Sample records for material design strategy

  1. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE PAGES

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; ...

    2015-02-10

    In this study, the design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memorymore » alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  2. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    PubMed Central

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-01-01

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the “J-curve” mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. PMID:25665501

  3. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess.

    PubMed

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-02-10

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.

  4. Adaptive strategies for materials design using uncertainties

    DOE PAGES

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; ...

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  5. Adaptive strategies for materials design using uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  6. Cognitive and Metacognitive Learning Strategy Instruction: Its Relevance for Media and Material Design. The Instructional Methods Report Series.

    ERIC Educational Resources Information Center

    Scheid, Karen

    This report is intended to provide publishers and product developers with a summary of background information about strategy instruction for disabled learners. It also offers suggestions for how media and materials could be produced and designed to facilitate the teaching and learning of strategies. The first section looks at cognitive and…

  7. Visual Imagery and Self-Questioning: Strategies to Improve Comprehension of Written Material.

    ERIC Educational Resources Information Center

    Clark, Frances L.; And Others

    1984-01-01

    Two learning strategies--visual imagery and self-questioning--designed to increase reading comprehension were taught to six learning disabled secondary students. Results indicate that LD students can learn the two strategies and can apply them in both reading ability level and grade level materials. Use of the strategies resulted in greater…

  8. Pareto fronts for multiobjective optimization design on materials data

    NASA Astrophysics Data System (ADS)

    Gopakumar, Abhijith; Balachandran, Prasanna; Gubernatis, James E.; Lookman, Turab

    Optimizing multiple properties simultaneously is vital in materials design. Here we apply infor- mation driven, statistical optimization strategies blended with machine learning methods, to address multi-objective optimization tasks on materials data. These strategies aim to find the Pareto front consisting of non-dominated data points from a set of candidate compounds with known character- istics. The objective is to find the pareto front in as few additional measurements or calculations as possible. We show how exploration of the data space to find the front is achieved by using uncer- tainties in predictions from regression models. We test our proposed design strategies on multiple, independent data sets including those from computations as well as experiments. These include data sets for Max phases, piezoelectrics and multicomponent alloys.

  9. ARO-YIP (Materials By Design): Organic Photovoltaic Multiferroics

    DTIC Science & Technology

    Materials-by- design and self-assembly principles are applied to organic functional materials to control their morphology, interface, and crystalline...multifunctional properties, such as dielectric, magnetic, optoelectronic, and magnetoelectric coupling behaviors. The control of organic crystallization and...electronics. In this project, we aim at utilizing the material design and assembly strategies to rationally develop organic multiferroic-photovoltaics

  10. Rational design of reconfigurable prismatic architected materials.

    PubMed

    Overvelde, Johannes T B; Weaver, James C; Hoberman, Chuck; Bertoldi, Katia

    2017-01-18

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  11. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Overvelde, Johannes T. B.; Weaver, James C.; Hoberman, Chuck; Bertoldi, Katia

    2017-01-01

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. Most such materials are characterized by a fixed geometry, but in the design of some materials it is possible to incorporate internal mechanisms capable of reconfiguring their spatial architecture, and in this way to enable tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami technique, here we introduce a robust design strategy based on space-filling tessellations of polyhedra to create three-dimensional reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively different deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to the design of the next generation of reconfigurable structures and materials, ranging from metre-scale transformable architectures to nanometre-scale tunable photonic systems.

  12. Teachers' Improvisation of Instructional Materials for Nigerian Home Economics Curriculum Delivery: Challenges and Strategies

    ERIC Educational Resources Information Center

    Olibie, Eyiuche Ifeoma; Nwabunwanne, Chinyere; Ezenwanne, Dorothy Nkem

    2013-01-01

    This study was designed to ascertain the challenges of improvising instructional materials by Home Economics teachers at the Upper Basic education level in Nigeria, and as a result identify strategies for enhancing improvisation. The study used survey research design based on two research questions. The sample was four hundred and thirty-one Home…

  13. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview.

    PubMed

    Awad, Mohamed Moustafa; Alqahtani, H; Al-Mudahi, A; Murayshed, M S; Alrahlah, A; Bhandi, Shilpa H

    2017-07-01

    To review the adhesive bonding to different computer-aided design/computer-aided manufacturing (CAD/CAM) esthetic restorative materials. The use of CAD/CAM esthetic restorative materials has gained popularity in recent years. Several CAD/ CAM esthetic restorative materials are commercially available. Adhesive bonding is a major determinant of success of CAD/ CAM restorations. Review result: An account of the currently available bonding strategies are discussed with their rationale in various CAD/ CAM materials. Different surface treatment methods as well as adhesion promoters can be used to achieve reliable bonding of CAD/CAM restorative materials. Selection of bonding strategy to such material is determined based on its composition. Further evidence is required to evaluate the effect of new surface treatment methods, such as nonthermal atmospheric plasma and self-etching ceramic primer on bonding to different dental ceramics. An understanding of the currently available bonding strategies to CA/CAM materials can help the clinician to select the most indicated system for each category of materials.

  14. Rational design of reconfigurable prismatic architected materials

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia; Overvelde, Johannes; Hoberman, Chuck; Weaver, James

    Advances in fabrication technologies are enabling the production of architected materials with unprecedented properties. While most of these materials are characterized by a fixed geometry,an intriguing avenue is to incorporate internal mechanisms capable of recon_guring their spatial architecture, therefore enabling tunable functionality. Inspired by the structural diversity and foldability of the prismatic geometries that can be constructed using the snapology origami-technique, here we introduce a robust design strategy based on space-filling polyhedra to create 3D reconfigurable materials comprising a periodic assembly of rigid plates and elastic hinges. Guided by numerical analysis and physical prototypes, we systematically explore the mobility of the designed structures and identify a wide range of qualitatively di_erent deformations and internal rearrangements. Given that the underlying principles are scale-independent, our strategy can be applied to design the next generation of reconfigurable structures and materials, ranging from transformable meter-scale architectures to nanoscale tunable photonic systems..

  15. Faculty and student perceptions of effective study strategies and materials.

    PubMed

    Suda, Katie J; Bell, Gillian C; Franks, Andrea S

    2011-12-15

    To evaluate faculty members' and students' perceptions of study strategies and materials. Focus groups were conducted with course directors and first- and second-year students to generate ideas relating to use of course materials, technology, class attendance, and study strategies for mastering class concepts. Students and faculty members differed in their opinions about the utility of textbooks and supplemental resources. The main learning method recommended by students and faculty members was repeated review of course material. Students recommended viewing classroom lectures again online, if possible. Course directors reported believing that class attendance is important, but students based their opinions regarding the importance of attendance on their perceptions of lecture and handout quality. Results did not differ by campus or by student group (first-year vs. second-year students). Students and faculty members have differing opinions on the process that could influence learning and course design. Faculty members should understand the strategies students are using to learn course material and consider additional or alternative course design and delivery techniques based on student feedback.

  16. Exploring demand reduction through design, durability and 'usership' of fashion clothes.

    PubMed

    Fletcher, Kate

    2017-06-13

    Global planetary boundaries confer limits to production and consumption of material goods. They also confer an obligation to experiment, as individuals and collectively as society, with less-materially-intensive, but no less exuberant, ways of living. This paper takes up this mantle and explores materials demand reduction through a focus on design, fashion garments and the universal, everyday activity of wearing clothes. It takes as its starting point the design of longer-lasting products, a widely favoured strategy for increasing materials efficiency and reducing materials demand in many sectors, including fashion. Drawing on scholarship in the field of design for sustainability and ethnographic research conducted in 16 locations in nine countries about already-existing practices of intensive use and maintenance of clothing, this paper critiques the effectiveness of durability strategies to reduce the amount of materials used. It argues for an update in the familiar preference within sustainability debates for the 'techno-fix' to explore instead resourceful use of materials as emerging from human actions and relationships with material goods. It suggests that, while facilitated by design, technology and engineering, opportunities to reduce materials demand begin in individual and collective practices, which, in turn, have dynamic implications for use of materials.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  17. Exploring demand reduction through design, durability and ‘usership’ of fashion clothes

    PubMed Central

    2017-01-01

    Global planetary boundaries confer limits to production and consumption of material goods. They also confer an obligation to experiment, as individuals and collectively as society, with less-materially-intensive, but no less exuberant, ways of living. This paper takes up this mantle and explores materials demand reduction through a focus on design, fashion garments and the universal, everyday activity of wearing clothes. It takes as its starting point the design of longer-lasting products, a widely favoured strategy for increasing materials efficiency and reducing materials demand in many sectors, including fashion. Drawing on scholarship in the field of design for sustainability and ethnographic research conducted in 16 locations in nine countries about already-existing practices of intensive use and maintenance of clothing, this paper critiques the effectiveness of durability strategies to reduce the amount of materials used. It argues for an update in the familiar preference within sustainability debates for the ‘techno-fix’ to explore instead resourceful use of materials as emerging from human actions and relationships with material goods. It suggests that, while facilitated by design, technology and engineering, opportunities to reduce materials demand begin in individual and collective practices, which, in turn, have dynamic implications for use of materials. This article is part of the themed issue ‘Material demand reduction’. PMID:28461430

  18. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.

    PubMed

    Lee, Jia Min; Yeong, Wai Yee

    2016-11-01

    Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexible pavement rehabilitation manual. Rev., June 2001

    DOT National Transportation Integrated Search

    2001-06-01

    This manual delineates the basic design strategies of the 1979 "Asphalt Concrete Overlay Design Manual" plus the many changes in procedures, and incorporates the use of new strategies and materials presently being used by Caltrans. Environmental conc...

  20. Supplantation versus Generative Models: Implications for Designers of Instructional Text.

    ERIC Educational Resources Information Center

    Smith, Patricia L.

    Two instructional design alternatives are described and discussed: (1) the supplantation model of Ausburn and Ausburn (1978), where learning strategies are built into the instructional materials; and (2) a generative design model, where strategies are "built" into the learner. These contrasting models are proposed as representing the…

  1. The Design of Effective Case Study-Related Learning Strategies Training.

    ERIC Educational Resources Information Center

    Nuttall, Alice E.

    The development of case study training materials for an experimental research strategy is described, and the effects of such training are discussed. The theoretical foundation for learning strategies training was a social-cognitive/expectancy value model of college learning and teaching. In a posttest-only 2-group design, 54 students in an…

  2. Strategies Unlimited.

    ERIC Educational Resources Information Center

    Blaga, Jeff; And Others

    Designed primarily for teachers of students in grades 7-12, the document presents over 60 social studies teaching strategies and lesson plans. Each lesson includes an overview, grade level information, suggested course/subject matter uses, objectives, suggested materials, student materials, and an instructional plan. Lesson topics fall into the…

  3. Reasoning Strategies in the Context of Engineering Design with Everyday Materials

    ERIC Educational Resources Information Center

    Worsley, Marcelo; Blikstein, Paulo

    2016-01-01

    "Making" represents an increasingly popular label for describing a form of engineering design. While making is growing in popularity, there are still open questions about the strategies that students are using in these activities. Assessing and improving learning in making/ engineering design contexts require that we have a better…

  4. Reuse, Recycle, Rebuild.

    ERIC Educational Resources Information Center

    McCarron, Colleen

    2001-01-01

    Explores the renewed attention architects and end users are giving to green design strategies from reducing energy waste to utilizing sustainable materials. Green design characteristics involving, water efficiency, reducing energy waste, indoor air quality, and use of particular environmentally responsible materials are examined. (GR)

  5. Porous graphene materials for water remediation.

    PubMed

    Niu, Zhiqiang; Liu, Lili; Zhang, Li; Chen, Xiaodong

    2014-09-10

    Water remediation has been a critical issue over the past decades due to the expansion of wastewater discharge to the environment. Currently, a variety of functional materials have been successfully prepared for water remediation applications. Among them, graphene is an attractive candidate due to its high specific surface area, tunable surface behavior, and high strength. This Concept paper summarizes the design strategy of porous graphene materials and their applications in water remediation, such as the cleanup of oil, removal of heavy metal ions, and elimination of water soluble organic contaminants. The progress made so far will guide further development in structure design strategy of porous materials based on graphene and exploration of such materials in environmental remediation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support from NSF DMREF program under awards DMR-1234161 and DMR-1235084.

  7. Implementing Advanced Technologies in the Republic of China Air Force Officer Training System

    DTIC Science & Technology

    1994-03-01

    Strategy Political Radar Systems Emergency Education Medicine Maneuvers Entertainment & Systems Design Primary Care Welfare Telegraph Systems I1 The...Planning area includes the career fields of Organization, Aircraft, Weapons, Air Strategy , and Maneuvers. In the Political area of occupational...materials to be considered. The current strategy is to maintain massive inventories of written testing materials for use in officer evaluations

  8. Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications

    NASA Astrophysics Data System (ADS)

    Zhao, Hewei; Yang, Zhao; Guo, Lin

    2018-04-01

    To develop next-generation lightweight, high-strength, and tough materials, new materials design strategies must be established. Nacre, consisting of 95 vol.% inorganic plates (CaCO3) and 5 vol.% organic matrix (protein) in layered arrangements, is famous for its significant increase (three orders of magnitude higher) in toughness compared to monolithic aragonite and has always been the model for the synthesis of high mechanical performance artificial materials. In this review, we primarily introduce the recent studies on the synthesis of nacre-inspired composites with exceptional mechanical properties, including 1D fibers, 2D films, and 3D bulk materials. In addition, design strategies for performance enhancement are summarized based on these studies, and applications of high-performance nacre-inspired composites are also discussed. Finally, a critical outlook of the future direction of developing next-generation high mechanical performance nacre-inspired composites is provided.

  9. Rational design of new electrolyte materials for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin

    2016-09-01

    The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.

  10. Deliberately Designed Atomic-Level Silver-Containing Interface Results in Improved Rate Capability and Utilization of Silver Hollandite for Lithium-Ion Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul F.; Brady, Alexander B.; Lee, Seung-Yong

    α-MnO 2-structured materials are generally classified as semiconductors, thus we present a strategy to increase electrochemical utilization through design of a conductive material interface. Surface treatment of silver hollandite (Ag xMn 8O 16) with Ag + (Ag 2O) provides significant benefit to the resultant electrochemistry, including a decreased charge transfer resistance, and a 2-fold increase in deliverable energy density at high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is further highlighted.

  11. Deliberately Designed Atomic-Level Silver-Containing Interface Results in Improved Rate Capability and Utilization of Silver Hollandite for Lithium-Ion Storage

    DOE PAGES

    Smith, Paul F.; Brady, Alexander B.; Lee, Seung-Yong; ...

    2017-12-11

    α-MnO 2-structured materials are generally classified as semiconductors, thus we present a strategy to increase electrochemical utilization through design of a conductive material interface. Surface treatment of silver hollandite (Ag xMn 8O 16) with Ag + (Ag 2O) provides significant benefit to the resultant electrochemistry, including a decreased charge transfer resistance, and a 2-fold increase in deliverable energy density at high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is further highlighted.

  12. Usability Design Strategies for Children: Developing Children's Learning and Knowledge in Decreasing Their Dental Anxiety

    ERIC Educational Resources Information Center

    Yahaya, Wan Ahmad Jaafar Wan; Salam, Sobihatun Nur Abdul

    2010-01-01

    This paper presents an example of how usability design strategies for children can be designed into educational material using CD-ROM based multimedia application for assisting parents and teachers to develop children's learning and knowledge in decreasing as well as motivate children aged 7-9 years old to reduce their anxious feelings towards…

  13. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  14. Paper and Process: How Youth Programs Manage Program Intake, Individual Service Strategy Development, and Case Files.

    ERIC Educational Resources Information Center

    Callahan, Jim; McLaughlin, Brenda

    This guide presents information and materials to help youth programs manage program intake, design an individual service strategy (ISS) as mandated in the Workforce Investment Act, and manage case files. The materials are based on information obtained from staff working in seven successful youth workforce investment programs in Maryland,…

  15. Toward Equality.

    ERIC Educational Resources Information Center

    Wesner, Bitsy, Ed.

    The information and strategies in this notebook consist of research data and strategies designed to implement educational change related to sexual and racial limitations. This project is a collection of existing materials and strategies that can be used by classroom teachers and staff development planners. This packet also contains background…

  16. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.

    PubMed

    Ashuri, Maziar; He, Qianran; Shaw, Leon L

    2016-01-07

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ∼10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (∼300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  17. Audiovisual Material as Educational Innovation Strategy to Reduce Anxiety Response in Students of Human Anatomy

    ERIC Educational Resources Information Center

    Casado, Maria Isabel; Castano, Gloria; Arraez-Aybar, Luis Alfonso

    2012-01-01

    This study presents the design, effect and utility of using audiovisual material containing real images of dissected human cadavers as an innovative educational strategy (IES) in the teaching of Human Anatomy. The goal is to familiarize students with the practice of dissection and to transmit the importance and necessity of this discipline, while…

  18. The Effectiveness of Interactive Computer Assisted Modeling in Teaching Study Strategies and Concept Mapping of College Textbook Material.

    ERIC Educational Resources Information Center

    Mikulecky, Larry

    A study evaluated the effectiveness of a series of print materials and interactive computer-guided study programs designed to lead undergraduate students to apply basic textbook reading and concept mapping strategies to the study of science and social science textbooks. Following field testing with 25 learning skills students, 50 freshman biology…

  19. Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithium-Ion Storage.

    PubMed

    Chen, Gen; Yan, Litao; Luo, Hongmei; Guo, Shaojun

    2016-09-01

    Rechargeable lithium-ion batteries (LIBs), as one of the most important electrochemical energy-storage devices, currently provide the dominant power source for a range of devices, including portable electronic devices and electric vehicles, due to their high energy and power densities. The interest in exploring new electrode materials for LIBs has been drastically increasing due to the surging demands for clean energy. However, the challenging issues essential to the development of electrode materials are their low lithium capacity, poor rate ability, and low cycling stability, which strongly limit their practical applications. Recent remarkable advances in material science and nanotechnology enable rational design of heterostructured nanomaterials with optimized composition and fine nanostructure, providing new opportunities for enhancing electrochemical performance. Here, the progress as to how to design new types of heterostructured anode materials for enhancing LIBs is reviewed, in the terms of capacity, rate ability, and cycling stability: i) carbon-nanomaterials-supported heterostructured anode materials; ii) conducting-polymer-coated electrode materials; iii) inorganic transition-metal compounds with core@shell structures; and iv) combined strategies to novel heterostructures. By applying different strategies, nanoscale heterostructured anode materials with reduced size, large surfaces area, enhanced electronic conductivity, structural stability, and fast electron and ion transport, are explored for boosting LIBs in terms of high capacity, long cycling lifespan, and high rate durability. Finally, the challenges and perspectives of future materials design for high-performance LIB anodes are considered. The strategies discussed here not only provide promising electrode materials for energy storage, but also offer opportunities in being extended for making a variety of novel heterostructured nanomaterials for practical renewable energy applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The rise of organic electrode materials for energy storage.

    PubMed

    Schon, Tyler B; McAllister, Bryony T; Li, Peng-Fei; Seferos, Dwight S

    2016-11-07

    Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.

  1. The Development of SCORM-Conformant Learning Content Based on the Learning Cycle Using Participatory Design

    ERIC Educational Resources Information Center

    Su, C. Y.; Chiu, C. H.; Wang, T. I.

    2010-01-01

    This study incorporates the 5E learning cycle strategy to design and develop Sharable Content Object Reference Model-conformant materials for elementary science education. The 5E learning cycle that supports the constructivist approach has been widely applied in science education. The strategy consists of five phases: engagement, exploration,…

  2. Chapter 7: Materials for Launch Vehicle Structures

    NASA Technical Reports Server (NTRS)

    Henson, Grant; Jone, Clyde S. III

    2017-01-01

    This chapter concerns materials for expendable and reusable launch vehicle (LV) structures. An emphasis is placed on applications and design requirements, and how these requirements are met by the optimum choice of materials. Structural analysis and qualification strategies, which cannot be separated from the materials selection process, are described.

  3. Material Stream Strategy for Lithium and Inorganics (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safarik, Douglas Joseph; Dunn, Paul Stanton; Korzekwa, Deniece Rochelle

    Design Agency Responsibilities: Manufacturing Support to meet Stockpile Stewardship goals for maintaining the nuclear stockpile through experimental and predictive modeling capability. Development and maintenance of Manufacturing Science expertise to assess material specifications and performance boundaries, and their relationship to processing parameters. Production Engineering Evaluations with competence in design requirements, material specifications, and manufacturing controls. Maintenance and enhancement of Aging Science expertise to support Stockpile Stewardship predictive science capability.

  4. Assessing Students' Metacognitive Awareness of Reading Strategies.

    ERIC Educational Resources Information Center

    Mokhtari, Kouider; Reichard, Carla A.

    2002-01-01

    Describes development and validation of a new self-report instrument, the Metacognitive Awareness of Reading Strategies Inventory, designed to assess adolescent and adult readers' metacognitive awareness and perceived use of reading strategies while reading academic materials. After a brief review of the literature, the development and validation…

  5. A comprehensive strategy for designing a Web-based medical curriculum.

    PubMed Central

    Zucker, J.; Chase, H.; Molholt, P.; Bean, C.; Kahn, R. M.

    1996-01-01

    In preparing for a full featured online curriculum, it is necessary to develop scaleable strategies for software design that will support the pedagogical goals of the curriculum and which will address the issues of acquisition and updating of materials, of robust content-based linking, and of integration of the online materials into other methods of learning. A complete online curriculum, as distinct from an individual computerized module, must provide dynamic updating of both content and structure and an easy pathway from the professor's notes to the finished online product. At the College of Physicians and Surgeons, we are developing such strategies including a scripted text conversion process that uses the Hypertext Markup Language (HTML) as structural markup rather than as display markup, automated linking by the use of relational databases and the Unified Medical Language System (UMLS), integration of text, images, and multimedia along with interface designs which promote multiple contexts and collaborative study. PMID:8947624

  6. Recent advances in 2D materials for photocatalysis.

    PubMed

    Luo, Bin; Liu, Gang; Wang, Lianzhou

    2016-04-07

    Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.

  7. NREL to Lead New Consortium to Develop Advanced Water Splitting Materials

    Science.gov Websites

    said. "Our research strategy integrates computational tools and modeling, material synthesis needs, such as high-throughput synthesis techniques and auxiliary component design. HydroGEN is the

  8. Supercritical carbon dioxide design strategies: from drug carriers to soft killers.

    PubMed

    Aguiar-Ricardo, Ana; Bonifácio, Vasco D B; Casimiro, Teresa; Correia, Vanessa G

    2015-12-28

    The integrated use of supercritical carbon dioxide (scCO(2)) and micro- and nanotechnologies has enabled new sustainable strategies for the manufacturing of new medications. 'Green' scCO(2)-based methodologies are well suited to improve either the synthesis or materials processing leading to the assembly of three-dimensional multifunctional constructs. By using scCO(2) either as C1 feedstock or as solvent, simple, economic, efficient and clean routes can be designed to synthesize materials with unique properties such as polyurea dendrimers and oxazoline-based polymers/oligomers. These new biocompatible, biodegradable and water-soluble polymeric materials can be engineered into multifunctional constructs with antimicrobial activity, targeting moieties, labelling units and/or efficiently loaded with therapeutics. This mini-review highlights the particular features exhibited by these materials resulting directly from the followed supercritical routes. © 2015 The Author(s).

  9. The Modular Approach (with Strategies) to Learning Motor Skills

    DTIC Science & Technology

    1980-03-01

    Sciencies . ~~LThe findings in this report are not to be construed as an official Dopertment of the Army posotion, unless so designated by other...13 Conducting an Instructional Analysis .. ................ 14 Pre-Instructional Activities .. ............... ..... 16 Instructional Materials ...domains. Further, many processes that underlie a person’s use of strategies to enhance the learning of written material appears to be similar in the

  10. Designing ECM-mimetic Materials Using Protein Engineering

    PubMed Central

    Cai, Lei; Heilshorn, Sarah C.

    2014-01-01

    The natural extracellular matrix (ECM), with its multitude of evolved cell-instructive and cell-responsive properties, provides inspiration and guidelines for the design of engineered biomaterials. One strategy to create ECM-mimetic materials is the modular design of protein-based engineered ECM (eECM) scaffolds. This modular design strategy involves combining multiple protein domains with different functionalities into a single, modular polymer sequence, resulting in a multifunctional matrix with independent tunability of the individual domain functions. These eECMs often enable decoupled control over multiple material properties for fundamental studies of cell-matrix interactions. In addition, since the eECMs are frequently composed entirely of bioresorbable amino acids, these matrices have immense clinical potential for a variety of regenerative medicine applications. This brief review demonstrates how fundamental knowledge gained from structure-function studies of native proteins can be exploited in the design of novel protein-engineered biomaterials. While the field of protein-engineered biomaterials has existed for over 20 years, the community is only now beginning to fully explore the diversity of functional peptide modules that can be incorporated into these materials. We have chosen to highlight recent examples that either (1) demonstrate exemplary use as matrices with cell-instructive and cell-responsive properties or (2) demonstrate outstanding creativity in terms of novel molecular-level design and macro-level functionality. PMID:24365704

  11. Virtual Design and Testing of Materials: A Multiscale Approach

    DTIC Science & Technology

    2006-06-30

    Impurities in Aluminum and Their Effect on Mechanical Properties ", Phys. Rev. B 65, 064102 (2002). 21. G. Lu, V. Bulatov, and N. Kioussis, "Dislocation...materials: atomistic and continuum models with application to titanium - aluminides ", Phil. Mag. A 82, 2397-2417 (2002). 31. V.S. Deshpande, A. Needleman and...be used to test, and suggest design strategies for, new advanced structured materials. IS. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: Unclassified

  12. An Improved Thermal Conductivity Polyurethane Composite for a Space Borne 20KV Power Supply

    NASA Technical Reports Server (NTRS)

    Shapiro, Andrew A.; Haque, Inam

    2005-01-01

    This effort was designed to find a way to reduce the temperature rise of critical components of a 20KV High Voltage Power Supply (HVPS) by improving the overall thermal conductivity of the encapsulated modules. Three strategies were evaluated by developing complete procedures, preparing samples, and performing tests. The three strategies were: 1. Improve the thermal conductivity of the polyurethane encapsulant through the addition of thermally conductive powder while minimizing impact on other characteristics of the encapsulant. 2. Improve the thermal conductivity of the polyurethane encapsulated assembly by the addition of a slab of thermally conductive, electrically insulating material, which is to act as a heat spreader. 3. Employ a more thermally conductive substrate (Al203) with the existing encapsulation scheme. The materials were chosen based on the following criteria: high dielectric breakdown strength; high thermal conductivity, ease of manufacturing, high compliance, and other standard space qualified materials properties (low out-gassing, etc.). An optimized cure was determined by a statistical design of experiments for both filled and unfilled materials. The materials were characterized for the desired properties and a complete process was developed and tested. The thermal performance was substantially improved and the strategies may be used for space flight.

  13. Strategy for Texture Management in Metals Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  14. Strategy for Texture Management in Metals Additive Manufacturing

    DOE PAGES

    Kirka, Michael M.; Lee, Yousub; Greeley, Duncan A.; ...

    2017-01-31

    Additive manufacturing (AM) technologies have long been recognized for their ability to fabricate complex geometric components directly from models conceptualized through computers, allowing for complicated designs and assemblies to be fabricated at lower costs, with shorter time to market, and improved function. Lacking behind the design complexity aspect is the ability to fully exploit AM processes for control over texture within AM components. Currently, standard heat-fill strategies utilized in AM processes result in largely columnar grain structures. Here, we propose a point heat source fill for the electron beam melting (EBM) process through which the texture in AM materials canmore » be controlled. Using this point heat source strategy, the ability to form either columnar or equiaxed grain structures upon solidification through changes in the process parameters associated with the point heat source fill is demonstrated for the nickel-base superalloy, Inconel 718. Mechanically, the material is demonstrated to exhibit either anisotropic properties for the columnar-grained material fabricated through using the standard raster scan of the EBM process or isotropic properties for the equiaxed material fabricated using the point heat source fill.« less

  15. Integrated Application of Quality-by-Design Principles to Drug Product Development: A Case Study of Brivanib Alaninate Film-Coated Tablets.

    PubMed

    Badawy, Sherif I F; Narang, Ajit S; LaMarche, Keirnan R; Subramanian, Ganeshkumar A; Varia, Sailesh A; Lin, Judy; Stevens, Tim; Shah, Pankaj A

    2016-01-01

    Modern drug product development is expected to follow quality-by-design (QbD) paradigm. At the same time, although there are several issue-specific examples in the literature that demonstrate the application of QbD principles, a holistic demonstration of the application of QbD principles to drug product development and control strategy, is lacking. This article provides an integrated case study on the systematic application of QbD to product development and demonstrates the implementation of QbD concepts in the different aspects of product and process design for brivanib alaninate film-coated tablets. Using a risk-based approach, the strategy for development entailed identification of product critical quality attributes (CQAs), assessment of risks to the CQAs, and performing experiments to understand and mitigate identified risks. Quality risk assessments and design of experiments were performed to understand the quality of the input raw materials required for a robust formulation and the impact of manufacturing process parameters on CQAs. In addition to the material property and process parameter controls, the proposed control strategy includes use of process analytical technology and conventional analytical tests to control in-process material attributes and ensure quality of the final product. Copyright © 2016. Published by Elsevier Inc.

  16. Design of transparent conductors and periodic two-dimensional electron gases without doping

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration

    The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations

  17. Design and construction guidelines for thermally insulated concrete pavements.

    DOT National Transportation Integrated Search

    2013-01-01

    The report describes the construction and design of composite pavements as a viable design strategy to use an : asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural : layer as the load-carryi...

  18. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    PubMed

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials.

    PubMed

    Huang, Wenwen; Ebrahimi, Davoud; Dinjaski, Nina; Tarakanova, Anna; Buehler, Markus J; Wong, Joyce Y; Kaplan, David L

    2017-04-18

    Tailored biomaterials with tunable functional properties are crucial for a variety of task-specific applications ranging from healthcare to sustainable, novel bio-nanodevices. To generate polymeric materials with predictive functional outcomes, exploiting designs from nature while morphing them toward non-natural systems offers an important strategy. Silks are Nature's building blocks and are produced by arthropods for a variety of uses that are essential for their survival. Due to the genetic control of encoded protein sequence, mechanical properties, biocompatibility, and biodegradability, silk proteins have been selected as prototype models to emulate for the tunable designs of biomaterial systems. The bottom up strategy of material design opens important opportunities to create predictive functional outcomes, following the exquisite polymeric templates inspired by silks. Recombinant DNA technology provides a systematic approach to recapitulate, vary, and evaluate the core structure peptide motifs in silks and then biosynthesize silk-based polymers by design. Post-biosynthesis processing allows for another dimension of material design by controlled or assisted assembly. Multiscale modeling, from the theoretical prospective, provides strategies to explore interactions at different length scales, leading to selective material properties. Synergy among experimental and modeling approaches can provide new and more rapid insights into the most appropriate structure-function relationships to pursue while also furthering our understanding in terms of the range of silk-based systems that can be generated. This approach utilizes nature as a blueprint for initial polymer designs with useful functions (e.g., silk fibers) but also employs modeling-guided experiments to expand the initial polymer designs into new domains of functional materials that do not exist in nature. The overall path to these new functional outcomes is greatly accelerated via the integration of modeling with experiment. In this Account, we summarize recent advances in understanding and functionalization of silk-based protein systems, with a focus on the integration of simulation and experiment for biopolymer design. Spider silk was selected as an exemplary protein to address the fundamental challenges in polymer designs, including specific insights into the role of molecular weight, hydrophobic/hydrophilic partitioning, and shear stress for silk fiber formation. To expand current silk designs toward biointerfaces and stimuli responsive materials, peptide modules from other natural proteins were added to silk designs to introduce new functions, exploiting the modular nature of silk proteins and fibrous proteins in general. The integrated approaches explored suggest that protein folding, silk volume fraction, and protein amino acid sequence changes (e.g., mutations) are critical factors for functional biomaterial designs. In summary, the integrated modeling-experimental approach described in this Account suggests a more rationally directed and more rapid method for the design of polymeric materials. It is expected that this combined use of experimental and computational approaches has a broad applicability not only for silk-based systems, but also for other polymer and composite materials.

  20. Peer Assisted Learning Strategy for Improving Students’ Physiologic Literacy

    NASA Astrophysics Data System (ADS)

    Diana, S.

    2017-09-01

    Research about the implementation of the Peer Assisted Learning (PAL) strategy in Plant Physiology lecture has carried out, in which it aims to improve students’ physiologic literacy. The PAL strategy began with a briefing by the lecturers to the students tutor about pretest questions, followed by the interaction between student tutors with their peers to discuss response problems, terminated by answering responsiveness questions individually. This study used a quasi-experimental method, one - group pre-test post-test design. This design includes a group of students observed in the pre-test phase (tests carried out before PAL treatment) which is then followed by treatment with PAL and ends with post-test. The other students group (control) was given the pre-test and post-test only. The results showed that the PAL strategy can increase student’s physiologic literacy significantly. One of the weaknesses of students’ physiologic literacy is that they have not been able to read the graph. The faculties are encouraged to begin introducing and teaching material using a variety of strategies with scientific literacy aspects, for example teaching research-based material. All students respond positively to the PAL strategy.

  1. The Development of a Food Safety Brochure for Families: The Use of Formative Evaluation and Plain Language Strategies

    ERIC Educational Resources Information Center

    Perry, Christina; Albrecht, Julie; Litchfield, Ruth; Meysenburg, Rebecca L.; Er, Ida NgYin; Lum, Adeline; Beattie, Sam; Larvick, Carol; Schwarz, Carol; Temple, Jan; Meimann, Elizabeth

    2012-01-01

    Printed materials have been used extensively as an educational tool to increase food safety awareness. Few educational materials have been designed to target families with young children for food safety education. This article reports the use of the formative evaluation process to develop a brochure designed to enhance awareness about food safety…

  2. Generic experimental design for product strategy evaluation : crumb rubber modified materials.

    DOT National Transportation Integrated Search

    2005-02-01

    This report presents the framework for a generic process to evaluate new products and/or strategies for possible use within Caltrans. The framework is the result of a collaborative effort among Caltrans, the University of California Partnered Pavemen...

  3. A Digital Methodology for the Design Process of Aerospace Assemblies with Sustainable Composite Processes & Manufacture

    NASA Astrophysics Data System (ADS)

    McEwan, W.; Butterfield, J.

    2011-05-01

    The well established benefits of composite materials are driving a significant shift in design and manufacture strategies for original equipment manufacturers (OEMs). Thermoplastic composites have advantages over the traditional thermosetting materials with regards to sustainability and environmental impact, features which are becoming increasingly pertinent in the aerospace arena. However, when sustainability and environmental impact are considered as design drivers, integrated methods for part design and product development must be developed so that any benefits of sustainable composite material systems can be assessed during the design process. These methods must include mechanisms to account for process induced part variation and techniques related to re-forming, recycling and decommissioning, which are in their infancy. It is proposed in this paper that predictive techniques related to material specification, part processing and product cost of thermoplastic composite components, be integrated within a Through Life Management (TLM) product development methodology as part of a larger strategy of product system modeling to improve disciplinary concurrency, realistic part performance, and to place sustainability at the heart of the design process. This paper reports the enhancement of digital manufacturing tools as a means of drawing simulated part manufacturing scenarios, real time costing mechanisms, and broader lifecycle performance data capture into the design cycle. The work demonstrates predictive processes for sustainable composite product manufacture and how a Product-Process-Resource (PPR) structure can be customised and enhanced to include design intent driven by `Real' part geometry and consequent assembly. your paper.

  4. Training strategies and materials.

    DOT National Transportation Integrated Search

    2014-06-01

    TxDOT project 0-6706 Design and Scope of Impact of Auxiliary Lanes has developed : guidelines for implementation of auxiliary lanes including general guidelines on the use of : auxiliary lanes and design guidelines for auxiliary lanes. To facil...

