Sample records for material evaluation system

  1. Recent advances in nondestructive evaluation made possible by novel uses of video systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1990-01-01

    Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.

  2. Adaptable Holders for Arc-Jet Screening Candidate Thermal Protection System Repair Materials

    NASA Technical Reports Server (NTRS)

    Riccio, Joe; Milhoan, Jim D.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  3. Performance prediction evaluation of ceramic materials in point-focusing solar receivers

    NASA Technical Reports Server (NTRS)

    Ewing, J.; Zwissler, J.

    1979-01-01

    A performance prediction was adapted to evaluate the use of ceramic materials in solar receivers for point focusing distributed applications. System requirements were determined including the receiver operating environment and system operating parameters for various engine types. Preliminary receiver designs were evolved from these system requirements. Specific receiver designs were then evaluated to determine material functional requirements.

  4. Computational Evaluation of Latent Heat Energy Storage Using a High Temperature Phase Change Material

    DTIC Science & Technology

    2012-05-01

    thermal energy storage system using molten silicon as a phase change material. A cylindrical receiver, absorber, converter system was evaluated using...temperature operation. This work computationally evaluates a thermal energy storage system using molten silicon as a phase change material. A cylindrical... salts ) offering a low power density and a low thermal conductivity, leading to a limited rate of charging and discharging (4). A focus on

  5. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 2

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices A and B to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix A holds the coating system, surface preparation, and application data. Appendix B holds the coating material infrared spectra.

  6. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  7. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Astrophysics Data System (ADS)

    Rey, Charles A.

    1991-03-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  8. An Evaluation Research Model for System-Wide Textbook Selection.

    ERIC Educational Resources Information Center

    Talmage, Harriet; Walberg, Herbert T.

    One component of an evaluation research model for system-wide selection of curriculum materials is reported: implementation of an evaluation design for obtaining data that permits professional and lay persons to base curriculum materials decisions on a "best fit" principle. The design includes teacher characteristics, learning environment…

  9. Materials management information systems.

    PubMed

    1996-01-01

    The hospital materials management function--ensuring that goods and services get from a source to an end user--encompasses many areas of the hospital and can significantly affect hospital costs. Performing this function in a manner that will keep costs down and ensure adequate cash flow requires effective management of a large amount of information from a variety of sources. To effectively coordinate such information, most hospitals have implemented some form of materials management information system (MMIS). These systems can be used to automate or facilitate functions such as purchasing, accounting, inventory management, and patient supply charges. In this study, we evaluated seven MMISs from seven vendors, focusing on the functional capabilities of each system and the quality of the service and support provided by the vendor. This Evaluation is intended to (1) assist hospitals purchasing an MMIS by educating materials managers about the capabilities, benefits, and limitations of MMISs and (2) educate clinical engineers and information system managers about the scope of materials management within a healthcare facility. Because software products cannot be evaluated in the same manner as most devices typically included in Health Devices Evaluations, our standard Evaluation protocol was not applicable for this technology. Instead, we based our ratings on our observations (e.g., during site visits), interviews we conducted with current users of each system, and information provided by the vendor (e.g., in response to a request for information [RFI]). We divided the Evaluation into the following sections: Section 1. Responsibilities and Information Requirements of Materials Management: Provides an overview of typical materials management functions and describes the capabilities, benefits, and limitations of MMISs. Also includes the supplementary article, "Inventory Cost and Reimbursement Issues" and the glossary, "Materials Management Terminology." Section 2. The MMIS Selection Process: Outlines steps to follow and describes factors to consider when selecting an MMIS. Also includes our Materials Management Process Evaluation and Needs Assessment Worksheet (which is also available online through ECRInet(TM)) and a list of suggested interview questions to be used when gathering user experience information for systems under consideration. Section 3A. MMIS Vendor Profiles: Presents information for the evaluated systems in a standardized, easy-to-compare format. Profiles include an Executive Summary describing our findings, a discussion of user comments, a listing of MMIS specifications, and information on the vendor's business background. Section 3B. Discussion of Vendor Profile Conclusions and Ratings: Presents our ratings and summarizes our rationale for all evaluated systems. Also includes a blank Vendor Profile Template to be used when gathering information on other vendors and systems. We found that, in general, all of the evaluated systems are able to meet most of the functional needs of a materials management department. However, we did uncover significant differences in the quality of service and support provided by each vendor, and our ratings reflect these differences: we rated two of the systems Acceptable--Preferred and four of the systems Acceptable. We have not yet rated the seventh system because our user experience information may not reflect the vendor's new ownership and management. When this vendor provides the references we requested, we will interview users and supply a rating. We caution readers against basing purchasing decisions solely on our ratings. Each hospital must consider the unique needs of its users and its overall strategic plans--a process that can be aided by using our Process Evaluation and Needs Assessment Worksheet. Our conclusions can then be used to narrow down the number of vendors under consideration...

  10. Cost analysis of hospital material management systems.

    PubMed

    Egbelu, P J; Harmonosky, C M; Ventura, J A; O'Brien, W E; Sommer, H J

    1998-01-01

    Integrated healthcare material management begins with manufactures of medical/surgical supplies, uses distributors and ends at the point of use at hospitals. Recent material management philosophies in the healthcare industry, such as just-in-time and stockless systems, are yet to be fully evaluated. In order to evaluate the cost effectiveness of each type of material management technique, a cost model for hospital materials management has been designed. Several case scenarios are analyzed and results are reported.

  11. Solar industrial process heat systems: An assessment of standards for materials and components

    NASA Astrophysics Data System (ADS)

    Rossiter, W. J.; Shipp, W. E.

    1981-09-01

    A study was conducted to obtain information on the performance of materials and components in operational solar industrial process heat (PH) systems, and to provide recommendations for the development of standards including evaluative test procedures for materials and components. An assessment of the needs for standards for evaluating the long-term performance of materials and components of IPH systems was made. The assessment was based on the availability of existing standards, and information obtained from a field survey of operational systems, the literature, and discussions with individuals in the industry. Field inspections of 10 operational IPH systems were performed.

  12. Field evaluations of residual pesticide applications and misting system on militarily relevant materials against medically important mosquitoes in Thailand

    USDA-ARS?s Scientific Manuscript database

    A key strategy to reduce insect-borne disease is to reduce contact between disease vectors and hosts. In the current study, residual pesticide application and misting system were applied on militarily relevant materials and evaluated against medically important mosquitoes. Field evaluations were car...

  13. Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 1

    NASA Technical Reports Server (NTRS)

    Greenhow, W. A.; Lewis, J. H.

    1972-01-01

    This study has been carried out to evaluate flight-qualified Saturn 5 materials, components, and systems for use, with or without modification, in the radiation environment of the nuclear flight system. The results reported herein are primarily intended to aid designers in their evaluation and selection of off-the-shelf equipments which may meet the stringent requirements and specifications associated with application on a reusable nuclear powered space system, i.e., the reusable nuclear shuttle. One of the factors which must be evaluated in the design of the RNS is the effects of radiation on materials; and it is toward this aspect of the overall effort that this analysis has been directed.

  14. Locking Nut with Stress-Distributing Insert

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.

    2010-01-01

    Reusable holders have been devised for evaluating high-temperature, plasma-resistant re-entry materials, especially fabrics. Typical material samples tested support thermal-protection-system damage repair requiring evaluation prior to re-entry into terrestrial atmosphere. These tests allow evaluation of each material to withstand the most severe predicted re-entry conditions.

  15. [Discussion on Technical Evaluation for Medical Device Registration Material].

    PubMed

    Chu, Yungao; Qian, Hong; Zhu, Yingfeng

    2017-07-30

    This article first introduces the main contents of the requirements for medical device registration. Secondly, this article chooses the vertebral forming surgery system as an example to discuss the technical evaluation for the registration research material. The article hopes to provide a reference for the applicant who prepare the registration material and the technical evaluator who make the evaluation for the medical device registration.

  16. High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.

  17. 48 CFR 252.242-7004 - Material Management and Accounting System.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... logic for costing of material transactions; and (2) Assess its MMAS and take reasonable action to comply...) necessary to evaluate system logic and to verify through transaction testing that the system is operating as... transfers of parts; (7) Maintain a consistent, equitable, and unbiased logic for costing of material...

  18. Implementing and Evaluating a Bibliographic Retrieval System for Print and Non-Print Media Materials.

    ERIC Educational Resources Information Center

    Buchholz, James L.

    This document summarizes the selection, configuration, implementation, and evaluation of BiblioFile, a CD-ROM based bibliographic retrieval system used to catalog and process library materials for 103 school centers in the Palm Beach County Schools (Florida). Technical processing included the production of spine labels, check-out cards and…

  19. Improved piston ring materials for 650 deg C service

    NASA Technical Reports Server (NTRS)

    Bjorndahl, W. D.

    1986-01-01

    A program to develop piston ring material systems which will operate at 650C was performed. In this program, two candidate high temperature piston ring substrate materials, Carpenter 709-2 and 440B, were hot formed into the piston ring shape and subsequently evaluated. In a parallel development effort ceramic and metallic piston ring coating materials were applied to cast iron rings by various processing techniques and then subjected to thermal shock and wear evaluation. Finally, promising candidate coatings were applied to the most thermally stable hot formed substrate. The results of evaluation tests of the hot formed substrate show that Carpenter 709-2 has greater thermal stability than 440B. Of the candidate coatings, plasma transferred arc (PTA) applied tungsten carbide and molybdenum based systems exhibit the greatest resistance to thermal shock. For the ceramic based systems, thermal shock resistance was improved by bond coat grading. Wear testing was conducted to 650C (1202F). For ceramic systems, the alumina/titania/zirconia/yttria composition showed highest wear resistance. For the PTA applied systems, the tungsten carbide based system showed highest wear resistance.

  20. La Base de Donnees ERIC: Evaluation de Son Utilisation et Discussion des Choix du Systeme (The ERIC Database: An Evaluation of Its Use and a Discussion of the System Model).

    ERIC Educational Resources Information Center

    Malrieu, Denise

    1983-01-01

    This overview of the ERIC system begins with a brief history of the system; a description of the types and numbers of materials contained in the database; sources of types of information for educators that are not processed by ERIC; and the various publications and reference materials produced by and for the system. The analysis of ERIC usage in…

  1. For Piping Corrosive Wastes--Glass, Metal Or Plastic? Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J. Clyde

    1964-01-01

    Materials (piping and joints) for waste-piping systems are evaluated and a material or materials best qualified for above ground service in health research facilities are recommended. Evaluation is based on cost and performance because the potential value of any material depends on its ability to compete in both areas. In general, the following…

  2. Evaluation and use of the Materials and Test (MATT) Data System for quality of construction and management review : final report.

    DOT National Transportation Integrated Search

    1985-12-01

    This report documents the review of the MATerials and Test (MATT) Data System to check the validity of data within the system. A computer program to generate the quality level of a construction material was developed. Programs were also developed to ...

  3. Improved materials systems in marine piling after nine years of exposure in Yaquina Bay : Newport, Oregon : state study : research.

    DOT National Transportation Integrated Search

    1990-02-01

    From 1979 to 1983 the Oregon State Highway Division participated with the FHWA in a demonstration Project to evaluate the feasibility of manufacturing precast, prestressed marine piles from advanced structural materials. The materials that were evalu...

  4. Development of Rapid, Continuous Calibration Techniques and Implementation as a Prototype System for Civil Engineering Materials Evaluation

    NASA Astrophysics Data System (ADS)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.

    2011-06-01

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.

  5. Development of rapid, continuous calibration techniques and implementation as a prototype system for civil engineering materials evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, M. L.; Gagarin, N.; Mekemson, J. R.

    Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less

  6. A study of surface tension driven segregation in monotectic alloy systems

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Andrews, Rosalia N.; Gowens, Terrell F.

    1988-01-01

    The compatibilities of various monotectic alloy systems with several different crucible materials were evaluated. The study was carried out using small candidate alloy samples of compositions that produced fifty volume percent of each liquid phase at the monotectic temperature. Compatibility was based on the evaluation of the wetting tendency of the two immiscible phases with the crucible material in a one-g solidified sample. Three types of wetting phenomena were observed during the evaluation. Type 1 indicates an alloy-crucible combination where the L2 phase preferentially wets the crucible material. Since L2 is usually the minority phase in desirable alloys, this material combination would be difficult to process and is therefore considered incompatible. Type 2 behavior indicates an alloy-crucible combination where the L1 phase preferentially wets the crucible material. This type of combination is considered compatible since surface tension effects should aid in processing the alloy to a useful form. Type 3 indicates any combination that leads to major reactions between the alloy and crucible material, gas entrapment, or separation of the metal from the crucible wall. Additional compatibility evaluations would have to be carried out on combinations of this category. The five alloy systems studied included aluminum-bismuth, copper-lead, aluminum-indium, aluminum-lead and cadmium-gallium. The systems were combined with crucibles of alumina, boron nitride, mullite, quartz, silicon carbide and zirconia.

  7. Development of a Test for Evaluation of the Hydrothermal Stability of Sorbents Used in Closed-Loop CO2 Removal Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Gauto, Hernando; Miller, Lee A.

    2015-01-01

    The International Space Station Carbon Dioxide Removal Assembly uses zeolite 5A molecular sieve material packed into beds for the capture of cabin CO2. The beds are cyclically heated to drive off the CO2 and restore the removal capacity. Over time, the sorbent material has been found to break down resulting in dust that restricts flow through the beds. Humidity adsorbed in the 5A zeolite when it is heated is a suspected cause of this sorbent degradation. To evaluate the impact of adsorbed water during thermal cycling, the Hydrothermal Stability Test was developed. The test configuration provides comparative side-by-side flow restriction data for two sorbent materials at specifically controlled humidity levels. While the initial focus of the testing is on 5A zeolite materials currently used on the ISS, the system will also be used to evaluate future candidate materials. This paper describes the approach, the test system, current results, and future testing.

  8. Evaluation of elastomers as gasket materials in pneumatic and hydraulic systems

    NASA Technical Reports Server (NTRS)

    Bright, C. W.; Lockhart, B. J.

    1972-01-01

    In the search for superior materials from which to make gaskets for pneumatic and hydraulic systems, promising materials were selected and tested. The testing was conducted in two phases. Those materials that passed the tests of Phase 1 were tested in Phase 2, and categorized in the order of preference.

  9. A SWOT analysis of the organization and financing of the Danish health care system.

    PubMed

    Christiansen, Terkel

    2002-02-01

    The organization and financing of the Danish health care system was evaluated within a framework of a SWOT analysis (analysis of Strengths, Weaknesses, Opportunities and Threats) by a panel of five members with a background in health economics. The present paper describes the methods and materials used for the evaluation: selection of panel members, structure of the evaluation task according to the health care triangle model, selection of background material consisting of documents and literature on the Danish health care system, and a 1-week study visit.

  10. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  11. Modal expansions in periodic photonic systems with material loss and dispersion

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Busch, Kurt; Mortensen, N. Asger

    2018-03-01

    We study band-structure properties of periodic optical systems composed of lossy and intrinsically dispersive materials. To this end, we develop an analytical framework based on adjoint modes of a lossy periodic electromagnetic system and show how the problem of linearly dependent eigenmodes in the presence of material dispersion can be overcome. We then formulate expressions for the band-structure derivative (∂ ω )/(∂ k ) (complex group velocity) and the local and total density of transverse optical states. Our exact expressions hold for 3D periodic arrays of materials with arbitrary dispersion properties and in general need to be evaluated numerically. They can be generalized to systems with two, one, or no directions of periodicity provided the fields are localized along nonperiodic directions. Possible applications are photonic crystals, metamaterials, metasurfaces composed of highly dispersive materials such as metals or lossless photonic crystals, and metamaterials or metasurfaces strongly coupled to resonant perturbations such as quantum dots or excitons in 2D materials. For illustration purposes, we analytically evaluate our expressions for some simple systems consisting of lossless dielectrics with one sharp Lorentzian material resonance added. By combining several Lorentz poles, this provides an avenue to perturbatively treat quite general material loss bands in photonic crystals.

  12. Parametric study of laminated composite material shaft of high speed rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Gonsalves, Thimothy Harold; Kumar, G. C. Mohan; Ramesh, M. R.

    2018-04-01

    In this paper some of the important parameters that influence the effectiveness of composite material shaft of high speed rotor-bearing system on rotor dynamics are analyzed. The type of composite material composition, the number of layers along with their stacking sequences are evaluated as they play an important role in deciding the best configuration suitable for the high-speed application. In this work the lateral modal frequencies for five types of composite materials shaft of a high-speed power turbine rotor-bearing system and stresses due to operating torque are evaluated. The results are useful for the selection of right combination of material, number of layers and their stacking sequences. The numerical analysis is carried out using the ANSYS Rotor dynamic analysis features.

  13. Development of a Design Supporting System for Nano-Materials based on a Framework for Integrated Knowledge of Functioning-Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro

    In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.

  14. Overview and Demonstration of USEPA’s Risk-Informed Materials Management (RIMM) Tool System

    EPA Science Inventory

    The Risk-Informed Materials Management (RIMM) Tool System is a data gathering and analysis platform for conducting material disposal and beneficial use assessments. Users can evaluate risks to human and ecological receptors associated with exposures to organic and inorganic chemi...

  15. Computer-Assisted Instruction in the Context of the Advanced Instructional System. Part II. Materials Development Procedures and System Evaluation.

    DTIC Science & Technology

    1980-03-01

    authoring system which would provide a basis for the cost effective production of computer-assisted irstruction (CAI) materials, It addresses the definition...RESULTS- - ------------------- 58 CAI Materials Development Times - - - 5J CAI Module Instructional Effectiveness -------- -- 59 First-Pass Module...CONCLUSIONS AND RECOMMENDATIONS ------ --- -- -- 70 Effectiveness of the Authoring System and Suggestions for Further Development - ----- --- -- --- 70

  16. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment-a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods for possible solution to these material problems as well as initiating some longer-range studies to improve reliability were evaluated. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating was made. More detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-deposited silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon need tomore » be performed. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  17. Materials development and evaluation for the ceramic helical expander

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landingham, R.L.; Taylor, R.W.

    The supporting role of the materials program for the ceramic helical expander program is described. The materials problems for this rotory expander in an extremely severe environment - a direct coal-fired Brayton topping cycle is defined. Readily available materials and methods are evaluated for possible solution to these material problems as well as initiating some longer-range studies to improve reliability. A preliminary screening of materials in hot coal-fired environments to select candidate materials and coating, was made, but there is a need to perform more detailed evaluations of these candidate materials-reaction-bonded silicon nitride (RBSN) and Si--Al--O--N (Sialon) system- and coatings-chemical-vapor-depositedmore » silicon nitride (CVD-Si/sub 3/N/sub 4/) and CVD-Sialon. Termination of the helical expander program abruptly stopped the materials program during this evaluation.« less

  18. Studies and research concerning BNFP: computerized nuclear materials control and accounting system development evaluation report, FY 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, J M; Ehinger, M H; Joseph, C

    1978-10-01

    Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.

  19. Product evaluation : Thoro product demonstration

    DOT National Transportation Integrated Search

    1986-07-18

    This report contains a product evaluation of Thoro System's "Roadpatch" and "Thorite". Roadpatch is a cement base, fast-setting patching material. The material is fortified with special alkali resistant glass fibers. It is designed to repair potholes...

  20. The Risk-Informed Materials Management (RIMM) Tool System for Determining Safe-Levels of Contaminated Materials Managed on the Land

    EPA Science Inventory

    EPA’s Risk-Informed Materials Management (RIMM) tool system is a modeling approach that helps risk assessors evaluate the safety of managing raw, reused, or waste material streams via a variety of common scenarios (e.g., application to farms, use as a component in road cons...

  1. Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This handbook establishes NASA program requirements for evaluation, testing, and selection of materials to preclude unsafe conditions related to flammability, odor, offgassing, and fluid compatibility. Materials intended for use in space vehicles, specified test facilities, and specified ground support equipment (GSE) must meet the requirements of this document. Additional materials performance requirements may be specified in other program or NASA center specific documentation. Responsible NASA centers materials organizations must include applicable requirements of this document in their materials control programs. Materials used in habitable areas of spacecraft, including the materials of the spacecraft, stowed equipment, and experiments, must be evaluated for flammability, odor, and offgassing characteristics. All materials used in other areas must be evaluated for flammability characteristics. In addition, materials that are exposed to liquid oxygen (LOX), gaseous oxygen (GOX), and other reactive fluids' must be evaluated for compatibility with the fluid in their use application. Materials exposed to pressurized breathing gases also must be evaluated for odor and offgassing characteristics. The worst-case anticipated use environment (most hazardous pressure, temperature, material thickness, and fluid exposure conditions) must be used in the evaluation process. Materials that have been shown to meet the criteria of the required tests are acceptable for further consideration in design. Whenever possible, materials should be selected that have already been shown to meet the test criteria in the use environment. Existing test data are compiled in the NASA Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) and published periodically as the latest revision of a joint document with Johnson Space Center (JSC), MSFC-HDBK-527/JSC 09604. MAPTIS can be accessed by computer datalink. Systems containing materials that have not been tested or do not meet the criteria of the required tests must be verified to be acceptable in the use configuration by analysis or testing. This verification rationale must be documented and submitted to the responsible NASA center materials organization for approval.

  2. Evaluation of conductive concrete for anti-static flooring applications

    NASA Astrophysics Data System (ADS)

    Yehia, Sherif; Qaddoumi, Nasser; Hassan, Mohamed; Swaked, Bassam

    2015-04-01

    Static electricity, exchange of electrons, and retention of charge between any two materials due to contact and separation are affected by the condition of the materials being nonconductive or insulated from ground. Several work environments, such as electronics industry, hospitals, offices, and computer rooms all require electro-static discharge (ESD) mitigation. Carpet Tile, Carpet Broadloom, Vinyl Tile, Vinyl sheet, Epoxy and Rubber are examples of existing flooring systems in the market. However, each system has its advantages and limitations. Conductive concrete is a relatively new material technology developed to achieve high electrical conductivity and high mechanical strength. The conductive concrete material can be an economical alternative for these ESD flooring systems. In this paper, the effectiveness of conductive concrete as an anti-static flooring system was evaluated. The initial results indicated that the proposed conductive concrete flooring and ground system met the acceptance criteria stated by ASTM F150.

  3. Materials technology assessment for a 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  4. Crack stability in a representative piping system under combined inertial and seismic/dynamic displacement-controlled stresses. Subtask 1.3 final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, P.; Olson, R.; Wilkowski, O.G.

    1997-06-01

    This report presents the results from Subtask 1.3 of the International Piping Integrity Research Group (IPIRG) program. The objective of Subtask 1.3 is to develop data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system under combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The piping system evaluated is an expansion loop with over 30 meters of 16-inch diameter Schedule 100 pipe. The experimental facility is equipped with special hardware to ensure system boundary conditions could be appropriately modeled. The test matrix involved one uncracked andmore » five cracked dynamic pipe-system experiments. The uncracked experiment was conducted to evaluate piping system damping and natural frequency characteristics. The cracked-pipe experiments evaluated the fracture behavior, pipe system response, and stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Results from all pipe-system experiments and material characterization efforts are presented. Results of fracture mechanics analyses, dynamic finite element stress analyses, and stability analyses are presented and compared with experimental results.« less

  5. Survey of materials for hydrazine propulsion systems in multicycle extended life applications

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Yankura, G.

    1972-01-01

    An assessment is presented of materials compatibility data for hydrazine monopropellant propulsion systems applicable to the Space Shuttle vehicle missions. Materials were evaluated for application over a 10-yr/100-mission operational lifetime with minimum refurbishment. A general materials compatibility rating for a broad range of materials and several propellants based primarily on static liquid propellant immersion testing and an in-depth evaluation of hydrazine decomposition as a function of purity, temperature, material, surface conditions, etc., are presented. The most promising polymeric material candidates for propellant diaphragms and seals appear to have little effect on increasing hydrazine decomposition rates, but the materials themselves do undergo changes in physical properties which can affect their 10-yr performance in multicycle applications. The available data on these physical properties of elastomeric materials as affected by exposure to hydrazine or related environments are presented.

  6. Weightless Environment Training Facility (WETF) materials coating evaluation, volume 3

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This volume consists of Appendices C, D, E, and F to the report on the Weightless Environment Training Facility Materials Coating Evaluation project. The project selected 10 coating systems to be evaluated in six separate exposure environments, and subject to three tests for physical properties. Appendix C is the photographic appendix of the test panels. Appendix D details methods and procedures. Appendix E lists application equipment costs. Appendix F is a compilation of the solicitation of the candidate coating systems.

  7. Pulsed-laser capabilities at the Laser-Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Royse, Robert W.; Seibert, Daniel B., II; Lander, Michael L.; Eric, John J.

    2000-08-01

    Pulsed laser capabilities at the Laser Hardened Material Evaluation Laboratory are described relevant to optical coupling, impulse generation and laser propulsion. Capabilities of the Nd:Glass laser are presented as well as supporting test systems.

  8. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    DTIC Science & Technology

    2014-04-01

    Microvascular Self - Healing Composites Mechanical Evaluation ................................................................................11...Thermoplastic SMP Foam Microstructure- Mechanical Stress-Strain Relationships 2.2.2 Microvascular Self - Healing Composites Mechanical Evaluation 2.3.1 Z...materials, and embedded sensory and circulatory systems. Damage repair of torn or injured tissue was demonstrated by the use of self - healing polymer

  9. Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness

    NASA Technical Reports Server (NTRS)

    Chapman, Andrew J.

    1984-01-01

    Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.

  10. The Market System: Does It Work? Teacher's Edition.

    ERIC Educational Resources Information Center

    O'Neill, James B.

    This document is the teacher's guide for SO 008 864. Developed for secondary students, the materials aid students in the understanding of the United States economic system. Along with the narrative found in the student materials, the guide presents objectives, concepts, procedures, and evaluation for completing the unit. The materials are arranged…

  11. Several vapor phase chemical treatments for dimensional stabilization of wood

    Treesearch

    H.M. Barnes; E.T. Choong; R.C. Mcllhenny

    1969-01-01

    A bench-scale system for the impregnation of wood with volatile compounds was constructed for the purpose of testing the system concept and evaluating various polymeric bulking materials as dimensional stabilizing agents. Provisions were incorporated for recycling the treating material, introduction of two separate materials alternately or simultaneously, timed-cycle...

  12. An evaluation of dental operative simulation materials.

    PubMed

    He, Li-Hong; Foster Page, Lyndie; Purton, David

    2012-01-01

    The study was to evaluate the performance of different materials used in dental operative simulation and compare them with those of natural teeth. Three typical phantom teeth materials were compared with extracted permanent teeth by a nanoindentation system and evaluated by students and registered dentists on the drilling sensation of the materials. Moreover, the tool life (machinability) of new cylindrical diamond burs on cutting the sample materials was tested and the burs were observed. Although student and dentist evaluations were scattered and inconclusive, it was found that elastic modulus (E) and hardness (H) were not the main factors in determining the drilling sensation of the materials. The sensation of drilling is a reflection of cutting force and power consumption.An ideal material for dental simulation should be able to generate similar drilling resistance to that of natural tooth, which is the machinability of the material.

  13. Advanced Rigid Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    NASA Exploration Systems Mission Directorate s (ESMD) Entry, Descent, and Landing (EDL) Technology Development Project (TDP) and the NASA Aeronautics Research Mission Directorate s (ARMD) Hypersonics Project are developing new advanced rigid ablators in an effort to substantially increase reliability, decrease mass, and reduce life cycle cost of rigid aeroshell-based entry systems for multiple missions. Advanced Rigid Ablators combine ablation resistant top layers capable of high heat flux entry and enable high-speed EDL with insulating mass-efficient bottom that, insulate the structure and lower the areal weight. These materials may benefit Commercial Orbital Transportation Services (COTS) vendors and may potentially enable new NASA missions for higher velocity returns (e.g. asteroid, Mars). The materials have been thermally tested to 400-450 W/sq cm at the Laser Hardened Materials Evaluation Lab (LHMEL), Hypersonics Materials Evaluation Test System (HyMETS) and in arcjet facilities. Tested materials exhibit much lower backface temperatures and reduced recession over the baseline materials (PICA). Although the EDL project is ending in FY11, NASA in-house development of advanced ablators will continue with a focus on varying resin systems and fiber/resin interactions.

  14. Nondestructive Evaluation Approaches Developed for Material Characterization in Aeronautics and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2001-01-01

    At the NASA Glenn Research Center, nondestructive evaluation (NDE) approaches were developed or tailored for characterizing advanced material systems. The emphasis was on high-temperature aerospace propulsion applications. The material systems included monolithic ceramics, superalloys, and high-temperature composites. In the aeronautics area, the major applications were cooled ceramic plate structures for turbine applications, gamma-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis for residual stress measurements in titanium-based and nickel-based engine materials, and acousto-ultrasonics for creep damage assessment in nickel-based alloys. In the space area, applications consisted of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon-fiber-reinforced polymer matrix composites for energy storage on the International Space Station.

  15. Distilled Water Distribution Systems. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  16. Automated margin analysis of contemporary adhesive systems in vitro: evaluation of discriminatory variables.

    PubMed

    Heintze, Siegward D; Forjanic, Monika; Roulet, François-Jean

    2007-08-01

    Using an optical sensor, to automatically evaluate the marginal seal of restorations placed with 21 adhesive systems of all four adhesive categories in cylindrical cavities of bovine dentin applying different outcome variables, and to evaluate their discriminatory power. Twenty-one adhesive systems were evaluated: three 3-step etch-and-rinse systems, three 2-step etch-and-rinse systems, five 2-step self-etching systems, and ten 1-step self-etching systems. All adhesives were applied in cylindrical cavities in bovine dentin together with Tetric Ceram (n=8). In the control group, no adhesive system was used. After 24 h of storage in water at 37 degrees C, the surface was polished with 4000-grit SiC paper, and epoxy resin replicas were produced. An optical sensor (FRT MicroProf) created 100 profiles of the restoration margin, and an algorithm detected gaps and calculated their depths and widths. The following evaluation criteria were used: percentage of specimens without gaps, the percentage of gap-free profiles in relation to all profiles per specimen, mean gap width, mean gap depth, largest gap, modified marginal integrity index MI. The statistical analysis was carried out on log-transformed data for all variables with ANOVA and post-hoc Tukey's test for multiple comparisons. The correlation between the variables was tested with regression analysis, and the pooled data accordingto the four adhesive categories were compared by applying the Mann-Whitney nonparametric test (p < 0.05). For all the variables that characterized the marginal adaptation, there was a great variation from material to material. In general, the etch-and-rinse adhesive systems demonstrated the best marginal adaptation, followed by the 2-step self-etching and the 1-step self-etching adhesives; the latter showed the highest variability in test results between materials and within the same material. The only exception to this rule was Xeno IV, which showed a marginal adaptation that was comparable to that of the best 3-step etch-and-rinse systems. Except for the variables "largest gap" and "mean gap depth", all the other variables had a similar ability to discriminate between materials. Pooled data according to the four adhesive categories revealed statistically significant differences between the one-step self-etching systems and the other three systems as well as between two-step self-etching and three-step etch-and-rinse systems. With one exception, the one-step self-etching systems yielded the poorest marginal adaptation results and the highest variability between materials and within the same material. Except for the variable "largest gap", the percentage of continuous margin, mean gap width, mean gap depth, and the marginal integrity index MI were closely related to one another and showed--with the exception of "mean gap depth"--similar discriminatory power.

  17. Evaluation of Additively Manufactured Metals for Use in Oxygen Systems Project

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan; Cooper, Ken; Peralta, Stephen; Wilcutt, Terrence; Hughitt, Brian; Generazio, Edward

    2016-01-01

    Space Launch System, Commercial Resupply, and Commercial Crew programs have published intent to use additively manufactured (AM) components in propulsion systems and are likely to include various life support systems in the future. Parts produced by these types of additive manufacturing techniques have not been fully evaluated for use in oxygen systems and the inherent risks have not been fully identified. Some areas of primary concern in the SLS process with respect to oxygen compatibility may be the porosity of the printed parts, fundamental differences in microstructure of an AM part as compared to traditional materials, or increased risk of shed metal particulate into an oxygen system. If an ignition were to occur the printed material could be more flammable than components manufactured from a traditional billet of raw material and/or present a significant hazards if not identified and rigorously studied in advance of implementation into an oxygen system.

