRs demonstrated a statistically significant reduction (p < 0.05) in fit after MHI decontamination. However, for these two FFR models, post-decontamination mean fit factors were still ≥ 100. One of the other FFRs demonstrated a relatively small though statistically significant increase (p < 0.05) in median odor response after MHI decontamination. These data suggest that FFR users with characteristics similar to those in this study population would be unlikely to experience a clinically meaningful reduction in fit, increase in odor, increase in discomfort, or increased difficulty in donning with the six FFRs included in this study after UVGI, MHI, or MGS decontamination. Further research is needed before decontamination of N95 FFRs for purposes of reuse can be

  12. Methods for Decontamination of a Bipropellant Propulsion System

    NASA Technical Reports Server (NTRS)

    McClure, Mark B.; Greene, Benjamin

    2012-01-01

    Most propulsion systems are designed to be filled and flown, draining can be done but decontamination may be difficult. Transport of these systems may be difficult as well because flight weight vessels are not designed around DOT or UN shipping requirements. Repairs, failure analysis work or post firing inspections may be difficult or impossible to perform due to the hazards of residual propellants being present.

  13. Off-site consequences of radiological accidents: methods, costs and schedules for decontamination

    SciTech Connect

    Tawil, J.J.; Bold, F.C.; Harrer, B.J.; Currie, J.W.

    1985-08-01

    This report documents a data base and a computer program for conducting a decontamination analysis of a large, radiologically contaminated area. The data base, which was compiled largely through interviews with knowledgeable persons both in the public and private sectors, consists of the costs, physical inputs, rates and contaminant removal efficiencies of a large number of decontamination procedures. The computer program utilizes this data base along with information specific to the contaminated site to provide detailed information that includes the least costly method for effectively decontaminating each surface at the site, various types of property losses associated with the contamination, the time at which each subarea within the site should be decontaminated to minimize these property losses, the quantity of various types of labor and equipment necessary to complete the decontamination, dose to radiation workers, the costs for surveying and monitoring activities, and the disposal costs associated with radiological waste generated during cleanup. The program and data base are demonstrated with a decontamination analysis of a hypothetical site. 39 refs., 24 figs., 155 tabs.

  14. Two-Piece Screens for Decontaminating Granular Material

    NASA Technical Reports Server (NTRS)

    Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis

    2009-01-01

    Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is

  15. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    SciTech Connect

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1988-01-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS,c carbon steel (CS) 1018 and A508, and heat treated alloy 600 were suspended in recirculating mixtures of two or more of citric acid, oxalic acid and EDTA at temperatures of 90{sup 0}C or 117{sup 0}C for 22 h. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosivity of the solutions to nuclear reactor materials, particularly 304 SS and 410 SS.

  16. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    SciTech Connect

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1989-02-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid, and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS, carbon steel (CS) 1018 and A508, and heat-treated alloy 600 were suspended in recirculating mixtures of two or more combinations of citric acid, oxalic acid, and EDTA at temperatures of 90 C or 117 C for 22 hours. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosiveness of the solutions to nuclear reactor materials, particularly types 304 SS and 410 SS.

  17. Remote methods for decontamination and decommissioning operations. [Fission Product Development Laboratory

    SciTech Connect

    DeVore, J.R.

    1986-01-01

    Three methods for the decontamination and decommissioning of nuclear facilities are described along with operational experience associated with each method. Each method described in some way reduces radiation exposure to the operating personnel involved. Electrochemical decontamination of process tanks is described using an in-situ method. Descriptions of two processes, electropolishing and cerium redox decontamination, are listed. A method of essentially smokeless cutting of process piping using a plasma-arc cutting torch is described. In one technique, piping is cut remotely from a distance using a specially modified torch holder. In another technique, cutting is done with master-slave manipulators inside a hot cell. Finally, a method for remote cutting and scarification of contaminated concrete is described. This system, which utilizes high-pressure water jets, is coupled to a cutting head or rotating scarification head. The system is suited for cutting contaminated concrete for removal or removing a thin layer in a controlled manner for decontamination. 4 refs., 6 figs.

  18. A METHOD FOR REGENERATION OF SPENT ELECTROCHEMICAL DECONTAMINATION SOLUTION AND ITS TREATMENT FOR FINAL DISPOSAL

    SciTech Connect

    Davydov, D.Yu.; Davydov, Yu.P.; Toropov, I.G.; John, J.; Rosikova, K.; Motl, A.; Hudson, M.J.; Prazska, M.

    2003-02-27

    This paper describes the method of regeneration of spent electrochemical decontamination solution. The proposed method allows separation of radionuclides and stable metals from spent decontamination solution in a form suitable for final disposal and repeated use of the remaining solution for electrochemical decontamination. Development of this method was based on the results of the speciation studies which showed that Fe(III) can be precipitated in the presence of organic complexing agents, in a form of iron hydroxide, and Ag-110m, Co-60, Mn-54 radionuclides can be coprecipitated on it. In order to verify the conclusions made as a result of the speciation studies, the experiments with electrochemically prepared simulant solution and real solution were carried out. The test results proved that the proposed method can be applied in practice. Treatment of the ultimately spent decontamination solutions can be also made applying iron precipitation, which allows for removal of the bulk amount of contaminants, as the first step. Then, if necessary the remaining radionuclides can be removed by sorption. A series of novel absorbers has been tested for their potential for the sorption removal of the remaining radionuclides from the supernate. The test results showed that most of them were more effective in neutral or alkaline range of pH, however, the high efficiency of the sorption removal can be achieved only after the removal of the oxalic and citric acids from solution.

  19. Decontamination of skin exposed to nanocarriers using an absorbent textile material and PEG-12 dimethicone

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Richter, H.; Baier, G.; Landfester, K.; Frazier, L.; Gefeller, H.; Wunderlich, U.; Gross, I.; Rühl, E.; Knorr, F.

    2014-11-01

    The removal of noxious particulate contaminants such as pollutants derived from particle-to-gas conversions from exposed skin is essential to avoid the permeation of potentially harmful substances into deeper skin layers via the stratum corneum or the skin appendages and their dispersion throughout the circulatory system. This study is aimed at evaluating the efficacy of using the silicone glycol polymer PEG-12 dimethicone and an absorbent textile material to remove fluorescing hydroxyethyl starch nanocapsules implemented as model contaminants from exposed porcine ear skin. Using laser scanning microscopy, it could be shown that while the application and subsequent removal of the absorbent textile material alone did not result in sufficient decontamination, the combined application with PEG-12 dimethicone almost completely eliminated the nanocapsules from the surface of the skin. By acting as a wetting agent, PEG-12 dimethicone enabled the transfer of the nanocapsules into a liquid phase which was taken up by the absorbent textile material. Only traces of fluorescence remained detectable in several skin furrows and follicular orifices, suggesting that the repeated implementation of the procedure may be necessary to achieve total skin surface decontamination.

  20. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    SciTech Connect

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  1. Nonchemical decontamination techniques

    SciTech Connect

    Allen, R.P.

    1985-06-01

    The decontamination techniques summarized in this article represent a variety of surface cleaning methods developed or adapted for component and facility-type decontamination applications ranging from small hand tools to reactor cavities and other large surface areas. Representative nonchemical decontamination techniques include: ultrasonics, abrasive cleaning, high-pressure Freon cleaning, and vibratory finishing.

  2. Use of plant material for the decontamination of water polluted with phenols

    SciTech Connect

    Dec, J.; Bollag, J.M. )

    1994-11-05

    Plant materials were found useful in the decontamination of water polluted with phenolic compounds. The detoxification effect was due to peroxidases contained in the plant tissue. The enzymes mediated oxidative coupling of the pollutants, followed by precipitation of the formed polymers from the aqueous phase. An industrial wastewater contaminated with 2,4-dichlorophenol (up to 850 ppm) and other chlorinated phenols was successfully treated using minced horseradish, potato, or white radish (amended with H[sub 2]O[sub 2]). Horseradish-mediated removal of 2,4-dichlorophenol from model solutions was comparable with that achieved using purified horseradish peroxidase. In addition, horseradish could be reused up to 30 times. Due to the apparent ease of application, the use of plant material may present a breakthrough in the enzyme treatment of contaminated water.

  3. Automated nuclear material recovery and decontamination of large steel dynamic experiment containers

    SciTech Connect

    Dennison, D.K.; Gallant, D.A.; Nelson, D.C.; Stovall, L.A.; Wedman, D.E.

    1999-03-01

    A key mission of the Los Alamos National Laboratory (LANL) is to reduce the global nuclear danger through stockpile stewardship efforts that ensure the safety and reliability of nuclear weapons. In support of this mission LANL performs dynamic experiments on special nuclear materials (SNM) within large steel containers. Once these experiments are complete, these containers must be processed to recover residual SNM and to decontaminate the containers to below low level waste (LLW) disposal limits which are much less restrictive for disposal purposes than transuranic (TRU) waste limits. The purpose of this paper is to describe automation efforts being developed by LANL for improving the efficiency, increasing worker safety, and reducing worker exposure during the material cleanout and recovery activities performed on these containers.

  4. Microbial decontamination of cosmetic raw materials and personal care products by irradiation

    NASA Astrophysics Data System (ADS)

    Katušin-Ražem, Branka; Mihaljević, Branka; Ražem, Dušan

    2003-03-01

    Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care: toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases the contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 90% red . The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10/g.

  5. Chemical burns revisited: What is the most appropriate method of decontamination?

    PubMed

    Tan, Teresa; Wong, David S Y

    2015-06-01

    The purpose of this study is to investigate the efficacy of decontamination by immediate surgical debridement in the acute management of chemical burns as compared to conventional dilutional approaches by irrigation or wetting. A retrospective review of the medical records of patients admitted to the Burns Centre of the Prince of Wales Hospital, Hong Kong, between 2001 and 2012, was performed. The time to recovery as reflected by the hospital stay for patients who had received immediate debridement, continuous irrigation, and wet packs was calculated and compared. A total of 99 patients were admitted for chemical burns (3.3% of total admissions). There were three mortalities. Immediate surgical debridement failed to achieve a faster recovery than irrigation or wet packs. Continuous water irrigation was better than wet packs in achieving earlier recovery. Continuous water irrigation remains the most preferred method of decontamination in acute chemical burn management.

  6. THE USE OF A TREATABILITY STUDY TO INVESTIGATE THE POTENTIAL FOR SELF HEATING & EXOTHERMIC REACTIONS IN DECONTAMINATION MATERIALS AT PFP

    SciTech Connect

    HOPKINS, A.M.

    2005-02-23

    Cerium Nitrate has been proposed for use in the decontamination of plutonium contaminated equipment at the Plutonium Finishing Plant (PFP) located on the Hanford Nuclear Reservation in eastern Washington. A Treatability Study was conducted to determine the validity of this decontamination technology in terms of meeting its performance goals and to understand the risks associated with the use of Cerium Nitrate under the conditions found at the PFP. Fluor Hanford is beginning the decommissioning of the PFP at the Hanford site. Aggressive chemicals are commonly used to remove transuranic contaminants from process equipment to allow disposal as low level waste. Chemicals being considered for decontamination of gloveboxes in PFP include cerium (IV) nitrate in a nitric acid solution, and proprietary commercial solutions that include acids, degreasers, and sequestering agents. Fluor's decontamination procedure involves application of the chemicals, followed by a wipe-down of the contaminated surfaces with rags. This process effectively transfers the decontamination liquids containing the transuranic materials to the rags, which can then be readily packaged for disposal as TRU waste. As part of a treatability study, Fluor Hanford and the Pacific Northwest National Laboratory (PNNL) have evaluated the potential for self-heating and exothermic reactions in the residual decontamination materials and the waste packages. Laboratory analyses and thermal-hydraulic modeling reveal a significant self-heating risk for cerium nitrate solutions when used with cotton rags. Exothermic reactions that release significant heat and off-gas have been discovered for cerium nitrate at higher temperatures. From these studies, limiting conditions have been defined to assure safe operations and waste packaging.

  7. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis. PMID:19122437

  8. [Decontamination of chemical and biological warfare agents].

    PubMed

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  9. Environmental decontamination

    SciTech Connect

    Cristy, G.A.; Jernigan, H.C.

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  10. Strippable containment and decontamination coating composition and method of use

    DOEpatents

    Moore, Robert C.; Tucker, Mark D.; Jones, Joseph A.

    2009-04-07

    A method for containing at least a portion of radioisotopes, radionuclides, heavy metal or combination thereof contaminating a substrate wherein a containment composition is applied to the substrate. The ingredients within the containment composition interact with the contaminants on the surface of the substrate until the containment composition has polymerized to a water insoluble form containing at least a portion of the contaminates enmeshed therein. The dried composition is removed from the contaminated surface removing with the composition at least a portion of the contaminate.

  11. METHOD OF CHEMICAL DECONTAMINATION OF STAINLESS STEEL NUCLEAR FACILITIES

    DOEpatents

    Pancer, G.P.; Zegger, J.L.

    1961-12-19

    A chemical method is given for removing activated corrosion products on the primary system surfaces of a pressurized water reactor. The corrosion product deposits are composed chiefly of magnetite (Fe/sub 3/O/sub 4/) with small amounts of nickel and chromium oxides. The corroded surfaces are first flushed with a caustic permanganate primary solution consisting of sodium hydroxide and potassium permanganate followed by a secondary rinse solution of ammonium citrate and citric acid containing the complexing agent Versene in small amounts. Demineralized water is used to clean out the primary and secondary solutions and a 60-minute drying period precedes the rinse solution. (AEC)

  12. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment.

  13. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment. PMID:26295438

  14. On-site disposal of decontaminated and dismantled (D and D) materials: A management approach

    SciTech Connect

    Hall, J.S.; Clark, T.R.; Davis, M.J.; Picel, K.C.

    1995-07-19

    The Fernald Environmental Management Project (FEMP) is a federal facility located near Cincinnati, Ohio that is being remediated. Operable Unit 3 (OU3) of the FEMP consists of 232 buildings and other structures that formerly housed various uranium and thorium metallurgical and chemical processes. The buildings are constructed primarily of steel and concrete, with transite siding. The structures are being decontaminated and dismantled using an interim remedial action approach. The disposition of the debris and other waste materials generated by the interim action is being addressed by the final remedial action for the operable unit. The preferred alternative is disposal of most of the material in an engineered disposal cell located on the FEMP property. This is complicated by the fact that the FEMP is located in an environmentally sensitive area and by the complex nature of the materials. The principal aquifer located beneath the site, the Great Miami Aquifer, is designated as a sole-source aquifer under the Safe Drinking Water Act. Disposal of any wastes at the FEMP must be protective of the aquifer. Dismantlement of OU3 structures will result in a very heterogeneous waste stream, both in terms of types of materials and levels of contamination. Wastes to be managed also include contaminated production equipment and drummed materials associated with former production activities, as well as structural materials. All of these factors complicate the management of OU3 materials. This paper discusses the approach proposed by the FEMP for the management of materials resulting from the interim remedial action. The components of the management approach being used to address disposal of the heterogeneous wastes from OU3 in an environmentally sensitive manner are discussed, followed by some conclusions.

  15. Large-bore pipe decontamination

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  16. Application and utilization of a space chamber for the drying and decontamination of books, documents and other materials

    NASA Technical Reports Server (NTRS)

    Koesterer, M. G.; Geating, J. A.

    1975-01-01

    Truckloads of materials such as rare books, papers, engineering drawings, blue prints, art work, leather objects such as shoes, and clothing were successfully dried, decontaminated and impregnated against future infestation by microorganisms in a large 12 x 24 foot vacuum chamber designed originally for testing unmanned spacecraft. The process is unique in that it allows either frozen or wet material, soaked by some castastrophic event to be dried and sterilized in the same chamber with a minimum of handling and transportation.

  17. Decontamination of chemical and biological warfare agents with a single multi-functional material.

    PubMed

    Amitai, Gabi; Murata, Hironobu; Andersen, Jill D; Koepsel, Richard R; Russell, Alan J

    2010-05-01

    We report the synthesis of new polymers based on a dimethylacrylamide-methacrylate (DMAA-MA) co-polymer backbone that support both chemical and biological agent decontamination. Polyurethanes containing the redox enzymes glucose oxidase and horseradish peroxidase can convert halide ions into active halogens and exert striking bactericidal activity against gram positive and gram negative bacteria. New materials combining those biopolymers with a family of N-alkyl 4-pyridinium aldoxime (4-PAM) halide-acrylate co-polymers offer both nucleophilic activity for the detoxification of organophosphorus nerve agents and internal sources of halide ions for generation of biocidal activity. Generation of free bromine and iodine was observed in the combined material resulting in bactericidal activity of the enzymatically formed free halogens that caused complete kill of E. coli (>6 log units reduction) within 1 h at 37 degrees C. Detoxification of diisopropylfluorophosphate (DFP) by the polyDMAA MA-4-PAM iodide component was dose-dependent reaching 85% within 30 min. A subset of 4-PAM-halide co-polymers was designed to serve as a controlled release reservoir for N-hydroxyethyl 4-PAM (HE 4-PAM) molecules that reactivate nerve agent-inhibited acetylcholinesterase (AChE). Release rates for HE 4-PAM were consistent with hydrolysis of the HE 4-PAM from the polymer backbone. The HE 4-PAM that was released from the polymer reactivated DFP-inhibited AChE at a similar rate to the oxime antidote 4-PAM.

  18. Dredged material decontamination demonstration for the port of New York/New Jersey.

    PubMed

    Jones, K W; Feng, H; Stern, E A; Lodge, J; Clesceri, N L

    2001-07-30

    Management of contaminated dredged material is a significant challenge in the Port of New York and New Jersey as a result of more stringent regional ocean placement regulations with escalating costs for upland placement. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency, Region 2, the US Army Corps of Engineers, New York District, the US Department of Energy, Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has progressed through phased testing of commercial technologies at the bench scale (15 liters) (Marcor, Metcalf & Eddy, Gas Technology Institute, Westinghouse Science & Technology, BioGenesis, International Technology, and BioSafe) and pilot-scale (1.5-500m(3)) (BioGenesis, Gas Technology Institute, and Westinghouse Science & Technology) levels. The technologies developed by Gas Technology Institute and BioGenesis are now going forward to commercial demonstration facilities that are intended to treat from 23000 to 60000m(3) of dredged material during their first operational period in 2001-2002. Beneficial use products are soils and cement. Treatment costs for the final commercial facilities are estimated at US$ 39 per m(3). Selection of the technologies was made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  19. Application of cetylpyridinium chloride and sodium chloride decontamination method for recovery of Mycobacterium tuberculosis from clinically suspected cases of pulmonary tuberculosis.

    PubMed

    Shinu, Pottathil; Singh, Varsha; Nair, Anroop; Mehrishi, Priya; Mehta, Sonia; Joshi, Ekta

    2013-10-01

    The study was designed to compare the efficacy of cetylpyridinium chloride (CPC) and sodium chloride (NaCl) decontamination method with N-acetyl L-Cystine (NALC) and sodium hydroxide (NaOH) decontamination (the reference method) method for the recovery of Mycobacterium tuberculosis (MTB) from clinically suspected cases of pulmonary tuberculosis. To evaluate CPC-NaCl and NALC-NaOH decontamination methods, sputum specimens (n = 796) were studied (culturing on Löwenstein-Jensen medium), and the performances were compared. The CPC-NaCl decontamination method demonstrated a sensitivity, specificity, negative predictive value, and positive predictive value of 97.99%, 87.53%, 70.19%, and 99.32%, respectively, when compared to NALC-NaOH decontamination method. In summary, CPC-NaCl decontamination method effectively detected significantly higher number of MTB cases (n = 208) than NALC-NaOH decontamination method (n = 149) particularly in sputum with scanty bacilli and smear-negative cases, indicating the potential of CPC-NaCl decontamination method to preserve paucibacillary cases more efficient than NALC-NaOH decontamination method.

  20. [Survey of methods of cleaning, decontamination, disinfection and sterilization in dental health services in tropical areas].

    PubMed

    Clapeau, G; Decroix, B; Bakayoko-Ly, R; Varenne, B; Dosso-Hien, D; Decroix, M O

    1997-01-01

    hygiene standards despite difficult practice conditions, exacerbated by supply problems. In all applications, hygiene involves a succession of closely-related, logical steps, which form an asepsis chain aimed at preventing the transmission of infection. Our survey shows that fundamental elements of hygiene require attention to achieve this aim. The cleaning, disinfection and sterilizing of floor surfaces and equipment should be improved and more widespread use made of disposable items. It is important to define the hygiene level required for particular treatments, taking into account the oral and dental micro flora and whether the equipment has been decontaminated, disinfected or sterilized. A piece of equipment is decontaminated if it has been mechanically cleaned and decontaminated. It is disinfected if these steps are followed by rinsing with sterile water, drying and conditioning. An item is described as sterilized if it is cleaned, decontaminated, rinsed, dried, conditioned and then sterilized. We found that a wide variety of chemicals were used to clean hands, surfaces and equipment. The nature and appropriate methods of use of these chemicals were not widely known. Understanding the chemical composition of these chemicals makes it possible to classify them into cleaning agents, detergents, decontaminating agents and disinfectants. The definition, choice and use of antiseptics and disinfectants should be strictly controlled. It is also vital that single-use disposable items are used only once and are never reused. Hygiene in the dental surgery is a chain of processes aimed at protecting the patient and the medical staff. There are many links in the chain, involving floor and surface hygiene, hand washing by dentists and dental assistants, washing of surgery linen and treatment of equipment. Dental practitioners should continually focus on ensuring that the chain of hygiene procedures is not broken, in their own interests as well as in those of their patients.

  1. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores.

    PubMed

    Wood, Joseph P; Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-04-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  2. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    PubMed Central

    Wendling, Morgan; Richter, William; Lastivka, Andrew; Mickelsen, Leroy

    2016-01-01

    The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted. PMID:26801580

  3. Method for forming materials

    DOEpatents

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  4. Conceptual Methods for Decontamination and Decommissioning, Size Reduction, and Disposal of the DWPF Melter and Components

    SciTech Connect

    Smith, M.E.

    2001-06-15

    This report identifies potential methods for the disassembly, size reduction, and decontamination of large DWPF equipment. It specifically targets the DWPF Melter. Methods found to work on the melter should be easily applied to other equipment, as the melter is the most complex large-scale equipment that must be processed. It is also likely to be the most contaminated component as it could contain up to 16,000 pounds of HLW glass in it when it is shut down. This report also evaluates methods, equipment, and techniques that may be used. It also discusses possible dismantlement sequences that could be used as well as issues that need to be addressed. In addition, past experiences in dismantling and inspection of various ceramic-lined melters will be discussed.

  5. Smart Materials for Advanced Applications: Self-Decontaminating Polymers, Photofunctional Composites, and Electroconductive Fibers

    NASA Astrophysics Data System (ADS)

    Little, Brian Kevin

    2011-12-01

    Materials capable of providing multifunctional properties controllable by some external stimulus (pH, light, temperature, etc) are highly desirable and obtainable given recent advancements in material science. Development of these so called "Smart" materials spanned across many disciplines of science with applications in industrial areas such as medical, military, security, and environmental. Furthermore, next-generation materials require the ability to not only sense/respond to changes in their external/internal environment, but process information in regards to these changes and adapt accordingly in a dynamic fashion, autonomously, so called "Intelligent" materials. Findings reported in this manuscript detail the synthesis, characterization, and application of smart materials in the following three areas: (1) self-cleaning polymers (2) photoresponsive composites and (3) electroconductive fibers. Self-Cleaning Polymers: Self-decontaminating polymers are unique materials capable of degrading toxic organic chemicals (TOCs). Barriers composed of or coated with our photochemical reactive polymer matrix could be applied to multiple surfaces for defense against TOCs; for example, military garments for protection against chemical warfare agents. This study investigates conditions necessary for formation of peroxides via O2 reduction induced by long-lived, strongly reducing benzophenyl ketyl (BPK) polymer radicals. Photolysis of aqueous solutions composed of sulphonated poly(ether etherketone), SPEEK, and poly(vinyl alcohol), PVA lead to the formation of the BPK radicals. Experiments investigate the formation and decomposition of peroxides in aqueous solutions of SPEEK/PVA under photolysis. Photofunctional Composites: Photoresponsive nanoporous (PN) films and powders were studied and evaluated as possible additives to sensitize the initiation of CH3NO2 via a mechanism involving coalescence of reaction sites. Such materials consist of a 3-D mesoporous silica framework

  6. PWR full-reactor coolant system decontamination. Materials evaluation after off-normal exposure to the LOMI decontamination process, Final report

    SciTech Connect

    Aspden, R.G.; Pessall, N.; Grand, T.F.

    1992-01-01

    The overall objective of the current program is to identify and address all aspects of full system decontamination with the purpose of qualifying at least one process for PWR use. The objective of the current study is to provide baseline data on the performance of materials on the primary side after exposure to one cycle of the LOMI fault testing. This data supplements prior information obtained after exposure to three cycles of LOMI testing. The technical significance of this excursion will be determined in a subsequent task. The general corrosion characteristics of over 39 materials were evaluated for some combinations of material, type of specimen (coupon and creviced coupons), and loop velocity (0, 5, 20 and 150 ft/sec). At velocities of less than or equal to 20 ft/sec, sixteen types of specimens were employed to evaluate localized corrosion and stress corrosion cracking. Specimens were examined after one cycle. Also included in this exposure were specimens added to provide more information on the effect of LOMI fault exposure one: (1) surface roughening of Stellite 156; (2) crevice corrosion of chromium plated 304 stainless steel with the open end gap increased from 3 to {approximately} 9 mils; (3) susceptibility of Inconel X-750 (HTH) to subsequent stress corrosion cracking, (4) loss of chromium plate from threads of 304 stainless steel bolts torqued into stainless steel collars; (5) crack initiation in an Alloy 600 tube known to be susceptible to primary water stress corrosion cracking; and (6) surface alternation of stressed Inconel X-750 springs with the spring temper.

  7. Method for the decontamination of soil containing solid organic explosives therein

    DOEpatents

    Radtke, Corey W.; Roberto, Francisco F.

    2000-01-01

    An efficient method for decontaminating soil containing organic explosives ("TNT" and others) in the form of solid portions or chunks which are not ordinarily subject to effective bacterial degradation. The contaminated soil is treated by delivering an organic solvent to the soil which is capable of dissolving the explosives. This process makes the explosives more bioavailable to natural bacteria in the soil which can decompose the explosives. An organic nutrient composition is also preferably added to facilitate decomposition and yield a compost product. After dissolution, the explosives are allowed to remain in the soil until they are decomposed by the bacteria. Decomposition occurs directly in the soil which avoids the need to remove both the explosives and the solvents (which either evaporate or are decomposed by the bacteria). Decomposition is directly facilitated by the solvent pre-treatment process described above which enables rapid bacterial remediation of the soil.

  8. Long lasting decontamination foam

    DOEpatents

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  9. Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals.

    PubMed

    Castellote, Marta; Andrade, Carmen; Alonso, Cruz

    2002-05-15

    Because the service lives of nuclear power plants are limited to a certain number of years, the need for the management of quite a large volume of radioactive contaminated concrete arises, which, in most cases, was not taken into account when the capacities of the low and medium activity repositories were designed. Therefore, the decontamination of these structures would be of great interest in order to declassify the wastes as radioactive and manage them as conventional ones. This research studies the reliability of the application of electrical fields to decontaminate radioactive contaminated concrete. Three series of decontamination experiments have been carried out, using Cs+, Sr2-, Co2+, and Fe3+ ions added during casting and that have penetrated from the outside, testing carbonated and uncarbonated matrixes, and using laboratory devices as well as the homemade device for in situ application named "honeycomb device". As a result, the application of electrical fields to concrete-contaminated structures has been developed as a new technique to extract radioactive ionic species from concrete. This method of decontamination has been patented by ENRESA (Spanish Company for the Management of Radioactive Wastes) in association with the IETcc. PMID:12038838

  10. Hydrocarbonaceous material upgrading method

    SciTech Connect

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  11. The effect of residual decontamination reagent on stress corrosion cracking of austenitic materials under high temperature water

    SciTech Connect

    Yajima, M.; Sasaki, S.; Takashima, N.; Takimoto, S.