  5. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    PubMed Central

    Vichery, Charlotte; Nedelec, Jean-Marie

    2016-01-01

    Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented. PMID:28773412

  6. Designing high-performance layered thermoelectric materials through orbital engineering

    PubMed Central

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043

  7. Modular Training Systems and Strategies: An International Meeting (Washington, D.C., May 11-12, 1992).

    ERIC Educational Resources Information Center

    American Society for Training and Development, Alexandria, VA.

    This publication contains materials from a conference to discuss modular approaches to curriculum design. The materials from the United States and five other countries address both national skills standards and modular systems of training delivery. An introduction provides brief summaries of the conference materials and the agenda. "National…

  8. Functional Polymer Opals and Porous Materials by Shear-Induced Assembly of Tailor-Made Particles.

    PubMed

    Gallei, Markus

    2018-02-01

    Photonic band-gap materials attract enormous attention as potential candidates for a steadily increasing variety of applications. Based on the preparation of easily scalable monodisperse colloids, such optically attractive photonic materials can be prepared by an inexpensive and convenient bottom-up process. Artificial polymer opals can be prepared by shear-induced assembly of core/shell particles, yielding reversibly stretch-tunable materials with intriguing structural colors. This feature article highlights recent developments of core/shell particle design and shear-induced opal formation with focus on the combination of hard and soft materials as well as crosslinking strategies. Structure formation of opal materials relies on both the tailored core/shell architecture and the parameters for polymer processing. The emphasis of this feature article is on elucidating the particle design and incorporation of addressable moieties, i.e., stimuli-responsive polymers as well as elaborated crosslinking strategies for the preparation of smart (inverse) opal films, inorganic/organic opals, and ceramic precursors by shear-induced ordering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design for Deconstruction (DfD): Critical success factors for diverting end-of-life waste from landfills.

    PubMed

    Akinade, Olugbenga O; Oyedele, Lukumon O; Ajayi, Saheed O; Bilal, Muhammad; Alaka, Hafiz A; Owolabi, Hakeem A; Bello, Sururah A; Jaiyeoba, Babatunde E; Kadiri, Kabir O

    2017-02-01

    The aim of this paper is to identify Critical Success Factors (CSF) needed for effective material recovery through Design for Deconstruction (DfD). The research approach employed in this paper is based on a sequential exploratory mixed method strategy. After a thorough review of literature and conducting four Focus Group Discussion (FGDs), 43 DfD factors were identified and put together in a questionnaire survey. Data analyses include Cronbach's alpha reliability analysis, mean testing using significance index, and exploratory factor analysis. The result of the factor analysis reveals that an underlying factor structure of five DfD factors groups that include 'stringent legislation and policy', 'deconstruction design process and competencies', 'design for material recovery', 'design for material reuse', and 'design for building flexibility'. These groups of DfD factor groups show that the requirements for DfD goes beyond technical competencies and that non-technical factors such as stringent legislation and policy and design process and competency for deconstruction are key in designing deconstructable buildings. Paying attention to the factors identified in all of these categories will help to tackle impediments that could hinder the effectiveness of DfD. The results of this study would help design and project managers to understand areas of possible improvement in employing DfD as a strategy for diverting waste from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy

    DOE PAGES

    Santodonato, Louis J.; Zhang, Yang; Feygenson, Mikhail; ...

    2015-01-20

    The alloy-design strategy of combining multiple elements in near-equimolar ratios has shown great potential for producing exceptional engineering materials, often known as “high-entropy alloys”. Understanding the elemental distribution, and, thus, the evolution of the configurational entropy during solidification, is undertaken in the present study using the Al 1.3CoCrCuFeNi model alloy. Here we show that even when the material undergoes elemental segregation, precipitation, chemical ordering, and spinodal decomposition, a significant amount of disorder remains, due to the distributions of multiple elements in the major phases. In addition, the results suggest that the high-entropy-alloy-design strategy may be applied to a wide rangemore » of complex materials, and should not be limited to the goal of creating single-phase solid solutions.« less

  11. Methods and Materials for Teaching the Gifted.

    ERIC Educational Resources Information Center

    Karnes, Frances A., Ed.; Bean, Suzanne M., Ed.

    This book is designed to provide strategies and resources for differentiating the instruction of gifted learners. It addresses characteristics and needs of gifted learners, instructional planning and evaluation, strategies for best practices, and supporting and enhancing gifted programs. Specific chapters include: (1) "Gifted and Talented…

  12. Uncovering and Validating Toughening Mechanisms in High Performance Composites

    DTIC Science & Technology

    2015-09-17

    striated regions have similar microstructures (see Figure 44). This aligned, fiber-reinforced design of the striated region has been adapted from spearing...Page 79 / 84 “Fracture mitigation strategies in gastropod shells,” C. Salinas and D. Kisailus, Journal of Materials, 65 (4) (2013) 473-480. DOI...2014.03.022 “Fracture mitigation strategies in gastropod shells,” C. Salinas and D. Kisailus, Journal of Materials, 65 (4) (2013) 473-480. DOI: J10.1007

  13. Multi-scale Modeling, Design Strategies and Physical Properties of 2D Composite Sheets

    DTIC Science & Technology

    2014-09-22

    talks and training of two postdoctoral candidates, one graduate student The theoretical work on thennal, elecu·onic and optical prope1iies of 2D ...materials led to several new experimentalists to validate our predictions. 1S. SUBJECT TERMS 2D materials, multi scale modeling 16. SECURITY...strategies and physical properties of 2D composite sheets: Final Report Report Title This report describes the progress made as part of the subject contract

  14. An efficient strategy for designing ambipolar organic semiconductor material: Introducing dehydrogenated phosphorus atoms into pentacene core

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Dan

    2017-09-01

    The charge transport properties of phosphapentacene (P-PEN) derivatives were systematically explored by theoretical calculation. The dehydrogenated P-PENs have reasonable frontier molecular orbital energy levels to facilitate both electron and hole injection. The reduced reorganization energies of dehydrogenated P-PENs could be intimately connected to the bonding nature of phosphorus atoms. From the idea of homology modeling, the crystal structure of TIPSE-4P-2p is constructed and fully optimized. Fascinatingly, TIPSE-4P-2p shows the intrinsic property of ambipolar transport in both hopping and band models. Thus, introducing dehydrogenated phosphorus atoms into pentacene core could be an efficient strategy for designing ambipolar material.

  15. Development of highly porous crystalline titania photocatalysts

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal

    The objectives of this dissertation are the design, synthesis, and characterization of titania materials with surface area, porosity, crystallinity and doping tailored toward photocatalytic applications. Ultimately, the research should result in a strategy allowing the synthesis of titania with all these important features. The synthetic methods investigated in this research will include: i) soft-templating, ii) hard-templating, and iii) modified precursor strategy. Soft-templating strategy uses organic templates--either block copolymers or surfactants--that under specific conditions assemble into micelles, and later, these micelles are used to template the desired material around them. The resulting organic-inorganic composite is then calcined in air to remove the organic template and recover the final material with high surface area and large pore volume. This work explores 1) synthesis of titania materials in the presence of polymer templates, and the effects of different synthetic conditions on the structure of the resulting materials. Hard-templating, in contrast to soft-templating, uses inorganic templates. The hard template is introduced during the synthesis to cast its shape onto the fabricated material and removed afterwards, when the material has formed. The final material is an inverse replica of the hard template used, typically with a well-developed mesostructure. This work explores 1) hard templating synthesis of titania materials using silica and alumina, and 2) the effects of the template amount and type. The modified precursor strategy is a novel synthetic method, developed in this research, and designed specifically to achieve titania material with high surface area, large pore volume, high crystallinity, and possibly doping. The modified precursors are prepared by reacting generic titania precursors, such as titanium isopropoxide (TIPO), with organic acids, which results in substitution of some or all alkoxide groups in TIPO structure. The goal is to introduce new, easily carbonizable groups in TIPO structure so that the modified precursor can serve as titania and carbon precursor simultaneously. Subsequently, during carbonization in inert atmosphere, a carbon framework is formed that works as a scaffold, protecting titania during its crystallization. Afterwards, the carbon scaffold is removed by calcination in air. This work explores the modified precursor strategy by 1) preparing titania materials from TIPO modified with different carboxylic acids and 2) investigating the effect of the modifying acid on the properties of the carbon-titania composites and the final titania materials.

  16. Integrated design strategy for product life-cycle management

    NASA Astrophysics Data System (ADS)

    Johnson, G. Patrick

    2001-02-01

    Two major trends suggest new considerations for environmentally conscious manufacturing (ECM) -- the continuation of dematerialization and the growing trend toward goods becoming services. A diversity of existing research could be integrated around those trends in ways that can enhance ECM. Major research-based achievements in information, computation, and communications systems, sophisticated and inexpensive sensing capabilities, highly automated and precise manufacturing technologies, and new materials continue to drive the phenomenon of dematerialization - the reduction of the material and energy content of per capita GDP. Knowledge is also growing about the sociology, economics, mathematics, management and organization of complex socio-economic systems. And that has driven a trend towards goods evolving into services. But even with these significant trends, the value of material, energy, information and human resources incorporated into the manufacture, use and disposal of modern products and services often far exceeds the benefits realized. Multi-disciplinary research integrating these drivers with advances in ECM concepts could be the basis for a new strategy of production. It is argued that a strategy of integrating information resources with physical and human resources over product life cycles, together with considering products as streams of service over time, could lead to significant economic payoff. That strategy leads to an overall design concept to minimize costs of all resources over the product life cycle to more fully capture benefits of all resources incorporated into modern products. It is possible by including life cycle monitoring, periodic component replacement, re-manufacture, salvage and human factor skill enhancement into initial design.

  17. General Electronics Technician: Basic Electronics.

    ERIC Educational Resources Information Center

    Hilley, Robert

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in general electronics and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and…

  18. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  19. Novel strategy to improve the Li-storage performance of micro silicon anodes

    NASA Astrophysics Data System (ADS)

    Choi, Min-Jae; Xiao, Ying; Hwang, Jang-Yeon; Belharouak, Ilias; Sun, Yang-Kook

    2017-04-01

    Silicon (Si)-based materials have attracted significant research as an outstanding candidate for the anode material of lithium-ion batteries. However, the tremendous volume change and poor electron conductivity of bulk silicon result in inferior capacity retention and low Coulombic efficiency. Designing special Si with high energy density and good stability in a bulk electrode remains a significant challenge. In this work, we introduce an ingenious strategy to modify micro silicon by designing a porous structure, constructing nanoparticle blocks, and introducing carbon nanotubes as wedges. A disproportion reaction, coupled with a chemical etching process and a ball-milling reaction, are applied to generate the desired material. The as-prepared micro silicon material features porosity, small primary particles, and effective CNT-wedging, which combine to endow the resultant anode with a high reversible specific capacity of up to 2028.6 mAh g-1 after 100 cycles and excellent rate capability. The superior electrochemical performance is attributed to the unique architecture and optimized composition.

  20. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  1. Reinventing Flashcards to Increase Student Learning

    ERIC Educational Resources Information Center

    Senzaki, Sawa; Hackathorn, Jana; Appleby, Drew C.; Gurung, Regan A. R.

    2017-01-01

    Two studies examined the effectiveness of a flashcard-based study strategy, "Flashcards-Plus," in an ecologically valid context. The strategy requires students to create flashcards designed to increase their ability to retain, comprehend, and apply textbook material to exams. In Studies 1a (n = 73) and 1b (n = 62), we introduced all…

  2. Introduction to Computers: Parallel Alternative Strategies for Students. Course No. 0200000.

    ERIC Educational Resources Information Center

    Chauvenne, Sherry; And Others

    Parallel Alternative Strategies for Students (PASS) is a content-centered package of alternative methods and materials designed to assist secondary teachers to meet the needs of mainstreamed learning-disabled and emotionally-handicapped students of various achievement levels in the basic education content courses. This supplementary text and…

  3. Elementary/Middle School Keyboarding Strategies Guide.

    ERIC Educational Resources Information Center

    National Business Education Association, Reston, VA.

    Developed through a cooperative effort of many teachers and researchers, this guide is intended to supplement existing elementary and middle school materials on keyboarding. The guide contains sections that are designed for stand-alone use. Topics cover a wide range of strategies, including teaching special needs students. The U.S. Postal Service…

  4. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Youth Attitude Tracking Study. Volume 1. Spring 1978.

    DTIC Science & Technology

    1978-08-01

    promotional materials, recruiting practices, and advertising strategy . Study Design In the present wave, interviewing was conducted on a monthly basis, with...Habits Since the first wave, this study has attempted to provide guidance in the development of advertising strategies . In an attempt to provide further...input to the creation of advertising strategies , respondents were * " . asked a series of questions dealing with magazine readership and television

  6. Adapting Traditional Text Materials to Individualized Methodology

    ERIC Educational Resources Information Center

    Wood, Merle W.

    1977-01-01

    A consultant in business education presents his system for developing strategies of individualized instruction in using commercial materials designed for group instruction. To illustrate the process he includes seven figures of pages from an accounting text, with marginal notes to direct the student to an individualized supplement. (MF)

  7. Exploring Technology Education: Exploring Communication Technology.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting a unit of study on communication technology and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and then…

  8. Exploring Technology Education: Introduction to Technology Education.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting an introductory course in technology education and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and…

  9. Tunisia cours complementaire (Tunisia Complementary Course).

    ERIC Educational Resources Information Center

    Peace Corps (Thailand).

    The instructional materials in French are designed for use by language trainers of Peace Corps volunteers serving in francophone Tunisia, to supplement situational language and grammar instruction. A brief introductory section offers strategies for teaching verb tenses. The diverse materials that follow include lists of situational questions in…

  10. Exploring Technology Education: Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Joerschke, John D.

    These instructional materials include a teacher's guide designed to assist instructors in organizing and presenting a unit of study on manufacturing technology and a student guide. The materials are based on the curriculum-alignment concept of first stating the objectives, developing instructional strategies for teaching those objectives, and then…

  11. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  12. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  13. Development of High-Performance Cast Crankshafts. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Mark E

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloysmore » for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting simulations with existing materials models to optimize crankshaft cost and performance. Prototype crankshafts of the final design were to be produced and validated using laboratory bench testing and on-engine durability testing. ICME process simulation tools were used to investigate a broad range of processing concepts. These concepts included casting orientation, various mold and core materials, and various filling and feeding strategies. Each crankshaft was first simulated without gating and risers, which is termed natural solidification. The natural solidification results were used as a baseline for strategy development of each concept. Casting process simulations and ICME tools were proven to be reasonable predictors of real world results. Potential alloys were developed that could meet the project material property goals with appropriate normalization and temper treatments. For the alloys considered, post-normalization temper treatments proved to be necessary to achieve the desired yield strengths and elongations and appropriate heat treatments were designed using ICME tools. The experimental data of all the alloys were analyzed in combination with ICME tools to establish chemistry-process-structure relations. Several GM small gas engine (SGE) crankshafts were successfully cast in sand molds using two different sprue, runner, gate, riser, chill designs. These crankshafts were cast in two different steel alloys developed during the project, but casting finishing (e.g. riser removal) remains a cost challenge. A long list of future work was left unfinished when this project was unexpectedly terminated.« less

  14. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.

  15. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matouš, Karel, E-mail: kmatous@nd.edu; Geers, Marc G.D.; Kouznetsova, Varvara G.

    2017-02-01

    Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platformmore » in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.« less

  16. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    PubMed Central

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-01-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or copolymer-block design1. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure may inform the design of soft materials for use in complex mechanical environments. PMID:26322715

  17. Critical materials: a reason for sustainable education of industrial designers and engineers

    NASA Astrophysics Data System (ADS)

    Köhler, Andreas R.; Bakker, Conny; Peck, David

    2013-08-01

    Developed economies have become highly dependent on a range of technology metals with names such as neodymium and terbium. Stakeholders have warned of the impending scarcity of these critical materials. Difficulties in materials supply can affect the high-tech industries as well as the success of sustainable innovation strategies that are based on sophisticated technology. Industrial designers and engineers should therefore increase their awareness of the limits in availability of critical materials. In this paper, it is argued that materials' criticality can give a fresh impetus to the higher education of industrial design engineers. It is important to train future professionals to apply a systems perspective to the process of technology innovation, enabling them to thrive under circumstances of constrained material choices. The conclusions outline ideas on how to weave the topic into existing educational programmes of future technology developers.

  18. Quantitative modeling of the reaction/diffusion kinetics of two-chemistry photopolymers

    NASA Astrophysics Data System (ADS)

    Kowalski, Benjamin Andrew

    Optically driven diffusion in photopolymers is an appealing material platform for a broad range of applications, in which the recorded refractive index patterns serve either as images (e.g. data storage, display holography) or as optical elements (e.g. custom GRIN components, integrated optical devices). A quantitative understanding of the reaction/diffusion kinetics is difficult to obtain directly, but is nevertheless necessary in order to fully exploit the wide array of design freedoms in these materials. A general strategy for characterizing these kinetics is proposed, in which key processes are decoupled and independently measured. This strategy enables prediction of a material's potential refractive index change, solely on the basis of its chemical components. The degree to which a material does not reach this potential reveals the fraction of monomer that has participated in unwanted reactions, reducing spatial resolution and dynamic range. This approach is demonstrated for a model material similar to commercial media, achieving quantitative predictions of index response over three orders of exposure dose (~1 to ~103 mJ cm-2) and three orders of feature size (0.35 to 500 microns). The resulting insights enable guided, rational design of new material formulations with demonstrated performance improvement.

  19. Atrium building study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    The CIGNA design team was faced with creating a new 500,000 square foot office building on a pastoral 610 acre corporate campus in Bloomfield, Connecticut, just outside of Hartford. Challenges abounded during the design process, from the selection of a specific building site on the sprawling campus to the evolution of a building form incorporating an atrium, to the selection of building systems and materials, to the design to the office interiors and atrium landscape. This document summarizes the original design problem, focusing on design criteria and performance standards that led to the decision to design an atrium building asmore » well as decision concerning its function, its form, its building systems and materials, and its passive energy strategies.« less

  20. Competence assessment for vocational school students based on business and industry chamber to improve graduate entrepreneurship

    NASA Astrophysics Data System (ADS)

    Samsudi, Widodo, Joko; Margunani

    2017-03-01

    Vocational school's skill competence assessment is an important phase to complete learning process at vocational school. For vocational school this phase should be designed and implemented not only to measure learning objective target, but also to provide entrepreneurship experience for the graduates. Therefore competence assessment implementation should be done comprehensively in cooperation with Business and Industry Chamber. The implementation of skill competence aspect covering materials, methods, strategies, tools and assessors, need to be designed and optimized with respect to vocational school together with Business and Industry Chamber. This aims to measure the learning objective target and produce improved entrepreneurship graduates. 4M-S strategy in students' skill competence assessment could be done to ensure that the material, method, tool and assessor have been well designed and implemented in both institutions: vocational school and Business and Industry Chamber to improve entrepreneurship graduates.

  1. The Development of the Real Number System.

    ERIC Educational Resources Information Center

    Kaplan, Jerome D.

    These materials were designed to provide a logical development of the number systems from the natural numbers through the real number system. The course attempts to develop pedagogical strategies which will enable naive mathematics students to cope with its content. Revised versions of these materials will be used with prospective elementary…

  2. Guidelines for Effective Teleconference Presentations in Continuing Medical Education.

    ERIC Educational Resources Information Center

    Raszkowski, Robert R.; Chute, Alan G.

    Designing teleconference programs for the physician learner puts unique demands on the teleconferencing medium. Typically, physicians expect a 1-hour lecture presentation with high information density. To effectively present the medical content material in an audio medium, strategies which structure and organize the content material are necessary.…

  3. Properties of kenaf/polypropylene composites

    Treesearch

    Roger M. Rowell; Anand Sanadi; Rod Jacobson; Daniel F. Caulfield

    1999-01-01

    Combining kenaf fiber with other resources provides a strategy for producing advanced composite materials that take advantage of the properties of both types of resources. It allows the scientist to design materials based on end-use requirements within a framework of cost, availability, recyclability, energy use, and environmental considerations. Kenaf fiber is a...

  4. Shielding Development for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.

    2015-01-01

    Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.

  5. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.

    PubMed

    Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan

    2016-04-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.

  6. Optoelectronic functional materials based on alkylated-π molecules: self-assembled architectures and nonassembled liquids.

    PubMed

    Li, Hongguang; Choi, Jiyoung; Nakanishi, Takashi

    2013-05-07

    The engineering of single molecules into higher-order hierarchical assemblies is a current research focus in molecular materials chemistry. Molecules containing π-conjugated units are an important class of building blocks because their self-assembly is not only of fundamental interest, but also the key to fabricating functional systems for organic electronic and photovoltaic applications. Functionalizing the π-cores with "alkyl chains" is a common strategy in the molecular design that can give the system desirable properties, such as good solubility in organic solvents for solution processing. Moreover, the alkylated-π system can regulate the self-assembly behavior by fine-tuning the intermolecular forces. The optimally assembled structures can then exhibit advanced functions. However, while some general rules have been revealed, a comprehensive understanding of the function played by the attached alkyl chains is still lacking, and current methodology is system-specific in many cases. Better clarification of this issue requires contributions from carefully designed libraries of alkylated-π molecular systems in both self-assembly and nonassembly materialization strategies. Here, based on recent efforts toward this goal, we show the power of the alkyl chains in controlling the self-assembly of soft molecular materials and their resulting optoelectronic properties. The design of alkylated-C60 is selected from our recent research achievements, as the most attractive example of such alkylated-π systems. Some other closely related systems composed of alkyl chains and π-units are also reviewed to indicate the universality of the methodology. Finally, as a contrast to the self-assembled molecular materials, nonassembled, solvent-free, novel functional liquid materials are discussed. In doing so, a new journey toward the ultimate organic "soft" materials is introduced, based on alkylated-π molecular design.

  7. Problem Solving Strategies of Selected Pre-Service Secondary School Mathematics Teachers in Malaysia

    ERIC Educational Resources Information Center

    Yew, Wun Theam; Zamri, Sharifah Norul Akmar Syed

    2016-01-01

    Problem solving strategies of eight pre-service secondary school mathematics teachers (PSSMTs) were examined in this study. A case study research design was employed and clinical interview technique was used to collect the data. Materials collected for analysis consisted of audiotapes and videotapes of clinical interviews, subjects' notes and…

  8. Stewardship of the Evolving Scholarly Record: From the Invisible Hand to Conscious Coordination

    ERIC Educational Resources Information Center

    Lavoie, Brian; Malpas, Constance

    2015-01-01

    The long-term future of the scholarly record in its fullest expression cannot be effectively secured with stewardship strategies designed for print materials. The features of the evolving scholarly record suggest that traditional stewardship strategies, built on an "invisible hand" approach that relies on the uncoordinated,…

  9. Language Arts: Programming Suggestions for Hearing Impaired Students in Elementary Schools. Recommended Resources by the Alberta School for the Deaf.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton.

    The monograph is designed to assist program planning teams in developing language arts programs for hearing-impaired students in regular classrooms. Topics discussed include promising instructional strategies, description and evaluation of materials, and effective assessment instruments. The first section on instructional strategies covers…

  10. Mathematics Beliefs, Instructional Strategies, and Algebra Achievement of Adolescent Students in Japan: Results from the TIMSS 1999 Assessment

    ERIC Educational Resources Information Center

    House, J. Daniel

    2006-01-01

    An important area for the application of instructional design is the development of effective teaching strategies for mathematics. Activities that include the use of computers, cooperative learning, and active learning materials are associated with mathematics achievement. Student self-beliefs are also significantly related to mathematics…

  11. Understanding online health information: Evaluation, tools, and strategies.

    PubMed

    Beaunoyer, Elisabeth; Arsenault, Marianne; Lomanowska, Anna M; Guitton, Matthieu J

    2017-02-01

    Considering the status of the Internet as a prominent source of health information, assessing online health material has become a central issue in patient education. We describe the strategies available to evaluate the characteristics of online health information, including readability, emotional content, understandability, usability. Popular tools used in assessment of readability, emotional content and comprehensibility of online health information were reviewed. Tools designed to evaluate both printed and online material were considered. Readability tools are widely used in online health material evaluation and are highly covariant. Assessment of emotional content of online health-related communications via sentiment analysis tools is becoming more popular. Understandability and usability tools have been developed specifically for health-related material, but each tool has important limitations and has been tested on a limited number of health issues. Despite the availability of numerous assessment tools, their overall reliability differs between readability (high) and understandability (low). Approaches combining multiple assessment tools and involving both quantitative and qualitative observations would optimize assessment strategies. Effective assessment of online health information should rely on mixed strategies combining quantitative and qualitative evaluations. Assessment tools should be selected according to their functional properties and compatibility with target material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. A multiscale crack-bridging model of cellulose nanopaper

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Li, Bo; Li, Teng; Feng, Xi-Qiao

    2017-06-01

    The conflict between strength and toughness is a long-standing challenge in advanced materials design. Recently, a fundamental bottom-up material design strategy has been demonstrated using cellulose nanopaper to achieve significant simultaneous increase in both strength and toughness. Fertile opportunities of such a design strategy aside, mechanistic understanding is much needed to thoroughly explore its full potential. To this end, here we establish a multiscale crack-bridging model to reveal the toughening mechanisms in cellulose nanopaper. A cohesive law is developed to characterize the interfacial properties between cellulose nanofibrils by considering their hydrogen bonding nature. In the crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may break and reform at the molecular scale, rendering a superior toughness at the macroscopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in enhancing the fracture toughness of cellulose nanopaper. An optimal range of the length-to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellulose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose nanopaper with its microstructure and material parameters. The results obtained from this model agree well with relevant experiments. This work not only helps decipher the fundamental mechanisms underlying the remarkable mechanical properties of cellulose nanopaper but also provides a guide to design a wide range of advanced functional materials.

  13. 2015 Army Science Planning and Strategy Meeting Series: Outcomes and Conclusions

    DTIC Science & Technology

    2017-12-21

    modeling and nanoscale characterization tools to enable efficient design of hybridized manufacturing ; realtime, multiscale computational capability...to enable predictive analytics for expeditionary on-demand manufacturing • Discovery of design principles to enable programming advanced genetic...goals, significant research is needed to mature the fundamental materials science, processing and manufacturing sciences, design methodologies, data

  14. Nanocontainers made of Various Materials with Tunable Shape and Size

    NASA Astrophysics Data System (ADS)

    Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing

    2013-07-01

    Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications.

  15. Nanocontainers made of Various Materials with Tunable Shape and Size

    PubMed Central

    Zhao, Xianglong; Meng, Guowen; Han, Fangming; Li, Xiangdong; Chen, Bensong; Xu, Qiaoling; Zhu, Xiaoguang; Chu, Zhaoqin; Kong, Mingguang; Huang, Qing

    2013-01-01

    Nanocontainers have great potentials in targeted drug delivery and nanospace-confined reactions. However, the previous synthetic approaches exhibited limited control over the morphology, size and materials of the nanocontainers, which are crucial in practical applications. Here, we present a synthetic approach to multi-segment linear-shaped nanopores with pre-designed morphologies inside anodic aluminium oxide (AAO), by tailoring the anodizing duration after a rational increase of the applied anodizing voltage and the number of voltage increase during Al foil anodization. Then, we achieve nanocontainers with designed morphologies, such as nanofunnels, nanobottles, nano-separating-funnels and nanodroppers, with tunable sizes and diverse materials of carbon, silicon, germanium, hafnium oxide, silica and nickel/carbon magnetic composite, by depositing a thin layer of materials on the inner walls of the pre-designed AAO nanopores. The strategy has far-reaching implications in the designing and large-scale fabrication of nanocontainers, opening up new opportunities in nanotechnology applications. PMID:23867836

  16. Linking Law to Learning: Instructional Strategies Manual.

    ERIC Educational Resources Information Center

    Hoffman, Alan, Ed.; Moon, Jeannette B., Ed.

    Designed to assist secondary teachers and school systems in classroom instruction, in staff development workshops, and in curriculum design, this manual contains classroom and resource materials that have proven useful in teaching legal education. Although developed specifically for educators in Georgia, the activities can easily be used by…

  17. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  18. [Applications of synthetic biology in materials science].

    PubMed

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  19. Recent Advances in Biointegrated Optoelectronic Devices.

    PubMed

    Xu, Huihua; Yin, Lan; Liu, Chuan; Sheng, Xing; Zhao, Ni

    2018-05-28

    With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A General Bioinspired, Metals-Based Synergic Cross-Linking Strategy toward Mechanically Enhanced Materials.

    PubMed

    Chen, Ke; Ding, Jin; Zhang, Shuhao; Tang, Xuke; Yue, Yonghai; Guo, Lin

    2017-03-28

    Creating lightweight engineering materials combining high strength and great toughness remains a significant challenge. Despite possessing-enhanced strength and stiffness, bioinspired/polymeric materials usually suffer from clearly reduced extensibility and toughness when compared to corresponding bulk polymer materials. Herein, inspired by tiny amounts of various inorganic impurities for mechanical improvement in natural materials, we present a versatile and effective metal ion (M n+ )-based synergic cross-linking (MSC) strategy incorporating eight types of metal ions into material bulks that can drastically enhance the tensile strength (∼24.1-70.8%), toughness (∼18.6-110.1%), modulus (∼21.6-66.7%), and hardness (∼6.4-176.5%) of multiple types of pristine materials (from hydrophilic to hydrophobic and from unary to binary). More importantly, we also explore the primarily elastic-plastic deformation mechanism and brittle fracture behavior (indentation strain of >5%) of the synergic cross-linked graphene oxide (Syn-GO) paper by means of in situ nanoindentation SEM. The MSC strategy for mechanically enhanced integration can be readily attributed to the formation of the complicated metals-based cross-linking/complex networks in the interfaces and intermolecules between functional groups of materials and various metal ions that give rise to efficient energy dissipation. This work suggests a promising MSC strategy for designing advanced materials with outstanding mechanical properties by adding low amounts (<1.0 wt %) of synergic metal ions serving as synergic ion-bonding cross-linkers.

  1. Hemostatic strategies for traumatic and surgical bleeding

    PubMed Central

    Behrens, Adam M.; Sikorski, Michael J.; Kofinas, Peter

    2017-01-01

    Wide interest in new hemostatic approaches has stemmed from unmet needs in the hospital and on the battlefield. Many current commercial hemostatic agents fail to fulfill the design requirements of safety, efficacy, cost, and storage. Academic focus has led to the improvement of existing strategies as well as new developments. This review will identify and discuss the three major classes of hemostatic approaches: biologically derived materials, synthetically derived materials, and intravenously administered hemostatic agents. The general class is first discussed, then specific approaches discussed in detail, including the hemostatic mechanisms and the advancement of the method. As hemostatic strategies evolve and synthetic-biologic interactions are more fully understood, current clinical methodologies will be replaced. PMID:24307256

  2. Segmented molecular design of self-healing proteinaceous materials

    PubMed Central

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-01-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335

  3. Segmented molecular design of self-healing proteinaceous materials

    NASA Astrophysics Data System (ADS)

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  4. Segmented molecular design of self-healing proteinaceous materials.

    PubMed

    Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C

    2015-09-01

    Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.

  5. Materials and structures for stretchable energy storage and conversion devices.

    PubMed

    Xie, Keyu; Wei, Bingqing

    2014-06-11

    Stretchable energy storage and conversion devices (ESCDs) are attracting intensive attention due to their promising and potential applications in realistic consumer products, ranging from portable electronics, bio-integrated devices, space satellites, and electric vehicles to buildings with arbitrarily shaped surfaces. Material synthesis and structural design are core in the development of highly stretchable supercapacitors, batteries, and solar cells for practical applications. This review provides a brief summary of research development on the stretchable ESCDs in the past decade, from structural design strategies to novel materials synthesis. The focuses are on the fundamental insights of mechanical characteristics of materials and structures on the performance of the stretchable ESCDs, as well as challenges for their practical applications. Finally, some of the important directions in the areas of material synthesis and structural design facing the stretchable ESCDs are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Creating Instructional Materials for All Pupils: Try COLA

    ERIC Educational Resources Information Center

    Rotter, Kathleen

    2006-01-01

    With the increasing diversity of pupils in general education classes, teachers are seeking simple methods to teach all of their pupils while maintaining the integrity of the curriculum. COLA is a mnemonic device to help teachers apply the principles of layout and design when creating instructional materials. Use of the COLA strategy can enhance…

  7. Computer-Aided Authoring of Programmed Instruction for Teaching Symbol Recognition. Final Report.

    ERIC Educational Resources Information Center

    Braby, Richard; And Others

    This description of AUTHOR, a computer program for the automated authoring of programmed texts designed to teach symbol recognition, includes discussions of the learning strategies incorporated in the design of the instructional materials, hardware description and the algorithm for the software, and current and future developments. Appendices…

  8. Review and needs assessment of materials designed to prevent tobacco use.

    PubMed Central

    Arkin, E B; Gitchell, J G; Pinney, J M

    1995-01-01

    Over the past 25 years, numerous educational materials and strategies have been developed for the prevention and control of tobacco use. However, there has been no comprehensive assessment of the available materials designed to educate the public to avoid the use of tobacco. A search for materials and a review process was conducted in the fall of 1993, and a panel of experts reviewed the materials that were collected. In conducting the search, 240 persons and organizations associated with tobacco control efforts across the United States were contacted, and 207 materials were identified and evaluated. All materials were assessed by at least two members of the expert panel. Of the 207 items, 188 were found to be acceptable according to standardized review criteria. The authors drew conclusions about the current availability of tobacco use prevention materials and present recommendations for increasing the availability of materials to community-level and other control programs. PMID:7638338

  9. Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD) - Applications to the design of 3D-printed architectured materials

    NASA Astrophysics Data System (ADS)

    Sibileau, Alberto; Auricchio, Ferdinando; Morganti, Simone; Díez, Pedro

    2018-01-01

    Architectured materials (or metamaterials) are constituted by a unit-cell with a complex structural design repeated periodically forming a bulk material with emergent mechanical properties. One may obtain specific macro-scale (or bulk) properties in the resulting architectured material by properly designing the unit-cell. Typically, this is stated as an optimal design problem in which the parameters describing the shape and mechanical properties of the unit-cell are selected in order to produce the desired bulk characteristics. This is especially pertinent due to the ease manufacturing of these complex structures with 3D printers. The proper generalized decomposition provides explicit parametic solutions of parametric PDEs. Here, the same ideas are used to obtain parametric solutions of the algebraic equations arising from lattice structural models. Once the explicit parametric solution is available, the optimal design problem is a simple post-process. The same strategy is applied in the numerical illustrations, first to a unit-cell (and then homogenized with periodicity conditions), and in a second phase to the complete structure of a lattice material specimen.

  10. Design and Promotion Strategy of Marketing Platform of Aquatic Auction based on Internet

    NASA Astrophysics Data System (ADS)

    Peng, Jianliang

    For the online trade and promotion of aquatic products and related materials through the network between supply and demand, the design content and effective promotional strategies of aquatic auctions online marketing platform is proposed in this paper. Design elements involve the location of customer service, the basic function of the platform including the purchase of general orders, online auctions, information dissemination, and recommendation of fine products, human services, and payment preferences. Based on network and mobile e-commerce transaction support, the auction platform makes the transaction of aquatic products well in advance. The results are important practical value for the design and application of online marketing platform of aquatic auction.

  11. Engineering Solid-State Materials. Strategies for Modeling and Packing Control of Molecular Assemblies into 3-D Networks

    DTIC Science & Technology

    1993-04-22

    cocrystal /materials design/hydrogen bonding 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The crystal structure and...proterties of a number of urea cocrystals are studied with regard to symmetry of the hydrogen-bonded molecular assemblies. The logical consequences of...symmetry element A or M. ¶/or 2 Results: Our specific goals are to design and synthesize urea based cocrystals in which the twofold symmetry and hydrogen

  12. Compliant heterogeneous assemblies of micro-VCSELs as a new materials platform for integrated optoelectronics

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Lee, Sung-Min; Kwong, Anthony; Yoon, Jongseung

    2015-03-01

    Despite many unique advantages, vertical cavity surface emitting lasers (VCSELs) have been available mostly on rigid, planar wafers over restricted areas, thereby limiting their usage for applications that can benefit from large-scale, programmable assemblies, hybrid integration with dissimilar materials and devices, or mechanically flexible constructions. Here, materials design and fabrication strategies that address these limitations of conventional VCSELs are presented. Specialized design of epitaxial materials and etching processes, together with printing-based deterministic assemblies and substrate thermal engineering, enabled defect-free release of microscale VCSELs and their device- and circuit-level implementation on non-native, flexible substrates with performance comparable to devices on the growth substrate.