  18. Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Noel, G. T.; Sliemers, F. A.; Nance, G. P.; Bunk, A. R.; Brockway, M. C.

    1978-01-01

    Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation.

  19. Microclimate Cooling Systems: A Shipboard Evaluation of Commercial Models

    DTIC Science & Technology

    1988-04-01

    NCTRF), under contract to the Navy SciencI Assistance Program (NSAP), evaluated the feasibility of using commercial microclimate coolin9" systems (MCS...exterior of the air distribution vest be covered with a fire-retardant material similar to the type used in this evaluation. The results of this evaluation

  20. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  1. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  2. Polymer materials and component evaluation in acidic-radiation environments

    NASA Astrophysics Data System (ADS)

    Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.

    2001-07-01

    Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.

  3. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    NASA Astrophysics Data System (ADS)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  4. Cementitious materials for thin patches : final report.

    DOT National Transportation Integrated Search

    2001-06-01

    Ten cementitious patching materials, which were suitable for thin, vertical repairs according to the manufacturers, were evaluated. Compatibility with cathodic protection systems was a particular concern. The materials were tested for propensity to c...

  5. Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, Jr., John H. (Inventor)

    2003-01-01

    An acoustic nonlinearity parameter (.beta.) measurement method and system for Non-Destructive Evaluation (NDE) of materials and structural members novelly employs a loosely mounted dielectric electrostatic ultrasonic transducer (DEUT) to receive and convert ultrasonic energy into an electrical signal which can be analyzed to determine the .beta. of the test material. The dielectric material is ferroelectric with a high dielectric constant .di-elect cons.. A computer-controlled measurement system coupled to the DEUT contains an excitation signal generator section and a measurement and analysis section. As a result, the DEUT measures the absolute particle displacement amplitudes in test material, leading to derivation of the nonlinearity parameter (.beta.) without the costly, low field reliability methods of the prior art.

  6. A novel method for NDT applications using NXCT system at the Missouri University of Science & Technology

    NASA Astrophysics Data System (ADS)

    Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung

    2014-06-01

    A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.

  7. Development and Evaluation of Educational Materials for Embedded Systems to Increase the Learning Motivation

    ERIC Educational Resources Information Center

    Koshino, Makoto; Kojima, Yuki; Kanedera, Noboru

    2013-01-01

    Educational materials of embedded systems are currently used in many educational institutions. However, they have difficulties in arousing the interest of students. One of the reasons is that a poor CPU (central processing unit), which has been loaded in the current materials, cannot execute the multimedia processing. In order to make the…

  8. A Quasi-Optical Method for Measuring the Complex Permittivity of Materials.

    DTIC Science & Technology

    1984-09-01

    structural mechanics, flight dynamics; high-temperature thermomechanica, gas kinetics and radiation; research in environmental chemistry and...specific chemical reactions and radia- tion transport in rocket pluses, applied laser spectroscopy, laser chemistry, batery electrochemistry, space...corrosion; evaluation of materials in space environment ; materials performance In space transportation systems; anal- ysis of system vulnerability and

  9. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  10. Spiral computed tomography assessment of the efficacy of different rotary versus hand retreatment system.

    PubMed

    Mittal, Neelam; Jain, Jyoti

    2014-01-01

    The purpose of this study was to evaluate the efficacy of nickel-titanium rotary retreatment systems versus stainless steel hand retreatment system with or without solvent for gutta-percha removal during retreatment. Sixty extracted human mandibular molar teeth with single canal in a distal root was prepared with ProTaper rotary nickel-titanium files and obturated with gutta-percha and sealer. The teeth were randomly divided into six groups of 10 specimens in each groups. The volume of filling material before and after retreatment were evaluated in cm(3) using the computed tomography (CT) scanner proprietary software. Maximum amount of filling material removed during retreatment with ProTaper retreatment system with solvent and minimum with hand retreatment system with solvent. None of the technique was 100% effective in removing the filling materials, but the ProTaper retreatment system with solvent was better.

  11. Tranzit XPress : hazardous material fleet management and monitoring system : evaluation report

    DOT National Transportation Integrated Search

    1997-07-01

    In this report the evaluation performed on the first phase of the Tranzit XPress system is presented. The system comprises of a traffic/safety control center, motor vehicle instrumentation, and a variety of off vehicle tools that communicate with eac...

  12. Stress Corrosion Evaluation of Nitinol 60 for the International Space Station Water Recycling System

    NASA Technical Reports Server (NTRS)

    Torres, P. D.

    2016-01-01

    A stress corrosion cracking (SCC) evaluation of Nitinol 60 was performed because this alloy is considered a candidate bearing material for the Environmental Control and Life Support System (ECLSS), specifically in the Urine Processing Assembly of the International Space Station. An SCC evaluation that preceded this one during the 2013-2014 timeframe included various alloys: Inconel 625, Hastelloy C-276, titanium (Ti) commercially pure (CP), Ti 6Al-4V, extra-low interstitial (ELI) Ti 6Al-4V, and Cronidur 30. In that evaluation, most specimens were exposed for a year. The results of that evaluation were published in NASA/TM-2015-218206, entitled "Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System,"1 available at the NASA Scientific and Technical Information program web page: http://www.sti.nasa.gov. Nitinol 60 was added to the test program in 2014.

  13. A Qualitative Approach to the Evaluation of Expert Systems Shells.

    ERIC Educational Resources Information Center

    Slawson, Dean A.; And Others

    This study explores an approach to the evaluation of expert system shells using case studies. The methodology and some of the results of an evaluation of the prototype development of an expert system using the shell "M1" are detailed, including a description of the participants and the project, the data collection process and materials,…

  14. Microcomputed tomography with a second generation photon-counting x-ray detector: contrast analysis and material separation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Meier, D.; Oya, P.; Maehlum, G. E.; Wagenaar, D. J.; Tsui, B. M. W.; Patt, B. E.; Frey, E. C.

    2010-04-01

    The overall aim of this work was to evaluate the potential for improving in vivo small animal microCT through the use of an energy resolved photon-counting detector. To this end, we developed and evaluated a prototype microCT system based on a second-generation photon-counting x-ray detector which simultaneously counted photons with energies above six energy thresholds. First, we developed a threshold tuning procedure to reduce the dependence of detector uniformity and to reduce ring artifacts. Next, we evaluated the system in terms of the contrast-to-noise ratio in different energy windows for different target materials. These differences provided the possibility to weight the data acquired in different windows in order to optimize the contrast-to-noise ratio. We also explored the ability of the system to use data from different energy windows to aid in distinguishing various materials. We found that the energy discrimination capability provided the possibility for improved contrast-to-noise ratios and allowed separation of more than two materials, e.g., bone, soft-tissue and one or more contrast materials having K-absorption edges in the energy ranges of interest.

  15. The Development and Evaluation of Listening and Speaking Diagnosis and Remedial Teaching System

    ERIC Educational Resources Information Center

    Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chiou-Yan; Chen, Berlin; Wu, Chia-Hou; Lin, Chien-Yu

    2016-01-01

    In this study, a system was developed to offer adaptive remedial instruction materials to learners of Chinese as a foreign language (CFL). The Chinese Listening and Speaking Diagnosis and Remedial Instruction (CLSDRI) system integrated computerized diagnostic tests and remedial instruction materials to diagnose errors made in listening…

  16. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  17. International Space Station Materials: Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2007-01-01

    The International Space Station (ISS) program is of such complexity and scale that there have been numerous issues addressed regarding safety of materials: from design to manufacturing, test, launch, assembly on-orbit, and operations. A selection of lessons learned from the ISS materials perspective will be provided. Topics of discussion are: flammability evaluation of materials with connection to on-orbit operations; toxicity findings for foams; compatibility testing for materials in fluid systems; and contamination control in precision clean systems and critical space vehicle surfaces.

  18. School Planning, Evaluation and Communication System (SPECS).

    ERIC Educational Resources Information Center

    Flocco, Edward C.

    A comprehensive school planning tool is available from General Learning Corporation and the Center for the Advanced Study of Educational Administration at the University of Oregon. This School Planning, Evaluation and Communication System (SPECS) provides a deliverable system of training, implementation strategies and materials and technical…

  19. Engineering Biomaterial Properties for Central Nervous System Applications

    NASA Astrophysics Data System (ADS)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  20. Impact Properties of Metal Fan Containment Materials Being Evaluated for the High-Speed Civil Transport (HSCT)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Enabling Propulsion Materials (EPM) program - a partnership between NASA, Pratt & Whitney, and GE Aircraft Engines - the Materials and Structures Divisions of the NASA Lewis Research Center are involved in developing a fan-containment system for the High-Speed Civil Transport (HSCT). The program calls for a baseline system to be designed by the end of 1995, with subsequent testing of innovative concepts. Five metal candidate materials are currently being evaluated for the baseline system in the Structures Division's Ballistic Impact Facility. This facility was developed to provide the EPM program with cost-efficient and timely impact test data. At the facility, material specimens are impacted at speeds up to 350 m/sec by projectiles of various sizes and shapes to assess the specimens' ability to absorb energy and withstand impact. The tests can be conducted at either room or elevated temperatures. Posttest metallographic analysis is conducted to improve understanding of the failure modes. A dynamic finite element program is used to simulate the events and both guide the testing as well as aid in designing the fan-containment system.

  1. Development of COPVS for High pressure, In-Space, Cryogenic Fuel Storage

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Schneider, Judy; Dyess, Mark; Hastings, Chad; Noorda, Ryan; Noorda, Jared; Patterson, James

    2008-01-01

    Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. To evaluate the ultimate performance, various polymeric COPV's have been statically burst tested at cryogenic conditions before and after exposure to irradiation. Materials selected for these COPVs were based on the measured mechanical properties of candidate resin systems and fibers that were also tested at cryogenic conditions before and after exposure to irradiation. The correlation of COPV burst pressures with the constituent material properties has proven to be a valuable screening method for selection of suitable candidate materials with resistance to material degradation due to exposure to temperature and radiation.

  2. Liquid crystalline epoxy nanocomposite material for dental application.

    PubMed

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  3. Next-generation avionics packaging and cooling 'test results from a prototype system'

    NASA Astrophysics Data System (ADS)

    Seals, J. D.

    The author reports on the design, material characteristics, and test results obtained under the US Air Force's advanced aircraft avionics packaging technologies (AAAPT) program, whose charter is to investigate new designs and technologies for reliable packaging, interconnection, and thermal management. Under this program, AT&T Bell Laboratories has completed the preliminary testing of and is evaluating a number of promising materials and technologies, including conformal encapsulation, liquid flow-through cooling, and a cyanate ester backplane. A fifty-two module system incorporating these and and other technologies has undergone preliminary cooling efficiency, shock, sine and random vibration, and maintenance testing. One of the primary objectives was to evaluate the interaction compatibility of new materials and designs with other components in the system.

  4. A Comparative Analysis of Life-Cycle Assessment Tools for End-of-Life Materials Management Systems

    EPA Science Inventory

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal s...

  5. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    NASA Astrophysics Data System (ADS)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  6. Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials

    PubMed Central

    Menzel, Friederike; Conradi, Bianca; Rodenacker, Karsten; Gorbushina, Anna A.; Schwibbert, Karin

    2016-01-01

    Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. PMID:28773891

  7. Performance evaluation of PRIDE UNDA system with pyroprocessing feed material.

    PubMed

    An, Su Jung; Seo, Hee; Lee, Chaehun; Ahn, Seong-Kyu; Park, Se-Hwan; Ku, Jeong-Hoe

    2017-04-01

    The PRIDE (PyRoprocessing Integrated inactive DEmonstration) is an engineering-scale pyroprocessing test-bed facility that utilizes depleted uranium (DU) instead of spent fuel as a process material. As part of the ongoing effort to enhance pyroprocessing safeguardability, UNDA (Unified Non-Destructive Assay), a system integrating three different non-destructive assay techniques, namely, neutron, gamma-ray, and mass measurement, for nuclear material accountancy (NMA) was developed. In the present study, UNDA's NMA capability was evaluated by measurement of the weight, 238 U mass, and U enrichment of oxide-reduction-process feed material (i.e., porous pellets). In the 238 U mass determination, the total neutron counts for porous pellets of six different weights were measured. The U enrichment of the porous pellets, meanwhile, was determined according to the gamma spectrums acquired using UNDA's NaI-based enrichment measurement system. The results demonstrated that the UNDA system, after appropriate corrections, could be used in PRIDE NMA applications with reasonable uncertainty. It is expected that in the near future, the UNDA system will be tested with next-step materials such as the products of the oxide-reduction and electro-refining processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis.

    PubMed

    Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.

  9. Biomechanical Evaluation of a Tooth Restored with High Performance Polymer PEKK Post-Core System: A 3D Finite Element Analysis

    PubMed Central

    Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan

    2017-01-01

    The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547

  10. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  11. Potential Nucleosynthetic Sources of the Titanium Isotope Variations in Solar System Materials

    NASA Astrophysics Data System (ADS)

    Williams, N. H.; Fehr, M. A.; Akram, W. M.; Parkinson, I. J.; Schönbächler, M.

    2012-09-01

    The Ti isotope ratios of a comprehensive sample suite of solar system material were analyzed by MC-ICPMS. This data was then used to evaluate nucleosynthetic models for the source of isotopic correlations observed in Iron group elements and Zr.

  12. Characterization and damage evaluation of advanced materials

    NASA Astrophysics Data System (ADS)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.

  13. Improved Spacecraft Materials for Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.

    1999-01-01

    In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.

  14. [Computer assisted application of mandarin speech test materials].

    PubMed

    Zhang, Hua; Wang, Shuo; Chen, Jing; Deng, Jun-Min; Yang, Xiao-Lin; Guo, Lian-Sheng; Zhao, Xiao-Yan; Shao, Guang-Yu; Han, De-Min

    2008-06-01

    To design an intelligent speech test system with reliability and convenience using the computer software and to evaluate this system. First, the intelligent system was designed by the Delphi program language. Second, the seven monosyllabic word lists recorded on CD were separated by Cool Edit Pro v2.1 software and put into the system as test materials. Finally, the intelligent system was used to evaluate the equivalence of difficulty between seven lists. Fifty-five college students with normal hearing participated in the study. The seven monosyllabic word lists had equivalent difficulty (F = 1.582, P > 0.05) to the subjects between each other and the system was proved as reliability and convenience. The intelligent system has the feasibility in the clinical practice.

  15. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  16. Progress in materials and structures at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Lauver, R. W.; Halford, G. R.; Davies, R. L.

    1980-01-01

    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed.

  17. Flip-J: Development of the System for Flipped Jigsaw Supported Language Learning

    ERIC Educational Resources Information Center

    Yamada, Masanori; Goda, Yoshiko; Hata, Kojiro; Matsukawa, Hideya; Yasunami, Seisuke

    2016-01-01

    This study aims to develop and evaluate a language learning system supported by the "flipped jigsaw" technique, called "Flip-J". This system mainly consists of three functions: (1) the creation of a learning material database, (2) allocation of learning materials, and (3) formation of an expert and jigsaw group. Flip-J was…

  18. Characterization of polymorphic states in energetic samples of 1,3,5-trinitro-1,3,5-triazine (RDX) fabricated using drop-on-demand inkjet technology.

    PubMed

    Emmons, Erik D; Farrell, Mikella E; Holthoff, Ellen L; Tripathi, Ashish; Green, Norman; Moon, Raphael P; Guicheteau, Jason A; Christesen, Steven D; Pellegrino, Paul M; Fountain, Augustus W

    2012-06-01

    The United States Army and the first responder community are evaluating optical detection systems for the trace detection of hazardous energetic materials. Fielded detection systems must be evaluated with the appropriate material concentrations to accurately identify the residue in theater. Trace levels of energetic materials have been observed in mutable polymorphic phases and, therefore, the systems being evaluated must be able to detect and accurately identify variant sample phases observed in spectral data. In this work, we report on the novel application of drop-on-demand technology for the fabrication of standardized trace 1,3,5-trinitro-1,3,5-triazine (RDX) samples. The drop-on-demand sample fabrication technique is compared both visually and spectrally to the more commonly used drop-and-dry technique. As the drop-on-demand technique allows for the fabrication of trace level hazard materials, concerted efforts focused on characterization of the polymorphic phase changes observed with low concentrations of RDX commonly used in drop-on-demand processing. This information is important when evaluating optical detection technologies using samples prepared with a drop-on-demand inkjet system, as the technology may be "trained" to detect the common bulk α phase of the explosive based on its spectral features but fall short in positively detecting a trace quantity of RDX (β-phase). We report the polymorphic shifts observed between α- and β-phases of this energetic material and discuss the conditions leading to the favoring of one phase over the other.

  19. Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis

    NASA Technical Reports Server (NTRS)

    Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.

    2004-01-01

    To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.

  20. Textile technology development

    NASA Technical Reports Server (NTRS)

    Shah, Bharat M.

    1995-01-01

    The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.

  1. Evaluation and recommendations for work group integration within the Materials and Processes Lab

    NASA Technical Reports Server (NTRS)

    Farrington, Phillip A.

    1992-01-01

    The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab.

  2. Using Systems Thinking to Frame the Evaluation of a Complex Educational Intervention

    NASA Astrophysics Data System (ADS)

    Kastens, K. A.; Baldassari, C.; DeLisi, J.; Manduca, C. A.

    2014-12-01

    InTeGrate (serc.carleton.edu/integrate/) is the geoscience component of NSF's STEM Talent Expansion Center program. As such, it is a $10M, 5 year effort, with dual goals of improving undergraduate STEM education and addressing an important national challenge, which in InTeGrate's case is environmental sustainability. InTeGrate is very complicated, involving five PI's, dozens of curriculum developers, scores of workshops and webinars, hundreds of faculty, and thousands of students. To get a handle on this complexity, the leadership team and evaluators are viewing project activities and outcomes through a system thinking lens, analogous to how geoscientists view the Earth system. For each major component of the project, we have a flowchart logic model that traces the flows of information, materials, influence, and people that are thought to result from project activities. As is to be expected in a complex system, individual activities are often influenced by multiple inputs and contribute to multiple outputs. The systems approach allows us to spot critical points in the system where evaluative probes are needed; for example, are workshops actually resulting in a flux of new people into roles of increased responsibility within InTeGrate as intended? InTeGrate is permeated with opportunities for participants to engage in assessment, reflection and peer-review. From a systems perspective, this evaluative culture can be seen as an effort to create reinforcing feedback loops for processes that advance InTeGrate's values. For example, assessment team members review draft instructional materials against a materials development rubric and coach developers through an iterative development cycle towards materials that embody InTeGrate's priorities. Of particular interest are flows of information or influence that may carry InTeGrate's impact outward in space and time beyond activities that are directly funded by the project. For example, positive experiences during materials development may influence developers' teaching practice such that they embed InTeGrate's methods into their teaching of non-InTeGrate materials and advocate for InTeGrate methods on their campuses. Only if such influence pathways exist will InTeGrate be able to achieve national and enduring impact.

  3. [Materials and articles intended to come into contact with food: evaluation of the rapid alert system for food and feed (RASFF) 2008-2010].

    PubMed

    Baiguini, Alessandro; Colletta, Stefano; Rebella, Valentina

    2011-01-01

    For some time, packaging materials and articles intended to come into contact with food are included in the system of controls, early warnings and risk communication provided by the European Commission (EU) regulation 178/2002. Data analysis of the EU rapid alert system for food allows one to define a specific risk profile and to establish an effective plan for official control of materials intended to come into contact with food. In the 2008-2010 period the rapid alert system has ratified alert notifications, mostly related to plastic materials of Chinese origin.

  4. Implementing Advanced Technologies in the Republic of China Air Force Officer Training System

    DTIC Science & Technology

    1994-03-01

    Strategy Political Radar Systems Emergency Education Medicine Maneuvers Entertainment & Systems Design Primary Care Welfare Telegraph Systems I1 The...Planning area includes the career fields of Organization, Aircraft, Weapons, Air Strategy , and Maneuvers. In the Political area of occupational...materials to be considered. The current strategy is to maintain massive inventories of written testing materials for use in officer evaluations

  5. Curriculum Materials Examination System.

    ERIC Educational Resources Information Center

    Bond, David J.

    This document is a guideline for selection and evaluation of social studies curriculum materials developed by the Marin Social Studies Project. Questions are presented which will help in the examination of materials so that specific strengths and weaknesses in the materials can be determined. Consideration is given to the objectives and rationale…

  6. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, Ragaiy; Hardy, B. J.; Corgnale, C.

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce verymore » high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.« less

  7. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  8. Evaluation of coated columbian alloy heat shields for space shuttle thermal protection system application. Volume 1: Phase 1 - Environmental criteria and material characterization, October 1970 - March 1972

    NASA Technical Reports Server (NTRS)

    Black, W. E.

    1972-01-01

    The studies presented are directed toward establishing criteria for a niobium alloy thermal protection system for the space shuttle. Evaluation of three niobium alloys and two silicon coatings for heat shield configurations culminated in the selection of two coating/substrate combinations for environmental criteria and material characterization tests. Specimens were exposed to boost and reentry temperatures, pressure, and loads simulating a space shuttle orbiter flight profile.

  9. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  10. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  11. System and method for non-destructive evaluation of surface characteristics of a magnetic material

    DOEpatents

    Jiles, David C.; Sipahi, Levent B.

    1994-05-17

    A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.

  12. 48 CFR 52.225-9 - Buy American Act-Construction Materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subcontractor for incorporation into the building or work. The term also includes an item brought to the site preassembled from articles, materials, or supplies. However, emergency life safety systems, such as emergency... building or work and that are produced as complete systems, are evaluated as a single and distinct...

  13. Satellite Power System (SPS) resource requirements (critical materials, energy and land)

    NASA Technical Reports Server (NTRS)

    Kotin, A. D.

    1978-01-01

    The resource impacts of the proposed satellite power system are evaluated. Three classes of resource impacts are considered separately: critical materials, energy, and land use. The analysis focuses on the requirements associated with the annual development of two five-gigawatt satellites and the associated receiving facilities.

  14. Human Factors in the Design and Evaluation of Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1995-04-01

    This document presents human factors issues that should be considered in the design and evaluation of air traffic : control (ATC) systems and subsystems. It provides background material on the capabilities and limitations of humans as : information p...

  15. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  16. Tryout and Evaluation of Prototype LMS (Learning Mastery System) Training System Under Exclusive Use Agreement.

    ERIC Educational Resources Information Center

    McDonald, Cheryl; Hylton, John A.

    In 1970-1971 Learning Mastery System (LMS) materials were made available to schools within the state of California under an Exclusive Use Agreement. The LMS is a set of materials and procedures prepared by the Southwest Regional Laboratory (SWRL) as an objectives-based framework to assist in managing the learning activities of existing reading…

  17. Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkwood, C.W.; Pollock, S.M.

    1978-11-01

    The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems.

  18. Clinical performance of a glass ionomer restorative system: a 6-year evaluation.

    PubMed

    Gurgan, Sevil; Kutuk, Zeynep Bilge; Ergin, Esra; Oztas, Sema Seval; Cakir, Filiz Yalcin

    2017-09-01

    The aim of this study is to evaluate the long-term clinical performance of a glass ionomer (GI) restorative system in the restoration of posterior teeth compared with a micro-filled hybrid posterior composite. A total of 140 (80 Cl1 and 60 Cl2) lesions in 59 patients were restored with a GI system (Equia) or a micro hybrid composite (Gradia Direct). Restorations were evaluated at baseline and yearly during 6 years according to the modified-USPHS criteria. Negative replicas at each recall were observed under SEM to evaluate surface characteristics. Data were analyzed with Cohcran's Q and McNemar's tests (p < 0.05). One hundred fifteen (70 Cl1 and 45 Cl2) restorations were evaluated in 47 patients with a recall rate of 79.6% at 6 years. Significant differences were found in marginal adaptation and marginal discoloration for both restorative materials for Cl1 and Cl2 restorations (p < 0.05). However, none of the materials were superior to the other (p > 0.05). A significant decrease in color match was observed in Equia restorations (p < 0.05). Only one Cl2 Equia restoration was missing at 3 years and another one at 4 years. No failures were observed at 5 and 6 years. Both materials exhibited clinically successful performance after 6 years. SEM evaluations were in accordance with the clinical findings. Both materials showed a good clinical performance for the restoration of posterior teeth during the 6-year evaluation. The clinical effectiveness of Equia and Gradia Direct Posterior was acceptable in Cl1 and Cl2 cavities subsequent to 6-year evaluation.

  19. Evanescent Field Based Photoacoustics: Optical Property Evaluation at Surfaces

    PubMed Central

    Goldschmidt, Benjamin S.; Rudy, Anna M.; Nowak, Charissa A.; Tsay, Yowting; Whiteside, Paul J. D.; Hunt, Heather K.

    2016-01-01

    Here, we present a protocol to estimate material and surface optical properties using the photoacoustic effect combined with total internal reflection. Optical property evaluation of thin films and the surfaces of bulk materials is an important step in understanding new optical material systems and their applications. The method presented can estimate thickness, refractive index, and use absorptive properties of materials for detection. This metrology system uses evanescent field-based photoacoustics (EFPA), a field of research based upon the interaction of an evanescent field with the photoacoustic effect. This interaction and its resulting family of techniques allow the technique to probe optical properties within a few hundred nanometers of the sample surface. This optical near field allows for the highly accurate estimation of material properties on the same scale as the field itself such as refractive index and film thickness. With the use of EFPA and its sub techniques such as total internal reflection photoacoustic spectroscopy (TIRPAS) and optical tunneling photoacoustic spectroscopy (OTPAS), it is possible to evaluate a material at the nanoscale in a consolidated instrument without the need for many instruments and experiments that may be cost prohibitive. PMID:27500652

  20. Activation and evaluation of GaN photocathodes

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Chang, Benkang; Qiao, Jiangliang; Zhang, Yijun; Fu, Rongguo; Qiu, Yafeng

    2009-09-01

    Gallium Nitride (GaN) photocathodes are potentially attractive as UV detective materials and electron sources. Based on the activation and evaluation system for GaAs photocathode, which consists of ultra-high vacuum (UHV) activation chamber, multi-information measurement system, X-ray photoelectron spectroscopy (XPS), and ultraviolet ray photoelectron spectroscopy (UPS), the control and measurement system for the activation of UV photocathodes was developed. The developed system, which consists of Xenon lamp, monochromator with scanner, signal-processing module, power control unit of Cs and O source, A/D adapter, digital I/O card, computer and software, can control the activation of GaN photocathodes and measure on-line the spectral response curves of GaN photocathodes. GaN materials on sapphire substrate were grown by Metal-Organic Chemical Vapor Deposition (MOCVD) with p-type Mg doping. The GaN materials were activated by Cs-O. The spectral response and quantum efficiency (QE) were measured and calculated. The experiment results are discussed.

  1. IMIRSEL: a secure music retrieval testing environment

    NASA Astrophysics Data System (ADS)

    Downie, John S.

    2004-10-01

    The Music Information Retrieval (MIR) and Music Digital Library (MDL) research communities have long noted the need for formal evaluation mechanisms. Issues concerning the unavailability of freely-available music materials have greatly hindered the creation of standardized test collections with which these communities could scientifically assess the strengths and weaknesses of their various music retrieval techniques. The International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) is being developed at the University of Illinois at Urbana-Champaign (UIUC) specifically to overcome this hindrance to the scientific evaluation of MIR/MDL systems. Together with its subsidiary Human Use of Music Information Retrieval Systems (HUMIRS) project, IMIRSEL will allow MIR/MDL researchers access to the standardized large-scale collection of copyright-sensitive music materials and standardized test queries being housed at UIUC's National Center for Supercomputing Applications (NCSA). Virtual Research Labs (VRL), based upon NCSA's Data-to-Knowledge (D2K) tool set, are being developed through which MIR/MDL researchers will interact with the music materials under a "trusted code" security model.

  2. Autonomous System for MISSE Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.; Lash, T. J.; Kinard, W. H.; Bull, K.; deGeest, F.

    2001-01-01

    The Materials International Space Station Experiment (MISSE) is scheduled to be deployed during the summer of 2001. This experiment is a cooperative endeavor by NASA-LaRC, NASA-GRC, NASA MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials.

  3. An experimental comparison of several current viscoplastic constitutive models at elevated temperature

    NASA Technical Reports Server (NTRS)

    James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.

    1988-01-01

    Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.

  4. Material characterization and modeling with shear ography

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Callahan, Virginia

    1993-01-01

    Shearography has emerged as a useful technique for nondestructible evaluation and materials characterization of aerospace materials. A suitable candidate for the technique is to determine the response of debonds on foam-metal interfaces such as the TPS system on the External Tank. The main thrust is to develop a model which allows valid interpretation of shearographic information on TPS type systems. Confirmation of the model with shearographic data will be performed.

  5. Atomic Oxygen Exposure of Power System and other Spacecraft Materials: Results of the EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    1997-01-01

    In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.

  6. Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.

  7. --No Title--

    Science.gov Websites

    Security Robots Lasers RSS Feed Prev Next Air Force scientists are developing an improved system for coating materials performance evaluations that will accelerate the implementation of new aircraft coatings . New Evaluation System Helps Air Force Better Understand Corrosion Air Force scientists are developing

  8. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    NASA Technical Reports Server (NTRS)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  9. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  10. Optimization of Regenerators for AMRR Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nellis, Gregory; Klein, Sanford; Brey, William

    Active Magnetic Regenerative Refrigeration (AMRR) systems have no direct global warming potential or ozone depletion potential and hold the potential for providing refrigeration with efficiencies that are equal to or greater than the vapor compression systems used today. The work carried out in this project has developed and improved modeling tools that can be used to optimize and evaluate the magnetocaloric materials and geometric structure of the regenerator beds required for AMRR Systems. There has been an explosion in the development of magnetocaloric materials for AMRR systems over the past few decades. The most attractive materials, based on the magnitudemore » of the measured magnetocaloric effect, tend to also have large amounts of hysteresis. This project has provided for the first time a thermodynamically consistent method for evaluating these hysteretic materials in the context of an AMRR cycle. An additional, practical challenge that has been identified for AMRR systems is related to the participation of the regenerator wall in the cyclic process. The impact of housing heat capacity on both passive and active regenerative systems has been studied and clarified within this project. This report is divided into two parts corresponding to these two efforts. Part 1 describes the work related to modeling magnetic hysteresis while Part 2 discusses the modeling of the heat capacity of the housing. A key outcome of this project is the development of a publically available modeling tool that allows researchers to identify a truly optimal magnetocaloric refrigerant. Typically, the refrigeration potential of a magnetocaloric material is judged entirely based on the magnitude of the magnetocaloric effect and other properties of the material that are deemed unimportant. This project has shown that a material with a large magnetocaloric effect (as evidenced, for example, by a large adiabatic temperature change) may not be optimal when it is accompanied by a large hysteresis. The trade-off between these various material properties and the proper design of an AMRR system can only be evaluated correctly using the comprehensive, physics-based model developed by this project. The development of these modeling tools and optimization studies will provide the knowledge base that is required to achieve transformational discoveries. The widespread adoption of AMRR technology will change the character of energy demand in this country and provide manufacturing jobs as well as employment associated with retrofitting existing HVAC&R applications.« less

  11. Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.

  12. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  13. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  14. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  15. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  16. Measures of Success for Earth System Science Education: The DLESE Evaluation Services and the Evaluation Toolkit Collection

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.; Buhr, S. M.; Lynds, S.

    2005-12-01

    Increased agency emphasis upon the integration of research and education coupled with the ability to provide students with access to digital background materials, learning activities and primary data sources has begun to revolutionize Earth science education in formal and informal settings. The DLESE Evaluation Services team and the related Evaluation Toolkit collection (http://www.dlese.org/cms/evalservices/ ) provides services and tools for education project leads and educators. Through the Evaluation Toolkit, educators may access high-quality digital materials to assess students' cognitive gains, examples of alternative assessments, and case studies and exemplars of authentic research. The DLESE Evaluation Services team provides support for those who are developing evaluation plans on an as-requested basis. In addition, the Toolkit provides authoritative peer reviewed articlesabout evaluation research techniques and strategies of particular importance to geoscience education. This paper will provide an overview of the DLESE Evaluation Toolkit and discuss challenges and best practices for assessing student learning and evaluating Earth system sciences education in a digital world.