    1982-01-01

    Stress corrosion cracking (SCC) of austenitic materials has been investigated under high temperature water into which a trace level of chemical reagent for reactor process decontamination was injected to simulate residual chemical reagent in normal reactor cooling water. Creviced bend beam and 4-in. pipe tests have been performed with two kinds of concentrated-type reagents and two kinds of dilute-type reagents. It was found that concentrated-type reagents, when injected into high temperature water by 1/1000 of a specified concentration, work as an oxygen scavenger and significantly inhibit intergranular stress corrosion cracking in both sensitized Type 304 stainless steel and Inconel alloys 600 and X-750. Dilute-type reagents did not reduce dissolved oxygen (DO) at all and one of the reagents tested accelerated SCC in Type 304 stainless steel when injected into high temperature water by 1/1000 of a specified concentration. Another dilute-type reagent partially suppressed cracking of Type 304 stainless steel at the same residual reagent concentration. It is suggested that residual level decontamination reagent will work in two ways, depending on residual concentration. When residual concentration is rather high, it will work as an oxygen scavenger and will not have detrimental effects in terms of SCC; when reagent concentration is very diluted, it will accelerate cracking in heavily sensitized Type 304 stainless steel, regardless of the type or kind of decontamination reagent. This effect will be reduced in actual operation since the DO level is about0.2 ppm maximum in the normal reactor water.

  12. Prophylactically Decontaminating Human Islet Product for Safe Clinical Application: Effective and Potent Method

    PubMed Central

    Qi, Meirigeng; Omori, Keiko; Mullen, Yoko; McFadden, Brian; Valiente, Luis; Juan, Jemily; Bilbao, Shiela; Tegtmeier, Bernard R.; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H.

    2016-01-01

    Background Transplanting pancreatic islets into recipients must be safe and effective to treat type 1 diabetes. Islet quality and quantity are important; however, the final product must also be free from microbial contamination and low endotoxin levels. Methods This study explored a method to eliminate contamination in manufacturing islets for transplantation. A simple (single antibiotic n = 164) and refined (triple antimicrobial agents, n = 279) pancreas decontaminating methods were used to test their effects on reducing the contamination rates in the islet final product. A total of 443 pancreata were processed for islet isolations. Three samples for microbial tests (Gram stain, aerobic, and anaerobic culture) were taken at preprocess (pancreas preservation), postisolation, and postculture. Endotoxin levels were measured only for islets considered for transplantation. Results Of 443 pancreata used for islet isolation, 79 (17.8%) showed signs of contamination in preprocess samples; 10 (2.3%) were contaminated in both preprocess and in the final product (postisolation and postculture) samples. Contamination rates in which preprocess and final product samples were positive for contamination was significantly lower using the refined method (refined vs simple method: 5% vs 20.5%, P = 0.045). Identical microbial species were present in both preprocess and in the final product. Conclusions This study demonstrated that the refined method reduces the rate of contamination of the islet final product and is safe for clinical application. Moreover, it may be used as a standard method during human islet manufacturing facilitating the application of a biological license agreement from United States Food and Drug Administration. PMID:26894230

  13. Microbiological quality of fresh-squeezed orange juice and efficacy of fruit surface decontamination methods in microbiological quality.

    PubMed

    Bagci, Ufuk; Temiz, Ayhan

    2011-08-01

    The aims of this study were to evaluate the microbiological quality of fresh-squeezed orange juice and to reduce the microbial population by using various chemical and physical fruit surface decontamination methods. In the first step of the study, polyethylene-bottled fresh-squeezed orange juice samples purchased in Ankara, Turkey, were examined. The average aerobic plate count (APC) and coliform count (CC) varied within the ranges of 3 to 5 log CFU/ml and 1 to 4 log MPN/ml, respectively. Ten of 60 samples contained various levels of Escherichia coli, while Salmonella spp. and E. coli O157:H7 were not detected in any of the samples. Comparing the efficacy of various fruit surface decontamination methods on microbial population of oranges, the best results were obtained following two applications of submersion in boiling water and 5% H(2)O(2) solution for both the uninoculated and inoculated samples. Orange juice samples obtained from surface-inoculated and decontaminated oranges were also examined. We showed that about 17.4% of the E. coli population was transferred to orange juice after extraction, indicating the separation of microbial contaminants from fruit peel during extraction. Finally, the levels of microbial contamination occurred throughout the extraction process on the inner surfaces of a commercial juice extractor at one of the sale points investigated. Significant (P < 0.05) increases in the APC and CC were determined in surface samples of the extractor after the extraction. Surface decontamination and extraction are critical steps in fresh juice production for preventing microbial contamination. Immersion in boiling water for 0.5 min, without using any chemicals, can be offered as an effective method to reduce microbial population on orange surfaces.

  14. Teaching Materials and Methods.

    ERIC Educational Resources Information Center

    Physiologist, 1982

    1982-01-01

    Twelve abstracts of papers presented at the 33rd Annual Fall Meeting of the American Physiological Society are listed, focusing on teaching materials/methods. Topics, among others, include trends in physiology laboratory programs, cardiovascular system model, cardiovascular computer simulation with didactic feedback, and computer generated figures…

  15. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  16. Managing mass casualties and decontamination.

    PubMed

    Chilcott, Robert P

    2014-11-01

    Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.

  17. Preconceptual design of the gas-phase decontamination demonstration cart

    SciTech Connect

    Munday, E.B.

    1993-12-01

    Removal of uranium deposits from the interior surfaces of gaseous diffusion equipment will be a major portion of the overall multibillion dollar effort to decontaminate and decommission the gaseous diffusion plants. Long-term low-temperature (LTLT) gas-phase decontamination is being developed at the K-25 Site as an in situ decontamination process that is expected to significantly lower the decontamination costs, reduce worker exposure to radioactive materials, and reduce safeguard concerns. This report documents the preconceptual design of the process equipment that is necessary to conduct a full-scale demonstration of the LTLT method in accordance with the process steps listed above. The process equipment and method proposed in this report are not intended to represent a full-scale production campaign design and operation, since the gas evacuation, gas charging, and off-gas handling systems that would be cost effective in a production campaign are not cost effective for a first-time demonstration. However, the design presented here is expected to be applicable to special decontamination projects beyond the demonstration, which could include the Deposit Recovery Program. The equipment will therefore be sized to a 200 ft size 1 converter (plus a substantial conservative design margin), which is the largest item of interest for gas phase decontamination in the Deposit Recovery Program. The decontamination equipment will allow recovery of the UF{sub 6}, which is generated from the reaction of ClF{sub 3} with the uranium deposits, by use of NaF traps.

  18. Construction Material And Method

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2006-02-21

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  19. Sampling and Decontamination Method for Culture of Nontuberculous Mycobacteria in Respiratory Samples of Cystic Fibrosis Patients

    PubMed Central

    De Geyter, Deborah; De Schutter, Iris; Mouton, Christine; Wellemans, Isabelle; Hanssens, Laurence; Schelstraete, Petra; Malfroot, Anne; Pierard, Denis

    2013-01-01

    We confirmed that chlorhexidine decontamination yielded more nontuberculous mycobacteria than did the N-acetyl-l-cysteine-NaOH-oxalic acid procedure from respiratory samples of cystic fibrosis patients on solid cultures. However, this improved recovery is mostly balanced if the latter is combined with liquid culture. Furthermore, none of the 145 cough swabs, used to sample young children, cultured positive, suggesting that swabs are low-quality samples. PMID:24048532

  20. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  1. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants

    NASA Astrophysics Data System (ADS)

    Pi, Liu; Jiang, Rui; Zhou, Wangchi; Zhu, Hua; Xiao, Wei; Wang, Dihua; Mao, Xuhui

    2015-12-01

    Converting the waste biomasses with high-carbon content into value-added materials is an environmental-friendly way for their utilization. In this study, a leaf-derived biochar is modified with graphitic C3N4 to fulfill an affordable composite material capable of removing organic pollutants via adsorptive and photocatalytic processes simultaneously. The preparation process includes a carbonization process of chestnut leaf biomass and a followed condensation reaction of melamine at 520 °C. The characterization shows that biochar and C3N4 existed in the composites in their pristine status, and the effective connection of C3N4 and biochar was established. The adsorptive performance of the composites is governed by the biochar content in the composite, thus showing favorable performance for the removal of cationic dye methylene blue (MB). The condensation reaction of the melamine precursor has a coalescing effect on the dispersed biochar, resulting in the growth of particle size of composite. The composites prepared at different biochar/melamine ratios all show a photocatalytic activity on decolorization of MB. In terms of the specific photocatalytic activity of C3N4 in the composite, biochar/melamine ratio of 0.5:1 is the best. Unlike the conventional adsorptive carbon materials which have saturated adsorption capacity, the composite in this study retain a sustaining decontamination capability due to the photocatalytic degradation of adsorbed organic pollutants under irradiation.

  2. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  3. Evaluation of nonchemical decontamination techniques for use on reactor coolant systems. [PWR

    SciTech Connect

    Gardner, H.R.; Allen, R.P.; Polentz, L.M.; Skiens, W.E.; Wolf, G.A.

    1982-10-01

    The objective of this work is to describe, characterize, and evaluate a number of decontamination techniques that could be applied to the cleaning of fuel debris and corrosion products from reactor coolant systems and components. Excluded from consideration are the traditional or common chemical decontamination techniques. The information developed for each technique includes: theory of operation, methods of application, accessibility requirements, remote operation capability, state of development, previous applications, decontamination effectiveness, corrosion problems during and after decontamination, material removal, radiological and industrial safety, cost, post-decontamination cleanup, need for post-decontamination surface treatment, waste generation and disposal, and redistribution of contamination. The techniques treated are: Mechanical Methods; High-Pressure Water (< 20,000 psi); Ultrahigh-Pressure Water (> 20,000 psi); Abrasive Cleaning; Vibratory Finishing; Ultrasonics; High-Pressure FREON Cleaning; Electropolishing; Alternative Electrolyte Techniques; Steam/Hot Water Cleaning and Two-Phase Mixtures; Decontamination Foams, Gels, and Pastes; Strippable Decontamination Coatings; Reflux Decontamination; Dry Ice Blasting; Electrochemically-Activated Solutions; Molten Salt Methods; and Thermal Erosion.

  4. Gentilly 1: decontamination program

    SciTech Connect

    Le, H.; Denault, P.

    1985-11-01

    The Gentilly 1 station, a 250-MW(e) light-water-cooled and heavy-water-moderated nuclear reactor, is being decommissioned to a static state (variant of stage 1) condition by Atomic Energy of Canada Limited (AECL). The scope of the decontamination program at the Gentilly 1 site includes the fuel pool and associated systems, the decontamination center, the laundry, the feedwater pumps and piping systems, the service building ventilation and drainage systems, and miscellaneous floor and wall areas. After an extensive literature review for acceptable decontamination methods, it was decided that the decontamination equipment used at Gentilly 1 during the program would include a hydrolaser, a scarifier, chipping hammers, a steam cleaner, an ultrasonic bath, and cutting tools. In addition, various foams, acids, detergents, surfactants, and abrasives are used alone and in tandem with the above equipment. This paper highlights the result of these decontaminations, their effectiveness, and the recommendation for future application. The methodology in performing these operations are also presented.

  5. Results of Hg speciation testing on MCU strip effluent hold tank (SEHT) and decontaminated salt solution hold tank (DSSHT) materials

    SciTech Connect

    Bannochie, C. J.

    2015-09-17

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team.i,ii The tenth shipment of samples was designated to include Modular Caustic Side Solvent Extraction Unit (MCU) Strip Effluent Hold Tank (SEHT) and MCU Decontaminated Salt Solution Hold Tank (DSSHT) materials from processing Salt Batch 7b. The MCU SEHT (MCU-15-722) and DSSHT (MCU-15-709) samples were pulled on June 15, 2015. All MCU samples were received at SRNL on June 16, 2015. The DSSHT sample was moved the same day to refrigeration, while the SEHT sample was placed in the Shielded Cells. On July 9, 2015 it was opened and an aliquot diluted 1:100 with Eurofins deionized water and a portion of the diluted sample transferred to a Teflon® bottle prior to moving it to refrigeration that same day. All samples were kept in the dark and refrigerated until final dilutions were prepared for shipment to Eurofins.

  6. [Physical methods (ultrasound) and disinfecting agents for decontaminating the water in poultry meat processing].

    PubMed

    Ionova, I; Kunev, Zh; Mladenov, M; Diakov, G

    1981-01-01

    Productional and laboratory experiments were carried out to study the effect of ultra sound with a view to decontaminating the water in the vats for cooling poultry carcasses and skin cover as well as that of disinfection means (inkosan, actofor, yomil S, chalamide, and chloramin). In vitro studies revealed that the use of ultra sound in the decontamination of cooling water and poultry meat surface did not produce the necessary effect. The iodofor preparations inkosan and yomil S as well as the agents chalamide and chloramine added in fixed concentrations to the water in cooling vats were not shown to be able to inactivate Salmonella organisms on the surface of experimentally contaminated poultry carcasses. Inkosan at the rate of 1:1000, and yomil S at 0.2 and 0.4 per cent produced a 100 per cent bactericidal effect against the microflora in vat waters regardless of their initial contamination. Except for yomil S at 0.4 per cent these agents did not affect the organoleptic properties of poultry meat.

  7. Oxidative Tritium Decontamination System

    DOEpatents

    Gentile, Charles A. , Guttadora, Gregory L. , Parker, John J.

    2006-02-07

    The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

  8. Decontamination of soils and materials containing medium-fired PuO{sub 2} using inhibited fluorides with polymer filtration technology

    SciTech Connect

    Temer, D.J.; Villarreal, R.; Smith, B.F.

    1997-10-01

    The decontamination of soils and/or materials from medium-fired plutonium oxide (PuO{sub 2}) with an effective and efficient decontamination agent that will not significantly dissolve the matrix requires a new and innovative technology. After testing several decontamination agents and solutions for dissolution of medium-fired PuO{sub 2}, the most successful decontamination solutions were fluoride compounds, which were effective in breaking the Pu-oxide bond but would not extensively dissolve soil constituents and other materials. The fluoride compounds, tetra fluoboric acid (HBF{sub 4}) and hydrofluorosilicic acid (H{sub 2}F{sub 6}Si), were effective in dissolving medium-fired PuO{sub 2}, and did not seem to have the potential to dissolve the matrix. In both compounds, the fluoride atom is attached to a boron or silicon atom that inhibits the reactivity of the fluoride towards other compounds or materials containing atoms less attracted to the fluoride atom in an acid solution. Because of this inhibition of the reactivity of the fluoride ion, these compounds are termed inhibited fluoride compounds or agents. Both inhibited fluorides studied effectively dissolved medium-fired PuO{sub 2} but exhibited a tendency to not attack stainless steel or soil. The basis for selecting inhibited fluorides was confirmed during leaching tests of medium-fired PuO{sub 2} spiked into soil taken from the Idaho National Engineering Laboratory (INEL). When dissolved in dilute HNO{sub 3}, HCl, or HBr, both inhibited fluoride compounds were effective at solubilizing the medium-fired PuO{sub 2} from spiked INEL soil.

  9. Decontamination of radioisotopes

    PubMed Central

    Domínguez-Gadea, Luis; Cerezo, Laura

    2011-01-01

    Contaminations with radioactive material may occur in several situations related to medicine, industry or research. Seriousness of the incident depends mainly on the radioactive element involved; usually there are no major acute health effects, but in the long term can cause malignancies, leukemia, genetic defects and teratogenic anomalies. The most common is superficial contamination, but the radioactive material can get into the body and be retained by the cells of target organs, injuring directly and permanently sensitive elements of the body. Rapid intervention is very important to remove the radioactive material without spreading it. Work must be performed in a specially prepared area and personnel involved should wear special protective clothing. For external decontamination general cleaning techniques are used, usually do not require chemical techniques. For internal decontamination is necessary to use specific agents, according to the causative element, as well physiological interventions to enhance elimination and excretion. PMID:24376972

  10. Electrolytic decontamination of metal low level waste (LLW) and mixed low level waste (MLLW)

    SciTech Connect

    1998-11-01

    Metal objects resulting from ER activities were decontaminated using electrolytic methods. The project involved about 500 kg of ballistic test projectiles, 23 augers and drill heads, and 50 pieces of shrapnel containing lead. All objects were free-released and either reclaimed as scrap metal or reused. Electrolytic decontamination was proven to be an effective method to decontaminate metal waste objects to free-release standards. A cost analysis showed the process to be economical, especially when applied to decontamination of mixed waste, TRU waste, or when the recovered materials could be reused or recycled. The cost of decontamination of scrap iron is approximately equal to the cost of its land disposal as low level waste.

  11. System and method for removing contaminants from solid surfaces and decontaminating waste

    SciTech Connect

    Brown, T.L.; Geiss, A.J.; Grieco, S.; Neubauer, E.D.; Rhea, J.R.

    1995-10-10

    A method and system are disclosed for removing a surface layer contaminated with radioactive and/or hazardous material and subsequently treating the waste to remove contaminants and provide an essentially contaminant-free final effluent. The contaminated material is removed by blasting the surface with a pressurized stream of air and sodium bicarbonate abrasive media, and the media is dissolved in water subsequent to the blasting operation. The resulting waste is treated in a sequence of steps including adjustment of pH, aeration and separation into primarily solid and liquid phases by precipitation of solids, which are removed for appropriate disposal. The primarily liquid phase is successively passed through a particle filter, a granulated activated carbon filter and a polishing unit to produce the clean final effluent. 1 fig.

  12. Methods of synthesizing thermoelectric materials

    DOEpatents

    Ren, Zhifeng; Chen, Shuo; Liu, Wei-Shu; Wang, Hengzhi; Wang, Hui; Yu, Bo; Chen, Gang

    2016-04-05

    Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

  13. Decontamination of high-level waste canisters

    SciTech Connect

    Nesbitt, J.F.; Slate, S.C.; Fetrow, L.K.

    1980-12-01

    This report presents evaluations of several methods for the in-process decontamination of metallic canisters containing any one of a number of solidified high-level waste (HLW) forms. The use of steam-water, steam, abrasive blasting, electropolishing, liquid honing, vibratory finishing and soaking have been tested or evaluated as potential techniques to decontaminate the outer surfaces of HLW canisters. Either these techniques have been tested or available literature has been examined to assess their applicability to the decontamination of HLW canisters. Electropolishing has been found to be the most thorough method to remove radionuclides and other foreign material that may be deposited on or in the outer surface of a canister during any of the HLW processes. Steam or steam-water spraying techniques may be adequate for some applications but fail to remove all contaminated forms that could be present in some of the HLW processes. Liquid honing and abrasive blasting remove contamination and foreign material very quickly and effectively from small areas and components although these blasting techniques tend to disperse the material removed from the cleaned surfaces. Vibratory finishing is very capable of removing the bulk of contamination and foreign matter from a variety of materials. However, special vibratory finishing equipment would have to be designed and adapted for a remote process. Soaking techniques take long periods of time and may not remove all of the smearable contamination. If soaking involves pickling baths that use corrosive agents, these agents may cause erosion of grain boundaries that results in rough surfaces.

  14. CO{sub 2} pellet blasting literature search and decontamination scoping tests report

    SciTech Connect

    Archibald, K.E.

    1993-12-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using current decontamination techniques. Chemical decontamination flushes have provided a satisfactory level of decontamination. However, this method generates large amounts of sodium-bearing secondary waste. Steam jet cleaning has also been used with a great deal of success but cannot be used on concrete or soft materials. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. Treatment of sodium-bearing waste is a particularly difficult problem due to the high content of alkali metals in the sodium-bearing liquid waste. It requires a very large volume of cold chemical additive for calcination. In addition, the sodium content of the sodium-bearing waste exceeds the limit that can be incorporated into vitrified waste without the addition of glass-forming compounds (primarily silicon) to produce an acceptable immobilized waste form. The primary initiatives of the Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals and to minimize all liquid decontamination wastes. One method chosen for cold scoping studies during FY-93 was CO{sub 2} pellet blasting. CO{sub 2} pellet blasting has been used extensively by commercial industries for general cleaning. However, using this method for decontamination of nuclear materials is a fairly new concept. The following report discusses the research and scoping tests completed on CO{sub 2} pellet blasting.

  15. Decontamination: a microbiologist's perspective.

    PubMed

    Graham, G S

    1988-01-01

    The primary objective of decontamination is to protect healthcare workers who handle medical devices from infectious diseases that may be present on those devices. Ideally, the decontamination process should provide both cleaning and biocidal activity. A wide range of equipment, from automatic washer/sterilizers to semi-automated washer/sanitizers are commercially available to satisfy this need. The primary difference between these pieces of equipment, from a microbiology perspective, is in the level of safety they provide. A summary comparison of the decontamination methods is shown in Table 1. Without a doubt, steam sterilization as a method of decontamination provides a greater safety level than may be required. However, the question is, "Do disinfection and sanitization provide an adequate safety level?" Although items do not necessarily need to be sterile to be safe to handle, sterilization processes provide the greatest margin of safety because of the significant microbial lethality and the ability to effectively monitor the process via biological indicators. Sterilization effectively eliminates the concern regarding the nearly unanswerable question of bioburden. Unfortunately, not all items are capable of being processed through a washer/sterilizer. Therefore, consideration must be given to the process compatibility of each device. Disinfection processes provide the next level of safety. Unfortunately, there is no recognized or accepted method for quantitatively describing or monitoring a thermal disinfection process. As is the case with sterilization consideration must be given to the process compatibility of each device. Sanitization provides the lowest level of safety for the decontamination process.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10285793

  16. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  17. Skin decontamination: principles and perspectives.

    PubMed

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination. PMID:22851522

  18. Methods for Coating Particulate Material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  19. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    SciTech Connect

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  20. Proceedings of the concrete decontamination workshop

    SciTech Connect

    Halter, J.M.; Sullivan, R.G.; Currier, A.J.

    1980-05-28

    Fourteen papers were presented. These papers describe concrete surface removal methods and equipment, as well as experiences in decontaminating and removing both power and experimental nuclear reactors.

  1. Vibratory finishing as a decontamination process

    SciTech Connect

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  2. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    EPA Science Inventory

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  3. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  4. Properties and solidification of decontamination wastes

    SciTech Connect

    Davis, M.S.; Piciulo, P.L.; Bowerman, B.S.; Adams, J.W.; Milian, L.

    1983-01-01

    LWRs will require one or more chemical decontaminations to achieve their designed lifetimes. Primary system decontamination is designed to lower radiation fields in areas where plant maintenance personnel must work. Chemical decontamination methods are either hard (concentrated chemicals, approximately 5 to 25 weight percent) or soft (dilute chemicals less than 1 percent by weight). These methods may have different chemical reagents, some tailor-made to the crud composition and many methods are and will be proprietary. One factor common to most commercially available processes is the presence of organic acids and chelates. These types of organic reagents are known to enhance the migration of radionuclides after disposal in a shallow land burial site. The NRC sponsors two programs at Brookhaven National Laboratory that are concerned with the management of decontamination wastes which will be generated by the full system decontamination of LWRs. These two programs focus on potential methods for degrading or converting decontamination wastes to more acceptable forms prior to disposal and the impact of disposing of solidified decontamination wastes. The results of the solidification of simulated decontamination resin wastes will be presented. Recent results on combustion of simulated decontamintion wastes will be described and procedures for evaluating the release of decontamination reagents from solidified wastes will be summarized.

  5. A method of decontaminating Strongyloides venezuelensis larvae for the study of strongyloidiasis in germ-free and conventional mice.

    PubMed

    Martins, W A; Melo, A L; Nicoli, J R; Cara, D C; Carvalho, M A; Lana, M A; Vieira, E C; Farias, L M

    2000-04-01

    To study the possible influence of intestinal micro-organisms on the course of strongyloidiasis in mice, a method was developed to obtain axenic infective larvae of Strongyloides venezuelensis. Cultured larvae from conventional mice were treated with sodium hypochlorite 0.25% for 10 min, washed in distilled water and then exposed to various combinations of antibiotics for 30 or 60 min. Success was achieved with a combination of penicillin 180 mg/L and ceftazidime 1 mg/ml. Decontamination of the larvae was determined by aerobic and anaerobic culture and by inoculation into gnotobiotic mice. Viability was established by subcutaneous inoculation of larvae into germ-free and conventional mice. Preliminary results showed that gnotobiotic mice were more susceptible than conventional mice to infection with axenic S. venezuelensis larvae as judged by faecal egg excretion, recovery of worms in the small intestine and histopathological examination of the duodenal mucosa. These results suggest that the normal intestinal flora protects the host against experimental infection with S. venezuelensis.

  6. Methods for purifying carbon materials

    DOEpatents

    Dailly, Anne; Ahn, Channing; Yazami, Rachid; Fultz, Brent T.

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  7. Method of producing metallic materials

    DOEpatents

    Branagan, Daniel J.

    2004-02-10

    The invention includes a method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of B, C, Si and P. The mixture is formed into an alloy and cooled to form a metallic material having a hardness greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The strip and the powder are rolled to form a wire containing at least 55% iron and from 2-7 additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  8. Hemodialysis as a potential method for the decontamination of persons exposed to radiocesium

    SciTech Connect

    Verzijl, J.M. |; Wierckx, F.C.J.; Dijk, A. van

    1995-10-01

    Radiocesium may be deposited in the environment as a result of accidents in nuclear installations, for example, as in Chernobyl. Significant internal contamination with radiocesium poses a serious risk to human health, and, therefore, expedient removal is essential to reduce the radiation body burden. In vitro hemodialysis was tested as potential method to remove radiocesium from a pasteurized plasma solution of bovine or human blood. Clearance values were calculated by a flow independent method. Hemodialysis appears to be a good method to remove radiocesium from blood: within 4 h more than 90% of the administered radiocesium is removed from blood or plasma.

  9. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2011-05-17

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermenting microorganisms; and (c) recovering the organic substance from the fermentation.

  10. Methods for degrading lignocellulosic materials

    DOEpatents

    Vlasenko, Elena; Cherry, Joel; Xu, Feng

    2008-04-08

    The present invention relates to methods for degrading a lignocellulosic material, comprising: treating the lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying a lignocellulosic material with an effective amount of one or more cellulolytic enzymes in the presence of at least one surfactant selected from the group consisting of a secondary alcohol ethoxylate, fatty alcohol ethoxylate, nonylphenol ethoxylate, tridecyl ethoxylate, and polyoxyethylene ether, wherein the presence of the surfactant increases the degradation of lignocellulosic material compared to the absence of the surfactant; (b) fermenting the saccharified lignocellulosic material of step (a) with one or more fermentating microoganisms; and (c) recovering the organic substance from the fermentation.

  11. ITP Filter Particulate Decontamination Measurement

    SciTech Connect

    Dworjanyn, L.O.

    1993-05-21

    A new test method was developed which showed the installed In- Tank Precipitation Filter Unit {number_sign}3 provided at least 40, 000 x decontamination of the precipitated potassium tetraphenylborate (KTPB) during the cold chemical runs.This filter is expected to meet the needed 40,000 x hot cesium decontamination requirements, assuming that the cesium precipitate, CsTPB, behaves the same as KTPB. The new method permits cold chemicals field testing of installed filters to quantify particulate decontamination and verify filter integrity before going hot. The method involves a 1000 x concentration of fine particulate KTPB in the filtrate to allow direct analysis by counting for naturally radioactive isotope K-40 using the underground SRTC gamma spectroscopy facility. The particulate concentration was accomplished by ultra filtration at Rhone-Poulenc, NJ, using a small cross-flow bench facility, followed by collection of all suspended solids on a small filter disc for K analysis.

  12. A systematic methodology for selecting decontamination strategies following a biocontamination event.

    PubMed

    Krauter, Paula; Edwards, Donna; Yang, Lynn; Tucker, Mark

    2011-09-01

    Decontamination and recovery of a facility or outdoor area after a wide-area biological incident involving a highly persistent agent (eg, Bacillus anthracis spores) is a complex process that requires extensive information and significant resources, which are likely to be limited, particularly if multiple facilities or areas are affected. This article proposes a systematic methodology for evaluating information to select the decontamination or alternative treatments that optimize use of resources if decontamination is required for the facility or area. The methodology covers a wide range of approaches, including volumetric and surface decontamination, monitored natural attenuation, and seal and abandon strategies. A proposed trade-off analysis can help decision makers understand the relative appropriateness, efficacy, and labor, skill, and cost requirements of the various decontamination methods for the particular facility or area needing treatment--whether alone or as part of a larger decontamination effort. Because the state of decontamination knowledge and technology continues to evolve rapidly, the methodology presented here is designed to accommodate new strategies and materials and changing information. PMID:21823924

  13. Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: a minireview.