  13. Online Reading Strategies at Work: What Teachers Think and What Students Do

    ERIC Educational Resources Information Center

    Huang, Hsin-Chou

    2013-01-01

    This study designed and developed a web-based reading strategy training program and investigated students' use of its features and EFL teachers' and students' perceptions of the program. The recent proliferation of online reading materials has made information easily available to L2 readers; however, L2 readers' ability to deal with them requires…

  14. Quality by design for herbal drugs: a feedforward control strategy and an approach to define the acceptable ranges of critical quality attributes.

    PubMed

    Yan, Binjun; Li, Yao; Guo, Zhengtai; Qu, Haibin

    2014-01-01

    The concept of quality by design (QbD) has been widely accepted and applied in the pharmaceutical manufacturing industry. There are still two key issues to be addressed in the implementation of QbD for herbal drugs. The first issue is the quality variation of herbal raw materials and the second issue is the difficulty in defining the acceptable ranges of critical quality attributes (CQAs). To propose a feedforward control strategy and a method for defining the acceptable ranges of CQAs for the two issues. In the case study of the ethanol precipitation process of Danshen (Radix Salvia miltiorrhiza) injection, regression models linking input material attributes and process parameters to CQAs were built first and an optimisation model for calculating the best process parameters according to the input materials was established. Then, the feasible material space was defined and the acceptable ranges of CQAs for the previous process were determined. In the case study, satisfactory regression models were built with cross-validated regression coefficients (Q(2) ) all above 91 %. The feedforward control strategy was applied successfully to compensate the quality variation of the input materials, which was able to control the CQAs in the 90-110 % ranges of the desired values. In addition, the feasible material space for the ethanol precipitation process was built successfully, which showed the acceptable ranges of the CQAs for the concentration process. The proposed methodology can help to promote the implementation of QbD for herbal drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  15. CO2-Triggered Switchable Solvents, Surfactants, and Other Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jessop, Philip G.; Mercer, Sean; Heldebrant, David J.

    2012-06-14

    Waste CO2 at atmospheric pressure can be used to trigger dramatic changes in the properties of certain switchable materials. Compared to other triggers such as light, acids, oxidants, CO2 has the advantages that it is inexpensive, nonhazardous, non-accumulating in the system, easily removed, and it does not require the material to be transparent. Known CO2-triggered switchable materials 10 now include solvents, surfactants, solutes, catalysts, particles, polymers, and gels. The added flexibility of switchable materials represents a new strategy for minimizing energy and material consumption in process and product design.

  16. Functional carbon nitride materials — design strategies for electrochemical devices

    NASA Astrophysics Data System (ADS)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  17. Space Radiation and the Challenges Towards Effective Shielding Solutions

    NASA Technical Reports Server (NTRS)

    Barghouty, Abdulnasser

    2014-01-01

    The hazards of space radiation and their effective mitigation strategies continue to pose special science and technology challenges to NASA. It is widely accepted now that shielding space vehicles and structures will have to rely on new and innovative materials since aluminum, like all high Z materials, are poor shields against the particulate and highly ionizing nature of space radiation. Shielding solutions, motivated and constrained by power and mass limitations, couple this realization with "multifunctionality," both in design concept as well as in material function and composition. Materials endowed with effective shielding properties as well as with some degree of multi-functionality may be the kernel of the so-called "radiation-smart" structures and designs. This talk will present some of the challenges and potential mitigation ideas towards the realization of such structures and designs.

  18. Materials Discovery via CALYPSO Methodology

    NASA Astrophysics Data System (ADS)

    Ma, Yanming

    2014-03-01

    Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.

  19. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Ayaskanta; Russ, Boris; Su, Norman C.

    Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less

  20. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing

    DOE PAGES

    Sahu, Ayaskanta; Russ, Boris; Su, Norman C.; ...

    2017-01-01

    Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less

  1. Extreme ultraviolet resist materials for sub-7 nm patterning.

    PubMed

    Li, Li; Liu, Xuan; Pal, Shyam; Wang, Shulan; Ober, Christopher K; Giannelis, Emmanuel P

    2017-08-14

    Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore's law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.

  2. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  3. Accelerating evaluation of converged lattice thermal conductivity

    NASA Astrophysics Data System (ADS)

    Qin, Guangzhao; Hu, Ming

    2018-01-01

    High-throughput computational materials design is an emerging area in materials science, which is based on the fast evaluation of physical-related properties. The lattice thermal conductivity (κ) is a key property of materials for enormous implications. However, the high-throughput evaluation of κ remains a challenge due to the large resources costs and time-consuming procedures. In this paper, we propose a concise strategy to efficiently accelerate the evaluation process of obtaining accurate and converged κ. The strategy is in the framework of phonon Boltzmann transport equation (BTE) coupled with first-principles calculations. Based on the analysis of harmonic interatomic force constants (IFCs), the large enough cutoff radius (rcutoff), a critical parameter involved in calculating the anharmonic IFCs, can be directly determined to get satisfactory results. Moreover, we find a simple way to largely ( 10 times) accelerate the computations by fast reconstructing the anharmonic IFCs in the convergence test of κ with respect to the rcutof, which finally confirms the chosen rcutoff is appropriate. Two-dimensional graphene and phosphorene along with bulk SnSe are presented to validate our approach, and the long-debate divergence problem of thermal conductivity in low-dimensional systems is studied. The quantitative strategy proposed herein can be a good candidate for fast evaluating the reliable κ and thus provides useful tool for high-throughput materials screening and design with targeted thermal transport properties.

  4. Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries.

    PubMed

    Zhong, Xiongwu; Wu, Ying; Zeng, Sifan; Yu, Yan

    2018-02-12

    Sodium-ion batteries (SIBs) have attracted much attention for application in large-scale grid energy storage owing to the abundance and low cost of sodium sources. However, low energy density and poor cycling life hinder practical application of SIBs. Recently, substantial efforts have been made to develop electrode materials to push forward large-scale practical applications. Carbon materials can be directly used as anode materials, and they show excellent sodium storage performance. Additionally, designing and constructing carbon hybrid materials is an effective strategy to obtain high-performance anodes for SIBs. In this review, we summarize recent research progress on carbon and carbon hybrid materials as anodes for SIBs. Nanostructural design to enhance the sodium storage performance of anode materials is discussed, and we offer some insight into the potential directions of and future high-performance anode materials for SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.

    PubMed

    Steyer, Benjamin; Carlson-Stevermer, Jared; Angenent-Mari, Nicolas; Khalil, Andrew; Harkness, Ty; Saha, Krishanu

    2016-04-01

    Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery. CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations in the human genome and precisely suture in therapeutic sequences. Biomaterials based delivery strategies could help transition these technologies to the clinic. The design space for materials based delivery strategies is vast and optimization is essential to ensuring the safety and efficacy of these treatments. Therefore, new methods are required to rapidly and systematically screen gene-editing efficacy in human cells. This work utilizes an innovative platform to generate and screen many formulations of synthetic biomaterials and components of the CRISPR-Cas9 system in parallel. On this platform, we watch genome surgery in action using high content image analysis. These capabilities enabled us to identify formulation parameters for Cas9-material complexes that can optimize gene-editing in a specific human cell type. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. A general design strategy for block copolymer directed self-assembly patterning of integrated circuits contact holes using an alphabet approach.

    PubMed

    Yi, He; Bao, Xin-Yu; Tiberio, Richard; Wong, H-S Philip

    2015-02-11

    Directed self-assembly (DSA) is a promising lithography candidate for technology nodes beyond 14 nm. Researchers have shown contact hole patterning for random logic circuits using DSA with small physical templates. This paper introduces an alphabet approach that uses a minimal set of small physical templates to pattern all contacts configurations on integrated circuits. We illustrate, through experiments, a general and scalable template design strategy that links the DSA material properties to the technology node requirements.

  7. Cost-driven materials selection criteria for redox flow battery electrolytes

    NASA Astrophysics Data System (ADS)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  8. Lunar Dust Chemical, Electrical, and Mechanical Reactivity: Simulation and Characterization

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2008-01-01

    Lunar dust is recognized to be a highly reactive material in its native state. Many, if not all Constellation systems will be affected by its adhesion, abrasion, and reactivity. A critical requirement to develop successful strategies for dealing with lunar dust and designing tolerant systems will be to produce similar material for ground-based testing.

  9. Improving Student Science Achievement in Grades 4-6 through Hands-On Materials and Concept Verbalization.

    ERIC Educational Resources Information Center

    Brooks, Roger C.

    This report describes a program designed to improve science achievement among students in grades 4-6 in a New Hampshire school. The areas of improvement included physical, earth, and life sciences. Analysis of the problem indicated a need for improved teaching techniques and for additional materials related to the instructional strategies. The…

  10. The Effects of Different Drawing Materials on Children's Drawings of Positive and Negative Human Figures

    ERIC Educational Resources Information Center

    Burkitt, Esther; Barrett, Martyn

    2011-01-01

    Children tend to use certain drawing strategies differentially when asked to draw topics with positive and negative emotional characterisations. These effects have however only been established when children are asked to use standard drawing materials. The present study was designed to investigate whether the above pattern of children's response…

  11. Consumer Mathematics. Teacher's Guide [and Student Guide]. Parallel Alternative Strategies for Students (PASS).

    ERIC Educational Resources Information Center

    Walford, Sylvia B.; Thomas, Portia R.

    This teacher's guide and student guide are designed to accompany a consumer mathematics textbook that contains supplemental readings, activities, and methods adapted for secondary students who have disabilities and other students with diverse learning needs. The materials are designed to help these students succeed in regular education content…

  12. One-Dimensional Hetero-Nanostructures for Rechargeable Batteries.

    PubMed

    Mai, Liqiang; Sheng, Jinzhi; Xu, Lin; Tan, Shuangshuang; Meng, Jiashen

    2018-04-17

    Rechargeable batteries are regarded as one of the most practical electrochemical energy storage devices that are able to convert and store the electrical energy generated from renewable resources, and they function as the key power sources for electric vehicles and portable electronics. The ultimate goals for electrochemical energy storage devices are high power and energy density, long lifetime, and high safety. To achieve the above goals, researchers have tried to apply various morphologies of nanomaterials as the electrodes to enhance the electrochemical performance. Among them, one-dimensional (1D) materials show unique superiorities, such as cross-linked structures for external stress buffering and large draw ratios for internal stress dispersion. However, a homogeneous single-component electrode material can hardly have the characteristics of high electronic/ionic conductivity and high stability in the electrochemical environment simultaneously. Therefore, designing well-defined functional 1D hetero-nanostructures that combine the advantages and overcome the limitations of different electrochemically active materials is of great significance. This Account summarizes fabrication strategies for 1D hetero-nanostructures, including nucleation and growth, deposition, and melt-casting and electrospinning. Besides, the chemical principles for each strategy are discussed. The nucleation and growth strategy is suitable for growing and constructing 1D hetero-nanostructures of partial transition metal compounds, and the experimental conditions for this strategy are relatively accessible. Deposition is a reliable strategy to synthesize 1D hetero-nanostructures by decorating functional layers on 1D substrate materials, on the condition that the preobtained substrate materials must be stable in the following deposition process. The melt-casting strategy, in which 1D hetero-nanostructures are synthesizes via a melting and molding process, is also widely used. Additionally, the main functions of 1D hetero-nanostructures are summarized into four aspects and reviewed in detail. Appropriate surface modification can effectively restrain the structure deterioration and the regeneration of the solid-electrolyte interphase layer caused by the volume change. A porous or semihollow external conducting material coating provides advanced electron/ion bicontinuous transmission. Suitable atomic heterogeneity in the crystal structure is beneficial to the expansion and stabilization of the ion diffusion channels. Multiphase-assisted structural design is also an accessible way for the sulfur electrode material restriction. Moreover, some outlooks about the further industrial production, more effective and cheaper fabrication strategies, and new heterostructures with smaller-scale composition are given in the last part. By providing an overview of fabrication methods and performance-enhancing mechanisms of 1D hetero-nanostructured electrode materials, we hope to pave a new way to facile and efficient construction of 1D hetero-nanostructures with practical utility.

  13. Development of Testing Methodologies for the Mechanical Properties of MEMS

    NASA Technical Reports Server (NTRS)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  14. Microneedles for intradermal and transdermal delivery

    PubMed Central

    Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F

    2014-01-01

    The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534

  15. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatebe, Ken, E-mail: Ken.Tatebe@gmail.com; Ramsay, Elizabeth; Kazem, Mohammad

    2016-01-15

    Purpose: Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry wasmore » investigated. Methods: The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. Results: Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. Conclusions: Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device orientations. These new strategies are being incorporated into the next generation of applicators. The general strategy described in this study can be applied to the design of other interventional devices intended for use with MRI.« less

  16. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Adams, André A; Ligler, Frances S

    2015-01-07

    Fiber-based materials provide critical capabilities for biomedical applications. Microfluidic fiber fabrication has recently emerged as a very promising route to the synthesis of polymeric fibers at the micro and nanoscale, providing fine control over fiber shape, size, chemical anisotropy, and biological activity. This Progress Report summarizes advanced microfluidic methods for the fabrication of both microscale and nanoscale fibers and illustrates how different methods are enabling new biomedical applications. Microfluidic fabrication methods and resultant materials are explained from the perspective of their microfluidic device principles, including co-flow, cross-flow, and flow-shaping designs. It is then detailed how the microchannel design and flow parameters influence the variety of synthesis chemistries that can be utilized. Finally, the integration of biomaterials and microfluidic strategies is discussed to manufacture unique fiber-based systems, including cell scaffolds, cell encapsulation, and woven tissue matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental validation of a new heterogeneous mechanical test design

    NASA Astrophysics Data System (ADS)

    Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.

    2018-05-01

    Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.

  18. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-06-15

    Ever-tightening regulations on fuel economy and carbon emissions demand continual innovation in finding ways for reducing vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials by adding material diversity, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing thickness while retaining sufficient strength and ductility required for durability and safety. Such a project was proposed and is currently being executed under themore » auspices of the United States Automotive Materials Partnership (USAMP) funded by the Department of Energy. Under this program, new steel alloys (Third Generation Advanced High Strength Steel or 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. In this project the principal phases identified are (i) material identification, (ii) formability optimization and (iii) multi-disciplinary vehicle optimization. This paper serves as an introduction to the LS-OPT methodology and therefore mainly focuses on the first phase, namely an approach to integrate material identification using material models of different length scales. For this purpose, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a Homogenized State Variable (SV) model, is discussed and demonstrated. The paper concludes with proposals for integrating the multi-scale methodology into the overall vehicle design.« less

  19. State of the art review on design and manufacture of hybrid biomedical materials: Hip and knee prostheses.

    PubMed

    Bahraminasab, Marjan; Farahmand, Farzam

    2017-09-01

    The trend in biomaterials development has now headed for tailoring the properties and making hybrid materials to achieve the optimal performance metrics in a product. Modern manufacturing processes along with advanced computational techniques enable systematical fabrication of new biomaterials by design strategy. Functionally graded materials as a recent group of hybrid materials have found numerous applications in biomedical area, particularly for making orthopedic prostheses. This article, therefore, seeks to address the following research questions: (RQ1) What is the desired structure of orthopedic hybrid materials? (RQ2) What is the contribution of the literature in the development of hybrid materials in the field of orthopedic research? (RQ3) Which type of manufacturing approaches is prevalently used to build these materials for knee and hip implants? (RQ4) Is there any inadequacy in the methods applied?

  20. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  2. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance.

    PubMed

    He, Shuijian; Chen, Wei

    2015-04-28

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  3. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance

    NASA Astrophysics Data System (ADS)

    He, Shuijian; Chen, Wei

    2015-04-01

    Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.

  4. Instructional design strategies for health behavior change.

    PubMed

    Kinzie, Mable B

    2005-01-01

    To help health educators build upon the best of different health behavior change theories, this paper offers a unified set of instructional design strategies for health education interventions. This set draws upon the recommendations of Rosenstock (Health Belief Model), Bandura (Social Cognitive Theory), and Dearing (Diffusion Theory), and uses a modified Events of Instruction framework (adapted from Robert Gagne): gain attention (convey health threats and benefits), present stimulus material (tailor message to audience knowledge and values, demonstrate observable effectiveness, make behaviors easy-to-understand and do), provide guidance (use trustworthy models to demonstrate), elicit performance and provide feedback (to enhance trialability, develop proficiency and self-efficacy), enhance retention and transfer (provide social supports and deliver behavioral cues). Sample applications of these strategies are provided. A brief review of research on adolescent smoking prevention enables consideration of the frequency with which these strategies are used, and possible patterns between strategy use and behavioral outcomes.

  5. Structure of a designed protein cage that self-assembles into a highly porous cube

    DOE PAGES

    Lai, Yen-Ting; Reading, Eamonn; Hura, Greg L.; ...

    2014-11-10

    Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-raymore » scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. Finally, these results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.« less

  6. Applying learning theories and instructional design models for effective instruction.

    PubMed

    Khalil, Mohammed K; Elkhider, Ihsan A

    2016-06-01

    Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning outcomes, the science of instruction and instructional design models are used to guide the development of instructional design strategies that elicit appropriate cognitive processes. Here, the major learning theories are discussed and selected examples of instructional design models are explained. The main objective of this article is to present the science of learning and instruction as theoretical evidence for the design and delivery of instructional materials. In addition, this article provides a practical framework for implementing those theories in the classroom and laboratory. Copyright © 2016 The American Physiological Society.

  7. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  8. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    NASA Astrophysics Data System (ADS)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  9. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  10. Thermal Protection System (Heat Shield) Development - Advanced Development Project

    NASA Technical Reports Server (NTRS)

    Kowal, T. John

    2010-01-01

    The Orion Thermal Protection System (TPS) ADP was a 3 1/2 year effort to develop ablative TPS materials for the Orion crew capsule. The ADP was motivated by the lack of available ablative TPS's. The TPS ADP pursued a competitive phased development strategy with succeeding rounds of development, testing and down selections. The Project raised the technology readiness level (TRL) of 8 different TPS materials from 5 different commercial vendors, eventual down selecting to a single material system for the Orion heat shield. In addition to providing a heat shield material and design for Orion on time and on budget, the Project accomplished the following: 1) Re-invigorated TPS industry & re-established a NASA competency to respond to future TPS needs; 2) Identified a potentially catastrophic problem with the planned MSL heat shield, and provided a viable, high TRL alternate heat shield design option; and 3) Transferred mature heat shield material and design options to the commercial space industry, including TPS technology information for the SpaceX Dragon capsule.

  11. Wood-Based Nanotechnologies toward Sustainability.

    PubMed

    Jiang, Feng; Li, Tian; Li, Yiju; Zhang, Ying; Gong, Amy; Dai, Jiaqi; Hitz, Emily; Luo, Wei; Hu, Liangbing

    2018-01-01

    With over 30% global land coverage, the forest is one of nature's most generous gifts to human beings, providing shelters and materials for all living beings. Apart from being sustainable, renewable, and biodegradable, wood and its derivative materials are also extremely fascinating from a materials aspect, with numerous advantages including porous and hierarchical structure, excellent mechanical performance, and versatile chemistry. Here, strategies for designing novel wood-based materials via advanced nanotechnologies are summarized, including both the controllable bottom-up assembly from the highly crystalline nanocellulose building block and the more efficient top-down approaches directly from wood. Beyond material design, recent advances regarding the sustainable applications of these novel wood-based materials are also presented, focusing on areas that are traditionally dominated by man-made nonrenewable materials such as plastic, glass, and metals, as well as more advanced applications in the areas of energy storage, wastewater treatment and solar-steam-assisted desalination. With all recent progress pertaining to materials' design and sustainable applications presented, a vision for the future engineering of wood-based materials to promote continuous and healthy progress toward true sustainability is outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration

    PubMed Central

    Zhang, Nianli; Kohn, David H.

    2017-01-01

    Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178

  13. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  14. Microstructure-Property-Design Relationships in the Simulation Era: An Introduction (PREPRINT)

    DTIC Science & Technology

    2010-01-01

    Astronautics (AIAA) paper #1026. 20. Dimiduk DM (1998) Systems engineering of gamma titanium aluminides : impact of fundamentals on development strategy...microstructure-sensitive design tools for single-crystal turbine blades provides an accessible glimpse into future computational tools and their data...requirements. 15. SUBJECT TERMS single-crystal turbine blades , computational methods, integrated computational materials 16. SECURITY

  15. Strengthening the School-to-Work Transition for Students with Disabilities. A Guide for Educators.

    ERIC Educational Resources Information Center

    Career Options Inst., Latham, NY.

    This resource guide provides practical advice, materials, and strategies designed to overcome the barriers that have interfered with successful placement of persons with disabilities in the workplace, especially women and girls. It is designed for use by educators interested in improving career preparation of students with disabilities. Section 1…

  16. Learning to Learn a Foreign Language. Principles of Second Language Acquisition: An Orientation for Foreign Language Teachers.

    ERIC Educational Resources Information Center

    Pfannkuche, Anthony; And Others

    The manual designed to accompany an orientation seminar for students concerning language learning processes and strategies and the design of their program includes materials for five sessions, in three sections. The first section covers language learning and acquisition in general and contains a survey of the participants' foreign language…

  17. Helping Teens Stop Violence: A Practical Guide for Counselors, Educators, and Parents.

    ERIC Educational Resources Information Center

    Creighton, Allan; Kivel, Paul

    This guide provides information and teaching strategies for adults to support young people who want to make choices and resolve conflicts using alternatives to violence. Although the material is primarily designed for teachers and counselors, the guide is designed to help assist all adults, especially parents. The premise of the book is that…

  18. Designing Online Software for Teaching the Concept of Variable That Facilitates Mental Interaction with the Material: Systemic Approach

    ERIC Educational Resources Information Center

    Koehler, Natalya A.; Thompson, Ann D.; Correia, Ana-Paula; Hagedorn, Linda Serra

    2015-01-01

    Our case study is a response to the need for research and reporting on specific strategies employed by software designers to produce effective multimedia instructional solutions. A systemic approach for identifying appropriate software features and conducting a formative evaluation that evaluates both the overall effectiveness of the multimedia…

  19. Guide for Materials Selection and Design for Metals Used in Contact with Copper-Treated Wood

    Treesearch

    Samuel L. Zelinka

    2013-01-01

    This design guide summarizes recent research on the corrosion of metals in treated wood, presents design strategies to minimize corrosion of metals in contact with treated wood, and is targeted toward engineers, architects, builders, and homeowners. The guide is organized as a “question and answer” document. While the questions are arranged in a logical order, each...

  20. A supermolecular building approach for the design and construction of metal-organic frameworks.

    PubMed

    Guillerm, Vincent; Kim, Dongwook; Eubank, Jarrod F; Luebke, Ryan; Liu, Xinfang; Adil, Karim; Lah, Myoung Soo; Eddaoudi, Mohamed

    2014-08-21

    In this review, we describe two recently implemented conceptual approaches facilitating the design and deliberate construction of metal–organic frameworks (MOFs), namely supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Our main objective is to offer an appropriate means to assist/aid chemists and material designers alike to rationally construct desired functional MOF materials, made-to-order MOFs. We introduce the concept of net-coded building units (net-cBUs), where precise embedded geometrical information codes uniquely and matchlessly a selected net, as a compelling route for the rational design of MOFs. This concept is based on employing pre-selected 0-periodic metal–organic polyhedra or 2-periodic metal–organic layers, SBBs or SBLs respectively, as a pathway to access the requisite net-cBUs. In this review, inspired by our success with the original rht-MOF, we extrapolated our strategy to other known MOFs via their deconstruction into more elaborate building units (namely polyhedra or layers) to (i) elucidate the unique relationship between edge-transitive polyhedra or layers and minimal edge-transitive 3-periodic nets, and (ii) illustrate the potential of the SBB and SBL approaches as a rational pathway for the design and construction of 3-periodic MOFs. Using this design strategy, we have also identified several new hypothetical MOFs which are synthetically targetable.

  1. Design for a Crane Metallic Structure Based on Imperialist Competitive Algorithm and Inverse Reliability Strategy

    NASA Astrophysics Data System (ADS)

    Fan, Xiao-Ning; Zhi, Bo

    2017-07-01

    Uncertainties in parameters such as materials, loading, and geometry are inevitable in designing metallic structures for cranes. When considering these uncertainty factors, reliability-based design optimization (RBDO) offers a more reasonable design approach. However, existing RBDO methods for crane metallic structures are prone to low convergence speed and high computational cost. A unilevel RBDO method, combining a discrete imperialist competitive algorithm with an inverse reliability strategy based on the performance measure approach, is developed. Application of the imperialist competitive algorithm at the optimization level significantly improves the convergence speed of this RBDO method. At the reliability analysis level, the inverse reliability strategy is used to determine the feasibility of each probabilistic constraint at each design point by calculating its α-percentile performance, thereby avoiding convergence failure, calculation error, and disproportionate computational effort encountered using conventional moment and simulation methods. Application of the RBDO method to an actual crane structure shows that the developed RBDO realizes a design with the best tradeoff between economy and safety together with about one-third of the convergence speed and the computational cost of the existing method. This paper provides a scientific and effective design approach for the design of metallic structures of cranes.

  2. Vehicle Lightweighting: Mass Reduction Spectrum Analysis and Process Cost Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand

    2016-03-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. In the first two phases of this effort examined combinations of strategies aimed at achieving strategic targets of 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. These results have been reported in the Idaho National Laboratory report INL/EXT-14-33863 entitled Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling formore » Vehicle Lightweighting published in March 2015. The data for these strategies were drawn from many sources, including Lotus Engineering Limited and FEV, Inc. lightweighting studies, U.S. Department of Energy-funded Vehma International of America, Inc./Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses.« less

  3. Curriculum and Program Operation for Optometric Preceptorships.

    ERIC Educational Resources Information Center

    Dunsky, Irving L.

    1994-01-01

    Considerations in planning optometric clinical experiences are discussed, including guidelines for curriculum design, typical teaching strategies, teaching methods and materials, support services and resources, student orientation and debriefing, logistics, costs, personnel, funding sources, and legal liability issues. (MSE)

  4. A Data Envelopment Analysis Model for Selecting Material Handling System Designs

    NASA Astrophysics Data System (ADS)

    Liu, Fuh-Hwa Franklin; Kuo, Wan-Ting

    The material handling system under design is an unmanned job shop with an automated guided vehicle that transport loads within the processing machines. The engineering task is to select the design alternatives that are the combinations of the four design factors: the ratio of production time to transportation time, mean job arrival rate to the system, input/output buffer capacities at each processing machine, and the vehicle control strategies. Each of the design alternatives is simulated to collect the upper and lower bounds of the five performance indices. We develop a Data Envelopment Analysis (DEA) model to assess the 180 designs with imprecise data of the five indices. The three-ways factorial experiment analysis for the assessment results indicates the buffer capacity and the interaction of job arrival rate and buffer capacity affect the performance significantly.

  5. Seniors' perceptions of vehicle safety risks and needs.

    PubMed

    Shaw, Lynn; Polgar, Jan Miller; Vrkljan, Brenda; Jacobson, Jill

    2010-01-01

    The investigation of vehicle safety needs for older drivers and passengers is integral for their safe transportation. A program of research on safe transportation for seniors was launched through AUTO21, a Canadian Network of Centres of Excellence. This national research network focuses on a wide range of automotive issues, from materials and design to safety and societal issues. An inductive qualitative inquiry of seniors' driving experiences, safety feature use, and strategies to prevent injury and manage risks was a first step in this program. We conducted interviews and focus groups with 58 seniors without disabilities and 9 seniors with disabilities. We identified a lack of congruity between the vehicle and safety feature design and seniors' needs. Seniors described strategies to manage their safety and that of others. Specific aspects of vehicle design, safety features, and action strategies that support safer use and operation of a vehicle by seniors are outlined.

  6. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  7. Reframing conceptual physics: Improving relevance to elementary education and sonography majors

    NASA Astrophysics Data System (ADS)

    LaFazia, David Gregory

    This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design principles. The unit is designed to be educative in nature and serves as a model for the reframing of other units. A number of the design principles are highly transdisciplinary in nature and may be applied for reframing instructional units outside of the physics and science disciplines.

  8. Photocatalytic materials and technologies for air purification.

    PubMed

    Ren, Hangjuan; Koshy, Pramod; Chen, Wen-Fan; Qi, Shaohua; Sorrell, Charles Christopher

    2017-03-05

    Since there is increasing concern for the impact of air quality on human health, the present work surveys the materials and technologies for air purification using photocatalytic materials. The coverage includes (1) current photocatalytic materials for the decomposition of chemical contaminants and disinfection of pathogens present in air and (2) photocatalytic air purification systems that are used currently and under development. The present work focuses on five main themes. First, the mechanisms of photodegradation and photodisinfection are explained. Second, system designs for photocatalytic air purification are surveyed. Third, the photocatalytic materials used for air purification and their characteristics are considered, including both conventional and more recently developed photocatalysts. Fourth, the methods used to fabricate these materials are discussed. Fifth, the most significant coverage is devoted to materials design strategies aimed at improving the performance of photocatalysts for air purification. The review concludes with a brief consideration of promising future directions for materials research in photocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  10. Hierarchically Nanostructured Materials for Sustainable Environmental Applications

    NASA Astrophysics Data System (ADS)

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-11-01

    This article presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions and multiple functionalities towards water remediation, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.

  11. Using Android-Based Educational Game for Learning Colloid Material

    NASA Astrophysics Data System (ADS)

    Sari, S.; Anjani, R.; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This research is based on the importance of the development of student’s chemical literacy on Colloid material using Android-based educational game media. Educational game products are developed through research and development design. In the analysis phase, material analysis is performed to generate concept maps, determine chemical literacy indicators, game strategies and set game paths. In the design phase, product packaging is carried out, then validation and feasibility test are performed. Research produces educational game based on Android that has the characteristics that is: Colloid material presented in 12 levels of game in the form of questions and challenges, presents visualization of discourse, images and animation contextually to develop the process of thinking and attitude. Based on the analysis of validation and trial results, the product is considered feasible to use.

  12. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-09-14

    Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less

  13. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy.

    PubMed

    Hinderer, Svenja; Layland, Shannon Lee; Schenke-Layland, Katja

    2016-02-01

    Regenerative strategies such as stem cell-based therapies and tissue engineering applications are being developed with the aim to replace, remodel, regenerate or support damaged tissues and organs. In addition to careful cell type selection, the design of appropriate three-dimensional (3D) scaffolds is essential for the generation of bio-inspired replacement tissues. Such scaffolds are usually made of degradable or non-degradable biomaterials and can serve as cell or drug carriers. The development of more effective and efficient drug carrier systems is also highly relevant for novel cancer treatment strategies. In this review, we provide a summary of current approaches that employ ECM and ECM-like materials, or ECM-synthetic polymer hybrids, as biomaterials in the field of regenerative medicine. We further discuss the utilization of such materials for cell and drug delivery, and highlight strategies for their use as vehicles for cancer therapy. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Optimal Design of Grid-Stiffened Panels and Shells With Variable Curvature

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin

    2001-01-01

    A design strategy for optimal design of composite grid-stiffened structures with variable curvature subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. Stiffening configuration is herein defined as a design variable that indicates the combination of axial, transverse and diagonal stiffeners in the stiffened panel. The design optimization process is adapted to identify the lightest-weight stiffening configuration and stiffener spacing for grid-stiffened composite panels given the overall panel dimensions. in-plane design loads, material properties. and boundary conditions of the grid-stiffened panel or shell.

  15. Characterization and Evaluation of Lunar Regolith and Simulants

    NASA Technical Reports Server (NTRS)

    Cross, William M.; Murphy, Gloria A.

    2010-01-01

    A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.

  16. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1995-01-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  17. Design protocols and analytical strategies that incorporate structural reliability models

    NASA Astrophysics Data System (ADS)

    Duffy, Stephen F.

    1995-08-01

    In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.

  18. Corrosion Mitigation Strategies - an Introduction

    DTIC Science & Technology

    2009-02-05

    formed • Stress corrosion cracking Leaders in Corrosion Control Technology • Overpressure • Pressure of a gas over a liquid- solubility of gases in...Power surges • Crack protective films, fretting, fatique Design – Chemistry • Used to eliminate candidate materials • pH acidic (H+) basic (OH...Technology • Laboratory tests • Published data Mechanical Properties • Strength • Ductility • Environmental cracking Methods of Corrosion Control–Materials

  19. Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly

    NASA Astrophysics Data System (ADS)

    Pochan, Darrin

    2007-03-01

    Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

  20. Design of SERS nanoprobes for Raman imaging: materials, critical factors and architectures.

    PubMed

    Li, Mingwang; Qiu, Yuanyuan; Fan, Chenchen; Cui, Kai; Zhang, Yongming; Xiao, Zeyu

    2018-05-01

    Raman imaging yields high specificity and sensitivity when compared to other imaging modalities, mainly due to its fingerprint signature. However, intrinsic Raman signals are weak, thus limiting medical applications of Raman imaging. By adsorbing Raman molecules onto specific nanostructures such as noble metals, Raman signals can be significantly enhanced, termed surface-enhanced Raman scattering (SERS). Recent years have witnessed great interest in the development of SERS nanoprobes for Raman imaging. Rationally designed SERS nanoprobes have greatly enhanced Raman signals by several orders of magnitude, thus showing great potential for biomedical applications. In this review we elaborate on recent progress in design strategies with emphasis on material properties, modifying factors, and structural parameters.

  1. Optimized structural designs for stretchable silicon integrated circuits.

    PubMed

    Kim, Dae-Hyeong; Liu, Zhuangjian; Kim, Yun-Soung; Wu, Jian; Song, Jizhou; Kim, Hoon-Sik; Huang, Yonggang; Hwang, Keh-Chih; Zhang, Yongwei; Rogers, John A

    2009-12-01

    Materials and design strategies for stretchable silicon integrated circuits that use non-coplanar mesh layouts and elastomeric substrates are presented. Detailed experimental and theoretical studies reveal many of the key underlying aspects of these systems. The results shpw, as an example, optimized mechanics and materials for circuits that exhibit maximum principal strains less than 0.2% even for applied strains of up to approximately 90%. Simple circuits, including complementary metal-oxide-semiconductor inverters and n-type metal-oxide-semiconductor differential amplifiers, validate these designs. The results suggest practical routes to high-performance electronics with linear elastic responses to large strain deformations, suitable for diverse applications that are not readily addressed with conventional wafer-based technologies.

  2. Multidisciplinary perspectives for Alzheimer's and Parkinson's diseases: hydrogels for protein delivery and cell-based drug delivery as therapeutic strategies.

    PubMed

    Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Batelli, Sara; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto

    2009-12-01

    This review presents two intriguing multidisciplinary strategies that might make the difference in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The first proposed strategy is based on the controlled delivery of recombinant proteins known to play a key role in these neurodegenerative disorders that are released in situ by optimized polymer-based systems. The second strategy is the use of engineered cells, encapsulated and delivered in situ by suitable polymer-based systems, that act as drug reservoirs and allow the delivery of selected molecules to be used in the treatment of Alzheimer's and Parkinson's diseases. In both these scenarios, the design and development of optimized polymer-based drug delivery and cell housing systems for central nervous system applications represent a key requirement. Materials science provides suitable hydrogel-based tools to be optimized together with suitably designed recombinant proteins or drug delivering-cells that, once in situ, can provide an effective treatment for these neurodegenerative disorders. In this scenario, only interdisciplinary research that fully integrates biology, biochemistry, medicine and materials science can provide a springboard for the development of suitable therapeutic tools, not only for the treatment of Alzheimer's and Parkinson's diseases but also, prospectively, for a wide range of severe neurodegenerative disorders.