  17. The probability of flaw detection and the probability of false calls in nondestructive evaluation equipment

    NASA Technical Reports Server (NTRS)

    Temple, Enoch C.

    1994-01-01

    The space industry has developed many composite materials that have high durability in proportion to their weights. Many of these materials have a likelihood for flaws that is higher than in traditional metals. There are also coverings (such as paint) that develop flaws that may adversely affect the performance of the system in which they are used. Therefore there is a need to monitor the soundness of composite structures. To meet this monitoring need, many nondestructive evaluation (NDE) systems have been developed. An NDE system is designed to detect material flaws and make flaw measurements without destroying the inspected item. Also, the detection operation is expected to be performed in a rapid manner in a field or production environment. Some of the most recent video-based NDE methodologies are shearography, holography, thermography, and video image correlation.

  18. High pressure liquid and gaseous oxygen impact sensitivity evaluation of materials for use at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.

    1976-01-01

    The sensitivity of materials in contact with gaseous oxygen (GOX) or liquid oxygen (LOX) was examined. Specifically, the reactivity of materials when in contact with GOX or LOX if subjected to such stimuli as mechanical impact, adiabatic compression (pneumatic impact), or an electrical discharge in the form of a spark were examined. Generally, materials are more sensitive in gaseous oxygen than in liquid oxygen and impact sensitivity is known to increase with increasing pressure. Materials presently being used or considered for use in oxygen systems at KSC were evaluated. Results are given in tabular form.

  19. Materials testing of the IUS techroll seal material

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.; Hall, W. B.

    1984-01-01

    As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.

  20. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research

    PubMed Central

    Zhong, Jian; He, Dannong

    2015-01-01

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future. PMID:26265357

  1. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research.

    PubMed

    Zhong, Jian; He, Dannong

    2015-08-12

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.

  2. Changes in chroma of two indirect composite materials polymerized with different polymerization systems.

    PubMed

    Ayano, Michiya

    2012-01-01

    This study evaluated chroma change in two composite materials (Sinfony and Pearleste) polymerized with two different systems. Disk specimens were prepared using a metal halide unit (Hyper LII) and an exposure time of 60 to 180 s. The proprietary polymerization systems (Visio and Pearlcure systems) were used as the reference polymerization modes. After storage at 37°C for 24 h, CIE 1976 L*a*b* values were measured by using a dental chroma meter (ShadeEye NCC) with a gray background. The specimens were then immersed in water or tea. Color change from baseline to 4 weeks was evaluated by measuring ΔL*, Δa*, and Δb*, after which ΔE*(ab) values were calculated. The brightness of Sinfony specimens was reduced by tea immersion. The color of both materials shifted to yellow after tea immersion, although color change in Sinfony specimens was greater than that in Pearleste specimens. For both materials, color change was less after polymerization with the metal halide unit. In conclusion, Sinfony polymerized with the Hyper LII unit, and Pearleste polymerized with either system, were stable against discoloration due to tea immersion.

  3. Measuring Permeability of Composite Cryotank Laminants

    NASA Technical Reports Server (NTRS)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  4. Biodeterioration of materials in water reclamation systems

    NASA Technical Reports Server (NTRS)

    Ford, Tim; Maki, James S.; Mitchell, Ralph

    1992-01-01

    The chemicals produced by the microbial processes involved in the 'biofilms' which form on the surfaces of manned spacecraft water reclamation systems encompass both metals and organic poisons; both are potential hazards to astronaut health and the growth of the plants envisioned for closed-cycle life support systems. Image analysis is here shown to be a very useful technique for the study of biofilm formation on candidate water-processor materials for Space Station Freedom. The biodeterioration of materials exposed to biofilms can be swiftly evaluated by means of electrochemical impedance spectroscopy.

  5. Training Effectiveness Evaluation (TEE) of the Advanced Fire Fighting Training System. Focus on the Trained Person.

    ERIC Educational Resources Information Center

    Cordell, Curtis C.; And Others

    A training effectiveness evaluation of the Navy Advanced Fire Fighting Training System was conducted. This system incorporates simulated fires as well as curriculum materials and instruction. The fires are non-pollutant, computer controlled, and installed in a simulated shipboard environment. Two teams of 15 to 16 persons, with varying amounts of…

  6. Overview of LIDS Docking and Berthing System Seals

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian

    2007-01-01

    This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.

  7. A research project to develop and evaluate a technical education component on materials technology for orientation to space-age technology

    NASA Technical Reports Server (NTRS)

    Jacobs, J. A.

    1976-01-01

    A project was initiated to develop, implement, and evaluate a prototype component for self-pacing, individualized instruction on basic materials science. Results of this project indicate that systematically developed, self-paced instruction provides an effective means for orienting nontraditional college students and secondary students, especially minorities, to both engineering technology and basic materials science. In addition, students using such a system gain greater chances for mastering subject matter than with conventional modes of instruction.

  8. Edge attachment study for fire-resistant canopies

    NASA Technical Reports Server (NTRS)

    Wintermute, G. E.

    1982-01-01

    Twenty-two resin systems were evaluated in laminate form for possible use as edge attachment material for fire-resistant canopies. The evaluation uncovered an unexpected development when the laminates were subjected to an intense flame: (1) the high-heat-resistant materials could withstand the flame test quite well, but experienced rapid heat transfer through the test specimen; (2) the laminates which exhibited a low rate of heat transfer were materials which lost strength rapidly in the presence of the flame by decomposition, delamination, and blistering.

  9. Innovative system to improve use of patient education materials.

    PubMed Central

    Smith, J. L.; Levitt, C.; Franco, E. D.

    1997-01-01

    OBJECTIVE: To evaluate a new storage system for patient education materials. DESIGN: Anonymous surveys before and after implementation of new storage system. SETTING: Family medicine residency teaching centre. PARTICIPANTS: All nurses, staff doctors, and first- and second-year residents in the unit. INTERVENTIONS: Implementation of a new storage system for patient education materials, orientation of all health professionals in the unit to the new system, and periodic distribution of patient education newsletters. MAIN OUTCOME MEASURES: Self-reported use of patient education materials. RESULTS: Response rates were 73% (30 of 41 health professionals) in 1990 and 86% (36 of 42) in 1992. Responses to the first survey on use of 20 categories of patient education materials showed materials were seldom used by most respondents. Back Care, Nutrition, Diabetes, VD/Birth Control, and Pregnancy categories were the most frequently used. In the second survey, more respondents reported using these five categories of pamphlets. Rates of use varied only slightly for the remaining 15 categories. CONCLUSIONS: Health professionals reported more frequent use of certain patient education materials following implementation of a new storage system. PMID:9626424

  10. Energy Storage Facilities | Transportation Research | NREL

    Science.gov Websites

    explore the interface of electric-drive vehicle (EDV) energy storage systems, charging end energy control hardware when evaluating developmental systems and control strategies. Electrochemical Characterization . The tools below are used to evaluate materials and small cells, quantifying how the design of cathodes

  11. Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Finckenor, Miria; Nehls, Mary

    2016-01-01

    The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.

  12. Evaluation of SRM flex bearing materials and processes

    NASA Technical Reports Server (NTRS)

    Wood, T. E.

    1980-01-01

    Tensile, peel, and shear testing was performed on combinations of primers, adhesives, tycements and rubber compounds cured at various times and temperatures. The materials used in the fabrication of the solid rocket motor flex bearing as well as in other systems were evaluated. A compatibility study between adhesives and tycements was initiated. The flex bearing mold design was reviewed by our tooling experts.

  13. A System for the Exchange of Information on Instructional Materials: An Evaluation for Planned Change in Australian Education.

    ERIC Educational Resources Information Center

    Watt, Michael G.

    This evaluation project presents a plan for a program to establish a clearinghouse for exchanging qualitative and quantitative data on instructional materials used in Australian schools. A range of elements necessary to plan a program suited to Australian requirements and conditions was investigated. Focus was on: the program's mission,…

  14. Development and evaluation of an ablative closeout material for solid rocket booster thermal protection system

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.

    1979-01-01

    A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.

  15. Holographic Recording Materials Development

    NASA Technical Reports Server (NTRS)

    Verber, C. M.; Schwerzel, R. E.; Perry, P. J.; Craig, R. A.

    1976-01-01

    Organic photorefractive materials were evaluated for application in a reversible holographic memory system. Representative indigo and thioindigo derivatives and several stilbene derivatives were studied as well as 15, 16-dialkyldihydropyrene derivatives the following goals were achieved: (1) the successful writing of phase holograms in a thioindigo/polymer gel system, (2) the successful writing and erasing of phase holograms in a variety of indigo/polymer gel and indigo/solid polymer systems, and (3) the identification of indigoid dyes and 15, 16-dialkyldihydropyrene derivatives as materials potentially suitable for utilization in an operational system. Photochemical studies of the stilbene, indigo, thioindigo, and dialkyldihydropyrene derivatives in solution and in a variety of polymer matrix materials were conducted with the goal of optimizing the photorefractive behavior of the chemical system as a whole. The spectroscopic properties required of optimal photorefractive materials were identified, and it was shown that both the indigoid dyes and the dialkyldihydropyrenes closely match the required properties.

  16. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Washabaugh, Andrew P. (Inventor); Lyons, Robert (Inventor); Thomas, Zachary (Inventor); Martin, Christopher (Inventor); Goldfine, Neil J. (Inventor)

    2017-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  17. Method and Apparatus for Non-Destructive Evaluation of Materials

    NASA Technical Reports Server (NTRS)

    Lyons, Robert (Inventor); Martin, Christopher (Inventor); Washabaugh, Andrew P. (Inventor); Goldfine, Neil J. (Inventor); Thomas, Zachary (Inventor); Jablonski, David A. (Inventor)

    2015-01-01

    Methods and apparatus for characterizing composite materials for manufacturing quality assurance (QA), periodic inspection during the useful life, or for forensic analysis/material testing. System are provided that relate eddy-current sensor responses to the fiber layup of a composite structure, the presence of impact damage on a composite structure with or without a metal liner, volumetric stress within the composite, fiber tow density, and other NDE inspection requirements. Also provided are systems that determine electromagnetic material properties and material dimensions of composite materials from capacitive sensor inspection measurements. These properties are related to the presence of buried defects in non-conductive composite materials, moisture ingress, aging of the material due to service or environmental/thermal exposure, or changes in manufacturing quality.

  18. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  19. Quantitative Three-Dimensional Imaging of Heterogeneous Materials by Thermal Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J. G.

    2016-07-19

    Infrared thermal imaging based on active thermal excitations has been widely used for nondestructive evaluation ( NDE) of materials. While the experimental systems have remained essentially the same during the last few decades, development of advanced data-processing methods has significantly improved the capabilities of this technology. However, many limitations still exist. One fundamental limitation is the requirement, either explicitly or implicitly, of the tested material to be homogeneous such that detected thermal contrasts may be used to determine an average material property or attributed to flaws. In this paper, a new thermal tomography ( TT) method is introduced, which formore » the first time can evaluate heterogeneous materials by directly imaging their thermal-property variations with space. It utilizes one-sided flash thermal-imaging data to construct the three-dimensional ( 3D) distribution of thermal effusivity in the entire volume of a test sample. Theoretical analyses for single and multilayer material systems were conducted to validate its formulation and to demonstrate its performance. Experimental results for a ceramic composite plate and a thermal barrier coating ( TBC) sample are also presented. It was shown that thermal diffusion is the primary factor that degrades the spatial resolution with depth for TT; the spatial resolutions in the lateral and axial directions were quantitatively evaluated.« less

  20. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system, Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various meta! (steel, inconel, and aluminum), phenolic (carbon cloth phenolic and glass cloth phenolic), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber, silica-filled ethylene propylenediene monomer, and carbon-filled ethylene propylenediene monomer) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  1. Electrostatic Evaluation: SCAPE Suit Materials

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos

    2005-01-01

    The surface resistivity tests are performed per the requirements of the ESD Association Standard Test Method ESD STM11.11*. These measurements are taken using a PRS-801 resistance system with an Electro Tech System (ETS) PRF-911 concentric ring resistance probe. The tests require a five pound weight on top of cylindrical electrodes and were conducted at both ambient and low humidity conditions. In order for materials to "pass" resistivity tests the surface of the materials must either be conductive or statically dissipative otherwise the materials "fail" ESD. Volume resistivity tests are also conducted to measure conductivity through the material as opposed to conductivity along the surface. These tests are conducted using the same PRS-801 resistance system with the Electro Tech System PRF-911 concentric ring resistance probe but are performed in accordance with ESD Association Standard Test Method ESD STM11.l2**.

  2. Biocompatibility of Resin-based Dental Materials

    PubMed Central

    Moharamzadeh, Keyvan; Brook, Ian M.; Van Noort, Richard

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined the biocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental materials.

  3. DEVELOPMENT OF A SYSTEM FOR AN EDUCATIONAL PRODUCTS INFORMATION EXCHANGE. FINAL REPORT.

    ERIC Educational Resources Information Center

    KOMOSKI, P. KENNETH

    THIS STUDY WAS UNDERTAKEN TO DESIGN AN EASILY ACCESSIBLE NATIONWIDE SYSTEM FOR EXCHANGING DESCRIPTIVE, EVALUATIVE PRODUCT INFORMATION AMONG ALL SECTORS OF THE EDUCATIONAL COMMUNITY ON A COOPERATIVE COST-SHARING BASIS. THE FEASIBILITY OF SUCH A COLLECTION AND EXCHANGE OF DESCRIPTIVE AND EVALUATIVE INFORMATION ABOUT INSTRUCTIONAL MATERIALS SYSTEMS…

  4. Occurrence and removal of microbial indicators from municipal wastewaters by nine different MBR systems.

    PubMed

    Hirani, Zakir M; Decarolis, James F; Lehman, Geno; Adham, Samer S; Jacangelo, Joseph G

    2012-01-01

    Nine different membrane bioreactor (MBR) systems with different process configurations (submerged and external), membrane geometries (hollow-fiber, flat-sheet, and tubular), membrane materials (polyethersulfone (PES), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE)) and membrane nominal pore sizes (0.03-0.2 μm) were evaluated to assess the impact of influent microbial concentration, membrane pore size and membrane material and geometries on removal of microbial indicators by MBR technology. The log removal values (LRVs) for microbial indicators increased as the influent concentrations increased. Among the wide range of MBR systems evaluated, the total and fecal coliform bacteria and indigenous MS-2 coliphage were detected in 32, 9 and 15% of the samples, respectively; the 50th percentile LRVs were measured at 6.6, 5.9 and 4.5 logs, respectively. The nominal pore sizes of the membranes, membrane materials and geometries did not show a strong correlation with the LRVs.

  5. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    PubMed

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  6. Evaluation of three different rotary systems during endodontic retreatment - Analysis by scanning electron microscopy

    PubMed Central

    Vidal, Flávia-Teixeira; Nunes, Eduardo; Horta, Martinho-Campolina-Rebello; Freitas, Maria-Rita-Lopes-da Silva

    2016-01-01

    Background Endodontic therapy is considered a series of important and interdependent steps, and failure of any of these steps may compromise the treatment outcome. This study aimed to evaluate the effectiveness of three different rotary systems in removing obturation materials during endodontic retreatment using scanning electron microscopy (SEM) analysis. Material and Methods Thirty-six endodontically treated teeth were selected and divided into 3 groups of 10 and 1 control group with 6 dental elements. The groups were divided according to the rotary system used for removing gutta-percha, as follows: G1: ProTaper system; G2: K3 system; G3: Mtwo system; and G4: Control group. Thereafter, the roots were split and the sections were observed under SEM, for analysis and counting of clear dentinal tubules, creating the variable “degree of dentinal tubule patency” (0: intensely clear; 1: moderately clear; 2: slightly clear; 3: completely blocked). The data were subjected to the Friedman and Kruskal-Wallis statistical tests. Results No differences were observed in the “degree of dentinal tubule patency” neither between the root thirds (to each evaluated group) nor between the groups (to each evaluated third). Nevertheless, when the three root thirds were grouped (providing evaluation of all root extension), the “degree of dentinal tubule patency” was lower in G1 than in G3 (p<0.05), but showed no differences neither between G1 and G2 nor G2 and G3. Conclusions No technique was able to completely remove the canal obturation material, despite G1 having shown better results, although without significant difference to G2 Key words:Scanning electron microscopy, NiTi, retreatment. PMID:27034750

  7. Safety evaluation -- Spent water treatment system components inventory release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, E.N. Jr.

    1995-01-24

    Over the past few years various impediments to shipment of generated spent basin water treatment system components have resulted in the accumulation of quantities of these waste items at 100K. Specifically, there are (as of 01/01/95) 13 grout/culvert packaged cartridge filters (CF), four unpackaged cartridge filters, 60 spent ion exchange columns (IXC) and seven ion exchange modules (IXM) at 100K awaiting shipment for final waste disposal. As a result of the accumulation of this waste, the question has arisen regarding the consequences of potential releases of the inventory of radionuclides in these waste items relative to the K Area safetymore » envelope. The purpose of this paper is to address this question. The initial step evaluating the consequences of potential release of material from the spent water treatment system components was to determine the individual and total radionuclide inventories of concern. Generally the radioisotopes of concern to the dose consequences were Sr/Y-90, Cs-137, and the transuranic (TRU) isotopes. The loading of these radioisotopes needed to be determined for each of the components of the total number of accumulated IXCs, IXMs and CFs. This evaluation examines four potential releases of material from the spent water treatment system components. These releases are: the release of material from all 39 IXCs stored in 183-KW; the release of material from the IXCs, IXMs and CFs at 105-KE and 105-KW; the release of material from the 13 CFs stored behind 105-KE; and the non-mechanistic release of the total stored waste inventory.« less

  8. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  9. Comparison Testings between Two High-temperature Strain Measurement Systems

    NASA Technical Reports Server (NTRS)

    Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.

    1996-01-01

    An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.

  10. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  11. An evaluation of IDOT's current underdrain systems

    DOT National Transportation Integrated Search

    1995-12-01

    The use of pavement underdrains became common practice in Illinois following the issuance of a Department underdrain policy in December 1970. Since that time, a variety of materials have been incorporated as underdrains. As these materials evolved, I...

  12. Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.

    2003-01-01

    Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.

  13. [Development of medical supplies management system].

    PubMed

    Zhong, Jianping; Shen, Beijun; Zhu, Huili

    2012-11-01

    This paper adopts advanced information technology to manage medical supplies, in order to improve the medical supplies management level and reduce material cost. It develops a Medical Supplies Management System with B/S and C/S mixed structure, optimizing material management process, building large equipment performance evaluation model, providing interface solution with HIS, and realizing real-time information briefing of high value material's consumption. The medical materials are managed during its full life-cycle. The material consumption of the clinical departments is monitored real-timely. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, it realizes the final purpose of management yielding benefit.

  14. Overview of CEV Thermal Protection System Seal Development

    NASA Technical Reports Server (NTRS)

    DeMange, Jeff; Taylor, Shawn; Dunlap, Patrick; Steinetz, Bruce; Delgado, Irebert; Finkbeiner, Josh; Mayer, John

    2009-01-01

    NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV: a) HS-to-BS interface. b) Compression pad. HS-to-BS Interface Seal System: a) design has evolved as a result of changes with the CEV TPS. b) Seal system is currently under development/evaluation. Coupon level tests, Arc jet tests, and Validation test development. Compression Pad: a) Finalizing design options. b) Evaluating material candidates.

  15. Characterization of dielectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formedmore » in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.« less

  16. Solar heating and cooling technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  17. Emergent Properties and Toxicological Considerations for Nanohybrid Materials in Aquatic Systems

    PubMed Central

    Saleh, Navid B.; Afrooz, A. R. M. Nabiul; Bisesi, Joseph H.; Aich, Nirupam; Plazas-Tuttle, Jaime; Sabo-Attwood, Tara

    2014-01-01

    Conjugation of multiple nanomaterials has become the focus of recent materials development. This new material class is commonly known as nanohybrids or “horizon nanomaterials”. Conjugation of metal/metal oxides with carbonaceous nanomaterials and overcoating or doping of one metal with another have been pursued to enhance material performance and/or incorporate multifunctionality into nano-enabled devices and processes. Nanohybrids are already at use in commercialized energy, electronics and medical products, which warrant immediate attention for their safety evaluation. These conjugated ensembles likely present a new set of physicochemical properties that are unique to their individual component attributes, hence increasing uncertainty in their risk evaluation. Established toxicological testing strategies and enumerated underlying mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. This review will present a critical discussion on the altered physicochemical properties of nanohybrids and analyze the validity of existing nanotoxicology data against these unique properties. The article will also propose strategies to evaluate the conjugate materials’ safety to help undertake future toxicological research on the nanohybrid material class. PMID:28344229

  18. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  19. Performance characterization of active fiber-composite actuators for helicopter rotor blade applications

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2002-07-01

    The primary objective of this work was to characterize the performance of the Active Fiber Composite (AFC) actuator material system for the Boeing Active Material Rotor (AMR) blade application. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to orient the driving electric field in the fiber direction to use the primary piezoelectric effect. These actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural actuation for vibration control in helicopters. Therefore, it was necessary to conduct extensive electromechanical material characterization to evaluate AFCs both as actuators and as structural components of the rotor blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included stress-strain tests, free strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing process developed to evaluate the relevant AFC material properties. The results from this comprehensive performance characterization of the AFC material system supported the design and operation of the Boeing AMR blade scheduled for hover and forward flight wind tunnel tests.

  20. Materials management: stretching the "household" budget.

    PubMed

    Carpe, R H; Carroll, P E

    1987-11-01

    As CFOs assume responsibility for the materials management function because of the potential to maximize cash flow, achieve economies of scale, decrease costs, and streamline operations, they look for guidelines to evaluate performance. Conducting a systems operations audit can aid in assessing that performance. CFOs can determine whether materials management processes are working "smarter, nor harder."

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Michael J.

    The Hydrogen Fracture Toughness Tester (HFTT) is a mechanical testing machine designed for conducting fracture mechanics tests on materials in high-pressure hydrogen gas. The tester is needed for evaluating the effects of hydrogen on the cracking properties of tritium reservoir materials. It consists of an Instron Model 8862 Electromechanical Test Frame; an Autoclave Engineering Pressure Vessel, an Electric Potential Drop Crack Length Measurement System, associated computer control and data acquisition systems, and a high-pressure hydrogen gas manifold and handling system.

  2. Evaluation of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental dental resin-based materials.

    PubMed

    Oliveira, Dayane Carvalho Ramos Salles de; Souza-Junior, Eduardo José; Dobson, Adam; Correr, Ana Rosa Costa; Brandt, William Cunha; Sinhoreti, Mário Alexandre Coelho

    2016-01-01

    To evaluate the influence of phenyl-propanedione on yellowing and chemical-mechanical properties of experimental resin-based materials photoactivated using different light curing units (LCUs). Experimental resin-based materials with the same organic matrix (60:40 wt% BisGMA:TEGDMA) were mechanically blended using a centrifugal mixing device. To this blend, different photoinitiator systems were added in equimolar concentrations with aliphatic amine doubled by wt%: 0.4 wt% CQ; 0.38 wt% PPD; or 0.2 wt% CQ and 0.19 wt% PPD. The degree of conversion (DC), flexural strength (FS), Young's modulus (YM), Knoop hardness (KNH), crosslinking density (CLD), and yellowing (Y) were evaluated (n=10). All samples were light cured with the following LCUs: a halogen lamp (XL 2500), a monowave LED (Radii), or a polywave LED (Valo) with 16 J/cm2. The results were analysed by two-way ANOVA and Tukey's test (α=0.05). No statistical differences were found between the different photoinitiator systems to KNH, CLS, FS, and YM properties (p≥0.05). PPD/CQ association showed the higher DC values compared with CQ and PPD isolated systems when photoactivated by a polywave LED (p≤0.05). Y values were highest for the CQ compared with the PPD systems (p≤0.05). PPD isolated system promoted similar chemical and mechanical properties and less yellowing compared with the CQ isolated system, regardless of the LCU used.

  3. Facilities to Support Beamed Energy Launch Testing at the Laser Hardened Materials Evaluation Laboratory (LHMEL)

    NASA Astrophysics Data System (ADS)

    Lander, Michael L.

    2003-05-01

    The Laser Hardened Materials Evaluation Laboratory (LHMEL) has been characterizing material responses to laser energy in support of national defense programs and the aerospace industry for the past 26 years. This paper reviews the overall resources available at LHMEL to support fundamental materials testing relating to impulse coupling measurement and to explore beamed energy launch concepts. Located at Wright-Patterson Air Force Base, Ohio, LHMEL is managed by the Air Force Research Laboratory Materials Directorate AFRL/MLPJ and operated by Anteon Corporation. The facility's advanced hardware is centered around carbon dioxide lasers producing output power up to 135kW and neodymium glass lasers producing up to 10 kilojoules of repetitively pulsed output. The specific capabilities of each laser device and related optical systems are discussed. Materials testing capabilities coupled with the laser systems are also described including laser output and test specimen response diagnostics. Environmental simulation capabilities including wind tunnels and large-volume vacuum chambers relevant to beamed energy propulsion are also discussed. This paper concludes with a summary of the procedures and methods by which the facility can be accessed.

  4. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  5. Mechanisms of deterioration of nutrients. [freeze drying methods for space flight food

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1974-01-01

    Methods are reported by which freeze dried foods of improved quality will be produced. The applicability of theories of flavor retention has been demonstrated for a number of food polymers, both proteins and polysacchardies. Studies on the formation of structures during freeze drying have been continued for emulsified systems. Deterioration of organoleptic quality of freeze dried foods due to high temperature heating has been evaluated and improved procedures developed. The influence of water activity and high temperature on retention of model flavor materials and browning deterioration has been evaluated for model systems and food materials.

  6. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Jeffrey

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed tomore » achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector development, multiple concepts including high thermal resistance thermal barrier coatings (TBC), oxide dispersion strengthened (ODS) alloys, continuous fiber ceramic composites (CFCC), and monolithic ceramics were evaluated before down-selection to the most promising candidate materials for field evaluation. Preliminary, component and sub-scale testing was conducted to determine material properties and demonstrate proof-of-concept. Full-scale rig and engine testing was used to validated engine performance prior to field evaluation at a Qualcomm Inc. cogeneration site located in San Diego, California. To ensure that the CFCC liners with the EBC proposed under this program would meet the target life, field evaluations of ceramic matrix composite liners in Centaur{reg_sign} 50 gas turbine engines, which had previously been conducted under the DOE sponsored Ceramic Stationary Gas Turbine program (DE-AC02-92CE40960), was continued under this program at commercial end-user sites under Program Subtask 1A - Extended CFCC Materials Durability Testing. The goal of these field demonstrations was to demonstrate significant component life, with milestones of 20,000 and 30,000 hours. Solar personnel monitor the condition of the liners at the field demonstration sites through periodic borescope inspections and emissions measurements. This program was highly successful at evaluating advanced materials and down-selecting promising solutions for use in gas turbine combustions systems. The addition of the advanced materials technology has enabled the predicted life of the Mercury 50 combustion system to reach 30,000 hours, which is Solar's typical time before overhaul for production engines. In particular, a 40 mil thick advanced Thermal Barrier Coating (TBC) system was selected over various other TBC systems, ODS liners and CFCC liners for the 4,000-hour field evaluation under the program. This advanced TBC is now production bill-of-material at various thicknesses up to 40 mils for all of Solar's advanced backside-cooled combustor liners (Centaur 50, Taurus 60, Mars 100, Taurus 70, Taurus 65, Titan 130, Titan 250 and Mercury 50). This TBC coating system significantly outperformed all other TBC systems evaluated under the program. The initial field unit, with the 40 mil advanced TBC developed under this program, has far exceeded the 4,000-hour requirement of the program, accumulating over 20,000 hours of commercial operation at Qualcomm Inc. in San Diego, CA. The 40 mil advanced TBC remains in excellent condition, with no evidence of chipping or spalling. The engine will continue operation until the unit is due for overhaul at approximately 30,000 hours. The Oxide Dispersion Strengthened (ODS) alloy injector tip testing and evaluation was also successful, however, the ODS injector tip development on this program was terminated, primarily due to the fact that the Mercury 50 injector tip was redesigned (Generation 3) by Combustion Engineering.« less

  8. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  9. Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview

    NASA Technical Reports Server (NTRS)

    Shin, Euy-Sik Eugene

    2015-01-01

    Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.

  10. Materials technology for Stirling space power converters

    NASA Technical Reports Server (NTRS)

    Baggenstoss, William; Mittendorf, Donald

    1992-01-01

    This program was conducted in support of the NASA LeRC development of the Stirling power converter (SPC) for space power applications. The objectives of this contract were: (1) to perform a technology review and analyses to support the evaluation of materials issues for the SPC; (2) to evaluate liquid metal compatibility issues of the SPC; (3) to evaluate and define a transient liquid phase diffusion bonding (TLPDB) process for the SPC joints to the Udimet 720 heater head; and (4) to evaluate alternative (to the TLPDB) joining techniques. In the technology review, several aspects of the current Stirling design were examined including the power converter assembly process, materials joining, gas bearings, and heat exchangers. The supporting analyses included GLIMPS power converter simulation in support of the materials studies, and system level analysis in support of the technology review. The liquid metal compatibility study evaluated process parameters for use in the Stirling power converter. The alternative joining techniques study looked at the applicability of various joining techniques to the Stirling power converter requirements.

  11. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; (ii) Transformed by chemical reaction into materials that are not regulated materials; (iii... section for a storage vessel, the owner or operator shall prepare a design evaluation (or engineering...

  12. Eddy Current System for Material Inspection and Flaw Visualization

    NASA Technical Reports Server (NTRS)

    Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.

    2007-01-01

    Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.

  13. Evaluating COCA--What Do Teachers Think?

    ERIC Educational Resources Information Center

    Major, Nigel

    COCA, which consists of both authoring tools and a runtime shell, is a system intended to provide teachers with genuine access to intelligent tutoring system (ITS) technology and to give them control over domain material and teaching strategies. To evaluate the effectiveness of COCA, 10 subjects (five university teachers and five school teachers)…

  14. Outer skin protection of columbium Thermal Protection System (TPS) panels

    NASA Technical Reports Server (NTRS)

    Culp, J. D.

    1973-01-01

    A coated columbium alloy material system 0.04 centimeter thick was developed which provides for increased reliability to the load bearing character of the system in the event of physical damage to and loss of the exterior protective coating. The increased reliability to the load bearing columbium alloy (FS-85) was achieved by interposing an oxidation resistant columbium alloy (B-1) between the FS-85 alloy and a fused slurry silicide coating. The B-1 alloy was applied as a cladding to the FS-85 and the composite was fused slurry silicide coated. Results of material evaluation testing included cyclic oxidation testing of specimens with intentional coating defects, tensile testing of several material combinations exposed to reentry profile conditions, and emittance testing after cycling of up to 100 simulated reentries. The clad material, which was shown to provide greater reliability than unclad materials, holds significant promise for use in the thermal protection system of hypersonic reentry vehicles.

  15. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    NASA Astrophysics Data System (ADS)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  16. Insulation commonality assessment (phase 1). Volume 2: Section 7.0 through 16.0. [evaluation of materials used for spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The heat transfer characteristics of various materials used for the thermal insulation of spacecraft are discussed. Techniques for conducting thermal performance analysis, structural performance analysis, and dynamic analysis are described. Processes for producing and finishing the materials are explained. The methods for determining reliability, system safety, materials tests, and design effectiveness are explained.

  17. Nondestructive evaluation technique guide

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    A total of 70 individual nondestructive evaluation (NDE) techniques are described. Information is presented that permits ease of comparison of the merits and limitations of each technique with respect to various NDE problems. An NDE technique classification system is presented. It is based on the system that was adopted by the National Materials Advisory Board (NMAB). The classification system presented follows the NMAB system closely with the exception of additional categories that have been added to cover more advanced techniques presently in use. The rationale of the technique is explained. The format provides for a concise description of each technique, the physical principles involved, objectives of interrogation, example applications, limitations of each technique, a schematic illustration, and key reference material. Cross-index tabulations are also provided so that particular NDE problems can be referred to appropriate techniques.