    PubMed

    dos Santos, Elisama Vieira; Bezerra Rocha, Jessica Horacina; de Araújo, Danyelle Medeiros; de Moura, Dayanne Chianca; Martínez-Huitle, Carlos Alberto

    2014-01-01

    Produced water (PW) is the largest waste stream generated in oil and gas industries. The drilling and extraction operations that are aimed to maximize the production of oil may be counterbalanced by the huge production of contaminated water (called PW) with pollutants, such as heavy metals, dissolved/suspended solids, and organic compounds. PW is conventionally treated through different physical, chemical, and biological methods. In offshore platforms, because of space constraints, compact physical and chemical systems are used. However, major research efforts are being developed with innovative technologies for treating PW in order to comply with reuse and discharge limits. Among them, electrochemical technologies have been proposed as a promising alternative for the treatment of this kind of wastewaters. Then, this paper presents a minireview of efficient electrochemical technologies used until now for treating PW generated by petrochemical industry.

  14. Decontamination of produced water containing petroleum hydrocarbons by electrochemical methods: a minireview.

    PubMed

    dos Santos, Elisama Vieira; Bezerra Rocha, Jessica Horacina; de Araújo, Danyelle Medeiros; de Moura, Dayanne Chianca; Martínez-Huitle, Carlos Alberto

    2014-01-01

    Produced water (PW) is the largest waste stream generated in oil and gas industries. The drilling and extraction operations that are aimed to maximize the production of oil may be counterbalanced by the huge production of contaminated water (called PW) with pollutants, such as heavy metals, dissolved/suspended solids, and organic compounds. PW is conventionally treated through different physical, chemical, and biological methods. In offshore platforms, because of space constraints, compact physical and chemical systems are used. However, major research efforts are being developed with innovative technologies for treating PW in order to comply with reuse and discharge limits. Among them, electrochemical technologies have been proposed as a promising alternative for the treatment of this kind of wastewaters. Then, this paper presents a minireview of efficient electrochemical technologies used until now for treating PW generated by petrochemical industry. PMID:24671399

  15. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    SciTech Connect

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO{sub 2} pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams.

  16. Nuclear Forensic Materials and Methods

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Grant, P. M.; Moody, K. J.

    A short history and treatment of the various aspects of nuclear forensic analysis is followed by a discussion of the most common chemical procedures, including applications of tracers, radioisotopic generators, and sample chronometry. Analytic methodology discussed includes sample preparation, radiation detection, various forms of microscopy, and mass-spectrometric techniques. The chapter concludes with methods for the production and treatment of special nuclear materials and with a description of several actual case studies conducted at Livermore.

  17. Method of sintering ceramic materials

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  18. Method of sintering ceramic materials

    DOEpatents

    Holcombe, C.E.; Dykes, N.L.

    1992-11-17

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density. 2 figs.

  19. Literature review on decontaminating groundwater sampling devices: Organic pollutants

    SciTech Connect

    Parker, L.V.

    1995-07-01

    Current protocols for decontaminating devices used to sample groundwater for organic contaminants are reviewed. Most of the methods given by regulatory agencies provide little scientific evidence that justify the recommended protocols. In addition, only a few studies that actually compared various decontamination protocols could be found in the open literature, and those studies were limited in their scope. Various approaches for decontamination and criteria that are important in determining how effectively a surface could be decontaminated are discussed.

  20. Decontaminating pesticide protective clothing.

    PubMed

    Laughlin, J

    1993-01-01

    The review of recent work on the mechanisms of soil removal from textiles assists in understanding decontamination of pesticide protective clothing. The current work provides explanatory conclusions about residue retention as a basis of making recommendations for the most effective decontamination procedures. A caution about generalizations: Some pesticides produce very idiosyncratic responses to decontamination. An example is the paraquat/salt response. Other pesticides exhibit noticeable and unique responses to a highly alkaline medium (carbaryl), or to bleach (chlorpyrifos), or are quickly volatilized (methyl parathion). Responses such as these do not apply to other pesticides undergoing decontamination. Given this caution, there are soil, substrate, and solvent responses that do maximize residue removal. Residue removal is less complete as the concentration of pesticide increases. The concentration of pesticide in fabric builds with successive exposures, and the more concentrated the pesticide, the more difficult the removal. Use a prewash product and/or presoak. The surfactant and/or solvent in a prewash product is a booster in residue removal. Residues transfer from contaminated clothing to other clothing during the washing cycle. Use a full washer of water for a limited number of garments to increase residue removal. The hotter the washing temperature, the better. Generally, this means a water temperature of at least 49 degrees C, and preferably 60 degrees C. Select the detergent shown to be more effective for the formulation: heavy-duty liquid detergents for emulsifiable concentrate formulations and powdered phosphate detergents for wettable powder formulations. If the fabric has a soil-repellent finish, use 1.25 times the amount recommended on the detergent label. For water hardness above 300 ppm, an additional amount of powdered phosphate detergent is needed to obtain the same level of residue removal as obtained with the heavy-duty liquid detergent when

  1. Decontamination apparatus and method

    DOEpatents

    Oakley, David J.

    1987-01-06

    A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.

  2. Decontamination apparatus and method

    DOEpatents

    Oakley, David J.

    1987-01-01

    A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.

  3. Validation of a protocol to compare the effectiveness of experimental decontaminants with both components of the M258A1 kit against percutaneous application of undiluted vesicant chemical surety material to the laboratory albino rabbit. Final report, 1 March 1985-24 July 1987

    SciTech Connect

    Joiner, R.L.

    1987-07-24

    A rabbit model was developed and validated for screening noninvasive candidate decontamination systems for their efficacies against topical exposure to the vesicant chemical surety material sulfur mustard (HD). Rabbits were dosed with HD on their shaved dorsa and then decontaminated at varying times with either both components of the M258A1 field kit or twice with distilled water. Lesion lengths were estimated and compared contralaterally. Results revealed statistically shorter lesions for M258A1 decontamination relative to the respective lesions decontaminated with distilled water.

  4. Effective uptake of decontaminating agent (citric acid) from aqueous solution by mesoporous and microporous materials: an adsorption process.

    PubMed

    Gokulakrishnan, Narasimhan; Pandurangan, Arumugam; Sinha, Pradeep Kumar

    2006-04-01

    The presence of citric acid in decontamination waste can cause complexation of the radioactive cations resulting in interferences in their removal by various treatment processes such as chemical precipitation, ion-exchange, etc., which are employed for the removal of radioactivity and may cause potential danger to the environment. Mesoporous Al-MCM-41 (Si/Al=30, 51, 72 and 97) and Si-MCM-41 molecular sieves were synthesized hydrothermally and characterized by XRD, BET (surface area) and FT-IR to evaluate the removal of citric acid through an adsorption process. Adsorption of citric acid over Al-MCM-41 shows the applicability of Freundlich and Langmuir isotherm and follows first order kinetics. The effects of contact time, concentration of citric acid, adsorbents (various Si/Al ratios of Al-MCM-41, Si-MCM-41, Hbeta zeolite and commercial carbon) and pH have been investigated. It has been found that the amount of citric acid adsorbed per unit gram of catalyst followed the order Al-MCM-41 (Si/Al=30)>Al-MCM-41 (Si/Al=51)>activated charcoal>Al-MCM-41 (Si/Al=72)>Al-MCM-41 (Si/Al=97)>Si-MCM-41>Hbeta zeolite.

  5. Filming in decontamination by mopping

    SciTech Connect

    Rankin, W.N.; Toole, P.A.

    1993-09-28

    Technical assistance was provided High Level Waste Engineering in the investigation and prevention of filming during decontamination by mopping. After mopping operations in a Tank Farm application, a film of the cleaning agent sometimes remained on the surface being cleaned which interfered with monitoring to detect the presence of radioactive material. Scoping tests were conducted to investigate filming characteristics of two cleaning materials. In addition, rinsing test were conducted to demonstrate how filming can be prevented.

  6. Method of binding structural material

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2007-12-25

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  7. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  8. Testing and evaluation of eight decontamination chemicals

    SciTech Connect

    Demmer, R.

    1994-09-01

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO{sub 3}) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO{sub 3} solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ``high sodium`` TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages.

  9. Gross decontamination experiment report

    SciTech Connect

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  10. Method for Waterproofing Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  11. Cel vinyls: materials and methods.

    PubMed

    Harrison, S J

    1983-12-01

    Many commercial uses of media are applicable to medical/scientific media production and illustration, not the least of which are techniques pioneered in the commercial cartooning field. Whether or not the illustrative effort culminates in a "cartoon," the production techniques of the cartooning industry cannot be overlooked by the illustrator faced with providing projection graphics, whether animated or still, for slides, motion pictures, television or even print media. When Walt Disney introduced Mickey Mouse as "Steamboat Willie" in 1928, his technology opened the door for exploration of cartooning media by all artists. Only in comparatively recent years have these tools been used by the scientific illustrator. In this article cel vinyl acrylics or cartoon colors will be discussed: the rationale for the use of this medium, materials and methods, and considerations related to the photography of this art form.

  12. Cel vinyls: materials and methods.

    PubMed

    Harrison, S J

    1983-12-01

    Many commercial uses of media are applicable to medical/scientific media production and illustration, not the least of which are techniques pioneered in the commercial cartooning field. Whether or not the illustrative effort culminates in a "cartoon," the production techniques of the cartooning industry cannot be overlooked by the illustrator faced with providing projection graphics, whether animated or still, for slides, motion pictures, television or even print media. When Walt Disney introduced Mickey Mouse as "Steamboat Willie" in 1928, his technology opened the door for exploration of cartooning media by all artists. Only in comparatively recent years have these tools been used by the scientific illustrator. In this article cel vinyl acrylics or cartoon colors will be discussed: the rationale for the use of this medium, materials and methods, and considerations related to the photography of this art form. PMID:6677644

  13. Glovebox decontamination technology comparison

    SciTech Connect

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  14. Self-Cleaning Coatings and Materials for Decontaminating Field-Deployable Land and Water-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Underwood, Lauren; Holekamp, Kara; May, George; Spiering, Bruce; Davis, Bruce

    2011-01-01

    This technology exploits the organic decomposition capability and hydrophilic properties of the photocatalytic material titanium dioxide (TiO2), a nontoxic and non-hazardous substance, to address contamination and biofouling issues in field-deployed optical sensor systems. Specifically, this technology incorporates TiO2 coatings and materials applied to, or integrated as a part of, the optical surfaces of sensors and calibration sources, including lenses, windows, and mirrors that are used in remote, unattended, ground-based (land or maritime) optical sensor systems. Current methods used to address contamination or biofouling of these optical surfaces in deployed systems are costly, toxic, labor intensive, and non-preventative. By implementing this novel technology, many of these negative aspects can be reduced. The functionality of this innovative self-cleaning solution to address the problem of contamination or biofouling depends on the availability of a sufficient light source with the appropriate spectral properties, which can be attained naturally via sunlight or supplemented using artificial illumination such as UV LEDs (light emitting diodes). In land-based or above-water systems, the TiO2 optical surface is exposed to sunlight, which catalyzes the photocatalytic reaction, facilitating both the decomposition of inorganic and organic compounds, and the activation of superhydrophilic properties. Since underwater optical surfaces are submerged and have limited sunlight exposure, supplementary UV light sources would be required to activate the TiO2 on these optical surfaces. Nighttime operation of land-based or above-water systems would require this addition as well. For most superhydrophilic self-cleaning purposes, a rainwater wash will suffice; however, for some applications an attached rainwater collector/ dispenser or other fresh water dispensing system may be required to wash the optical surface and initiate the removal of contaminates. Deployment of this

  15. The effect of saliva decontamination procedures on dentin bond strength after universal adhesive curing

    PubMed Central

    Kim, Jayang; Hong, Sungok; Choi, Yoorina

    2015-01-01

    Objectives The purpose of this study was to investigate the effectiveness of multiple decontamination procedures for salivary contamination after curing of a universal adhesive on dentin bond strength according to its etch modes. Materials and Methods Forty-two extracted bovine incisors were trimmed by exposing the labial dentin surfaces and embedded in cylindrical molds. A universal adhesive (All-Bond Universal, Bisco) was used. The teeth were randomly divided into groups according to etch mode and decontamination procedure. The adhesive was applied according to the manufacturer's instructions for a given etch mode. With the exception of the control groups, the cured adhesive was contaminated with saliva for 20 sec. In the self-etch group, the teeth were divided into three groups: control, decontamination with rinsing and drying, and decontamination with rinsing, drying, and adhesive. In the etch-and-rinse group, the teeth were divided into four groups: control, decontamination with rinsing and drying, decontamination with rinsing, drying, and adhesive, and decontamination with rinsing, drying, re-etching, and reapplication of adhesive. A composite resin (Filtek Z350XT, 3M ESPE) was used for filling and was cured on the treated surfaces. Shear bond strength was measured, and failure modes were evaluated. The data were subjected to one-way analysis of variation and Tukey's HSD test. Results The etch-and-rinse subgroup that was decontaminated by rinse, drying, re-etching, and reapplication of adhesive showed a significantly higher bond strength. Conclusions When salivary contamination occurs after curing of the universal adhesive, additional etching improves the bond strength to dentin. PMID:26587416

  16. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    SciTech Connect

    Raber, E.; McGuire, R.; Hoffman, M.; Alcaraz, A.; Shepley, D.; Elliot, J.; Krauter, P.; Garcia, E.

    2000-12-16

    The general philosophy of this work is to develop an integrated set of decontamination methods and tools that will work on the major CBW threat agents. The work includes some near term techniques that can be demonstrated within a year and implemented soon thereafter as well as longer term research objectives. It is recognized that there is a balance between somewhat less effective methods which can be demonstrated quickly and more effective ones which may require a much longer time to fruition. The optimum goal of this study is to find a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. One of the goals is to have decontamination systems that might be used by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and recertification (public perception and stakeholder acceptance) are of much greater importance. The specific objective of the LLNL work to date has been to evaluate various oxidizer systems as reagents to allow for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. Since we also wanted to maximize the contact time between the

  17. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.

    PubMed

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Peng, Xin; Zeng, Guangming; Zhong, Hua; Liang, Jie; Ren, Miaomiao

    2013-07-01

    Graphene, as an ideal two-dimensional material and single-atom layer of graphite, has attracted exploding interests in multidisciplinary research because of its unique structure and exceptional physicochemical properties. Especially, graphene-based materials offer a wide range of potentialities for environmental remediation and energy applications. This review shows an extensive overview of the main principles and the recent synthetic technologies about designing and fabricating various innovative graphene-based materials. Furthermore, an extensive list of graphene-based sorbents and catalysts from vast literature has been compiled. The adsorptive and catalytic properties of graphene-based materials for the removal of various pollutants and hydrogen storage/production as available in the literature are presented. Tremendous adsorption capacity, excellent catalytic performance and abundant availability are the significant factors making these materials suitable alternatives for environmental pollutant control and energy-related system, especially in terms of the removal of pollutants in water, gas cleanup and purification, and hydrogen generation and storage. Meanwhile, a brief discussion is also included on the influence of graphene materials on the environment, and its toxicological effects. Lastly, some unsolved subjects together with major challenges in this germinating area of research are highlighted and discussed. Conclusively, the expanding of graphene-based materials in the field of adsorption and catalysis science represents a viable and powerful tool, resulting in the superior improvement of environmental pollution control and energy development.

  18. Radiation decontamination of pharmaceutical raw materials as an integral part of the good pharmaceutical manufacturing practice (GPMP)

    NASA Astrophysics Data System (ADS)

    Ražem, D.; Katušin-Ražem, B.; Starčević, M.; Galeković, B.

    The microbiological quality of many raw materials used in the manufacture of pharmaceutical and adjuvants often fails to meet the standards set by the pharmaceutical industry. Raw materials of biological provenience are particularly susceptible to contamination. This work describes the present situation regarding the microbial load of corn starch. Given the accepted microbiological criteria, irradiation treatment is proposed as integral to Good Pharmaceutical Manufacturing Practice (GPMP). The use of total viable count as a guide for specifying microbial limits for non-sterile materials is supported. Criteria for the choice of dose are discussed.

  19. Personal protective equipment and decontamination of adults and children.

    PubMed

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident.

  20. Personal protective equipment and decontamination of adults and children.

    PubMed

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident. PMID:25455662

  1. Radioactive scrap metal decontamination technology assessment report

    SciTech Connect

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

  2. Urban Decontamination Experience at Pripyat Ukraine - 13526

    SciTech Connect

    Paskevych, Sergiy; Voropay, Dmitry; Schmieman, Eric

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  3. Granulated decontamination formulations

    DOEpatents

    Tucker, Mark D.

    2007-10-02

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  4. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  5. NPOx Decontamination System

    SciTech Connect

    Archibald, K.; Demmer, R.; Argyle, M.; Ancho, M.; Hai-Pao, J.

    2002-02-25

    The nitric acid/potassium permanganate/oxalic acid (NPOx) Phase II system is being prepared for remote operation at the Idaho National Engineering and Environmental Laboratory (INEEL). Several tests have been conducted to prepare the system for remote operation. This system performs very well with high decontamination efficiencies and very low quantities of waste generated during decontamination.

  6. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores. PMID:22352747

  7. Decontamination after a release of B. anthracis spores.

    PubMed

    Campbell, Chris G; Kirvel, Robert D; Love, Adam H; Bailey, Christopher G; Miles, Robin; Schweickert, Jerry; Sutton, Mark; Raber, Ellen

    2012-03-01

    Decontaminating civilian facilities or large urban areas following an attack with Bacillus anthracis poses daunting challenges because of the lack of resources and proven technologies. Nevertheless, lessons learned from the 2001 cleanups together with advances derived from recent research have improved our understanding of what is required for effective decontamination. This article reviews current decontamination technologies appropriate for use in outdoor environments, on material surfaces, within large enclosed spaces, in water, and on waste contaminated with aerosolized B. anthracis spores.

  8. METHOD OF JACKETING FISSIONABLE MATERIALS

    DOEpatents

    Foster, L.M.

    1959-02-01

    An improvement is presented in the jacketing of a metal body accomplished by electroplating upon that portion of the metal container to be protected from the bonding material a niatcrial such as Cr which is impermeable to the bonding material. After the bonding operation the electroplate is removed and the metal container surfuce, unimpaired, may be welded to a cap which effects a closure. Generally in such an operation the metal body is U, the metal container is Al and the bonding material is a Zn alloy.

  9. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed.

  10. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed. PMID:24565672

  11. Method of making bearing material

    NASA Technical Reports Server (NTRS)

    Sliney, H. E. (Inventor)

    1980-01-01

    A composite material is described which will provide low friction surfaces for materials in rolling or sliding contact and is self lubricating and oxidation resistant up to and in excess of about 930 C. The composite is comprised of a metal component which lends strength and elasticity to the structure, a fluoride salt component which provides lubrication and, lastly, a glass component which not only provides oxidation protection to the metal but may also enhance the lubrication qualities of the composite.

  12. Decontaminating breast pump kits: new guidance.

    PubMed

    Oxtoby, Kathy

    Various methods can be used to decontaminate breast pump milk collection kits and items related to infant feeding but they have some drawbacks and risks. In 2015, the Joint Working Group of the Healthcare Infection Society and Infection Prevention Society published guidance to support the safe decontamination of this equipment at home and in hospital. This article summarises its recommendations for health professionals to use and communicate to other groups, such as parents and carers. PMID:27400623

  13. Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators

    PubMed Central

    Fisher, Edward M.; Williams, Jessica L.; Shaffer, Ronald E.

    2011-01-01

    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens. PMID:21525995

  14. Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators.

    PubMed

    Fisher, Edward M; Williams, Jessica L; Shaffer, Ronald E

    2011-04-15

    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens.

  15. Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators.

    PubMed

    Fisher, Edward M; Williams, Jessica L; Shaffer, Ronald E

    2011-01-01

    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens. PMID:21525995

  16. Systems and methods for treating material

    DOEpatents

    Scheele, Randall D; McNamara, Bruce K

    2014-10-21

    Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portion from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.

  17. Metal Surface Decontamination by the PFC Solution

    SciTech Connect

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi; Chong-Hun Jung; Won-Zin Oh

    2006-07-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the test results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)

  18. Equipment decontamination: A brief survey of the DOE complex

    SciTech Connect

    Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

    1995-03-01

    Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

  19. Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decontaminating gutta percha cones

    PubMed Central

    Athiban, Prakash P; Borthakur, Bikash Jyoti; Ganesan, S; Swathika, B

    2012-01-01

    Aim: The aim of this study was to evaluate the antimicrobial efficacy of Aloe vera and to determine its effectiveness in decontaminating gutta percha cones. Materials and Methods: A concentrated extract of Aloe vera was used to check for the antimicrobial efficacy using the agar well diffusion method. Presence of zones’ of diffusion was identified against three common GP contaminants namely, E.coli, E.faecalis and Staph. aureus. New GP Cones, freshly taken out of the packet were then decontaminated for 1minute using Aloe vera gel and then placed in thioglycolate broth to check for the presence of turbidity. Results: The zones of inhibition on the agar plate were measured as 24mm,21mm and 24mm respectively. The broth remained clear even after 48 hours of incubation. Conclusion: We conclude that Aloe vera is indeed effective as a GP decontaminant and it holds a promising future as a medium for storage of GP cones. PMID:22876011

  20. Statistical methods for nuclear material management

    SciTech Connect

    Bowen W.M.; Bennett, C.A.

    1988-12-01

    This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material management problems.

  1. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality.

    PubMed

    Kim, Y B; Kim, H W; Song, M K; Rhee, M S

    2015-05-18

    We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm. PMID:25732001

  2. Decontamination method using heat and relative humidity for radish seeds achieves a 7-log reduction of Escherichia coli O157:H7 without affecting product quality.

    PubMed

    Kim, Y B; Kim, H W; Song, M K; Rhee, M S

    2015-05-18

    We developed a novel decontamination method to inactivate Escherichia coli O157:H7 on radish seeds without adversely affecting seed germination or product quality. The use of heat (55, 60, and 65 °C) combined with relative humidity (RH; 25, 45, 65, 85, and 100%) for 24h was evaluated for effective microbial reduction and preservation of seed germination rates. A significant two-way interaction of heat and RH was observed for both microbial reduction and germination rate (P<0.0001). Increases in heat and RH were associated with corresponding reductions in E. coli O157:H7 and in germination rate (P<0.05). The order of lethality for the different treatments was generally as follows: no treatment <55 °C/25-65% RH ≒60 °C/25-45% RH ≒65 °C/25% RH <55 °C/85% RH =60 °C/65% RH <55 °C/100% RH =60 °C/85-100% RH =65 °C/45-100% RH. The most effective condition, 65 °C/45% RH, completely inactivated E. coli O157:H7 on the seeds (7.0 log CFU/g reduction) and had no significant effect on the germination rate (85.4%; P>0.05) or product quality. The method uses only heat and relative humidity without chemicals, and is thus applicable as a general decontamination procedure in spout producing plants where the use of growth chambers is the norm.

  3. Efficacy of antimicrobials for the disinfection of pathogen contaminated green bell pepper and of consumer cleaning methods for the decontamination of knives.

    PubMed

    Perez, Keila L; Lucia, Lisa M; Cisneros-Zevallos, Luis; Castillo, Alejandro; Taylor, T Matthew

    2012-05-01

    While there is strong focus on eliminating pathogens from produce at a commercial level, consumers can employ simple methods to achieve additional pathogen reductions in the domestic kitchen. To determine the ability of antimicrobials to decontaminate peppers, samples of green bell pepper were inoculated with Salmonella enterica and Escherichia coli O157:H7 and then immersed in 3% (v/v) hydrogen peroxide (H₂O₂), 2.5% (v/v) acetic acid (AA), 70% (v/v) ethyl alcohol (EtOH), or sterile distilled water (SDW). The potential for transfer of pathogens from contaminated peppers to other non-contaminated produce items, and the effect of knife disinfection in preventing this cross contamination, were also tested. Knife disinfection procedures were evaluated by chopping inoculated peppers into 1 cm² pieces with kitchen knives. Experimental knives were then treated by either no treatment (control), wiping with a dry sterile cotton towel, rinsing under running warm water for 5 or 10s, or applying a 1% (v/v) lauryl sulfate-based detergent solution followed by rinsing with warm running water for 10s. Following disinfection treatment, knives were used to slice cucumbers. Exposure to H₂O₂ for 5 min and EtOH for 1 min resulted in reductions of 1.3±0.3 log₁₀ CFU/cm² for both pathogens. A 5 min exposure to AA resulted in a reduction of S. enterica of 1.0±0.7 log₁₀ CFU/cm² and E. coli of 0.7±0.8 log₁₀ CFU/cm². No differences (p ≥ 0.05) were found between numbers of pathogens on knives and numbers of pathogens transferred to cucumber slices, suggesting that organisms remaining on knife surfaces were transferred to cucumbers during slicing. Findings suggest that EtOH and H₂O₂ may be effective antimicrobials for in-home decontamination of peppers, and that use of detergent and warm water is effective for decontamination of implements used during meal preparation.

  4. Quantitative method to determine sporicidal decontamination of building surfaces by gaseous fumigants, and issues related to laboratory-scale studies.

    PubMed

    Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Ryan, Shawn P; Martin, Blair

    2009-06-01

    Chlorine dioxide gas and vaporous hydrogen peroxide sterilant have been used in the cleanup of building interiors contaminated with spores of Bacillus anthracis. A systematic study, in collaboration with the U.S. Environmental Protection Agency, was jointly undertaken by the U.S. Army-Edgewood Chemical Biological Center to determine the sporicidal efficacies of these two fumigants on six building structural materials: carpet, ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. Critical issues related to high-throughput sample processing and spore recovery from porous and nonporous surfaces included (i) the extraction of spores from complex building materials, (ii) the effects of titer challenge levels on fumigant efficacy, and (iii) the impact of bioburden inclusion on spore recovery from surfaces and spore inactivation. Small pieces (1.3 by 1.3 cm of carpet, ceiling tile, wallboard, I-beam steel, and pinewood and 2.5 by 1.3 cm for cinder block) of the materials were inoculated with an aliquot of 50 microl containing the target number (1 x 10(6), 1 x 10(7), or 1 x 10(8)) of avirulent spores of B. anthracis NNR1Delta1. The aliquot was dried overnight in a biosafety cabinet, and the spores were extracted by a combination of a 10-min sonication and a 2-min vortexing using 0.5% buffered peptone water as the recovery medium. No statistically significant drop in the kill efficacies of the fumigants was observed when the spore challenge level was increased from 6 log units to 8 log units, even though a general trend toward inhibition of fumigant efficacy was evident. The organic burden (0 to 5%) in the spore inoculum resulted in a statistically significant drop in spore recovery (at the 2 or 5% level). The effect on spore killing was a function of the organic bioburden amount and the material type. In summary, a high-throughput quantitative method was developed for determining the efficacies of fumigants, and the spore

  5. Quantitative method to determine sporicidal decontamination of building surfaces by gaseous fumigants, and issues related to laboratory-scale studies.

    PubMed

    Rastogi, Vipin K; Wallace, Lalena; Smith, Lisa S; Ryan, Shawn P; Martin, Blair

    2009-06-01

    Chlorine dioxide gas and vaporous hydrogen peroxide sterilant have been used in the cleanup of building interiors contaminated with spores of Bacillus anthracis. A systematic study, in collaboration with the U.S. Environmental Protection Agency, was jointly undertaken by the U.S. Army-Edgewood Chemical Biological Center to determine the sporicidal efficacies of these two fumigants on six building structural materials: carpet, ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. Critical issues related to high-throughput sample processing and spore recovery from porous and nonporous surfaces included (i) the extraction of spores from complex building materials, (ii) the effects of titer challenge levels on fumigant efficacy, and (iii) the impact of bioburden inclusion on spore recovery from surfaces and spore inactivation. Small pieces (1.3 by 1.3 cm of carpet, ceiling tile, wallboard, I-beam steel, and pinewood and 2.5 by 1.3 cm for cinder block) of the materials were inoculated with an aliquot of 50 microl containing the target number (1 x 10(6), 1 x 10(7), or 1 x 10(8)) of avirulent spores of B. anthracis NNR1Delta1. The aliquot was dried overnight in a biosafety cabinet, and the spores were extracted by a combination of a 10-min sonication and a 2-min vortexing using 0.5% buffered peptone water as the recovery medium. No statistically significant drop in the kill efficacies of the fumigants was observed when the spore challenge level was increased from 6 log units to 8 log units, even though a general trend toward inhibition of fumigant efficacy was evident. The organic burden (0 to 5%) in the spore inoculum resulted in a statistically significant drop in spore recovery (at the 2 or 5% level). The effect on spore killing was a function of the organic bioburden amount and the material type. In summary, a high-throughput quantitative method was developed for determining the efficacies of fumigants, and the spore

  6. Method of measuring luminescence of a material

    SciTech Connect

    Miller, Steven D.