  3. Development and Marketing of Low-Cost, High-Performance Steels for Infrastructure Applications

    DOT National Transportation Integrated Search

    2012-10-15

    This project addressed the goal of National Strategy for Surface Transportation Research : to improve highway structures by enhanced materials, in particular by design and : implementation of new, drastically improved steels with respect to strength,...

  4. Developing strategies for maintaining tank car integrity during train accidents

    DOT National Transportation Integrated Search

    2007-09-11

    Accidents that lead to rupture of tank cars carrying : hazardous materials can cause serious public safety hazards and : substantial economic losses. The desirability of improved tank : car designs that are better equipped to keep the commodity : con...

  5. Improved tank car design development : ongoing studies on sandwich structures

    DOT National Transportation Integrated Search

    2009-03-02

    The Government and industry have a common interest in : improving the safety performance of railroad tank cars carrying : hazardous materials. Research is ongoing to develop strategies : to maintain the structural integrity of railroad tank cars carr...

  6. Educating speech-language pathologists for the 21st century: course design considerations for a distance education Master of Speech Pathology program.

    PubMed

    McCormack, Jane; Easton, Catherine; Morkel-Kingsbury, Lenni

    2014-01-01

    The landscape of tertiary education is changing. Developments in information and communications technology have created new ways of engaging with subject material and supporting students on their learning journeys. Therefore, it is timely to reconsider and re-imagine the education of speech-language pathology (SLP) students within this new learning space. In this paper, we outline the design of a new Master of Speech Pathology course being offered by distance education at Charles Sturt University (CSU) in Australia. We discuss the catalyst for the course and the commitments of the SLP team at CSU, then describe the curriculum design process, focusing on the pedagogical approach and the learning and teaching strategies utilised in the course delivery. We explain how the learning and teaching strategies have been selected to support students' online learning experience and enable greater interaction between students and the subject material, with students and subject experts, and among student groups. Finally, we highlight some of the challenges in designing and delivering a distance education SLP program and identify future directions for educating students in an online world. © 2015 S. Karger AG, Basel.

  7. Reducing CO2 Emissions through Lightweight Design and Manufacturing

    NASA Astrophysics Data System (ADS)

    Carruth, Mark A.; Allwood, Julian M.; Milford, Rachel L.

    2011-05-01

    To meet targeted 50% reductions in industrial CO2 emissions by 2050, demand for steel and aluminium must be cut. Many steel and aluminium products include redundant material, and the manufacturing routes to produce them use more material than is necessary. Lightweight design and optimized manufacturing processes offer a means of demand reduction, whilst creating products to perform the same service as existing ones. This paper examines two strategies for demand reduction: lightweight product design; and minimizing yield losses through the product supply chain. Possible mass savings are estimated for specific case-studies on metal-intensive products, such as I-beams and food cans. These estimates are then extrapolated to other sectors to produce a global estimate for possible demand reductions. Results show that lightweight product design may offer potential mass savings of up to 30% for some products, whilst yield in the production of others could be improved by over 20%. If these two strategies could be combined for all products, global demand for steel and aluminium would be reduced by nearly 50%. The impact of demand reduction on CO2 emissions is presented, and barriers to the adoption of new, lightweight technologies are discussed.

  8. Bio-inspired metal-coordinate hydrogels with programmable viscoelastic material functions controlled by longwave UV light.

    PubMed

    Grindy, Scott C; Holten-Andersen, Niels

    2017-06-07

    Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.

  9. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    PubMed

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  10. A Method for Co-Designing Theory-Based Behaviour Change Systems for Health Promotion.

    PubMed

    Janols, Rebecka; Lindgren, Helena

    2017-01-01

    A methodology was defined and developed for designing theory-based behaviour change systems for health promotion that can be tailored to the individual. Theories from two research fields were combined with a participatory action research methodology. Two case studies applying the methodology were conducted. During and between group sessions the participants created material and designs following the behaviour change strategy themes, which were discussed, analysed and transformed into a design of a behaviour change system. Theories in behavioural change and persuasive technology guided the data collection, data analyses, and the design of a behaviour change system. The methodology has strong emphasis on the target group's participation in the design process. The different aspects brought forward related to behaviour change strategies defined in literature on persuasive technology, and the dynamics of these are associated to needs and motivation defined in literature on behaviour change. It was concluded that the methodology aids the integration of theories into a participatory action research design process, and aids the analyses and motivations of design choices.

  11. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08857g

  12. LL13-MatModelRadDetect-PD2Jf Final Report: Materials Modeling for High-Performance Radiation Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lordi, Vincenzo

    The aims of this project are to enable rational materials design for select high-payoff challenges in radiation detection materials by using state-of-the-art predictive atomistic modeling techniques. Three specific high-impact challenges are addressed: (i) design and optimization of electrical contact stacks for TlBr detectors to stabilize temporal response at room-temperature; (ii) identification of chemical design principles of host glass materials for large-volume, low-cost, highperformance glass scintillators; and (iii) determination of the electrical impacts of dislocation networks in Cd 1-xZn xTe (CZT) that limit its performance and usable single-crystal volume. The specific goals are to establish design and process strategies to achievemore » improved materials for high performance detectors. Each of the major tasks is discussed below in three sections, which include the goals for the task and a summary of the major results, followed by a listing of publications that contain the full details, including details of the methodologies used. The appendix lists 12 conference presentations given for this project, including 1 invited talk and 1 invited poster.« less

  13. A framework for sustainable nanomaterial selection and design based on performance, hazard, and economic considerations.

    PubMed

    Falinski, Mark M; Plata, Desiree L; Chopra, Shauhrat S; Theis, Thomas L; Gilbertson, Leanne M; Zimmerman, Julie B

    2018-04-30

    Engineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations. The utility of this framework is demonstrated through two case studies, the design and selection of antimicrobial substances and conductive polymers, including ENMs, ENM-enabled products and their alternatives. Further, these case studies consider both the comparative efficacy and impacts at two scales: (i) a broad scale, where chemical/material classes are readily compared for primary decision-making, and (ii) within a chemical/material class, where physicochemical properties are manipulated to tailor the desired performance and environmental impact profile. Development and implementation of this framework can inform decision-making for the implementation of ENMs to facilitate promising applications and prevent unintended consequences.

  14. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation.

    PubMed

    Desrousseaux, C; Sautou, V; Descamps, S; Traoré, O

    2013-10-01

    The development of devices with surfaces that have an effect against microbial adhesion or viability is a promising approach to the prevention of device-related infections. To review the strategies used to design devices with surfaces able to limit microbial adhesion and/or growth. A PubMed search of the published literature. One strategy is to design medical devices with a biocidal agent. Biocides can be incorporated into the materials or coated or covalently bonded, resulting either in release of the biocide or in contact killing without release of the biocide. The use of biocides in medical devices is debated because of the risk of bacterial resistance and potential toxicity. Another strategy is to modify the chemical or physical surface properties of the materials to prevent microbial adhesion, a complex phenomenon that also depends directly on microbial biological structure and the environment. Anti-adhesive chemical surface modifications mostly target the hydrophobicity features of the materials. Topographical modifications are focused on roughness and nanostructures, whose size and spatial organization are controlled. The most effective physical parameters to reduce bacterial adhesion remain to be determined and could depend on shape and other bacterial characteristics. A prevention strategy based on reducing microbial attachment rather than on releasing a biocide is promising. Evidence of the clinical efficacy of these surface-modified devices is lacking. Additional studies are needed to determine which physical features have the greatest potential for reducing adhesion and to assess the usefulness of antimicrobial coatings other than antibiotics. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Lustig, William P.; Li, Jing

    This review summaries recent progress in the luminescent detection and adsorptive removal of harmful gases and vapors by metal–organic frameworks, as well as the principles and strategies guiding the design of these materials.

  16. Curriculum Guides for SSSQ.

    ERIC Educational Resources Information Center

    McCarron, Lawrence; And Others

    The curriculum guide was designed to teach prevocational and independent living skills to students with a wide range of handicapping conditions. The SSSQ (Street Survival Skills Questionnaire) curriculum presents information on objectives, materials, suggested performance criteria, teacher strategies, and specific students activities for the…

  17. Sensing and capture of toxic and hazardous gases and vapors by metal–organic frameworks

    DOE PAGES

    Wang, Hao; Lustig, William P.; Li, Jing

    2018-01-01

    This review summaries recent progress in the luminescent detection and adsorptive removal of harmful gases and vapors by metal–organic frameworks, as well as the principles and strategies guiding the design of these materials.

  18. Expanding the Design Space: Forging the Transition from 3D Printing to Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Amend, Matthew

    The synergy of Additive Manufacturing and Computational Geometry has the potential to radically expand the "design space" of solutions available to designers. Additive Manufacturing (AM) is capable of fabricating objects that are highly complex both in geometry and material properties. However, the introduction of any new technology can have a disruptive effect on established design practices and organizations. Before "Design for Additive Manufacturing" (DFAM) is a commonplace means of producing objects employed in "real world" products, appropriate design knowledge must be sufficiently integrated within industry. First, materials suited to additive manufacturing methods must be developed to satisfy existing industry standards and specifications, or new standards must be developed. Second, a new class of design representation (CAD) tools will need to be developed. Third, designers and design organizations will need to develop strategies for employing such tools. This thesis describes three DFAM exercises intended to demonstrate the potential for innovative design when using advanced additive materials, tools, and printers. These design exercises included 1) a light-weight composite layup mold developed with topology optimization, 2) a low-pressure fluid duct enhanced with an external lattice structure, and 3) an airline seat tray designed using a non-uniform lattice structure optimized with topology optimization.

  19. Synthesis and acid digestion of biomorphic ceramics: determination of alkaline and alkaline earth ions.

    PubMed

    Bosch Ojeda, Catalina; Sánchez Rojas, Fuensanta; Cano Pavón, José Manuel

    2007-09-01

    Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.

  20. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  1. Waste management for different fusion reactor designs

    NASA Astrophysics Data System (ADS)

    Rocco, Paolo; Zucchetti, Massimo

    2000-12-01

    Safety and Environmental Assessment of Fusion Power (SEAFP) waste management studies performed up to 1998 concerned three power tokamak designs. In-vessel structural materials consist of V-alloys or low activation martensitic (LAM) steel; tritium-producing materials are Li 2O, Pb-17Li, Li 4SiO 4 with a Be-multiplier; coolants are helium or water. The strategy chosen reduces permanent radwaste by recycling the in-vessel materials and by clearance of the other structures. Limits of the contact dose rate and specific activity of the waste allowing such options are defined accordingly. SEAFP activities for 1999 enlarge the analysis to three additional reactors with in-vessel structures made with SiC/SiC composites. These materials cannot be recycled due to their form and, according to national regulations of E.C. countries, long-lived activation products hinder near-surface burial (NSB).

  2. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.

    PubMed

    Denry, Isabelle; Kuhn, Liisa T

    2016-01-01

    Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro versus in vivo testing are addressed, with an attempt to highlight reliable performance predictors. A combinatory design strategy should be used with CPS, taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.

    PubMed

    Son, Donghee; Koo, Ja Hoon; Song, Jun-Kyul; Kim, Jaemin; Lee, Mincheol; Shim, Hyung Joon; Park, Minjoon; Lee, Minbaek; Kim, Ji Hoon; Kim, Dae-Hyeong

    2015-05-26

    Electronics for wearable applications require soft, flexible, and stretchable materials and designs to overcome the mechanical mismatch between the human body and devices. A key requirement for such wearable electronics is reliable operation with high performance and robustness during various deformations induced by motions. Here, we present materials and device design strategies for the core elements of wearable electronics, such as transistors, charge-trap floating-gate memory units, and various logic gates, with stretchable form factors. The use of semiconducting carbon nanotube networks designed for integration with charge traps and ultrathin dielectric layers meets the performance requirements as well as reliability, proven by detailed material and electrical characterizations using statistics. Serpentine interconnections and neutral mechanical plane layouts further enhance the deformability required for skin-based systems. Repetitive stretching tests and studies in mechanics corroborate the validity of the current approaches.

  4. Mechanics analysis and design of fractal interconnects for stretchable batteries

    NASA Astrophysics Data System (ADS)

    Huang, Yonggang

    2014-03-01

    An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual ``self-similar'' interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm-2. Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.

  5. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2

    NASA Astrophysics Data System (ADS)

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; Body, Monique; Legein, Christophe; Dachraoui, Walid; Giannini, Mattia; Demortière, Arnaud; Salanne, Mathieu; Dardoize, François; Groult, Henri; Borkiewicz, Olaf J.; Chapman, Karena W.; Strasser, Peter; Dambournet, Damien

    2017-11-01

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials, providing a new strategy for the chemical design of materials for practical multivalent batteries.

  6. Biopolymer-based strategies in the design of smart medical devices and artificial organs.

    PubMed

    Altomare, Lina; Bonetti, Lorenzo; Campiglio, Chiara E; De Nardo, Luigi; Draghi, Lorenza; Tana, Francesca; Farè, Silvia

    2018-06-01

    Advances in regenerative medicine and in modern biomedical therapies are fast evolving and set goals causing an upheaval in the field of materials science. This review discusses recent developments involving the use of biopolymers as smart materials, in terms of material properties and stimulus-responsive behavior, in the presence of environmental physico-chemical changes. An overview on the transformations that can be triggered in natural-based polymeric systems (sol-gel transition, polymer relaxation, cross-linking, and swelling) is presented, with specific focus on the benefits these materials can provide in biomedical applications.

  7. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior

    PubMed Central

    Anderson, Hilary J.; Sahoo, Jugal Kishore; Ulijn, Rein V.; Dalby, Matthew J.

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to “engineer” complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  8. Entrepreneurship as a Career Choice.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; And Others

    This curriculum guide is designed to provide some basic materials to assist in developing an introductory approach to entrepreneurship as a career option. Chapter 1 presents an overview of entrepreneurship education and possible teaching strategies, including a topical outline, resource suggestions, detailed descriptions of available curriculum…

  9. Women's History Curriculum Resource Packet.

    ERIC Educational Resources Information Center

    Vermont State Dept. of Education, Montpelier.

    These resources, designed for recognizing Women's History Week in Vermont elementary and secondary classrooms, are suitable for use nationwide. Oral history materials include recommended strategies for conducting oral history projects, a list of general interview questions, sample questionnaires for interviews concerning women's work and immigrant…

  10. Energy minimization strategies and renewable energy utilization for desalination: a review.

    PubMed

    Subramani, Arun; Badruzzaman, Mohammad; Oppenheimer, Joan; Jacangelo, Joseph G

    2011-02-01

    Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented. The review covers the utilization of energy efficient design, high efficiency pumping, energy recovery devices, advanced membrane materials (nanocomposite, nanotube, and biomimetic), innovative technologies (forward osmosis, ion concentration polarization, and capacitive deionization), and renewable energy resources (solar, wind, and geothermal). Utilization of energy efficient design combined with high efficiency pumping and energy recovery devices have proven effective in full-scale applications. Integration of advanced membrane materials and innovative technologies for desalination show promise but lack long-term operational data. Implementation of renewable energy resources depends upon geography-specific abundance, a feasible means of handling renewable energy power intermittency, and solving technological and economic scale-up and permitting issues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Literacy Strategies in the Science Classroom The Influence of Teacher Cognitive Resources on Implementation

    NASA Astrophysics Data System (ADS)

    Mawyer, Kirsten Kamaile Noelani

    Scientific literacy is at the heart of science reform (AAAS, 1989; 1993: NRC, 1996). These initiatives advocate inquiry-based science education reform that promotes scientific literacy as the prerequisite ability to both understand and apply fundamental scientific ideas to real-world problems and issues involving science, technology, society and the environment. It has been argued that literacy, the very ability to read and write, is foundational to western science and is essential for the attainment of scientific literacy and the reform of science education in this country (Norris & Phillips, 2004). With this wave of reform comes the need to study initiatives that seek to support science teachers, as they take on the task of becoming teachers of literacy in the secondary science classroom. This qualitative research examines one such initiative that supports and guides teachers implementing literacy strategies designed to help students develop reading skills that will allow them to read closely, effectively, and with greater comprehension of texts in the context of science. The goal of this study is to gather data as teachers learn about literacy strategies through supports built into curricular materials, professional development, and implementation in the classroom. In particular, this research follows four secondary science teachers implementing literacy strategies as they enact a yearlong earth and environmental science course comprised of two different reform science curricula. The findings of this research suggest teacher's development of teacher cognitive resources bearing on Teaching & Design can be dynamic or static. They also suggest that the development of pedagogical design capacity (PDC) can be either underdeveloped or emergent. This study contributes to current understandings of the participatory relationship between curricular resources and teacher cognitive resources that reflects the design decision of teachers. In particular, it introduces a Cognitive Resources Framework, a tool researchers can use to identify the cognitive resources of teachers, and adds to the characterization of PDC. The data emerging from this study will inform the future design and refinement of curricular and professional development materials to better support teachers as they learn, use and adapt literacy strategies in the science classroom.

  12. Investigation of Coating and Corrosion Mitigation Strategies in Magnesium/Mixed Metal Assemblies

    NASA Astrophysics Data System (ADS)

    Forsmark, Joy H.; McCune, Robert C.; Giles, Terry; Audette, Michelle; Snowden, Jasmine; Stalker, Jeff; Morey, Matthew; O'Keefe, Matt; Castano, Carlos

    The US Automotive Materials Partnership through the Magnesium-Intensive Front End Development Project (MFERD) is currently investigating a number of joining, coating and corrosion mitigation strategies to incorporate magnesium components into the automotive body-in-white with the ultimate goal of decreasing vehicle curb weight, thus improving fuel economy. Because Mg is anodic to all other structural metals, this is a key hurdle to Mg component implementation in vehicles. This paper will discuss the results of a study to examine the effectiveness of different corrosion mitigation strategies in joined plate assemblies and provide some insight into the systems challenges of incorporation of Mg parts into a vehicle. Details of a statistically-designed experiment developed to explore the interaction of several materials of construction (magnesium, steel and aluminum), pretreatment and topcoatings, joining methods and standardized test protocols including SAE J-2334 and ASTM B-117 are discussed. A number of avenues have emerged from this study as potential strategies for corrosion mitigation.

  13. In-service and pre-service teacher education in IBSE: The ESTABLISH approach

    NASA Astrophysics Data System (ADS)

    Ješková, Zuzana; Kireš, Marián; McLoughlin, Eilish; Finlayson, Odilla; Ottander, Christina; Ekborg, Margareta

    2016-05-01

    One of the main goals of the ESTABLISH 7fp project (available on line at http://www.establish-fp7.eu/) was the development and implementation of the professional development teacher education programmes (TEP) to support teachers in adopting inquiry-based strategies in their teaching. Within the project there was a model for in-service and pre-service teacher training in IBSE designed and implemented across 12 participating countries. The programme is based on 4 core elements and 4 additional elements that are built around the IBSE teaching units developed within the project. As accepted by ESTABLISH partners, all teacher training programmes include the minimum of the four elements, i.e. introduction to IBSE, industrial content knowledge, teacher as implementer and teacher as developer of IBSE teaching materials. There are also four additional elements designed in detail, i.e. ICT for IBSE, argumentation in the classroom, research and design projects for students, assessment of IBSE. These can be added to the programme optionally with regard to the level of teachers' IBSE skills and current situation in education and teachers' professional development within the country. This ESTABLISH model of TEP was followed in participating countries in order to change teachers' attitudes from traditional ways of teaching towards adopting inquiry strategies and their successful implementation in the classroom. Within the face-to-face workshops teachers experienced and developed their inquiry based teaching strategies using specifically developed materials. In addition, the e-platform has been developed to provide on-line support. This platform provides educators and teachers with all the necessary materials for the training and IBSE teaching units and other teaching materials for teachers' ongoing help. The teacher training programme was successfully implemented in Slovakia. There were two runs of teacher training workshops on IBSE already carried out. Moreover, the additional element ICT in IBSE was developed more deeply designing a separate teacher training course for it. The contribution discusses in more details the success and problems of implementation in the context of Slovak educational environment.

  14. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.

    PubMed

    Wu, Zhong; Li, Lin; Yan, Jun-Min; Zhang, Xin-Bo

    2017-06-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long-term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state-of-the-art development on the fabrication of high-performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material-design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new-concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li-/Na-ion supercapacitors composed of battery-type electrodes and capacitor-type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high-performance supercapacitors.

  15. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    PubMed Central

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  16. And young child feeding practices in different country settings.

    PubMed

    Sanghvi, Tina; Jimerson, Ann; Hajeebhoy, Nemat; Zewale, Medhanit; Nguyen, Giang Huong

    2013-09-01

    Alive & Thrive aims to increase exclusive breastfeeding and complementary feeding practices in Bangladesh, Ethiopia, and Vietnam. To develop and execute comprehensive communication strategies adapted to each context. We documented how three countries followed an established iterative planning process, with research steps followed by key decisions, to develop a communication strategy in each country. Secondary analysis and formative research identified the priority practices to focus on, and locally specific constraints to proper infant and young child feeding (IYCF). Communication strategies were then developed based on the social, cultural, economic, epidemiological, media use, and programmatic contexts of each country. There were widespread gaps between recommended and actual feeding practices, and these varied by country. Gaps were identified in household, community, and institutional levels of awareness and skills. Strategies were designed that would enable mothers in each specific setting to adopt practices. To improve priority behaviors, messaging and media strategies addressed the most salient behavioral determinants through face-to-face communication, social mobilization, and mass media. Trials of improved practices (TIPs), concept testing, and pretesting of materials proved useful to verify the relevance and likely effectiveness of communication messages and materials tailored for different audiences in each setting. Coordination and collaboration with multiple stakeholders from the start was important to harmonize messages and approaches, expand geographic coverage to national scale, and sustain the interventions. Our experience with designing large-scale communication strategies for behavior change confirms that systematic analysis and local planning cannot be omitted from the critical process of strategic design tailored to each context. Multiple communication channels matched to media habits in each setting can reach a substantial proportion of mothers and others who influence their IYCF practices. Preliminary data suggest that exposure to mass media plays a critical role in rapidly reaching mothers, household members, community influentials, and health workers on a large scale. Combining face-to-face interventions for mothers with social mobilization and mass media was effective in improving IYCF practices.

  17. Construction of Nanowire Heterojunctions: Photonic Function-Oriented Nanoarchitectonics.

    PubMed

    Li, Yong Jun; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2016-02-10

    Nanophotonics has received broad research interest because it may provide an alternative opportunity to overcome the fundamental limitations of electronic circuits. So far, diverse photonic functions, such as light generation, modulation, and detection, have been realized based on various nano-materials. The exact structural features of these material systems, including geometric characteristics, surface morphology, and material composition, play a key role in determining the photonic functions. Therefore, rational designs and constructions of materials on both morphological and componential levels, namely nanoarchitectonics, are indispensable for any photonic device with specific functionalities. Recently, a series of nanowire heterojunctions (NWHJs), which are usually made from two or more kinds of material compositions, were constructed for novel photonic applications based on various interactions between different materials at the junctions, for instance, energy transfer, exciton-plasmon coupling, or photon-plasmon coupling. A summary of these works is necessary to get a more comprehensive understanding of the relationship between photonic functions and architectonics of NWHJs, which will be instructive for designing novel photonic devices towards integrated circuits. Here, photonic function oriented nanoarchitectonics based on recent breakthroughs in nanophotonic devices are discussed, with emphasis on the design mechanisms, fabrication strategies, and excellent performances. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling, simulation and optimization approaches for design of lightweight car body structures

    NASA Astrophysics Data System (ADS)

    Kiani, Morteza

    Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.

  19. Dual Durameter Blow Molded Rocker Cover Design With Unique Isolation Strategy

    DOEpatents

    Freese, V, Charles Edwin

    2000-07-11

    The rocker arm cover on a diesel engine can be formed of a rigid molded plastic material to minimize the transmission of noise into the atmosphere. Sonic vibration of the cover can be reduced by reducing the cover material stiffness. The reduced stiffness of the cover material allows the roof area of the cover to be momentarily displaced away from the cylinder head in the presence of an acoustic wave, so that the roof area is not able to develop the restoring force that is necessary for vibrational motion.

  20. A novel strategy towards designing a CdSe quantum dot-metallohydrogel composite material.

    PubMed

    Chatterjee, Sayantan; Maitra, Uday

    2016-08-11

    We have described here an efficient method to disperse hydrophobic CdSe quantum dots (QDs) in an aqueous phase using cetyltrimethylammonium bromide (CTAB) micelles without any surface ligand exchange. The water soluble QDs were then embedded in 3D self assembled fibrillar networks (SAFINs) of a hydrogel showing homogeneous dispersibility as evidenced from optical and electron microscopic techniques. The photophysical studies of the hydrogel-QD composite are reported for the first time. These composite materials may have potential applications in biology, optoelectronics, sensors, non-linear optics and materials science.

  1. Toward instructional design principles: Inducing Faraday's law with contrasting cases

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2016-06-01

    Although physics education research (PER) has improved instructional practices, there are not agreed upon principles for designing effective instructional materials. Here, we illustrate how close comparison of instructional materials could support the development of such principles. Specifically, in discussion sections of a large, introductory physics course, a pair of studies compare two instructional strategies for teaching a physics concept: having students (i) explain a set of contrasting cases or (ii) apply and build on previously learned concepts. We compare these strategies for the teaching of Faraday's law, showing that explaining a set of related contrasting cases not only improves student performance on Faraday's law questions over building on a previously learned concept (i.e., Lorentz force), but also prepares students to better learn subsequent topics, such as Lenz's law. These differences persist to the final exam. We argue that early exposure to contrasting cases better focuses student attention on a key feature related to both concepts: change in magnetic flux. Importantly, the benefits of contrasting cases for both learning and enjoyment are enhanced for students who did not first attend a Faraday's law lecture, consistent with previous research suggesting that being told a solution can circumvent the benefits of its discovery. These studies illustrate an experimental approach for understanding how the structure of activities affects learning and performance outcomes, a first step toward design principles for effective instructional materials.

  2. High-Tech Garage to Showcase Strategies for Reducing Energy (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-08-01

    NREL's new parking garage structure is proving that large garages can be designed and built sustainably at no extra cost. This fact sheet describes the garage's energy and water-saving measures, renewable energy technologies, sustainable and durable building materials, another campus improvements.

  3. Ohio Studies: Minimum Standards Leadership Series 1985.

    ERIC Educational Resources Information Center

    Ohio State Dept. of Education, Columbus. Div. of Elementary and Secondary Education.

    This monograph is designed to provide materials, ideas, and strategies for school districts and teachers to broaden and expand the standards and requirements of Ohio studies. Section 1, "Introduction" provides an overview of the monograph. Section 2, "Organizing for Instruction" gives several alternative approaches to designing…

  4. Partial Verbal Redundancy in Multimedia Presentations for Writing Strategy Instruction

    ERIC Educational Resources Information Center

    Roscoe, Rod D.; Jacovina, Matthew E.; Harry, Danielle; Russell, Devin G.; McNamara, Danielle S.

    2015-01-01

    Multimedia instructional materials require learners to select, organize, and integrate information across multiple modalities. To facilitate these comprehension processes, a variety of multimedia design principles have been proposed. This study further explores the redundancy principle by manipulating the degree of partial redundancy between…

  5. Textile & Apparel Production, Management, and Services: Curriculum Guide.

    ERIC Educational Resources Information Center

    Killman, Letitia

    This curriculum guide contains materials for a course that provides occupationally specific training designed to develop knowledge and skills for employment in the textile and apparel industries. Contents include an introduction; the Texas Essential Knowledge and Skills (TEKS) covered; sample course outlines; instructional strategies organized…

  6. Services for Older Adults: Curriculum Guide.

    ERIC Educational Resources Information Center

    Mumme, Debbie

    This curriculum guide contains materials for a course that provides occupationally specific training designed to develop knowledge and skills for employment in the area of services for older adults. Contents include an introduction, the Texas Essential Knowledge and Skills (TEKS) covered; sample course outlines; instructional strategies organized…

  7. Alaska Special Education Recruitment and Retention Resource Manual.

    ERIC Educational Resources Information Center

    Schnorr, Janice M.; Brady, Nancy J.

    This resource manual is designed to assist Alaska school districts in recruiting and retaining special education teachers. It offers 50 practical suggestions for developing an effective recruitment program, focusing on the processes of gathering information; developing recruiters, materials, and strategies; and screening and interviewing…

  8. Envisioning Information.

    ERIC Educational Resources Information Center

    Tufte, Edward R.

    This book presents over 400 illustrations of complex data that show how the dimensionality and density of portrayals can be enhanced. Practical advice on how to explain complex materials by visual means is given, and examples illustrate the fundamental principles of information display. Design strategies presented are exemplified in maps, the…

  9. Fire and Children: Learning Survival Skills.

    ERIC Educational Resources Information Center

    Block, Jeanne H.; And Others

    This paper describes a study designed to investigate: (1) children's interest in, anxieties about, attitudes toward, and reactions to fire; (2) the relationship of particular personality characteristics to attitudes about and behavior with potentially hazardous fire material; (3) socialization techniques and teaching strategies of mothers in…

  10. On Dark Times, Parallel Universes, and Deja Vu.

    ERIC Educational Resources Information Center

    Starnes, Bobby Ann

    2000-01-01

    Effectiveness cannot be found in the mediocrity arising from programs that require lessons, teaching strategies, and precisely executed materials to ensure integrity. Expensive, scripted programs like Success for All are designed not to improve teaching, but to render the art of teaching unnecessary. (MLH)

  11. Landscape design strategies for post-disaster reconstructions based on traditional ethical wisdom

    NASA Astrophysics Data System (ADS)

    Yi, Shouli; Hu, Di; Gao, Suping; Lei, Ting; Chen, Qibin

    2018-03-01

    In the face of the black swan events which frequently happened globally, I take the earthquake of Ya'an, happened at 4.20 in Sichuan, as an example of my subject. The results indicate that the social responsibility of landscape architects is a post-disaster reconstruction of a material and spiritual homeland for victims and mental care for individuals, which specifically reflected in the process of rebuilding victims' sense of security. The reconstruction of a sense of security must follow certain ethics and moralities which embody the ecological wisdom. We take a typical case of Ya'an Lushan Snow Mountain Village-the earthquake distress area, we found the incidence of disease was up to 68.6% through the PTSD analysis, indicating the overall absence of a sense of security. To solve the problem and reconstruct people's mental and material homeland, the article discussed the strategies and solutions to post-disaster landscape design based on traditional ethical wisdom.

  12. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  13. The Next Breakthrough for Organic Photovoltaics?

    PubMed

    Jackson, Nicholas E; Savoie, Brett M; Marks, Tobin J; Chen, Lin X; Ratner, Mark A

    2015-01-02

    While the intense focus on energy level tuning in organic photovoltaic materials has afforded large gains in device performance, we argue here that strategies based on microstructural/morphological control are at least as promising in any rational design strategy. In this work, a meta-analysis of ∼150 bulk heterojunction devices fabricated with different materials combinations is performed and reveals strong correlations between power conversion efficiency and morphology-dominated properties (short-circuit current, fill factor) and surprisingly weak correlations between efficiency and energy level positioning (open-circuit voltage, enthalpic offset at the interface, optical gap). While energy level positioning should in principle provide the theoretical maximum efficiency, the optimization landscape that must be navigated to reach this maximum is unforgiving. Thus, research aimed at developing understanding-based strategies for more efficient optimization of an active layer microstructure and morphology are likely to be at least as fruitful.

  14. Active-learning Strategies for Legal Topics and Substance Abuse in a Pharmacy Curriculum.

    PubMed

    Steinhardt, Sarah J; Clark, John E; Kelly, William N; Hill, Angela M

    2017-02-25

    Objective. To implement active-learning strategies to engage students in learning, applying, and teaching legal and substance abuse topics. Design. Medication Safety course student groups created films on a National Patient Safety Goal (NPSG) using a movie genre and presented them in film festival format. Pharmacogenomics course student groups taught ethical, legal, and social implications (ELSI) topics through presentation of short stories about comic book characters with genetic mutations. Students in the Drugs of Abuse course composed and performed dances depicting the mechanism of action of a drug in an in-class rave dance format. Assessment. Course evaluations revealed student engagement with subject material and enjoyment of the creative applications, critical thinking, and collaborative aspects of the activities. Students performed well on examination questions and graded assignments. Conclusion. These active-learning strategies facilitated students' abilities to learn, apply, and teach material in medication safety, pharmacogenomics, and substance abuse courses.

  15. Active-learning Strategies for Legal Topics and Substance Abuse in a Pharmacy Curriculum

    PubMed Central

    Clark, John E.; Kelly, William N.; Hill, Angela M.

    2017-01-01

    Objective. To implement active-learning strategies to engage students in learning, applying, and teaching legal and substance abuse topics. Design. Medication Safety course student groups created films on a National Patient Safety Goal (NPSG) using a movie genre and presented them in film festival format. Pharmacogenomics course student groups taught ethical, legal, and social implications (ELSI) topics through presentation of short stories about comic book characters with genetic mutations. Students in the Drugs of Abuse course composed and performed dances depicting the mechanism of action of a drug in an in-class rave dance format. Assessment. Course evaluations revealed student engagement with subject material and enjoyment of the creative applications, critical thinking, and collaborative aspects of the activities. Students performed well on examination questions and graded assignments. Conclusion. These active-learning strategies facilitated students’ abilities to learn, apply, and teach material in medication safety, pharmacogenomics, and substance abuse courses. PMID:28289294

  16. Mechanics and thermal management of stretchable inorganic electronics.

    PubMed

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-03-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.

  17. POROUS ALUMINOPHOSPHATES :From Molecular Sieves to Designed Acid Catalysts

    NASA Astrophysics Data System (ADS)

    Pastore, H. O.; Coluccia, S.; Marchese, L.

    2005-08-01

    This review covers the synthesis, characterization, and physico-chemical properties of microporous and mesoporous aluminophosphates and silicoaluminophosphates molecular sieves. Particular emphasis is given to the materials that have found applications as acid catalysts. We consider the evolution of the synthesis procedures from the first discoveries to the current methodologies and give perspectives for new possible synthesis strategies. Emphasis is given to the use of specially prepared precursors/reactants designed for the use as molecular sieves. Experimental (especially MAS-NMR and FTIR spectroscopy) and theoretical approaches to the description of the Si insertion into the ALPO framework and to the acidic properties of SAPOs and MeAPSOs materials are discussed.

  18. Designing new lithium-excess cathode materials from percolation theory: Nanohighways in Li xNi 2–4x/3Sb x/3O 2

    DOE PAGES

    Twu, Nancy; Li, Xin; Urban, Alexander; ...

    2014-12-17

    Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li xNi 2–4x/3Sb x/3O 2 (x = 1.00–1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies disclose a complex nanostructure pattern of Li–Sb and Ni–Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li–Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

  19. Mechanics and thermal management of stretchable inorganic electronics

    PubMed Central

    Song, Jizhou; Feng, Xue; Huang, Yonggang

    2016-01-01

    Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485

  20. Designing new lithium-excess cathode materials from percolation theory: nanohighways in Li(x)Ni(2-4x/3)Sb(x/3)O2.

    PubMed

    Twu, Nancy; Li, Xin; Urban, Alexander; Balasubramanian, Mahalingam; Lee, Jinhyuk; Liu, Lei; Ceder, Gerbrand

    2015-01-14

    Increasing lithium content is shown to be a successful strategy for designing new cathode materials. In layered Li(x)Ni(2-4x/3)Sb(x/3)O2 (x = 1.00-1.15), lithium excess improves both discharge capacity and capacity retention at 1C. Structural studies reveal a complex nanostructure pattern of Li-Sb and Ni-Sb ordering where the interface between these domains forms the correct local configuration for good lithium mobility. The <1 nm Li-Sb stripe domains and their interfaces thereby effectively act as nanohighways for lithium diffusion.