  18. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.

  19. Candidate Materials Evaluated for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy R.; Ritzert, Frank J.

    2005-01-01

    The Department of Energy and NASA have identified Stirling Radioisotope Generators (SRGs) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel-base superalloy 718. The current operating temperature is at the limit of alloy 718 s capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, personnel at the NASA Glenn Research Center are evaluating advanced materials for a high-temperature heater head to allow a higher convertor temperature ratio and, thus, increase the system efficiency. A generic list of properties that were used to screen the candidate materials follows: (1) creep, (2) fabricability, (3) helium gas containment, (4) long-term stability and compatibility, (5) ability to form a hermetical closeout seal, and (6) ductility and toughness.

  20. Effects of 1980 technology on weight of a recovery system for a one million pound booster

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1975-01-01

    The effects were evaluated of 1980 technology on the weight of recovery systems capable of decelerating a one-million-pound booster to vertical velocities of 60 or 30 ft/sec at sea level impact. A nominal set of booster staging conditions were assumed and there were no constraints on parachute size, number or type. The effects of new materials that would be available by 1980, the effects of booster attitude during entry, various parachute staging methods, parachute reefing schemes, parachute-retro rocket hybrid systems, and the effects of dividing the booster into separate pieces for recovery were evaluated. It was determined that for the systems considered, a hybrid parachute-retro-rocket recovery system would have the minimum weight. New materials now becoming available for parachute fabrication should result in a 37-percent reduction in hybrid recovery system weight for an impact velocity of 30 fps.

  1. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  2. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  3. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    PubMed

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.

  4. Clinical evaluation of a composite resin system with a dentin bonding agent for restoration of permanent posterior teeth: a 3-year study.

    PubMed

    Roberts, M W; Folio, J; Moffa, J P; Guckes, A D

    1992-03-01

    This study evaluated the clinical performance of a visible light-cured small particle bimodally filled hybrid condensable composite resin system that included a dentin bonding agent compared with an amalgam alloy in class II restorations of permanent teeth. A total of 108 restorations were placed in 34 patients. Fifty-three composite resin and 55 amalgam restorations were inserted. Each restoration was evaluated immediately after placement and then on an annual basis for a 3-year period using the Public Health Service (PHS) criteria. In addition, the Moffa-Lugassy scale was used to measure the loss of material on the occlusal surface of these materials. One hundred percent of the resin and amalgam restorations were evaluated, measured, and reasons for replacement were recorded over the 3-year period. There was no significant difference (p greater than 0.05) in the clinical performance of the composite resin and the amalgam when evaluated by the PHS criteria. Analyses of wear at each of the three annual recall periods did not reveal any significant difference (p greater than 0.05) between the two restorative materials when measured by the Moffa-Lugassy scale.

  5. Testing ocular irritancy in vitro with the silicon microphysiometer.

    PubMed

    Bruner, L H; Miller, K R; Owicki, J C; Parce, J W; Muir, V C

    1991-01-01

    The silicon microphysiometer, an instrument based on the light-addressable potentiometric sensor, was evaluated as an in vitro alternative for assessing ocular irritancy potential. It indirectly and non-invasively measures cell metabolism by determining the rate of acid metabolite production from cells, in this case human epidermal keratinocytes, placed inside the microphysiometer chamber. The 17 materials used for the evaluation included bar soaps, a liquid hand soap, shampoos, dishwashing liquids, laundry detergents, a fabric softener and several single chemicals. All materials tested were in liquid form. The in vivo irritancy potential of the materials was obtained from historical data using the rabbit low-volume eye test. There was a positive correlation between the in vivo irritancy potential of the test materials and the concentration of test material that decreased the acidification rate of cells by 50% (MRD(50); r = 0.86, P < 0.0001). Preliminary studies suggest other endpoints obtainable from the system may also provide useful information for making ocular safety assessments. Because the method is non-invasive, it is possible to determine whether cells recover from a treatment with the test material. The metabolic rate of the cells also increases at sub-inhibitory concentrations of some of the test materials. Because of the good correlation between the in vivo and in vitro data, the ease with which test materials can be applied to the system, and the multiple endpoints available from the system, it holds great potential as a useful in vitro alternative for ocular safety testing.

  6. Test Procedures for Characterizing, Evaluating, and Managing Separator Materials used in Secondary Alkaline Batteries

    NASA Technical Reports Server (NTRS)

    Guasp, Edwin; Manzo, Michelle A.

    1997-01-01

    Secondary alkaline batteries, such as nickel-cadmium and silver-zinc, are commonly used for aerospace applications. The uniform evaluation and comparison of separator properties for these systems is dependent upon the measurement techniques. This manual presents a series of standard test procedures that can be used to evaluate, compare, and select separator materials for use in alkaline batteries. Detailed test procedures evaluating the following characteristics are included in this manual: physical measurements of thickness and area weight, dimensional stability measurements, electrolyte retention, resistivity, permeability as measured via bubble pressure, surface evaluation via SEM, chemical stability, and tensile strength.

  7. Method for on-line evaluation of materials using prompt gamma ray analysis

    DOEpatents

    Akers, Douglas W [Idaho Falls, ID

    2009-12-08

    A method for evaluating a material specimen comprises: Mounting a neutron source and a detector adjacent the material specimen; bombarding the material specimen with neutrons from the neutron source to create prompt gamma rays within the material specimen, some of the prompt gamma rays being emitted from the material specimen, some of the prompt gamma rays resulting in the formation of positrons within the material specimen by pair production; collecting positron annihilation data by detecting with the detector at least one emitted annihilation gamma ray resulting from the annihilation of a positron; storing the positron annihilation data on a data storage system for later retrieval and processing; and continuing to collect and store positron annihilation data, the continued collected and stored positron annihilation data being indicative of an accumulation of lattice damage over time.

  8. A Model System for the Design and Maintenance of Related Instruction Curriculum for Approved U.S. Department of Labor Apprenticeship Programs; Phase III. Final Report and Final Evaluation Report.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    A final report and final evaluation report of Phase III are provided for a project to establish a national clearinghouse for apprenticeship-related instructional materials. The final report provides a summary and a narrative account of these project activities: identification of materials; identification of apprenticeship curriculum needs;…

  9. Automated Analysis of Counselor Style and Effects: The Development and Evaluation of Methods and Materials to Assess the Stylistic Accuracy and Outcome Effectiveness of Counselor Verbal Behavior. Final Report.

    ERIC Educational Resources Information Center

    Pepyne, Edward W.

    This project attempts to develop, evaluate and implement methods and materials for the automated analysis of the stylistic characteristics of counselor verbal behavior and its effects on client verbal behavior within the counseling interview. To achieve this purpose, the project designed a system of computer programs, the DISCOURSE ANALYSIS…

  10. A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.

    PubMed

    Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun

    2013-01-01

    A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.

  11. Improved ablative materials for the ASRM nozzle

    NASA Technical Reports Server (NTRS)

    Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.

    1992-01-01

    Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.

  12. Thermal Protection Materials: Development, Characterization and Evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, Silvia M.

    2012-01-01

    Thermal protection materials and systems (TPS) are used to protect space vehicles from the heat experienced during entry into an atmosphere. The application for these materials is very specialized as are the materials. They must have specific properties to withstand conditions during specific entries. There is no one-size-fits-all TPS as the conditions experienced by a material are very dependent upon the atmosphere, the entry speed, the size and shape of the vehicle, and the location on the vehicle. However, all TPS must be reliable and efficient to ensure mission safety, that is to protect the vehicle while ensuring that payload is maximized. Types of TPS will be reviewed in relation to types of missions and applications. Both reusable and ablative materials will be discussed. Approaches to characterizing and evaluating these materials will be presented. The role of heritage versus new materials will be described.

  13. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  14. Evaluation of the Effect of Silicone Contamination on Various Bond Systems and the Feasibility of Removing the Contamination

    NASA Technical Reports Server (NTRS)

    Stanley, Stephanie D.

    2008-01-01

    Silicone is a contaminant that can cause catastrophic failure of a bond system depending on the materials and processes used to fabricate the bond system. Unfortunately, more and more materials are fabricated using silicone. The purpose of this testing was to evaluate which bond systems are sensitive to silicone contamination and whether or not a cleaning process could be utilized to remove the silicone to bring the bond system performance back to baseline. Due to the extensive nature of the testing, attempts will be made to generalize the understanding within classes of substrates, bond systems, and surface preparation and cleaning methods. This study was done by contaminating various metal (steel, Inconel, and aluminum), phenolic (carbon-cloth phenolic [CCP] and glass-cloth phenolic [GCP]), and rubber (natural rubber, asbestos-silicone dioxide filled natural butyldiene rubber [ASNBR]; silica-filled ethylene propylenediene monomer [SFEPDM], and carbon-filled ethylene propylenediene monomer [CFEPDM]) substrates which were then bonded using various adhesives and coatings (epoxy-based adhesives, paints, ablative compounds, and Chemlok adhesives) to determine the effect silicone contamination has on a given bond system's performance. The test configurations depended on the bond system being evaluated. The study also evaluated the feasibility of removing the silicone contamination by cleaning the contaminated substrate prior to bonding. The cleaning processes also varied depending on bond system.

  15. Engineering behavior of small-scale foundation piers constructed from alternative materials

    NASA Astrophysics Data System (ADS)

    Prokudin, Maxim Mikhaylovich

    Testing small-scale prototype pier foundations to evaluate engineering behavior is an alternative to full-scale testing that facilitates testing of several piers and pier groups at relatively low cost. In this study, various pier systems and pier groups at one tenth scale were subjected to static vertical loading under controlled conditions to evaluate stiffness, bearing capacity, and group efficiency. Pier length, material properties and methods of installation were evaluated. Pier length to diameter ratios varied between four and eight. A unique soil pit with dimensions of 2.1 m in width, 1.5 m in length and 2.0 m in depth was designed to carry out this research. The test pit was filled with moisture conditioned and compacted Western Iowa loess. A special load test frame was designed and fabricated to provide up to 25,000 kg vertical reaction force for load testing. A load cell and displacement instrumentation was setup to capture the load test data. Alternative materials to conventional cement concrete were studied. The pier materials evaluated in this study included compacted aggregate, cement stabilized silt, cementitious grouts, and fiber reinforced silt. Key findings from this study demonstrated that (1) the construction method influences the behavior of aggregate piers, (2) the composition of the pier has a significant impact on the stiffness, (3) group efficiencies were found to be a function of pier length and pier material, (4) in comparison to full-scale testing the scaled piers were found to produce a stiffer response with load-settlement and bearing capacities to be similar. Further, although full-scale test results were not available for all pier materials, the small-scale testing provided a means for comparing results between pier systems. Finally, duplicate pier tests for a given length and material were found to be repeatable.

  16. Flexural impact force absorption of mouthguard materials using film sensor system.

    PubMed

    Reza, Fazal; Churei, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko; Ueno, Toshiaki

    2014-06-01

    Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems. Disk-shaped specimens (1, 2, and 3 mm thick) were prepared using three commercial thermoplastic mouthguard materials (Bioplast, Impact Guard, MG 21) and one experimental mouthguard material [mixture of Poly (ethyl methacrylate)]. Impact force was applied by letting a stainless steel ball drop free-fall onto the specimens and then measuring the impact load under each specimen using a film sensor system and a load cell sensor system. The total load measured with the film sensor system decreased with an increase in mouthguard thickness, while almost none of the transmitted impact forces measured with the load cell system were statistically different. The film sensor system was considered to be superior to the load cell system because the maximum stress and stress area could be determined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  18. In vitro evaluation of efficacy of different rotary instrument systems for gutta percha removal during root canal retreatment

    PubMed Central

    Joseph, Mercy; Malhotra, Amit; Rao, Murali; Sharma, Abhimanyu; Talwar, Sangeeta

    2016-01-01

    Background Complete removal of old filling material during root canal retreatment is fundamental for predictable cleaning and shaping of canal anatomy. Most of the retreatment methods tested in earlier studies have shown inability to achieve complete removal of root canal filling. Therefore the aim of this investigation was to assess the efficacy of three different rotary nickel titanium retreatment systems and Hedstrom files in removing filling material from root canals. Material and Methods Sixty extracted mandibular premolars were decoronated to leave 15 mm root. Specimen were hand instrumented and obturated using gutta percha and AH plus root canal sealer. After storage period of two weeks, roots were retreated with three (Protaper retreatment files, Mtwo retreatment files, NRT GPR) rotary retreatment instrument systems and Hedstroem files. Subsequently, samples were sectioned longitudinally and examined under stereomicroscope. Digital images were recorded and evaluated using Digital Image Analysing Software. The retreatment time was recorded for each tooth using a stopwatch. The area of canal and the residual filling material was recorded in mm2 and the percentage of remaining filling material on canal walls was calculated. Data was analysed using ANOVA test. Results Significantly less amount of residual filling material was present in protaper and Mtwo instrumented teeth (p < 0.05) compared to NRT GPR and Hedstrom files group. Protaper instruments also required lesser time during removal of filling material followed by Mtwo instruments, NRT GPR files and Hedstrom files. Conclusions None of the instruments were able to remove the filling material completely from root canal. Protaper universal retreatment system and Mtwo retreatment files were more efficient and faster compared to NRT GPR fles and Hedstrom files. Key words:Gutta-percha removal, nickel titanium, root canal retreatment, rotary instruments. PMID:27703601

  19. Evaluation of seven in vitro alternatives for ocular safety testing.

    PubMed

    Bruner, L H; Kain, D J; Roberts, D A; Parker, R D

    1991-07-01

    Seven in vitro assays were evaluated to determine if any were useful as screening procedures in ocular safety assessment. Seventeen test materials (chemicals, household cleaners, hand soaps, dishwashing liquids, shampoos, and liquid laundry detergents) were tested in each assay. In vivo ocular irritation scores for the materials were obtained from existing rabbit low volume eye test (LVET) data. The seven assays evaluated included the silicon microphysiometer (SM), luminescent bacteria toxicity test (LBT), neutral red assay (NR), total protein assay (TP), Tetrahymena thermophila motility assay (TTMA), bovine eye/chorioallantoic membrane assay (BE/CAM), and the EYTEX system (ETS). For the seventeen materials used in this study there was a significant correlation between the in vivo irritant potential and in vitro data for all the tests except the EYTEX System (SM, r = -0.87; LBT, r = -0.91; NR, r = -0.85; TTMA, r = 0.78; TP, r = -0.86; ETS, r = 0.29). The irritation classifications provided by the BE/CAM also did not correspond with the actual in vivo irritancy potential of the test materials. The result of this study suggested it may be possible to classify materials into broad irritancy categories with some of the assays. This would allow their use as screens prior to limited in vivo confirmation in the ocular safety assessment process.

  20. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  1. Development of the Spacecraft Materials Selector Expert System

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.

    2000-01-01

    A specific knowledge base to evaluate the on-orbit performance of selected materials on spacecraft is being developed under contract to the NASA SEE program. An artificial intelligence software package, the Boeing Expert System Tool (BEST), contains an inference engine used to operate knowledge bases constructed to selectively recall and distribute information about materials performance in space applications. This same system is used to make estimates of the environmental exposures expected for a given space flight. The performance capabilities of the Spacecraft Materials Selector (SMS) knowledge base are described in this paper. A case history for a planned flight experiment on ISS is shown as an example of the use of the SMS, and capabilities and limitations of the knowledge base are discussed.

  2. Ultrasonic Resonance Spectroscopy of Composite Rims for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Harmon, Laura M.; Baaklini, George Y.

    2002-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform (FFT) on the frequency response spectrum. In addition, the system is capable of equalizing the amount of energy at each frequency. Equalization of the frequency spectrum, along with interpretation of the second FFT, aids in the evaluation of the fundamental frequency. The frequency responses from multilayered material samples, with and without known defects, were analyzed to assess the capabilities and limitations of this nondestructive evaluation technique for material characterization and defect detection. Amplitude and frequency changes were studied from ultrasonic responses of thick composite rings and a multiring composite rim. A composite ring varying in thickness was evaluated to investigate the full thickness resonance. The frequency response characteristics from naturally occurring voids in a composite ring were investigated. Ultrasonic responses were compared from regions with and without machined voids in a composite ring and a multiring composite rim. Finally, ultrasonic responses from the multiring composite rim were compared before and after proof spin testing to 63,000 rpm.

  3. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

    NASA Astrophysics Data System (ADS)

    Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy

    2016-04-01

    Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

  4. Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system

    NASA Astrophysics Data System (ADS)

    Röhrig, C.; Scheffer, T.; Diebels, S.

    2017-09-01

    Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.

  5. Development of a Student-Paced Course in General Pathology Utilizing a Computer Managed Evaluation System.

    ERIC Educational Resources Information Center

    Kent, Thomas H.; And Others

    The advantages, feasibility and problems associated with a student-paced course were investigated, and a computer managed evaluation system compared to paper and pencil testing mode. The development of a self-paced course was facilitated by explicit behavior objectives, a variety of learning materials referenced to the objectives and a large pool…

  6. Designing Online Software for Teaching the Concept of Variable That Facilitates Mental Interaction with the Material: Systemic Approach

    ERIC Educational Resources Information Center

    Koehler, Natalya A.; Thompson, Ann D.; Correia, Ana-Paula; Hagedorn, Linda Serra

    2015-01-01

    Our case study is a response to the need for research and reporting on specific strategies employed by software designers to produce effective multimedia instructional solutions. A systemic approach for identifying appropriate software features and conducting a formative evaluation that evaluates both the overall effectiveness of the multimedia…

  7. Advanced Life Support Equivalent System Mass Guidelines Document

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Fisher, John W.; Jones, Harry W.; Drysdale, Alan E.; Ewert, Michael K.; Hanford, Anthony J.; Hogan, John A.; Joshi, Jitendri, A.; Vaccari, David A.

    2003-01-01

    This document is a viewgraph presentation which provides guidelines for performing an Equivalent System Mass (ESM) evaluation for trade study purposes. The document: 1) Defines ESM; 2) Explains how to calculate ESM; 3) Discusses interpretation of ESM results. The document is designed to provide detailed instructive material for researchers who are performing ESM evaluations for the first time.

  8. Financial impact of fines in the unbound pavement layers.

    DOT National Transportation Integrated Search

    2014-10-01

    This study continued the research effort on evaluating the resilient behavior of D-1 base course materials when there is limited water : access during freezing. D-1 material from the Northern region of Alaska was used, and a closed system was adopted...

  9. An Evaluation of Ecotoxicity Test Guidelines: Their Adequacy for Nanomaterials

    EPA Science Inventory

    Advances in nanotechnology are resulting in the production of new nanomaterials at a rapid pace. Driving the dramatic development of new materials and products is the prospect of stronger and lighter materials, better and more efficient energy systems, potential tremendous benefi...

  10. Long term thermoelectric module testing system.

    PubMed

    D'Angelo, Jonathan; Hogan, Timothy

    2009-10-01

    Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.

  11. The Mesa Arizona Pupil Tracking System

    NASA Technical Reports Server (NTRS)

    Wright, D. L.

    1973-01-01

    A computer-based Pupil Tracking/Teacher Monitoring System was designed for Mesa Public Schools, Mesa, Arizona. The established objectives of the system were to: (1) facilitate the economical collection and storage of student performance data necessary to objectively evaluate the relative effectiveness of teachers, instructional methods, materials, and applied concepts; and (2) identify, on a daily basis, those students requiring special attention in specific subject areas. The system encompasses computer hardware/software and integrated curricula progression/administration devices. It provides daily evaluation and monitoring of performance as students progress at class or individualized rates. In the process, it notifies the student and collects information necessary to validate or invalidate subject presentation devices, methods, materials, and measurement devices in terms of direct benefit to the students. The system utilizes a small-scale computer (e.g., IBM 1130) to assure low-cost replicability, and may be used for many subjects of instruction.

  12. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  13. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  14. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  15. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 12-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  16. Hydrogen-bromine fuel cell advance component development

    NASA Technical Reports Server (NTRS)

    Charleston, Joann; Reed, James

    1988-01-01

    Advanced cell component development is performed by NASA Lewis to achieve improved performance and longer life for the hydrogen-bromine fuel cells system. The state-of-the-art hydrogen-bromine system utilizes the solid polymer electrolyte (SPE) technology, similar to the SPE technology developed for the hydrogen-oxygen fuel cell system. These studies are directed at exploring the potential for this system by assessing and evaluating various types of materials for cell parts and electrode materials for Bromine-hydrogen bromine environment and fabricating experimental membrane/electrode-catalysts by chemical deposition.

  17. Automotive Manufacturing Assessment System : Volume 3. Materials - Weight Analysis.

    DOT National Transportation Integrated Search

    1979-11-01

    Volume III is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of ...

  18. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  19. Evaluation of some candidate materials for automobile thermal reactors in engine-dynamometer screening tests

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1971-01-01

    Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.

  20. Deep Charging Evaluation of Satellite Power and Communication System Components

    NASA Technical Reports Server (NTRS)

    Schneider, T. A.; Vaughn, J. A.; Chu, B.; Wong, F.; Gardiner, G.; Wright, K. H.; Phillips, B.

    2016-01-01

    Deep charging, in contrast to surface charging, focuses on electron penetration deep into insulating materials applied over conductors. A classic example of this scenario is an insulated wire. Deep charging can pose a threat to material integrity, and to sensitive electronics, when it gives rise to an electrostatic discharge or arc. With the advent of Electric Orbit Raising, which requires spiraling through Earth's radiation belts, satellites are subjected to high energy electron environments which they normally would not encounter. Beyond Earth orbit, missions to Jupiter and Saturn face deep charging concerns due to the high energy radiation environments. While predictions can be made about charging in insulating materials, it is difficult to extend those predictions to complicated geometries, such as the case of an insulating coating around a small wire, or a non-uniform silicone grouting on a bus bar. Therefore, to conclusively determine the susceptibility of a system to arcs from deep charging, experimental investigations must be carried out. This paper will describe the evaluation carried out by NASA's Marshall Space Flight Center on subscale flight-like samples developed by Space Systems/Loral, LLC. Specifically, deep charging evaluations of solar array wire coupons, a photovoltaic cell coupon, and a coaxial microwave transmission cable, will be discussed. The results of each evaluation will be benchmarked against control sample tests, as well as typical power system levels, to show no significant deep charging threat existed for this set of samples under the conditions tested.

  1. Fixed automated spray technology.

    DOT National Transportation Integrated Search

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  2. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  3. Line focus concentrating collector for Copper Mountain Ski Resort, Colorado (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-06-02

    The present invention is a device which develops an accurate line focus concentrating collector by flexural bending of thin reflective materials. This method avoids the need for expensive tooling and support frame fabrication. The technical work conducted during this quarter included completion of designs for the prototype system for the Copper Mountain Ski Resort in Colorado. Evaluation of alternate tracking and drive systems and final design of the support system. These drawings accompany DOE/CS/15072--T4.

  4. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1982-01-01

    Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

  5. Evaluation of nonmetallic thermal protection materials for the manned space shuttle. Volume 1, task 1: Assessment of technical risks associated with utilization of nonmetallic thermal protection system

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. H.; Kirkhart, F. P.; Kistler, C. W.; Duckworth, W. H.; Ungar, E. W.; Foster, E. L.

    1970-01-01

    Technical problems of design and flight qualification of the proposed classes of surface insulation materials and leading edge materials were reviewed. A screening test plan, a preliminary design data test plan and a design data test plan were outlined. This program defined the apparent critical differences between the surface insulators and the leading edge materials, structuring specialized screening test plans for each of these two classes of materials. Unique testing techniques were shown to be important in evaluating the structural interaction aspects of the surface insulators and a separate task was defined to validate the test plan. In addition, a compilation was made of available information on proposed material (including metallic TPS), previous shuttle programs, pertinent test procedures, and other national programs of merit. This material was collected and summarized in an informally structured workbook.

  6. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    NASA Technical Reports Server (NTRS)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  7. Flexible materials technology

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.

    1980-01-01

    A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified.

  8. Effect of resin on impact damage tolerance of graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Rhodes, M. D.

    1982-01-01

    Twenty-four different epoxy resin systems were evaluated by a variety of test techniques to identify materials that exhibited improved impact damage tolerance in graphite/epoxy composite laminates. Forty-eight-ply composite panels of five of the material systems were able to sustain 100 m/s impact by a 1.27-cm-diameter aluminum projectile while statically loaded to strains of 0.005. Of the five materials with the highest tolerance to impact, two had elastomeric additives, two had thermoplastic additives, and one had a vinyl modifier; all the five systems used bisphenol A as the base resin. An evaluation of test results shows that the laminate damage tolerance is largely determined by the resin tensile properties, and that improvements in laminate damage tolerance are not necessarily made at the expense of room-temperature mechanical properties. The results also suggest that a resin volume fraction of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  9. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system

    PubMed Central

    BORGES, Alvaro Henrique; PEDRO, Fabio Luiz Miranda; SEMANOFF-SEGUNDO, Alex; MIRANDA, Carlos Eduardo Saraiva; PÉCORA, Jesus Djalma; CRUZ FILHO, Antônio Miranda

    2011-01-01

    Objective The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. Material and Methods The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. Results White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). Conclusions It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications. PMID:21625738

  10. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    EPA Science Inventory

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  11. Technology assessment of solar-energy systems. Materials resource and hazardous materials impacts of solar deployment

    NASA Astrophysics Data System (ADS)

    Schiffman, Y. M.; Tahami, J. E.

    1982-04-01

    The materials-resource and hazardous-materials impacts were determined by examining the type and quantity of materials used in the manufacture, construction, installation, operation and maintenance of solar systems. The materials requirements were compared with US materials supply and demand data to determine if potential problems exist in terms of future availability of domestic supply and increased dependence on foreign sources of supply. Hazardous materials were evaluated in terms of public and occupational health hazards and explosive and fire hazards. It is concluded that: although large amounts of materials would be required, the US had sufficient industrial capacity to produce those materials; (2) postulated growth in solar technology deployment during the period 1995-2000 could cause some production shortfalls in the steel and copper industry; the U.S. could increase its import reliance for certain materials such as silver, iron ore, and copper; however, shifts to other materials such as aluminum and polyvinylchloride could alleviate some of these problems.

  12. A Further Evaluation of Bridge Roles: Regional and National Organizations for Dissemination of Computer-Oriented Curriculum Materials for Higher Education.

    ERIC Educational Resources Information Center

    Dank, Joseph R.

    Several things must be done before a critical mass of computer-based materials can form a library. Existing materials must be upgraded, and made accessible, flexible and customized for individual users. Their mobility must be increased by reconciling inter-system differences and by providing necessary skills, resources and reward structures.…

  13. Development and Evaluation of High Temperature Gaskets for Hypersonic and Reentry Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Shpargel, Tarah

    2007-01-01

    A wide variety of flexible gasket compositions were developed and tested at high temperatures. The gasket material system has high temperature capability. GRABER sealants were very effective in sealing machined ACC-4 composite surfaces. The gasket composition do not bond strongly with the ACC-4 substrate materials. The density of gasket materials can be tailored to show appropriate compressibility.

  14. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    NASA Technical Reports Server (NTRS)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  15. Experienced Teacher Fellowship Program. Final Report.

    ERIC Educational Resources Information Center

    Wolansky, William D.; Cochran, Leslie H.

    The Industrial Arts Fellowship Program provides an opportunity for 24 experienced teachers to pursue graduate study related to two occupational clusters: industrial materials and processes or energy and propulsion systems. As part of their studies, students developed, field tested, and evaluated curriculum materials which applied these evolving…

  16. Electrosynthesis and characterization of polypyrrole/cashew gum composite grown on gold surface in aqueous medium

    USDA-ARS?s Scientific Manuscript database

    Electronic systems consisting of renewable, biodegradable materials and minimum amounts of toxic materials are desirable. This study was carried out to investigate the electrosynthesis and evaluation of the electrochemical, morphological, and topographical characteristics of a novel conducting polyp...

  17. A Survey and Analysis of Military Computer-Based Systems: A Two Part Study. Volume II. A Descriptive and Predictive Model for Evaluating Instructional Systems. Final Report.

    ERIC Educational Resources Information Center

    McDonnell Douglas Astronautics Co. - East, St. Louis, MO.

    This is the second volume of a two volume study. The first volume examined the literature to identify authoring aids for developing instructional materials, and to identify information clearing houses for existing materials. The purpose of this volume was to develop a means for assessing the cost versus expected benefits of innovations in…

  18. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, G.C.; Corsi, R.L.; Destaillats, H.

    2006-05-01

    Chemical processes taking place in indoor environments can significantly alter the nature and concentrations of pollutants. Exposure to secondary contaminants generated in these reactions needs to be evaluated in association with many aspects of buildings to minimize their impact on occupant health and well-being. Focusing on indoor ozone chemistry, we describe alternatives for improving indoor air quality by controlling chemical changes related to building materials, ventilation systems, and occupant activities.

  19. Safety analysis report for packaging (onsite) steel drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, W.A.

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  20. Bonding of reusable surface insulation with low density silicone foams

    NASA Technical Reports Server (NTRS)

    Hiltz, A. A.; Hockridge, R. R.; Curtis, F. P.

    1972-01-01

    The development and evaluation of a reduced density, high reliable foamed bond strain isolation system for attaching reusable surface insulation to the space shuttle structure are reported. Included are data on virgin materials as well as on materials that received 100 cycles of exposure to 650 F for approximately 20 minutes per cycle. Room temperature vulcanizing silicon elastomers meet all the requirments for an adhesive bonding system.

  1. Evaluation of Stress Distribution in Magnetic Materials Using a Magnetic Imaging System

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Paulsen, J. A.; Jiles, D. C.

    2004-02-01

    The feasibility of detecting stress distribution in magnetic materials by magnetic hysteresis and Barkhausen effect measurements has been evaluated using a newly developed magnetic imaging system. The system measured hysteresis loops and Barkhausen effect signals with the use of a surface sensor that was scanned over the material. The data were converted into a two-dimensional image showing spatial variations of the magnetic properties from which mechanical conditions of the materials can be inferred. In this study a nickel plate machined into a shear-beam load cell configuration was used. By applying a stress along the neutral axis, various stress patterns such as shear stress and stress concentration could be produced in different regions of the sample. The scanned images of magnetic properties such as coercivity and rms value of Barkhausen effect signal exhibited patterns similar to the stress distribution calculated using finite element model (FEM), in particular in the regions where a high stress level and a high stress gradient existed. For direct comparison, images of magnetic properties were simulated based on the results of FEM stress calculation and experimental calibration of the magnetomechanical effect. The simulated images were found to closely resemble the scanned images, indicating the possibility of measuring stress distribution by mapping magnetic properties using the magnetic imaging system.

  2. Evaluation of pressurized water cleaning systems for hardware refurbishment

    NASA Technical Reports Server (NTRS)

    Dillard, Terry W.; Deweese, Charles D.; Hoppe, David T.; Vickers, John H.; Swenson, Gary J.; Hutchens, Dale E.

    1995-01-01

    Historically, refurbishment processes for RSRM motor cases and components have employed environmentally harmful materials. Specifically, vapor degreasing processes consume and emit large amounts of ozone depleting compounds. This program evaluates the use of pressurized water cleaning systems as a replacement for the vapor degreasing process. Tests have been conducted to determine if high pressure water washing, without any form of additive cleaner, is a viable candidate for replacing vapor degreasing processes. This paper discusses the findings thus far of Engineering Test Plan - 1168 (ETP-1168), 'Evaluation of Pressurized Water Cleaning Systems for Hardware Refurbishment.'

  3. Development of sputtered techniques for thrust chambers, task 1. [evaluation of filler materials for regeneratively cooled thrust chambers

    NASA Technical Reports Server (NTRS)

    Mullaly, J. R.; Schmid, T. E.; Hecht, R. J.