    2015-12-15

    A method of measuring luminescence of a material is disclosed. The method includes applying a light source to excite an exposed material. The method also includes amplifying an emission signal of the material. The method further includes measuring a luminescent emission at a fixed time window of about 10 picoseconds to about 10 nanoseconds. The luminescence may be radio photoluminescence (RPL) or optically stimulated luminescence (OSL).

  7. Dual Domain Material Point Method for Materials in Extreme

    NASA Astrophysics Data System (ADS)

    Zhang, Duan; Dhakal, Tilak

    Dual domain material point method is the latest version of the material point method designed to overcome many numerical difficulties of the original material point method with an increased numerical accuracy. In this talk, after reviewing the numerical theory of the method, we apply this method to cases involving extreme material deformation, shock propagation, and pulverization based on continuum theories. We will compare this method to other similar particle methods, and then examine the applicability and needed modification of the continuum theory for cases involving strong thermodynamic non-equilibrium. The history of the material deformation is often important in such systems. We will explore the Lagrangian capability brought by the use of particles in the dual domain material point method and introduce a multiscale scheme taking advantages of the particle-mesh communications in the method to study history dependent thermodynamically non-equilibrium systems, caused by extreme material deformations, such as hypervelocity impact and shock loading. We will also discuss the history tracking capability, analyze numerical advantages and difficulties, and show the results obtained from this numerical scheme. Work supported by ASC project of LANL.

  8. Decontamination of Anthrax spores in critical infrastructure and critical assets.

    SciTech Connect

    Boucher, Raymond M.; Crown, Kevin K.; Tucker, Mark David; Hankins, Matthew Granholm

    2010-05-01

    Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to

  9. Food decontamination using nanomaterials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  10. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  11. Facility decontamination technology workshop

    SciTech Connect

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  12. Nuclear reactor decontamination

    SciTech Connect

    Torok, J.

    1981-09-01

    Heat transfer and associated surfaces in nuclear reactors are decontaminated by treating the surface with ozone to oxidize acid -insoluble metal oxides to a more soluble state, removing oxidized solubilized metal oxides, and removing other surface oxides using low concentrations of decontaminating reagents. Ozone treatment has been found very effective with alloys having surface metal oxides rendered more easily dissolved by ozone oxidation especially with chromium or chromium-nickel containing alloys.

  13. A multi-parametric assessment of decontamination protocols for the subglacial Lake Ellsworth probe.

    PubMed

    Magiopoulos, I; McQuillan, J S; Burd, C L; Mowlem, M; Tsaloglou, M-N

    2016-04-01

    Direct measurement and sampling of pristine environments, such as subglacial lakes, without introducing contaminating microorganisms and biomolecules from the surface, represents a significant engineering and microbiological challenge. In this study, we compare methods for decontamination of titanium grade 5 surfaces, the material extensively used to construct a custom-made probe for reaching, measuring and sampling subglacial Lake Ellsworth in West Antarctica. Coupons of titanium were artificially contaminated with Pseudomonas fluorescens bacteria and then exposed to a number of decontamination procedures. The most effective sterilants were (i) hydrogen peroxide vapour, and (ii) Biocleanse™, a commercially available, detergent-based biocidal solution. After each decontamination procedure the bacteria were incapable of proliferation, and showed no evidence of metabolic activity based on the generation of adenosine triphosphate (ATP). The use of ultraviolet irradiation or ethyl alcohol solution was comparatively ineffective for sterilisation. Hydrogen peroxide vapour and ultraviolet irradiation, which directly damage nucleic acids, were the most effective methods for removing detectable DNA, which was measured using 16S rRNA gene copy number and fluorescence-based total DNA quantification. Our results have not only been used to tailor the Ellsworth probe decontamination process, but also hold value for subsequent engineering projects, where high standards of decontamination are required. PMID:26892386

  14. Detection and decontamination of residual energetics from ordnance and explosives scrap.

    PubMed

    Jung, Carina M; Newcombe, David A; Crawford, Don L; Crawford, Ronald L

    2004-02-01

    Extensive manufacturing of explosives in the last century has resulted in widespread contamination of soils and waters. Decommissioning and cleanup of these materials has also led to concerns about the explosive hazards associated with residual energetics still present on the surfaces of ordnance and explosives scrap. Typically, open burning or detonation is used to decontaminate ordinance and explosive scrap. Here the use of an anaerobic microbiological system applied as a bioslurry to decontaminate energetics from the surfaces of metal scrap is described. Decontamination of model metal scrap artificially contaminated with 2,4,6-trinitrotoluene and of decommissioned mortar rounds still containing explosives residue was examined. A portable ion mobility spectrometer was employed for the detection of residual explosives residues on the surfaces of the scrap. The mixed microbial populations of the bioslurries effectively decontaminated both the scrap and the mortar rounds. Use of the ion mobility spectrometer was an extremely sensitive field screening method for assessing decontamination and is a method by which minimally trained personnel can declare scrap clean with a high level of certainty.

  15. High pressure freon decontamination of remote equipment

    SciTech Connect

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried.

  16. Decontamination techniques applicable to waste packages: Final report

    SciTech Connect

    Not Available

    1988-03-01

    This report presents an evaluation of methods for decontamination of reference waste canisters and waste containers. The potential use of chemical solvents, ultrasonics, liquid abrasive blasting, vibratory finishing, electropolishing, liquid honing, high-pressure steam/water spraying, and fixatives as decontamination techniques for outer waste package and canister surfaces is discussed. Either test results or available literature on these techniques were examined to assess applicability of the methods. Pertinent technical considerations for each method are presented and discussed. Electropolishing and liquid abrasive blasting are the processes recommended for remote decontamination of waste overpacks and canisters. These processes are recommended on the basis of a number of factors including the type of contaminants present; the geometric configurations and materials; the accessibility, size, and mass of the units; and the time available to perform the process. Representative process conceptual designs for electropolishing and liquid abrasive blasting are presented in this report. Major equipment items and process operations are discussed. Secondary waste treatment and disposal requirements are also briefly discussed. 16 refs., 7 figs., 4 tabs.

  17. Novel hypertonic saline-sodium hydroxide (HS-SH) method for decontamination and concentration of sputum samples for Mycobacterium tuberculosis microscopy and culture.

    PubMed

    Ganoza, Christian A; Ricaldi, Jessica N; Chauca, José; Rojas, Gabriel; Munayco, César; Agapito, Juan; Palomino, Juan Carlos; Guerra, Humberto

    2008-09-01

    This study evaluated a new decontamination and concentration (DC) method for sputum microscopy and culture. Sputum samples from patients with suspected pulmonary tuberculosis (TB) (n=106) were tested using the proposed hypertonic saline-sodium hydroxide (HS-SH) DC method, the recommended N-acetyl-L-cysteine-sodium citrate-sodium hydroxide (NALC-NaOH) DC method and unconcentrated direct smear (Ziehl-Neelsen) techniques for the presence of mycobacteria using Löwenstein-Jensen culture and light microscopy. Of 94 valid specimens, 21 (22.3%) were positive in culture and were further characterized as Mycobacterium tuberculosis. The sensitivity for acid-fast bacilli (AFB) smears was increased from 28.6% using the direct method to 71.4% (HS-SH) and 66.7% (NALC-NaOH) using DC methods. Both concentration techniques were highly comparable for culture (kappa=0.794) and smear (kappa=0.631) for AFB. Thus the proposed HS-SH DC method improved the sensitivity of AFB microscopy compared with a routine unconcentrated direct smear; its performance was comparable to that of the NALC-NaOH DC method for AFB smears and culture, but it was methodologically simpler and less expensive, making it a promising candidate for evaluation by national TB control programmes in developing countries.

  18. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  19. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  20. Hand decontamination practices in paediatric wards.

    PubMed

    Jelly, S; Tjale, A

    2003-12-01

    The purpose of this study was to determine and describe hand decontamination practices of health care professionals in the paediatric wards of an academic hospital in Johannesburg. The purpose was addressed within a survey design and through the use of descriptive and comparative methods. Data were collected through direct observation conducted with the use of a researcher-administered checklist. A sample of sixty-six health professionals was obtained through convenience sampling. Results indicated that significantly fewer health professionals did not decontaminate their hands on entering the ward (16.6%), prior to making patient contact (34.8%) and prior to donning gloves (9.1%). Significantly more health professionals did decontaminate their hands following contact with the patient (63.6%) and following removal of gloves (77.8%). More health professional did not wash their hands after leaving the ward (51.5%). More than half (57.6%) of the health professionals who decontaminate their hands used the correct hand washing technique. Compliance with standard hand decontamination practices of health professionals was found to be poor with only 83.4% of health professionals decontaminating their hands at the start of work.

  1. Nuclear reactor cooling system decontamination reagent regeneration

    DOEpatents

    Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.

    1985-01-01

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  2. Lessons Learned from Decontamination Experiences

    SciTech Connect

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  3. Method and apparatus for biological material separation

    DOEpatents

    Robinson, Donna L.

    2005-05-10

    There has been invented an apparatus comprising a separation barrier for excluding denser cell materials from less dense cell materials after centrifuging of the cells so that selected materials can be withdrawn from the less dense cell materials without inclusion of the denser cell materials or clogging of sampling equipment with denser cell materials. Cells from which selected material is to be withdrawn are centrifuged, either as cells or cells in media. Once the denser cell materials are isolated in a layer by centrifugal force, an invention screen or seive is submerged in the less dense cell material to a level above the layer of denser cell materials to isolate the denser cell materials from the less dense cell materials, preventing mixing of the denser cell materials back into the less dense cell materials when the cells or the cells in media are no longer being centrifuged and to prevent clogging of sampling equipment with denser cell materials. In a particularly useful application of the invention method and apparatus, plasmid DNA can be withdrawn from less dense cell materials without contamination or interference with denser cell materials.

  4. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and... absorbent materials in accordance with § 761.79(g). Dispose of equipment in accordance with §...

  5. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and... absorbent materials in accordance with § 761.79(g). Dispose of equipment in accordance with §...

  6. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and... absorbent materials in accordance with § 761.79(g). Dispose of equipment in accordance with §...

  7. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and... absorbent materials in accordance with § 761.79(g). Dispose of equipment in accordance with §...

  8. 40 CFR 761.378 - Decontamination, reuse, and disposal of solvents, cleaners, and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Porous Surfaces § 761.378 Decontamination, reuse, and disposal of solvents, cleaners, and equipment. (a) Decontamination. Decontaminate solvents and non-porous surfaces on equipment in accordance with the standards and... absorbent materials in accordance with § 761.79(g). Dispose of equipment in accordance with §...

  9. Composite material and method of making

    DOEpatents

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  10. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    NASA Astrophysics Data System (ADS)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  11. Methods and apparatus for coating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  12. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  13. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    SciTech Connect

    Raber, E.; McGuire, R.; Hoffman, M.; Shepley, D.; Carlsen, T.; Krauter, P.; Alcaraz, A.

    2000-07-10

    The optimum goal of this study is to develop a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. The specific objective of this work was to evaluate oxidizer systems as reagents for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. One of the goals is to develop decontamination systems for use by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and re-certification (public perception and stakeholder acceptance) are of much greater importance. Since we wanted to maximize the contact time between the decontaminating reagent and the contaminant agent, we selected gelled reagents as the primary carrier material. Gels have the additional advantage of adhering to vertical or horizontal surfaces such as walls and ceilings. Lawrence Livermore National Laboratory, over a period of twenty years from the late 1960s to the late 1980s, developed a series of extrudable high explosives based on the gelling of polar energetic liquids. While never going into production, this development served as an experience base for formulation

  14. Apparatus and method for oxidizing organic materials

    DOEpatents

    Surma, Jeffrey E.; Bryan, Garry H.; Geeting, John G. H.; Butner, R. Scott

    1998-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell.

  15. Apparatus and method for oxidizing organic materials

    SciTech Connect

    Surma, J.E.; Bryan, G.H.; Geeting, J.G.H.; Butner, R.S.

    1998-01-13

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. 6 figs.

  16. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  17. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  18. Bleaching process preferred to decontaminate odorants

    SciTech Connect

    1996-10-01

    The problem of decontaminating and disposing of out-of-service gas odorizers has long faced both gas transmission and distribution companies since the early 1980s. Finding a methodology to safely and effectively decontaminate odorant-contaminated equipment has caused many companies to simply cap the equipment and put it in storage. The recommended process of decontamination by odorant manufacturers is currently a bleaching-type process. A sodium hypochlorite solution is added to water and either circulated or left standing in the contaminated equipment. The sodium hypochlorite effectively neutralizes the smell of the odorant and slightly corrodes the inside of the equipment to neutralize any odorant which has permeated the metal. The waste sodium hypochlorite and water is then shipped as hazardous waste (pH of 12.5) or non-hazardous waste after the pH has been adjusted. The bleaching process has proven cost-effective and less time-consuming than most other methods including bioremediation. To effectively use it, there are several problems to overcome--most importantly the removal of residual product and the release of vapors into the atmosphere. River Valley Technologies, a contractor located in Cincinnati, OH, specializing in odorant-equipment decontamination, has developed several methods and engineering controls to eliminate most of the problems associated with decontaminating odorant equipment. The paper describes these methods.

  19. Laboratory Demonstration of Radiological Decontamination Using Radpro

    SciTech Connect

    Lear, P.; Greene, R.; Isham, J.; Martin, R.; Norton, C.

    2007-07-01

    In the event of terrorist activity involving the explosive dispersion of radioactive materials (a 'dirty' bomb), a number of different types of surfaces and substrates, including concrete, granite, brick, cinder block, tile, asphalt, wood, glass, plastic, iron, and steel, may become radiologically contaminated. Incident cleanup is assumed to involve decontamination of these surfaces. Laboratory testing was conducted using samples of concrete, ferrous metal, steel, aluminum, lead, tin, glass, lexan, vinyl, asphalt shingle, wood, and rubber surfaces. The surfaces were sprayed with Cs-137 or Co-60 solutions to simulate contamination. The entire surface area of the samples was surveyed using a Ludlum Model 2360 scaler/ratemeter with Ludlum Model 43-93-2 100 cm{sup 2} open area alpha/beta scintillation probe. The surfaces were then decontaminated using RadPro{sup R} chemical decontamination technology that is currently field proven and ready to deploy. The entire surface area of the samples was re-surveyed following decontamination. The RadPro{sup R} chemical decontamination technology was able to remove virtually all of the removable contamination and over 90% of the fixed contamination from these surfaces during the laboratory testing. (authors)

  20. Chemical Warfare Agent Degradation and Decontamination

    SciTech Connect

    Talmage, Sylvia Smith; Watson, Annetta Paule; Hauschild, Veronique; Munro, Nancy B; King, J.

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  1. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, L.J. Jr.; Baker, E.G.; Elliott, D.C.

    1997-05-20

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250 to 500 C and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials. 7 figs.

  2. Method for catalytic destruction of organic materials

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1997-01-01

    A method is disclosed for converting waste organic materials into an innocuous product gas. The method comprises maintaining, in a pressure vessel, in the absence of oxygen, at a temperature of 250.degree. C. to 500.degree. C. and a pressure of at least 50 atmospheres, a fluid organic waste material, water, and a catalyst consisting essentially of reduced nickel in an amount sufficient to catalyze a reaction of the organic waste material to produce an innocuous product gas composed primarily of methane and carbon dioxide. The methane in the product gas may be burned to preheat the organic materials.

  3. Advances in Sterilization and Decontamination: a Survey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Recent technical advances made in the field of sterilization and decontamination and their applicability to private and commercial interests are discussed. Government-sponsored programs by NASA produced the bulk of material presented in this survey. The summary of past and current research discussed is detailed to enhance an effective transfer of technology from NASA to potential users.

  4. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  5. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  6. Decontamination: back to basics.

    PubMed

    Meredith, Susan J; Sjorgen, Geoff

    2008-07-01

    My invitation from this Journal's Editor, Felicia Cox, to provide a paper for this themed issue, included the sentence 'I was wondering if you or a colleague would like to contribute a back to basics article on the relevant standards and guidelines for decontamination, including what is compliance?'. The reason it is so interesting to me is that the term 'back to basics' implies reverting to a simpler time in life - when by just sticking to the rules, life became easier. However, with decontamination this is not actually true. PMID:18710126

  7. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  8. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  9. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  10. DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL

    DOEpatents

    Buyers, A.G.; Rosen, F.D.; Motta, E.E.

    1959-12-22

    A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.

  11. Method for heating nongaseous carbonaceous material

    DOEpatents

    Lumpkin, Jr., Robert E.

    1978-01-01

    Nongaseous carbonaceous material is heated by a method comprising introducing tangentially a first stream containing a nongaseous carbonaceous material and carbon monoxide into a reaction zone; simultaneously and separately introducing a second stream containing oxygen into the reaction zone such that the oxygen enters the reaction zone away from the wall thereof and reacts with the first stream thereby producing a gaseous product and heating the nongaseous carbonaceous material; forming an outer spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous carbonaceous material; removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous carbonaceous material before a major portion of the gaseous product can react with the nongaseous carbonaceous material; and removing a fourth stream containing the nongaseous carbonaceous material from the reaction zone.

  12. A Survey of Methods and Materials.

    ERIC Educational Resources Information Center

    Gillis, Candida; And Others

    Designed to assess and describe the nature and frequency of teaching methods, activities, and materials used in secondary school English courses, this survey consists of 14 questions related to teaching objectives, activities, and materials, each followed by a list of possible responses. Teachers are asked to select a course, and to circle for…

  13. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Nwoga, Tochi Tudor; Kawahara, Kazuo; Li, Wen; Song, Yujiang; Shelnutt, John A; Miller, James E; Medforth, Craig John; Ueno, Yukiyoshi; Kawamura, Tetsuo

    2013-12-17

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in proton exchange membrane fuel cells (PEM-FCs).

  14. Heat transport system, method and material

    DOEpatents

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  15. Photocatalytic methods for preparation of electrocatalyst materials

    DOEpatents

    Li, Wen; Kawamura, Tetsuo; Nagami, Tetsuo; Takahashi, Hiroaki; Muldoon, John; Shelnutt, John A; Song, Yujiang; Miller, James E; Hickner, Michael A; Medforth, Craig

    2013-09-24

    The invention relates to methods of preparing metal particles on a support material, including platinum-containing nanoparticles on a carbon support. Such materials can be used as electrocatalysts, for example as improved electrocatalysts in polymer electrolyte membrane fuel cells (PEM-FCs).

  16. Methods of producing cermet materials and methods of utilizing same

    DOEpatents

    Kong, Peter C.

    2008-12-30

    Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an alumina phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.

  17. Methods of fabricating cermet materials and methods of utilizing same

    DOEpatents

    Kong, Peter C.

    2006-04-04

    Methods of fabricating cermet materials and methods of utilizing the same such as in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The cermet material may be made from a transition metal aluminide phase and an aluminia phase. The mixture may be pressed to form a green compact body and then heated in a nitrogen-containing atmosphere so as to melt aluminum particles and form the cermet. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The cermet material may also be formed so as to pass an electrical current therethrough to heat the material during use.

  18. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  19. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  20. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  1. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  2. Surface decontamination of solid waste

    SciTech Connect

    McCoy, M.W.; Allen, R.P.; Arrowsmith, H.W.

    1980-04-01

    This paper summarizes work in progress at Pacific Northwest Laboratory to develop vibratory finishing into a large-scale decontamination system that can minimize the volume of surface-contaminated metallic and nonmetallic waste requiring geologic disposal. Vibratory finishing is a mass finishing process used in the metal finishing industry to debur, clean and improve surface finishes. The process combines a mechanical scrubbing action of a solid medium with the cleaning action of a liquid compound. The process takes place in a vibrating tub. Tests have demonstrated the ability to rapidly reduce contamination levels of transuranic-contaminated waste to substantially less than 10 nCi/g, the current limit for transuranic waste. The process is effective on a wide range of materials including stainless steel, Plexiglas, Neoprene, and Hypalon, the principal materials in Hanford glove boxes.

  3. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives.

    PubMed

    Kaminski, Michael D; Lee, Sang Don; Magnuson, Matthew

    2016-03-15

    Nuclear or radiological terrorism in the form of uncontrolled radioactive contamination presents a unique challenge in the field of nuclear decontamination. Potential targets require an immediate decontamination response, or mitigation plan to limit the social and economic impact. To date, experience with urban decontamination of building materials - specifically hard, porous, external surfaces - is limited to nuclear weapon fallout and nuclear reactor accidents. Methods are lacking for performing wide-area decontamination in an urban environment so that in all release scenarios the area may be re-occupied without evaluation and/or restriction. Also lacking is experience in developing mitigation strategies, that is, methods of mitigating contamination and its resultant radiation dose in key areas during the immediate aftermath of an event and after lifesaving operations. To date, the tremendous strategy development effort primarily by the European community has focused on the recovery phase, which extends years beyond the release event. In this review, we summarize the methods and data collected over the past 70 years in the field of hard, external surface decontamination of radionuclide contaminations, with emphasis on methods suitable for response to radiological dispersal devices and their potentially unique physico-chemical characteristics. This review concludes that although a tremendous amount of work has been completed primarily by the European Community (EU) and the United Kingdom (UK), the few studies existing on each technique permit only very preliminary estimates of decontamination factors for various building materials and methods and extrapolation of those values for use in environments outside the EU and UK. This data shortage prevents us from developing an effective and detailed mitigation response plan and remediation effort. Perhaps most importantly, while the data available does include valuable information on the practical aspects of performing

  4. Wide-area decontamination in an urban environment after radiological dispersion: A review and perspectives.

    PubMed

    Kaminski, Michael D; Lee, Sang Don; Magnuson, Matthew

    2016-03-15

    Nuclear or radiological terrorism in the form of uncontrolled radioactive contamination presents a unique challenge in the field of nuclear decontamination. Potential targets require an immediate decontamination response, or mitigation plan to limit the social and economic impact. To date, experience with urban decontamination of building materials - specifically hard, porous, external surfaces - is limited to nuclear weapon fallout and nuclear reactor accidents. Methods are lacking for performing wide-area decontamination in an urban environment so that in all release scenarios the area may be re-occupied without evaluation and/or restriction. Also lacking is experience in developing mitigation strategies, that is, methods of mitigating contamination and its resultant radiation dose in key areas during the immediate aftermath of an event and after lifesaving operations. To date, the tremendous strategy development effort primarily by the European community has focused on the recovery phase, which extends years beyond the release event. In this review, we summarize the methods and data collected over the past 70 years in the field of hard, external surface decontamination of radionuclide contaminations, with emphasis on methods suitable for response to radiological dispersal devices and their potentially unique physico-chemical characteristics. This review concludes that although a tremendous amount of work has been completed primarily by the European Community (EU) and the United Kingdom (UK), the few studies existing on each technique permit only very preliminary estimates of decontamination factors for various building materials and methods and extrapolation of those values for use in environments outside the EU and UK. This data shortage prevents us from developing an effective and detailed mitigation response plan and remediation effort. Perhaps most importantly, while the data available does include valuable information on the practical aspects of performing

  5. Sectioning of contaminated components for decontamination by vibratory finishing and electropolishing

    SciTech Connect

    Fetrow, L.K.; Allen, R.P.

    1981-09-01

    This report summarizes work conducted to develop, adapt, and evaluate a variety of techniques for sectioning glove boxes, chemical processing equipment, pipes, ducts, and other contaminated components in preparation for decontamination by vibratory finishing and electropolishing. These sectioning studies were conducted with a special 10-ft x 20-ft x 10-ft stainless-steel, walk-in glove box equipped for either hands-on operation via gloves and personnel entry, or remote operation using master slave manipulators and a bridge crane. Several sectioning techniques have been evaluated with respect to effectiveness, versatility, secondary waste generation, and capability for remote operation. The methods include wet and dry plasma arc torch cutting, mechanical sawing and nibbling, abrasive cutting, and hydraulic shearing and punching. The results of these comparison studies show that the plasma arc torch is a very rapid and effective metal cutting tool for size reduction applications. However, its use to prepare material for decontamination should be minimized because of problems with smoke generation, torch manipulation, waste generation, and entrainment of contamination. Mechanical saws eliminate all but the waste generation problem, but are very slow and labor intensive. Mechanical nibblers are fast and produce a waste form that can be decontaminated, but are limited with respect to the geometry and thickness of material that can be sectioned. High-speed abrasive saws provide high cutting rates, but produce nontreatable waste from the cut as well as from blade wear. Hydraulic shearing rapidly produces sectioned material in the small sizes required for decontamination by vibratory finishing. The kerf material also can be decontaminated. However, the glove box first must be sectioned into relatively narrow strips by one of the other techniques.

  6. Psychosocial considerations for mass decontamination.

    PubMed

    Lemyre, Louise; Johnson, Colleen; Corneil, Wayne

    2010-11-01

    Mass exposure to explosions, infectious agents, foodborne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, healthcare and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described. PMID:20924122

  7. Psychosocial considerations for mass decontamination.

    PubMed

    Lemyre, Louise; Johnson, Colleen; Corneil, Wayne

    2010-11-01

    Mass exposure to explosions, infectious agents, foodborne illnesses, chemicals or radiological materials may require mass decontamination that have critical psychosocial implications for the public and for both traditional and non-traditional responders in terms of impact and of response. Five main issues are common to mass decontamination events: (i) perception, (ii) somatisation, (iii) media role and communication, (iv) information sharing, (v) behavioural guidance and (vi) organisational issues. Empirical evidence is drawn from a number of cases, including Chernobyl; Goiania, Brazil; the sarin gas attack in Tokyo; the anthrax attacks in the USA; Three Mile Island; and by features of the 2003 severe acute respiratory syndrome pandemic. In this paper, a common platform for mass casualty management is explored and suggestions for mass interventions are proposed across the complete event timeline, from pre-event threat and warning stages through to the impact and reconstruction phases. Implication for responders, healthcare and emergency infrastructure, public behaviour, screening processes, risk communication and media management are described.

  8. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  9. DECONTAMINATION OF ZIRCALOY CLADDING HULLS FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Rudisill, T.

    2010-09-29

    adsorb neutrons generating higher actinides in the bulk material. During fuel irradiation, {sup 92}Zr is also converted to radioactive {sup 93}Zr by neutron adsorption. Methods for decontaminating and conditioning irradiated Zircaloy cladding hulls have been investigated in Europe, Japan, and the US during the last 35 years; however, a method to decontaminate the hulls to an activity level which meets US acceptance criteria for disposal as a LLW was not deployed on a commercial scale. The feasibility of decontaminating spent fuel cladding hulls was investigated as part of the GNEP Separations Campaign. Small-scale experiments were used to demonstrate the removal of the ZrO{sub 2} layer from Zircaloy coupons using dilute solutions ({le}1.0 M) of HF. The most effective conditions resulted in dissolution rates which were less than approximately 2 mg/cm{sup 2}-min. With dissolution rates in this range, uniform removal of the oxide layer was obtained and a minimal amount of Zircaloy metal was dissolved. To test the HF decontamination process, experiments were subsequently performed using actual spent fuel cladding hulls. Decontamination experiments were performed to measure the fission product and actinide concentrations as a function of the depth of the surface removed from the cladding hull. The experimental methods used to perform these experiments and a discussion of the results and observations are presented in the following sections.

  10. In vivo laser scanning microscopic investigation of the decontamination of hazardous substances from the human skin

    NASA Astrophysics Data System (ADS)

    Lademann, J.; Patzelt, A.; Schanzer, S.; Richter, H.; Gross, I.; Menting, K. H.; Frazier, L.; Sterry, W.; Antoniou, C.

    2010-12-01

    The stimulation of the penetration of topically applied substances into the skin is a topic of intensive dermatological and pharmacological research. In this context, it was found that in addition to the intercellular penetration, the follicular penetration also represents an efficient penetration pathway. The hair follicles act as a long-term reservoir for topically applied substances. They are surrounded by all important target structures, such as blood capillaries, stem and dendritic cells. Therefore, the hair follicles, as well as the skin, need to be protected from hazardous substances. The traditional method of decontamination after respective accidental contacts consists of an intensive washing of the skin. However, during this mechanical procedure, the substances can be pushed even deeper into the hair follicles. In the present study, absorbent materials were applied to remove a fluorescent model substance from the skin without inducing mechanical stress. The results were compared to the decontamination effects obtained by intensive washing. Investigations were performed by means of in vivo laser scanning microscopy (LSM). The comparison revealed that decontamination with absorbent materials is more effective than decontamination with washing processes.