  1. Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆

    PubMed Central

    Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan

    2016-01-01

    The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875

  2. Lightweight design of automobile frame based on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lyu, R.; Jiang, X.; Minoru, O.; Ju, D. Y.

    2018-06-01

    The structural performance and lightweighting of car base frame design is a challenging task due to all the performance targets that must be satisfied. In this paper, three kinds of materials (iron, aluminum and magnesium alloy) replacement along with section design optimization strategy is proposed to develop a lightweight car frame structure to satisfy the tensile and safety while reducing weight. Two kinds of cross-sections are considered as the design variables. Using Ansys static structure, the design optimization problem is solved, comparing the results of each step, structure of the base flame is optimized for lightweight.

  3. Strategies of Computer-Based Instructional Design: A Review of Guidelines and Empirical Research

    DTIC Science & Technology

    1990-05-01

    tutorial or information-oriented lesson, a flashcard -type drill, or a simulation or game. 6 Guidelines. Instructional designers must decide whether...amount of inter- activity and feedback. An information-only program presented textual material without any questions. A flashcard -type drill program...educational game program was identical to the flashcard -type drill, except feedback was provided for responses. Results showed no differences in posttest

  4. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, Christopher S.

    1986-01-01

    Research is directed toward the design and synthesis of new media for solar-pumped I* lasers. Since the most effective existing lasants are perfluoroalkyl iodides, a strategy was proposed for the development of improved materials of this type with absorption maxima at 300 nm. Absorption spectra were synthesized and measured for prototypical species containing iodine bound to boron, iron, and cobalt.

  5. Issues and Strategies for Improving Constructibility.

    DTIC Science & Technology

    1988-09-01

    materials. First, the roof design called for the use of an asphalt coated roof felt layer below an EPDM membrane. The asphalt coated felt is not needed when a...being prepared by people trained in subjects foreign to construction. As designers, we were in fact contractually and professionally isolated from...specially constructed for sound isolation . The architect* correctly specified special sound seals around the doors between the rooms in this area, but

  6. European DEMO design strategy and consequences for materials

    NASA Astrophysics Data System (ADS)

    Federici, G.; Biel, W.; Gilbert, M. R.; Kemp, R.; Taylor, N.; Wenninger, R.

    2017-09-01

    Demonstrating the production of net electricity and operating with a closed fuel-cycle remain unarguably the crucial steps towards the exploitation of fusion power. These are the aims of a demonstration fusion reactor (DEMO) proposed to be built after ITER. This paper briefly describes the DEMO design options that are being considered in Europe for the current conceptual design studies as part of the Roadmap to Fusion Electricity Horizon 2020. These are not intended to represent fixed and exclusive design choices but rather ‘proxies’ of possible plant design options to be used to identify generic design/material issues that need to be resolved in future fusion reactor systems. The materials nuclear design requirements and the effects of radiation damage are briefly analysed with emphasis on a pulsed ‘low extrapolation’ system, which is being used for the initial design integration studies, based as far as possible on mature technologies and reliable regimes of operation (to be extrapolated from the ITER experience), and on the use of materials suitable for the expected level of neutron fluence. The main technical issues arising from the plasma and nuclear loads and the effects of radiation damage particularly on the structural and heat sink materials of the vessel and in-vessel components are critically discussed. The need to establish realistic target performance and a development schedule for near-term electricity production tends to favour more conservative technology choices. The readiness of the technical (physics and technology) assumptions that are being made is expected to be an important factor for the selection of the technical features of the device.

  7. Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging.

    PubMed

    Wang, Yu; Zhu, Weigang; Du, Wenna; Liu, Xinfeng; Zhang, Xiaotao; Dong, Huanli; Hu, Wenping

    2018-04-03

    A cocrystal strategy with a simple preparation process is developed to prepare novel materials for near-infrared photothermal (PT) conversion and imaging. DBTTF and TCNB are selected as electron donor (D) and electron acceptor (A) to self-assemble into new cocrystals through non-covalent interactions. The strong D-A interaction leads to a narrow band gap with NIR absorption and that both the ground state and lowest-lying excited state are charge transfer states. Under the NIR laser illumination, the temperature of the cocrystal sharply increases in a short time with high PT conversion efficiency (η=18.8 %), which is due to the active non-radiative pathways and inhibition of radiative transition process, as revealed by femtosecond transient absorption spectroscopy. This is the first PT conversion cocrystal, which not only provides insights for the development of novel PT materials, but also paves the way of designing functional materials with appealing applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bioinspired microrobots

    NASA Astrophysics Data System (ADS)

    Palagi, Stefano; Fischer, Peer

    2018-06-01

    Microorganisms can move in complex media, respond to the environment and self-organize. The field of microrobotics strives to achieve these functions in mobile robotic systems of sub-millimetre size. However, miniaturization of traditional robots and their control systems to the microscale is not a viable approach. A promising alternative strategy in developing microrobots is to implement sensing, actuation and control directly in the materials, thereby mimicking biological matter. In this Review, we discuss design principles and materials for the implementation of robotic functionalities in microrobots. We examine different biological locomotion strategies, and we discuss how they can be artificially recreated in magnetic microrobots and how soft materials improve control and performance. We show that smart, stimuli-responsive materials can act as on-board sensors and actuators and that `active matter' enables autonomous motion, navigation and collective behaviours. Finally, we provide a critical outlook for the field of microrobotics and highlight the challenges that need to be overcome to realize sophisticated microrobots, which one day might rival biological machines.

  9. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  10. A passive solar residence using native and recycled materials, Bee Cave, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holder, L.M. III; King, L.H.

    The Booth Residence at Bee Cave, Texas is a Passive Solar residence in a hot humid climate and a good example of both passive solar and renewable features. The design, operation, materials, and furnishings give the structure a regional and rustic character. Passive solar strategies employed include solar orientation, solar shading, natural ventilation, induced ventilation, night flushing, direct gain clearstory, high mass floors, daylighting, radiant barrier, and a double ventilated roof system. The project is in contrast to the existing compound which includes three identical buildings each rotated 120 degrees and intended to be energy efficient, but actual operation hasmore » pointed out some deficiencies in the design. Additional features include extensive use of natural, recycled, and materials reused from other buildings. The Boothe Residence is an example of building in harmony with the local climate, the use of locally available materials, craftsman, artists, manpower, and reuse of trim and furnishings.« less

  11. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    PubMed

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  12. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  13. Moving HAIRS: Towards adaptive, homeostatic materials

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna

    Dynamic structures that respond reversibly to changes in their environment are central to self-regulating thermal and lighting systems, targeted drug delivery, sensors, and self-propelled locomotion. Since an adaptive change requires energy input, an ideal strategy would be to design materials that harvest energy directly from the environment and use it to drive an appropriate response. This lecture will present the design of a novel class of reconfigurable materials that use surfaces bearing arrays of nanostructures put in motion by environment-responsive gels. Their unique hybrid architecture, and chemical and mechanical properties can be optimized to confer a wide range of adaptive behaviors. Using both experimental and modeling approaches, we are developing these hydrogel-actuated integrated responsive systems (HAIRS) as new materials with reversible optical and wetting properties, as a multifunctional platform for controlling cell differentiation and function, and as a first homeostatic system with autonomous self-regulation.

  14. Application of computational methods to the design and characterisation of porous molecular materials.

    PubMed

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  15. Materials Design and System Construction for Conventional and New‐Concept Supercapacitors

    PubMed Central

    Wu, Zhong; Li, Lin

    2017-01-01

    With the development of renewable energy and electrified transportation, electrochemical energy storage will be more urgent in the future. Supercapacitors have received extensive attention due to their high power density, fast charge and discharge rates, and long‐term cycling stability. During past five years, supercapacitors have been boomed benefited from the development of nanostructured materials synthesis and the promoted innovation of devices construction. In this review, we have summarized the current state‐of‐the‐art development on the fabrication of high‐performance supercapacitors. From the electrode material perspective, a variety of materials have been explored for advanced electrode materials with smart material‐design strategies such as carbonaceous materials, metal compounds and conducting polymers. Proper nanostructures are engineered to provide sufficient electroactive sites and enhance the kinetics of ion and electron transport. Besides, new‐concept supercapacitors have been developed for practical application. Microsupercapacitors and fiber supercapacitors have been explored for portable and compact electronic devices. Subsequently, we have introduced Li‐/Na‐ion supercapacitors composed of battery‐type electrodes and capacitor‐type electrode. Integrated energy devices are also explored by incorporating supercapacitors with energy conversion systems for sustainable energy storage. In brief, this review provides a comprehensive summary of recent progress on electrode materials design and burgeoning devices constructions for high‐performance supercapacitors. PMID:28638780

  16. Sustainable Design Approach: A case study of BIM use

    NASA Astrophysics Data System (ADS)

    Abdelhameed, Wael

    2017-11-01

    Achieving sustainable design in areas such as energy-efficient design depends largely on the accuracy of the analysis performed after the design is completed with all its components and material details. There are different analysis approaches and methods that predict relevant values and metrics such as U value, energy use and energy savings. Although certain differences in the accuracy of these approaches and methods have been recorded, this research paper does not focus on such matter, where determining the reason for discrepancies between those approaches and methods is difficult, because all error sources act simultaneously. The research paper rather introduces an approach through which BIM, building information modelling, can be utilised during the initial phases of the designing process, by analysing the values and metrics of sustainable design before going into the design details of a building. Managing all of the project drawings in a single file, BIM -building information modelling- is well known as one digital platform that offers a multidisciplinary detailed design -AEC model (Barison and Santos, 2010, Welle et.al., 2011). The paper presents in general BIM use in the early phases of the design process, in order to achieve certain required areas of sustainable design. The paper proceeds to introduce BIM use in specific areas such as site selection, wind velocity and building orientation, in terms of reaching the farther possible sustainable solution. In the initial phases of designing, material details and building components are not fully specified or selected yet. The designer usually focuses on zoning, topology, circulations, and other design requirements. The proposed approach employs the strategies and analysis of BIM use during those initial design phases in order to have the analysis and results of each solution or alternative design. The stakeholders and designers would have a better effective decision making process with a full clarity of each alternative's consequences. The architect would settle down and proceed in the alternative design of the best sustainable analysis. In later design stages, using the sustainable types of materials such as insulation, cladding, etc., and applying sustainable building components such as doors, windows, etc. would add more improvements and enhancements in reaching better values and metrics. The paper describes the methodology of this design approach through BIM strategies adopted in design creation. Case studies of architectural designs are used to highlight the details and benefits of this proposed approach.

  17. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less

  18. Strategy to overcome recombination limited photocurrent generation in CsPbX3 nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Mir, Wasim J.; Livache, Clément; Goubet, Nicolas; Martinez, Bertille; Jagtap, Amardeep; Chu, Audrey; Coutard, Nathan; Cruguel, Hervé; Barisien, Thierry; Ithurria, Sandrine; Nag, Angshuman; Dubertret, Benoit; Ouerghi, Abdelkarim; Silly, Mathieu G.; Lhuillier, Emmanuel

    2018-03-01

    We discuss the transport properties of CsPbBrxI3-x perovskite nanocrystal arrays as a model ensemble system of caesium lead halide-based perovskite nanocrystal arrays. While this material is very promising for the design of light emitting diodes, laser, and solar cells, very little work has been devoted to the basic understanding of their (photo)conductive properties in an ensemble system. By combining DC and time-resolved photocurrent measurements, we demonstrate fast photodetection with time response below 2 ns. The photocurrent generation in perovskite nanocrystal-based arrays is limited by fast bimolecular recombination of the material, which limits the lifetime of the photogenerated electron-hole pairs. We propose to use nanotrench electrodes as a strategy to ensure that the device size fits within the obtained diffusion length of the material in order to boost the transport efficiency and thus observe an enhancement of the photoresponse by a factor of 1000.

  19. A modified moment-fitted integration scheme for X-FEM applications with history-dependent material data

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyu; Jiang, Wen; Dolbow, John E.; Spencer, Benjamin W.

    2018-01-01

    We present a strategy for the numerical integration of partial elements with the eXtended finite element method (X-FEM). The new strategy is specifically designed for problems with propagating cracks through a bulk material that exhibits inelasticity. Following a standard approach with the X-FEM, as the crack propagates new partial elements are created. We examine quadrature rules that have sufficient accuracy to calculate stiffness matrices regardless of the orientation of the crack with respect to the element. This permits the number of integration points within elements to remain constant as a crack propagates, and for state data to be easily transferred between successive discretizations. In order to maintain weights that are strictly positive, we propose an approach that blends moment-fitted weights with volume-fraction based weights. To demonstrate the efficacy of this simple approach, we present results from numerical tests and examples with both elastic and plastic material response.

  20. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

    DOE PAGES

    Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.; ...

    2017-09-18

    In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2.more » In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.« less

  1. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    PubMed

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  2. Review of Adaptive Programmable Materials and Their Bioapplications.

    PubMed

    Fan, Xiaoshan; Chung, Jing Yang; Lim, Yong Xiang; Li, Zibiao; Loh, Xian Jun

    2016-12-14

    Adaptive programmable materials have attracted increasing attention due to their high functionality, autonomous behavior, encapsulation, and site-specific confinement capabilities in various applications. Compared to conventional materials, adaptive programmable materials possess unique single-material architecture that can maintain, respond, and change their shapes and dimensions when they are subjected to surrounding environment changes, such as alternation in temperature, pH, and ionic strength. In this review, the most-recent advances in the design strategies of adaptive programmable materials are presented with respect to different types of architectural polymers, including stimuli-responsive polymers and shape-memory polymers. The diverse functions of these sophisticated materials and their significance in therapeutic agent delivery systems are also summarized in this review. Finally, the challenges for facile fabrication of these materials and future prospective are also discussed.

  3. Energy Storage Facilities | Transportation Research | NREL

    Science.gov Websites

    explore the interface of electric-drive vehicle (EDV) energy storage systems, charging end energy control hardware when evaluating developmental systems and control strategies. Electrochemical Characterization . The tools below are used to evaluate materials and small cells, quantifying how the design of cathodes

  4. Enticing New Growth

    ERIC Educational Resources Information Center

    Raby, June

    2014-01-01

    As an artist, designer and cultural historian, my work is concerned with integrating thought with material creativity. By relating science to methodology and learning strategies, somatic, experiential awareness comes to the fore. New scientific evidence about our neural network enables us to return to the body of experience we already have;…

  5. Guide to Library Research in Chicano Studies.

    ERIC Educational Resources Information Center

    Guerena, Salvador; Gonzalez, Raquel Quiroz

    Designed to acquaint persons conducting library research in Chicano Studies with the reference materials found in the University Library at the University of California-Santa Barbara, the manual provides information on the Coleccion Tloque Nahuaque, relevant subject headings, and a useful search strategy. Resources, staff, assigned reading…

  6. You and Me and Human Sexuality. Teacher's Manual.

    ERIC Educational Resources Information Center

    Young, Emily Morrill

    This teacher's manual is designed for teaching deaf adolescents about human sexuality. Each chapter is organized into topic objectives, large group content presentation strategies, small group activities, materials, and resources. Topics include: (1) relationships; (2) adolescent growth and development; (3) female and male anatomy; (4) conception,…

  7. Release Mechanisms, Control Strategies, and Implementation Challenges of Controlling Lead in Drinking Water

    EPA Science Inventory

    Even minimally or moderately corrosive water can cause unacceptable and dangerous lead contamination to be released from common plumbing materials and devices into drinking water. Designing sampling programs to uncover the potential for ingestion of lead in water and to protect ...

  8. Orange You Glad You Teach Botany?

    ERIC Educational Resources Information Center

    Cravats, Monroe

    1983-01-01

    Provides strategies and topics of study designed to enhance student interest in botany using both familiar and exotic plant material to illustrate genetics, plant propagation, disease, germination, hybrid vigor, anatomy, natural insecticides, and tropisms. The relationship between plants and society is also used to develop several topics. (JM)

  9. Procedural Guide for Designation Surveys of Ocean Dredged Material Disposal Sites. Revision

    DTIC Science & Technology

    1990-04-01

    data standardization." One of the most frequently used clustering strategies is called UPGMA (unweighted pair-group method using arithmetic averages...Sneath and Sokal 1973). Romesburg (1984) 151 evaluated many possible methods and concluded that UPGMA is appropriate for most types of cluster

  10. Intercultural Communication: Teaching Strategies, Resources, and Materials.

    ERIC Educational Resources Information Center

    Asuncion-Lande, Nobleza C.

    Education about intercultural communication can greatly increase understanding between cultures, whether they be minority groups within the United States or peoples of separate nations. This document is intended as a reference guide for designing and teaching a basic intercultural communication course. In four parts, this document presents…

  11. [IDEAS For Equitable Computer Learning.

    ERIC Educational Resources Information Center

    Schubert, Jane G.; And Others

    Designed to assist educators in improving computer learning opportunities for students, this packet of materials presents practical strategies that address 12 barriers to equitable instruction: (1) lack of encouragement for females and minority students to use computers; (2) potential value of computer learning more apparent to males than females;…

  12. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOEpatents

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2007-03-27

    The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn--O--C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, --Br, --NH2, --OC3H7, --OC5H11, --H4C2, and --H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic/inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3/cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g/cm3) attained to date for any crystalline material at room temperature.

  13. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    PubMed

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  14. Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces

    PubMed Central

    Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.

    2012-01-01

    We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522

  15. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine

    PubMed Central

    Seto, Jong; Ma, Yurong; Davis, Sean A.; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut

    2012-01-01

    Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. PMID:22343283

  16. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties

    PubMed Central

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-01-01

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials. PMID:26198844

  17. Intrinsic hierarchical structural imperfections in a natural ceramic of bivalve shell with distinctly graded properties.

    PubMed

    Jiao, Da; Liu, Zengqian; Zhang, Zhenjun; Zhang, Zhefeng

    2015-07-22

    Despite the extensive investigation on the structure of natural biological materials, insufficient attention has been paid to the structural imperfections by which the mechanical properties of synthetic materials are dominated. In this study, the structure of bivalve Saxidomus purpuratus shell has been systematically characterized quantitatively on multiple length scales from millimeter to sub-nanometer. It is revealed that hierarchical imperfections are intrinsically involved in the crossed-lamellar structure of the shell despite its periodically packed platelets. In particular, various favorable characters which are always pursued in synthetic materials, e.g. nanotwins and low-angle misorientations, have been incorporated herein. The possible contributions of these imperfections to mechanical properties are further discussed. It is suggested that the imperfections may serve as structural adaptations, rather than detrimental defects in the real sense, to help improve the mechanical properties of natural biological materials. This study may aid in understanding the optimizing strategies of structure and properties designed by nature, and accordingly, provide inspiration for the design of synthetic materials.

  18. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine.

    PubMed

    Seto, Jong; Ma, Yurong; Davis, Sean A; Meldrum, Fiona; Gourrier, Aurelien; Kim, Yi-Yeoun; Schilde, Uwe; Sztucki, Michael; Burghammer, Manfred; Maltsev, Sergey; Jäger, Christian; Cölfen, Helmut

    2012-03-06

    Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature's demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials.

  19. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  20. Material efficiency: providing material services with less material production

    PubMed Central

    Allwood, Julian M.; Ashby, Michael F.; Gutowski, Timothy G.; Worrell, Ernst

    2013-01-01

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations— for instance to do with building design, planning or vehicle standards—is likely to have a more immediate effect. PMID:23359746

  1. Material efficiency: providing material services with less material production.

    PubMed

    Allwood, Julian M; Ashby, Michael F; Gutowski, Timothy G; Worrell, Ernst

    2013-03-13

    Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.

  2. Self-Healing Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tournilhac, Francois

    2012-02-01

    Supramolecular chemistry teaches us to control non-covalent interactions between organic molecules, particularly through the use of optimized building blocks able to establish several hydrogen bonds in parallel. This discipline has emerged as a powerful tool in the design of new materials through the concept of supramolecular polymers. One of the fascinating aspects of such materials is the possibility of controlling the structure, adding functionalities, adjusting the macroscopic properties of and taking profit of the non-trivial dynamics associated to the reversibility of H-bond links. Applications of these compounds may include adhesives, coatings, rheology additives, high performance materials, etc. However, the synthesis of such polymers at the industrial scale still remains a challenge. Our first ambition is to design supramolecular polymers with original properties, the second ambition is to devise simple and environmentally friendly methods for their industrial production. In our endeavours to create novel supramolecular networks with rubbery elasticity, self-healing ability and as little as possible creep, the strategy to prolongate the relaxation time and in the same time, keep the system flexible was to synthesize rather than a single molecule, an assembly of randomly branched H-bonding oligomers. We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semi-crystalline or amorphous thermoplastics, viscoelastic melts or self-healing rubbers.

  3. Recent Advances in Designing and Fabricating Self-Supported Nanoelectrodes for Supercapacitors.

    PubMed

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith; Lei, Yong

    2017-10-01

    Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self-supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors towards high energy storage capability. Self-supported homogeneous and heterogeneous nanoelectrodes in the forms of one-dimensional (1D) nanoarrays, two-dimensional (2D) nanoarrays, and three-dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed.

  4. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    PubMed

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  5. Development of Methodologies for the Estimation of Thermal Properties Associated with Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Scott, Elaine P.

    1996-01-01

    A thermal stress analysis is an important aspect in the design of aerospace structures and vehicles such as the High Speed Civil Transport (HSCT) at the National Aeronautics and Space Administration Langley Research Center (NASA-LaRC). These structures are complex and are often composed of numerous components fabricated from a variety of different materials. The thermal loads on these structures induce temperature variations within the structure, which in turn result in the development of thermal stresses. Therefore, a thermal stress analysis requires knowledge of the temperature distributions within the structures which consequently necessitates the need for accurate knowledge of the thermal properties, boundary conditions and thermal interface conditions associated with the structural materials. The goal of this proposed multi-year research effort was to develop estimation methodologies for the determination of the thermal properties and interface conditions associated with aerospace vehicles. Specific objectives focused on the development and implementation of optimal experimental design strategies and methodologies for the estimation of thermal properties associated with simple composite and honeycomb structures. The strategy used in this multi-year research effort was to first develop methodologies for relatively simple systems and then systematically modify these methodologies to analyze complex structures. This can be thought of as a building block approach. This strategy was intended to promote maximum usability of the resulting estimation procedure by NASA-LARC researchers through the design of in-house experimentation procedures and through the use of an existing general purpose finite element software.

  6. The Design of Dual-Emissive Composite Material [Zn2(HL)3]+@MOF-5 as Self-Calibrating Luminescent Sensors of Al3+ Ions and Monoethanolamine.

    PubMed

    Wu, Meng-Meng; Wang, Jiao-Yang; Sun, Rui; Zhao, Cui; Zhao, Jiong-Peng; Che, Guang-Bo; Liu, Fu-Chen

    2017-08-21

    Introducing another chromophore into a luminescent MOF is a potential way to assembling novel dual-emissive luminescent materials. Putting the chromophore, for which luminescence can be enhanced by Zn 2+ ion, into MOF-5 by the "bottle around ship" strategy is a simple but efficient synthesis method to realize such dual-emissive materials. According to this strategy, a novel dual-emissive luminescent composite material [Zn 2 (HL) 3 ] + @MOF-5 was constructed by loading the [La 3 (HL) 2 L 2 (NO 3 ) 3 H 2 O] (1) (H 2 L = 7,7'-(ethane-1,1'-diyl)8-hydro-quinoline) into MOF-5, in which the [Zn 2 (HL) 3 ] + anions were transformed from 1 with the existence of Zn 2+ . The dual-emissive composite materials show excellent luminescence with two emissions of MOF-5 at 410 nm and [Zn 2 (HL) 3 ] + at 524 nm. Furthermore, by combining characteristics of MOF-5 and the guest chromophore, the composite material is highly selectively sensitive toward Al 3+ and monoethanolamine, which makes [Zn 2 (HL) 3 ] + @MOF-5 a potential self-calibrated fluorescence sensor.

  7. Evaluating Dual Career Guidance Programs for High School and College Students. Final Report. Project No. 2-2F11 from July 1, 1981 to June 30, 1982.

    ERIC Educational Resources Information Center

    Amatea, Ellen S.; Cross, E. Gail

    The Dual Career Guidance Project is a career guidance development project to design materials and models for professionals to use in assisting young men and women to develop awareness of and skills in managing a dual worker/career life style. The specific objectives of the project were to design and implement field test evaluation strategies for…

  8. Indoor Air Quality in 24 California Residences Designed as High-Performance Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Mullen, Nasim; Singer, Brett

    2015-07-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California.

  9. Spanish Moss: Not Just Hanging in There

    ERIC Educational Resources Information Center

    Suriel, Regina L.

    2010-01-01

    Transforming science curricula into multicultural science curricula requires the infusion of materials and perspectives often omitted from classroom textbooks. One strategy that may help the development of such lessons is to design lessons that incorporate the cultural history behind the concept being taught. Presented in this article is a…

  10. Guide to Library Research in Chicano Studies.

    ERIC Educational Resources Information Center

    Guerena, Salvador; Gonzales, Raquel Quiroz

    Designed to acquaint persons conducting library research in Chicano Studies with the numerous reference materials found in the University Library at the University of California-Santa Barbara, the manual provides information on the Coleccion Tloque Nahuaque, relevant subject headings, and a useful search strategy. The Coleccion Tloque Nahuaque,…

  11. Designing for Sustained Adoption: A Model of Developing Educational Innovations for Successful Propagation

    ERIC Educational Resources Information Center

    Khatri, Raina; Henderson, Charles; Cole, Renée; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney

    2016-01-01

    The physics education research community has produced a wealth of knowledge about effective teaching and learning of college level physics. Based on this knowledge, many research-proven instructional strategies and teaching materials have been developed and are currently available to instructors. Unfortunately, these intensive research and…

  12. Collaborative Art-Making for Reducing Marginalisation and Promoting Intercultural Education and Inclusion

    ERIC Educational Resources Information Center

    Hajisoteriou, Christina; Angelides, Panayiotis

    2017-01-01

    The main goal of this study is to examine how teachers and students experienced the implementation of educational activities, materials and related pedagogical strategies of collaborative art-making. The activities were designed to strengthen intercultural education and inclusion practices, reduce social and academic marginalisation and increase…

  13. A Portfolio of Energy Ideas: Science.

    ERIC Educational Resources Information Center

    Clark, Richard C., Ed.

    Presented are 10 science energy education units designed to help students learn how to turn science questions and problems about energy into experiments. Each unit focuses on subject-matter knowledge and on the logic and strategy of scientific problem solving. These teacher-oriented materials include an overview of each unit, background…

  14. Designing Writing Programs in Business and Industry.

    ERIC Educational Resources Information Center

    Freed, Richard C.

    Current training in writing for business and industry usually takes the form of short courses. However, the short course is an inappropriate way to teach writing because it is inefficient, represents writing behaviors or strategies inappropriate for some writers, rarely allows time for adequate criticism and revision, presents too much material in…

  15. Computer Networking Strategies for Building Collaboration among Science Educators.

    ERIC Educational Resources Information Center

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  16. Supporting Sustained Adoption of Education Innovations: The Designing for Sustained Adoption Assessment Instrument

    ERIC Educational Resources Information Center

    Stanford, Courtney; Cole, Renée; Froyd, Jeff; Friedrichsen, Debra; Khatri, Raina; Henderson, Charles

    2015-01-01

    Background: Every year, significant effort and resources are expended around the world to develop innovative instructional strategies and materials to improve undergraduate Science, Technology, Engineering, and Mathematics education. Despite convincing evidence of efficacy with respect to student learning, most will struggle to become successfully…

  17. Ethical Reasoning Instruction in Non-Ethics Business Courses: A Non-Intrusive Approach

    ERIC Educational Resources Information Center

    Wilhelm, William J.

    2010-01-01

    This article discusses four confirmatory studies designed to corroborate findings from prior developmental research which yielded statistically significant improvements in student moral reasoning when specific instructional strategies and content materials were utilized in non-ethics business courses by instructors not formally trained in business…

  18. Development and Design of Problem Based Learning Game-Based Courseware

    ERIC Educational Resources Information Center

    Chang, Chiung-Sui; Chen, Jui-Fa; Chen, Fei-Ling

    2015-01-01

    In an educational environment, instructors would always think of ways to provide students with motivational learning materials and efficient learning strategies. Hence, many researchers have proposed that students' problem-solving ability enhances their learning. Problem-solving ability plays an important role for users in dealing with problems…

  19. Economics and Entrepreneurship. Teaching Strategies. Master Curriculum Guide.

    ERIC Educational Resources Information Center

    Clow, John E.; And Others

    Designed for high school teachers of economics, social studies, and business education, this teaching package provides materials for a course that combines study of basic economic concepts with an understanding of entrepreneurship. The teacher resource manual consists of three parts. Part 1 is an overview of the relationship between economics and…

  20. Teaching About India. A Guide for Ninth Grade Social Studies.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The teaching and resource guide on India for ninth grade students is intended to supplement and enrich "Social Studies 9: Asian and African Culture." It is designed as a flexible set of suggestions for incorporating concepts, understandings, objectives, strategies, and available materials. Emphasis is upon inductive methods which…

  1. Bicentennial: Materials and Strategies.

    ERIC Educational Resources Information Center

    Dynneson, Thomas L., Ed.; And Others

    This resource guide is intended for use as a general guide for teachers who are designing elementary and secondary Bicentennial social studies units. The unit stresses three main topics in both an historical and contemporary framework: family life, transportation, and social conflict for the periods of 1776, 1876, and 1976. Emphasis is on the…

  2. Contemporary Education in China: A Course Design. Occasional Paper Series No. 76-2.

    ERIC Educational Resources Information Center

    Seifman, Eli

    A newly developed course on education in contemporary China is described. Objectives, curriculum materials, teaching strategies, learning activities, and evaluation are briefly outlined. The three-credit, college-level course explores educational policy and practice in the People's Republic of China since 1949, with emphasis on the…

  3. Resource efficiency potential of selected technologies, products and strategies.

    PubMed

    Rohn, Holger; Pastewski, Nico; Lettenmeier, Michael; Wiesen, Klaus; Bienge, Katrin

    2014-03-01

    Despite rising prices for natural resources during the past 30 years, global consumption of natural resources is still growing. This leads to ecological, economical and social problems. So far, however, limited effort has been made to decrease the natural resource use of goods and services. While resource efficiency is already on the political agenda (EU and national resource strategies), there are still substantial knowledge gaps on the effectiveness of resource efficiency improvement strategies in different fields. In this context and within the project "Material Efficiency and Resource Conservation", the natural resource use of 22 technologies, products and strategies was calculated and their resource efficiency potential analysed. In a preliminary literature- and expert-based identification process, over 250 technologies, strategies, and products, which are regarded as resource efficient, were identified. Out of these, 22 subjects with high resource efficiency potential were selected. They cover a wide range of relevant technologies, products and strategies, such as energy supply and storage, Green IT, transportation, foodstuffs, agricultural engineering, design strategies, lightweight construction, as well as the concept "Using Instead of Owning". To assess the life-cycle-wide resource use of the selected subjects, the material footprint has been applied as a reliable indicator. In addition, sustainability criteria on a qualitative basis were considered. The results presented in this paper show significant resource efficiency potential for many technologies, products and strategies. Copyright © 2013. Published by Elsevier B.V.

  4. New cochlear implant research coding strategy based on the MP3(000™) strategy to reintroduce the virtual channel effect.

    PubMed

    Neben, Nicole; Lenarz, Thomas; Schuessler, Mark; Harpel, Theo; Buechner, Andreas

    2013-05-01

    Results for speech recognition in noise tests when using a new research coding strategy designed to introduce the virtual channel effect provided no advantage over MP3(000™). Although statistically significant smaller just noticeable differences (JNDs) were obtained, the findings for pitch ranking proved to have little clinical impact. The aim of this study was to explore whether modifications to MP3000 by including sequential virtual channel stimulation would lead to further improvements in hearing, particularly for speech recognition in background noise and in competing-talker conditions, and to compare results for pitch perception and melody recognition, as well as informally collect subjective impressions on strategy preference. Nine experienced cochlear implant subjects were recruited for the prospective study. Two variants of the experimental strategy were compared to MP3000. The study design was a single-blinded ABCCBA cross-over trial paradigm with 3 weeks of take-home experience for each user condition. Comparing results of pitch-ranking, a significantly reduced JND was identified. No significant effect of coding strategy on speech understanding in noise or competing-talker materials was found. Melody recognition skills were the same under all user conditions.

  5. Battling the challenges of training nurses to use information systems through theory-based training material design.

    PubMed

    Galani, Malatsi; Yu, Ping; Paas, Fred; Chandler, Paul

    2014-01-01

    The attempts to train nurses to effectively use information systems have had mixed results. One problem is that training materials are not adequately designed to guide trainees to gradually learn to use a system without experiencing a heavy cognitive load. This is because training design often does not take into consideration a learner's cognitive ability to absorb new information in a short training period. Given the high cost and difficulty of organising training in healthcare organisations, there is an urgent need for information system trainers to be aware of how cognitive overload or information overload affect a trainee's capability to acquire new knowledge and skills, and what instructional techniques can be used to facilitate effective learning. This paper introduces the concept of cognitive load and how it affects nurses when learning to use a new health information system. This is followed by the relevant strategies for instructional design, underpinned by the principles of cognitive load theory, which may be helpful for the development of effective instructional materials and activities for training nurses to use information systems.

  6. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.

    1992-01-01

    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.

  7. Designed Proteins Induce the Formation of Nanocage-containing Extracellular Vesicles

    PubMed Central

    Votteler, Jörg; Ogohara, Cassandra; Yi, Sue; Hsia, Yang; Nattermann, Una; Belnap, David M.; King, Neil P.; Sundquist, Wesley I.

    2017-01-01

    Complex biological processes are often performed by self-organizing nanostructures comprising multiple classes of macromolecules, such as ribosomes (proteins and RNA) or enveloped viruses (proteins, nucleic acids, and lipids). Approaches have been developed for designing self-assembling structures consisting of either nucleic acids1,2 or proteins3–5, but strategies for engineering hybrid biological materials are only beginning to emerge6,7. Here, we describe the design of self-assembling protein nanocages that direct their own release from human cells inside small vesicles in a manner that resembles some viruses. We refer to these hybrid biomaterials as Enveloped Protein Nanocages (EPNs). Robust EPN biogenesis required protein sequence elements that encode three distinct functions: membrane binding, self-assembly, and recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery8. A variety of synthetic proteins with these functional elements induced EPN biogenesis, highlighting the modularity and generality of the design strategy. Biochemical and electron cryomicroscopic (cryo-EM) analyses revealed that one design, EPN-01, comprised small (~100 nm) vesicles containing multiple protein nanocages that closely matched the structure of the designed 60-subunit self-assembling scaffold9. EPNs that incorporated the vesicular stomatitis viral glycoprotein (VSV-G) could fuse with target cells and deliver their contents, thereby transferring cargoes from one cell to another. These studies show how proteins can be programmed to direct the formation of hybrid biological materials that perform complex tasks, and establish EPNs as a novel class of designed, modular, genetically-encoded nanomaterials that can transfer molecules between cells. PMID:27919066

  8. Quality-by-Design II: Application of Quantitative Risk Analysis to the Formulation of Ciprofloxacin Tablets.

    PubMed

    Claycamp, H Gregg; Kona, Ravikanth; Fahmy, Raafat; Hoag, Stephen W

    2016-04-01

    Qualitative risk assessment methods are often used as the first step to determining design space boundaries; however, quantitative assessments of risk with respect to the design space, i.e., calculating the probability of failure for a given severity, are needed to fully characterize design space boundaries. Quantitative risk assessment methods in design and operational spaces are a significant aid to evaluating proposed design space boundaries. The goal of this paper is to demonstrate a relatively simple strategy for design space definition using a simplified Bayesian Monte Carlo simulation. This paper builds on a previous paper that used failure mode and effects analysis (FMEA) qualitative risk assessment and Plackett-Burman design of experiments to identity the critical quality attributes. The results show that the sequential use of qualitative and quantitative risk assessments can focus the design of experiments on a reduced set of critical material and process parameters that determine a robust design space under conditions of limited laboratory experimentation. This approach provides a strategy by which the degree of risk associated with each known parameter can be calculated and allocates resources in a manner that manages risk to an acceptable level.