    1974-01-01

    Filler materials proposed for use in the sputter fabrication regeneratively cooled thrust chambers were evaluated. Low melting castable alloys, CERROBEND. CERROCAST, and CERROTRU, slurry applied SERMETEL 481 and flame-sprayed aluminum were investigated as filler materials. Sputter deposition from a cylindrical cathode inverted magnestron was used to apply an OFHC copper closeout layer to filled OFHC copper ribbed-wall cylindrical substrates. The sputtered closeout layer structure was evaluated with respect to filler material contamination, predeposition machining and finishing operations, and deposition parameters. The application of aluminum by flame-spraying resulted in excessiver filler porosity. Though the outgassing from this porosity was found to be detrimental to the closeout layer structure, bond strengths in excess of 10,500 psi were achieved. Removal of the aluminum from the grooves was readily accomplished by leaching in a 7.0 molar solution of sodium hydroxide at 353 K. Of the other filler materials evaluated, CERROTRU was found to be the most suitable material with respect to completely filling the ribbed-wall cylinders and vacuum system compatibility. However, bond contamination resulted in low closeout layer bond strength with the CERROTRU filler. CERROBEND, CERROCAST, and SERMETEL 481 were found to be unacceptable as filler materials.

  4. Space Environment Stability and Physical Properties of New Materials for Space Power and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1997-01-01

    To test and evaluate suitability of materials for use in space power systems and related space and commercial applications, and to achieve sufficient understanding of the mechanisms by which, the materials perform in their intended applications. Materials and proposed applications included but were not limited to: Improved anodes for lithium ion batteries, highly-transparent arc-proof solar array coatings, and improved surface materials for solar dynamic concentrators and receivers. Cooperation and interchange of data with industrial companies as appropriate.

  5. Infrared thermographic evaluation of marine composite structures

    NASA Astrophysics Data System (ADS)

    Jones, Thomas S.

    1995-06-01

    Glass fiber composite materials have been used for many years in the construction of pleasure, cruising, and racing marine vessels. These vessels have demonstrated excellent performance characteristics and have been reliable in service. Even so, as with all material systems, they are subject to damage from accident, neglect, and abuse. Traditional nondestructive inspection approaches are not always fully effective for examining composite marine structures. Infrared imaging offers a particularly attractive approach for the inspection of composite material structures. Glass fiber composites frequently possess a combination of thermal properties that make them good candidates for infrared thermographic evaluation while other nondestructive evaluation approaches provide limited success. Infrared thermography combines the advantages of being nondestructive with the capability of rapidly inspecting wide surface areas.

  6. Merit Pay: A Plan That Works.

    ERIC Educational Resources Information Center

    McKay, John R.

    An overview is provided of Sumter Area Technical College's (SATC's) successful faculty evaluation and merit pay plan. Following introductory material on SATC, a discussion is presented of the reasoning behind resistance to efforts to tie faculty evaluation to merit pay. Next, SATC's evaluation system is set in the context of the college's overall…

  7. 76 FR 39159 - Schedule for Rating Disabilities; The Digestive System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... commenter suggested that we evaluate gastrectomy and vagotomy- pyloroplasty under the same criteria. The... in order to evaluate it. This material is unnecessary, since there are separate diagnostic codes for....113. We propose to direct the rater to separately evaluate two or more conditions in Sec. 4.114 only...

  8. Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.

    PubMed

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.

  9. Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision

    PubMed Central

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID:25485630

  10. Terahertz computed tomography of NASA thermal protection system materials

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2012-05-01

    A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.

  11. Evaluation of esthetic parameters of resin-modified glass-ionomer materials and a polyacid-modified resin composite in Class V cervical lesions.

    PubMed

    Gladys, S; Van Meerbeek, B; Lambrechts, P; Vanherle, G

    1999-09-01

    The purpose of this study was to compare the esthetics of 3 resin-modified glass-ionomer materials and 1 polyacid-modified resin composite to the esthetics of a conventional glass-ionomer control material. One hundred eighty-seven Class V cervical restorations were observed clinically over 18 months. The esthetic index system that was used evaluated color match, translucency or opacity, and surface roughness. The tested materials behaved very dissimilarly and inconsistently. In general, the esthetic results of the resin-modified glass-ionomer materials and the polyacid-modified resin composite were far from optimal. The esthetic appearance of restorations seriously deteriorated during clinical service, mainly because of discoloration of margins, changes in translucency and opacity, and rapidly appearing roughness or dullness on the surface. Both the resin-modified glass-ionomer materials and the polyacid-modified resin composite evaluated in this study performed better esthetically than did the conventional glass-ionomer material. Indications for these combination materials are limited to areas where esthetics is not a primary concern but where their ease of application may guarantee a more durable functional result.

  12. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  13. Microelectronic bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1976-01-01

    Progress was made in the development of an RF cage, a single channel RF powered ECG telemetry system, and a three channel RF powered ECG, aortic blood pressure, and body temperature telemetry system. Encapsulation materials for chronic implantation of electronic circuits in the body were also evaluated.

  14. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  15. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  16. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  17. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  18. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems, equipment, components, computer programs, and activities of personnel. This system must be documented in... licensed material; (3) Modifications to existing operating procedures including any necessary training or...

  19. Satellite power system concept development and evaluation program system definition technical assessment report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-12-01

    The results of the system definition studies conducted by NASA as a part of the Department of Energy/National Aeronautics and Space Administration SPS Concept Development and Evaluation Program are summarized. The purpose of the system definition efforts was to identify and define candidate SPS concepts and to evaluate the concepts in terms of technical and cost factors. Although the system definition efforts consisted primarily of evaluation and assessment of alternative technical approaches, a reference system was also defined to facilitate economic, environmental, and societal assessments by the Department of Energy. This reference system was designed to deliver 5 GW ofmore » electrical power to the utility grid. Topics covered include system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.« less

  20. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  1. Invention, design and performance of coconut agrowaste fiberboards for ecologically efficacious buildings

    NASA Astrophysics Data System (ADS)

    Lokko, Mae-ling Jovenes

    As global quantities of waste by-products from food production as well as the range of their applications increase, researchers are realizing critical opportunities to transform the burden of underutilized wastes into ecological profits. Within the tropical hot-humid region, where half the world's current and projected future population growth is concentrated, there is a dire demand for building materials to meet ambitious development schemes and rising housing deficits. However, the building sector has largely overlooked the potential of local agricultural wastes to serve as alternatives to energy-intensive, imported building technologies. Industrial ecologists have recently investigated the use of agrowaste biocomposites to replace conventional wood products that use harmful urea-formaldehyde, phenolic and isocyanate resins. Furthermore, developments in the performance of building material systems with respect to cost, energy, air quality management and construction innovation have evolved metrics about what constitutes material 'upcycling' within building life cycle. While these developments have largely been focused on technical and cost performance, much less attention has been paid to addressing deeply-seated social and cultural barriers to adoption that have sedimented over decades of importation. This dissertation evaluates the development coconut agricultural building material systems in four phases: (i) non-toxic, low-energy production of medium-high density boards (500-1200 kg/m3) from coconut fibers and emerging biobinders; (ii) characterization and evaluation of coconut agricultural building materials hygrothermal performance (iii) scaled-up design development of coconut modular building material systems and (iv) development of a value translation framework for the bottom-up distribution of value to stakeholders within the upcycling framework. This integrated design methodological approach is significant to develop ecological thinking around agrowaste building materials, influence social and cultural acceptability and create value translation frameworks that sufficiently characterize the composite value proposition of upcycled building systems.

  2. Development of Low Cost Contacts to Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Tanner, D. P.

    1979-01-01

    Different electroless plating systems were evaluated in conjunction with copper electroplating. All tests involved simultaneous deposition of front and back contacts using a standard cell materials. Cells with good adhesion and good curve fill factors were obtained using a palladium-chromium-copper metallization system. The final copper contact system was evaluated to determine if the copper would migrate at elevated temperatures. The copper migrated at elevated temperatures causing cell output degradation.

  3. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography.

    PubMed

    Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C

    2013-08-01

    The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.

  4. Academic Master Planning in the California State University and Colleges 1972-73 through 1976-77.

    ERIC Educational Resources Information Center

    California State Colleges, Los Angeles. Div. of Academic Planning.

    The California State University and Colleges have devised a system of academic Master Planning that allows them to design curricular models for the future while at the same time evaluating their present curricular offerings. It provides for a continual curricular evaluation cycle for each campus within the system. The materials contained in this…

  5. The Dutch Review Process for Evaluating the Quality of Psychological Tests: History, Procedure, and Results

    ERIC Educational Resources Information Center

    Evers, Arne; Sijtsma, Klaas; Lucassen, Wouter; Meijer, Rob R.

    2010-01-01

    This article describes the 2009 revision of the Dutch Rating System for Test Quality and presents the results of test ratings from almost 30 years. The rating system evaluates the quality of a test on seven criteria: theoretical basis, quality of the testing materials, comprehensiveness of the manual, norms, reliability, construct validity, and…

  6. Visible in camouflage of military engineering application

    NASA Astrophysics Data System (ADS)

    Pu, Huan; Kang, Qing; Chen, Shanjing; Wang, Zhenggang

    2016-03-01

    Our traditional methods of disguise shortcomings, using optical material combined with traditional methods to improve the efficiency of camouflage in disguise. Present lack of effective camouflage effect evaluation system, it refers to Matlab software for optical phase camouflage effect evaluation.

  7. Gamma index evaluation of IMRT technique using gafchromic film EBT3 for homogeneous and inhomogeneous material

    NASA Astrophysics Data System (ADS)

    Nisauf, T. A.; Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement of EBT film. The treatment plan was simulated for 5 patients using Fan Beam Computerized Tomography (FBCT) modality, Philips Pinnacle planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. Gamma Index (GI) evaluation was done with criteria of dose difference (DD) of 2 %, dose to agreement (DTA) of 2 mm and dose difference (DD) of 5 % DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1.98 % for homogeneous material (depth 5 cm) and 2.05 % (depth 10 cm) while it was found of 2.98 % for inhomogeneous material (equivalent depth 5 cm) and 4.59 % (equivalent depth 10 cm).

  8. An evaluation of the discriminating power of an Integrated Ballistics Identification System® Heritage™system with the NIST standard cartridge case (Standard Reference Material 2461).

    PubMed

    Morris, Keith B; Law, Eric F; Jefferys, Roger L; Dearth, Elizabeth C; Fabyanic, Emily B

    2017-11-01

    Through analysis and comparison of firing pin, breech face, and ejector impressions, where appropriate, firearm examiners may connect a cartridge case to a suspect firearm with a certain likelihood in a criminal investigation. When a firearm is not present, an examiner may use the Integrated Ballistics Identification System (IBIS ® ), an automated search and retrieval system coupled with the National Integrated Ballistics Information Network (NIBIN), a database of images showing the markings on fired cartridge cases and bullets from crime scenes along with test fired firearms. For the purpose of measurement quality control of these IBIS ® systems the National Institute of Standards and Technology (NIST) initiated the Standard Reference Material (SRM) 2460/2461 standard bullets and cartridge cases project. The aim of this study was to evaluate the overall performance of the IBIS ® system by using NIST standard cartridge cases. By evaluating the resulting correlation scores, error rates, and percent recovery, both the variability between and within examiners when using IBIS ® , in addition to any inter- and intra-variability between SRM cartridge cases was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Methods and systems for thermodynamic evaluation of battery state of health

    DOEpatents

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2014-12-02

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  10. Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    An effective risk assessment system is needed to address the threat posed by an active or passive insider who, acting alone or in collusion, could attempt diversion or theft of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) is a self-assessment or inspection tool utilizing probabilistic risk assessment (PRA) methodology to calculate the system effectiveness of a nuclear facility's material protection, control, and accountability (MPC&A) system. The MSET process is divided into four distinct and separate parts: (1) Completion of the questionnaire that assembles information about the operations of every aspect of the MPC&A system; (2)more » Conversion of questionnaire data into numeric values associated with risk; (3) Analysis of the numeric data utilizing the MPC&A fault tree and the SAPHIRE computer software; and (4) Self-assessment using the MSET reports to perform the effectiveness evaluation of the facility's MPC&A system. The process should lead to confirmation that mitigating features of the system effectively minimize the threat, or it could lead to the conclusion that system improvements or upgrades are necessary to achieve acceptable protection against the threat. If the need for system improvements or upgrades is indicated when the system is analyzed, MSET provides the capability to evaluate potential or actual system improvements or upgrades. A facility's MC&A system can be evaluated at a point in time. The system can be reevaluated after upgrades are implemented or after other system changes occur. The total system or specific subareas within the system can be evaluated. Areas of potential system improvement can be assessed to determine where the most beneficial and cost-effective improvements should be made. Analyses of risk importance factors show that sustainability is essential for optimal performance and reveals where performance degradation has the greatest impact on total system risk. The risk importance factors show the amount of risk reduction achievable with potential upgrades and the amount of risk reduction achieved after upgrades are completed. Applying the risk assessment tool gives support to budget prioritization by showing where budget support levels must be sustained for MC&A functions most important to risk. Results of the risk assessment are also useful in supporting funding justifications for system improvements that significantly reduce system risk. The functional model, the system risk assessment tool, and the facility evaluation questionnaire are valuable educational tools for MPC&A personnel. These educational tools provide a framework for ongoing dialogue between organizations regarding the design, development, implementation, operation, assessment, and sustainability of MPC&A systems. An organization considering the use of MSET as an analytical tool for evaluating the effectiveness of its MPC&A system will benefit from conducting a complete MSET exercise at an existing nuclear facility.« less

  11. Detection of microbial biofilms on food processing surfaces: Hyperspectral fluorescence imaging study

    USDA-ARS?s Scientific Manuscript database

    We used a portable hyperspectral fluorescence imaging system to evaluate biofilm formations on four types of food processing surface materials including stainless steel, polypropylene used for cutting boards, and household counter top materials such as formica and granite. The objective of this inve...

  12. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Quality of material, workmanship, and design. 27.20 Section 27.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design...

  13. Electrogelation of Biopolymers for New Functional Materials

    DTIC Science & Technology

    2013-08-31

    System to Evaluate e-gel Properties As reported previously, we have designed and implemented microfluidic flow chambers with embedded electrodes...effort is as a new opportunity to use egel formation and reversibility as a mode for material coatings that would be reversible, such as for living skins

  14. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A cost effective process sequence and machinery for the production of flat plate photovoltaic modules are described. Cells were fabricated using the process sequence which was optimized, as was a lamination procedure. Insulator tapes and edge seal material were identified and tested. Encapsulation materials were evaluated.

  15. 30 CFR 27.20 - Quality of material, workmanship, and design.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Quality of material, workmanship, and design. 27.20 Section 27.20 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design...

  16. In-Space Repair and Refurbishment of Thermal Protection System Structures for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2007-01-01

    Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.

  17. Evaluation of the Healthy Lifestyles Initiative for Improving Community Capacity for Childhood Obesity Prevention

    PubMed Central

    Berman, Marcie; Bozsik, Frances; Shook, Robin P.; Meissen-Sebelius, Emily; Markenson, Deborah; Summar, Shelly; DeWit, Emily

    2018-01-01

    Purpose and Objectives Policy, systems, and environmental approaches are recommended for preventing childhood obesity. The objective of our study was to evaluate the Healthy Lifestyles Initiative, which aimed to strengthen community capacity for policy, systems, and environmental approaches to healthy eating and active living among children and families. Intervention Approach The Healthy Lifestyles Initiative was developed through a collaborative process and facilitated by community organizers at a local children’s hospital. The initiative supported 218 partners from 170 community organizations through training, action planning, coalition support, one-on-one support, and the dissemination of materials and sharing of resources. Evaluation Methods Eighty initiative partners completed a brief online survey on implementation strategies engaged in, materials used, and policy, systems, and environmental activities implemented. In accordance with frameworks for implementation science, we assessed associations among the constructs by using linear regression to identify whether and which of the implementation strategies were associated with materials used and implementation of policy, systems, and environmental activities targeted by the initiative. Results Each implementation strategy was engaged in by 30% to 35% of the 80 survey respondents. The most frequently used materials were educational handouts (76.3%) and posters (66.3%). The most frequently implemented activities were developing or continuing partnerships (57.5%) and reviewing organizational wellness policies (46.3%). Completing an action plan and the number of implementation strategies engaged in were positively associated with implementation of targeted activities (action plan, effect size = 0.82; number of strategies, effect size = 0.51) and materials use (action plan, effect size = 0.59; number of strategies, effect size = 0.52). Materials use was positively associated with implementation of targeted activities (effect size = 0.35). Implications for Public Health Community-capacity–building efforts can be effective in supporting community organizations to engage in policy, systems, and environmental activities for healthy eating and active living. Multiple implementation strategies are likely needed, particularly strategies that involve a high level of engagement, such as training community organizations and working with them on structured action plans. PMID:29470168

  18. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  19. Application of optical interferometric techniques for non-destructive evaluation of novel "green" composite materials

    NASA Astrophysics Data System (ADS)

    Pagliarulo, Vito; Russo, Pietro; Bianco, Vittorio; Ferraro, Pietro; Simeoli, Giorgio; Cimino, Francesca; Ruggiero, Berardo

    2018-04-01

    Nowadays the use of advanced composite materials in aeronautics, both civil and military, in automotive and in sport applications, citing some, is well established. The characteristics of composite materials in terms of weight, fatigue resistance and corrosion resistance make them competitive with respect to conventional ones. On the other side, the fabrication process of the most employed composites reinforced by carbon fibers or glass fibers, needs of complex steps that not always are environmental complaisant. Moreover, such fibers are not themselves "green". For these reasons, in the last decades, the use of natural reinforcing fibers has gained an increasing attention allowing the development of new materials with the same advantages of composite systems but respecting the environment. Furthermore, such materials for their structural complexity are not always compatible with the use of standard non-destructive evaluation as the ultrasounds methods. In this work the efficiency of the employment of optical interferometric techniques as nondestructive evaluation methods in full field modality is proved on novel "green" composite materials. In particular, Electronic Speckle Pattern Interferometry has been tested on different kinds of specimens after flexural tests.

  20. Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.

    2010-01-01

    Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.

  1. Polymerizable ultraviolet stabilizers for outdoor use

    NASA Technical Reports Server (NTRS)

    Vogl, O.

    1982-01-01

    Polymeric materials that are stable enough to use outdoors without changes in excess of 20 years are investigated. Ultraviolet stabilizers or plastic materials were synthesized, polymerizable ultraviolet stabilizers, particularly of the 2(2-hydroxyphenyl)2H-benzotriazole family were prepared their polymerization, copolymerization and grafting onto other polymers were demonstrated, and ultraviolet stabilizing systems were devised. These materials were evaluated from the photophysical point of view.

  2. Thermal protection system repair kit program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility and conceptual design aspects of repair materials and procedures for in orbit repair of the space shuttle orbiter TPS tiles are investigated. Material studies to investigate cure in place materials are described including catalyst and cure studies, ablation tests and evaluations, and support mixing and applicator design. The feasibility of the repair procedures, the storage of the TPS, dispensing, and cure problems are addressed.

  3. Nondestructive evaluation of composite materials by pulsed time domain methods in imbedded optical fibers

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Bennett, K. D.; Jackson, B. S.

    1986-01-01

    The application of fiber-optical time domain reflectometry (OTDR) to nondestructive quantitative measurements of distributed internal strain in graphite-epoxy composites, using optical fiber waveguides imbedded between plies, is discussed. The basic OTDR measurement system is described, together with the methods used to imbed optical fibers within composites. Measurement results, system limitations, and the effect of the imbedded fiber on the integrity of the host composite material are considered.

  4. Continued development of abradable gas path seals. [for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1975-01-01

    Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.

  5. Do Sealing Materials Influence Superstructure Attachment in Implants?

    PubMed

    Biscoping, Stephanie; Ruttmann, Esther; Rehmann, Peter; Wöstmann, Bernd

    This study aimed to evaluate the possible effect of sealing materials on superstructure attachment (ie, tightening/loosening torque and implant-abutment gap) in two different implant systems. A silicone, a chlorhexidine gel, and an industrial lubricant were tested. A 3D microscope was used for assessment of the implant-abutment gap, and the abutment screw was tightened and loosened with a digital torque screwdriver. A total of 20 implants per test group (10 BEGO Semados RI and 10 Nobel Biocare Replace Select Straight) were evaluated. The tested sealing materials did not influence the gap between implant and abutment, but the force necessary for loosening the abutment screws decreased significantly. Sealing materials may be useful against bacteria, but probably influence torque negatively.

  6. Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Stevens, N. J.

    1980-01-01

    A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.

  7. Shaping ability of two M-wire and two traditional nickel-titanium instrumentation systems in S-shaped resin canals.

    PubMed

    Ceyhanli, K T; Kamaci, A; Taner, M; Erdilek, N; Celik, D

    2015-01-01

    The aim of this study was to evaluate the shaping effects of two M-wire and two traditional nickel-titanium (NiTi) rotary systems in simulated S-shaped resin canals. Forty simulated S-shaped canals in resin blocks were instrumented with two traditional (ProTaper, Sendoline S5) and two M-wire (WaveOne, GT series X) NiTi systems according to the manufacturers' instructions. Ten resin blocks were used for each system. Pre- and post-instrumentation images were captured using a stereomicroscope and superimposed with an image program. Canal transportation, material removal, and aberrations were evaluated and recorded as numeric parameters. Data were analyzed using one-way ANOVA and post-hoc Tukey tests with a 95% confidence interval. There were significant differences between systems in terms of transportation and material removal (P<0.05). Coronal danger zone was the most common aberration. Within the limits of this ex vivo study, it was found that the manufacturing methods (M-wire or traditional NiTi) and kinematics (rotary or reciprocating motion) did not affect the shaping abilities of the systems. The extended file designs of highly tapered NiTi systems (ProTaper, WaveOne) resulted in greater deviations from the original root canal trace and more material removal when compared to less tapered systems (Sendoline S5, GT series X).

  8. Environmental and Sustainable Technology Evaluations (ESTE): Verification of Microbial Resistant Building Materials

    EPA Science Inventory

    This is an ESTE project summary brief. Many of the finished interior surfaces of homes and buildings are composed of materials that are prone to mold growth. These surfaces include gypsum board, wood flooring, insulation, and components of the heating and air conditioning system...

  9. Reading Materials for the New Reading Public: A Policy Brief.

    ERIC Educational Resources Information Center

    Bhola, H. S.

    This paper presents proposals for the design and institutionalization of a system for the production and distribution of reading materials for adults, especially in developing countries. Ideas about the problems of production and distribution are developed, along with ideas for use in designing, evaluating, choosing, and promoting policy and…

  10. Kentucky Information Dissemination System. Fall Dissemination Conference Follow-Up.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort. Office of Communication Services.

    Describing a state conference on information dissemination held in November 1979 in Frankfort, Kentucky, this report contains conference materials and evaluations of the mini-seminars and awareness sessions conducted there. Materials include a final agenda, seminar and roundabout topics, a description of the Kentucky Department of Education…

  11. Comparing the Energy Content of Batteries, Fuels, and Materials

    ERIC Educational Resources Information Center

    Balsara, Nitash P.; Newman, John

    2013-01-01

    A methodology for calculating the theoretical and practical specific energies of rechargeable batteries, fuels, and materials is presented. The methodology enables comparison of the energy content of diverse systems such as the lithium-ion battery, hydrocarbons, and ammonia. The methodology is relevant for evaluating the possibility of using…

  12. Accelerated long-term assessment of thermal and chemical stability of bio-based phase change materials

    USDA-ARS?s Scientific Manuscript database

    Thermal energy storage (TES) systems incorporated with phase change materials (PCMs) have potential applications to control energy use by building envelopes. However, it is essential to evaluate long term performance of the PCMs and cost effectiveness prior to full scale implementation. For this rea...

  13. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  14. Life cycle assessment for optimising the level of separated collection in integrated MSW management systems.

    PubMed

    Rigamonti, L; Grosso, M; Giugliano, M

    2009-02-01

    This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.

  15. Tungsten wire-reinforced superalloys for 1093 C (2000 F) turbine blade applications

    NASA Technical Reports Server (NTRS)

    Friedman, G. I.; Fleck, J. N.

    1979-01-01

    Various combinations of fiber and matrix materials were fabricated and evaluated for the purpose of selecting a specific combination that exhibited the best overall properties for a turbine blade application. A total of seven matrix alloys, including Hastelloy X, Nimonic 80A, Inconel 600, Inconel 625, IN-102, FeCrA1Y, were investigated reinforced with either 218CS tungsten, or W-Hf-C fibers. Based on preliminary screening studies, FeCrA1Y, Inconel 600 and Inconel 625 matrix composites systems were selected for extended thermal cycle tests and for property evaluations which included stress rupture, impact, and oxidation resistance. Of those investigated, the FeCrA1Y matrix composite system exhibited the best overall properties required for a turbine blade application. The W-Hf-C/FeCrA1Y system was selected for further property evaluation. Tensile strength values of up to 724 MPa (105,000 psi) were obtained for this material at 982 C and 607 MPa at 1093 C.

  16. Application of a Loop-Type Laboratory Biofilm Reactor to the Evaluation of Biofilm for Some Metallic Materials and Polymers such as Urinary Stents and Catheters.

    PubMed

    Kanematsu, Hideyuki; Kudara, Hikonaru; Kanesaki, Shun; Kogo, Takeshi; Ikegai, Hajime; Ogawa, Akiko; Hirai, Nobumitsu

    2016-10-11

    A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)-cultured solution with E-coli formed over 48-72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system.

  17. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1976-01-01

    The results obtained in a program to evaluate dispersion-strengthened nickel-base alloys for use in a metallic radiative thermal protection system operating at surface temperatures to 1477 K for the space shuttle were presented. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr characteristics of material used in the current study are compared with previous results; cyclic load, temperature, and pressure effects on sheet material residual strength are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded joints are evaluated; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full scale subsize heat shield panels in two configurations are described. Initial tests of full scale subsize panels included simulated meteoroid impact tests, simulated entry flight aerodynamic heating, programmed differential pressure loads and temperatures simulating mission conditions, and acoustic tests simulating sound levels experienced during boost flight.

  18. Evaluation and Improvement of Eddy Current Position Sensors in Magnetically Suspended Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Dever, Timothy P.; Palazzolo, Alan B.; Thomas, Erwin M., III; Jansen, Ralph H.; McLallin, Kerry (Technical Monitor); Soeder, James (Technical Monitor)

    2001-01-01

    Eddy current position sensor performance is evaluated for use in a high-speed flywheel development system. The flywheel utilizes a five axis active magnetic bearing system. The eddy current sensors are used for position feedback for the bearing controller. Measured characteristics include sensitivity to multiple target materials and susceptibility to noise from the magnetic bearings and from sensor-to-sensor crosstalk. Improvements in axial sensor configuration and techniques for noise reduction are described.

  19. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribemore » process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  20. Evaluation of adhesive materials used on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Dursch, H. W.; Keough, B. K.; Pippin, H. G.

    1995-01-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIG investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.

  1. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  2. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  3. Microwave processing of cement and concrete materials – towards an industrial reality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, Adam, E-mail: adam.buttress@nottingham.ac.uk; Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  4. Refinement and Field Test of Evaluation Procedures and Materials for ESEA, Title VII Bilingual Education Projects. Phase III Report.

    ERIC Educational Resources Information Center

    Lam, Tony C. N.; And Others

    This report describes an extensive field test of the Bilingual Education Evaluation System (BEES) used to evaluate local level bilingual education projects. Because such projects will usually not be able to implement a traditional true or quasi-experimental design, BEES employs a "gap-reduction" evaluation design that is easily…

  5. 48 CFR 242.7200 - Scope of subpart.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Management and Accounting System 242.7200 Scope of subpart. (a) This subpart provides policies, procedures, and standards for use in the evaluation of a contractor's material management and accounting system... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Scope of subpart. 242.7200...

  6. 48 CFR 242.7200 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Management and Accounting System 242.7200 Scope of subpart. (a) This subpart provides policies, procedures, and standards for use in the evaluation of a contractor's material management and accounting system... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Scope of subpart. 242.7200...

  7. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, Marcos G.

    1992-01-01

    A method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system.

  8. Method for the thermal characterization, visualization, and integrity evaluation of conducting material samples or complex structures

    DOEpatents

    Ortiz, M.G.

    1992-11-24

    Disclosed is a method for modeling a conducting material sample or structure (herein called a system) as at least two regions which comprise an electrical network of resistances, for measuring electric resistance between at least two selected pairs of external leads attached to the surface of the system, wherein at least one external lead is attached to the surface of each of the regions, and, using basic circuit theory, for translating measured resistances into temperatures or thermophysical properties in corresponding regions of the system. 16 figs.

  9. Design of a Solar Sail Mission to Mars

    NASA Technical Reports Server (NTRS)

    Eastridge, Richard; Funston, Kerry; Okia, Aminat; Waldrop, Joan; Zimmerman, Christopher

    1989-01-01

    An evaluation of the design of the solar sail includes key areas such as structures, sail deployment, space environmental effects, materials, power systems, telemetry, communications, attitude control, thermal control, and trajectory analysis. Deployment and material constraints determine the basic structure of the sail, while the trajectory of the sail influences the choice of telemetry, communications, and attitude control systems. The thermal control system of the sail for the structures and electronics takes into account the effects of the space environment. Included also are a cost and weight estimate for the sail.

  10. Evaluation of French and English MeSH Indexing Systems with a Parallel Corpus

    PubMed Central

    Névéol, Aurélie; Mork, James G.; Aronson, Alan R.; Darmoni, Stefan J.

    2005-01-01

    Objective This paper presents the evaluation of two MeSH® indexing systems for French and English on a parallel corpus. Material and methods We describe two automatic MeSH indexing systems - MTI for English, and MAIF for French. The French version of the evaluation resources has been manually indexed with MeSH keyword/qualifier pairs. This professional indexing is used as our gold standard in the evaluation of both systems on keyword retrieval. Results The English system (MTI) obtains significantly better precision and recall (78% precision and 21% recall at rank 1, vs. 37%. precision and 6% recall for MAIF ). Moreover, the performance of both systems can be optimised by the breakage function used by the French system (MAIF), which selects an adaptive number of descriptors for each resource indexed. Conclusion MTI achieves better performance. However, both systems have features that can benefit each other. PMID:16779103

  11. Material Inspection Using THz and Thermal Wave

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun; Li, Yanhong; Zhang, X.-C.

    2007-03-01

    Terahertz (THz) and thermal wave imaging technologies are complementary inspection modalities for use in non-contact and non-destructive evaluation. Both of them are applied in order to evaluate damages on a variety of composite samples. We will also report the test of a large number of insulation foam panels used in NASA's External Fuel Tank through pulse and CW terahertz systems. The study of defects using the two techniques in selected materials, including metal plates, carbon fibers, glass fibers, carbon silicon composites, etc is also shown.

  12. Irradiation embrittlement characterization of the EUROFER 97 material

    NASA Astrophysics Data System (ADS)

    Kytka, M.; Brumovsky, M.; Falcnik, M.

    2011-02-01

    The paper summarizes original results of irradiation embrittlement study of EUROFER 97 material that has been proposed as one candidate of structural materials for future fusion energy systems and GEN IV. Test specimens were manufactured from base metal as well as from weld metal and tested in initial unirradiated condition and also after neutron irradiation. Irradiation embrittlement was characterized by testing of toughness properties at transition temperature region - static fracture toughness and dynamic fracture toughness properties, all in sub-size three-point bend specimens (27 × 4 × 3 mm 3). Testing and evaluation was performed in accordance with ASTM and ESIS standards, fracture toughness KJC and KJd data were also evaluated with the "Master curve" approach. Moreover, J- R dependencies were determined and analyzed. The paper compares unirradiated and irradiated properties as well as changes in transition temperature shifts of these material parameters. Discussion about the correlation between static and dynamic properties is also given. Results from irradiation of EUROFER 97 show that this steel - base metal as well as weld metal - is suitable as a structural material for reactor pressure vessels of innovative nuclear systems - fusion energy systems and GEN IV. Transition temperature shifts after neutron irradiation by 2.5 dpa dose show a good agreement in the case of EUROFER 97 base material for both static and dynamic fracture toughness tests. From the results it can be concluded that there is a low sensitivity of weld metal to neutron irradiation embrittlement in comparison with EUROFER 97 base metal.