  11. The occurrence of antibiotic resistance genes in Taq polymerases and a decontamination method applied to the detection of genetically modified crops.

    PubMed

    Perron, André; Raymond, Philippe; Simard, Robin

    2006-03-01

    Different antibiotic resistance (AR) genes, such as Bla, Tet and NPTII, contaminate commercially available Taq polymerases. The specificity of the AR gene PCR can be increased when using a restriction enzyme-based decontamination of polymerase. The elimination of Taq polymerase contamination allows the use of PCR tests to screen seeds (corn) and processed food for the presence of genetically modified organisms (GMO) based on the detection of AR genes. Without a decontamination procedure for AR genes, PCR screening tests should be interpreted with caution. PMID:16614919

  12. The occurrence of antibiotic resistance genes in Taq polymerases and a decontamination method applied to the detection of genetically modified crops.

    PubMed

    Perron, André; Raymond, Philippe; Simard, Robin

    2006-03-01

    Different antibiotic resistance (AR) genes, such as Bla, Tet and NPTII, contaminate commercially available Taq polymerases. The specificity of the AR gene PCR can be increased when using a restriction enzyme-based decontamination of polymerase. The elimination of Taq polymerase contamination allows the use of PCR tests to screen seeds (corn) and processed food for the presence of genetically modified organisms (GMO) based on the detection of AR genes. Without a decontamination procedure for AR genes, PCR screening tests should be interpreted with caution.

  13. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination. PMID:24400827

  14. Effects of CBRN decontaminants in common use by first responders on the recovery of latent fingerprints--assessment of the loss of ridge detail on glass.

    PubMed

    Zuidberg, Matthijs C; van Woerkom, Tiest; de Bruin, Karla G; Stoel, Reinoud D; de Puit, Marcel

    2014-01-01

    Following a CBRN incident, first responders use decontamination procedures to reduce the risk of exposure. The effect of decontamination on forensic trace material has, however, not been fully examined. This study sought to evaluate the effect of five different physical or chemical decontamination materials on the recovery of latent fingerprints. Fingerprints were deposited on glass slides, decontaminated, and assessed on the presence of ridge detail. The results demonstrate that decontamination affects the quality of latent fingerprints substantially. On at least 61% of the fingerprints, a reduced amount of ridge detail was observed upon decontamination. Furthermore, development with cyanoacrylate appeared not to succeed anymore. Instead, the ability of vacuum metal deposition to successfully develop decontaminated fingerprints is demonstrated. The results from this study may contribute to an increased forensic awareness regarding decontamination and emphasize the necessity for further research into new item decontamination procedures or new forensic initiatives prior to decontamination.

  15. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  16. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  17. Explosive materials equivalency, test methods and evaluation

    NASA Technical Reports Server (NTRS)

    Koger, D. M.; Mcintyre, F. L.

    1980-01-01

    Attention is given to concepts of explosive equivalency of energetic materials based on specific airblast parameters. A description is provided of a wide bandwidth high accuracy instrumentation system which has been used extensively in obtaining pressure time profiles of energetic materials. The object of the considered test method is to determine the maximum output from the detonation of explosive materials in terms of airblast overpressure and positive impulse. The measured pressure and impulse values are compared with known characteristics of hemispherical TNT data to determine the equivalency of the test material in relation to TNT. An investigation shows that meaningful comparisons between various explosives and a standard reference material such as TNT should be based upon the same parameters. The tests should be conducted under the same conditions.

  18. Determination of lead isotopes in a new Greenland deep ice core at the sub-picogram per gram level by thermal ionization mass spectrometry using an improved decontamination method.

    PubMed

    Han, Changhee; Burn-Nunes, Laurie J; Lee, Khanghyun; Chang, Chaewon; Kang, Jung-Ho; Han, Yeongcheol; Hur, Soon Do; Hong, Sungmin

    2015-08-01

    An improved decontamination method and ultraclean analytical procedures have been developed to minimize Pb contamination of processed glacial ice cores and to achieve reliable determination of Pb isotopes in North Greenland Eemian Ice Drilling (NEEM) deep ice core sections with concentrations at the sub-picogram per gram level. A PL-7 (Fuso Chemical) silica-gel activator has replaced the previously used colloidal silica activator produced by Merck and has been shown to provide sufficiently enhanced ion beam intensity for Pb isotope analysis for a few tens of picograms of Pb. Considering the quantities of Pb contained in the NEEM Greenland ice core and a sample weight of 10 g used for the analysis, the blank contribution from the sample treatment was observed to be negligible. The decontamination and analysis of the artificial ice cores and selected NEEM Greenland ice core sections confirmed the cleanliness and effectiveness of the overall analytical process.

  19. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  20. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  1. Heat transport system, method and material

    DOEpatents

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  2. Secondary battery material and synthesis method

    DOEpatents

    Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu

    2013-10-22

    A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.

  3. Emergency department external decontamination for hazardous chemical exposure

    SciTech Connect

    Lavoie, F.W.; Coomes, T.; Cisek, J.E.; Fulkerson, L. )

    1992-02-01

    Although external decontamination is an integral aspect of the emergency management of hazardous chemicals exposure, no standard protocol or report of human experience is available. We performed a retrospective review of all patients decontaminated in our emergency department over a 6-y period for hazardous chemicals exposure. Patients were treated by a universal substances protocol in a specially designed decontamination area. Ocular irrigation utilizing 1500 ml of normal saline po was employed in 27 patients. Oral mucosal irrigation utilizing 1500 ml water was employed in 2 patients. All 72 patients received skin and hair decontamination. Skin was washed 3 times with detergent and cornmeal mixture, and water irrigation or shower for 3 min. Hair was shampooed 3 times with mild soap for 3 min. A subset of patients (n = 31) received pre-decontamination and post-decontamination skin swabbing. Swabs were analyzed by a certified analytical chemistry laboratory utilizing gas chromatography/mass spectrometry. Positive pre-decontamination swabs were seen for pesticides and PCBs. All post-decontamination swab analyses were negative, indicating that the method utilized was effective.

  4. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    SciTech Connect

    Nelson, J. L.; Divine, J. R.

    1981-05-01

    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  5. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  6. Composite materials and method of making

    DOEpatents

    Uribe, Francisco A.; Wilson, Mahlon S.; Garzon, Fernando H.

    2009-09-15

    A method of depositing noble metals on a metal hexaboride support. The hexaboride support is sufficiently electropositive to allow noble metals to deposit spontaneously from solutions containing ionic species of such metals onto the support. The method permits the deposition of metallic films of controlled thickness and particle size at room temperature without using separate reducing agents. Composite materials comprising noble metal films deposited on such metal hexaborides are also described. Such composite materials may be used as catalysts, thermionic emitters, electrical contacts, electrodes, adhesion layers, and optical coatings.

  7. [Selective bowel decontamination].

    PubMed

    Szántó, Zoltán; Pulay, István; Kotsis, Lajos; Dinka, Tibor

    2006-04-01

    Infective complications play major role in mortality of high risk patients demanding intensive care. Selective Bowel Decontamination prevents endogenous infections by reducing the number of potentially pathogen microbes (aerobic bacteria, fungi) in the oropharynx and gastrointestinal tract, saving anaerobic bacteria. It had been used 20 years ago for the first time. Authors survey it's literature ever since. Selective Bowel Decontamination is performed by the mixture of antibiotics and antimycotic drug, administered orally in hydrogel, and suspension form in nasojejunal tube. The number of Gram negative optional aerobic bacteria and fungi decrease significantly in the gut, and the microbial translocation is following this tendency. Foreign authors achieved good results in acute necrotizing pancreatitis, after liver transplant, in polytrauma, in serious burn and in haematological malignancies. According to the literature Selective Bowel Decontamination shows advantages in selected groups of high risk surgical patients. In some studies the administration took few months, but the minimum time was one week. There was no report of increasing MRSA appearance. Regular bacteriological sampling is highly recommended in order to recognize any new antibiotic resistance in time. PMID:16711371

  8. Electrolytic decontamination of the 3013 inner can

    SciTech Connect

    Wedman, D.E.; Nelson, T.O.; Rivera, Y.; Weisbrod, K.; Martinez, H.E.; Limback, S.

    1998-12-31

    Disposition of plutonium recovered from nuclear weapons or production residues must be stored in a manner that ensures safety. The criteria that has been established to assure the safety of stored materials for a minimum of 50 years is DOE-STD-3013. This standard specifies both the requirements for containment and furthermore specifies that the inner container be decontaminated to a level of {le}20 dpm/100 cm{sup 2} swipable and {le}500 dpm/100 cm{sup 2} direct alpha such that a failure of the outer containment barrier will have a lower probability of resulting in a spread of contamination. The package consists of an optional convenience (food pack) can, a welded type 304L stainless steel inner (primary) can, and a welded type 304L stainless steel outer (secondary) can. Following the welding process, the can is checked for leaks and then sent down the line for decontamination. Once decontaminated, the sealed primary can may be removed from the glove box line. Welding of the secondary container takes place outside the glove box line. The highly automated decontamination process that has been developed to support the packaging of Special Nuclear Materials is based on an electrolytic process similar to the wide spread industrial technique of electropolishing. The can is placed within a specially designed stainless steel fixture built within a partition of a glove box. The passage of current through this electrolytic cell results in a uniform anodic dissolution of the surface metal layers of the can. This process results in a rapid decontamination of the can. The electrolyte is fully recyclable, and the separation of the chromium from the actinides results in a compact, non RCRA secondary waste product.

  9. Methods of Antimicrobial Coating of Diverse Materials

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of coating diverse substrate materials with antimicrobial agents have been developed. Originally intended to reduce health risks to astronauts posed by pathogenic microorganisms that can grow on surfaces in spacecraft, these methods could also be used on Earth for example, to ensure sterility of surgical inserts and other medical equipment. The methods involve, generally, chemical preparation of substrate surfaces to enable attachment of antimicrobial molecules to the substrate surfaces via covalent bonds. Substrate materials that have been treated successfully include aluminum, glass, a corrosion-resistant nickel alloy, stainless steel, titanium, and poly(tetrafluoroethylene). Antimicrobial agents that have been successfully immobilized include antibiotics, enzymes, bacteriocins, bactericides, and fungicides. A variety of linkage chem istries were employed. Activity of antimicrobial coatings against gram-positive bacteria, gram-negative bacteria, and fungi was demonstrated. Results of investigations indicate that the most suitable combination of antimicrobial agent, substrate, and coating method depends upon the intended application.

  10. Decontamination technologies for release from bioprocessing facilities. Part I. Introduction. Part II. Decontamination of wastewater

    SciTech Connect

    Wickramanayake, G.B. )

    1990-01-01

    Genetically engineered microorganisms are widely used in biotechnology. Wastewater from bioprocessing facilities will require treatment to ensure that effluents discharged into surface water or other waste streams are not a source of viable organisms or transmittable genetic material. The application of treatment technologies used in other industries to decontaminate the releases from biotechnology processing facilities was evaluated. Since published literature on the inactivation of recombinant-DNA organisms is very limited, information for bacteria, viruses, fungi and subcellular components was obtained. The data indicated that ozone, chlorine, chlorine dioxide, heat, ultraviolet light and ionizing radiation offer good performance potential for decontamination of rDNA processing wastewater. 180 refs., 7 figs., 26 tabs.

  11. Savannah River Laboratory Decontamination Program

    SciTech Connect

    Rankin, W.N.

    1991-12-31

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D&D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D&D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  12. Savannah River Laboratory Decontamination Program

    SciTech Connect

    Rankin, W.N.

    1991-01-01

    Savannah River Laboratory (SRL) has had a Decontamination and Decommissioning (D D) Technology program since 1981. The objective of this program is to provide state-of-the-art technology for use in D D operations that will enable our customers to minimize waste generated and personal exposure, increase productivity and safety, and to minimize the potential for release and uptake of radioactive material. The program identifies and evaluates existing technology, develops new technology, and provides technical assistance to implement its use onsite. This program has impacted not only the Savannah River Site (SRS), but the entire Department of Energy (DOE) complex. To document and communicate the technology generated by this program, 28 papers have been presented at National and International meetings in the United States and Foreign Countries.

  13. Method of sintering materials with microwave radiation

    DOEpatents

    Kimrey, Jr., Harold D.; Holcombe, Jr., Cressie E.; Dykes, Norman L.

    1994-01-01

    A method of sintering ceramic materials following: A compacted article comprising inorganic particles coated with carbon is provided, the carbon providing improved microwave coupling. The compacted article is then heated by microwave radiation to a temperature and for a period of time sufficient to sinter the compacted article.

  14. Media, Methods, and Materials for Special Educators.

    ERIC Educational Resources Information Center

    Propp, George, Ed.; And Others

    Proceedings from an institute held in Michigan, October, 1972, for curriculum resource consultants on media, methods, and materials for special educators are presented. Described in the section on planning are the institute's objectives, criteria for selection of participants, resource consultants' names and addresses, and a review of planning…

  15. Method for treating materials for solidification

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Martin, Hollis L.

    1995-01-01

    A method for treating materials such as wastes for solidification to form a solid, substantially nonleachable product. Addition of reactive silica rather than ordinary silica to the material when bringing the initial molar ratio of its silica constituent to a desired ratio within a preselected range increases the solubility and retention of the materials in the solidified matrix. Materials include hazardous, radioactive, mixed, and heavy metal species. Amounts of other constituents of the material, in addition to its silica content are also added so that the molar ratio of each of these constituents is within the preselected ranges for the final solidified product. The mixture is then solidified by cement solidification or vitrification. The method can be used to treat a variety of wastes, including but not limited to spent filter aids from waste water treatment, waste sludges, combinations of spent filter aids and waste sludges, combinations of supernate and waste sludges, incinerator ash, incinerator offgas blowdown, combinations of incinerator ash and offgas blowdown, cementitious wastes and contaminated soils.

  16. Decontamination of process equipment using recyclable chelating solvent

    SciTech Connect

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-12-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. {open_quotes}Hard{close_quotes} chemical decontamination solutions, capable of achieving decontamination factors (Df`s) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. {open_quotes}Soft{close_quotes} chemical decontamination solutions, capable of achieving Df`s of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock & Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment.

  17. Method of designing layered sound absorbing materials

    NASA Astrophysics Data System (ADS)

    Atalla, Youssef; Panneton, Raymond

    2002-11-01

    A widely used model for describing sound propagation in porous materials is the Johnson-Champoux-Allard model. This rigid frame model is based on five geometrical properties of the porous medium: resistivity, porosity, tortuosity, and viscous and thermal characteristic lengths. Using this model and with the knowledge of such properties for different absorbing materials, the design of a multiple layered system can be optimized efficiently and rapidly. The overall impedance of the layered systems can be calculated by the repeated application of single layer impedance equation. The knowledge of the properties of the materials involved in the layered system and their physical meaning, allows to perform by computer a systematic evaluation of potential layer combinations rather than do it experimentally which is time consuming and always not efficient. The final design of layered materials can then be confirmed by suitable measurements. A method of designing the overall acoustic absorption of multiple layered porous materials is presented. Some aspects based on the material properties, for designing a flat layered absorbing system are considered. Good agreement between measured and computed sound absorption coefficients has been obtained for the studied configurations. [Work supported by N.S.E.R.C. Canada, F.C.A.R. Quebec, and Bombardier Aerospace.

  18. Systems and methods for harvesting and storing materials produced in a nuclear reactor

    DOEpatents

    Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.

    2016-04-05

    Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.

  19. Method for making an energetic material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID

    2008-03-18

    A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.

  20. Decontamination of radiological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of radiological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some important radiological agents (cesium, strontium and cobalt), but important data gaps remain. Although some targeted experiments have been published on cesium, strontium and cobalt persistence on drinking water infrastructure, most of the data comes from nuclear clean-up sites. Furthermore, the studies focused on drinking water systems use non-radioactive surrogates. Non-radioactive cobalt was shown to be persistent on iron due to oxidation with free chlorine in drinking water and precipitation on the iron surface. Decontamination with acidification was an effective removal method. Strontium persistence on iron was transient in tap water, but adherence to cement-mortar has been demonstrated and should be further explored. Cesium persistence on iron water infrastructure was observed when flow was stagnant, but not with water flow present. Future research suggestions focus on expanding the available cesium, strontium and cobalt persistence data to other common infrastructure materials, specifically cement-mortar. Further exploration chelating agents and low pH treatment is recommended for future decontamination studies.

  1. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  2. Enhanced toxic cloud knockdown spray system for decontamination applications

    SciTech Connect

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  3. Method for dispersing catalyst onto particulate material

    DOEpatents

    Utz, Bruce R.; Cugini, Anthony V.

    1992-01-01

    A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.

  4. Statistical methods for material characterization and qualification

    SciTech Connect

    Hunn, John D; Kercher, Andrew K

    2005-01-01

    This document describes a suite of statistical methods that can be used to infer lot parameters from the data obtained from inspection/testing of random samples taken from that lot. Some of these methods will be needed to perform the statistical acceptance tests required by the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. Special focus has been placed on proper interpretation of acceptance criteria and unambiguous methods of reporting the statistical results. In addition, modified statistical methods are described that can provide valuable measures of quality for different lots of material. This document has been written for use as a reference and a guide for performing these statistical calculations. Examples of each method are provided. Uncertainty analysis (e.g., measurement uncertainty due to instrumental bias) is not included in this document, but should be considered when reporting statistical results.

  5. Statistical Methods for Material Characterization and Qualification

    SciTech Connect

    Kercher, A.K.

    2005-04-01

    This document describes a suite of statistical methods that can be used to infer lot parameters from the data obtained from inspection/testing of random samples taken from that lot. Some of these methods will be needed to perform the statistical acceptance tests required by the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. Special focus has been placed on proper interpretation of acceptance criteria and unambiguous methods of reporting the statistical results. In addition, modified statistical methods are described that can provide valuable measures of quality for different lots of material. This document has been written for use as a reference and a guide for performing these statistical calculations. Examples of each method are provided. Uncertainty analysis (e.g., measurement uncertainty due to instrumental bias) is not included in this document, but should be considered when reporting statistical results.

  6. Experiences with decontaminating tritium-handling apparatus

    SciTech Connect

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish{trademark}. The surface contamination, as shown by swipe surveys, was reduced from 4{times}10{sup 4}--10{sup 6} disintegrations per minute (dpm)/cm{sup 2} to 2{times}10{sup 2}--4{times}10{sup 4} dpm/cm{sup 2}. Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given.

  7. Surface decontamination compositions and methods

    DOEpatents

    Wright; Karen E.; Cooper, David C.; Peterman, Dean R.; Demmer, Ricky L.; Tripp, Julia L.; Hull, Laurence C.

    2011-03-29

    Clay-based compositions capable of absorbing contaminants from surfaces or objects having surface faces may be applied to a surface and later removed, the removed clay-based compositions absorbing at least a portion of the contaminant from the surface or object to which it was applied.

  8. Large-Area Chemical and Biological Decontamination Using a High Energy Arc Lamp (HEAL) System.

    SciTech Connect

    Duty, Chad E; Smith, Rob R; Vass, Arpad Alexander; Ilgner, Ralph H; Brown, Gilbert M

    2008-01-01

    Methods for quickly decontaminating large areas exposed to chemical and biological (CB) warfare agents can present significant logistical, manpower, and waste management challenges. Oak Ridge National Laboratory (ORNL) is pursuing an alternate method to decompose CB agents without the use of toxic chemicals or other potentially harmful substances. This process uses a high energy arc lamp (HEAL) system to photochemically decompose CB agents over large areas (12 m2). Preliminary tests indicate that more than 5 decades (99.999%) of an Anthrax spore simulant (Bacillus globigii) were killed in less than 7 seconds of exposure to the HEAL system. When combined with a catalyst material (TiO2) the HEAL system was also effective against a chemical agent simulant, diisopropyl methyl phosphonate (DIMP). These results demonstrate the feasibility of a rapid, large-area chemical and biological decontamination method that does not require toxic or corrosive reagents or generate hazardous wastes.

  9. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  10. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine J.

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  11. Regenerative therapy of deep peri-implant infrabony defects after CO2 laser implant surface decontamination.

    PubMed

    Romanos, Georgios E; Nentwig, Georg H

    2008-06-01

    The treatment of a peri-implant infrabony defect is difficult because of contamination of the implant surface and adjacent tissues. This case series addresses the ability of a carbon dioxide (CO2) laser to decontaminate failing implants in 15 patients. Clinical and radiologic data are presented with regard to using the laser in combination with bone grafting and a barrier. Augmentation with autogenous bone grafting material (n = 10) or a xenogenic bone grafting material (BioOss) (n = 9) was used, and bone grafts were covered with a collagen membrane. Clinical and radiologic parameters were evaluated postoperatively. After an observation period of 27 months (+/- 17.83), almost complete bone fill in the peri-implant defect was accomplished. These preliminary clinical and radiologic findings suggest that decontamination of the implant surfaces with the CO2 laser in combination with augmentative techniques can be an effective treatment method for peri-implantitis.

  12. Method of synthesis of proton conducting materials

    DOEpatents

    Garzon, Fernando Henry; Einsla, Melinda Lou; Mukundan, Rangachary

    2010-06-15

    A method of producing a proton conducting material, comprising adding a pyrophosphate salt to a solvent to produce a dissolved pyrophosphate salt; adding an inorganic acid salt to a solvent to produce a dissolved inorganic acid salt; adding the dissolved inorganic acid salt to the dissolved pyrophosphate salt to produce a mixture; substantially evaporating the solvent from the mixture to produce a precipitate; and calcining the precipitate at a temperature of from about 400.degree. C. to about 1200.degree. C.

  13. Decontamination solution development studies

    SciTech Connect

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement.

  14. Decontamination of Johnston Island Coral: a preliminary study

    SciTech Connect

    Kochen, R.L.

    1986-02-17

    A preliminary investigation was completed on the characterization and decontamination of coral samples from Johnston Island. These samples were found to contain individual particles (2 to 0.25 mm) of contaminated coral as well as a piece of contaminated magnetic metal. They ranged in activity from about 70 to 811 nCi Am-241. The decontamination methods investigated were froth flotation, ferrite treatment, attrition scrubbing, ultrasonic treatment and dry sieving. Dry sieving, the more effective technique, separated about 42 wt % of the coral into a decontaminated fraction. This fraction (>4 mm) contained about 0.5% of the total activity. 7 refs., 3 tabs.

  15. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    SciTech Connect

    C.A. Gentile; S.W. Langish; C.H. Skinner; L.P. Ciebiera

    2004-09-10

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination.

  16. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    SciTech Connect

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites.

  17. Decontamination formulation with sorbent additive

    DOEpatents

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  18. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  19. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    SciTech Connect

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  20. Benefits of automated surface decontamination of a radioiodine ward.

    PubMed

    Westcott, Eliza; Broadhurst, Alicia; Crossley, Steven; Lee, Lloyd; Phan, Xuyen; Scharli, Rainer; Xu, Yan

    2012-02-01

    A floor-washing robot has been acquired to assist physicists with decontamination of radioiodine therapy ward rooms after discharge of the patient at Sir Charles Gairdner Hospital. The effectiveness of the robot in decontaminating the ward has been evaluated. A controlled experiment was performed by deliberately contaminating a polyvinyl chloride flooring offcut with 131I followed by automated decontamination with the robot. The extent of fixed and removable contamination was assessed before and after decontamination by two methods: (1) direct Geiger-Mueller counting and (2) beta-counting wipe tests. Surface contamination was also assessed in situ on the ward by Geiger-Mueller counting and wipe testing. Contamination maps confirmed that contamination was removed rather than spread around by the robot. Wipe testing revealed that the robot was successful in clearing approximately 60-80% of removable contamination. The robotic floor-washing device was considered suitable to provide effective automated decontamination of the radioiodine ward. In addition, the robot affords other benefits: the time spent by the physicists decontaminating the room is greatly reduced offering financial and occupational safety and health benefits. The robot has also found utility in other decontamination applications in the healthcare environment. PMID:22249471

  1. Cost and Effectiveness of Decontamination Strategies in Radiation Contaminated Areas in Fukushima in Regard to External Radiation Dose

    PubMed Central

    Yasutaka, Tetsuo; Naito, Wataru; Nakanishi, Junko

    2013-01-01

    The objective of the present study is to evaluate the cost and effectiveness of decontamination strategies in the special decontamination areas in Fukushima in regard to external radiation dose. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, analysis of cost and effectiveness suggests that decontamination costs for agricultural areas account for approximately 80% of the total decontamination cost, of which approximately 60% is associated with storage. In addition, the costs of decontamination per person per unit area are estimated to vary greatly. Appropriate selection of decontamination methods may significantly decrease decontamination costs, allowing more meaningful decontamination in terms of the limited budget. Our analysis can help in examining the prioritization of decontamination areas from the viewpoints of cost and effectiveness in reducing the external dose. Decontamination strategies should be determined according to air dose rates and future land-use plans. PMID:24069398

  2. Chemical and Biological Substances Decontamination Study for Mars Missions and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pottage, Thomas; Walker, James; Bennett, Allan; Vrublevskis, John; Hovland, Scott

    This study, funded by the European Space Agency (ESA) and undertaken by the Health Protec-tion Agency, UK supported by Systems Engineering and Assessment Ltd., was devised to select suitable current decontamination technologies for development for future manned missions to the Moon and Mars. There is a requirement to decontaminate the habitat module due to the concerns about astronaut ill health, microbial deterioration of materials and potential forward contamination in the case of Mars. In the case of the MIR space station, biodeterioration of components and materials occurred, and dangerous levels of airborne microorganisms were detected during air sampling procedures which lead to the introduction of microbial exposure limits (as MORD SSP 50260) to ensure the health of the crew. COSPAR planetary protection guidelines highlight the need to reduce any potential forward or backwards contamination issues that may occur through the use of Extra Vehicular Activity (EVA) suits whilst on Mars. Decontamination of the suit exterior must be completed before any EVA activity on Mars, whilst a further decontamination cycle must be completed after entry to the airlock following EVA. Technologies and techniques have also been investigated for the microbial reduction of the interior surfaces of the EVA suit to stop biodeterioration of the materials and protect the user from pathogenic microbe accumulation. The first work package reviewed the systems description and requirements as detailed in the statement of work. The requirements were broken down into 12 further requirement sections, where they were updated and expanded, resulted in Technical Note (TN) 1 which was then used as the base document for WP2 and WP3. WP2 investigated the current technologies available for the decontamination of the habitat module interior on missions of up to 6 months and missions that have durations of greater than 6 months. A comprehensive review was carried out for the different methods that

  3. Smart Optical Material Characterization System and Method

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.

  4. Catalyst material and method of making

    DOEpatents

    Matson, D.W.; Fulton, J.L.; Linehan, J.C.; Bean, R.M.; Brewer, T.D.; Werpy, T.A.; Darab, J.G.

    1997-07-29

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation. 7 figs.

  5. Catalyst material and method of making

    DOEpatents

    Matson, Dean W.; Fulton, John L.; Linehan, John C.; Bean, Roger M.; Brewer, Thomas D.; Werpy, Todd A.; Darab, John G.

    1997-01-01

    The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.

  6. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  7. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  8. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  9. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  10. Anthrax Sampling and Decontamination: Technology Trade-Offs

    SciTech Connect

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  11. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  12. Innovative Laser Ablation Technology for Surface Decontamination

    SciTech Connect

    Chen, Winston C. H.

    2003-06-01

    The objective of this project is to develop a novel laser ablation in liquid for surface decontamination. It aims to achieve more efficient surface decontamination without secondary contamination. Another aim is to make this surface decontamination technology becomes economically feasible for large scale decontamination.

  13. Decontamination and Validation of Isolators for Sterility Testing.

    PubMed

    Bernuzzi, Maria Luisa

    2016-04-01

    Decontamination with hydrogen peroxide is a technology widely used to reduce microbial contamination. A typical application of this technology is in the decontamination of sterility test isolators. This article describes how to decontaminate sterility test isolators and validate the process in order to demonstrate that the microbiological target has been achieved and that the risk of false negatives due to residuals of hydrogen peroxide is excluded. Hydrogen peroxide can adversely affect some materials, resulting in inhibition of microbial growth. A package integrity verification, focused on the risk of penetration of decontaminating agent into different product containers and through different materials, is one of the main topics. Several case studies let readers understand the most critical items, choose their materials correctly, and validate the process itself. Hydrogen peroxide measurements on the surface of several materials, inside the primary packaging container, and inside aqueous solutions are part of this article. Validation of the decontamination cycle as well as validation of the operative procedure are key elements for a good laboratory practices approach.