  9. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Zhang, Yihui; Cho, Jiung; Lee, Juhwan; Huang, Xian; Jia, Lin; Fan, Jonathan A.; Su, Yewang; Su, Jessica; Zhang, Huigang; Cheng, Huanyu; Lu, Bingwei; Yu, Cunjiang; Chuang, Chi; Kim, Tae-Il; Song, Taeseup; Shigeta, Kazuyo; Kang, Sen; Dagdeviren, Canan; Petrov, Ivan; Braun, Paul V.; Huang, Yonggang; Paik, Ungyu; Rogers, John A.

    2013-02-01

    An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual ‘self-similar’ interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm-2. Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.

  10. De novo design of recombinant spider silk proteins for material applications.

    PubMed

    Zheng, Ke; Ling, Shengjie

    2018-05-21

    Spider silks are well known for their superior mechanical properties that are stronger and tougher than steel despite being assembled at close to ambient conditions and using water as the solvent. However, it is a significant challenge to utilize spider silks for practical applications due to their limited sources. Fortunately, genetic engineering techniques offer a promising approach to produce useable amounts of spider silk variants. Starting from these recombinant spider silk proteins, a series of experiments and simulations strategies were developed to improve the recombinant spider silk proteins (RSSP) material design and fabrication with the aim of biomimicking the structure-property-function relationships of spider silks. Accordingly, in this review, we first introduce the structure-property-function relationship of spider silks. Then, we discuss the recent progress in the genetic synthesis of RSSPs and summarize their related multiscale self-assembly behaviors. Finally, we outline works utilizing multiscale modeling to assist RSSP material design. This article is protected by copyright. All rights reserved.

  11. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems.

    PubMed

    Xu, Sheng; Zhang, Yihui; Cho, Jiung; Lee, Juhwan; Huang, Xian; Jia, Lin; Fan, Jonathan A; Su, Yewang; Su, Jessica; Zhang, Huigang; Cheng, Huanyu; Lu, Bingwei; Yu, Cunjiang; Chuang, Chi; Kim, Tae-Il; Song, Taeseup; Shigeta, Kazuyo; Kang, Sen; Dagdeviren, Canan; Petrov, Ivan; Braun, Paul V; Huang, Yonggang; Paik, Ungyu; Rogers, John A

    2013-01-01

    An important trend in electronics involves the development of materials, mechanical designs and manufacturing strategies that enable the use of unconventional substrates, such as polymer films, metal foils, paper sheets or rubber slabs. The last possibility is particularly challenging because the systems must accommodate not only bending but also stretching. Although several approaches are available for the electronics, a persistent difficulty is in power supplies that have similar mechanical properties, to allow their co-integration with the electronics. Here we introduce a set of materials and design concepts for a rechargeable lithium ion battery technology that exploits thin, low modulus silicone elastomers as substrates, with a segmented design in the active materials, and unusual 'self-similar' interconnect structures between them. The result enables reversible levels of stretchability up to 300%, while maintaining capacity densities of ~1.1 mAh cm(-2). Stretchable wireless power transmission systems provide the means to charge these types of batteries, without direct physical contact.

  12. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  13. Methodology of citrate-based biomaterial development and application

    NASA Astrophysics Data System (ADS)

    Tran, M. Richard

    Biomaterials play central roles in modern strategies of regenerative medicine and tissue engineering. Attempts to find tissue-engineered solutions to cure various injuries or diseases have led to an enormous increase in the number of polymeric biomaterials over the past decade. The breadth of new materials arises from the multiplicity of anatomical locations, cell types, and mode of application, which all place application-specific requirements on the biomaterial. Unfortunately, many of the currently available biodegradable polymers are limited in their versatility to meet the wide range of requirements for tissue engineering. Therefore, a methodology of biomaterial development, which is able to address a broad spectrum of requirements, would be beneficial to the biomaterial field. This work presents a methodology of citrate-based biomaterial design and application to meet the multifaceted needs of tissue engineering. We hypothesize that (1) citric acid, a non-toxic metabolic product of the body (Krebs Cycle), can be exploited as a universal multifunctional monomer and reacted with various diols to produce a new class of soft biodegradable elastomers with the flexibility to tune the material properties of the resulting material to meet a wide range of requirements; (2) the newly developed citrate-based polymers can be used as platform biomaterials for the design of novel tissue engineering scaffolding; and (3) microengineering approaches in the form thin scaffold sheets, microchannels, and a new porogen design can be used to generate complex cell-cell and cell-microenvironment interactions to mimic tissue complexity and architecture. To test these hypotheses, we first developed a methodology of citrate-based biomaterial development through the synthesis and characterization of a family of in situ crosslinkable and urethane-doped elastomers, which are synthesized using simple, cost-effective strategies and offer a variety methods to tailor the material properties to meet the needs of a particular application. Next, we introduced a new porogen generation technique, and showed the potential application of the newly developed materials through the fabrication and characterization of scaffold sheets, multiphasic small diameter vascular grafts, and multichanneled nerve guides. Finally, the in vivo applications of citrate-based materials are exemplified through the evaluation of peripheral nerve regeneration using multichanneled guides and the ability to assist in injection-based endoscopic mucosal resection therapy. The results presented in this work show that citric acid can be utilized as a cornerstone in the development of novel biodegradable materials, and combined with microengineering approaches to produce the next generation of tissue engineering scaffolding. These enabling new biomaterials and scaffolding strategies should address many of the existing challenges in tissue engineering and advance the field as a whole.

  14. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  15. Drawing inspiration from biological optical systems

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  16. Mercouri G. Kanatzidis: Excellence and Innovations in Inorganic and Solid-State Chemistry.

    PubMed

    Arachchige, Indika U; Armatas, Gerasimos S; Biswas, Kanishka; Subrahmanyam, Kota S; Latturner, Susan; Malliakas, Christos D; Manos, Manolis J; Oh, Youngtak; Polychronopoulou, Kyriaki; P Poudeu, Pierre F; Trikalitis, Pantelis N; Zhang, Qichun; Zhao, Li-Dong; Peter, Sebastian C

    2017-07-17

    Over the last 3-4 decades, solid-state chemistry has emerged as the forefront of materials design and development. The field has revolutionized into a multidisciplinary subject and matured with a scope of new synthetic strategies, new challenges, and opportunities. Understanding the structure is very crucial in the design of appropriate materials for desired applications. Professor Mercouri G. Kanatzidis has encountered both challenges and opportunities during the course of the discovery of many novel materials. Throughout his scientific career, Mercouri and his group discovered several inorganic compounds and pioneered structure-property relationships. We, a few Ph.D. and postdoctoral students, celebrate his 60th birthday by providing a Viewpoint summarizing his contributions to inorganic solid-state chemistry. The topics discussed here are of significant interest to various scientific communities ranging from condensed matter to green energy production.

  17. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry

    PubMed Central

    Liang, Yingkai; Li, Linqing; Scott, Rebecca A.; Kiick, Kristi L.

    2017-01-01

    Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized. PMID:29151616

  18. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  19. LOX, GOX and Pressure Relief

    NASA Technical Reports Server (NTRS)

    McLeod, Ken; Stoltzfus, Joel

    2006-01-01

    Oxygen relief systems present a serious fire hazard risk with often severe consequences. This presentation offers a risk management solution strategy which encourages minimizing ignition hazards, maximizing best materials, and utilizing good practices. Additionally, the relief system should be designed for cleanability and ballistic flow. The use of the right metals, softgoods, and lubricants, along with the best assembly techniques, is stressed. Materials should also be tested if data is not available and a full hazard analysis should be conducted in an effort to minimize risk and harm.

  20. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  1. Structural design of graphene for use in electrochemical energy storage devices.

    PubMed

    Chen, Kunfeng; Song, Shuyan; Liu, Fei; Xue, Dongfeng

    2015-10-07

    There are many practical challenges in the use of graphene materials as active components in electrochemical energy storage devices. Graphene has a much lower capacitance than the theoretical capacitance of 550 F g(-1) for supercapacitors and 744 mA h g(-1) for lithium ion batteries. The macroporous nature of graphene limits its volumetric energy density and the low packing density of graphene-based electrodes prevents its use in commercial applications. Increases in the capacity, energy density and power density of electroactive graphene materials are strongly dependent on their microstructural properties, such as the number of defects, stacking, the use of composite materials, conductivity, the specific surface area and the packing density. The structural design of graphene electrode materials is achieved via six main strategies: the design of non-stacking and three-dimensional graphene; the synthesis of highly packed graphene; the production of graphene with a high specific surface area and high conductivity; the control of defects; functionalization with O, N, B or P heteroatoms; and the formation of graphene composites. These methodologies of structural design are needed for fast electrical charge storage/transfer and the transport of electrolyte ions (Li(+), H(+), K(+), Na(+)) in graphene electrodes. We critically review state-of-the-art progress in the optimization of the electrochemical performance of graphene-based electrode materials. The structure of graphene needs to be designed to develop novel electrochemical energy storage devices that approach the theoretical charge limit of graphene and to deliver electrical energy rapidly and efficiently.

  2. Layered nanocomposites inspired by the structure and mechanical properties of nacre.

    PubMed

    Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong

    2012-02-07

    Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012

  3. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium-Sulfur Batteries.

    PubMed

    Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A

    2017-05-24

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.

  4. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less

  5. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.

    PubMed

    Lee, Sechan; Kwon, Giyun; Ku, Kyojin; Yoon, Kyungho; Jung, Sung-Kyun; Lim, Hee-Dae; Kang, Kisuk

    2018-03-27

    Organic rechargeable batteries, which use organics as electrodes, are excellent candidates for next-generation energy storage systems because they offer design flexibility due to the rich chemistry of organics while being eco-friendly and potentially cost efficient. However, their widespread usage is limited by intrinsic problems such as poor electronic conductivity, easy dissolution into liquid electrolytes, and low volumetric energy density. New types of organic electrode materials with various redox centers or molecular structures have been developed over the past few decades. Moreover, research aimed at enhancing electrochemical properties via chemical tuning has been at the forefront of organic rechargeable batteries research in recent years, leading to significant progress in their performance. Here, an overview of the current developments of organic rechargeable batteries is presented, with a brief history of research in this field. Various strategies for improving organic electrode materials are discussed with respect to tuning intrinsic properties of organics using molecular modification and optimizing their properties at the electrode level. A comprehensive understanding of the progress in organic electrode materials is provided along with the fundamental science governing their performance in rechargeable batteries thus a guide is presented to the optimal design strategies to improve the electrochemical performance for next-generation battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improvement Photocatalytic Activity of P25 by Modification with a Rare Earth-Free Upconversion Nanocrystal.

    PubMed

    Yin, Dongguang; Liu, Yumin; Zhao, Feifei; Zhang, Xinyu; Zhang, Tingting; Wu, Chenglong; Chang, Na; Chen, Zhiwen

    2018-05-01

    It has been reported that coupling TiO2 with rare earth upconversion nanocrystals (UCNCs) is an efficient strategy to significantly improve photocatalytic activity of TiO2. However, the rare earth materials are scarcity and cost, and the synthesis process of UCNCs using the rare earth materials is complicated. In the present study, we have designed a new approach using a rare earth-free upconversion nanocrystal (REF-UCNCs) as upconversion luminescent material to replace the rare earth UCNCs. A novel nanocomposite photocatalyst of REF-UCNCs@P25: Mo/GN was developed for the first time. Based on the designed structure, the REF-UCNCs, Mo-doping, and GN (graphene) have a synergistic effect that can improve catalytic activity of P25 significantly. The results of photocatalytic experiments using RhB as a model pollutant under simulated solar light irradiation show that the photocatalytic efficiency of the as-prepared catalyst is 3-folds higher than that of benchmark substance P25. This work provides a new strategy for efficiently improving catalytic activity of semiconductor photocatalysts by coupling with REF-UCNCs. This approach is facile and low-cost which can be widely applied for modification of semiconductor photocatalysts and facilitates their applications in environmental protection issues using solar light.

  7. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Materials Genomics Screens for Adaptive Ion Transport Behavior by Redox-Switchable Microporous Polymer Membranes in Lithium–Sulfur Batteries

    PubMed Central

    2017-01-01

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201

  9. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    PubMed

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries

    DOE PAGES

    Doris, Sean E.; Ward, Ashleigh L.; Baskin, Artem; ...

    2017-01-10

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. In this paper, we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the ratemore » of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2 day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. Finally, this strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries.« less

  11. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  12. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  13. Acute stent recoil and optimal balloon inflation strategy: an experimental study using real-time optical coherence tomography.

    PubMed

    Kitahara, Hideki; Waseda, Katsuhisa; Yamada, Ryotaro; Otagiri, Kyuhachi; Tanaka, Shigemitsu; Kobayashi, Yuhei; Okada, Kozo; Kume, Teruyoshi; Nakagawa, Kaori; Teramoto, Tomohiko; Ikeno, Fumiaki; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro

    2016-06-12

    Our aim was to evaluate stent expansion and acute recoil at deployment and post-dilatation, and the impact of post-dilatation strategies on final stent dimensions. Optical coherence tomography (OCT) was performed on eight bare metal platforms of drug-eluting stents (3.0 mm diameter, n=6 for each) during and after balloon inflation in a silicone mock vessel. After nominal-pressure deployment, a single long (30 sec) vs. multiple short (10 sec x3) post-dilatations were performed using a non-compliant balloon (3.25 mm, 20 atm). Stent areas during deployment with original delivery systems were smaller in stainless steel stents than in cobalt-chromium and platinum-chromium stents (p<0.001), whereas subsequent acute recoil was comparable among the three materials. At post-dilatation, acute recoil was greater in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001), resulting in smaller final stent areas in cobalt-chromium and platinum-chromium stents than in stainless steel stents (p<0.001). In comparison between conventional and latest-generation cobalt-chromium stents, stent areas were not significantly different after both deployment and post-dilatation. With multiple short post-dilatations, acute recoil was significantly improved from first to third short inflation (p<0.001), achieving larger final area than a single long inflation, despite stent materials/designs (p<0.001). Real-time OCT revealed significant acute recoil in all stent types. Both stent materials/designs and post-dilatation strategies showed a significant impact on final stent expansion.

  14. Biomaterials for Bone Regenerative Engineering.

    PubMed

    Yu, Xiaohua; Tang, Xiaoyan; Gohil, Shalini V; Laurencin, Cato T

    2015-06-24

    Strategies for bone tissue regeneration have been continuously evolving for the last 25 years since the introduction of the "tissue engineering" concept. The convergence of the life, physical, and engineering sciences has brought in several advanced technologies available to tissue engineers and scientists. This resulted in the creation of a new multidisciplinary field termed as "regenerative engineering". In this article, the role of biomaterials in bone regenerative engineering is systematically reviewed to elucidate the new design criteria for the next generation of biomaterials for bone regenerative engineering. The exemplary design of biomaterials harnessing various materials characteristics towards successful bone defect repair and regeneration is highlighted. Particular attention is given to the attempts of incorporating advanced materials science, stem cell technologies, and developmental biology into biomaterials design to engineer and develop the next generation bone grafts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Material science lesson from the biological photosystem.

    PubMed

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-01-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  16. Grounded Theory as a Methodology to Design Teaching Strategies for Historically Informed Musical Performance

    ERIC Educational Resources Information Center

    Mateos-Moreno, Daniel; Alcaraz-Iborra, Mario

    2013-01-01

    Our work highlights the necessity of revising the materials employed in instrumental education, which are systematically based on a progressive development of technical abilities and, though only transversely, without a structured sequence of contents, on issues referring to the interpretation of different periods and styles. In order to elaborate…

  17. The New Youth Entrepreneur: Records and Books. Did You Make Any Money? Module 9.

    ERIC Educational Resources Information Center

    Kourilsky, Marilyn; And Others

    The New Youth Entrepreneur curriculum is a series of 12 youth-oriented educational modules containing instructional materials, learning activities, and checkup exercises designed to teach students key elements of entrepreneurship. This document is the ninth module, and introduces students to recordkeeping and bookkeeping strategies essential for…

  18. Innovative Collaborative Learning Strategies for Integrated Interactive E-Learning in the 21st Century

    ERIC Educational Resources Information Center

    Son, Barbara

    2016-01-01

    There is a constant challenge for online programs, instructional designers and instructors to tailor eLearning materials for different learning styles. We examined this issue by closely looking at the innovative interactive learning models at the previous AACE Conferences (Son & Goldstone, 2011, Son & Goldstone, 2012, Son & Simonian,…

  19. Effects of Terminological Concreteness on Middle-School Students' Learning of Experimental Design

    ERIC Educational Resources Information Center

    Siler, Stephanie Ann; Klahr, David

    2016-01-01

    One obstacle to understanding abstract concepts such as the "control of variables" strategy (CVS) is the tendency for learners to focus on surface rather than deep features in instructional materials. However, in tasks such as learning CVS, these same surface features may also support understanding, provided learners realize the…

  20. Primary Test of Economic Understanding. Examiner's Manual. Revised Edition.

    ERIC Educational Resources Information Center

    Iowa Univ., Iowa City. Bureau of Business and Economic Research.

    This manual for examiners administering the Primary Test of Economic Understanding (PTEU) describes the purpose, development, and validity of the test which is designed to provide a measure of students' growth and a means to assess the effectiveness of existing materials, teaching strategies, and pre-service and in-service economics education…

  1. The Bookshelf: Digitisation and Access to Copyright Items in Norway

    ERIC Educational Resources Information Center

    Skarstein, Vigdis Moe

    2010-01-01

    Purpose: The purpose of this paper is to provide an overview of the challenges faced in digitising copyright-protected books and other materials within the National Library of Norway. Design/methodology/approach: Following a description of Bokhylla, or The Bookshelf, the paper outlines the strategies adopted within the National Library of Norway…

  2. Faces of Change. Visual Evidence: An Instructional Approach. Instructor's Notes: Film/Essay Series.

    ERIC Educational Resources Information Center

    Miller, Norman N.

    Designed for use with the multidisciplinary film project, "Faces of Change, Five Rural Societies in Transition" for the college social studies curriculum, this manual contains an overview of the material and its underlying philosophy and suggests teaching strategies. The first section discusses the overall approach, the use of films in…

  3. Report and Guidelines for the Development of Communications Campaigns.

    ERIC Educational Resources Information Center

    Tisa, Benedict

    The purpose of the document is to present ideas as guidelines for developing communication strategies to use in promoting change in rural Bangladesh villages. It gives hypothetical examples to show how communication material can be developed; offers a schematic design meant to show how communications personnel can function within the framework of…

  4. A Seven-Year Retrospective View of a Course in Epidemiology and Biostatistics.

    ERIC Educational Resources Information Center

    Mulvihill, Michael N.; And Others

    1980-01-01

    Modifications of a course in epidemiology and biostatistics, designed to facilitate the presentation of difficult material in a clinically relevant manner, are described. Key strategies include seminar sessions devoted to methods of epidemiology and the critique of pairs of published studies, and the use of a course-specific syllabus. (JMD)

  5. Drivers of Change in Construction Training: How Significant Is the Sustainability Agenda?

    ERIC Educational Resources Information Center

    Fien, John; Winfree, Tomi

    2014-01-01

    The construction industry is contributing to the sustainability agenda through numerous strategies to improve energy efficiency in the design, materials, and operating conditions of buildings. However, this is only one driver of change in the construction sector. This article, which takes Australia as a case study, shows that many other drivers…

  6. The Role of Technology-Based Scaffolding in Problem-Based Online Asynchronous Discussion

    ERIC Educational Resources Information Center

    Ak, Serife

    2016-01-01

    This study examined the effects of technology-based scaffolds that were composed through the use of the seven-stage, problem-based learning strategy on knowledge construction in a problem-based online asynchronous discussion. In a quasi-experimental setting, 60 students in an undergraduate Instructional Technology and Material Design course were…

  7. Mucking in and Mucking out: Vocational Learning in Animal Care

    ERIC Educational Resources Information Center

    Salisbury, Jane; Jephcote, Martin

    2010-01-01

    The paper draws upon empirical material from a two year qualitative research project. The paper briefly outlines the key research questions, research design and data collection strategies. The following sections draw on observational, interview and journal data from the learning sites and the teachers and students who work and learn in them are…

  8. Physical Science. Teacher's Guide [and Student Guide]. Parallel Alternative Strategies for Students (PASS).

    ERIC Educational Resources Information Center

    Danner, Greg, Ed.; Fresen, Sue, Ed.

    This teacher's guide and student guide unit contains supplemental readings, activities, and methods adapted for secondary students who have disabilities and other students with diverse learning needs. The materials are designed to help these students succeed in regular education content courses and include simplified text and smaller units of…

  9. Earth/Space Science Course No. 2001310. [Student Guide and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Atkinson, Missy

    These documents contain instructional materials for the Earth/Space Science curriculum designed by the Florida Department of Education. The student guide is adapted for students with disabilities or diverse learning needs. The content of Parallel Alternative Strategies for Students (PASS) differs from standard textbooks with its simplified text,…

  10. NIST: Information Management in the AMRF

    NASA Technical Reports Server (NTRS)

    Callaghan, George (Editor)

    1991-01-01

    The information management strategies developed for the NIST Automated Manufacturing Research Facility (AMRF) - a prototype small batch manufacturing facility used for integration and measurement related standards research are outlined in this video. The five major manufacturing functions - design, process planning, off-line programming, shop floor control, and materials processing are explained and their applications demonstrated.

  11. Internal Charging Design Environments for the Earths Radiation Belts

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2009-01-01

    Relativistic electrons in the Earth's radiation belts are a widely recognized threat to spacecraft because they penetrate lightly shielded vehicle hulls and deep into insulating materials where they accumulate to sufficient levels to produce electrostatic discharges. Strategies for evaluating the magnitude of the relativistic electron flux environment and its potential for producing ESD events are varied. Simple "rule of thumb" estimates such as the widely used 10(exp 10) e-/sq cm fluence within 10 hour threshold for the onset of pulsing in dielectric materials provide a quick estimate of when to expect charging issues. More sophisticated strategies based on models of the trapped electron flux within the Earth s magnetic field provide time dependent estimates of electron flux along spacecraft orbits and orbit integrate electron flux. Finally, measurements of electron flux can be used to demonstrate mean and extreme relativistic electron environments. This presentation will evaluate strategies used to specify energetic electron flux and fluence environments along spacecraft trajectories in the Earth s radiation belts.

  12. [Material base on Chinese medical theory of 'Fei and Dachang being interior-exteriorly correlated'].

    PubMed

    Li, Jie; Cheng, Xin; Jia, Yu-Hua

    2011-02-01

    By reviewing pertinent literatures, we found that there existed some defects in studying material base on Chinese medical theory of "Fei and Dachang being interior-exteriorly related", such as the low efficacy of research methods; the neglect of intestinal and respiratory microhabitat and Chinese medical functional condition; and the unconformity of research design with evidence-based medicinal requirements. Thereby, the authors offered that the researches method of initiating merely from sole material or line linkage path should be rejected. The new research strategy should be established based on the feature of the lung and large intestine network connective structure, cutting-in from correlative changes in the two terminals (respiratory system and intestinal tissue), and the intermedial key knot of connection (blood serum), screen out in high throughput the relevant materials adopting microecological, proteomic and metabonomic techniques, and catch hold of the knots of network as much as possible. Based on these to perfect the researches on coordinating mechanism of the network, and to establish a new strategy for future researching.

  13. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Du, Yingying; Wang, Yifan; Wang, Zhiying; Ma, Jun; Wang, Jianglin; Zhang, Shengmin

    2017-06-01

    Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

  14. Machine-learned and codified synthesis parameters of oxide materials

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Huang, Kevin; Tomala, Alex; Matthews, Sara; Strubell, Emma; Saunders, Adam; McCallum, Andrew; Olivetti, Elsa

    2017-09-01

    Predictive materials design has rapidly accelerated in recent years with the advent of large-scale resources, such as materials structure and property databases generated by ab initio computations. In the absence of analogous ab initio frameworks for materials synthesis, high-throughput and machine learning techniques have recently been harnessed to generate synthesis strategies for select materials of interest. Still, a community-accessible, autonomously-compiled synthesis planning resource which spans across materials systems has not yet been developed. In this work, we present a collection of aggregated synthesis parameters computed using the text contained within over 640,000 journal articles using state-of-the-art natural language processing and machine learning techniques. We provide a dataset of synthesis parameters, compiled autonomously across 30 different oxide systems, in a format optimized for planning novel syntheses of materials.

  15. Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc Hai; Wang, Hu

    2018-06-01

    A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.

  16. Topology optimization of hyperelastic structures using a level set method

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.

    2017-12-01

    Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.

  17. Design Strategies and Preliminary Prototype for a Low-Cost Arsenic Removal System for Rural Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin

    2009-09-14

    Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levelsmore » of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.« less

  18. A comprehensive influenza campaign in a managed care setting.

    PubMed

    Pearson, D C; Jackson, L A; Wagener, B; Sarver, L

    1998-11-01

    Group Health Cooperative, a large, membership-governed, staff model health maintenance organization (HMO), has designed a comprehensive influenza campaign for identifying, recruiting and vaccinating enrollees at increased risk for influenza-related complications. The Cooperative's Centre for Health Promotion is responsible for the overall planning, implementation and evaluation of the influenza campaign. The model for delivering influenza immunizations has been designed to build on the strengths and capabilities of a staff model HMO with sophisticated automated information systems. The model permits area medical centres (AMCs) and physicians to use the materials and intervention strategies generated by the Centre for Health Promotion, while at the same time allowing them flexibility to design and use their own intervention strategies to increase compliance. More importantly, the model reduces resource requirements on AMCs and physicians to plan and maintain internal immunization efforts. Recommendations for improving the influenza campaign are discussed.

  19. Potential application of a homogeneous and anisotropic slab as an angle insensitive absorbing material

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Liu, Chang; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Qin, Jiayong

    2017-06-01

    In this paper, a flat and incident angle independence absorbing material is proposed and numerically verified in the optical spectrum. A homogeneous and anisotropic dielectric slab as a non-reflecting layer is first reviewed, and a feasible realization strategy of the slab is then given by using layered isotropic materials. When the loss components of the constitutive materials are not zero, the slab will work as an angle insensitive absorbing layer, and the absorption rate augments with increase of the losses. As the numerical verifications, the field distributions of a metallic cylinder and a triangular metallic object individually covered by the designed absorbing layer are demonstrated. The simulation results show that the designed absorbing layer can efficiently absorb the incident waves with the property of incident angle independence at the operation frequency. This homogeneous slab can be used in one and two dimensional situations for the realization of an invisibility cloak, a carpet cloak and even a skin cloak, if it is used to conformally cover target objects.

  20. Implementation literacy strategies on health technology theme Learning to enhance Indonesian Junior High School Student's Physics Literacy

    NASA Astrophysics Data System (ADS)

    Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi

    2016-08-01

    The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.

  1. Tools for identifying gelator scaffolds and solvents.

    PubMed

    Zurcher, Danielle M; McNeil, Anne J

    2015-03-06

    Small molecule gelators are serendipitously discovered more often than they are designed. As a consequence, it has been challenging to develop applications based on the limited set of known materials. This synopsis highlights recent strategies to streamline the process of gelator discovery, with a focus on the role of unidirectional intermolecular interactions and solvation. We present these strategies as a series of tools that can be employed to help identify gelator scaffolds and solvents for gel formation. Overall, we suggest that this guided approach is more efficient than random derivatization and screening.

  2. Empowerment of Metacognitive Skills through Development of Instructional Materials on the Topic of Hydrolysis and Buffer Solutions

    NASA Astrophysics Data System (ADS)

    Azizah, U.; Nasrudin, H.

    2018-01-01

    Metacognitive skills are one of the high-level thinking skills that pre-service teachers need in chemistry problem-solving. Metacognitive skills that empowered in learning focuses on how pre-service teachers participate in designing what was to be learned, monitor the progress of learning outcomes, and assess what has been learned in solving problems. The purpose of this research was (1) describe how pre-service teachers empowering metacognitive skills using developed instructional materials, and (2) describe the pre-service teacher’s response to the learning process. The research involved 22 pre-service teachers in Chemistry Education Program Universitas Negeri Surabaya, Indonesia. The design of this research was a pre-experimental research with One Group Pretest-Posttest Design. The data of the research was analyzed by quantitative descriptive. The result of the research that: (1) performance of metacognitive skills pre-service teachers have high and very high criteria in learning chemistry on each indicator includes goal setting, identify the known knowledge, determining the learning strategies, monitoring the relevance of knowledge which has been owned with learning strategies are used, monitoring the achievement of the goal in the making conclusions, and evaluating the process and outcomes of thinking, and (2) most of the pre-service teachers are willing to join to this teaching-learning activity.

  3. Impact of Contact Lens Material, Design, and Fitting on Discomfort.

    PubMed

    Stapleton, Fiona; Tan, Jacqueline

    2017-01-01

    To review the effect of contact lens (CL) material, design, and fitting characteristics on CL discomfort. A PubMed search identified publications describing subjective comfort and CL material, fitting, and design parameters. The review included clinical signs associated with discomfort that may be a consequence of these parameters. Reduced lens movement or more CL tightness were associated with improved comfort. Increased lens-induced paralimbal conjunctival staining and indentation, considered as quasi-indicators of CL fitting or edge design, were also associated with better comfort. No recent studies have evaluated varying CL design parameters and subjective comfort. Silicone hydrogel CLs are no different in comfort compared with hydrogel CLs. Lower equilibrium water content is associated with improved comfort in hydrogel CL wear. Coefficient of friction shows promise as a material factor potentially associated with comfort. Lid wiper epitheliopathy and lid-parallel conjunctival folds have been linked with comfort in established wearers. Recent studies have confirmed the association between more mobile CLs and more discomfort, whereas closer conformity of the CL to the bulbar conjunctiva improved subjective comfort. There is no evidence to support the perceived comfort difference between silicone hydrogel and hydrogel CL. There has been limited progress in understanding the impact of varying specific CL design parameters. Although specific clinical signs may be predictive of discomfort, their role in the natural history of discomfort remains unclear. A better understanding of the relationship between coefficient of friction and comfort and strategies to improve lubricity may hold promise for limiting CL discomfort.

  4. Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials.

    PubMed

    Long, Conglai; Wei, Tong; Yan, Jun; Jiang, Lili; Fan, Zhuangjun

    2013-12-23

    We report a facile strategy to prepare iron nanosheets directly grown on graphene sheets nanocomposite (C-PGF) through the carbonization of iron ions adsorbed onto polyaniline nanosheet/graphene oxide hybrid material. Because of the synergistic effect of iron nanosheets and graphene sheets, the as-obtained C-PGF exhibits an ultrahigh capacitance of ca. 720 F g(-1) in 6 M KOH aqueous solution. Additionally, the assembled asymmetric supercapacitor (C-PGF//Ni(OH)2/CNTs) delivers a remarkable high power density and a noticeable ultrahigh energy density of ca. 140 Wh kg(-1) (based on the total mass of active materials) and an acceptable cycling performance of 78% retention after 2000 cycles. Therefore, the designed supercapacitors with high energy density, comparable to rechargeable lithium-ion batteries (LIBs), offer an important guideline for future design of advanced next-generation supercapacitors for both industrial and consumer applications.

  5. Influence of disorder on transfer characteristics of organic electrochemical transistors

    NASA Astrophysics Data System (ADS)

    Friedlein, Jacob T.; Rivnay, Jonathan; Dunlap, David H.; McCulloch, Iain; Shaheen, Sean E.; McLeod, Robert R.; Malliaras, George G.

    2017-07-01

    Organic electrochemical transistors (OECTs) are receiving a great deal of attention as transducers of biological signals due to their high transconductance. A ubiquitous property of these devices is the non-monotonic dependence of transconductance on gate voltage. However, this behavior is not described by existing models. Using OECTs made of materials with different chemical and electrical properties, we show that this behavior arises from the influence of disorder on the electronic transport properties of the organic semiconductor and occurs even in the absence of contact resistance. These results imply that the non-monotonic transconductance is an intrinsic property of OECTs and cannot be eliminated by device design or contact engineering. Finally, we present a model based on the physics of electronic conduction in disordered materials. This model fits experimental transconductance curves and describes strategies for rational material design to improve OECT performance in sensing applications.

  6. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    PubMed

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Research on the effects of geometrical and material uncertainties on the band gap of the undulated beam

    NASA Astrophysics Data System (ADS)

    Li, Yi; Xu, Yanlong

    2017-09-01

    Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.

  8. Recent Advances in Designing and Fabricating Self‐Supported Nanoelectrodes for Supercapacitors

    PubMed Central

    Zhao, Huaping; Liu, Long; Vellacheri, Ranjith

    2017-01-01

    Abstract Owing to the outstanding advantages as electrical energy storage system, supercapacitors have attracted tremendous research interests over the past decade. Current research efforts are being devoted to improve the energy storage capabilities of supercapacitors through either discovering novel electroactive materials or nanostructuring existing electroactive materials. From the device point of view, the energy storage performance of supercapacitor not only depends on the electroactive materials themselves, but importantly, relies on the structure of electrode whether it allows the electroactive materials to reach their full potentials for energy storage. With respect to utilizing nanostructured electroactive materials, the key issue is to retain all advantages of the nanoscale features for supercapacitors when being assembled into electrodes and the following devices. Rational design and fabrication of self‐supported nanoelectrodes is therefore considered as the most promising strategy to address this challenge. In this review, we summarize the recent advances in designing and fabricating self‐supported nanoelectrodes for supercapacitors towards high energy storage capability. Self‐supported homogeneous and heterogeneous nanoelectrodes in the forms of one‐dimensional (1D) nanoarrays, two‐dimensional (2D) nanoarrays, and three‐dimensional (3D) nanoporous architectures are introduced with their representative results presented. The challenges and perspectives in this field are also discussed. PMID:29051862

  9. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    PubMed

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Plasma-Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy.

    PubMed

    Dou, Shuo; Tao, Li; Wang, Ruilun; El Hankari, Samir; Chen, Ru; Wang, Shuangyin

    2018-05-01

    Renewable energy technology has been considered as a "MUST" option to lower the use of fossil fuels for industry and daily life. Designing critical and sophisticated materials is of great importance in order to realize high-performance energy technology. Typically, efficient synthesis and soft surface modification of nanomaterials are important for energy technology. Therefore, there are increasing demands on the rational design of efficient electrocatalysts or electrode materials, which are the key for scalable and practical electrochemical energy devices. Nevertheless, the development of versatile and cheap strategies is one of the main challenges to achieve the aforementioned goals. Accordingly, plasma technology has recently appeared as an extremely promising alternative for the synthesis and surface modification of nanomaterials for electrochemical devices. Here, the recent progress on the development of nonthermal plasma technology is highlighted for the synthesis and surface modification of advanced electrode materials for renewable energy technology including electrocatalysts for fuel cells, water splitting, metal-air batteries, and electrode materials for batteries and supercapacitors, etc. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Student engagement in pharmacology courses using online learning tools.

    PubMed

    Karaksha, Abdullah; Grant, Gary; Anoopkumar-Dukie, Shailendra; Nirthanan, S Niru; Davey, Andrew K

    2013-08-12

    To assess factors influencing student engagement with e-tools used as a learning supplement to the standard curriculum in pharmacology courses. A suite of 148 e-tools (interactive online teaching materials encompassing the basic mechanisms of action for different drug classes) were designed and implemented across 2 semesters for third-year pharmacy students. Student engagement and use of this new teaching strategy were assessed using a survey instrument and usage statistics for the material. Use of e-tools during semester 1 was low, a finding attributable to a majority (75%) of students either being unaware of or forgetting about the embedded e-tools and a few (20%) lacking interest in accessing additional learning materials. In contrast to semester 1, e-tool use significantly increased in semester 2 with the use of frequent reminders and announcements (p<0.001). The provision of online teaching and learning resources were only effective in increasing student engagement after the implementation of a "marketing strategy" that included e-mail reminders and motivation.