  13. Methods for thermodynamic evaluation of battery state of health

    DOEpatents

    Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T

    2013-05-21

    Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.

  14. Oxygen fires, materials compatibility and system contaminants

    NASA Astrophysics Data System (ADS)

    Barter, Simon A.; Hillen, Lance W.

    An evaluation is made of aircraft fires initiated by oxygen systems, giving attention to such systems' mechanical design and materials-selection factors. While many oxygen compatibility tests are conducted on single components, operational systems become contaminated through frequent use and occasional abuse; it is therefore essential for the designer to have information about the oxygen compatibility of the entire spectrum of potential contaminants and their various combinations. Valve designs are noted to be especially sensitive to system contamination. Gaseous oxygen fire severity is fundamentally determined by the period of oxygen flow. There is a clear need for an automatic shut-off device which would operate when abnormal flow conditions occur.

  15. Evaluation of in-situ thermal energy storage for lunar based solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1991-01-01

    A practical lunar based thermal energy storage system, based on locally available materials, could significantly reduce transportation requirements and associated costs of a continuous, solar derived power system. The concept reported here is based on a unique, in-situ approach to thermal energy storage. The proposed design is examined to assess the problems of start-up and the requirements for attainment of stable operation. The design remains, at this stage, partially conceptional in nature, but certain aspects of the design, bearing directly on feasibility, are examined in some detail. Specifically included is an engineering evaluation of the projected thermal performance of this system. Both steady state and start-up power requirements are evaluated and the associated thermal losses are evaluated as a basis for establishing potential system performance.

  16. A design pathfinder with material correlation points for inflatable systems

    NASA Astrophysics Data System (ADS)

    Fulcher, Jared Terrell

    The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures. KEYWORDS: Nonlinear Finite Element, Inflatable Structures, Gossamer Space Systems, Photogrammetry Measurements, Coated Woven Fabric.

  17. A Multiscale Atomistic Method for Long-Range Electrical Interactions with Application to Multiphysics Calculations in Functional Materials

    DTIC Science & Technology

    2016-02-28

    centered at a point, x, where the field is to be evaluated , and the far field region Ωfar. A single unit cell located at x′ in the far field region is...successive shell adds less total error as expected because of the increased distance from evaluation point. . . . . . . . . . . . . . . . . . 108...of freedom in the system to more manageable levels. Energies or forces in the system are then evaluated through numerical quadrature rules and allow

  18. O-Pu-U (Oxygen-Plutonium-Uranium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.

  19. Reproducing 2D breast mammography images with 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Clark, Matthew; Ghammraoui, Bahaa; Badal, Andreu

    2016-03-01

    Mammography is currently the standard imaging modality used to screen women for breast abnormalities and, as a result, it is a tool of great importance for the early detection of breast cancer. Physical phantoms are commonly used as surrogates of breast tissue to evaluate some aspects of the performance of mammography systems. However, most phantoms do not reproduce the anatomic heterogeneity of real breasts. New fabrication technologies, such as 3D printing, have created the opportunity to build more complex, anatomically realistic breast phantoms that could potentially assist in the evaluation of mammography systems. The primary objective of this work is to present a simple, easily reproducible methodology to design and print 3D objects that replicate the attenuation profile observed in real 2D mammograms. The secondary objective is to evaluate the capabilities and limitations of the competing 3D printing technologies, and characterize the x-ray properties of the different materials they use. Printable phantoms can be created using the open-source code introduced in this work, which processes a raw mammography image to estimate the amount of x-ray attenuation at each pixel, and outputs a triangle mesh object that encodes the observed attenuation map. The conversion from the observed pixel gray value to a column of printed material with equivalent attenuation requires certain assumptions and knowledge of multiple imaging system parameters, such as x-ray energy spectrum, source-to-object distance, compressed breast thickness, and average breast material attenuation. A detailed description of the new software, a characterization of the printed materials using x-ray spectroscopy, and an evaluation of the realism of the sample printed phantoms are presented.

  20. IEEE Photovoltaic Specialists Conference, 20th, Las Vegas, NV, Sept. 26-30, 1988, Conference Record. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.

  1. Steps for Action : getting intelligent transportation systems ready for the year 2000

    DOT National Transportation Integrated Search

    1998-09-01

    Hazardous Materials Incident Response Cross-Cutting report summarizes and interprets the results of three Field Operational Tests (FOTs) that are evaluating systems for improving the accuracy and availability of HazMat information provided to emergen...

  2. Evaluation of the effectiveness of toe board energy-absorbing material for foot, ankle, and lower leg injury reduction.

    PubMed

    Patalak, John P; Stitzel, Joel D

    2018-02-17

    Since 2000, numerous improvements have been made to the National Association for Stock Car Auto Racing, Incorporated (NASCAR®) driver restraint system, resulting in improved crash protection for motorsports drivers. Advancements have included seats, head and neck restraints (HNRs), seat belt restraint systems, driver helmets, and others. These enhancements have increased protection for drivers from severe crash loading. Extending protection to the driver's extremities remains challenging. Though the drivers' legs are well contained for lateral and vertical crashes, they remain largely unrestrained in frontal and frontal oblique crashes. Sled testing was conducted for the evaluation of an energy-absorbing (EA) toe board material to be used as a countermeasure for leg and foot injuries. Testing included baseline rigid toe boards, tests with EA material-covered toe boards, and pretest positioning of the 50th percentile male frontal Hybrid III anthropomorphic test device (ATD) lower extremities. ATD leg and foot instrumentation included foot acceleration and tibia forces and moments. The sled test data were evaluated using established injury criteria for tibial plateau fractures, leg shaft fractures, and calcaneus, talus, ankle, and midfoot fractures. A polyurethane EA foam was found to be effective in limiting axial tibia force and foot accelerations when subjected to frontal impacts using the NASCAR motorsport restraint system.

  3. Evaluating the potential efficacy of three antifungal sealants of duct liner and galvanized steel as used in HVAC systems.

    PubMed

    Foarde, Karin K; Menetrez, M Y

    2002-07-01

    Current recommendations for remediation of fiberglass duct materials contaminated with fungi specify complete removal, which can be extremely expensive, but in-place duct cleaning may not provide adequate protection from regrowth of fungal contamination. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antifungal surface coatings with the implication that they may contain or limit regrowth. However, even the proper use of these products has generally been discouraged because little research has been conducted on the effectiveness of most products as used in heating, ventilating, and air-conditioning (HVAC) systems. Three different coatings were evaluated on fiberglass duct liner (FGDL). Two of the three coatings were able to limit growth in the 3-month study; the third did not. One of the coatings that was able to limit growth was further evaluated in a comparison of FGDL or galvanized steel (GS) under conditions that mimicked their use in HVAC systems. The results showed that both moderately soiled and heavily soiled uncoated FGDL and GS duct material can support fungal growth, but that GS duct material was more readily cleaned. The use of an antifungal coating helped limit, but did not fully contain, regrowth on FGDL. No regrowth was detected on the coated GS.

  4. Lithium potential variations for metastable materials: case study of nanocrystalline and amorphous LiFePO4.

    PubMed

    Zhu, Changbao; Mu, Xiaoke; Popovic, Jelena; Weichert, Katja; van Aken, Peter A; Yu, Yan; Maier, Joachim

    2014-09-10

    Much attention has been paid to metastable materials in the lithium battery field, especially to nanocrystalline and amorphous materials. Nonetheless, fundamental issues such as lithium potential variations have not been pertinently addressed. Using LiFePO4 as a model system, we inspect such lithium potential variations for various lithium storage modes and evaluate them thermodynamically. The conclusions of this work are essential for an adequate understanding of the behavior of electrode materials and even helpful in the search for new energy materials.

  5. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    NASA Technical Reports Server (NTRS)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  6. Application of material flow analysis to estimate the efficiency of e-waste management systems: the case of Lithuania.

    PubMed

    Gurauskiene, Inga; Stasiskiene, Zaneta

    2011-07-01

    Electrical and electronic equipment (EEE) has penetrated everyday life. The EEE industry is characterized by a rapid technological change which in turn prompts consumers to replace EEE in order to keep in step with innovations. These factors reduce an EEE life span and determine the exponential growth of the amount of obsolete EEE as well as EEE waste (e-waste). E-waste management systems implemented in countries of the European Union (EU) are not able to cope with the e-waste problem properly, especially in the new EU member countries. The analysis of particular e-waste management systems is essential in evaluation of the complexity of these systems, describing and quantifying the flows of goods throughout the system, and all the actors involved in it. The aim of this paper is to present the research on the regional agent based material flow analysis in e-waste management systems, as a measure to reveal the potential points for improvement. Material flow analysis has been performed as a flow of goods (EEE). The study has shown that agent-based EEE flow analysis incorporating a holistic and life cycle thinking approach in national e-waste management systems gives a broader view to the system than a common administrative one used to cover. It helps to evaluate the real efficiency of e-waste management systems and to identify relevant impact factors determining the current operation of the system.

  7. Anomaly detection applied to a materials control and accounting database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Spanks, L.; Yarbro, T.

    An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less

  8. Flexural properties and shock-absorbing capabilities of new face guard materials reinforced with fiberglass cloth.

    PubMed

    Abe, Keisuke; Takahashi, Hidekazu; Churei, Hiroshi; Iwasaki, Naohiko; Ueno, Toshiaki

    2013-02-01

     Experimental materials incorporating fiberglass cloth were used to develop a thin and lightweight face guard (FG). This study aims to evaluate the effect of fiberglass reinforcement on the flexural and shock absorption properties compared with conventional thermoplastic materials.  Four commercial 3.2-mm and 1.6-mm medical splint materials (Aquaplast, Polyform, Co-polymer, and Erkodur) and two experimental materials were examined for use in FGs. The experimental materials were prepared by embedding two or four sheets of a plain woven fiberglass cloth on both surfaces of 1.5-mm Aquaplast. The flexural strength and flexural modulus were determined using a three-point bending test. The shock absorption properties were evaluated for a 5200-N impact load using the first peak intensity with a load cell system and the maximum stress with a film sensor system.  The flexural strength (74.6 MPa) and flexural modulus (6.3 GPa) of the experimental material with four sheets were significantly greater than those of the 3.2-mm commercial specimens, except for the flexural strength of one product. The first peak intensity (515 N) and maximum stress (2.2 MPa) of the experimental material with four sheets were significantly lower than those of the commercial 3.2-mm specimens, except for one product for each property. These results suggest that the thickness and weight of the FG can be reduced using the experimental fiber-reinforced material. © 2012 John Wiley & Sons A/S.

  9. Blade System Design Study. Part II, final project report (GEC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffin, Dayton A.

    2009-05-01

    As part of the U.S. Department of Energy's Low Wind Speed Turbine program, Global Energy Concepts LLC (GEC)1 has studied alternative composite materials for wind turbine blades in the multi-megawatt size range. This work in one of the Blade System Design Studies (BSDS) funded through Sandia National Laboratories. The BSDS program was conducted in two phases. In the Part I BSDS, GEC assessed candidate innovations in composite materials, manufacturing processes, and structural configurations. GEC also made recommendations for testing composite coupons, details, assemblies, and blade substructures to be carried out in the Part II study (BSDS-II). The BSDS-II contract periodmore » began in May 2003, and testing was initiated in June 2004. The current report summarizes the results from the BSDS-II test program. Composite materials evaluated include carbon fiber in both pre-impregnated and vacuum-assisted resin transfer molding (VARTM) forms. Initial thin-coupon static testing included a wide range of parameters, including variation in manufacturer, fiber tow size, fabric architecture, and resin type. A smaller set of these materials and process types was also evaluated in thin-coupon fatigue testing, and in ply-drop and ply-transition panels. The majority of materials used epoxy resin, with vinyl ester (VE) resin also used for selected cases. Late in the project, testing of unidirectional fiberglass was added to provide an updated baseline against which to evaluate the carbon material performance. Numerous unidirectional carbon fabrics were considered for evaluation with VARTM infusion. All but one fabric style considered suffered either from poor infusibility or waviness of fibers combined with poor compaction. The exception was a triaxial carbon-fiberglass fabric produced by SAERTEX. This fabric became the primary choice for infused articles throughout the test program. The generally positive results obtained in this program for the SAERTEX material have led to its being used in innovative prototype blades of 9-m and 30-m length, as well as other non-wind related structures.« less

  10. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  11. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M. M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax ® K-3 refractory and Inconel ® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing andmore » reducing flowsheets; however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  12. Literature review: Assessment of DWPF melter and melter off-gas system lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.

    2015-07-30

    A glass melter for use in processing radioactive waste is a challenging environment for the materials of construction (MOC) resulting from a combination of high temperatures, chemical attack, and erosion/corrosion; therefore, highly engineered materials must be selected for this application. The focus of this report is to review the testing and evaluations used in the selection of the Defense Waste Processing Facility (DWPF), glass contact MOC specifically the Monofrax® K-3 refractory and Inconel® 690 alloy. The degradation or corrosion mechanisms of these materials during pilot scale testing and in-service operation were analyzed over a range of oxidizing and reducing flowsheets;more » however, DWPF has primarily processed a reducing flowsheet (i.e., Fe 2+/ΣFe of 0.09 to 0.33) since the start of radioactive operations. This report also discusses the materials selection for the DWPF off-gas system and the corrosion evaluation of these materials during pilot scale testing and non-radioactive operations of DWPF Melter #1. Inspection of the off-gas components has not been performed during radioactive operations with the exception of maintenance because of plugging.« less

  13. Development of a plasma sprayed ceramic gas path seal for high pressure turbine application

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1978-01-01

    Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.

  14. Effects of Vaporized Decontamination Systems on Selected Building Interior Materials: Vaporized Hydrogen Peroxide

    DTIC Science & Technology

    2009-01-01

    surfaces in buildings following a terrorist attack using CB agents. Vaporized hydrogen peroxide ( VHP ) and Cl02 are decontamination technologies that...decontaminant. The focus of this technical report is the evaluation of the building interior materials and the Steris VHP technology. 15. SUBJECT...TERMS Material Compatibility VHP vaporized hydrogen peroxide 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17

  15. Management Research Center Report To The External Degree Planning Consortium Of The Policy Institute, SURC On Identification Of Learning Materials.

    ERIC Educational Resources Information Center

    Fisk, George; Nehmadi, David

    A system has been developed to identify, locate and evaluate learning materials for use in an external degree program in management at Syracuse University. It consists of five elements, each of which is a set of physical objects or documents: the interaction of these sets transforms the demand for learning materials into an output of retrieved…

  16. Cockpit Video: A Low Cost BDA Source

    DTIC Science & Technology

    1993-12-01

    military expertise, and material withheld for operational security, the press was very reluctant to accept the military’s claims. As one reporter...readout of the KA-71 and radar scope film, and the normal intelligence support to include aircrew briefing/debriefing, preparation of target materials ...target, and recording the result of impact, the effectivenass of a weapon system can be evaluated. The secondary purposes of ARP materials include

  17. Ballistic Resistance of Body Armor. NIJ Standard-0101.06

    DTIC Science & Technology

    2008-07-01

    49.2 ft ± 3.28 ft) Length to be adjusted to meet velocity accuracy requirements Test Barrel Armor Panel Backing Material Fixture Start Sensor Set...Systems, Testing and Evaluation Amanda Forster, Materials Research Engineer The preparation of this standard was sponsored by the National...manufacturers seek NIJ compliance of their armor to this standard and the armor contains unique materials or forms of construction that may not have

  18. Present systems and future needs for risk assessment of veterinary biologicals in Australia: the perspective of the regulator.

    PubMed

    Doyle, K A

    1995-12-01

    The increasing range and complexity of biologicals, and the greater demand for these products, have resulted in a greater volume of trade in animal-based biological material. This has given rise, in turn, to many approaches to the regulation of importation of these materials, as countries seek protection against the introduction of disease. Harmonization of these regulatory approaches would contribute significantly to the availability of veterinary biologicals, to their manufacture and trade, and to disease security. Australia has developed systems for the categorisation and evaluation of biologicals, control by import permits, and specific procedures at point-of-entry and in institutions where these products are used. Computerised records and precedents assist in evaluation and in the issuing of permits. Recognition that some materials must be subject to further control has led to a system of registration of institutions based on levels of biosecurity, and approved use and disposal programmes. Institutions vary from high-security animal health laboratories to human in vitro fertilisation clinics, which use animal-derived media and materials. Such institutions are regulated through quality assurance contracts. Quarantine authorities have linkages with other agencies which have an interest in these products. These linkages reflect the administrative structures of government in Australia, and provide for management of all forms of risk. The author describes these systems and overviews their biological basis.

  19. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    PubMed

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An automated system for chromosome analysis. Volume 1: Goals, system design, and performance

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Melnyk, J. H.

    1975-01-01

    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and a basis for statistical analysis of quantitative chromosome measurement data is described. The prototype was assembled, tested, and evaluated on clinical material and thoroughly documented.

  1. Specialty and Systems Engineering Supplement to IEEE 15288.1

    DTIC Science & Technology

    2017-08-28

    requirements with a space-specific recommended practice. (8) Added Section 3.2.21, Systems Engineering Data Item Descriptions (DIDs...Systems Engineering Data Item Descriptions ........................................................ 17 4. Applicable Documents...and life cycle cost analyses. d. Alternative designs and capabilities of manufacturing are evaluated . e. Long-lead-time items, material source

  2. Classroom Evaluation of a Rapid Prototyping System.

    ERIC Educational Resources Information Center

    Tennyson, Stephen A.; Krueger, Thomas J.

    2001-01-01

    Introduces rapid prototyping which creates virtual models through a variety of automated material additive processes. Relates experiences using JP System 5 in freshman and sophomore engineering design graphics courses. Analyzes strengths and limitations of the JP System 5 and discusses how to use it effectively. (Contains 15 references.)…

  3. Supportability Technologies for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Watson, Kevin; Thompson, Karen

    2007-01-01

    Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.

  4. Evaluation of the Emergency Response Dose Assessment System(ERDAS)

    NASA Technical Reports Server (NTRS)

    Evans, Randolph J.; Lambert, Winifred C.; Manobianco, John T.; Taylor, Gregory E.; Wheeler, Mark M.; Yersavich, Ann M.

    1996-01-01

    The emergency response dose assessment system (ERDAS) is a protype software and hardware system configured to produce routine mesoscale meteorological forecasts and enhanced dispersion estimates on an operational basis for the Kennedy Space Center (KSC)/Cape Canaveral Air Station (CCAS) region. ERDAS provides emergency response guidance to operations at KSC/CCAS in the case of an accidental hazardous material release or an aborted vehicle launch. This report describes the evaluation of ERDAS including: evaluation of sea breeze predictions, comparison of launch plume location and concentration predictions, case study of a toxic release, evaluation of model sensitivity to varying input parameters, evaluation of the user interface, assessment of ERDA's operational capabilities, and a comparison of ERDAS models to the ocean breeze dry gultch diffusion model.

  5. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1997-06-01

    The US DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government Utilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils on shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  6. Fluorescence emission spectral measurements for the detection of oil on shore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, L.K.; Di Benedetto, J.A.; Lutz, S.S.

    1996-12-31

    The U.S. DOE Special Technologies Laboratory is developing an airborne Laser-Induced Fluorescence Imaging (LIFI) system to support environmental management of government facilities. This system, or a system to be derived from it, is being evaluated for its potential to detect spilled oils oN shore, in wetlands, and on ice. To more fully understand the detectivity of oil spills, emphasis has been placed on the spectral contrast between the oil signatures and signatures associated with the natural backgrounds (sand, vegetation, etc.). To support this evaluation, two series of controlled measurements have been performed to provide rigorous characterization of the excitation-emission propertiesmore » of some oils and background materials, and to look at the effects of weathering of oil on terrestrial background materials. Oil targets included a heavy crude oil, diesel, kerosene, and aviation fuel and backgrounds included beach sand, straw, mud, tar and kelp. Fluorescence of oil on background materials decreases rapidly over the first few days of exposure to the environment and is more rapid than for neat oil samples.« less

  7. Evaluation of Next Generation Thermal Stability-Improving Additives for JP-8, Phase 2 - Specification, Materials, Filtration, and Fit-For-Purpose Evaluations

    DTIC Science & Technology

    2013-12-01

    varnishes and hard carbon deposits in various parts of the fuel system and are commonly referred to as coke or fouling. Depending upon the temperature...this coke . Coke present in an aircraft system, particularly the engine, lowers the on-wing time of engines and can result in significant damage to...engine hot section components. Even with proper scheduled maintenance, the presence of coke in any part of the aircraft or engine system has a

  8. Marine Corps Research and Development Objectives Document (RADOD)

    DTIC Science & Technology

    1980-08-08

    461.1 Data exchange /joint projects, evaluation of foreign weapon systems .......................... N/A MANAGEMENT SUPPORT 471.0 General management...DI3ZITiL WIDEBAND TtAMS𔃾ISSION ;YSTem W2AK D~ CQ)43L CCC 9S22 AUTOMATED DATA ENTlY SYSTEM (A𔃾ES) usM: CCC 9269 ORMBDAND 3MNDIRE:TID04AL VHF 4NTEM44...Standardization and Interoper- ability through data exchanges , joint projects, evaluation of foreign weapon systems , material or related technology. 461.0

  9. Evaluation of Louisiana's statistically based quality control and acceptance specifications for asphaltic concrete : final report.

    DOT National Transportation Integrated Search

    1998-09-01

    In 1971, the Louisiana Department of Transportation and Development initiated a statistically based specification system for asphaltic concrete using historically generated data. A Materials Test Data (MATT) reporting system was also started to archi...

  10. Dynamic evaluation of New York state's aluminum pedestrian signal pole system.

    DOT National Transportation Integrated Search

    2009-12-22

    The New York State Department of Transportation (NYSDOT) mounts pedestrian hand/man signals to aluminum : poles and uses frangible transformer bases to allow the system to break away. However, engineers at NYSDOT believed : that the material pr...

  11. Evaluation of potential emission spectra for the reliable classification of fluorescently coded materials

    NASA Astrophysics Data System (ADS)

    Brunner, Siegfried; Kargel, Christian

    2011-06-01

    The conservation and efficient use of natural and especially strategic resources like oil and water have become global issues, which increasingly initiate environmental and political activities for comprehensive recycling programs. To effectively reutilize oil-based materials necessary in many industrial fields (e.g. chemical and pharmaceutical industry, automotive, packaging), appropriate methods for a fast and highly reliable automated material identification are required. One non-contacting, color- and shape-independent new technique that eliminates the shortcomings of existing methods is to label materials like plastics with certain combinations of fluorescent markers ("optical codes", "optical fingerprints") incorporated during manufacture. Since time-resolved measurements are complex (and expensive), fluorescent markers must be designed that possess unique spectral signatures. The number of identifiable materials increases with the number of fluorescent markers that can be reliably distinguished within the limited wavelength band available. In this article we shall investigate the reliable detection and classification of fluorescent markers with specific fluorescence emission spectra. These simulated spectra are modeled based on realistic fluorescence spectra acquired from material samples using a modern VNIR spectral imaging system. In order to maximize the number of materials that can be reliably identified, we evaluate the performance of 8 classification algorithms based on different spectral similarity measures. The results help guide the design of appropriate fluorescent markers, optical sensors and the overall measurement system.

  12. Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE).

    PubMed

    Zhao, Yan; Wang, Hong-Tao; Lu, Wen-Jing; Damgaard, Anders; Christensen, Thomas H

    2009-06-01

    With the purpose of assessing the environmental impacts and benefits of the current municipal solid waste management system and two modified systems, EASEWASTE, a life-cycle-based model, was used to evaluate the waste system of Hangzhou city in China. An integrated model was established, including waste generation, collection, transportation, treatment, disposal and accompanying external processes. The results showed that CH(4) released from landfilling was the primary pollutant contributing to global warming, and HCl and NH(3) from incineration contributed most to acidification. Material recycling and incineration with energy recovery were important because of the induced savings in material production based on virgin materials and in energy production based on coal combustion. A modified system in which waste is transported to the nearest incinerators would be relatively better than the current system, mainly due to the decrease of pollution from landfilled waste and the increase in energy production from waste avoiding energy production by traditional power plants. A ban on free plastic bags for shopping was shown to reduce most environmental impacts due to saved oil resources and other materials used in producing the plastic bags. Sensitivity analysis confirmed the robustness of the results. LCA methodology and a model like EASEWASTE are very suitable for evaluating the overall environmental consequences, and can be used for decision support and strategic planning in developing countries such as China where pollution control has become increasingly important with the rapid increase of waste generation as well as the increasing public awareness of environmental protection.

  13. Use of gelatin gels as a reference material for performance evaluation of meat shear force measurements

    USDA-ARS?s Scientific Manuscript database

    Establishing standards for meat tenderness based on Warner-Bratzler shear force (WBSF) is complicated by the lack of methods for certifying WBSF testing among texture systems or laboratories. The objective of this study was to determine the suitability of using gelatin gels as a reference material ...

  14. In-situ Subaqueous Capping of Mercury-Contaminated Sediments in a Fresh-Water Aquatic System, Part II-Evaluation of Sorption Materials

    EPA Science Inventory

    The function and longevity of traditional, passive, isolation caps can be augmented through the use of more chemically active capping materials which have higher sorptive capacities, ideally rendering metals non-bioavailable. In the case of Hg, active caps also mitigate the rate...

  15. Using Indigenous Materials for Construction

    DTIC Science & Technology

    2015-07-01

    Theoretical models were devised for prediction of the structural attributes of indigenous ferrocement sheets and sandwich composite panels comprising the...indigenous ferrocement skins and aerated concrete core. Structural designs were developed for these indigenous sandwich composite panels in typical...indigenous materials and building systems developed in the project were evaluated. Numerical modeling capabilities were developed for structural

  16. Design, Implementation, and Evaluation of GIS-Based Learning Materials in an Introductory Geoscience Course.

    ERIC Educational Resources Information Center

    Hall-Wallace, Michelle K.; McAuliffe, Carla M.

    2002-01-01

    Investigates student learning that occurred with a Geographic Information Systems (GIS) based module on plate tectonics and geologic hazards. Examines factors in the design and implementation of the materials that impacted student learning. Reports positive correlations between student' spatial ability and performance. Includes 17 references.…

  17. Study of eddy current probes

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Wang, Morgan

    1992-01-01

    The recognition of materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques.

  18. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  19. Organo-metallic elements for associative information processing

    NASA Astrophysics Data System (ADS)

    Potember, Richard S.; Poehler, Theodore O.

    1989-01-01

    In the three years of the program we have: (1) built and tested a 4 bit element matrix device for possible use in high density content-addressable memories systems; (2) established a test and evaluation laboratory to examine optical materials for nonlinear effects, saturable absorption, harmonic generation and photochromism; (3) successfully designed, constructed and operated a codeposition processing system that enables organic materials to be deposited on a variety of substrates to produce optical grade coatings and films. This system is also compatible with other traditional microelectronic techniques; (4) used the sol-gel process with colloidal AgTCNQ to fabricate high speed photochromic switches; (5) develop and applied for patent coverage to make VO2 optical switching materials via the sol-gel processing using vanadium (IV) alkoxide compounds.

  20. Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance,

    DTIC Science & Technology

    1999-09-01

    open enrollment materials, information was made available to employees on internal Web sites. The Greater Detroit Area Health Council also reported...RAND Creating A Coordinated Autos/UAW Reporting System (CARS) For Evaluating Health Plan Performance Elizabeth A. McGlynn, John Adams, Jennifer...Hicks, David Klein DRU-2123-FMC September 1999 Prepared for DaimlerChrysler, Ford Motor Company, General Motors, and the United Auto Workers

  1. Estimating the Fully Burdened Cost of Fuel Using an Input-Output Model - A Micro-Level Analysis

    DTIC Science & Technology

    2011-09-01

    The multilocation distribution model used by Lu and Rencheng to evaluate an international supply chain (From: Lu & Rencheng, 2007...IO model to evaluate an international supply chain specifically for a multilocation production system. Figure 2 illustrates such a system. vendor...vendor vendor Target markets Production plants Material vendor Figure 2. The multilocation distribution model used by Lu and Rencheng to

  2. Evaluation of functional substances in the selected food materials for space agriculture

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Kimura, Yasuko; Yamashita, Masamichi; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Ajioka, Reiko

    We have been studying the useful life-support system in closed bio-ecosystem for space agriculture. We have already proposed the several species as food material, such as Nostoc sp. HK-01 and Prunnus sp., cyanobacterium and Japanese cherry tree, respectively. The cyanobacterium, Nostoc sp Hk-01, has high tolerances to several space environment. Furthermore, the woody plant materials have useful utilization elements in our habitation environment. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. We have already found that they can produce the important functional substances for human. Here, we will show the evaluation of functional substances in the selected food materials under the possible conditions for space agriculture after cooking.

  3. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  4. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    NASA Astrophysics Data System (ADS)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  5. Gas Evolution from Insulating Materials for Superconducting Coil of Iter by Gamma Ray Irradiation at Liquid Nitrogen Temperature

    NASA Astrophysics Data System (ADS)

    Idesaki, A.; Koizumi, N.; Sugimoto, M.; Morishita, N.; Ohshima, T.; Okuno, K.

    2008-03-01

    A laminated material composed of glass cloth/polyimide film/epoxy resin will be used as an insulating material for superconducting coil of International Thermonuclear Experimental Reactor (ITER). In order to keep safe and stable operation of the superconducting coil system, it is indispensable to evaluate radiation resistance of the material, because the material is exposed to severe environments such as high radiation field and low temperature of 4 K. Especially, it is important to estimate the amount of gases evolved from the insulating material by irradiation, because the gases affect on the purifying system of liquid helium in the superconducting coil system. In this work, the gas evolution from the laminated material by gamma ray irradiation at liquid nitrogen temperature (77 K) was investigated, and the difference of gas evolution behavior due to difference of composition in the epoxy resin was discussed. It was found that the main gases evolved from the laminated material by the irradiation were hydrogen, carbon monoxide and carbon dioxide, and that the amount of gases evolved from the epoxy resin containing cyanate ester was about 60% less than that from the epoxy resin containing tetraglycidyl-diaminophenylmethane (TGDDM).

  6. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  7. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system.

    PubMed

    Borges, Alvaro Henrique; Pedro, Fabio Luiz Miranda; Semanoff-Segundo, Alex; Miranda, Carlos Eduardo Saraiva; Pécora, Jesus Djalma; Cruz Filho, Antônio Miranda

    2011-01-01

    The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (p<0.05), while white non-structural Portland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (p<0.05). It was concluded that MTA-based cements were the only materials presenting radiopacity within the ANSI/ADA specifications.

  8. Quality assurance in the production of pipe fittings by automatic laser-based material identification

    NASA Astrophysics Data System (ADS)

    Moench, Ingo; Peter, Laszlo; Priem, Roland; Sturm, Volker; Noll, Reinhard

    1999-09-01

    In plants of the chemical, nuclear and off-shore industry, application specific high-alloyed steels are used for pipe fittings. Mixing of different steel grades can lead to corrosion with severe consequential damages. Growing quality requirements and environmental responsibilities demand a 100% material control in the production of the pipe fittings. Therefore, LIFT, an automatic inspection machine, was developed to insure against any mix of material grades. LIFT is able to identify more than 30 different steel grades. The inspection method is based on Laser-Induced Breakdown Spectrometry (LIBS). An expert system, which can be easily trained and recalibrated, was developed for the data evaluation. The result of the material inspection is transferred to an external handling system via a PLC interface. The duration of the inspection process is 2 seconds. The graphical user interface was developed with respect to the requirements of an unskilled operator. The software is based on a realtime operating system and provides a safe and reliable operation. An interface for the remote maintenance by modem enables a fast operational support. Logged data are retrieved and evaluated. This is the basis for an adaptive improvement of the configuration of LIFT with respect to changing requirements in the production line. Within the first six months of routine operation, about 50000 pipe fittings were inspected.