  14. Oxidative Tritium Decontamination System

    SciTech Connect

    Charles A. Gentile; John J. Parker; Gregory L. Guttadora; Lloyd P. Ciebiera

    2002-02-11

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system.

  15. Method and structure for passivating semiconductor material

    DOEpatents

    Pankove, Jacques I.

    1981-01-01

    A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.

  16. Thermoelectric materials and methods for synthesis thereof

    DOEpatents

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  17. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  18. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination

  19. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  20. Methods for multi-material stereolithography

    DOEpatents

    Wicker, Ryan; Medina, Francisco; Elkins, Christopher

    2011-06-14

    Methods and systems of stereolithography for building cost-efficient and time-saving multi-material, multi-functional and multi-colored prototypes, models and devices configured for intermediate washing and curing/drying is disclosed including: laser(s), liquid and/or platform level sensing system(s), controllable optical system(s), moveable platform(s), elevator platform(s), recoating system(s) and at least one polymer retaining receptacle. Multiple polymer retaining receptacles may be arranged in a moveable apparatus, wherein each receptacle is adapted to actively/passively maintain a uniform, desired level of polymer by including a recoating device and a material fill/remove system. The platform is movably accessible to the polymer retaining receptacle(s), elevator mechanism(s) and washing and curing/drying area(s) which may be housed in a shielded enclosure(s). The elevator mechanism is configured to vertically traverse and rotate the platform, thus providing angled building, washing and curing/drying capabilities. A horizontal traversing mechanism may be included to facilitate manufacturing between components of SL cabinet(s) and/or alternative manufacturing technologies.

  1. Method of preparing corrosion resistant composite materials

    DOEpatents

    Kaun, Thomas D.

    1993-01-01

    Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  2. Technology for treatment of decontamination products

    SciTech Connect

    Kavkhuta, G.A.; Rozdzyalovskaya, L.F.

    1994-12-31

    The research concerning the methods of management and processing of products generated as the result of post Chernobyl decontamination activities is being carried out by the Institute of Radioecological Problems of Belarus Academy of Science (IRP) in the framework of the Belarus National Programme. The main goal of this work is choice and development of an appropriate system for treatment of the decontamination radwastes, based on currently available information and experimental studies. This paper presents the technological schemes being studied for treating the post-Chernobyl liquid and solid wastes and will also briefly discuss the approach being used to settle a problem on collecting/management of low-level radioactive ash wastes, generated from the use of contaminated fuel.

  3. APSIC Guidelines for environmental cleaning and decontamination.

    PubMed

    Ling, Moi Lin; Apisarnthanarak, Anucha; Thu, Le Thi Anh; Villanueva, Victoria; Pandjaitan, Costy; Yusof, Mohamad Yasim

    2015-01-01

    This document is an executive summary of APSIC Guidelines for Environmental Cleaning and Decontamination. It describes best practices in routine cleaning and decontamination in healthcare facilities as well as in specific settings e.g. management of patients with isolation precautions, food preparation areas, construction and renovation, and following a flood. It recommends the implementation of environmental hygiene program to keep the environment safe for patients, staff and visitors visiting a healthcare facility. Objective assessment of cleanliness and quality is an essential component of this program as a method for identifying quality improvement opportunities. Recommendations for safe handling of linen and bedding; as well as occupational health and safety issues are included in the guidelines. A training program is vital to ensure consistent adherence to best practices. PMID:26719796

  4. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was

  5. Particle generation by ultraviolet-laser ablation during surface decontamination.

    PubMed

    Lee, Doh-Won; Cheng, Meng-Dawn

    2006-11-01

    A novel photonic decontamination method was developed for removal of pollutants from material surfaces. Such a method relies on the ability of a high-energy laser beam to ablate materials from a contaminated surface layer, thus producing airborne particles. In this paper, the authors presented the results obtained using a scanning mobility particle sizer (SMPS) system and an aerosol particle sizer (APS). Particles generated by laser ablation from the surfaces of cement, chromium-embedded cement, and alumina were experimentally investigated. Broad particle distributions from nanometer to micrometer in size were measured. For stainless steel, virtually no particle > 500 nm in aerodynamic size was detected. The generated particle number concentrations of all three of the materials were increased as the 266-nm laser fluence (millijoules per square centimeter) increased. Among the three materials tested, cement was found to be the most favorable for particle removal, alumina next, and stainless steel the least. Chromium (dropped in cement) showed almost no effects on particle production. For all of the materials tested except for stainless steel, bimodal size distributions were observed; a smaller mode peaked at approximately 50-70 nm was detected by SMPS and a larger mode (peaked at approximately 0.70-0.85 microm) by APS. Based on transmission electron microscopy observations, the authors concluded that particles in the range of 50-70 nm were aggregates of primary particles, and those of size larger than a few hundred nanometers were produced by different mechanisms, for example, massive object ejection from the material surfaces.

  6. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    PubMed Central

    Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318

  7. Decontamination of the Shaft no.1 and cleaning container of 2. block NPP Paks

    SciTech Connect

    Bolcha, Jan; Mala, Zuzana; Tilky, Peter

    2007-07-01

    Available in abstract form only. Full text of publication follows: Meanwhile cleaning fuel assemblies on Paks NPP Unit 2. in 2003 year, the fuel assemblies were damaged, followed by contamination of cleaning container and operating shaft No. 1., in which was the container. As a part of the task - to restore operation NPP Paks, Unit 2, VUJE and.. realized decontamination of the wall of shaft prior to withdrawal of the defected fuel, decontamination of cleaning tank and in consequence decontamination of full shaft No. 1. Solution rest at finished conceptual decontamination proposal, fabrication of special purpose furnished, necessary documentation according to national legislative exigency. Real facilities on decontamination were examined on the stand and on shaft No. 1 in real conditions. This paper describes access method decontaminating procedure, applied facilities assigned on decontamination and present achievement results from decontamination shaft No. 1 realized in August 2006 and February 2007, respectively. Decontamination procedures were chosen on the base of experiments realized in laboratories VUJE and in Paks NPP. Laboratory experiments were realized on the sample of tube used for measurement of neutron flow, from NPP Paks, located in the shaft No.1 in time of event (INES-3). In NPP Paks were realized experiments on cover of cleaning container, which was in time of event situated on cleaning container. To compare decontaminated factors, the chemical and electrochemical procedures for decontamination were tested, and most effective practices were selected. Equipment ROS-740 can be used for the top part of the shaft decontamination. It allows high-pressure admission, rinse and chemical decontamination. Manipulator MAOS-170 is assigned for high-pressure admission of central part of the shaft. (authors)

  8. Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR

    DOEpatents

    Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.

    1980-06-06

    An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.

  9. Material permeance measurement system and method

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2012-05-08

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  10. Coated woven materials and method of preparation

    DOEpatents

    McCreary, W.J.; Carroll, D.W.

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is by coating with materials, with metals or with pyrolytic carbon. Materials are deposited in Chemical Vapor Deposition (CND) reactions using a fluidized bed so that the porosity of the woven materials is retained and the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  11. Systems analysis of decontamination options for civilian vehicles.

    SciTech Connect

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  12. Coated woven materials and method of preparation

    DOEpatents

    McCreary, William J.; Carroll, David W.

    1981-01-01

    Coating of woven materials so that not only the outer surfaces are coated has been a problem. Now, a solution to that problem is the following: Woven materials are coated with materials, for example with metals or with pyrolytic carbon, which materials are deposited in Chemical Vapor Deposition (CVD) reactions using a fluidized bed so that the porosity of the woven material is retained and so that the tiny filaments which make up the strands which are woven (including inner as well as outer filaments) are substantially uniformly coated.

  13. Water decontamination via the removal of Pb (II) using a new generation of highly energetic surface nano-material: Co(+2)Mo(+6) LDH.

    PubMed

    Mostafa, Mohsen S; Bakr, Al-Sayed A; El Naggar, Ahmed M A; Sultan, El-Sayed A

    2016-01-01

    CoMo(CO3(2-)) layered double hydroxide of a highly energetic surface, as a new LDH consisting of divalent and hexavalent cations (M(+2)/M(+6)-LDH), was prepared by a homogeneous co-precipitation method. The structure and morphology of the prepared material was confirmed by several analytical techniques namely; X-ray diffraction analysis (XRD), X-ray fluorescence (XRF), Fourier transform infra-red (FT-IR) spectroscopy, differential scanning calorimetry and thermal gravimetric analysis (DSC-TGA), N2 adsorption-desorption isotherm and scanning electron microscope (SEM). The highly energetic surface of the prepared LDH was demonstrated via the X-ray photoelectron spectroscopy (XPS). The surface energy is due to the formation of +4 surface charges in the brucite layer between Co(+2) and Mo(+6). The prepared LDH was applied as a novel adsorbent for the removal of Pb (II) from its aqueous solution at different experimental conditions of time, temperature and initial Pb (II) concentrations. The change of the Pb (II) concentrations; due to adsorption, was monitored by atomic absorption spectrophotometer (AAS). The maximum uptake of Pb (II) by the Co Mo LDH was (73.4 mg/g) at 298 K. The Pb (II) adsorption was found to follow Langmuir isotherm and pseudo second order model. The adsorption process was spontaneous and endothermic. The interference of other cations on the removal of the Pb (II) was studied. Na(+) and K(+) were found to increase the adsorption capacity of the Co Mo LDH toward Pb (II) while it was slightly decreased by the presence of Mn(+2) and Cu(+2). The synthesized LDH showed a great degree of recoverability (7 times) while completely conserving its parental morphology and adsorption capacity. The mechanism of the lead ions removal had exhibited more reliability through a surface adsorption by the coordination between the Mo(+6) of the brucite layers and the oxygen atoms of the nitrates counter ions.

  14. Support for the delisting of decontaminated liquid chemical surety materials as listed hazardous waste from specific sources (state) MD02 in COMAR 10. 51. 02. 16-1. Technical report, December 1987-February 1988

    SciTech Connect

    Durst, H.D.; Sarver, E.W.; Yurow, H.W.; Beaudry, W.T.; D'Eramo, P.A.

    1988-11-01

    Maryland recently enacted regulations that listed decontaminated residues of certain chemical warfare agents as hazardous wastes. The State would consider delisting if the Army document the effects of its decontamination procedures. Army specialists at U.S. Army Chemical Research, Development and Engineering Center (CRDEC), Aberdeen Proving Ground, MD, have had exhaustive experience in this area since 1918 when chemical agents were first used in combat in World War I. Competence accrued during this 70-year legacy includes destruction of laboratory and training wastes, combat decontamination, and largescale demilitarization of unserviceable and obsolete agent-filled munitions. The facts and circumstances enumerated in this document indicate that current decontamination practices are safe, scientifically valid, and result in the total destruction of agents in questions.

  15. [Decontamination of chemical warfare agents by photocatalysis].

    PubMed

    Hirakawa, Tsutomu; Mera, Nobuaki; Sano, Taizo; Negishi, Nobuaki; Takeuchi, Koji

    2009-01-01

    Photocatalysis has been widely applied to solar-energy conversion and environmental purification. Photocatalyst, typically titanium dioxide (TiO(2)), produces active oxygen species under irradiation of ultraviolet light, and can decompose not only conventional pollutants but also different types of hazardous substances at mild conditions. We have recently started the study of photocatalytic decontamination of chemical warfare agents (CWAs) under collaboration with the National Research Institute of Police Science. This article reviews environmental applications of semiconductor photocatalysis, decontamination methods for CWAs, and previous photocatalytic studies applied to CWA degradation, together with some of our results obtained with CWAs and their simulant compounds. The data indicate that photocatalysis, which may not always give a striking power, certainly helps detoxification of such hazardous compounds. Unfortunately, there are not enough data obtained with real CWAs due to the difficulty in handling. We will add more scientific data using CWAs in the near future to develop useful decontamination systems that can reduce the damage caused by possible terrorism. PMID:19122438

  16. BOFFO - BOUNDARY FORCE METHOD FOR ORTHOTROPIC MATERIALS

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1994-01-01

    In the field of fracture mechanics, stress-intensity factors are important parameters for predicting fracture strengths and fatigue lives. BOFFO performs stress analysis of two-dimensional linear elastic orthotropic or composite bodies with or without cracks using the Boundary Force Method. The Boundary Force Method is versatile since complex geometries, crack configurations, and load distributions can be analyzed with ease. The BOFFO program is easy to use because only the boundaries of the region of interest are modeled using a built-in mesh generator. Stresses can be computed at any specified point in the body. Stress-intensity factor solutions and strain-energy release rates are computed for both mode I and mixed mode fracture problems. The Boundary Force Method is a numerical technique that uses the fundamental solutions for concentrated forces and moments in an infinite sheet to obtain the solution to the boundary value problem of interest. These fundamental solutions are used in the BOFFO program to exactly satisfy the stress-free conditions on the crack faces. The other boundary conditions are approximately satisfied by applying the appropriate sets of concentrated horizontal and vertical forces and moments along the boundary. The problem configuration is defined using two sets of axes. The global X- and Y-axes define the specimen boundaries, loads, and material properties. The local axes define the crack length and orientation. The user can specify four types of symmetry conditions: symmetry about the X-axis, symmetry about the Y-axis, symmetry about the X- and Y-axes, or no symmetry. The lines of symmetry are not modeled as boundaries. The accuracy of the solution depends on how well the boundary conditions are approximated, which in turn depends on the refinement of the boundary mesh. BOFFO uses the radial-line method for element mesh generation. BOFFO is written in FORTRAN V for execution on CDC CYBER 170 Series computers running NOS. The execution time

  17. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides: Thermodynamic and Kinetic Reactions between Isosaccharinate and Actinides on Metal and Concrete Surfaces

    SciTech Connect

    Rai, Dhanpat; Moore, Robert C.; Tucker, Mark D.; Rao, Linfeng

    2002-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the U.S. Department of Energy (DOE) complex. For steel surfaces, the primary problem is contamination of sections of nuclear power reactors, weapons production facilities, laboratories, and waste tanks. For concrete, there are an estimated 18,000 acres of concrete contaminated with radioactive materials that need decontamination. Significant efforts have gone into developing decontamination technologies. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable.

  18. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    SciTech Connect

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide.

  19. A rapid and inexpensive bioassay to evaluate the decontamination of organophosphates.

    PubMed

    Claborn, David M; Martin-Brown, Skylar A; Sagar, Sanjay Gupta; Durham, Paul

    2012-01-01

    An inexpensive and rapid bioassay using adult red flour beetles was developed for use in assessing the decontamination of environments containing organophosphates and related chemicals. A decontamination protocol was developed which demonstrated that 2 to 3 applications of 5% bleach solution were required to obtain nearly complete decontamination of malathion. The bioassay was also used to screen common household cleaners as potential decontaminating agents, but only 5% bleach was effective at improving survival of insects on steel plates treated with 25% malathion. A toxic degradation product (malaoxon) was detected using gas chromatography/mass spectrophotometry; this toxin affected the decontamination efficacy and resulted in continued toxicity to the beetles until subsequent decontaminations. The bioassay provides evidence to support the use of red flour beetles as a sensitive, less expensive method for determining safety levels of environments contaminated with malathion and other toxins, and may have application in the study of chemical warfare agents.

  20. Decontaminating and Melt Recycling Tritium Contaminated Stainless Steel

    SciTech Connect

    Clark, E.A.

    1995-04-03

    The Westinghouse Savannah River Company, Idaho National Engineering Laboratory, and several university and industrial partners are evaluating recycling radioactively contaminated stainless steel. The goal of this program is to recycle contaminated stainless steel scrap from US Department of Energy national defense facilities. There is a large quantity of stainless steel at the DOE Savannah River Site from retired heavy water moderated Nuclear material production reactors (for example heat exchangers and process water piping), that will be used in pilot studies of potential recycle processes. These parts are contaminated by fission products, activated species, and tritium generated by neutron irradiation of the primary reactor coolant, which is heavy (deuterated) water. This report reviews current understanding of tritium contamination of stainless steel and previous studies of decontaminating tritium exposed stainless steel. It also outlines stainless steel refining methods, and proposes recommendations based on this review.

  1. Methylocystis strain SB2 materials and methods

    SciTech Connect

    Semrau, Jeremy D; Gallagher, Warren; Yoon, Sukhwan; Im, Jeongdae; DiSpririto, Alan A; Lee, Sung-Woo; Hartsel, Scott; McEllistrem, Marcus T

    2014-01-14

    The present disclosures provides isolated or purified compounds, each of which bind to a metal atom. Generally, the compounds are small in size (e.g., molecular weight of less than about 1 kDa) and peptidic in nature, inasmuch as the compounds comprise amino acids. In some embodiments, the compound comprises a structure of Formula I; M.sub.1-P.sub.1-M.sub.2-P.sub.2 wherein each of P.sub.1 and P.sub.2 is a peptide comprising at least two amino acids, M.sub.1 is a first metal binding moiety comprising a substituted imidazolone ring, M.sub.2 is a second metal binding moiety comprising a substituted oxazolone ring, and wherein M.sub.1 and M.sub.2 bind to a single metal atom. Also provided are related complexes, conjugates, cells which synthesize the compounds of the present disclosures, substantially homogenous cultures thereof, kits and compositions, and methods of making or using the materials of the present disclosures.

  2. Enhancing activated-peroxide formulations for porous materials :

    SciTech Connect

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  3. Development of Biodegradable Isosaccharinate-Containing Foams for Decontamination of Actinides: Thermodynamic and Kinetic Reactions between Isosaccharinate and Actinides on Metal and Concrete Surfaces

    SciTech Connect

    Rai, Dhanpat; Rao, Linfeng; Moore, Robert C.; Bontchev, Ranko; Holt, Kathleen

    2004-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on ISA species as a function of pH and on ISA interactions with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  4. DEVELOPMENT OF BIODEGRADABLE ISOSACCHARINATE-CONTAINING FOAMS FOR DECONTAMINATION OF ACTINIDES: THERMODYNAMIC AND KINETIC REACTIONS BETWEEN ISOSACCHARINATE AND ACTINIDES ON METAL AND CONCRETE SURFACES

    SciTech Connect

    Rai, Dhanpat; Moore, Robert C.; Linfeng, Rao; Tucker, Mark D.

    2003-06-01

    Actinide contamination of steel and concrete surfaces is a major problem within the DOE complex. Almost all current decontamination technologies rely on removal of the contaminated surface layer by mechanical means or by chemical methods, using harsh chemicals. Some of the technologies are ineffective. Others are expensive, labor intensive, and hazardous to workers. Still others create secondary mixed wastes that are not environmentally acceptable. This project seeks fundamental information that will lead to the development of a new and more environmentally acceptable technology for decontamination of actinides, especially Pu, on steel and concrete surfaces. The key component of this technology is isosaccharinate (ISA), a degradation product of cellulose materials that is biodegradable. Isosaccharinate will be incorporated into foams/gels for safe and easy use in decontamination of actinides from steel, concrete, and other surfaces. Thermodynamic data are being developed on the interactions of ISA with actinides and competing metals [e.g., Fe(III) and Ca(II)] under a wide range of conditions relevant to decontamination of steel and concrete. The efficiency of the ISA containing foams/gels/solutions for decontamination is also being tested. This project builds on capabilities at three different national laboratories, and represents a joint effort between PNNL, LBNL, and SNL.

  5. Large area cold plasma applicator for decontamination

    NASA Astrophysics Data System (ADS)

    Konesky, G. A.

    2008-04-01

    Cold plasma applicators have been used in the Medical community for several years for uses ranging from hemostasis ("stop bleeding") to tumor removal. An added benefit of this technology is enhanced wound healing by the destruction of infectious microbial agents without damaging healthy tissue. The beam is typically one millimeter to less than a centimeter in diameter. This technology has been adapted and expanded to large area applicators of potentially a square meter or more. Decontamination applications include both biological and chemical agents, and assisting in the removal of radiological agents, with minimal or no damage to the contaminated substrate material. Linear and planar multiemitter array plasma applicator design and operation is discussed.

  6. Apparatus and method for pyrolyzing biomass material

    SciTech Connect

    Diebold, J.P.; Reed, T.B.

    1981-08-21

    A technique for pyrolyzing biomass materials is disclosed wherein a hot surface is provided having a predetermined temperature which is sufficient to pyrolyze only the surface strata of the biomass material without substantially heating the interior of the biomass material thereby providing a large temperature gradient from the surface strata inwardly of the relatively cool biomass materials. Relative motion and physical contact is produced between the surface strata and the hot surface for a sufficient period of time for ablative pyrolyzation by heat conduction to occur with minimum generation of char.

  7. Cementation: methods and materials. Part two.

    PubMed

    Larson, Thomas D

    2013-01-01

    This is a review of the literature of the last 21 years about cementing or luting indirect restorations to tooth structure. Recommendations are made as to the surface preparation of precious metals, non-precious metals, indirect composite materials, and all available porcelain materials including feldspathic, luecite reinforced, lithium di-silicate, slip cast aluminum oxide, densely sintered aluminum oxide, and zirconia prior to luting. Using data from a variety of sources, product categories of materials and various bonding materials and procedures are ranked according to their bond strength and durability.

  8. Method and apparatus for separating material

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2004-11-23

    An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor or a pulverizer for reducing the size of the particles. The apparatus includes a mechanism for separating undesired material from desired material.

  9. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas*

    PubMed Central

    Li, Yan-ju; Zhu, Neng; Jia, Hai-quan; Wu, Jin-hui; Yi, Ying; Qi, Jian-cheng

    2012-01-01

    Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cm×1.0 cm for PVC, GS, and CC) were contaminated with 10 μl of Bacillus subtilis var. niger (ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination. PMID:22467366

  10. Decontamination of BWR fuel bundles

    SciTech Connect

    Ocken, H.

    1988-01-01

    Decontamination of individual systems in operating reactors, such as recirculation piping in boiling water reactors (BWRs) and steam generators in pressurized water reactors, is becoming an accepted technique to reduce radiation fields and occupational radiation exposure. Because a significant inventory of radioactivity resides on the reactor core, a longer term goal is to effect full plant decontamination with the fuel in place. Full plant decontamination has proved effective in CANDU and steam-generating heavy water reactor plants, but only recently have US plants begun to consider seriously the merits of such an approach. Clearly, a first step is to show that exposure to commercial decontamination solvents of highly irradiated core components will not induce any adverse effects. This paper describes a study of the application of the LOMI and CANDECON solvents to three-cycle discharged fuel bundles from the Quad Cities-2 BWR. Highly irradiated stainless steel specimens cut from a section of a LaCrosse BWR control blade also were decontaminated at the same time as the fuel bundles. CANDECON was selected as being representative of dilute chelant process and LOMI as representative of more strongly reducing processes. Both processes were preceded by the application of an oxidizing alkaline permanganate (AP) oxidizing step to help dissolve chromium.

  11. Layered zeolite materials and methods related thereto

    DOEpatents

    Tsapatsis, Michael; Maheshwari, Sudeep; Bates, Frank S; Koros, William J

    2013-08-06

    A novel oxide material (MIN-I) comprising YO.sub.2; and X.sub.2O.sub.3, wherein Y is a tetravalent element and X is a trivalent element, wherein X/Y=O or Y/X=30 to 100 is provided. Surprisingly, MIN-I can be reversibly deswollen. MIN-I can further be combined with a polymer to produce a nanocomposite, depolymerized to produce predominantly fully exfoliated layers (MIN-2), and pillared to produce a pillared oxide material (MIN-3), analogous to MCM-36. The materials are useful in a wide range of applications, such as catalysts, thin films, membranes, and coatings.

  12. Decontamination in the Aftermath of a Radiological Attack

    NASA Astrophysics Data System (ADS)

    Yassif, Jaime

    2004-05-01

    Much of the damage caused by a radiological weapon would result from long-term contamination, yet the U.S. lacks a coherent plan for cleanup in the aftermath of an attack. A rapidly implemented decontamination strategy could minimize economic damage by restoring normal activity, when possible, and could ease the cleanup process, which can become more difficult as time passes. Loose dust particles can become trapped under layers of oxidized metal and organic materials or penetrate deeper into porous surfaces, and reactive elements, such as cesium-137, chemically bind to components of glass, asphalt and concrete. Decontamination planning requires identification of appropriate existing technologies that are transferable from small-scale tasks, such as nuclear facility decommissioning, and adaptable to urban-scale operations. Applicable technologies should effectively contain and remove fixed and loose contamination with α-, β- and γ-emitters without generating large quantities of secondary waste. Development of new technologies is also necessary, particularly to improve α-detection, as is research to test existing technologies for their effectiveness in large-scale operations. These techniques will be most effective if integrated into a broad strategy that identifies appropriate exposure limits, prioritizes decontamination tasks and assigns authority and responsibility for performing these tasks. This talk will address existing decontamination thresholds and suggest ways to modify them and will discuss appropriate, existing technologies that can decontaminate to the required levels.

  13. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  14. Method to fabricate layered material compositions

    SciTech Connect

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  15. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S.; Holcombe, Cressie E.

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  16. Oxidative decontamination of chemical and biological warfare agents using L-Gel.

    PubMed

    Raber, Ellen; McGuire, Raymond

    2002-08-01

    A decontamination method has been developed using a single reagent that is effective both against chemical warfare (CW) and biological warfare (BW) agents. The new reagent, "L-Gel", consists of an aqueous solution of a mild commercial oxidizer, Oxone, together with a commercial fumed silica gelling agent, Cab-O-Sil EH-5. L-Gel is non-toxic, environmentally friendly, relatively non-corrosive, maximizes contact time because of its thixotropic nature, clings to walls and ceilings, and does not harm carpets or painted surfaces. The new reagent also addresses the most demanding requirements for decontamination in the civilian sector, including availability, low maintenance, ease of application and deployment by a variety of dispersal mechanisms, minimal training and acceptable expense. Experiments to test the effectiveness of L-Gel were conducted at Lawrence Livermore National Laboratory and independently at four other locations. L-Gel was tested against all classes of chemical warfare agents and against various biological warfare agent surrogates, including spore-forming bacteria and non-virulent strains of real biological agents. Testing showed that L-Gel is as effective against chemical agents and biological materials, including spores, as the best military decontaminants.

  17. Method and apparatus for nucleating the crystallization of undercooled materials

    DOEpatents

    Benson, David K.; Barret, Peter F.

    1989-01-01

    A method of storing and controlling a release of latent heat of transition of a phase-change material is disclosed. The method comprises trapping a crystallite of the material between two solid objects and retaining it there under high pressure by applying a force to press the two solid objects tightly together. A crystallite of the material is exposed to a quantity of the material that is in a supercooled condition to nucleate the crystallization of the supercooled material.

  18. Method and apparatus for vibrating a substrate during material formation

    DOEpatents

    Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  19. Fighting Ebola with novel spore decontamination technologies for the military

    DOE PAGES

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized asmore » a dry mixed-chemical for bacterial spore decontamination.« less

  20. Fighting Ebola with novel spore decontamination technologies for the military

    SciTech Connect

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-08-12

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). Here, the basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination.

  1. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    PubMed Central

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  2. Method for characterization of the redox condition of cementitious materials

    SciTech Connect

    Almond, Philip M.; Langton, Christine A.; Stefanko, David B.

    2015-12-22

    Disclosed are methods for determining the redox condition of cementitious materials. The methods are leaching methods that utilize an in situ redox indicator that is present in the cementitious materials as formed. The in situ redox indicator leaches from cementitious material and, when the leaching process is carried out under anaerobic conditions can be utilized to determine the redox condition of the material. The in situ redox indicator can exhibit distinct characteristics in the leachate depending upon the redox condition of the indicator.

  3. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  4. Reactor and method for hydrocracking carbonaceous material

    DOEpatents

    Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.

    1980-01-01

    Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.

  5. Public experiences of mass casualty decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination.

  6. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  7. Public experiences of mass casualty decontamination.

    PubMed

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination. PMID:22823588

  8. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  9. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  10. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  11. 46 CFR 154.1410 - Decontamination shower.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Decontamination shower. 154.1410 Section 154.1410... Equipment § 154.1410 Decontamination shower. When Table 4 references this section, a vessel carrying the listed cargo must have a decontamination shower and an eye wash that: (a) Are on the weatherdeck; and...