  12. On the impact of water activity on reversal tolerant fuel cell anode performance and durability

    NASA Astrophysics Data System (ADS)

    Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn

    2016-10-01

    Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.

  13. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  14. Effectiveness of project ACORDE materials: applied evaluative research in a preclinical technique course.

    PubMed

    Shugars, D A; Trent, P J; Heymann, H O

    1979-08-01

    Two instructional strategies, the traditional lecture method and a standardized self-instructional (ACORDE) format, were compared for efficiency and perceived usefulness in a preclinical restorative dentistry technique course through the use of a posttest-only control group research design. Control and experimental groups were compared on (a) technique grades, (b) didactic grades, (c) amount of time spent, (d) student and faculty perceptions, and (e) observation of social dynamics. The results of this study demonstrated the effectiveness of Project ACORDE materials in teaching dental students, provided an example of applied research designed to test contemplated instructional innovations prior to use and used a method which highlighted qualitative, as well as quantitative, techniques for data gathering in applied research.

  15. Pursuing prosthetic electronic skin

    NASA Astrophysics Data System (ADS)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  16. Energy sustainable cities. From eco villages, eco districts towards zero carbon cities

    NASA Astrophysics Data System (ADS)

    Zaręba, Anna; Krzemińska, Alicja; Łach, Janusz

    2017-11-01

    Minimizing energy consumption is the effect of sustainable design technics as among many others: designing buildings with solar access and natural ventilation, using climate responsive design materials and effective insulation. Contemporary examples of zero-carbon cities: Masdar City, United Arab Emirates and Dongtan, China, confirm technical feasibility of renewable energy by implementation of solar PV and wind technologies. The ecological city - medium or high density urban settlement separated by greenspace causes the smallest possible ecological footprint on the surrounding countryside through efficient use of land and its resources, recycling used materials and converting waste to energy. This paper investigates the concept of energy sustainable cities, examines, how urban settlements might affect building energy design in eco-villages, eco-districts (e.g. Vauban, Freiburg in Germany, Bo01 Malmo in Sweden), and discuss the strategies for achieving Zero Emission Cities principles in densely populated areas. It is focused on low energy architectural design solutions which could be incorporated into urban settlements to create ecological villages, districts and cities, designed with consideration of environmental impact, required minimal inputs of energy, water, food, waste and pollution.

  17. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheib, J.; Pless, S.; Torcellini, P.

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy usemore » requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.« less

  18. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE PAGES

    Anderson-Cook, Christine M.; Burke, Sarah E.

    2016-10-18

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  19. Discussion of “Bayesian design of experiments for industrial and scientific applications via gaussian processes”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson-Cook, Christine M.; Burke, Sarah E.

    First, we would like to commend Dr. Woods on his thought-provoking paper and insightful presentation at the 4th Annual Stu Hunter conference. We think that the material presented highlights some important needs in the area of design of experiments for generalized linear models (GLMs). In addition, we agree with Dr. Woods that design of experiements of GLMs does implicitly require expert judgement about model parameters, and hence using a Bayesian approach to capture this knowledge is a natural strategy to summarize what is known with the opportunity to incorporate associated uncertainty about that information.

  20. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.

    PubMed

    Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi

    2014-01-01

    DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.

  1. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Xiao, Chong

    2018-06-01

    Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

  2. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance.

    PubMed

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-04-07

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g(-1) even under a high mass loading (∼5 mg cm(-2)). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm(-3)) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g(-1). The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.

  3. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rechargeable quasi-solid state lithium battery with organic crystalline cathode

    PubMed Central

    Hanyu, Yuki; Honma, Itaru

    2012-01-01

    Utilization of metal-free low-cost high-capacity organic cathodes for lithium batteries has been a long-standing goal, but critical cyclability problems owing to dissolution of active materials into the electrolyte have been an inevitable obstacle. For practical utilisation of numerous cathode-active compounds proposed over the past decades, a novel battery construction strategy is required. We have designed a solid state cell that accommodates organic cathodic reactions in solid phase. The cell was successful at achieving high capacity exceeding 200 mAh/g with excellent cycleability. Further investigations confirmed that our strategy is effective for numerous other redox-active organic compounds. This implies hundreds of compounds dismissed before due to low cycleability would worth a re-visit under solid state design. PMID:22693655

  5. Two-photon absorption in diazobenzene compounds

    NASA Astrophysics Data System (ADS)

    Andrade, A. A.; Yamaki, S. B.; Misoguti, L.; Zilio, S. C.; Atvars, Teresa D. Z.; Oliveira, O. N.; Mendonça, C. R.

    2004-12-01

    An investigation is made into molecular design strategies to enhance the two-photon absorption (2PA) of organic materials by measuring the 2PA cross-section of diazoaromatic compounds with the femtosecond pulses Z-scan technique at 775 nm. These diazo dyes exhibit a moderate 2PA cross-section, of the order of 300 GM, comparable to those of regular azoaromatic compounds. The increase in the π-electron bridge in the diazoaromatic compounds does not bring, therefore, substantial increase to the measured 2PA intensities, while the main factor to enhance the 2PA cross-section is the presence of charge donor and acceptor groups. It is concluded that current molecular design strategies are unlikely to produce azoaromatic compounds that are useful for applications requiring very high 2PA coefficients.

  6. The Application of a Three-Tier Model of Intervention to Parent Training

    PubMed Central

    Phaneuf, Leah; McIntyre, Laura Lee

    2015-01-01

    A three-tier intervention system was designed for use with parents with preschool children with developmental disabilities to modify parent–child interactions. A single-subject changing-conditions design was used to examine the utility of a three-tier intervention system in reducing negative parenting strategies, increasing positive parenting strategies, and reducing child behavior problems in parent–child dyads (n = 8). The three intervention tiers consisted of (a) self-administered reading material, (b) group training, and (c) individualized video feedback sessions. Parental behavior was observed to determine continuation or termination of intervention. Results support the utility of a tiered model of intervention to maximize treatment outcomes and increase efficiency by minimizing the need for more costly time-intensive interventions for participants who may not require them. PMID:26213459

  7. Rapid Prototyping of Composite Structures

    NASA Technical Reports Server (NTRS)

    Colton, Jonathan S.

    1998-01-01

    This progress report for the project Rapid Production of Composite Structures covers the period from July 14, 1997 to June 30, 1998. It will present a short overview of the project, followed by the results to date and plans for the future. The goal of this research is to provide a minimum 100x reduction in the time required to produce arbitrary, laminated products without the need for a separate mold or an autoclave. It will accomplish this by developing the science underlying the rapid production of composite structures, specifically those of carbon fiber-epoxy materials. This scientific understanding will be reduced to practice in a demonstration device that will produce a part on the order of 12" by 12" by 6". Work in the past year has focussed on developing an understanding of the materials issues and of the machine design issues. Our initial goal was to use UV cureable resins to accomplish full cure on the machine. Therefore, we have centered our materials work around whether or not UV cureable resins will work. Currently, the answer seems to be that they will not work, because UV light cannot penetrate the carbon fibers, and because no "shadow" curing seems to occur. As a result, non-UV cureable resins are being investigated. This has resulted in a change in the machine design focus. We are now looking into a "dip and place" machine design, whereby a prepreg layer would have one side coated with a curing agent, and then would be placed onto the previous layer. This would lead to cure at the interface, but not to the top of the layer. The formulation of the resins to accomplish this task at room or slightly elevated temperatures is being investigated, as is the machine design needed to apply the curing agent and then cure or partially cure the part. A final, out-of-autoclave, post-cure may be needed with this strategy, as final cure on the machine may not be possible, as it was for the initial UV cure strategy. The remainder of this report details the progress in the materials and machine design areas. Materials Development The material system must be designed to fulfill the following requirements: to reduce the time and labor requirements of typical cure cycles; to reduce the thermal stresses developed during conventional heat curing; and to develop a structure that the build sequence requires. In order to accomplish these goals, there have been parallel tracks of investigation. One area has tested photopolymerizable (ultraviolet (UV) curable) materials and combinations of these materials with standard heat curing resins. The second area has investigated resins that cure rapidly at room or low heat temperatures. The main goal of these investigations has been to identify a system that will rapidly set or cure at room temperature during a tape lay-up process and hold its structure during a post-cure cycle.

  8. Topographic Map and Compass Use. A Teaching Packet to Supplement the Student Manual.

    ERIC Educational Resources Information Center

    Taylor, Michael

    This teacher's manual is designed to supplement the student manual for a unit of study on topographic map and compass use. The beginning section of the manual discusses (1) teaching strategy and evaluation, (2) teaching time and facilities, (3) materials and equipment required, (4) suggested field experience, (5) setting up a compass competition,…

  9. Communications--The Next Step. P.R.I.D.E. People Retraining for Industry Excellence.

    ERIC Educational Resources Information Center

    Pollak, Ave

    This workplace skills course on communication is designed to build on the communications strategies at work course. The focus of the course is the importance of team building, reaching consensus, and conflict resolution as part of the communication process. Introductory material includes a course outline and course topics. The course consists of…

  10. Teaching Reading in Russian, Volume 1. Instructional Materials for the Less Commonly Taught Languages.

    ERIC Educational Resources Information Center

    American Council on the Teaching of Foreign Languages, Yonkers, NY.

    These reading comprehension exercises, based on authentic Russian texts, are aimed at developing reading strategies in lower-level students of Russian. The exercises are designed for students reading at the Novice and Intermediate levels as determined by the American Counsel on Teaching of Foreign Languages (ACTFL) and the Educational Testing…

  11. Language Arts Handbook for Primary Teachers in Multi-Graded Classrooms. South-Central Region.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This handbook presents materials designed to assist teachers in meeting the needs of primary school children in multi-graded classrooms. The handbook is divided into two parts. The first part consists of the following sections: (1) the multi-graded school; (2) strategies for multi-graded classrooms; (3) oracy--listening and speaking; (4) language…

  12. The Effects of Different Feedback Strategies Using Computer-Administered Multiple-Choice Questions as Instruction.

    ERIC Educational Resources Information Center

    Clariana, Roy B.; And Others

    The present study investigated the effects of using different forms of material with 100 eleventh grade students enrolled in a 5-week CBI (computer based instruction) summer enrichment program in Memphis, Tennessee. The basic design consisted of two conditions of instructional support (text and questions vs. questions only), two testings…

  13. Career Exploration Occupational Information for the Junior High/Middle School. A Planning Curriculum Guide.

    ERIC Educational Resources Information Center

    Lawson, Dorothy M.; McDonald, Dorothea V.

    Materials contained in this guide are designed to be used in planning a comprehensive career education program and for developing individual career education units for grades 6-9. Section 1 is the planning guide and contains strategies for organizing, planning, and implementing a program, developing staff inservice, conducting a needs assessment,…

  14. Tributes beyond Words: Art Educators' Use of Textiles to Memorialize the Triangle Shirtwaist Factory Fire

    ERIC Educational Resources Information Center

    Mercurio, Mia Lynn; Randall, Régine

    2016-01-01

    Through the study of The Triangle Shirtwaist Factory fire, pre-service art teachers learn the about interdisciplinary design and the importance of using discipline-specific literacy strategies alongside the materials and methods of their craft. The creativity and enthusiasm with which these preservice teachers approached the work convinced us that…

  15. Integrating Microtissues in Nanofiber Scaffolds for Regenerative Nanomedicine

    PubMed Central

    Keller, Laetitia; Wagner, Quentin; Offner, Damien; Eap, Sandy; Musset, Anne-Marie; Arruebo, Manuel; Kelm, Jens M.; Schwinté, Pascale; Benkirane-Jessel, Nadia

    2015-01-01

    A new generation of biomaterials focus on smart materials incorporating cells. Here, we describe a novel generation of synthetic nanofibrous implant functionalized with living microtissues for regenerative nanomedicine. The strategy designed here enhances the effectiveness of therapeutic implants compared to current approaches used in the clinic today based on single cells added to the implant. PMID:28793604

  16. The Balancing Act: Meeting the Needs of All Children Including an Adolescent with Disabilities

    ERIC Educational Resources Information Center

    Koch, Cecelia; Mayes, Rachel

    2012-01-01

    Background: The aim of this study was to explore parents' experiences and strategies used when meeting the needs of all their children, including an adolescent with disabilities. Materials and methods: A qualitative study design was employed. The study was conducted in two phases. (i) Secondary analysis of ecocultural interviews with 12…

  17. The Prediction of Performance in Navy Signalman Class "A" School. TAEG Report No. 90.

    ERIC Educational Resources Information Center

    Mew, Dorothy V.

    A study designed to develop a selection model for the prediction of Signalman performance in sending and receiving Morse code and to evaluate training strategies was conducted with 180 Navy and Coast Guard enlisted men. Trainees were taught to send Morse code using innovative training materials (mnemonics and guided practice). High and average…

  18. Students' Strategies of Measuring Time Using Traditional "Gasing" Game in Third Grade of Primary School

    ERIC Educational Resources Information Center

    Jaelani, Anton; Putri, Ratu Ilma Indra; Hartono, Yusuf

    2013-01-01

    Understanding of measuring time has difficulty for children because it is intangible. Standard units often used directly by teacher for learning time measurement. Many researches involved games in designing learning material to facilitate fun and meaningful learning for children. For this reason, learning of time measurement that connects with…

  19. The Genius of Design

    ERIC Educational Resources Information Center

    Spencer, John

    2017-01-01

    Genius Hour is a time built into the school day or week to enable students to actively create their learning rather than passively consume it. During the time set aside for Genius Hour, students choose what they will learn about, the strategies they will use to learn it, the pace of their work, the materials and resources they will use, and the…

  20. Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials.

    PubMed

    Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui

    2015-05-06

    Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.

  1. Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.

    PubMed

    Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong

    2017-10-01

    High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effective communication approaches in tuberculosis control: Health workers' perceptions and experiences.

    PubMed

    Arulchelvan, Sriram; Elangovan, Rengan

    2017-10-01

    Health workers' experiences and understanding of the myths, misconceptions, beliefs about TB, and patients in the community (and effective communication methods) can be useful in designing effective IEC materials and strategies. To study the perceptions and experiences of health workers regarding TB disease, patients, and effective communication strategies in TB control. A survey was conducted among health workers involved in Directly Observed Treatment Short (DOTS) course. Data regarding general health beliefs, prevalent myths and misconceptions about TB in their respective localities, knowledge level among patients, and utilization of various communication strategies were collected. There is a significant increase in knowledge about TB during DOTS among patients, as observed by about half of the health workers. TB patients are aware about how TB spreads to others and their responsibilities. Regular interaction with patients is required for treatment adherence. Two thirds of the health workers believe that media-mix strategy can be very effective in creating awareness among the patients as well as the public. Health workers realized that the video player facility on their mobile phones is useful for showing health-related videos. A combination of mass media and interpersonal communication could be effective for TB control. Face-to-face communication with community members, patient-provider discussions, and information through television could be very effective techniques. Exclusive communication materials should be designed for family members of the patients. Smart phones can be used for effective implementation of TB control programs. Copyright © 2016 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  3. On Design Mining: Coevolution and Surrogate Models.

    PubMed

    Preen, Richard J; Bull, Larry

    2017-01-01

    Design mining is the use of computational intelligence techniques to iteratively search and model the attribute space of physical objects evaluated directly through rapid prototyping to meet given objectives. It enables the exploitation of novel materials and processes without formal models or complex simulation. In this article, we focus upon the coevolutionary nature of the design process when it is decomposed into concurrent sub-design-threads due to the overall complexity of the task. Using an abstract, tunable model of coevolution, we consider strategies to sample subthread designs for whole-system testing and how best to construct and use surrogate models within the coevolutionary scenario. Drawing on our findings, we then describe the effective design of an array of six heterogeneous vertical-axis wind turbines.

  4. Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials

    NASA Technical Reports Server (NTRS)

    Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.

    2009-01-01

    The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.

  5. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Guidelines for the use of fiberglass reinforced plastic in utility FGD systems. [Flue gas desulfurization (FGD); contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoza, R.J.; Vollmer, H.R.; Haberly, K.L.

    1992-11-01

    Fiberglass reinforced plastic (FRP) materials offer excellent corrosion-resistant properties and long-term cost advantages compared to exotic alloys or organic lining systems. This guideline document provides potential buyers of FRP FGD (flue gas desulfurization) equipment with enough knowledge of FRP materials and methods to make informed decisions when procuring FRP equipment or services. It is divided into the following chapters: application criteria, procurement strategies, FRP basics, guidelines for designing FRP equipment, quality management. A glossary and manufacturers information/recommendations are included.

  7. Strategies for Increasing the Market Share of Recycled Products—A Games Theory Approach

    NASA Astrophysics Data System (ADS)

    Batzias, Dimitris F.; Pollalis, Yannis A.

    2009-08-01

    A methodological framework (including 28 activity stages and 10 decision nodes) has been designed under the form of an algorithmic procedure for the development of strategies for increasing the market share of recycled products within a games theory context. A case example is presented referring to a paper market, where a recycling company (RC) is in competition with a virgin-raw-material-using company (VC). The strategies of the VC, for increasing its market share, are the strengthening of (and advertisement based on) the high quality (VC1), the high reliability (VC2), the combination quality and reliability, putting emphasis on the first component (VC3), the combination quality and reliability, putting emphasis on the second component (VC4). The strategies of the RC, for increasing its market share, are proper advertisement based on the low price of produced recycled paper satisfying minimum quality requirements (RC1), the combination of low price with sensitization of the public as regards environmental and materials-saving issues, putting emphasis on the first component (RC2), the same combination, putting emphasis on the second component (RC3). Analysis of all possible situations for the case example under examination is also presented.

  8. Supporting Interactive Teaching Methods at the New Faculty Workshop with Astronomy Lecture-Tutorials

    NASA Astrophysics Data System (ADS)

    Slater, T. F.; Brissenden, G.; Duestua, S.; Prather, E. E.

    2004-05-01

    Ongoing research by the Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona Steward Observatory suggests that, although faculty realize that lecture-based instruction is ineffective for many students, they are not aware of what interactive teaching strategies are available, particularly for large enrollment courses. A major emphasis of the AAPT/AAS New Faculty Workshop was to introduce faculty to effective active-learning strategies based on an understanding of how people learn. Faculty were introduced to think-pair-share methods where students work together to explain difficult concepts to each other. Faculty were also introduced to authentic assessment strategies that go beyond using traditional multiple-choice tests. In particular, faculty were introduced to Lecture-Tutorials for Introductory Astronomy. The Lecture-Tutorials are instructional materials intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing courses centered on conventional lectures and do not require any outside equipment or a drastic course revision for implementation. The materials are based on research into student beliefs and reasoning difficulties and use effective instructional strategies that center on student learning. Each workshop presentation was complimented by a follow-up small group discussion session.

  9. Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications.

    PubMed

    An, Qi; Huang, Tao; Shi, Feng

    2018-05-16

    Covalent layer-by-layer (LbL) assembly is a powerful method used to construct functional ultrathin films that enables nanoscopic structural precision, componential diversity, and flexible design. Compared with conventional LbL films built using multiple noncovalent interactions, LbL films prepared using covalent crosslinking offer the following distinctive characteristics: (i) enhanced film endurance or rigidity; (ii) improved componential diversity when uncharged species or small molecules are stably built into the films by forming covalent bonds; and (iii) increased structural diversity when covalent crosslinking is employed in componential, spacial, or temporal (labile bonds) selective manners. In this review, we document the chemical methods used to build covalent LbL films as well as the film properties and applications achievable using various film design strategies. We expect to translate the achievement in the discipline of chemistry (film-building methods) into readily available techniques for materials engineers and thus provide diverse functional material design protocols to address the energy, biomedical, and environmental challenges faced by the entire scientific community.

  10. Independent Manipulation of Heat and Electrical Current via Bifunctional Metamaterials

    NASA Astrophysics Data System (ADS)

    Moccia, Massimo; Castaldi, Giuseppe; Savo, Salvatore; Sato, Yuki; Galdi, Vincenzo

    2014-04-01

    Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of given observables in different physical domains. Coordinate-transformation-based methods (e.g., transformation optics) offer a powerful and systematic approach to design anisotropic, spatially inhomogeneous artificial materials (metamaterials) capable of precisely manipulating wave-based (electromagnetic, acoustic, elastic) as well as diffusion-based (heat) phenomena in a desired fashion. However, as versatile as these approaches have been, most designs have thus far been limited to serving single-target functionalities in a given physical domain. Here, we present a step towards a "transformation multiphysics" framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents) a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical "invisibility cloak." Our numerical results open up intriguing possibilities in the largely unexplored phase space of multifunctional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic, and thermal scenarios.

  11. Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.; Cahill, Clara S.

    2013-04-01

    This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).

  12. A Process Evaluation of an Efficacious Family-Based Intervention to Promote Healthy Eating: The Entre Familia: Reflejos de Salud Study.

    PubMed

    Schmied, Emily; Parada, Humberto; Horton, Lucy; Ibarra, Leticia; Ayala, Guadalupe

    2015-10-01

    Entre Familia: Reflejos de Salud was a successful family-based randomized controlled trial designed to improve dietary behaviors and intake among U.S. Latino families, specifically fruit and vegetable intake. The novel intervention design merged a community health worker (promotora) model with an entertainment-education component. This process evaluation examined intervention implementation and assessed relationships between implementation factors and dietary change. Participants included 180 mothers randomized to an intervention condition. Process evaluation measures were obtained from participant interviews and promotora notes and included fidelity, dose delivered (i.e., minutes of promotora in-person contact with families, number of promotora home visits), and dose received (i.e., participant use of and satisfaction with intervention materials). Outcome variables included changes in vegetable intake and the use of behavioral strategies to increase dietary fiber and decrease dietary fat intake. Participant satisfaction was high, and fidelity was achieved; 87.5% of families received the planned number of promotora home visits. In the multivariable model, satisfaction with intervention materials predicted more frequent use of strategies to increase dietary fiber (p ≤ .01). Trends suggested that keeping families in the prescribed intervention timeline and obtaining support from other social network members through sharing of program materials may improve changes. Study findings elucidate the relationship between specific intervention processes and dietary changes. © 2015 Society for Public Health Education.

  13. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries

    DOE PAGES

    Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun; ...

    2017-04-27

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less

  14. Materials genomics screens for adaptive ion transport behavior by redox-switchable microporous polymer membranes in lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun

    Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less

  15. Engineering shadows to fabricate optical metasurfaces.

    PubMed

    Nemiroski, Alex; Gonidec, Mathieu; Fox, Jerome M; Jean-Remy, Philip; Turnage, Evan; Whitesides, George M

    2014-11-25

    Optical metasurfaces-patterned arrays of plasmonic nanoantennas that enable the precise manipulation of light-matter interactions-are emerging as critical components in many nanophotonic materials, including planar metamaterials, chemical and biological sensors, and photovoltaics. The development of these materials has been slowed by the difficulty of efficiently fabricating patterns with the required combinations of intricate nanoscale structure, high areal density, and/or heterogeneous composition. One convenient strategy that enables parallel fabrication of periodic nanopatterns uses self-assembled colloidal monolayers as shadow masks; this method has, however, not been extended beyond a small set of simple patterns and, thus, has remained incompatible with the broad design requirements of metasurfaces. This paper demonstrates a technique-shadow-sphere lithography (SSL)-that uses sequential deposition from multiple angles through plasma-etched microspheres to expand the variety and complexity of structures accessible by colloidal masks. SSL harnesses the entire, relatively unexplored, space of shadow-derived shapes and-with custom software to guide multiangled deposition-contains sufficient degrees of freedom to (i) design and fabricate a wide variety of metasurfaces that incorporate complex structures with small feature sizes and multiple materials and (ii) generate, in parallel, thousands of variations of structures for high-throughput screening of new patterns that may yield unexpected optical spectra. This generalized approach to engineering shadows of spheres provides a new strategy for efficient prototyping and discovery of periodic metasurfaces.

  16. Design and Characterization of Calcium Phosphate Ceramic Scaffolds for Bone Tissue Engineering

    PubMed Central

    Kuhn, Liisa T.

    2015-01-01

    Objectives Our goal is to review design strategies for the fabrication of calcium phosphate ceramic scaffolds (CPS), in light of their transient role in bone tissue engineering and associated requirements for effective bone regeneration. Methods We examine the various design options available to meet mechanical and biological requirements of CPS and later focus on the importance of proper characterization of CPS in terms of architecture, mechanical properties and time-sensitive properties such as biodegradability. Finally, relationships between in vitro vs. in vivo testing are addressed, with an attempt to highlight reliable performance predictors. Results A combinatory design strategy should be used with CPS taking into consideration 3D architecture, adequate surface chemistry and topography, all of which are needed to promote bone formation. CPS represent the media of choice for delivery of osteogenic factors and anti-infectives. Non-osteoblast mediated mineral deposition can confound in vitro osteogenesis testing of CPS and therefore the expression of a variety of proteins or genes including collagen type I, bone sialoprotein and osteocalcin should be confirmed in addition to increased mineral content. Conclusions CPS are a superior scaffold material for bone regeneration because they actively promote osteogenesis. Biodegradability of CPS via calcium and phosphate release represents a unique asset. Structural control of CPS at the macro, micro and nanoscale and their combination with cells and polymeric materials is likely to lead to significant developments in bone tissue engineering. PMID:26423007

  17. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences linking environmental impact with the cellular phone production activities focusing on the upstream manufacturing and end-of-life life cycle stages. The last part of this work, the quantitative elicitation of weighting factors facilitates the comparison of trade-offs in the context of a multi-attribute problem. An integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), is proposed to assess alternatives at the design phase of a product system and is validated with the assessment of desktop display technologies and lead-free solder alternatives.

  18. Audiovisual material as educational innovation strategy to reduce anxiety response in students of human anatomy.

    PubMed

    Casado, María Isabel; Castaño, Gloria; Arráez-Aybar, Luis Alfonso

    2012-08-01

    This study presents the design, effect and utility of using audiovisual material containing real images of dissected human cadavers as an innovative educational strategy (IES) in the teaching of Human Anatomy. The goal is to familiarize students with the practice of dissection and to transmit the importance and necessity of this discipline, while modulating their anxiety. The study included 303 first-year Human Anatomy students, randomly assigned to two groups (Traditional and Educational Innovation). Their state of anxiety was measured using the State-Trait-Anxiety Inventory. Repeated measures ANOVA with between-subject factors was applied. The between-subject factor was Educational Innovation (EI). Two levels were established for this factor. The within-subject factor was Time, four levels being considered here. The results show that the effects of the Educational Innovation factor, Time factor and EI × Time interaction were statistically significant. These results provide an additional element of efficacy to the use of videos as an IES. That is, the use of video material as an introduction into an anxiety-provoking situation which resembles real-life viewing and interaction with human cadavers for the first time significantly diminishes the anticipatory reaction of dread against which novel students have not had the opportunity to develop any cognitive strategy of emotional control.

  19. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    PubMed

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is, converting cheap biomass into high value-added 3D carbon nanomaterials and designing diverse functional materials on 3D carbon structure. We first briefly introduce the history, constituent, and microstructure features of BC and discuss its advantages as a raw material for preparing the CNF aerogels. Then, we summarize the methods and strategies for preparing various 3D carbon-based nanomaterials from BC. In addition, the potential applications of the developed CNF aerogel based functional materials are also highlighted in this Account, including stretchable conductors, oxygen reduction reaction catalysts, supercapacitors, lithium-ion battery, and oil cleanup. Finally, we give some prospects on the future challenges in this emerging research area of designing CNF aerogel based functional nanomaterials from BC.

  20. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery

    PubMed Central

    An, Fei-Fei; Zhang, Xiao-Hong

    2017-01-01

    Biosafety is the primary concern in clinical translation of nanomedicine. As an intrinsic ingredient of human blood without immunogenicity and encouraged by its successful clinical application in Abraxane, albumin has been regarded as a promising material to produce nanoparticles for bioimaging and drug delivery. The strategies for synthesizing albumin-based nanoparticles could be generally categorized into five classes: template, nanocarrier, scaffold, stabilizer and albumin-polymer conjugate. This review introduces approaches utilizing albumin in the preparation of nanoparticles and thereby provides scientists with knowledge of goal-driven design on albumin-based nanomedicine. PMID:29109768

  1. The Quest toward limb regeneration: a regenerative engineering approach

    PubMed Central

    Laurencin, Cato T.; Nair, Lakshmi S.

    2016-01-01

    The Holy Grail to address the clinical grand challenge of human limb loss is to develop innovative strategies to regrow the amputated limb. The remarkable advances in the scientific understanding of regeneration, stem cell science, material science and engineering, physics and novel surgical approaches in the past few decades have provided a regenerative tool box to face this grand challenge and address the limitations of human wound healing. Here we discuss the convergence approach put forward by the field of Regenerative Engineering to use the regenerative tool box to design and develop novel translational strategies to limb regeneration. PMID:27047679

  2. Lipid-based nanotubes as functional architectures with embedded fluorescence and recognition capabilities.

    PubMed

    John, George; Mason, Megan; Ajayan, Pulickel M; Dordick, Jonathan S

    2004-11-24

    A limited combinatorial strategy was used to synthesize a small library of soft lipid-based materials ranging from structurally unordered fibers to highly uniform nanotubes. The latter nanotubes are comprised of a bilayer structure with interdigitated alkyl chains associated through hydrophobic interactions. These tubes contain accessible 2,6-diaminopyridine linkers that can interact with thymidine and related nucleosides through multipoint hydrogen bonding, thereby quenching the intrinsic fluorescence of the aromatic linker. These results are the first example of a systematic strategy to design functional lipid nanotubes with precise structural and functional features.

  3. The impact behaviour of silk cocoons.

    PubMed

    Chen, Fujia; Hesselberg, Thomas; Porter, David; Vollrath, Fritz

    2013-07-15

    Silk cocoons, constructed by silkmoths (Lepidoptera), are protective structural composites. Some cocoons appear to have evolved towards structural and material optimisation in order to sustain impact strikes from predators and hinder parasite ingress. This study investigates the protective properties of silk cocoons with different morphologies by evaluating their impact resistance and damage tolerance. Finite element analysis was used to analyse empirical observations of the quasi-static impact response of the silk cocoons, and to evaluate the separate benefits of the structures and materials through the deformation and damage mechanism. We use design principles from composite engineering in order to understand the structure-property-function relationship of silkworm cocoons. Understanding the highly evolved survival strategies of the organisms building natural cocoons will hopefully lead to inspiration that in turn could lead to improved composite design.

  4. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives.

    PubMed

    Liu, Wei; Song, Min-Sang; Kong, Biao; Cui, Yi

    2017-01-01

    Energy-storage technologies such as lithium-ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever-growing market of flexible and wearable electronics has nourished progress in building multifunctional energy-storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large-scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.

    PubMed

    Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan

    2018-04-02

    A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.

  6. Tissue engineering strategies in spinal arthrodesis: the clinical imperative and challenges to clinical translation.

    PubMed

    Evans, Nick R; Davies, Evan M; Dare, Chris J; Oreffo, Richard Oc

    2013-01-01

    Skeletal disorders requiring the regeneration or de novo production of bone present considerable reconstructive challenges and are one of the main driving forces for the development of skeletal tissue engineering strategies. The skeletal or mesenchymal stem cell is a fundamental requirement for osteogenesis and plays a pivotal role in the design and application of these strategies. Research activity has focused on incorporating the biological role of the mesenchymal stem cell with the developing fields of material science and gene therapy in order to create a construct that is not only capable of inducing host osteoblasts to produce bone, but is also osteogenic in its own right. This review explores the clinical need for reparative approaches in spinal arthrodesis, identifying recent tissue engineering strategies employed to promote spinal fusion, and considers the ongoing challenges to successful clinical translation.

  7. Enhancing regenerative approaches with nanoparticles

    PubMed Central

    Habibovic, Pamela

    2017-01-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. PMID:28404870

  8. Enhancing regenerative approaches with nanoparticles.

    PubMed

    van Rijt, Sabine; Habibovic, Pamela

    2017-04-01

    In this review, we discuss recent developments in the field of nanoparticles and their use in tissue regeneration approaches. Owing to their unique chemical properties and flexibility in design, nanoparticles can be used as drug delivery systems, to create novel features within materials or as bioimaging agents, or indeed these properties can be combined to create smart multifunctional structures. This review aims to provide an overview of this research field where the focus will be on nanoparticle-based strategies to stimulate bone regeneration; however, the same principles can be applied for other tissue and organ regeneration strategies. In the first section, nanoparticle-based methods for the delivery of drugs, growth factors and genetic material to promote tissue regeneration are discussed. The second section deals with the addition of nanoparticles to materials to create nanocomposites. Such materials can improve several material properties, including mechanical stability, biocompatibility and biological activity. The third section will deal with the emergence of a relatively new field of research using nanoparticles in advanced cell imaging and stem cell tracking approaches. As the development of nanoparticles continues, incorporation of this technology in the field of regenerative medicine will ultimately lead to new tools that can diagnose, track and stimulate the growth of new tissues and organs. © 2017 The Author(s).

  9. UV-cured polymer optics

    NASA Astrophysics Data System (ADS)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  10. Faded-example as a Tool to Acquire and Automate Mathematics Knowledge

    NASA Astrophysics Data System (ADS)

    Retnowati, E.

    2017-04-01

    Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.

  11. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs andmore » public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.« less

  12. Living cardiac patch: the elixir for cardiac regeneration.

    PubMed

    Lakshmanan, Rajesh; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2012-12-01

    A thorough understanding of the cellular and muscle fiber orientation in left ventricular cardiac tissue is of paramount importance for the generation of artificial cardiac patches to treat the ischemic myocardium. The major challenge faced during cardiac patch engineering is to choose a perfect combination of three entities; cells, scaffolds and signaling molecules comprising the tissue engineering triad for repair and regeneration. This review provides an overview of various scaffold materials, their mechanical properties and fabrication methods utilized in cardiac patch engineering. Stem cell therapies in clinical trials and the commercially available cardiac patch materials were summarized in an attempt to provide a recent perspective in the treatment of heart failure. Various tissue engineering strategies employed thus far to construct viable thick cardiac patches is schematically illustrated. Though many strategies have been proposed for fabrication of various cardiac scaffold materials, the stage and severity of the disease condition demands the incorporation of additional cues in a suitable scaffold material. The scaffold may be nanofibrous patch, hydrogel or custom designed films. Integration of stem cells and biomolecular cues along with the scaffold may provide the right microenvironment for the repair of unhealthy left ventricular tissue as well as promote its regeneration.

  13. Engineering clinically relevant volumes of vascularized bone

    PubMed Central

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-01-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. PMID:25877690

  14. Rapid Prototyping as Method for Developing Instructional Strategies for Supporting Computer-Mediated Communication among University Students

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2006-01-01

    Because rapid prototyping results in the quick development of curriculum, materials, and processes, it is a form of design that could be particularly useful to professors in higher education. Yet, literature documenting the use of rapid prototyping in higher education is scarce. This paper offers a case example of rapid prototyping being used as a…

  15. Improving the 5th Formers' Continuous Writing Skills through the Creative Writing Module

    ERIC Educational Resources Information Center

    Murugiah, Mohana Ram

    2013-01-01

    Writing is a complex task. The development of students' writing skill depends on the teacher's teaching strategy and also the materials used in the writing lesson. In the present study, the effectiveness of a creative writing module was examined that was designed to improve the writing skill of a group of excellent students. It was added with…

  16. Getting Started: Preparation for the Teaching Programme. Additional Literacy Support. The National Literacy Strategy.

    ERIC Educational Resources Information Center

    Department for Education and Employment, London (England).

    This Getting Started guide contains material presented at a two-day Additional Literacy Support (ALS) training course in the summer of 1999. ALS is designed to help pupils in Key Stage 2 who have already fallen behind in literacy, but who would not otherwise receive any additional support in this area. Each module includes a practical, high…

  17. Space and energy conservation housing prototype unit development

    NASA Technical Reports Server (NTRS)

    Sunshine, D. R.