  9. The biological safety of condom material can be determined using an in vitro cell culture system.

    PubMed

    Motsoane, N A; Pretorius, E; Bester, M J; Becker, P J

    2001-01-01

    Latex products have long been recognized as a cause of latex protein allergy. The increased usage of latex gloves, with the consequent increased occurrence of latex allergies appears to have escalated with increasing awareness of the transmission of HIV-AIDS and other infections. The use of condoms as a means to prevent the transmission of STD's (sexually transmitted diseases) and HIV-AIDS has been widely promoted. Although extensive testing is done to evaluate the physical quality of condoms, no information is available regarding the biological safety of condoms. This study was undertaken to determine the effects of short-term exposure to physiological levels of condom surface material on cell viability (MTT assay) and cell growth (crystal violet assay). A direct contact cell culture testing method (FDA test method F813-83 used to evaluate the cytotoxic potential of medical materials and devices) was used. The modified test method was found to be a sensitive test system for the evaluation of the biological safety of condoms. This study reveals the importance of evaluating the biological safety of all condoms that are commercially available, because of the potential health risk that may be associated with prolonged use of certain types of condoms.

  10. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  11. Multi-regime transport model for leaching behavior of heterogeneous porous materials.

    PubMed

    Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S

    2003-01-01

    Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.

  12. Material properties that predict preservative uptake for silicone hydrogel contact lenses.

    PubMed

    Green, J Angelo; Phillips, K Scott; Hitchins, Victoria M; Lucas, Anne D; Shoff, Megan E; Hutter, Joseph C; Rorer, Eva M; Eydelman, Malvina B

    2012-11-01

    To assess material properties that affect preservative uptake by silicone hydrogel lenses. We evaluated the water content (using differential scanning calorimetry), effective pore size (using probe penetration), and preservative uptake (using high-performance liquid chromatography with spectrophotometric detection) of silicone and conventional hydrogel soft contact lenses. Lenses grouped similarly based on freezable water content as they did based on total water content. Evaluation of the effective pore size highlighted potential differences between the surface-treated and non-surface-treated materials. The water content of the lens materials and ionic charge are associated with the degree of preservative uptake. The current grouping system for testing contact lens-solution interactions separates all silicone hydrogels from conventional hydrogel contact lenses. However, not all silicone hydrogel lenses interact similarly with the same contact lens solution. Based upon the results of our research, we propose that the same material characteristics used to group conventional hydrogel lenses, water content and ionic charge, can also be used to predict uptake of hydrophilic preservatives for silicone hydrogel lenses. In addition, the hydrophobicity of silicone hydrogel contact lenses, although not investigated here, is a unique contact lens material property that should be evaluated for the uptake of relatively hydrophobic preservatives and tear components.

  13. Structural active cooling applications for the Space Shuttle.

    NASA Technical Reports Server (NTRS)

    Masek, R. V.; Niblock, G. A.; Huneidi, F.

    1972-01-01

    Analytic and experimental studies have been conducted to evaluate a number of active cooling approaches to structural thermal protection for the Space Shuttle. The primary emphasis was directed toward the thermal protection system. Trade study results are presented for various heat shield material and TPS arrangements. Both metallic and reusable surface insulation (RSI) concepts were considered. Active systems heat sinks consisted of hydrogen, phase change materials, and expendable water. If consideration is given only to controlling the surface temperature, passive TPS was found to provide the most efficient system. Use of active cooling which incorporates some interior temperature control made the thermally less efficient RSI system more attractive.

  14. Evaluation of Candidate Materials for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Ritzert, Frank; Freedman, Marc

    2003-01-01

    The Department of Energy (DOE) and NASA have identified Stirling Radioisotope Generators (SRG) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel base superalloy 718. This temperature is at the limit of Alloy 718's capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, an assessment of material candidates was performed assuming a range of heater head temperatures. The chosen alternative material candidates will be discussed, along with the development efforts needed to ensure that these materials can meet the demanding system requirements of long-duration operation in hostile environments.

  15. ICT in Psychology Teaching: Formative Evaluations

    ERIC Educational Resources Information Center

    Chen, Weiqin; Reber, Rolf; Stokke-Olsen, Anne Margrethe; Gudem, Birgitte

    2008-01-01

    This article presents design, development, and evaluation of POSbase in Psychology teaching. POSbase is a highly flexible system that encourages constructive and self-regulated learning. It also allows researchers and instructors to share their teaching materials and experience. POSbase was introduced to undergraduate and to masters students in…

  16. Space qualification of silicon carbide for mirror applications: progress and future objectives

    NASA Astrophysics Data System (ADS)

    Palusinski, Iwona A.; Ghozeil, Isaac

    2006-09-01

    Production of optical silicon carbide (SiC) for mirror applications continues to evolve and there are renewed plans to use this material in future space-based systems. While SiC has the potential for rapid and cost-effective manufacturing of large, lightweight, athermal optical systems, this material's use in mirror applications is relatively new and has limited flight heritage. This combination of drivers stresses the necessity for a space qualification program for this material. Successful space qualification will require independent collaboration to absorb the high cost of executing this program while taking advantage of each contributing group's laboratory expertise to develop a comprehensive SiC database. This paper provides an overview of the trends and progress in the production of SiC, and identifies future objectives such as non-destructive evaluation and space-effects modeling to ensure proper implementation of this material into future space-based systems.

  17. Evaluating the economic viability of a material recovery system: the case of cathode ray tube glass.

    PubMed

    Gregory, Jeremy R; Nadeau, Marie-Claude; Kirchain, Randolph E

    2009-12-15

    This paper presents an analysis of the material recovery system for leaded glass from cathode ray tubes (CRTs) using a dynamic material flow analysis. In particular, the global mass flow of primary and secondary CRT glass and the theoretical capacities for using secondary CRT glass to make new CRT glass are analyzed. The global mass flow analysis indicates that the amount of new glass required is decreasing, but is much greater than the amount of secondary glass collected, which is increasing. The comparison of the ratio of secondary glass collected to the amount of new glass required from the mass flow analysis indicates that the material recovery system is sustainable for the foreseeable future. However, a prediction of the time at which the market for secondary glass will collapse due to excess capacity is not possible at the moment due to several sources of uncertainty.

  18. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  19. Development of Lightweight Material Composites to Insulate Cryogenic Tanks for 30-Day Storage in Outer Space

    NASA Technical Reports Server (NTRS)

    Krause, D. R.

    1972-01-01

    A conceptual design was developed for an MLI system which will meet the design constraints of an ILRV used for 7- to 30-day missions. The ten tasks are briefly described: (1) material survey and procurement, material property tests, and selection of composites to be considered; (2) definition of environmental parameters and tooling requirements, and thermal and structural design verification test definition; (3) definition of tanks and associated hardware to be used, and definition of MLI concepts to be considered; (4) thermal analyses, including purge, evacuation, and reentry repressurization analyses; (5) structural analyses (6) thermal degradation tests of composite and structural tests of fastener; (7) selection of MLI materials and system; (8) definition of a conceptual MLI system design; (9) evaluation of nondestructive inspection techniques and definition of procedures for repair of damaged areas; and (10) preparation of preliminary specifications.

  20. Evaluation of real-time location systems in their hospital contexts.

    PubMed

    Fisher, Jill A; Monahan, Torin

    2012-10-01

    The purpose of the research was to assess real-time location systems (RTLS) that have been implemented in U.S. hospitals. We examined the type of uses to which RTLS have been put, the degree of functionality of the various technologies and software, and the organizational effects of implementing RTLS. The project was a 3-year qualitative study of 23 U.S. hospitals that had implemented RTLS for the purpose of tracking assets, personnel, and/or patients. We observed the systems in use and conducted 80 semi-structured interviews with hospital personnel and vendors. In order to protect the confidentiality of the hospitals and vendors in our sample, we conducted an aggregate analysis of our findings rather than providing evaluations of specific technologies or hospital case studies. The most important findings from our research were (1) substandard functionality of most real-time location systems in use and (2) serious obstacles to effective deployment of the systems due to the material and organizational constraints of the hospitals themselves. We found that the current best use of RTLS is for asset tracking, but importantly it requires whole-hospital deployment as well as centralized control of the system, preferably by materials management or biomedical engineering departments. There are serious technological, material, and organizational barriers to the implementation of RTLS, and these barriers need to be overcome if hospitals are to maximize the potential benefits of these systems. In addition to considering the available technological options, hospitals must assess their unique environments, including the myriad material and organizational constraints that will affect the success of RTLS implementation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Five year ground exposure of composite materials used on the Bell Model 206L flight service evaluation

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    1989-01-01

    Part of the results of a U.S. Army/NASA-Langley sponsored research program to establish the long term-term effects of realistic ground based exposure on advanced composite materials is presented. Residual strengths and moisture absorption as a function of exposure time and exposure location are reported for four different composite material systems that were exposed for five years on the North American Continent.

  2. Investigation of low cost material processes for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.

    1993-01-01

    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  3. Thermal design of composite materials high temperature attachments

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The thermal aspects of using filamentary composite materials as primary airframe structures on advanced atmospheric entry spacecraft such as the space shuttle vehicle were investigated to identify and evaluate potential design approaches for maintaining composite structures within allowable temperature limits at thermal protection system (TPS) attachments and/or penetrations. The investigation included: (1) definition of thermophysical data for composite material structures; (2) parametric characterization and identification of the influence of the aerodynamic heating and attachment design parameters on composite material temperatures; (3) conceptual design, evaluation, and detailed thermal analyses of temperature limiting design concepts; and (4) the development of experimental data for assessment of the thermal design methodologies and data used for evaluation of the temperature-limiting design concepts. Temperature suppression attachment concepts were examined for relative merit. The simple isolator was identified as the most weight-effective concept and was selected for detail design, thermal analysis, and testing. Tests were performed on TPS standoff attachments to boron/aluminum, boron/polyimide and graphite/epoxy composite structures.

  4. A Methodology for Evaluating the Hygroscopic Behavior of Wood in Adaptive Building Skins using Motion Grammar

    NASA Astrophysics Data System (ADS)

    El-Dabaa, Rana; Abdelmohsen, Sherif

    2018-05-01

    The challenge in designing kinetic architecture lies in the lack of applying computational design and human computer interaction to successfully design intelligent and interactive interfaces. The use of ‘programmable materials’ as specifically fabricated composite materials that afford motion upon stimulation is promising for low-cost low-tech systems for kinetic facades in buildings. Despite efforts to develop working prototypes, there has been no clear methodological framework for understanding and controlling the behavior of programmable materials or for using them for such purposes. This paper introduces a methodology for evaluating the motion acquired from programmed material – resulting from the hygroscopic behavior of wood – through ‘motion grammar’. Motion grammar typically allows for the explanation of desired motion control in a computationally tractable method. The paper analyzed and evaluated motion parameters related to the hygroscopic properties and behavior of wood, and introduce a framework for tracking and controlling wood as a programmable material for kinetic architecture.

  5. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials.

    PubMed

    Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire

    2016-12-01

    In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.

  6. Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro

    NASA Astrophysics Data System (ADS)

    Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan

    2016-07-01

    Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.

  7. Electrochemical Disinfection Feasibility Assessment Materials Evaluation for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Shindo, David; Montgomery, Eliza

    2013-01-01

    The International Space Station (ISS) Program recognizes the risk of microbial contamination in their potable and non-potable water sources. The end of the Space Shuttle Program limited the ability to send up shock kits of biocides in the event of an outbreak. Currently, the United States Orbital Segment water system relies primarily on iodine to mitigate contamination concerns, which has been successful in remediating the small cases of contamination documented. However, a secondary method of disinfection is a necessary investment for future space flight. Over the past year, NASA Johnson Space Center has investigated the development of electrochemically generated systems for use on the ISS. These systems include: hydrogen peroxide, ozone, sodium hypochlorite, and peracetic acid. To use these biocides on deployed water systems, NASA must understand of the effect these biocides have on current ISS materials prior to proceeding forward with possible on-orbit applications. This paper will discuss the material testing that was conducted to assess the effects of the biocides on current ISS materials.

  8. A study of the effects of long-term exposure to fuels and fluids on the behavior of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tanimoto, E. Y.

    1981-01-01

    The periodic testing and evaluation of graphite/epoxy and Kevlar/epoxy material systems after subjecting test specimens to prolonged exposure to several laboratory-controlled environments deemed typical of normal aircraft operations is discussed. It is noted that specimen immersion in water or water-based fluids resulted in the greatest effect on the mechanical properties tested. Also, the environmental fluids showed a tendency to affect Kevlar/epoxy systems at an earlier exposure period than the graphite/epoxy systems. Results also indicate mechanical property strength retention generally being lower for the Kevlar/epoxy systems when compared to the corresponding graphite/epoxy systems in similar environments, after prolonged exposure.

  9. Design and evaluation of a sensor fail-operational control system for a digitally controlled turbofan engine

    NASA Technical Reports Server (NTRS)

    Hrach, F. J.; Arpasi, D. J.; Bruton, W. M.

    1975-01-01

    A self-learning, sensor fail-operational, control system for the TF30-P-3 afterburning turbofan engine was designed and evaluated. The sensor fail-operational control system includes a digital computer program designed to operate in conjunction with the standard TF30-P-3 bill-of-materials control. Four engine measurements and two compressor face measurements are tested. If any engine measurements are found to have failed, they are replaced by values synthesized from computer-stored information. The control system was evaluated by using a realtime, nonlinear, hybrid computer engine simulation at sea level static condition, at a typical cruise condition, and at several extreme flight conditions. Results indicate that the addition of such a system can improve the reliability of an engine digital control system.

  10. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 1013 to 1015 n/cm2. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 1015 to 1016 n/cm2 with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  11. Post Irradiation Evaluation of Thermal Control Coatings and Solid Lubricants to Support Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.; Jaworske, Donald A.; Stanford, Malcolm K.; Persinger, Justin A.; Khorsandi, Behrooz; Blue, Thomas E.

    2007-01-01

    The development of a nuclear power system for space missions, such as the Jupiter Icy Moons Orbiter or a lunar outpost, requires substantially more compact reactor design than conventional terrestrial systems. In order to minimize shielding requirements and hence system weight, the radiation tolerance of component materials within the power conversion and heat rejection systems must be defined. Two classes of coatings, thermal control paints and solid lubricants, were identified as material systems for which limited radiation hardness information was available. Screening studies were designed to explore candidate coatings under a predominately fast neutron spectrum. The Ohio State Research Reactor Facility staff performed irradiation in a well characterized, mixed energy spectrum and performed post irradiation analysis of representative coatings for thermal control and solid lubricant applications. Thermal control paints were evaluated for 1 MeV equivalent fluences from 10(exp 13) to 10(exp 15) n per square centimeters. No optical degradation was noted although some adhesive degradation was found at higher fluence levels. Solid lubricant coatings were evaluated for 1 MeV equivalent fluences from 10(exp 15) to 10(exp 16) n per square centimeters with coating adhesion and flexibility used for post irradiation evaluation screening. The exposures studied did not lead to obvious property degradation indicating the coatings would have survived the radiation environment for the previously proposed Jupiter mission. The results are also applicable to space power development programs such as fission surface power for future lunar and Mars missions.

  12. Articulation Research System: A New Direction in Curriculum Evaluation. User's Manual.

    ERIC Educational Resources Information Center

    Gilbert, Russell; Delaino, G. Thomas

    This user's manual explains the Articulation Research System (ARS), which was created by Santa Fe Community College, and its database. As introductory material notes, the ARS was designed to: (1) follow former community college students through their bachelor's degree programs in the Florida State University System (SUS); (2) compare student…

  13. Research Performed within the Non-Destructive Evaluation Team at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Burns, Erin A.

    2004-01-01

    Non-destructive testing is essential in many fields of manufacturing and research in order to perform reliable examination of potentially damaged materials and parts without destroying the inherent structure of the materials. Thus, the Non-Destructive Evaluation (NDE) Team at NASA Glenn Research Center partakes in various projects to improve materials testing equipment as well as analyze materials, material defects, and material deficiencies. Due to the array of projects within the NDE Team at this time, five research aims were supplemental to some current projects. A literature survey of "DE and testing methodologies as related to rocks was performed. Also, Mars Expedition Rover technology was assessed to understand the requirements for instrumentation in harsh space environments (e.g. temperature). Potential instrumentation and technologies were also considered and documented. The literature survey provided background and potential sources for a proposal to acquire funding for ultrasonic instrumentation on board a future Mars expedition. The laboratory uses a Santec Systems AcousticScope AS200 acoustography system. Labview code was written within the current program in order to improve the current performance of the acoustography system. A sample of Reinforced Carbon/Carbon (RCC) material from the leading edge of the space shuttle underwent various non-destructive tests (guided wave scanning, thermography, computed tomography, real time x-ray, etc.) in order to characterize its structure and examine possible defects. Guided wave scan data of a ceramic matrix composite (CMC) panel was reanalyzed utilizing image correlations and signal processing variables. Additional guided wave scans and thermography were also performed on the CMC panel. These reevaluated data and images will be used in future presentations and publications. An additional axis for the guided wave scanner was designed, constructed, and implemented. This additional axis allowed incremental spacing of the previously fixed transducers for ultrasonic velocity measurements.

  14. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    PubMed

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura

    2015-10-01

    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spellman, G.P.

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLAmore » RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.« less

  16. Evaluation of the Healthy Lifestyles Initiative for Improving Community Capacity for Childhood Obesity Prevention.

    PubMed

    Berman, Marcie; Bozsik, Frances; Shook, Robin P; Meissen-Sebelius, Emily; Markenson, Deborah; Summar, Shelly; DeWit, Emily; Carlson, Jordan A

    2018-02-22

    Policy, systems, and environmental approaches are recommended for preventing childhood obesity. The objective of our study was to evaluate the Healthy Lifestyles Initiative, which aimed to strengthen community capacity for policy, systems, and environmental approaches to healthy eating and active living among children and families. The Healthy Lifestyles Initiative was developed through a collaborative process and facilitated by community organizers at a local children's hospital. The initiative supported 218 partners from 170 community organizations through training, action planning, coalition support, one-on-one support, and the dissemination of materials and sharing of resources. Eighty initiative partners completed a brief online survey on implementation strategies engaged in, materials used, and policy, systems, and environmental activities implemented. In accordance with frameworks for implementation science, we assessed associations among the constructs by using linear regression to identify whether and which of the implementation strategies were associated with materials used and implementation of policy, systems, and environmental activities targeted by the initiative. Each implementation strategy was engaged in by 30% to 35% of the 80 survey respondents. The most frequently used materials were educational handouts (76.3%) and posters (66.3%). The most frequently implemented activities were developing or continuing partnerships (57.5%) and reviewing organizational wellness policies (46.3%). Completing an action plan and the number of implementation strategies engaged in were positively associated with implementation of targeted activities (action plan, effect size = 0.82; number of strategies, effect size = 0.51) and materials use (action plan, effect size = 0.59; number of strategies, effect size = 0.52). Materials use was positively associated with implementation of targeted activities (effect size = 0.35). Community-capacity-building efforts can be effective in supporting community organizations to engage in policy, systems, and environmental activities for healthy eating and active living. Multiple implementation strategies are likely needed, particularly strategies that involve a high level of engagement, such as training community organizations and working with them on structured action plans.

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has great possibilities maximizing material recovery and energy recovery from waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Overview of C/C-SiC Composite Development for the Orion Launch Abort System

    NASA Technical Reports Server (NTRS)

    Allen, Lee R.; Valentine, Peter G.; Schofield, Elizabeth S.; Beshears, Ronald D.; Coston, James E.

    2012-01-01

    Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.

  19. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  20. The applicability of a material-treatment laser pulse in non-destructive evaluations.

    PubMed

    Hrovatin, R; Petkovsek, R; Diaci, J; Mozina, J

    2006-12-22

    A practical optodynamic study was performed to determine the usability of different lengths of laser pulses for the generation of ultrasonic transients in a solid material. The aim of the study was to evaluate the possibility of a dual use for a laser pulse-for laser material processing, on the one hand, and for the ultrasonic wave generation on the other-with both processes being combined on the same production line. The propagation of the laser-generated ultrasonic waves is evaluated by detecting and measuring with a PID-controlled stabilized interferometer. Thus, both systems provided the basic tools, the generation and detection of ultrasonic waves, for an ultrasonic, laser-based, non-destructive material evaluation. The ultrasonic transients generated by 'classical' nanosecond laser pulses were compared with the transients generated by industrial laser pulses with a duration of a few tenths of a microsecond. The experimental results are compared with the results of a time-of-flight analysis that also involved part of a mode-conversion analysis for both regimes in a layered material structure. The differences between the two waveforms were assessed in terms of their visibility, wavelength and resolution. The limit values were calculated and estimated for the laser-pulse parameters, when such pulses are intended for use in an ultrasonic, laser-based, non-destructive evaluation. The possibility of using an industrial marking laser for laser ultrasound generation is thus demonstrated.

  1. Woven TPS Mechanical Property Evaluation

    NASA Technical Reports Server (NTRS)

    Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.

  2. The State perspective.

    PubMed

    Lipton, D S; Appel, P

    1984-01-01

    Our survey showed that State agencies make use of NIDA materials of all sorts, including NIDA treatment evaluation materials. A majority of the respondents indicated that NIDA treatment evaluation materials were among the most useful of its products; most frequently mentioned was DARP, then Nurco's and Robins' work, and TOPS. That DARP was most frequently mentioned is not a contradiction, since the responses were stated in a general sense, not in terms of a specific report or material. In the past 1 to 2 years, many State drug abuse agency budgets have been substantially reduced due to declines in Federal funding. As a result, treatment evaluation reports and related materials are viewed somewhat differently than they were in the past. The fiscal climate in various States may thus be another factor contributing to the greater familarity and reported use of reports such as DAWN, CODAP, and case management and monitoring manuals published by NIDA. A number of suggestions were made about the kinds of evaluation materials needed by States. It was generally agreed that attempts should be made to produce treatment evaluation findings/new knowledge in a format where it would be more accessible to administrators (e.g., "how-to" manuals, evaluation case studies, dissemination of treatment evaluation bibliographies) and should assist in making existing treatment evaluation results more accessible (divide results for modalities into subtypes, provide data on the effectiveness of specific interventions with specific conditions, diversify the settings of programs in which evaluations are done, etc.). The theme of these various suggestions is to make evaluations more available, usable, and specific, especially now in view of the reduced ability of many States to carry on their own evaluation activities. The general sense of the respondents regarding dissemination was that right now, in view of other problems such as the financial crunch, NIDA's system of distribution cannot be a salient concern. Nevertheless, from a State perspective, NIDA's dissemination of treatment evaluation materials is particularly important in the light of the paucity of resources States have to conduct their own research. Thus, having access to NIDA's usable evaluation data is all the more crucial to improving service delivery and its cost effectiveness. Another factor to bear in mind at the present time is the absence of opportunities to share evaluation results at national conferences which formerly were, of course, major mechanisms for formal dissemination.

  3. The potential for CMCs to replace superalloys in engine exhaust ducts

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel P.; Field, Frank R.

    1994-01-01

    The Materials Systems Laboratory at the Massachusetts Institute of Technology has conducted research to develop decision tools that can facilitate materials selection and provide a deeper understanding of the design tradeoffs that occur when choosing among advanced aerospace materials for high-temperature applications. As an illustration of the use of these tools, this paper describes research done to evaluate the material alternatives currently under consideration for exhaust ducts in aircraft gas turbine engines. Although nickel-based superalloys currently prevail for this application, the increasing temperatures of modern engines are necessitating the usage of higher temperature materials.

  4. The Behind-the-Knee test: an efficient model for evaluating mechanical and chemical irritation.

    PubMed

    Farage, Miranda A

    2006-05-01

    The 'Behind-the-Knee' method (BTK test), using the popliteal fossa as a test site, evaluates both the inherent chemical irritation, and the potential for mechanical irritation of substrates and products. This approach eliminates some of the difficulties of in-use clinical test systems while still providing reliable results. In this publication, examples of the results of BTK tests on several materials are presented with direct comparisons, where possible, with results of in-use clinical testing conducted on the same materials. In in-use clinical tests, volunteer panelists were provided with catamenial products to use in place of their normal product. In the BTK test, samples were applied daily to the popliteal fossa using an elastic athletic band. In both studies, irritation reactions were scored visually. Levels of irritation in the BTK test are consistently higher than those of standard patch tests, illustrating the contribution of mechanical irritation to the overall irritant potential of materials and products. Repeated tests on identical test materials demonstrated that the BTK test results are reproducible. Side-by-side comparisons of the BTK test and in-use clinical tests demonstrated that the BTK test produces results of similar quality to the in-use clinical. By using several concurrent panels with a common test material, it is possible to compare the irritant properties of several materials at once. We have tested over 25 different materials in over 35 BTK studies. The test method has proven reliable and versatile in testing a wide variety of materials, including menstrual pads, topsheets, interlabial pads, pantiliners, tampons and lotion coatings on products. Unlike in-use clinicals, the BTK test allows the direct comparison of two products at one time on the same individual, and is easily adapted to investigative programs. It is subject to fewer confounding factors, is much easier to implement, has a shorter turnaround time, and is less expensive than in-use clinical testing. Importantly, unlike standard patch tests, the BTK test evaluates both the inherent chemical irritation associated with materials and the mechanical irritation owing to friction. Although the BTK test was developed using catamenial products, the test system provides a valuable alternative for evaluating any material where mechanical irritation may play a role, including textiles, facial tissues, baby and adult diapers, and laundry products that may leave residues on fabrics.

  5. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 2: The optimization of material-device parameters for application in bubble domain memory elements for spacecraft data recorders

    NASA Technical Reports Server (NTRS)

    Besser, P. J.

    1976-01-01

    Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.

  6. Evaluating a learning management system for blended learning in Greek higher education.

    PubMed

    Kabassi, Katerina; Dragonas, Ioannis; Ntouzevits, Alexandra; Pomonis, Tzanetos; Papastathopoulos, Giorgos; Vozaitis, Yiannis

    2016-01-01

    This paper focuses on the usage of a learning management system in an educational institution for higher education in Greece. More specifically, the paper examines the literature on the use of different learning management systems for blended learning in higher education in Greek Universities and Technological Educational Institutions and reviews the advantages and disadvantages. Moreover, the paper describes the usage of the Open eClass platform in a Technological Educational Institution, TEI of Ionian Islands, and the effort to improve the educational material by organizing it and adding video-lectures. The platform has been evaluated by the students of the TEI of Ionian Islands based on six dimensions: namely student, teacher, course, technology, system design, and environmental dimension. The results of this evaluation revealed that Open eClass has been successfully used for blended learning in the TEI of Ionian Islands. Despite the instructors' initial worries about students' lack of participation in their courses if their educational material was made available online and especially in video lectures; blended learning did not reduce physical presence of the students in the classroom. Instead it was only used as a supplementary tool that helps students to study further, watch missed lectures, etc.

  7. Development of an external ceramic insulation for the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Tanzilli, R. A. (Editor)

    1972-01-01

    The development and evaluation of a family of reusable external insulation systems for use on the space shuttle orbiter is discussed. The material development and evaluation activities are described. Additional information is provided on the development of an analytical micromechanical model of the reusable insulation and the development of techniques for reducing the heat transfer. Design data on reusable insulation systems and test techniques used for design data generation are included.

  8. An evaluation of two bridge deck overlay systems on the Rte. 85 bridges over the Roanoke River.

    DOT National Transportation Integrated Search

    1971-01-01

    Because of exposed reinforcing steel in some areas of the decks, the interstate route 85 bridges over the Roanoke River were treated with overlays in August 1969. In order to evaluate two different materials on a comparative basis, the Department of ...

  9. Products of combustion of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Perry, Cortes L.

    1995-01-01

    The objective of this project is to evaluate methodologies for the qualitative and quantitative determination of the gaseous products of combustion of non-metallic materials of interest to the aerospace community. The goal is to develop instrumentation and analysis procedures which qualitatively and quantitatively identify gaseous products evolved by thermal decomposition and provide NASA a detailed system operating procedure.

  10. Environmental effects on FOD resistance of composite fan blade

    NASA Technical Reports Server (NTRS)

    Murphy, G. C.; Selemme, C. T.

    1981-01-01

    The sensitivity of the impact characteristics of typical polymeric composite fan blade materials to potential limiting combinations of moisture, temperature level and temperature transients was established. The following four technical tasks are reported: (1) evaluation and characterization of constituent blade materials; (2) ballistic impact tests; (3) leading edge impact protection systems; and (4) simulated blade spin impact tests.

  11. Mechanical Properties of Steel Encapsulated Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Fudger, Sean; Klier, Eric; Karandikar, Prashant; McWilliams, Brandon; Ni, Chaoying

    This research evaluates a coefficient of thermal expansion (CTE) mismatch induced residual compressive stress approach as a means of improving the ductility of metal matrix composites (MMCs). MMCs are frequently incorporated into advanced material systems due to their tailorable material properties. However, they often have insufficient strength and ductility for many structural applications. By combining MMCs with high strength steels in a hybridized, macro composite materials system that exploits the CTE mismatch, materials systems with improved strength, damage tolerance, and structural efficiency can be obtained. Macro hybridized systems consisting of steel encapsulated light metal MMCs were produced with the goal of creating a system which takes advantage of the high strength, modulus, and damage tolerance of steels and high specific stiffness and low density of MMCs while mitigating the high density of steels and the poor ductility of MMCs. Aluminum and magnesium based particulate reinforced MMCs combine many of the desirable characteristic of metals and ceramics, particularly the unique ability to tailor their CTE. This work aims to compare the performance of macro hybridized material systems consisting of aluminum or magnesium MMCs reinforced with Al2O3, SiC, or B4C particles and encapsulated by A36 steel, 304 stainless steel, or cold worked Nitronic® 50 stainless steels.

  12. Nanoscale deformation measurements for reliability assessment of material interfaces

    NASA Astrophysics Data System (ADS)

    Keller, Jürgen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2006-03-01

    With the development and application of micro/nano electronic mechanical systems (MEMS, NEMS) for a variety of market segments new reliability issues will arise. The understanding of material interfaces is the key for a successful design for reliability of MEMS/NEMS and sensor systems. Furthermore in the field of BIOMEMS newly developed advanced materials and well known engineering materials are combined despite of fully developed reliability concepts for such devices and components. In addition the increasing interface-to volume ratio in highly integrated systems and nanoparticle filled materials are challenges for experimental reliability evaluation. New strategies for reliability assessment on the submicron scale are essential to fulfil the needs of future devices. In this paper a nanoscale resolution experimental method for the measurement of thermo-mechanical deformation at material interfaces is introduced. The determination of displacement fields is based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object (i.e. material interface) are carried out at different thermo-mechanical load states. The obtained images are compared by grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results are full-field displacement fields with nanometer resolution. With the obtained data the mixed mode type of loading at material interfaces can be analyzed with highest resolution for future needs in micro system and nanotechnology.

  13. A PROBABILISTIC METHOD FOR ESTIMATING MONITORING POINT DENSITY FOR CONTAINMENT SYSTEM LEAK DETECTION

    EPA Science Inventory

    The use of physical and hydraulic containment systems for the isolation of contaminated ground water and aquifer materials ssociated with hazardous waste sites has increased during the last decade. The existing methodologies for monitoring and evaluating leakage from hazardous w...

  14. Continuum of Medical Education in Obstetrics and Gynecology.

    ERIC Educational Resources Information Center

    Dohner, Charles W.; Hunter, Charles A., Jr.

    1980-01-01

    Over the past eight years the obstetric and gynecology specialty has applied a system model of instructional planning to the continuum of medical education. The systems model of needs identification, preassessment, instructional objectives, instructional materials, learning experiences; and evaluation techniques directly related to objectives was…

  15. ETV Program Report: Coatings for Wastewater Collection Systems - Epoxy Tec International, Inc., CPP RC3

    EPA Science Inventory

    The Epoxytec, Inc. CPP™ epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the Uni...

  16. "Living off the land": resource efficiency of wetland wastewater treatment.

    PubMed

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle byproducts of the human economy, maximizing performance of the both the natural economy and natural ecosystems. Wetland systems accomplish this with far greater resource economy than other sewage treatment approaches, and thus offer benefits for both space and Earth applications. c 2001. COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  17. ``Living off the land'': resource efficiency of wetland wastewater treatment

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle byproducts of the human economy, maximizing performance of the both the natural economy and natural ecosystems. Wetland systems accomplish this with far greater resource economy than other sewage treatment approaches, and thus offer benefits for both space and Earth applications.