  12. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  13. Materials comprising polydienes and hydrophilic polymers and related methods

    SciTech Connect

    Mays, Jimmy W.; Deng, Suxiang; Mauritz, Kenneth A.; Hassan, Mohammad K.; Gido, Samuel P.

    2011-11-22

    Materials prepared from polydienes, such as poly(cyclohexadiene), and hydrophilic polymers, such as poly(alkylene oxide), are described. Methods of making the materials and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization are also provided. The materials can be crosslinked and sulfonated, and can include copolymers and polymer blends.

  14. [Decontamination of continual cell lines spontaneously infected with mycoplasmas].

    PubMed

    Machatková, M; Jurmanová, K; Snejdar, V

    1986-07-01

    The continual cell lines of bovine kidneys MDBK and AUBEK, and porcine kidneys RPD and IBRS, spontaneously infected with Mycoplasma arginini and Acholeplasma laidlawii, were decontaminated by the method of selective elimination. Two elimination procedures were modified to be used for the decontamination: one based on the reduction of infection by the light treatment of the cultures, the other based on the selection of mycoplasma-free cell population through cell clonation. On the basis of a long-continued control of the cell clones a methodical procedure of the preparation of mycoplasma-free cell lines was worked out. PMID:3090766

  15. Decontamination and reuse of ORGDP aluminum scrap

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

  16. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    NASA Astrophysics Data System (ADS)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  17. Investigation on the coprecipitation of transuranium elements from alkaline solutions by the method of appearing reagents. Study of the effects of waste components on decontamination from Np(IV) and Pu(IV)

    SciTech Connect

    Bessonov, A.A.; Budantseva, N.A.; Gelis, A.V.; Nikonov, M.V.; Shilov, V.P.

    1997-09-01

    The third stage of the study on the homogeneous coprecipitation of neptunium and plutonium from alkaline high-level radioactive waste solutions by the Method of Appearing Reagents has been completed. Alkaline radioactive wastes exist at the U.S. Department of Energy Hanford Site. The recent studies investigated the effects of neptunium chemical reductants, plutonium(IV) concentration, and the presence of bulk tank waste solution components on the decontamination from tetravalent neptunium and plutonium achieved by homogeneous coprecipitation. Data on neptunium reduction to its tetravalent state in alkaline solution of different NaOH concentrations are given. Eleven reductants were tested to find those most suited to remove neptunium, through chemical reduction, from alkaline solution by homogeneous coprecipitation. Hydrazine, VOSO{sub 4}, and Na{sub 2}S{sub 2}O{sub 4} were found to be the most effective reductants. The rates of reduction with these reductants were comparable with the kinetics of carrier formation. Solution decontamination factors of about 400 were attained for 10{sup -6}M neptunium. Coprecipitation of plutonium(IV) with carriers obtained as products of thermal hydrolysis, redox transformations, and catalytic decomposition of [Co(NH{sub 3}){sub 6}]{sup 3+}, [Fe(CN){sub 5}NO]{sup 2-}, Cr(NO{sub 3}){sub 3}, KMnO{sub 4}, and Li{sub 4}UO{sub 2}(O{sub 2}){sub 3} was studied and results are described. Under optimum conditions, a 100-fold decrease of plutonium concentration was possible with each of these reagents.

  18. Hydrocarbonaceous material processing methods and apparatus

    DOEpatents

    Brecher, Lee E.

    2011-07-12

    Methods and apparatus are disclosed for possibly producing pipeline-ready heavy oil from substantially non-pumpable oil feeds. The methods and apparatus may be designed to produce such pipeline-ready heavy oils in the production field. Such methods and apparatus may involve thermal soaking of liquid hydrocarbonaceous inputs in thermal environments (2) to generate, though chemical reaction, an increased distillate amount as compared with conventional boiling technologies.

  19. Method for producing oxygen from lunar materials

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A. (Inventor)

    1993-01-01

    This invention is related to producing oxygen from lunar or Martian materials, particularly from lunar ilmenite in situ. The process includes producing a slurry of the minerals and hot sulfuric acid, the acid and minerals reacting to form sulfates of the metal. Water is added to the slurry to dissolve the minerals into an aqueous solution, the first aqueous solution is separated from unreacted minerals from the slurry, and the aqueous solution is electrolyzed to produce the metal and oxygen.

  20. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    SciTech Connect

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  1. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J. P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  2. Hospital use of decontaminating mats.

    PubMed

    Marchetti, M G; Finzi, G; Cugini, P; Manfrini, M; Salvatorelli, G

    2003-09-01

    Decontaminating mats made of several layers of adhesive sheets (water-based acrylic 6 g/m2) supplemented with a bactericidal agent (3-1 benzoisothiazolin) at a concentration of 25% were placed in the passages providing access to the operating rooms of an orthopaedic service. Contact plates containing tryptone soy agar were used to assess bacterial concentration at specific points in front of and beyond the mats. For trolley passageways two areas were defined: central and lateral paths, corresponding to the areas walked upon by the personnel pushing the trolleys and to the paths covered by the trolley wheels, respectively. In order to exclude a simple mechanical effect, a comparison of bacterial loads at defined sites beyond the mats was carried out in the presence and in the absence of decontaminating mats. Bacterial colony counts in the presence of decontaminating mats were substantially and statistically significantly reduced compared with the absence of mats. The lower mean number of colony-forming units detected at points located beyond the mats parallels this finding; this difference is also statistically significant. We thus conclude that decontaminating mats are potentially useful in decreasing micro-organism carry-over due to personnel or the passage of trolleys into areas at high risk of infection such as operating rooms.

  3. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators.

    PubMed

    Lore, Michael B; Heimbuch, Brian K; Brown, Teanne L; Wander, Joseph D; Hinrichs, Steven H

    2012-01-01

    Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs.

  4. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators.

    PubMed

    Lore, Michael B; Heimbuch, Brian K; Brown, Teanne L; Wander, Joseph D; Hinrichs, Steven H

    2012-01-01

    Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs. PMID:21859950

  5. Safety analysis factors for environmental restoration and decontamination and decommissioning

    SciTech Connect

    Ellingson, D.R.

    1993-04-01

    Environmental restoration (ER) and facility decontamination/decommissioning (D&D) operations can be grouped into two general categories. ``Nonstationary cleanup`` or simply ``cleanup`` activities are where the operation must relocate to the site of new contaminated material at the completion of each task (i.e., the operation moves to the contaminated material). ``Stationary production`` or simply ``production`` activities are where the contaminated material is moved to a centralized location (i.e., the contaminated material is moved to the operation) for analysis, sorting, treatment, storage, and disposal. This paper addresses the issue of nonstationary cleanup design. The following are the specific assigned action items: Collect and compile a list of special safety-related ER/D&D design factors, especially ones that don`t follow DOE Order 6430.1A requirements. Develop proposal of what makes sense to recommend to designers; especially consider recommendations for short-term projects. Present proposal at the January meeting. To achieve the action items, applicable US Department of Energy (DOE) design requirements, and cleanup operations and differences from production activities are reviewed and summarized; basic safety requirements influencing design are summarized; and finally, approaches, considerations, and methods for safe, cost-effective design of cleanup activities are discussed.

  6. 14 CFR 35.17 - Materials and manufacturing methods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.17 Materials and manufacturing methods. (a) The suitability and durability of materials used in the propeller must: (1) Be established on the basis...

  7. 14 CFR 35.17 - Materials and manufacturing methods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.17 Materials and manufacturing methods. (a) The suitability and durability of materials used in the propeller must: (1) Be established on the basis...

  8. 14 CFR 35.17 - Materials and manufacturing methods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.17 Materials and manufacturing methods. (a) The suitability and durability of materials used in the propeller must: (1) Be established on the basis...

  9. 14 CFR 35.17 - Materials and manufacturing methods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.17 Materials and manufacturing methods. (a) The suitability and durability of materials used in the propeller must: (1) Be established on the basis...

  10. 14 CFR 35.17 - Materials and manufacturing methods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.17 Materials and manufacturing methods. (a) The suitability and durability of materials used in the propeller must: (1) Be established on the basis...

  11. Method of manufacturing lightweight thermo-barrier material

    NASA Technical Reports Server (NTRS)

    Blair, Winford (Inventor)

    1987-01-01

    A method of manufacturing thermal barrier structures comprising at least three dimpled cores separated by flat plate material with the outer surface of the flat plate material joined together by diffusion bonding.

  12. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    SciTech Connect

    Vogt , B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  13. Methods for making thin layers of crystalline materials

    SciTech Connect

    Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy

    2013-07-23

    Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.

  14. Method of preparing fiber reinforced ceramic material

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T. (Inventor)

    1987-01-01

    Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.

  15. Method of preparing nitrogen containing semiconductor material

    DOEpatents

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  16. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-11-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.

  17. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-02-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  18. Method and apparatus for semi-solid material processing

    DOEpatents

    Han, Qingyou; Jian, Xiaogang; Xu, Hanbing; Meek, Thomas T.

    2007-05-15

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  19. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  20. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  1. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  2. Materiel, Methodes, Techniques et Technologie (Materials, Methods, Techniques, and Technology).

    ERIC Educational Resources Information Center

    Bourque, Jane M.

    This presentation attempts to describe the current situation of French language instruction in the United States. As far as materials are concerned, there is a general tendency to emphasize communicative skills. Less attention is paid to literature, and more to the day-to-day activities of young French or Canadian people. Textbooks are generally…

  3. Method to improve commercial bonded SOI material

    DOEpatents

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  4. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    SciTech Connect

    Dickerson, K.S.; Wilson-Nichols, M.J.; Morris, M.I.

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  5. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOEpatents

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  6. Advanced technologies for decontamination and conversion of scrap metal

    SciTech Connect

    MacNair, V.; Muth, T.; Shasteen, K.; Liby, A.; Hradil, G.; Mishra, B.

    1996-12-31

    In October 1993, Manufacturing Sciences Corporation was awarded DOE contract DE-AC21-93MC30170 to develop and test recycling of radioactive scrap metal (RSM) to high value and intermediate and final product forms. This work was conducted to help solve the problems associated with decontamination and reuse of the diffusion plant barrier nickel and other radioactively contaminated scrap metals present in the diffusion plants. Options available for disposition of the nickel include decontamination and subsequent release or recycled product manufacture for restricted end use. Both of these options are evaluated during the course of this research effort. work during phase I of this project successfully demonstrated the ability to make stainless steel from barrier nickel feed. This paved the way for restricted end use products made from stainless steel. Also, after repeated trials and studies, the inducto-slag nickel decontamination process was eliminated as a suitable alternative. Electro-refining appeared to be a promising technology for decontamination of the diffusion plant barrier material. Goals for phase II included conducting experiments to facilitate the development of an electro-refining process to separate technetium from nickel. In parallel with those activities, phase II efforts were to include the development of the necessary processes to make useful products from radioactive scrap metal. Nickel from the diffusion plants as well as stainless steel and carbon steel could be used as feed material for these products.

  7. Plasma Decontamination of Space Equipment for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Thomas, Hubertus; Barczyk, Simon; Rettberg, Petra; Shimizu, Satoshi; Shimizu, Tetsuji; Klaempfl, Tobias; Morfill, Gregor; Zimmermann, Julia; Weber, Peter

    The search for extraterrestrial life is one of the most challenging science topics for the next decades. Space missions, like ExoMars, plan to land and search for biological remnants on planets and moons in our nearby Solar system. Planetary protection regulations defined by COSPAR prevent that during the mission biological contamination of the bodies occur through the space probes. Therefore decontamination of the probes and more general space equipment is necessary before the launch. The up-to-date accepted decontamination procedure originate from the old NASA Viking missions and use dry heat (T>110°C for 30h) - a technology not well suited for sensitive equipment nowadays. We investigated in a study financed by the German Space Agency* cold atmospheric plasma (CAP) as an alternative for such decontamination. It is well known that CAP can kill bacteria or spores within seconds or minutes, respectively, if the plasma is in direct contact with the treated sample. This procedure might also be quite aggressive to the treated surface materials. Therefore, we developed an afterglow CAP device specially designed for the soft treatment of space equipment. Afterglow plasma produced by a SMD device in air is transported into a “larger” treatment chamber where the samples are positioned. It could be shown that samples of different bacteria and spores, the latter defined by COSPAR as a means to show the effectiveness of the decontamination process, positioned on different materials (steel, Teflon, quartz) could be effectively inactivated. The surface materials were investigated after the plasma treatment to identify etching or deposition problems. The afterglow in the treatment chamber could even overcome obstacles (tubes of different height and diameter) which simulate more complicated structures of the relevant surfaces. Up to now, CAP looks like a quite promising alternative to decontaminate space equipment and need to be studied in greater detail in the near future

  8. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  9. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  10. Hydrogen storage materials and method of making by dry homogenation

    DOEpatents

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  11. Toxicological evaluation/verification of decontamination procedures/products from alternative technologies for chemical demilitarization: Products of mustard (HD) neutralization and/or hydrolysis. Final report, February-June 1996

    SciTech Connect

    Manthei, J.H.; Heitkamp, D.H.; Way, R.A.; Bona, D.M.

    1997-08-01

    Six samples of mustard (HD) were decontaminated using water with additional degrading by bioreactions. These materials were tested dermally in adult New Zealand White (NZW) rabbits at 1.0 ML/kg to assess their dermal irritation hazard. Results indicate that all six decontaminated HD water by-products no longer possessed dermal irritancy properties. A control 1.0% HD/PEG-200 sample produced severe dermal irritation in all 12 rabbits tested. A control sample of thiodiglycol produced mild dermal irritation in rabbits that lasted <48 hr. It was concluded that reacting HD with water is a very efficient method of HD destruction.

  12. Hypochlorite solution as a decontaminant in sulfur mustard contaminated skin defects in the euthymic hairless guinea pig

    SciTech Connect

    Gold, M.B.; Bongiovanni, R.; Scharf, B.A.; Gresham, V.C.; Woodward, C.L.

    1994-12-31

    Hypochlorite solutions are thought to be efficacious when used to topically decontaminate intact skin. However, few studies have examined the efficacy of decontamination of chemically contaminated wounds. Therefore, we compared the decontamination efficacy of sodium hypochlorite (0.5% and 2.5% solutions), calcium hypochlorite (0.5% and 2.5% solutions) and sterile water to untreated controls in wounds exposed to sulfur mustard (HD). Anesthetized euthymic hairless guinea pigs (EHGP) (n=6) were exposed to 20 mg/kg (approximately 0.4 LD%) HD in a full-thickness 8 mm surgical biopsy skin defect (i.e., wound). Each animal was subsequently decontaminated, after a two-minute intra-wound exposure to liquid HD, with nothing or one of the decontamination solutions. Decontamination efficacy was determined by the visual grading of the HD-traumatized wound lesion and by comparison of the expected HD-induced leukocyte suppression. Leukocyte suppression was inconsistent in all animals; therefore, the visual grading was the only viable evaluation method. No significant differences were observed among wounds decontaminated with any of the solutions. However, the skin surrounding non-decontaminated (but exposed) control animals showed the least visual pathology. The lesions induced following decontamination are presumed to be due to the mechanical flushing of HD onto the peri-lesional skin, or by chemical damage induced by the solution, or ND-solution interaction. Further studies are required to best delineate the optimal decontamination process for HD contaminated wounds.

  13. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    SciTech Connect

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  14. Method of making a functionally graded material

    SciTech Connect

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  15. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, Jr., Holt; Harris, Ian D.; Ratka, John O.; Spiegelberg, William D.

    1994-01-01

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined.

  16. Method and apparatus for welding precipitation hardenable materials

    DOEpatents

    Murray, H. Jr.; Harris, I.D.; Ratka, J.O.; Spiegelberg, W.D.

    1994-06-28

    A method for welding together members consisting of precipitation age hardened materials includes the steps of selecting a weld filler material that has substantially the same composition as the materials being joined, and an age hardening characteristic temperature age threshold below that of the aging kinetic temperature range of the materials being joined, whereby after welding the members together, the resulting weld and heat affected zone (HAZ) are heat treated at a temperature below that of the kinetic temperature range of the materials joined, for obtaining substantially the same mechanical characteristics for the weld and HAZ, as for the parent material of the members joined. 5 figures.

  17. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  18. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    SciTech Connect

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  19. Hexachlorocyclohexane: persistence, toxicity and decontamination.

    PubMed

    Nayyar, Namita; Sangwan, Naseer; Kohli, Puneet; Verma, Helianthous; Kumar, Roshan; Negi, Vivek; Oldach, Phoebe; Mahato, Nitish Kumar; Gupta, Vipin; Lal, Rup

    2014-01-01

    Hexachlorocyclohexane (HCH), a persistent organochlorine insecticide, has been extensively used in the past for control of agricultural pests and vector borne diseases. The use of HCH has indeed accrued benefits, however the unusual production of the insecticidal isomer; γ-HCH (lindane) and unregulated disposal of HCH muck has created various dumpsites all over the world, leading to serious environmental concerns. HCH isomers have been ranked as possible human carcinogens and endocrine disruptors with proven teratogenic, mutagenic and genotoxic effects, hence making its decontamination mandatory. Efforts in this direction have led to the isolation of various HCH degrading bacteria from the dumpsites, reflecting their role in HCH bioremediation. This review summarizes the problem of environmental persistence of HCH isomers along with their toxicity and possible solutions for their decontamination. PMID:24622782

  20. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  1. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M. V.

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  2. Method of preparing and handling chopped plant materials

    DOEpatents

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  3. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  4. Apparatus and method for constant flow oxidizing of organic materials

    DOEpatents

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  5. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2016-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  6. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2014-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  7. Methods of Manufacturing Bioactive Gels from Extracellular Matrix Material

    NASA Technical Reports Server (NTRS)

    Kentner, Kimberly A. (Inventor); Stuart, Katherine A. (Inventor); Janis, Abram D. (Inventor)

    2015-01-01

    The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.

  8. Method and apparatus for separating material

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2006-10-24

    An apparatus for sorting particles composed of a mixture of particles with differing physical and chemical characteristics. The apparatus includes a comminutor, a mechanism for removing particles from the inside of the comminutor which are intermediate in size between the feed to the comminutor and the product of comminution, a mechanism for either discharging particles taken from the comminutor to a reject stream or providing them to a size classification apparatus such as screening, a mechanism for returning the oversize particles to the comminutor or for discharging them to the reject stream, an electric mechanism for separating particles with an electrical force disposed adjacent to a magnet mechanism, a mechanism for providing the particles to the magnet mechanism and the electric mechanism and for providing triboelectric and capacitive charges to the particles, and a mechanism for returning one of the products of electric and magnetic separation to the comminutor while discharging the other to the reject stream. A method for sorting particles composed of a mixture of particles with differing physical and chemical characteristics.

  9. Method and apparatus for testing surface characteristics of a material

    NASA Technical Reports Server (NTRS)

    Johnson, David L. (Inventor); Kersker, Karl D. (Inventor); Richardson, David E. (Inventor); Stratton, Troy C. (Inventor)

    2006-01-01

    A method, apparatus and system for testing characteristics of a material sample is provided. The system includes an apparatus configured to house the material test sample while defining a sealed volume against a surface of the material test sample. A source of pressurized fluid is in communication with, and configured to pressurize, the sealed volume. A load applying apparatus is configured to apply a defined load to the material sample while the sealed volume is monitored for leakage of the pressurized fluid. Thus, the inducement of surface defects such as microcracking and crazing may be detected and their effects analyzed for a given material. The material test samples may include laminar structures formed of, for example, carbon cloth phenolic, glass cloth phenolic, silica cloth phenolic materials or carbon-carbon materials. In one embodiment the system may be configured to analyze the material test sample while an across-ply loading is applied thereto.

  10. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  11. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael C.

    2001-09-30

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  12. Soil Washing Experiment for Decontamination of Contaminated NPP Soil

    SciTech Connect

    Son, J.K.; Kang, K.D.; Kim, K.D.; Ha, J.H.; Song, M.J.

    2006-07-01

    The preliminary experiment was performed to obtain the operating conditions of soil washing decontamination process such as decontamination agent, decontamination temperature, decontamination time and ratio of soil and decontamination agent. To estimate decontamination efficiency, particle size of soil was classified into three categories; {>=} 2.0 mm, 2.0 {approx} 0.21 mm and {<=} 0.21 mm. Major target of this experiment was decontamination of Cs-137. The difference of decontamination efficiency using water and neutral salts as decontamination agent is not high. It is concluded that the best temperature of decontamination agent is normal temperature and the best decontamination time was about 60 minutes. And the best ratio of soil and decontamination agent is 1:10. In case of Cs decontamination for fine soils, the decontamination results using neutral salts such as Na{sub 2}CO{sub 3} and Na{sub 3}PO{sub 4} shows some limits while using strong acid such as sulfuric acid or hydrochloric acid shows high decontamination efficiency ({>=}90%). But we conclude that decontamination using strong acid is also inappropriate because of the insufficiency of decontamination efficiency for highly radioactive fine soils and the difficulty for treatment of secondary liquid waste. It is estimated that the best decontamination process is to use water as decontamination agent for particles which can be decontaminated to clearance level, after particle size separation. (authors)

  13. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael Clair

    2001-09-01

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  14. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  15. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. PMID:27021875

  16. Ultrasonic decontamination of prototype fast breeder reactor fuel pins.

    PubMed

    Kumar, Aniruddha; Bhatt, R B; Behere, P G; Afzal, Mohd

    2014-04-01

    Fuel pin decontamination is the process of removing particulates of radioactive material from its exterior surface. It is an important process step in nuclear fuel fabrication. It assumes more significance with plutonium bearing fuel known to be highly radio-toxic owing to its relatively longer biological half life and shorter radiological half life. Release of even minute quantity of plutonium oxide powder in the atmosphere during its handling can cause alarming air borne activity and may pose a severe health hazard to personnel working in the vicinity. Decontamination of fuel pins post pellet loading operation is thus mandatory before they are removed from the glove box for further processing and assembly. This paper describes the setting up of ultrasonic decontamination process, installed inside a custom built fume-hood in the production line, comprising of a cleaning tank with transducers, heaters, pin handling device and water filtration system and its application in cleaning of fuel pins for prototype fast breeder reactor. The cleaning process yielded a typical decontamination efficiency of more than 99%.

  17. A decontamination study of simulated chemical and biological agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies air with an airflow rate of 5000l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  18. A decontamination study of simulated chemical and biological agents

    SciTech Connect

    Uhm, Han S.; Lee, Han Y.; Hong, Yong C.; Shin, Dong H.; Park, Yun H.; Hong, Yi F.; Lee, Chong K.

    2007-07-01

    A comprehensive decontamination scheme of the chemical and biological agents, including airborne agents and surface contaminating agents, is presented. When a chemical and biological attack occurs, it is critical to decontaminate facilities or equipments to an acceptable level in a very short time. The plasma flame presented here may provide a rapid and effective elimination of toxic substances in the interior air in isolated spaces. As an example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies air with an airflow rate of 5000 l/min contaminated with toluene, the simulated chemical agent, and soot from a diesel engine, the simulated aerosol for biological agents. Although the airborne agents in an isolated space are eliminated to an acceptable level by the plasma flame, the decontamination of the chemical and biological agents cannot be completed without cleaning surfaces of the facilities. A simulated sterilization study of micro-organisms was carried out using the electrolyzed ozone water. The electrolyzed ozone water very effectively kills endospores of Bacillus atrophaeus (ATCC 9372) within 3 min. The electrolyzed ozone water also kills the vegetative micro-organisms, fungi, and virus. The electrolyzed ozone water, after the decontamination process, disintegrates into ordinary water and oxygen without any trace of harmful materials to the environment.

  19. The ROVCO2 surface decontamination system

    SciTech Connect

    Resnick, A.M.; Reed, M.; Lopez-Yanes, O.

    1996-12-31

    DOE needs to decontaminated over one million square feet of nuclear contaminated concrete surfaces. The 1000 lb ROVCO2 system, which automates blasting functions and eliminates secondary blasting waste, integrates a remotely operated vehicle and an enhanced commercial CO{sub 2} blasting system with an Oceaneering-developed work arm and control system. The remote operation protects the operation from contamination and supports functional automation of tedious tasks. The blasting system shoots pellets of dry ice propelled by pressurized gas at the surface to be cleaned. Impact of the pellets fractures and scales off a layer of the contaminated surface. At impact, the pellets return to a gaseous state which is vacuumed up with the debris. The CO{sub 2} gas and debris are passed through the vacuum filter, leaving only the removed material for waste disposal. Phase 2 testing achieved nearly all of the success criteria, with the exception of the commercial workhead`s performance.

  20. Energetic materials and methods of tailoring electrostatic discharge sensitivity of energetic materials

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Wallace, Ronald S.; Pantoya, Michelle L.; Collins, Eric S.

    2016-11-01

    An energetic material comprising an elemental fuel, an oxidizer or other element, and a carbon nanofiller or carbon fiber rods, where the carbon nanofiller or carbon fiber rods are substantially homogeneously dispersed in the energetic material. Methods of tailoring the electrostatic discharge sensitivity of an energetic material are also disclosed.

  1. Solid electrolyte material manufacturable by polymer processing methods

    DOEpatents

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  2. Method for making field-structured memory materials

    DOEpatents

    Martin, James E.; Anderson, Robert A.; Tigges, Chris P.

    2002-01-01

    A method of forming a dual-level memory material using field structured materials. The field structured materials are formed from a dispersion of ferromagnetic particles in a polymerizable liquid medium, such as a urethane acrylate-based photopolymer, which are applied as a film to a support and then exposed in selected portions of the film to an applied magnetic or electric field. The field can be applied either uniaxially or biaxially at field strengths up to 150 G or higher to form the field structured materials. After polymerizing the field-structure materials, a magnetic field can be applied to selected portions of the polymerized field-structured material to yield a dual-level memory material on the support, wherein the dual-level memory material supports read-and-write binary data memory and write once, read many memory.

  3. System and method for measuring permeability of materials

    DOEpatents

    Hallman, Jr., Russell Louis; Renner, Michael John

    2013-07-09

    Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  4. [Molecular methods for authentication of Chinese medicinal materials].

    PubMed

    Wang, Chuanyi; Guo, Baolin; Xiao, Peigen

    2011-02-01

    The resource authentication is required for quality assurance and control of Chinese medicine. This review provides an informative introduction to molecular methods used for authentication of Chinese medicinal materials. The technical features of the methods based on sequencing, polymerase chain reaction (PCR) and hybridization are described, merits and demerits and development of the molecular methods in identification of Chinese medicinal materials are discussed. PMID:21585017

  5. Reuse of Concrete within DOE from Decontamination and Decommissioning Projects

    SciTech Connect

    Tripp, Julia Lynn; Meservey, Richard Harlan; Smith, Anthony Mactier; Chen, S. Y.; Kamboj, S.

    2000-09-01

    A protocol has been developed for use in the disposition of concrete from Decontamination and Decommissioning (D&D) projects. The purpose of this protocol is to assist U.S. Department of Energy (DOE) sites in releasing concrete for re-use within the DOE complex. Current regulations allow sites to release surface-contaminated materials if they contain very low amounts of radioactivity and to possibly release materials with volumetric contamination, or higher levels of surface contamination on a case-bycase basis. In all cases, an ALARA (as low as reasonably achievable) analysis that evaluates the risks of releasing volumetrically contaminated concrete or concrete with higher levels of surface contamination, is required. To evaluate the dose impacts of re-using radioactively contaminated material, the measured radiation levels (pCi/g or disintegrations per minute (dpm)/100 cm2) must be converted to the estimated dose (mrem/yr) that would be received by affected individuals. The dose depends on the amounts and types of isotopes present and the time, distance, and method of exposure (e.g., inhalation or external exposure). For each disposition alternative, the protocol provides a systematic method to evaluate the impact of the dose on affected individuals. The cost impacts of re-using concrete also need to be evaluated. They too depend on the disposition alternative and the extent and type of contamination. The protocol provides a method to perform a detailed analysis of these factors and evaluate the dose and cost impacts for various disposition alternatives. Once the dose and cost impacts of the various alternatives have been estimated, the protocol outlines the steps required to release and re-use the concrete material.

  6. Chemical reactor and method for chemically converting a first material into a second material

    DOEpatents

    Kong, Peter C.

    2008-04-08

    A chemical reactor and method for converting a first material into a second material is disclosed and wherein the chemical reactor is provided with a feed stream of a first material which is to be converted into a second material; and wherein the first material is combusted in the chemical reactor to produce a combustion flame, and a resulting gas; and an electrical arc is provided which is passed through or superimposed upon the combustion flame and the resulting gas to facilitate the production of the second material.