    1975-01-01

    Construction plans are discussed for a house which will demonstrate the application of advanced technology to minimize energy requirements and to help direct further development in home construction by defining the interaction of integrated energy and water systems with building configuration and construction materials. Housing unit designs are provided and procedures for the analysis of a variety of housing strategies are developed.

  18. A Guide for Teaching Regional Environmental Planning. Final Report of Project - Inservice Personnel Development: Regional Environmental Planning Workshops for Tri-County Secondary School Teachers.

    ERIC Educational Resources Information Center

    Gallagher, James Joseph, Ed.

    This guide is designed for teachers, administrators, inservice leaders, and teacher educators. Its purpose is to provide an organizational framework, material, and resources for the development of instructional plans and strategies for incorporating regional environmental planning in the secondary school curriculum. The guide is divided into three…

  19. Active Cocatalysts for Photocatalytic Hydrogen Evolution Derived from Nickel or Cobalt Amine Complexes.

    PubMed

    Huang, Yi; Zhang, Bin

    2017-11-20

    A cost-effective and robust strategy for the anchoring of molecular hydrogen evolution cocatalysts onto semiconductors has recently been reported. The composite materials were highly efficient and stable towards photocatalytic H 2 evolution. This study provides guidance for the design and construction of highly active heterogeneous photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Wiseman working with BASS-II Experiment

    NASA Image and Video Library

    2014-06-26

    ISS040-E-021546 (26 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a combustion experiment known as the Burning and Suppression of Solids (BASS) inside the Microgravity Science Glovebox (MSG) located in the International Space Station?s Destiny laboratory. Without gravity, materials burn quite differently, with a spherical flame instead of the conical shape seen on Earth. BASS is studying the hypothesis that some materials may actually become more flammable in space. Results from BASS will help guide spacecraft materials selection and improve strategies for putting out accidental fires aboard spacecraft. The research also provides scientists with improved computational models that will aid in the design of fire detection and suppression systems here on Earth.

  1. Using Remote Sensing Data and Research Results for Urban Heat Island Mitigation

    NASA Technical Reports Server (NTRS)

    Estes, Maury; Luvall, Jeffrey

    1999-01-01

    This paper provides information on the characteristics of the urban heat island, research designed to provide the data needed to develop effective urban heat island reduction strategies, and the development of local working groups to develop implementation plans. As background, an overview of research results on the urban heat island phenomenon and the resultant effect on energy usage and air quality will be explored. The use of more reflective roofing materials, paving materials, tree planting, and other initiatives will be explored as a basis for strategies to mitigate urban heat islands and improve the urban environment. Current efforts to use aircraft remote sensing data in Atlanta, Baton Rouge, Sacramento, and Salt Lake City and our work with non-profit organizations designated to lead public education and strategic development efforts will be presented. Efforts to organize working groups comprised of key stakeholders, the process followed in communicating research results, and methodology for soliciting feedback and incorporating ideas into local plans, policies and decision-making will be discussed. Challenges in developing and transferring data products and research results to stakeholders will be presented. It is our ultimate goal that such efforts be integrated into plans and/or decision models that encourage sustainable development.

  2. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.

    PubMed

    Lin, Tengfei; Tang, Zhenghai; Guo, Baochun

    2014-12-10

    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (Tg) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at Td in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior.

  3. A cognitive approach for design of a multimedia informed consent video and website in pediatric research.

    PubMed

    Antal, Holly; Bunnell, H Timothy; McCahan, Suzanne M; Pennington, Chris; Wysocki, Tim; Blake, Kathryn V

    2017-02-01

    Poor participant comprehension of research procedures following the conventional face-to-face consent process for biomedical research is common. We describe the development of a multimedia informed consent video and website that incorporates cognitive strategies to enhance comprehension of study related material directed to parents and adolescents. A multidisciplinary team was assembled for development of the video and website that included human subjects professionals; psychologist researchers; institutional video and web developers; bioinformaticians and programmers; and parent and adolescent stakeholders. Five learning strategies that included Sensory-Modality view, Coherence, Signaling, Redundancy, and Personalization were integrated into a 15-min video and website material that describes a clinical research trial. A diverse team collaborated extensively over 15months to design and build a multimedia platform for obtaining parental permission and adolescent assent for participant in as asthma clinical trial. Examples of the learning principles included, having a narrator describe what was being viewed on the video (sensory-modality); eliminating unnecessary text and graphics (coherence); having the initial portion of the video explain the sections of the video to be viewed (signaling); avoiding simultaneous presentation of text and graphics (redundancy); and having a consistent narrator throughout the video (personalization). Existing conventional and multimedia processes for obtaining research informed consent have not actively incorporated basic principles of human cognition and learning in the design and implementation of these processes. The present paper illustrates how this can be achieved, setting the stage for rigorous evaluation of potential benefits such as improved comprehension, satisfaction with the consent process, and completion of research objectives. New consent strategies that have an integrated cognitive approach need to be developed and tested in controlled trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools.

    PubMed

    Das, Anup Kumar; Mandal, Vivekananda; Mandal, Subhash C

    2014-01-01

    Extraction forms the very basic step in research on natural products for drug discovery. A poorly optimised and planned extraction methodology can jeopardise the entire mission. To provide a vivid picture of different chemometric tools and planning for process optimisation and method development in extraction of botanical material, with emphasis on microwave-assisted extraction (MAE) of botanical material. A review of studies involving the application of chemometric tools in combination with MAE of botanical materials was undertaken in order to discover what the significant extraction factors were. Optimising a response by fine-tuning those factors, experimental design or statistical design of experiment (DoE), which is a core area of study in chemometrics, was then used for statistical analysis and interpretations. In this review a brief explanation of the different aspects and methodologies related to MAE of botanical materials that were subjected to experimental design, along with some general chemometric tools and the steps involved in the practice of MAE, are presented. A detailed study on various factors and responses involved in the optimisation is also presented. This article will assist in obtaining a better insight into the chemometric strategies of process optimisation and method development, which will in turn improve the decision-making process in selecting influential extraction parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Coarse-Graining of Polymer Dynamics via Energy Renormalization

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Song, Jake; Phelan, Frederick; Douglas, Jack; Keten, Sinan

    The computational prediction of the properties of polymeric materials to serve the needs of materials design and prediction of their performance is a grand challenge due to the prohibitive computational times of all-atomistic (AA) simulations. Coarse-grained (CG) modeling is an essential strategy for making progress on this problem. While there has been intense activity in this area, effective methods of coarse-graining have been slow to develop. Our approach to this fundamental problem starts from the observation that integrating out degrees of freedom of the AA model leads to a strong modification of the configurational entropy and cohesive interaction. Based on this observation, we propose a temperature-dependent systematic renormalization of the cohesive interaction in the CG modeling to recover the thermodynamic modifications in the system and the dynamics of the AA model. Here, we show that this energy renormalization approach to CG can faithfully estimate the diffusive, segmental and glassy dynamics of the AA model over a large temperature range spanning from the Arrhenius melt to the non-equilibrium glassy states. Our proposed CG strategy offers a promising strategy for developing thermodynamically consistent CG models with temperature transferability.

  6. Eco-design of low energy mechanical milling through implementation of quality function deployment and design for sustainability

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Hanif Abd; Nor, Nik Hisyamudin Muhd; Selamat, Siti Norhana; Hassan, Mohd Fahrul; Rahim, Abd Khalil Abd; Ahmad, Mohd Fauzi; Ismail, Al Emran; Omar, Badrul; Mokhtar, Mohd Faiz; Turan, Faiz Mohd; Yokoyama, Seiji

    2017-04-01

    Malaysia as a developing country favor energy demand by years which created mainly from fossil fuel. Unfortunately, the action leads to significant increment in carbon dioxide (CO2) emission that causing the global warming. The most promising mitigation strategy is by deploying Carbon Capture and Storage (CCS) technology where mineral carbonation was identified as the safest method for permanent storage and does not require continuous monitoring. Accordingly, National Green Technology was launched in 2009 to support the growth of green technology development in Malaysia as a carbon mitigation strategy. Thus, this paper aims to propose the development of a conceptual eco-design for Low Energy Mechanical Milling (LEMM). The concept was proposed by using the Quality Function Deployment (QFD) tool with combination of sustainability determinants (DFS) namely economic, environmental and social which evaluated using Solidworks 2015 sustainability assessment. The results show the new product targets for LEMM in prior on energy consumption (MJ), selling price (MYR), material cost (MYR), carbon footprint (kg CO2) with weightage of 5.2, 4.2, 3.6 and 3.6 respectively. The implementation of DFS criteria into the QFD promote to reduce material used by 16%, 35% reduction of carbon footprint, 28% less energy consumption, 28% lower air acidification, 77% of water eutrophication declined and increased recyclability by 15%.

  7. Assessment of online continuing dental education in North Carolina.

    PubMed

    Francis, B; Mauriello, S M; Phillips, C; Englebardt, S; Grayden, S K

    2000-01-01

    Dental professionals are discovering the unique advantages of asynchronous lifelong learning through continuing dental education (CDE) opportunities offered online. The purpose of this study was to evaluate both the process and outcomes of online CDE in North Carolina. The assessment was designed to provide a better understanding of practicing dental professionals experiences with online CDE and to determine the effectiveness of this learning strategy. Dental professionals from four North Carolina Area Health Education Centers regions evaluated two pilot online CDE modules in 1998. Thirty-one participants were recruited and subsequently enrolled with 23 completing at least one module. Each module included objectives, a multiple-choice pretest, interactive core material, and a post-test. Participants completed three online surveys measuring individual demographics and computer skill level, module design, and use and overall reaction to online learning. Most participants agreed that the modules were comprehensive, were pleasing in appearance, provided clear instructions, provided adequate feedback, and were easy to navigate. Most participants agreed that knowledge of the material increased. This was validated by a significant increase in mean pre- to post-test scores (p = .0001). Participants agreed that convenience was a definite advantage, and they would choose online courses again to meet their CDE needs. The least-liked aspects included technical and formatting issues. Participants were enthusiastic about online learning and learned effectively with this teaching strategy, but desired much more interactivity than existed in the current design.

  8. A survey of managed care strategies for pregnant smokers.

    PubMed

    Barker, D C; Robinson, L A; Rosenthal, A C

    2000-01-01

    The purpose of this study was to measure the content and comprehensiveness of pregnancy specific smoking cessation strategies within managed care organisations (MCOs) responding affirmatively to the national 1997-98 Addressing Tobacco in Managed Care (ATMC) survey. This cross sectional follow up study consisted of a fax survey sent to medical directors and a 37 question telephone survey of program overseers about the smoking cessation strategy. 147 MCOs identifying a pregnancy specific smoking cessation strategy on the 1997-98 ATMC survey served as the initial sample; 88 MCOs of 128 eligible plans completed both components, with a response rate of 69%. Pregnancy specific smoking cessation strategies varied. 40% of respondents used the Agency for Health Care Policy and Research guidelines for clinical smoking cessation to design their strategy. Strategies included self help materials, quit classes, telephone support and brief counselling by providers, linkages to quality improvement efforts, and use of patient databases for outreach. Only 42% offered a postpartum relapse prevention element. Lack of patient interest, competing clinic priorities, and the lack of a smoker identification system were the most problematic barriers to implementing strategies, common to at least a quarter of respondents. A majority ranked best practice manuals and web site linkages as the most useful form of technical assistance, followed by peer-to-peer counselling, regional workshops, newsletters, on-site assistance, and national conferences. The survey provides the first profile of prenatal tobacco treatment strategies in managed care. While design limitations prevent generalisation of these results to all MCOs, such information can help guide technical assistance to plans interested in reducing smoking among pregnant women.

  9. Green Toxicology: a strategy for sustainable chemical and material development.

    PubMed

    Crawford, Sarah E; Hartung, Thomas; Hollert, Henner; Mathes, Björn; van Ravenzwaay, Bennard; Steger-Hartmann, Thomas; Studer, Christoph; Krug, Harald F

    2017-01-01

    Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.

  10. Phase separation and mechanical properties of an elastomeric biomaterial from spider wrapping silk and elastin block copolymers.

    PubMed

    Muiznieks, Lisa D; Keeley, Fred W

    2016-10-01

    Elastin and silk spidroins are fibrous, structural proteins with elastomeric properties of extension and recoil. While elastin is highly extensible and has excellent recovery of elastic energy, silks are particularly strong and tough. This study describes the biophysical characterization of recombinant polypeptides designed by combining spider wrapping silk and elastin-like sequences as a strategy to rationally increase the strength of elastin-based materials while maintaining extensibility. We demonstrate a thermo-responsive phase separation and spontaneous colloid-like droplet formation from silk-elastin block copolymers, and from a 34 residue disordered region of Argiope trifasciata wrapping silk alone, and measure a comprehensive suite of tensile mechanical properties from cross-linked materials. Silk-elastin materials exhibited significantly increased strength, toughness, and stiffness compared to an elastin-only material, while retaining high failure strains and low energy loss upon recoil. These data demonstrate the mechanical tunability of protein polymer biomaterials through modular, chimeric recombination, and provide structural insights into mechanical design. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 693-703, 2016. © 2016 Wiley Periodicals, Inc.

  11. Recent progress in stem cell differentiation directed by material and mechanical cues.

    PubMed

    Lin, Xunxun; Shi, Yuan; Cao, Yilin; Liu, Wei

    2016-02-02

    Stem cells play essential roles in tissue regeneration in vivo via specific lineage differentiation induced by environmental factors. In the past, biochemical signals were the focus of induced stem cell differentiation. As reported by Engler et al (2006 Cell 126 677-89), biophysical signal mediated stem cell differentiation could also serve as an important inducer. With the advancement of material science, it becomes a possible strategy to generate active biophysical signals for directing stem cell fate through specially designed material microstructures. In the past five years, significant progress has been made in this field, and these designed biophysical signals include material elasticity/rigidity, micropatterned structure, extracellular matrix (ECM) coated materials, material transmitted extracellular mechanical force etc. A large number of investigations involved material directed differentiation of mesenchymal stem cells, neural stem/progenitor cells, adipose derived stem cells, hematopoietic stem/progenitor cells, embryonic stem cells and other cells. Hydrogel based materials were commonly used to create varied mechanical properties via modifying the ratio of different components, crosslinking levels, matrix concentration and conjugation with other components. Among them, polyacrylamide (PAM) and polydimethylsiloxane (PDMS) hydrogels remained the major types of material. Specially designed micropatterning was not only able to create a unique topographical surface to control cell shape, alignment, cell-cell and cell-matrix contact for basic stem cell biology study, but also could be integrated with 3D bioprinting to generate micropattered 3D structure and thus to induce stem cell based tissue regeneration. ECM coating on a specific topographical structure was capable of inducing even more specific and potent stem cell differentiation along with soluble factors and mechanical force. The article overviews the progress of the past five years in this particular field.

  12. A Novel Human Adipocyte-derived Basement Membrane for Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Damm, Aaron

    Tissue engineering strategies have traditionally focused on the use of synthetic polymers as support scaffolds for cell growth. Recently, strategies have shifted towards a natural biologically derived scaffold, with the main focus on decellularized organs. Here, we report the development and engineering of a scaffold naturally secreted by human preadipocytes during differentiation. During this differentiation process, the preadipocytes remodel the extracellular matrix by releasing new extracellular proteins. Finally, we investigated the viability of the new basement membrane as a scaffold for tissue engineering using human pancreatic islets, and as a scaffold for soft tissue repair. After identifying the original scaffold material, we sought to improve the yield of material, treating the cell as a bioreactor, through various nutritional and cytokine stimuli. The results suggest that adipocytes can be used as bioreactors to produce a designer-specified engineered human extracellular matrix scaffold for specific tissue engineering applications.

  13. Microfluidic Droplet-Facilitated Hierarchical Assembly for Dual Cargo Loading and Synergistic Delivery.

    PubMed

    Yu, Ziyi; Zheng, Yu; Parker, Richard M; Lan, Yang; Wu, Yuchao; Coulston, Roger J; Zhang, Jing; Scherman, Oren A; Abell, Chris

    2016-04-06

    Bottom-up hierarchical assembly has emerged as an elaborate and energy-efficient strategy for the fabrication of smart materials. Herein, we present a hierarchical assembly process, whereby linear amphiphilic block copolymers are self-assembled into micelles, which in turn are accommodated at the interface of microfluidic droplets via cucurbit[8]uril-mediated host-guest chemistry to form supramolecular microcapsules. The monodisperse microcapsules can be used for simultaneous carriage of both organic (Nile Red) and aqueous-soluble (fluorescein isothiocyanate-dextran) cargo. Furthermore, the well-defined compartmentalized structure benefits from the dynamic nature of the supramolecular interaction and offers synergistic delivery of cargos with triggered release or through photocontrolled porosity. This demonstration of premeditated hierarchical assembly, where interactions from the molecular to microscale are designed, illustrates the power of this route toward accessing the next generation of functional materials and encapsulation strategies.

  14. Pyro-Synthesis of Functional Nanocrystals

    PubMed Central

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop “design rules” not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations. PMID:23230511

  15. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption.

    PubMed

    Su, Yan; Phua, Soo Zeng Fiona; Li, Youbing; Zhou, Xianju; Jana, Deblin; Liu, Guofeng; Lim, Wei Qi; Ong, Wee Kong; Yang, Chaolong; Zhao, Yanli

    2018-05-01

    Ultralong room temperature phosphorescence (URTP) emitted from pure amorphous organic molecules is very rare. Although a few crystalline organic molecules could realize URTP with long lifetimes (>100 ms), practical applications of these crystalline organic phosphors are still challenging because the formation and maintenance of high-quality crystals are very difficult and complicated. Herein, we present a rational design for minimizing the vibrational dissipation of pure amorphous organic molecules to achieve URTP. By using this strategy, a series of URTP films with long lifetimes and high phosphorescent quantum yields (up to 0.75 s and 11.23%, respectively) were obtained from amorphous organic phosphors without visible fluorescence and phosphorescence under ambient conditions. On the basis of the unique features of URTP films, a new green screen printing technology without using any ink was developed toward confidential information encryption and decryption. This work presents a breakthrough strategy in applying amorphous organic materials for URTP.

  16. Pyro-synthesis of functional nanocrystals.

    PubMed

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop "design rules" not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations.

  17. Lanthanide Contraction as a Design Factor for High-Performance Half-Heusler Thermoelectric Materials.

    PubMed

    Liu, Yintu; Fu, Chenguang; Xia, Kaiyang; Yu, Junjie; Zhao, Xinbing; Pan, Hongge; Felser, Claudia; Zhu, Tiejun

    2018-06-25

    Forming solid solutions, as an effective strategy to improve thermoelectric performance, has a dilemma that alloy scattering will reduce both the thermal conductivity and carrier mobility. Here, an intuitive way is proposed to decouple the opposite effects, that is, using lanthanide contraction as a design factor to select alloying atoms with large mass fluctuation but small radius difference from the host atoms. Typical half-Heusler alloys, n-type (Zr,Hf)NiSn and p-type (Nb,Ta)FeSb solid solutions, are taken as paradigms to attest the validity of this design strategy, which exhibit greatly suppressed lattice thermal conductivity and maintained carrier mobility. Furthermore, by considering lanthanide contraction, n-type (Zr,Hf)CoSb-based alloys with high zT of ≈1.0 are developed. These results highlight the significance of lanthanide contraction as a design factor in enhancing the thermoelectric performance and reveal the practical potential of (Zr,Hf)CoSb-based half-Heusler compounds due to the matched n-type and p-type thermoelectric performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Accessibility of standardized information of a national colorectal cancer screening program for low health literate screening invitees: A mixed method study.

    PubMed

    Fransen, Mirjam P; Dekker, Evelien; Timmermans, Daniëlle R M; Uiters, Ellen; Essink-Bot, Marie-Louise

    2017-02-01

    To explore the accessibility of standardized printed information materials of the national Dutch colorectal cancer screening program among low health literate screening invitees and to assess the effect of the information on their knowledge about colorectal cancer and the screening program. Linguistic tools were used to analyze the text and design characteristics. The accessibility, comprehensibility and relevance of the information materials were explored in interviews and in observations (n=25). The effect of the information on knowledge was assessed in an online survey (n=127). The materials employed a simple text and design. However, respondents expressed problems with the amount of information, and the difference between screening and diagnostic follow-up. Knowledge significantly increased in 10 out of 16 items after reading the information but remained low for colorectal cancer risk, sensitivity of testing, and the voluntariness of colorectal cancer screening. Despite intelligible linguistic and design characteristics, screening invitees with low health literacy had problems in accessing, comprehending and applying standard information materials on colorectal cancer screening, and lacked essential knowledge for informed decision-making about participation. To enable equal access to informed decision-making, information strategies need to be adjusted to the skills of low health literate screening invitees. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. [Research advances in secondary development of Chinese patent medicines based on quality by design concept].

    PubMed

    Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin

    2017-03-01

    Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.

  20. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage.

    PubMed

    Melvin, Neal R; Poda, Daniel; Sutherland, Robert J

    2007-10-01

    When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.

  1. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.

    PubMed

    Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas

    2015-07-01

    The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.

  2. Cluster-mediated assembly enables step-growth copolymerization from binary nanoparticle mixtures with rationally designed architectures† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00220g

    PubMed Central

    Zhang, Xianfeng; Lv, Longfei; Wu, Guanhong; Yang, Dong

    2018-01-01

    Directed co-assembly of binary nanoparticles (NPs) into one-dimensional copolymer-like chains is fascinating but challenging in the realm of material science. While many strategies have been developed to induce the polymerization of NPs, it remains a grand challenge to produce colloidal copolymers with widely tailored compositions and precisely controlled architectures. Herein we report a robust colloidal polymerization strategy, which enables the growth of sophisticated NP chains with elaborately designed structures. By quantifying NP assembly statistics and kinetics, we establish that the linear assembly of colloidal NPs, with the assistance of PbSO4 clusters, follows a step-growth polymerization mechanism, and on the basis of this, we design and fabricate NP chains structurally analogous to random, block, and alternating copolymers, respectively. Our studies offer mechanistic insights into cluster-mediated colloidal polymerization, paving the way toward the rational synthesis of colloidal copolymers with quantitatively predicted architectures and functionalities. PMID:29862003

  3. Assembly of Layered Monetite-Chitosan Nanocomposite and Its Transition to Organized Hydroxyapatite.

    PubMed

    Ruan, Qichao; Liberman, David; Zhang, Yuzheng; Ren, Dongni; Zhang, Yunpeng; Nutt, Steven; Moradian-Oldak, Janet

    2016-06-13

    Bioinspired synthesis of hierarchically structured calcium phosphate (CaP) material is a highly promising strategy for developing improved bone substitute materials. However, synthesis of CaP materials with outstanding mechanical properties still remains an ongoing challenge. Inspired by the formation of lamellar structure in nacre, we designed an organic matrix composed of chitosan and cis-butenediolic acid (maleic acid, MAc) that could assemble into a layered complex and further guide the mineralization of monetite crystals, resulting in the formation of organized and parallel arrays of monetite platelets with a brick-and-mortar structure. Using the layered monetite-chitosan composite as a precursor, we were able to synthesize hydroxyapatite (HAp) with multiscale hierarchically ordered structure via a topotactic phase transformation process. On the nanoscale, needlelike HAp crystallites assembled into organized bundles that aligned to form highly oriented plates on the microscale. On the large-scale level, these plates with different crystal orientations were stacked together to form a layered structure. The organized structures and composite feature yielded CaP materials with improved mechanical properties close to those of bone. Our study introduces a biomimetic approach that may be practical for the design of advanced, mechanically robust materials for biomedical applications.

  4. Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes' effects on thermal & cycling stability

    DOE PAGES

    Yu, Xiqian; Hu, Enyuan; Bak, Seongmin; ...

    2015-12-07

    Structural transformation behaviors of several typical oxide cathode materials during a heating process are reviewed in detail to provide in-depth understanding of the key factors governing the thermal stability of these materials. Furthermore, we also discuss applying the information about heat induced structural evolution in the study of electrochemically induced structural changes. All these discussions are expected to provide valuable insights for designing oxide cathode materials with significantly improved structural stability for safe, long-life lithium ion batteries, as the safety of lithium-ion batteries is a critical issue. As a result, it is widely accepted that the thermal instability of themore » cathodes is one of the most critical factors in thermal runaway and related safety problems.« less

  5. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  7. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    DOE PAGES

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-10-05

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less

  8. Effects of a Multidisciplinary Approach to Improve Volume of Diagnostic Material in CT-Guided Lung Biopsies

    PubMed Central

    Ferguson, Philip E.; Sales, Catherine M.; Hodges, Dalton C.; Sales, Elizabeth W.

    2015-01-01

    Background Recent publications have emphasized the importance of a multidisciplinary strategy for maximum conservation and utilization of lung biopsy material for advanced testing, which may determine therapy. This paper quantifies the effect of a multidisciplinary strategy implemented to optimize and increase tissue volume in CT-guided transthoracic needle core lung biopsies. The strategy was three-pronged: (1) once there was confidence diagnostic tissue had been obtained and if safe for the patient, additional biopsy passes were performed to further increase volume of biopsy material, (2) biopsy material was placed in multiple cassettes for processing, and (3) all tissue ribbons were conserved when cutting blocks in the histology laboratory. This study quantifies the effects of strategies #1 and #2. Design This retrospective analysis comparing CT-guided lung biopsies from 2007 and 2012 (before and after multidisciplinary approach implementation) was performed at a single institution. Patient medical records were reviewed and main variables analyzed include biopsy sample size, radiologist, number of blocks submitted, diagnosis, and complications. The biopsy sample size measured was considered to be directly proportional to tissue volume in the block. Results Biopsy sample size increased 2.5 fold with the average total biopsy sample size increasing from 1.0 cm (0.9–1.1 cm) in 2007 to 2.5 cm (2.3–2.8 cm) in 2012 (P<0.0001). The improvement was statistically significant for each individual radiologist. During the same time, the rate of pneumothorax requiring chest tube placement decreased from 15% to 7% (P = 0.065). No other major complications were identified. The proportion of tumor within the biopsy material was similar at 28% (23%–33%) and 35% (30%–40%) for 2007 and 2012, respectively. The number of cases with at least two blocks available for testing increased from 10.7% to 96.4% (P<0.0001). Conclusions The effect of this multidisciplinary strategy to CT-guided lung biopsies was effective in significantly increasing tissue volume and number of blocks available for advanced diagnostic testing. PMID:26479367

  9. Emerging Insights into Directed Assembly: Taking Examples from Nature to Design Synthetic Processes

    NASA Astrophysics Data System (ADS)

    de Pablo, Juan J.

    There is considerable interest in controlling the assembly of polymeric material in order to create highly ordered materials for applications. Such materials are often trapped in metastable, non-equilibrium states, and the processes through which they assemble become an important aspect of the materials design strategy. An example is provided by di-block copolymer directed self-assembly, where a decade of work has shown that, through careful choice of process variables, it is possible to create ordered structures whose degree of perfection meets the constraints of commercial semiconductor manufacturing. As impactful as that work has been, it has focused on relatively simple materials neutral polymers, consisting of two or at most three blocks. Furthermore, the samples that have been produced have been limited to relatively thin films, and the assembly has been carried out on ideal, two-dimensional substrates. The question that arises now is whether one can translate those achievements to polymeric materials having a richer sequence, to monomers that include charges, to three-dimensional substrates, or to active systems that are in a permanent non-equilibrium state. Building on discoveries from the biophysics literature, this presentation will review recent work from our group and others that explains how nature has evolved to direct the assembly of nucleic acids into intricate, fully three-dimensional macroscopic functional materials that are not only active, but also responsive to external cues. We will discuss how principles from polymer physics serve to explain those assemblies, and how one might design a new generation of synthetic systems that incorporate some of those principles.

  10. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.

  11. User involvement in the implementation of clinical guidelines for common mental health disorders: a review and compilation of strategies and resources.

    PubMed

    Moreno, Eliana M; Moriana, Juan Antonio

    2016-08-09

    There is now broad consensus regarding the importance of involving users in the process of implementing guidelines. Few studies, however, have addressed this issue, let alone the implementation of guidelines for common mental health disorders. The aim of this study is to compile and describe implementation strategies and resources related to common clinical mental health disorders targeted at service users. The literature was reviewed and resources for the implementation of clinical guidelines were compiled using the PRISMA model. A mixed qualitative and quantitative analysis was performed based on a series of categories developed ad hoc. A total of 263 items were included in the preliminary analysis and 64 implementation resources aimed at users were analysed in depth. A wide variety of types, sources and formats were identified, including guides (40%), websites (29%), videos and leaflets, as well as instruments for the implementation of strategies regarding information and education (64%), self-care, or users' assessment of service quality. The results reveal the need to establish clear criteria for assessing the quality of implementation materials in general and standardising systems to classify user-targeted strategies. The compilation and description of key elements of strategies and resources for users can be of interest in designing materials and specific actions for this target audience, as well as improving the implementation of clinical guidelines.

  12. Accessing microfluidics through feature-based design software for 3D printing.

    PubMed

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  13. Accessing microfluidics through feature-based design software for 3D printing

    PubMed Central

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  14. [Influence of promotional material on hand hygiene in the safety culture of a tertiary hospital].

    PubMed

    Molina-Cabrillana, J; Dorta-Hung, M E; Otero Sanz, L; Henández Vera, J R; Martín-Rodríguez, M M; García de Carlos, P

    2016-06-01

    In order to increase safety culture about hand hygiene by means of messages and reminders about its importance in preventing nosocomial infections, we developed a new set of materials in the Complejo Hospitalario Universitario Insular Materno-Infantil of Las Palmas, Gran Canaria, constitued by two centres with 450 beds each and acredited for medical internal residents training. We hired a well-known caricaturist, who adapted the messages to the local way of speaking, by using characters that used to appear in his artwork in the local newspaper. Also, we continued to work with other graphic design professionals. We monitored adherence and consumption of products for hand rubbing. We noted an increase in both indicators in the following months after the implementation of this strategy. Moreover, we revised the infrastructures for hand hygiene, and were able to demonstrate improvements in most of the patient care areas. The material was well accepted by professionals, patients and visitors. No other interventions were made, so we think improvements can be attributable to this strategy in our setting. Copyright © 2016 SECA. Published by Elsevier Espana. All rights reserved.

  15. Tube Formation in Nanoscale Materials

    PubMed Central

    2008-01-01

    The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities. PMID:20592945

  16. Effectiveness of an online SUpport PRogramme (SUPR) for older hearing aid users: study protocol for a cluster randomised controlled trial

    PubMed Central

    Meijerink, Janine FJ; Pronk, Marieke; Paulissen, Bernadette; Witte, Birgit I; van der Wouden, Bregje; Jansen, Vera; Kramer, Sophia E

    2017-01-01

    Background An educational SUpport PRogramme called SUPR has been developed for hearing aid users (HAUs) and their communication partners (CPs) offering care beyond hearing aid fitting. SUPR teaches its users communication strategies, hearing aid handling skills and personal adjustment to hearing impairment. Methods/design Using a cluster randomised controlled trial design, 70 Dutch hearing aid dispenser practices were randomised into hearing aid fitting (care as usual, 34 practices) and hearing aid fitting including SUPR (36 practices). The aim was to recruit a total of 569 older (aged 50+ years) first-time (n=258) and experienced (n=311) HAUs and their CPs. SUPR consists of a Practical Support Booklet and online material offered via email over a period of 6–7 months. The booklet provides practical information on hearing aids, advice on communication strategies and home exercises. The online material consists of educational videos on hearing aid functionality and usage, communication strategies and peer testimonials. Finally, noncommittal email contact with the dispenser is offered. Every HAU is asked to assign a CP who is advised to be involved intensively. Effect measurements for HAUs and their CPs will occur at baseline and at 6, 12 and 18 months follow-up via online questionnaires. The primary outcomes for HAUs will be the use of communication strategies as measured by the subscales of the Communication Profile for the Hearing Impaired. A process evaluation will be performed. Ethics and dissemination The study was approved by the Dutch Institutional Review Board of the VU Medical University Center Amsterdam. This intervention could contribute to lowering the hearing impairment burden in our ageing society. The results will be disseminated through peer-reviewed publications and scientific conferences. Trial registration number ISRCTN77340339; Pre-results. PMID:28634259

  17. Sintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Ji, Qingmin; Imai, Tsubasa; Ariga, Katsuhiko; Abe, Hideki

    2017-02-01

    Particle sintering is one of the most significant impediments to functional nanoparticles in many valuable applications especially catalysis. Herein, we report that sintering-resistant nanoparticle systems can be realized through a simple materials-design which maximizes the particle-to-particle traveling distance of neighbouring nanoparticles. As a demonstration, Pt nanoparticles were placed apart from each other in wide-mouthed compartments tailored on the surface of self-assembled silica nanosheets. These Pt nanoparticles retained their particle size after calcination at elevated temperatures because the compartment wall elongates the particle-to-particle traveling distance to preclude the possibility of sintering. Moreover, these Pt nanoparticles in wide-mouthed compartments were fully accessible to the environment and exhibited much higher catalytic activity for CO oxidation than the nanoparticles confined in the nanochannels of mesoporous silica. The proposed materials-design strategy is applicable not only to industrial catalysts operating in harsh conditions, but also opens up possibilities in developing advanced nanoparticle-based materials with sustained performance.

  18. How the Number of Layers and Relative Position Modulate the Interlayer Electron Transfer in π-Stacked 2D Materials.

    PubMed

    Biancardi, Alessandro; Caraiani, Claudiu; Chan, Wai-Lun; Caricato, Marco

    2017-04-06

    Understanding the interfacial electron transfer (IET) between 2D layers is central to technological applications. We present a first-principles study of the IET between a zinc phthalocyanine film and few-layer graphene by using our recent method for the calculation of electronic coupling in periodic systems. The ultimate goal is the development of a predictive in silico approach for designing new 2D materials. We find IET to be critically dependent on the number of layers and their stacking orientation. In agreement with experiment, IET to single-layer graphene is shown to be faster than that to double-layer graphene due to interference effects between layers. We predict that additional graphene layers increase the number of IET pathways, eventually leading to a faster rate. These results shed new light on the subtle interplay between structure and IET, which may lead to more effective "bottom up" design strategies for these materials.

  19. Student Engagement in Pharmacology Courses Using Online Learning Tools

    PubMed Central

    Karaksha, Abdullah; Grant, Gary; Anoopkumar-Dukie, Shailendra; Nirthanan, S. Niru

    2013-01-01

    Objective. To assess factors influencing student engagement with e-tools used as a learning supplement to the standard curriculum in pharmacology courses. Design. A suite of 148 e-tools (interactive online teaching materials encompassing the basic mechanisms of action for different drug classes) were designed and implemented across 2 semesters for third-year pharmacy students. Assessment. Student engagement and use of this new teaching strategy were assessed using a survey instrument and usage statistics for the material. Use of e-tools during semester 1 was low, a finding attributable to a majority (75%) of students either being unaware of or forgetting about the embedded e-tools and a few (20%) lacking interest in accessing additional learning materials. In contrast to semester 1, e-tool use significantly increased in semester 2 with the use of frequent reminders and announcements (p<0.001). Conclusion. The provision of online teaching and learning resources were only effective in increasing student engagement after the implementation of a “marketing strategy” that included e-mail reminders and motivation. PMID:23966728

  20. Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks.

    PubMed

    Postma, Sjoerd G J; Vialshin, Ilia N; Gerritsen, Casper Y; Bao, Min; Huck, Wilhelm T S

    2017-02-06

    The creation of adaptive matter is heavily inspired by biological systems. However, it remains challenging to design complex material responses that are governed by reaction networks, which lie at the heart of cellular complexity. The main reason for this slow progress is the lack of a general strategy to integrate reaction networks with materials. Herein we use a systematic approach to preprogram the response of a hydrogel to a trigger, in this case the enzyme trypsin, which activates a reaction network embedded within the hydrogel. A full characterization of all the kinetic rate constants in the system enabled the construction of a computational model, which predicted different hydrogel responses depending on the input concentration of the trigger. The results of the simulation are in good agreement with experimental findings. Our methodology can be used to design new, adaptive materials of which the properties are governed by reaction networks of arbitrary complexity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top