  7. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone

    PubMed Central

    Youkee, Daniel; Brown, Colin S.; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B.; Walker, Naomi F.; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  8. Decontamination and size reduction of plutonium contaminated process exhaust ductwork and glove boxes

    SciTech Connect

    LaFrate, P.; Elliott, J.; Valasquez, M.

    1996-11-15

    The Los Alamos National Laboratory (LANL) Decommissioning Program has decontaminated and demolished two filter plenum buildings at Technical Area 21 (TA-21). During the project a former hot cell was retrofitted to perform decontamination and size reduction of highly Pu contaminated process exhaust (1,100 ft) and gloveboxes. Pu-238/239 concentrations were as high a 1 Ci per linear foot and averaged approximately 1 mCi/ft. The Project decontamination objective was to reduce the plutonium contamination on surfaces below transuranic levels. If possible, metal surfaces were decontaminated further to meet Science and Ecology Group (SEG) waste classification guidelines to enable the metal to be recycled at their facility in oak Ridge, Tennessee. Project surface contamination acceptance criteria for low-level radioactive waste (LLRW), transuranic waste, and SEG waste acceptance criteria will be presented. Ninety percent of all radioactive waste for the project was characterized as LLRW. Twenty percent of this material was shipped to SEG. Process exhaust and glove boxes were brought to the project decontamination area, an old hot cell in Building 4 North. This paper focuses on process exhaust and glovebox decontamination methodology, size reduction techniques, waste characterization, airborne contamination monitoring, engineering controls, worker protection, lessons learned, and waste minimization. Decontamination objectives are discussed in detail.

  9. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    PubMed

    Youkee, Daniel; Brown, Colin S; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B; Walker, Naomi F; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks. PMID:26692018

  10. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    PubMed

    Youkee, Daniel; Brown, Colin S; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B; Walker, Naomi F; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks.

  11. Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems

    DOEpatents

    Kong, Peter C.; Grandy, Jon D.

    2002-01-01

    In one aspect, the invention encompasses a method of chemically converting a first material to a second material. A first plasma and a second plasma are formed, and the first plasma is in fluid communication with the second plasma. The second plasma comprises activated hydrogen and oxygen, and is formed from a water vapor. A first material is flowed into the first plasma to at least partially ionize at least a portion of the first material. The at least partially ionized first material is flowed into the second plasma to react at least some components of the first material with at least one of the activated hydrogen and activated oxygen. Such converts at least some of the first material to a second material. In another aspect, the invention encompasses a method of forming a synthetic gas by flowing a hydrocarbon-containing material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of degrading a hydrocarbon-containing material by flowing such material into a hybrid-plasma system. In yet another aspect, the invention encompasses a method of releasing an inorganic component of a complex comprising the inorganic component and an other component, wherein the complex is flowed through a hybrid-plasma system.

  12. Cladding material, tube including such cladding material and methods of forming the same

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  13. Method for Synthesizing Extremeley High Temperature Melting Materials

    SciTech Connect

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  14. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  15. Method for synthesizing extremely high-temperature melting materials

    DOEpatents

    Saboungi, Marie-Louise; Glorieux, Benoit

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  16. Blind Pilot Decontamination

    NASA Astrophysics Data System (ADS)

    Muller, Ralf R.; Cottatellucci, Laura; Vehkapera, Mikko

    2014-10-01

    A subspace projection to improve channel estimation in massive multi-antenna systems is proposed and analyzed. Together with power-controlled hand-off, it can mitigate the pilot contamination problem without the need for coordination among cells. The proposed method is blind in the sense that it does not require pilot data to find the appropriate subspace. It is based on the theory of large random matrices that predicts that the eigenvalue spectra of large sample covariance matrices can asymptotically decompose into disjoint bulks as the matrix size grows large. Random matrix and free probability theory are utilized to predict under which system parameters such a bulk decomposition takes place. Simulation results are provided to confirm that the proposed method outperforms conventional linear channel estimation if bulk separation occurs.

  17. Method of producing catalytic materials for fabricating nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  18. Decontamination of the Plum Brook Reactor Facility Hot Cells

    SciTech Connect

    Peecook, K.M.

    2008-07-01

    The NASA Plum Brook Reactor Facility decommissioning project recently completed a major milestone with the successful decontamination of seven hot cells. The cells included thick concrete walls and leaded glass windows, manipulator arms, inter cell dividing walls, and roof slabs. There was also a significant amount of embedded conduit and piping that had to be cleaned and surveyed. Prior to work starting evaluation studies were performed to determine whether it was more cost effective to do this work using a full up removal approach (rip and ship) or to decontaminate the cells to below required clean up levels, leaving the bulk of the material in place. This paper looks at that decision process, how it was implemented, and the results of that effort including the huge volume of material that can now be used as fill during site restoration rather than being disposed of as LLRW. (authors)

  19. Mass Casualty Decontamination Guidance and Psychosocial Aspects of CBRN Incident Management: A Review and Synthesis

    PubMed Central

    Carter, Holly; Amlôt, Richard

    2016-01-01

    Introduction: Mass casualty decontamination is an intervention employed by first responders at the scene of an incident involving noxious contaminants.  Many countries have sought to address the challenge of decontaminating large numbers of affected casualties through the provision of rapidly deployable temporary showering structures, with accompanying decontamination protocols.  In this paper we review decontamination guidance for emergency responders and associated research evidence, in order to establish to what extent psychosocial aspects of casualty management have been considered within these documents. The review focuses on five psychosocial aspects of incident management: likely public behaviour; responder management style; communication strategy; privacy/ modesty concerns; and vulnerable groups. Methods: Two structured literature reviews were carried out; one to identify decontamination guidance documents for first responders, and another to identify evidence which is relevant to the understanding of the psychosocial aspects of mass decontamination.  The guidance documents and relevant research were reviewed to identify whether the guidance documents contain information relating to psychosocial issues and where it exists, that the guidance is consistent with the existing evidence-base. Results: Psychosocial aspects of incident management receive limited attention in current decontamination guidance.  In addition, our review has identified a number of gaps and inconsistencies between guidance and research evidence.  For each of the five areas we identify: what is currently presented in guidance documents, to what extent this is consistent with the existing research evidence and where it diverges.  We present a series of evidence-based recommendations for updating decontamination guidance to address the psychosocial aspects of mass decontamination. Conclusions: Effective communication and respect for casualties’ needs are critical in ensuring

  20. Method of forming aluminum oxynitride material and bodies formed by such methods

    SciTech Connect

    Bakas, Michael P; Lillo, Thomas M; Chu, Henry S

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  1. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil J. (Inventor); Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor); Martin, Christopher (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  2. New methods and materials for molding and casting ice formations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Richter, G. Paul

    1987-01-01

    This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.

  3. Method of enhancing radiation response of radiation detection materials

    DOEpatents

    Miller, Steven D.

    1997-01-01

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  4. METHOD OF MANUFACTURE OF METAL ENCASED CORE MATERIAL

    DOEpatents

    Peters, E.J.

    1963-06-01

    A method of making reactor fuel elements in which the fissionable material is encased and sealed in steel or aluminum cladding having an enclosed channel from the fissionable material to the surface of the cladding at one end is described. Heat and pressure sufficient to bond the assembled fuel element are applied in a nonoxidizing atmosphere. (AEC)

  5. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  6. Decontamination training: with and without virtual reality simulation.

    PubMed

    Farra, Sharon Lee; Smith, Sherrill; Gillespie, Gordon Lee; Nicely, Stephanie; Ulrich, Deborah L; Hodgson, Eric; French, DeAnne

    2015-01-01

    Nurses must be prepared to care for patients following a disaster, including patients exposed to hazardous contaminants. The purpose of this study was to examine the use of virtual reality simulation (VRS) to teach the disaster-specific skill of decontamination. A quasi-experimental design was used to assign nursing students from 2 baccalaureate nursing programs to 1 of 2 groups to learn the disaster skill of decontamination-printed written directions or VRS. Performance, knowledge, and self-efficacy were outcome measures. Although students in the treatment group had significantly lower performance scores than the control group (p = 0.004), students taking part in VRS completed the skill in a significantly shorter amount of time (p = 0.008). No significant group differences were found for self-efficacy (p = 0.172) or knowledge (p = 0.631). However, students in the VRS treatment group reported high levels of satisfaction with VRS as a training method. The disaster-specific skill of decontamination is a low-volume, high-risk skill that must be performed with accuracy to protect both exposed patients and providers performing decontamination. As frontline providers for casualties following a disaster event, emergency nurses must be prepared to perform this skill when needed. Preparation requires cost-effective, timely, and evidence-based educational opportunities that promote positive outcomes. Further investigation is needed to determine the benefits and long-term effects of VRS for disaster education. PMID:25929223

  7. Methods for manufacturing geometric multi-crystalline cast materials

    DOEpatents

    Stoddard, Nathan G

    2013-11-26

    Methods are provided for casting one or more of a semi-conductor, an oxide, and an intermetallic material. With such methods, a cast body of a geometrically ordered multi-crystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm.

  8. Methods for manufacturing monocrystalline or near-monocrystalline cast materials

    DOEpatents

    Stoddard, Nathan G

    2014-04-29

    Methods are provided for casting one or more of a semiconductor, an oxide, and an intermetallic material. With such methods, a cast body of a monocrystalline form of the one or more of a semiconductor, an oxide, and an intermetallic material may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm.

  9. Computation of multi-material interactions using point method

    SciTech Connect

    Zhang, Duan Z; Ma, Xia; Giguere, Paul T

    2009-01-01

    Calculations of fluid flows are often based on Eulerian description, while calculations of solid deformations are often based on Lagrangian description of the material. When the Eulerian descriptions are used to problems of solid deformations, the state variables, such as stress and damage, need to be advected, causing significant numerical diffusion error. When Lagrangian methods are used to problems involving large solid deformat ions or fluid flows, mesh distortion and entanglement are significant sources of error, and often lead to failure of the calculation. There are significant difficulties for either method when applied to problems involving large deformation of solids. To address these difficulties, particle-in-cell (PIC) method is introduced in the 1960s. In the method Eulerian meshes stay fixed and the Lagrangian particles move through the Eulerian meshes during the material deformation. Since its introduction, many improvements to the method have been made. The work of Sulsky et al. (1995, Comput. Phys. Commun. v. 87, pp. 236) provides a mathematical foundation for an improved version, material point method (MPM) of the PIC method. The unique advantages of the MPM method have led to many attempts of applying the method to problems involving interaction of different materials, such as fluid-structure interactions. These problems are multiphase flow or multimaterial deformation problems. In these problems pressures, material densities and volume fractions are determined by satisfying the continuity constraint. However, due to the difference in the approximations between the material point method and the Eulerian method, erroneous results for pressure will be obtained if the same scheme used in Eulerian methods for multiphase flows is used to calculate the pressure. To resolve this issue, we introduce a numerical scheme that satisfies the continuity requirement to higher order of accuracy in the sense of weak solutions for the continuity equations

  10. Large scale, urban decontamination; developments, historical examples and lessons learned

    SciTech Connect

    Demmer, R.L.

    2007-07-01

    Recent terrorist threats and actions have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the prospect for the cleanup and removal of radioactive dispersal device (RDD or 'dirty bomb') residues. In response, the United States Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. The efficiency of RDD cleanup response will be improved with these new developments and a better understanding of the 'old reliable' methodologies. While an RDD is primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly 'package and dispose' method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination. (authors)

  11. Experimental comparison of empirical material decomposition methods for spectral CT.

    PubMed

    Zimmerman, Kevin C; Schmidt, Taly Gilat

    2015-04-21

    Material composition can be estimated from spectral information acquired using photon counting x-ray detectors with pulse height analysis. Non-ideal effects in photon counting x-ray detectors such as charge-sharing, k-escape, and pulse-pileup distort the detected spectrum, which can cause material decomposition errors. This work compared the performance of two empirical decomposition methods: a neural network estimator and a linearized maximum likelihood estimator with correction (A-table method). The two investigated methods differ in how they model the nonlinear relationship between the spectral measurements and material decomposition estimates. The bias and standard deviation of material decomposition estimates were compared for the two methods, using both simulations and experiments with a photon-counting x-ray detector. Both the neural network and A-table methods demonstrated a similar performance for the simulated data. The neural network had lower standard deviation for nearly all thicknesses of the test materials in the collimated (low scatter) and uncollimated (higher scatter) experimental data. In the experimental study of Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 11-28%, which was reduced to 0.1-11% using the proposed empirical methods. Overall, the results demonstrated preliminary experimental feasibility of empirical material decomposition for spectral CT using photon-counting detectors.

  12. Experimental comparison of empirical material decomposition methods for spectral CT

    NASA Astrophysics Data System (ADS)

    Zimmerman, Kevin C.; Gilat Schmidt, Taly

    2015-04-01

    Material composition can be estimated from spectral information acquired using photon counting x-ray detectors with pulse height analysis. Non-ideal effects in photon counting x-ray detectors such as charge-sharing, k-escape, and pulse-pileup distort the detected spectrum, which can cause material decomposition errors. This work compared the performance of two empirical decomposition methods: a neural network estimator and a linearized maximum likelihood estimator with correction (A-table method). The two investigated methods differ in how they model the nonlinear relationship between the spectral measurements and material decomposition estimates. The bias and standard deviation of material decomposition estimates were compared for the two methods, using both simulations and experiments with a photon-counting x-ray detector. Both the neural network and A-table methods demonstrated a similar performance for the simulated data. The neural network had lower standard deviation for nearly all thicknesses of the test materials in the collimated (low scatter) and uncollimated (higher scatter) experimental data. In the experimental study of Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 11-28%, which was reduced to 0.1-11% using the proposed empirical methods. Overall, the results demonstrated preliminary experimental feasibility of empirical material decomposition for spectral CT using photon-counting detectors.

  13. Experimental Comparison of Empirical Material Decomposition Methods for Spectral CT

    PubMed Central

    Zimmerman, Kevin C.; Schmidt, Taly Gilat

    2015-01-01

    Material composition can be estimated from spectral information acquired using photon counting x-ray detectors with pulse height analysis. Non-ideal effects in photon counting x-ray detectors such as charge-sharing, k-escape, and pulse-pileup distort the detected spectrum, which can cause material decomposition errors. This work compared the performance of two empirical decomposition methods: a neural network estimator and a linearized maximum likelihood estimator with correction (A-table method). The two investigated methods differ in how they model the nonlinear relationship between the spectral measurements and material decomposition estimates. The bias and standard deviation of material decomposition estimates were compared for the two methods, using both simulations and experiments with a photon-counting x-ray detector. Both the neural network and A-table methods demonstrated similar performance for the simulated data. The neural network had lower standard deviation for nearly all thicknesses of the test materials in the collimated (low scatter) and uncollimated (higher scatter) experimental data. In the experimental study of Teflon thicknesses, non-ideal detector effects demonstrated a potential bias of 11–28%, which was reduced to 0.1–11% using the proposed empirical methods. Overall, the results demonstrated preliminary experimental feasibility of empirical material decomposition for spectral CT using photon-counting detectors. PMID:25813054

  14. Development of a new approach for microbial decontamination of water using modified Fenton's reaction.

    PubMed

    Shah, Shreya; Dzikovski, Boris; Shah, Vishal

    2007-07-01

    Microbial decontamination of water was carried out using a novel radical generating system consisting of ion exchange resin, copper and hydrogen peroxide. The system was successful in reducing the microbial load in water by more than 99% in 15 min and is effective against all the microorganisms tested. The method was also successful in decontaminating the flood water obtained from Industrial Canal and 17th Street Canal in New Orleans. Decontamination is due to the formation of hydroxyl radicals, formed during the decomposition of hydrogen peroxide by the metal-polymer complex.

  15. Systems and methods for the combinatorial synthesis of novel materials

    DOEpatents

    Wu, Xin Di; Wang, Youqi; Goldwasser, Isy

    2000-01-01

    Methods and apparatus for the preparation of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by depositing components of target materials to predefined regions on the substrate, and, in some embodiments, simultaneously reacting the components to form at least two resulting materials. In particular, the present invention provides novel masking systems and methods for applying components of target materials onto a substrate in a combinatorial fashion, thus creating arrays of resulting materials that differ slightly in composition, stoichiometry, and/or thickness. Using the novel masking systems of the present invention, components can be delivered to each site in a uniform distribution, or in a gradient of stoichiometries, thicknesses, compositions, etc. Resulting materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. Once prepared, these resulting materials can be screened sequentially, or in parallel, for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical and other properties.

  16. Method for material characterization in a non-anechoic environment

    NASA Astrophysics Data System (ADS)

    Pometcu, L.; Sharaiha, A.; Benzerga, R.; Tamas, R. D.; Pouliguen, P.

    2016-04-01

    This paper presents a characterization method for extracting the reflection coefficient of materials and the real part of their permittivity. The characterization is performed in a real environment, as opposed to the classical measurement methods that require an anechoic chamber. In order to reduce the effects of the multipath propagation, a free space bistatic measurement was performed at different distances material-antennas in far field. By using a Teflon sample and a commercial absorbing material sample, measurements have been performed in order to validate the characterization technique.

  17. Method and apparatus for measuring reactivity of fissile material

    DOEpatents

    Lee, D.M.; Lindquist, L.O.

    1982-09-07

    Given are a method and apparatus for measuring nondestructively and noninvasively (i.e., using no internal probing) the burnup, reactivity, or fissile content of any material which emits neutrons and which has fissionable components. The assay is accomplished by altering the return flux of neutrons into the fuel assembly by means of changing the reflecting material. The existing passive neutron emissions in the material being assayed are used as the source of interrogating neutrons. Two measurements of either emitted neutron or emitted gamma-ray count rates are made and are then correlated to either reactivity, burnup, or fissionable content of the material being assayed, thus providing a measurement of either reactivity, burnup, or fissionable content of the material being assayed. Spent fuel which has been freshly discharged from a reactor can be assayed using this method and apparatus. Precisions of 1000 MWd/tU appear to be feasible.

  18. Characterization of Meta-Materials Using Computational Electromagnetic Methods

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Shin, Joon

    2005-01-01

    An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.

  19. Methods for the continuous production of plastic scintillator materials

    DOEpatents

    Bross, Alan; Pla-Dalmau, Anna; Mellott, Kerry

    1999-10-19

    Methods for producing plastic scintillating material employing either two major steps (tumble-mix) or a single major step (inline-coloring or inline-doping). Using the two step method, the polymer pellets are mixed with silicone oil, and the mixture is then tumble mixed with the dopants necessary to yield the proper response from the scintillator material. The mixture is then placed in a compounder and compounded in an inert gas atmosphere. The resultant scintillator material is then extruded and pelletized or formed. When only a single step is employed, the polymer pellets and dopants are metered into an inline-coloring extruding system. The mixture is then processed under a inert gas atmosphere, usually argon or nitrogen, to form plastic scintillator material in the form of either scintillator pellets, for subsequent processing, or as material in the direct formation of the final scintillator shape or form.

  20. Pilot-scale decontamination solution test results HGTP-93-0702-02

    SciTech Connect

    Clemmer, R.G.; Allen, R.P.; Bagaasen, L.M.; Fetrow, L.K.

    1993-05-01

    Decontamination solution testing constitutes a task of the Hanford Grout Technology Program (HGTP) at Pacific Northwest Laboratory (PNL). The HGTP provides technical support to the Westinghouse Hanford Company (WHC) Grout Disposal Program. Cementitious grout has been identified as the waste form for low-level radioactive waste. Grout processing equipment, including mixers, pumps, and piping, will require periodic maintenance. Decontamination of components is needed to reduce radiation dose to maintenance workers. The purpose of this work was to develop and test methods for decontaminating grout processing equipment. The proposed method of decontamination is to use a mild chemical solution, such as a 6 N citric acid to dissolve the grout. The method should effectively remove grout without causing degradation of grout processing equipment.

  1. DISPOSAL OF RESIDUES FROM BUILDING DECONTAMINATION ACTIVITIES

    EPA Science Inventory

    After a building has gone through decontamination activities from a chemical attack there will be a significant amount of building decontamination residue that will need to undergo disposal. This project consists of a fundamental study to investigate the desorption of simulated c...

  2. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  3. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  4. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  5. 40 CFR 170.250 - Decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mixing site. (2) Exception for pilots. Decontamination supplies for a pilot who is applying pesticides... in remote areas. When handling activities are performed more than 1/4 mile from the nearest place of..., streams, lakes, or other sources for decontamination at the remote work site, if such water is...

  6. Developing decontamination strategies and monitoring tools.

    PubMed

    Bissett, Linda

    Decontamination within the healthcare setting plays a significant role in reducing the risk of healthcare-associated infections. This article will examine decontamination from hand hygiene to sterilization of instruments and discuss how hazard analysis at critical control points (HACCP) can be used to monitor and record practice, ensuring that consistent standards are based on recommended guidelines, the law and policies.

  7. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION SYSTEM

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    This report summarizes the activities performed during FY98 and describes the planned activities for FY99. Accomplishments for FY98 include identifying and selecting decontamination, the screening of potential characterization technologies, development of minimum performance factors for the decontamination technology, and development and identification of Applicable, Relevant and Appropriate Regulations (ARARs).

  8. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  9. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, Christopher C.

    1994-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  10. Method for improving the durability of ion insertion materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.

    2002-01-01

    The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.

  11. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  12. Method for reacting nongaseous material with a gaseous reactant

    DOEpatents

    Lumpkin, Robert E.; Duraiswamy, Kandaswamy

    1979-03-27

    This invention relates to a new and novel method and apparatus for reacting nongaseous material with a gaseous reactant comprising introducing a first stream containing a nongaseous material into a reaction zone; simultaneously introducing a second stream containing a gaseous reactant into the reaction zone such that the gaseous reactant immediately contacts and reacts with the first stream thereby producing a gaseous product; forming a spiralling vortex within the reaction zone to cause substantial separation of gases, including the gaseous product, from the nongaseous material; forming and removing a third stream from the reaction zone containing the gaseous product which is substantially free of the nongaseous material before a major portion of the gaseous product can react with the nongaseous material; and forming and removing a fourth stream containing the nongaseous material from the reaction zone.

  13. Representing ductile damage with the dual domain material point method

    DOE PAGES

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less

  14. Representing ductile damage with the dual domain material point method

    SciTech Connect

    Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; Gray, III, G. T.

    2015-12-14

    In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in this impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.

  15. Surface Decontamination Using Laser Ablation Process - 12032

    SciTech Connect

    Moggia, Fabrice; Lecardonnel, Xavier; Damerval, Frederique

    2012-07-01

    A new decontamination method has been investigated and used during two demonstration stages by the Clean-Up Business Unit of AREVA. This new method is based on the use of a Laser beam to remove the contaminants present on a base metal surface. In this paper will be presented the type of Laser used during those tests but also information regarding the efficiency obtained on non-contaminated (simulated contamination) and contaminated samples (from the CEA and La Hague facilities). Regarding the contaminated samples, in the first case, the contamination was a quite thick oxide layer. In the second case, most of the contamination was trapped in dust and thin grease layer. Some information such as scanning electron microscopy (SEM), X-Ray scattering spectroscopy and decontamination factors (DF) will be provided in this paper. Laser technology appears to be an interesting one for the future of the D and D applications. As shown in this paper, the results in terms of efficiency are really promising and in many cases, higher than those obtained with conventional techniques. One of the most important advantages is that all those results have been obtained with no generation of secondary wastes such as abrasives, chemicals, or disks... Moreover, as mentioned in introduction, the Laser ablation process can be defined as a 'dry' process. This technology does not produce any liquid waste (as it can be the case with chemical process or HP water process...). Finally, the addition of a vacuum system allows to trap the contamination onto filters and thus avoiding any dissemination in the room where the process takes place. The next step is going to be a commercial use in 2012 in one of the La Hague buildings. (authors)

  16. Legionella on board trains: effectiveness of environmental surveillance and decontamination

    PubMed Central

    2012-01-01

    Background Legionella pneumophila is increasingly recognised as a significant cause of sporadic and epidemic community-acquired and nosocomial pneumonia. Many studies describe the frequency and severity of Legionella spp. contamination in spa pools, natural pools, hotels and ships, but there is no study analysing the environmental monitoring of Legionella on board trains. The aims of the present study were to conduct periodic and precise environmental surveillance of Legionella spp. in water systems and water tanks that supply the toilet systems on trains, to assess the degree of contamination of such structures and to determine the effectiveness of decontamination. Methods A comparative pre-post ecological study was conducted from September 2006 to January 2011. A total of 1,245 water samples were collected from plumbing and toilet water tanks on passenger trains. The prevalence proportion of all positive samples was calculated. The unpaired t-test was performed to evaluate statistically significant differences between the mean load values before and after the decontamination procedures; statistical significance was set at p ≤ 0.05. Results In the pre-decontamination period, 58% of the water samples were positive for Legionella. Only Legionella pneumophila was identified: 55.84% were serogroup 1, 19.03% were serogroups 2–14 and 25.13% contained both serogroups. The mean bacterial load value was 2.14 × 103 CFU/L. During the post-decontamination period, 42.75% of water samples were positive for Legionella spp.; 98.76% were positive for Legionella pneumophila: 74.06% contained serogroup 1, 16.32% contained serogroups 2–14 and 9.62% contained both. The mean bacterial load in the post-decontamination period was 1.72 × 103 CFU/L. According to the t-test, there was a statistically significant decrease in total bacterial load until approximately one and a half year after beginning the decontamination programme (p = 0.0097). Conclusions This

  17. Gnome site decontamination and decommissioning project

    SciTech Connect

    Orcutt, J.A.; Sorom, E.R.

    1982-08-01

    In July 1977, DOE/Headquarters directed DOE/NV to design a decontamination and decommissioning plan for the Gnome site, 48 kilometers southeast of Carlsbad, New Mexico. The plan incorporated three distinct phases. During Phase I, both aerial and ground radiological surveys were conducted on the site. Radiological decontamination criteria were established, and a decontamination plan was developed based on the radiological survey results. During Phase II, site preparatory and rehabilitation work was completed. The actual land area decontamination was accomplished during Phase III with conventional earthmoving equipment. A gravity water injection system deposited 36,700 metric tons of contaminated soil and salt in the Gnome cavity. After completion of the decontamination and decommissioning operations, the Gnome site was returned to the Bureau of Land Management for unrestricted surface use.

  18. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.

  19. Treatability studies for decontamination of Melton Valley Storage Tank supernate

    SciTech Connect

    Arnold, W.D.; Fowler, V.L.; Perona, J.J.; McTaggart, D.R.

    1992-08-01

    Liquid low-level waste, primarily nitric acid contaminated with radionuclides and minor concentrations of organics and heavy metals, is neutralized with sodium hydroxide, concentrated by evaporation, and stored for processing and disposal. The evaporator concentrate separates into sludge and supernate phases upon cooling. The supernate is 4 to 5 mol/L sodium nitrate contaminated with soluble radionuclides, principally {sup 137}Cs, {sup 90}Sr, and {sup 14}C, while the sludge consists of precipitated carbonates and hydroxides of metals and transuranic elements. Methods for treatment and disposal of this waste are being developed. In studies to determine the feasibility of removing {sup 137}Cs from the supernates before solidification campaigns, batch sorption measurements were made from four simulated supernate solutions with four different samples of potassium hexacyanocobalt ferrate (KCCF). Cesium decontamination factors of 1 to 8 were obtained with different KCCF batches from a highly-salted supernate at pH 13. Decontamination factors as high as 50 were measured from supernates with lower salt content and pH, in fact, the pH had a greater effect than the solution composition on the decontamination factors. The decontamination factors were highest after 1 to 2 d of mixing and decreased with longer mixing times due to decomposition of the KCCF in the alkaline solution. The decontamination factors decreased with settling time and were lower for the same total contact time (mixing + settling) for the longer mixing times, indicating more rapid KCCF decomposition during mixing than during settling. There was no stratification of cesium in the tubes as the KCCF decomposed.

  20. Method of solidifying waste materials, such as radioactive or toxic materials, contained in aqueous solutions

    SciTech Connect

    Knieper, J.; May, K.; Printz, H.

    1984-07-24

    A method is disclosed of solidifying waste materials, such as radioactive or toxic materials, which are contained in aqueous solutions. To accomplish this solidification, an inorganic, non-metallic binding agent such as gypsum is intermixed with the aqueous solution and a substance such as pumice or ceramic tile which promotes the intermixing of the binding agent and the aqueous solution.