  18. Evaluation of adhesive materials used on the Long Duration Exposure Facility. Report, October 1989-January 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dursch, H.W.; Keough, B.K.; Pippin, H.G.

    1995-03-01

    The adhesive and adhesive-like materials flown on LDEF included epoxies and silicones (including lap shear specimens), conformal coatings, potting compounds, and several tapes and transfer films. With the exception of the lap shear specimens, these materials were used in the fabrication and assembly of the experiments such as bonding thermal control surfaces to other hardware and holding individual specimens in place, similar to applications on other spacecraft. Typically, the adhesives were not exposed to solar radiation or atomic oxygen. Only one adhesive system was used in a structural application. This report documents all results of the Materials and Systems SIGmore » investigation into the effect of long term low Earth orbit (LEO) exposure of these materials. Results of this investigation show that if the material was shielded from exposure to LDEF`s external environment, the 69 month exposure to LEO had, in most cases, minimal effect on the material.« less

  19. Freezing curve-based monitoring to quickly evaluate the viability of biological materials subject to freezing or thermal injury.

    PubMed

    Liu, Jing; Zhou, Yi-Xin

    2003-09-01

    This paper is aimed at investigating the roles of freezing dynamics of a liquid droplet to characterize the properties of the material. In particular, freezing curve-based monitoring was proposed to quickly evaluate the viability of biological materials subject to freezing, re-warming, or other kinds of injury, which is an extremely important issue in practices such as cryobiology, hyperthermia, or freshness evaluation of bio-samples. An integrated micro analysis device was fabricated which is simple in structure and cheap to make. Preliminary freezing results demonstrated that minor changes in a biological material due to freezing or warming injury might result in a significant deviation of its freezing curve from that of the intact biomaterials. Several potential thermal indexes to quantify the material features were pointed out. Further, experiments were performed on some freezing and thawing processes of small amount of water on a cooling surface to test the effects of droplet sizes, measurement sites, cooling strength, and cooling geometry, etc., on the freezing responses of a water droplet. Their implementation in developing a new micro analysis system were suggested. This freezing curve-based monitoring method may open a new strategy for the evaluation of biomaterials subject to destruction in diverse fields.

  20. Material Studies Related to the Use of NaK Heat Exchangers Coupled to Stirling Heater Heads

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Geng, Steven M.; Robbie, Malcolm G.

    2011-01-01

    NASA has been supporting design studies and technology development that could provide power to an outpost on the Moon, Mars, or an asteroid. Technology development efforts have included fabrication and evaluation of components used in a Stirling engine power conversion system. Destructive material evaluation was performed on a NaK shell heat exchanger that was developed by the NASA Glenn Research Center (GRC) and integrated with a commercial 1 kWe Stirling convertor from Sunpower Incorporated. The NaK Stirling test demonstrated Stirling convertor electrical power generation using a pumped liquid metal heat source under thermal conditions that represent the heat exchanger liquid metal loop in a Fission Power Systems (FPS) reactor. The convertors were operated for a total test time of 66 hr at a maximum temperature of 823 K. After the test was completed and NaK removed, the heat exchanger assembly was sectioned to evaluate any material interactions with the flowing liquid metal. Several dissimilar-metal braze joint options, crucial for the heat exchanger transfer path, were also investigated. A comprehensive investigation was completed and lessons learned for future heat exchanger development efforts are discussed.

  1. Cubesat in-situ degradation detector (CIDD)

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Milke, Alexander; Salden, Daniel

    2015-07-01

    The design of the thermal control and management system (TCS) is a central task in satellite design. In order to evaluate and dimensionize the properties of the TCS, material parameters specifying the conductive and radiative properties of the different TCS components have to be known including their respective variations within the mission lifetime. In particular the thermo-optical properties of the outer surfaces including critical TCS components such as radiators and thermal insulation are subject to degradation caused by interaction with the space environment. The evaluation of these material parameters by means of ground testing is a time-consuming and expensive endeavor. Long-term in-situ measurements on board the ISS or large satellites not only realize a better implementation of the influence of the space environment but also imply high costs. Motivated by this we propose the utilization of low-cost nano-satellite systems to realize material tests within space at a considerably reduced cost. We present a nanosat-scale degradation sensor concept which realizes low power consumption and data rates compatible with nanosat boundaries at UHF radio. By means of a predefined measurement and messaging cycle temperature curves are measured and evaluated on ground to extract the change of absorptivity and emissivity over mission lifetime.

  2. Design of plywood and paper flywheel rotors

    NASA Astrophysics Data System (ADS)

    Erdman, A. G.; Hagen, D. L.; Gaff, S. A.

    1982-05-01

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.

  3. Application of a Loop-Type Laboratory Biofilm Reactor to the Evaluation of Biofilm for Some Metallic Materials and Polymers such as Urinary Stents and Catheters

    PubMed Central

    Kanematsu, Hideyuki; Kudara, Hikonaru; Kanesaki, Shun; Kogo, Takeshi; Ikegai, Hajime; Ogawa, Akiko; Hirai, Nobumitsu

    2016-01-01

    A laboratory biofilm reactor (LBR) was modified to a new loop-type closed system in order to evaluate novel stents and catheter materials using 3D optical microscopy and Raman spectroscopy. Two metallic specimens, pure nickel and cupronickel (80% Cu-20% Ni), along with two polymers, silicone and polyurethane, were chosen as examples to ratify the system. Each set of specimens was assigned to the LBR using either tap water or an NB (Nutrient broth based on peptone from animal foods and beef extract mainly)—cultured solution with E-coli formed over 48–72 h. The specimens were then analyzed using Raman Spectroscopy. 3D optical microscopy was employed to corroborate the Raman Spectroscopy results for only the metallic specimens since the inherent roughness of the polymer specimens made such measurements difficult. The findings suggest that the closed loop-type LBR together with Raman spectroscopy analysis is a useful method for evaluating biomaterials as a potential urinary system. PMID:28773945

  4. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  5. Evaluating the sustainability of space life support systems: case study on air revitalisation systems ARES and BIORAT

    NASA Astrophysics Data System (ADS)

    Suomalainen, Emilia; Erkman, Suren

    Space life support systems can be taken as kinds of miniature models of industrial systems found on Earth. The term "industrial" is employed here in a generic sense, referring to all human technological activities. The time scale as well as the physical scope of space life support systems is reduced compared to most terrestrial systems and so is consequently their complexity. These systems can thus be used as a kind of a "laboratory of sustainability" to examine concerns related to the environmental sustainability of industrial systems and in particular to their resource use. Two air revitalisation systems, ARES and BIORAT, were chosen as the test cases of our study. They represent respectively a physico-chemical and a biological life support system. In order to analyse the sustainability of these systems, we began by constructing a generic system representation applicable to both these systems (and to others). The metabolism of the systems was analysed by performing Material Flow Analyses—MFA is a tool frequently employed on terrestrial systems in the field of industrial ecology. Afterwards, static simulation models were developed for both ARES and BIORAT, focusing, firstly, on the oxygen balances of the systems and, secondly, on the total mass balances. It was also necessary to define sustainability indicators adapted to space life support systems in order to evaluate and to compare the performances of ARES and BIORAT. The defined indicators were partly inspired from concepts used in Material Flow Accounting and they were divided into four broad categories: 1. recycling and material use efficiency, 2. autarky and coverage time, 3. resource use and waste creation, and 4. system mass and energy consumption. The preliminary results of our analyses show that the performance of BIORAT is superior compared to ARES in terms of the defined resource use indicators. BIORAT seems especially effective in reprocessing carbon dioxide created by human metabolism. The performances of ARES and BIORAT are somewhat closer in terms of material use efficiency and resource intensity. However, the excellence of BIORAT in terms of resource use is countered by the fact that its energy consumption is greater than that of ARES by a factor of ten.

  6. STANDARD REFERENCE MATERIALS FOR THE POLYMERS INDUSTRY.

    PubMed

    McDonough, Walter G; Orski, Sara V; Guttman, Charles M; Migler, Kalman D; Beers, Kathryn L

    2016-01-01

    The National Institute of Standards and Technology (NIST) provides science, industry, and government with a central source of well-characterized materials certified for chemical composition or for some chemical or physical property. These materials are designated Standard Reference Materials ® (SRMs) and are used to calibrate measuring instruments, to evaluate methods and systems, or to produce scientific data that can be referred readily to a common base. In this paper, we discuss the history of polymer based SRMs, their current status, and challenges and opportunities to develop new standards to address industrial measurement challenges.

  7. MSFC Skylab contamination control systems mission evaluation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.

  8. Hydrogasification reactor and method of operating same

    DOEpatents

    Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki

    2013-09-10

    The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.

  9. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-10-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  10. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  11. Superalloy Foams for Aeroshell Applications

    NASA Technical Reports Server (NTRS)

    Gayda, John; Padula, Santo, II

    2001-01-01

    Current thermal protection systems for reentry from space, such as that employed on the space shuttle, rely on ceramic tiles with ultra-low conductivity. These materials provide excellent thermal protection but are extremely fragile, easily degraded by environmental attack, and carry no structural loads. Future thermal protection systems being proposed in NASAs MITAS Program will attempt to combine thermal protection with improved durability and structural capability without significant increases in vehicle weight. This may be accomplished by combining several materials in a layered structure to obtain the desired function for aeroshell applications. One class of materials being considered for inclusion in this concept are high temperature metal foam. The objective of this paper was to fabricate low density, superalloy foams and conduct limited testing to evaluate their thermal and structural capabilities. Superalloys were chosen for evaluation as they possesses good strength and excellent environmental endurance over a wide range of temperatures. Utilizing superalloys as low density foams, with porosity contents greater than 90%, minimizes weight and thermal conductivity.

  12. Effect of finishing/polishing techniques and time on surface roughness of esthetic restorative materials.

    PubMed

    Madhyastha, Prashanthi Sampath; Hegde, Shreya; Srikant, N; Kotian, Ravindra; Iyer, Srividhya Sriraman

    2017-01-01

    Surface roughness associated with improper finishing/polishing of restorations can result in plaque accumulation, gingival irritation, surface staining, and poor esthetic of restored teeth. The study aimed to evaluate the efficiency of various finishing and polishing systems and time using various procedures on surface roughness of some esthetic restorative materials. In this in vitro study, samples of two composite materials, compomer and glass ionomer cement (GIC) materials, were fabricated. Finishing and polishing were done immediately ( n = 40) and after 1 week ( n = 40) using four systems (diamond bur + soflex discs; diamond bur + Astropol polishing brush; tungsten carbide bur + soflex discs; tungsten carbide bur + Astropol polishing brush). Surface roughness was measured using surface profilometer. Data were statistically analyzed by t -test (for each material and time period) and one-way analysis of variance followed by Tukey's post hoc (for finishing and polishing systems) at a significant level of P < 0.05. Analysis of time period, irrespective of finishing and polishing system showed that Ra values were greater ( P < 0.05) in delayed polishing in GIC > Z100 > Filtek P90 > Dyract AP, suggesting immediate polishing is better. Among the materials, Filtek P90 had the least Ra values indicating the smoothest surface among all materials, followed by Z100, Dyract AP, and GIC. Comparison of polishing and finishing systems irrespective of materials showed that Ra values were lower ( P > 0.05) in diamond + Astropol combination whereas diamond + soflex had the greatest Ra values. It might be concluded that: (i) Filtek P90 showed least Ra values followed by < Z100 < Dyract < GIC; (ii) immediate (24 h) finishing/polishing of materials is better than delayed; and (iii) among all these polishing systems, diamond bur-Astropol and Astrobrush showed good surface finish.

  13. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reactionmore » rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)« less

  14. Charging and Discharging Processes of Thermal Energy Storage System Using Phase change materials

    NASA Astrophysics Data System (ADS)

    Kanimozhi, B., Dr.; Harish, Kasilanka; Sai Tarun, Bellamkonda; Saty Sainath Reddy, Pogaku; Sai Sujeeth, Padakandla

    2017-05-01

    The objective of the study is to investigate the thermal characteristics of charging and discharge processes of fabricated thermal energy storage system using Phase change materials. Experiments were performed with phase change materials in which a storage tank have designed and developed to enhance the heat transfer rate from the solar tank to the PCM storage tank. The enhancement of heat transfer can be done by using a number of copper tubes in the fabricated storage tank. This storage tank can hold or conserve heat energy for a much longer time than the conventional water storage system. Performance evaluations of experimental results during charging and discharging processes of paraffin wax have discussed. In which heat absorption and heat rejection have been calculated with various flow rate.

  15. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  16. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less

  17. Predicted and tested performance of durable TPS

    NASA Technical Reports Server (NTRS)

    Shideler, John L.

    1992-01-01

    The development of thermal protection systems (TPS) for aerospace vehicles involves combining material selection, concept design, and verification tests to evaluate the effectiveness of the system. The present paper reviews verification tests of two metallic and one carbon-carbon thermal protection system. The test conditions are, in general, representative of Space Shuttle design flight conditions which may be more or less severe than conditions required for future space transportation systems. The results of this study are intended to help establish a preliminary data base from which the designers of future entry vehicles can evaluate the applicability of future concepts to their vehicles.

  18. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  19. Evaluation of the surface hardness, roughness, gloss and color of composites after different finishing/polishing treatments and thermocycling using a multitechnique approach.

    PubMed

    Pala, Kanşad; Tekçe, Neslihan; Tuncer, Safa; Serim, Merve Efe; Demirci, Mustafa

    2016-01-01

    The objectives of this study were to evaluate the mechanical and physical properties of resin composites. The materials evaluated were the Clearfil Majesty Posterior, Filtek Z550 and G-aenial Posterior composites. A total of 189 specimens were fabricated for microhardness, roughness, gloss and color tests. The specimens were divided into three finishing and polishing systems: Enhance, OneGloss and Sof-Lex Spiral. Microhardness, roughness, gloss and color were measured after 24 h and after 10,000 thermocycles. Two samples from each group were evaluated using SEM and AFM. G-aenial Posterior exhibited the lowest microhardness values. The mean roughness ranged from 0.37 to 0.61 µm. The smoothest surfaces were obtained with Sof-Lex Spiral for each material. G-aenial Posterior with Enhance was determined to be the glossiest surfaces. All of the materials exhibited similar ΔE values ranging between 1.69 and 2.75. Sof-Lex Spiral discs could be used successfully to polish composites.

  20. Impacts: NIST Building and Fire Research Laboratory (technical and societal)

    NASA Astrophysics Data System (ADS)

    Raufaste, N. J.

    1993-08-01

    The Building and Fire Research Laboratory (BFRL) of the National Institute of Standards and Technology (NIST) is dedicated to the life cycle quality of constructed facilities. The report describes major effects of BFRL's program on building and fire research. Contents of the document include: structural reliability; nondestructive testing of concrete; structural failure investigations; seismic design and construction standards; rehabilitation codes and standards; alternative refrigerants research; HVAC simulation models; thermal insulation; residential equipment energy efficiency; residential plumbing standards; computer image evaluation of building materials; corrosion-protection for reinforcing steel; prediction of the service lives of building materials; quality of construction materials laboratory testing; roofing standards; simulating fires with computers; fire safety evaluation system; fire investigations; soot formation and evolution; cone calorimeter development; smoke detector standards; standard for the flammability of children's sleepwear; smoldering insulation fires; wood heating safety research; in-place testing of concrete; communication protocols for building automation and control systems; computer simulation of the properties of concrete and other porous materials; cigarette-induced furniture fires; carbon monoxide formation in enclosure fires; halon alternative fire extinguishing agents; turbulent mixing research; materials fire research; furniture flammability testing; standard for the cigarette ignition resistance of mattresses; support of navy firefighter trainer program; and using fire to clean up oil spills.

  1. [Development and application of reference materials containing mixed degradation products of amoxicillin and ampicillin].

    PubMed

    Li, Wei; Zhang, Wei-Qing; Li, Xiang; Hu, Chang-Qin

    2014-09-01

    Reference materials containing mixed degradation products of amoxicillin and ampicillin were developed after optimization of preparation processes. The target impurities were obtained by controlled stress testing, and each major component was identified with HPLC-MS and compared with single traceable reference standard each. The developed reference materials were applied to system suitability test for verifying HPLC system performed in accordance with set forth in China Pharmacopeia and identification of major impurities in samples based on retention and spectra information, which have advantages over the methods put forth in foreign pharmacopoeias. The development and application of the reference materials offer an effective way for rapid identification of impurities in chromatograms, and provide references for analyzing source of impurities and evaluation of drug quality.

  2. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  3. Materials for the General Aviation Industry: Effect of Environment on Mechanical Properties of Glass Fabric/Rubber Toughened Vinyl Ester Laminates

    NASA Technical Reports Server (NTRS)

    McBride, Timothy M.

    1995-01-01

    A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.

  4. Environmental and economic comparisons of the satellite power system and six alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Whitfield, R. G.; Habegger, L. J.; Levine, E. P.; Tanzman, E.

    1981-04-01

    The satellite power system (SPS) was compared with alternative systems on life cycle cost and environmental impacts. Environmental and economic effects are evaluated and subdivided into the following issue areas: human health and safety, environmental welfare, resources (land, materials, energy, water, labor), macroeconomics, socioeconomics, and institutional. These evaluations are based on technology characterization data and alternative futures scenarios, developed as part of CDEP. The technologies and the scenarios are described. The cost and performance of the SPS and the alternative technologies provide the basis of the macroeconomic analyses.

  5. Mesquite wood chips (Prosopis) as filter media in a biofilter system for municipal wastewater treatment.

    PubMed

    Sosa-Hernández, D B; Vigueras-Cortés, J M; Garzón-Zúñiga, M A

    2016-01-01

    The biofiltration system over organic bed (BFOB) uses organic filter material (OFM) to treat municipal wastewater (MWW). This study evaluated the performance of a BFOB system employing mesquite wood chips (Prosopis) as OFM. It also evaluated the effect of hydraulic loading rates (HLRs) in order to achieve the operational parameters required to remove organic matter, suspended material, and pathogens, thus meeting Mexican and US regulations for reuse in irrigation. Two biofilters (BFs) connected in series were installed; the first one aerated (0.62 m(3)air m(-2)h(-1)) and the second one unaerated. The source of MWW was a treatment plant located in Durango, Mexico. For 200 days, three HLRs (0.54, 1.07, and 1.34 m(3)m(-2)d(-1)) were tested. The maximum HLR at which the system showed a high removal efficiency of pollutants and met regulatory standards for reuse in irrigation was 1.07 m(3)m(-2)d(-1), achieving removal efficiencies of biochemical oxygen demand (BOD5) 92%, chemical oxygen demand (COD) 78%, total suspended solids (TSS) 95%, and four log units of fecal coliforms. Electrical conductivity in the effluent ensures that it would not cause soil salinity. Therefore, mesquite wood chips can be considered an innovative material suitable as OFM for BFs treating wastewaters.

  6. Evaluation of the automatic optical authentication technologies for control systems of objects

    NASA Astrophysics Data System (ADS)

    Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.

    2000-03-01

    The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.

  7. Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining

    PubMed Central

    Gao, Bin; Woo, Wai Lok; Tian, Gui Yun

    2016-01-01

    Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061

  8. An overview of NASA testing requirements for alternate cleaning solvents used in liquid and gaseous oxygen environments

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Davis, S. Eddie

    1995-01-01

    The elimination of CFC-containing cleaning solvents for oxygen systems has prompted the development of a number of alternative cleaning solvents that must now be evaluated not only for cleanability, but compatibility as well. NASA Handbook 8060.1(NHB 8060.1) establishes the requirements for evaluation, testing, and selection of materials for use in oxygen rich environments. Materials intended for use in space vehicles, specified test facilities, and ground support equipment must meet the requirements of this document. In addition to the requirements of NHB 8060.1 for oxygen service, alternative cleaning solvents must also be evaluated in other areas (such as corrosivity, non-metals compatibility, non-volatile residue contamination, etc.). This paper will discuss the testing requirements of NHB 8060.1 and present preliminary results from early screening tests performed at Marshall Space Flight Center's Materials Combustion Research Facility.

  9. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  10. A Visual Insight into the Degradation of Metals Used in Drinking Water Distribution Systems Using AFM

    EPA Science Inventory

    Evaluating the fundamental corrosion and passivation of metallic copper used in drinking water distribution materials is important in understanding the overall mechanism of the corrosion process. Copper pipes are widely used for drinking water distribution systems and although it...

  11. 36 CFR 1225.12 - How are records schedules developed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...

  12. 36 CFR 1225.12 - How are records schedules developed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...

  13. 36 CFR 1225.12 - How are records schedules developed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...

  14. Interface Reactions and Synthetic Reaction of Composite Systems

    PubMed Central

    Park, Joon Sik; Kim, Jeong Min

    2010-01-01

    Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.

  15. A Mobile Robot for Remote Response to Incidents Involving Hazardous Materials

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.

    1994-01-01

    This paper will describe a teleoperated mobile robot system being developed at JPL for use by the JPL Fire Department/HAZMAT Team. The project, which began in October 1990, is focused on prototyping a robotic vehicle which can be quickly deployed and easily operated by HAZMAT Team personnel allowing remote entry and exploration of a hazardous material incident site. The close involvement of JPL Fire Department personnel has been critical in establishing system requirements as well as evaluating the system. The current robot, called HAZBOT III, has been especially designed for operation in environments that may contain combustible gases. Testing of the system with the Fire Department has shown that teleoperated robots can successfully gain access to incident sites allowing hazardous material spills to be remotely located and identified. Work is continuing to enable more complex missions through enhancement of the operator interface and by allowing tetherless operation.

  16. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  17. NDE Process Development Specification for SRB Composite Nose Cap

    NASA Technical Reports Server (NTRS)

    Suits, M.

    1999-01-01

    The Shuttle Upgrade program is a continuing improvement process to enable the Space Shuttle to be an effective space transportation vehicle for the next few decades. The Solid Rocket Booster (SRB), as a component of that system, is currently undergoing such an improvement. Advanced materials, such as composites, have given us a chance to improve performance and to reduce weight. The SRB Composite Nose Cap (CNC) program aims to replace the current aluminum nose cap, which is coated with a Thermal Protection System and poses a possible debris hazard, with a lighter, stronger, CNC. For the next 2 years, this program will evaluate the design, material selection, properties, and verification of the CNC. This particular process specification cites the methods and techniques for verifying the integrity of such a nose cap with nondestructive evaluation.

  18. InGaAs Avalanche Photodetectors

    NASA Astrophysics Data System (ADS)

    Stillman, G. E.; Cook, L. W.; Tashima, M. M.; Tabatabaie, N.

    1981-07-01

    The development of optical fibers with extremely low loss and near zero pulse dispersion in the 1.30-1.55 pm spectral range has generated considerable interest in emitters and detectors for use in optical fiber communication systems utilizing these wavelengths. The InGaAsP quaternary alloy, lattice matched to InP, is one of at least three different semi-conductor alloys being evaluated for detector applications in these systems. In this paper we will review some of the previous results obtained in InGaAsP/InP photodetectors, and discuss the possible mechanisms responsible for the large dark current observed in some of these devices. The material properties and device structures which minimize the dark current are described, and the possibilities of achieving efficient avalanche photodiodes using these materials are evaluated.

  19. Non-destructive evaluation means and method of flaw reconstruction utilizing an ultrasonic multi-viewing transducer data acquistion system

    DOEpatents

    Thompson, Donald O.; Wormley, Samuel J.

    1989-03-28

    A multi-viewing ultrasound transducer acquisition system for non-destructive evaluation, flaw detection and flaw reconstruction in materials. A multiple transducer assembly includes a central transducer surrounded by a plurality of perimeter transducers, each perimeter transducer having an axis of transmission which can be angularly oriented with respect to the axis of transmission of the central transducer to intersect the axis of transmission of the central transducer. A control apparatus automatically and remotely positions the transducer assembly with respect to the material by a positioning apparatus and adjusts the pe GRANT REFERENCE This invention was conceived and reduced to practice at least in part under a grant from the Department of Energy under Contract No. W-7407-ENG-82.

  20. Nano-particle doped hydroxyapatite material evaluation using spectroscopic polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Strąkowska, Paulina; Trojanowski, Michał; Gardas, Mateusz; Głowacki, Maciej J.; Kraszewski, Maciej; Strąkowski, Marcin R.

    2015-03-01

    Bio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp. In order to achieve this, we propose to use Optical Coherence Tomography (OCT) for non-destructive and non-invasive evaluation. Our system works in the IR spectrum range, which is helpful due to the wide range of nanocomposites being opaque in the VIS range. In order to use our method we need to measure two samples, one which is a reference HAp solution and second: a similar HAp solution with nanoparticles introduced inside. We use silver nanoparticles below 300 nm. The aim of this research is to analyze the concentration and dispersion of nanodopants in the bio-ceramic matrix. Furthermore, the quality of the HAp coating and deposition process repetition have been monitored. For this purpose the polarization sensitive OCT with additional spectroscopic analysis is being investigated. Despite the other methods, which are suitable for nanocomposite materials evaluation, the OCT with additional features seems to be one of the few which belong to the NDE/NDT group. Here we are presenting the OCT system for evaluation of the HAp with nano-particles, as well as HAp manufacturing process. A brief discussion on the usefulness of OCT for bio-ceramics materials examination is also being presented.

  1. Integration of Energy Consumption and CO2 Emissions into the DES Tool with Lean Thinking

    NASA Astrophysics Data System (ADS)

    Nujoom, Reda; Wang, Qian

    2018-01-01

    Products are often made by accomplishing a number of manufacturing processes on a sequential flow line which is also known as manufacturing systems. In a traditional way, design or evaluation of a manufacturing system involves a determination or an analysis of the system performance by adjusting system parameters relating to such as system capacity, material processing time, material-handling and transportation and shop-floor layout. Environment related parameters, however, are not considered or considered as separate issues. In the past decade, there has been a growing concern about the environmental protection and governments almost in all over the world enforced certain rules and regulation to promote energy saving and reduce carbon dioxide (CO2) emissions in manufacturing industry. To date, development of a sustainable manufacturing system requires designers who need not merely to apply traditional methods of improving system efficiency and productivity but also examine the environmental issues in production of the developed manufacturing system. Most researchers, however, focused on operational systems, which do not incorporate the effect of environmental factors that may also affect the system performance. This paper presents a research work aiming to addresses these issues in design and evaluation of sustainable manufacturing systems incorporating parameters of energy consumption and CO2 emissions into a DES (discrete event simulation) tool.

  2. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  3. An American System of Staff Appraisal. Coombe Lodge Case Study. Information Bank Number 1017.

    ERIC Educational Resources Information Center

    Latcham, J.

    Prepared for staff in the British further education system, this report describes and explains the formal staff assessment model used at Richland College, Texas. Introductory material describes the college, its student body, and its organization and structure. Next, the four components of the teacher evaluation system used in the Dallas Community…

  4. Experiences of Two Multidisciplinary Team Members of Systemic Consultations in a Community Learning Disability Service

    ERIC Educational Resources Information Center

    Johnson, Clair; Viljoen, Nina

    2017-01-01

    Background: Systemic approaches can be useful in working with people with learning disabilities and their network. The evidence base for these approaches within the field of learning disabilities, however, is currently limited. Materials and Methods: This article presents part of a service evaluation of systemic consultations in a Community…

  5. The Sourcebook of Library Technology. 1994 Edition. A Microform Edition of Library Technology Reports and Library Systems Newsletter 1992 and 1993.

    ERIC Educational Resources Information Center

    Hori, Pamela, Comp.; White, Howard S., Ed.

    This sourcebook is an indexed compilation, on microfiches, of material published during 1992 and 1993 in "Library Technology Reports" (LTR) and "Library Systems Newsletter.""LTR" is a publication by the American Library Association (ALA) which provides critical evaluation of products and systems used in libraries,…

  6. Evaluation of a metering, mixing, and dispensing system for mixing polysulfide adhesive

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1989-01-01

    Tests were performed to evaluate whether a metered mixing system can mix PR-1221 polysulfide adhesive as well as or better than batch-mixed adhesive; also, to evaluate the quality of meter-mixed PR-1860 and PS-875 polysulfide adhesives. These adhesives are candidate replacements for PR-1221 which will not be manufactured in the future. The following material properties were evaluated: peel strength, specific gravity and adhesive components of mixed adhesives, Shore A hardness, tensile adhesion strength, and flow rate. Finally, a visual test called the butterfly test was performed to observe for bubbles and unmixed adhesive. The results of these tests are reported and discussed.

  7. Aesthetic coatings for concrete bridge components

    NASA Astrophysics Data System (ADS)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  8. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  9. Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree

    Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutronmore » detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.« less

  10. Full-Scale Instrumented Evaluations of Multiple Airfield Matting Systems on Soft Soil to Characterize Permanent Deformation

    DTIC Science & Technology

    2016-06-01

    Development of a new design methodology for structural airfield mats. International Journal of Pavement Research and Tech- nology 3(3):102-109...load exerted by aircraft over a larger area. Six airfield matting systems of varying materials and designs were evaluated through the construction...position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/GSL

  11. On-Line Learning Modules For Waste Treatment, Waste Disposal and Waste Recycling

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Paul; Soos, Lubomir; Brokes, Peter

    2011-12-01

    This contribution is devoted to the development of an advanced vocational education and training system for professionals working in (or intending to enter) the waste management industry realized through the Leonardo project WASTRE. The consortium of the Project WASTRE includes 3 well known Technical Universities in Central Europe (TU Vienna, CVUT Prague and STU Bratislava). The project implements new didactical tools from projects EDUET, ELEVATE, RESNET and MENUET developed by MultiMedia SunShine, headed by Prof. Paul Callaghan for this education and training system. This system will be tested within courses organized by at least 3 institutions of vocational education and training: the Technical and vocational secondary school Tlmace, CHEWCON Humenne and the Union of Chambers of Craftsmen and Tradesmen of ESKISEHIR. The faculty of Mechanical Engineering (FME) of STU will coordinate the project WASTRE and will participate in the preparation of e-learning materials, organization of the courses and in the design of syllabuses, curricula, assessment and evaluation methods for the courses, the testing of developed learning materials, evaluating experiences from a pilot course and developing the e-learning materials according to the needs of end-users.

  12. Tartaric Acid as a Non-toxic and Environmentally-Friendly Anti-scaling Material for Using in Cooling Water Systems: Electrochemical and Surface Studies

    NASA Astrophysics Data System (ADS)

    Asghari, Elnaz; Gholizadeh-Khajeh, Maryam; Ashassi-Sorkhabi, Habib

    2016-10-01

    Because of the major limitations in drinking water resources, the industries need to use unprocessed water sources for their cooling systems; these water resources contain major amount of hardening cations. So, mineral scales are formed in cooling water systems during the time and cause major problems. The use of green anti-scaling materials such as carboxylic acids is considered due to their low risks of environmental pollution. In the present work, the scale inhibition performance of tartaric acid as a green organic material was evaluated. Chemical screening tests, cathodic and anodic voltammetry measurements and electrochemical impedance spectroscopy (EIS), field emission scanning electron microscopy (FESEM), energy-dispersive x-ray and x-ray diffraction, were used for the evaluation of the scale inhibition performance. The results showed that tartaric acid can prevent calcium carbonate precipitation significantly. The hard water solution with 2.0 mM of tartaric acid indicated the highest scale inhibition efficiency (ca. 68%). The voltammetry, EIS and FESEM results verified that tartaric acid can form smooth and homogeneous film on steel surface through formation of Fe(III)-tartrate complexes and retard the local precipitation of calcium carbonate deposits.

  13. Ultrasonic Imaging Technology Helps American Manufacturer of Nondestructive Evaluation Equipment Become More Competitive in the Global Market

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Sonix, Inc., of Springfield, Virginia, has implemented ultrasonic imaging methods developed at the NASA Lewis Research Center. These methods have heretofore been unavailable on commercial ultrasonic imaging systems and provide significantly more sensitive material characterization than conventional high-resolution ultrasonic c-scanning. The technology transfer is being implemented under a cooperative agreement between NASA and Sonix, and several invention disclosures have been submitted by Dr. Roth to protect Lewis interests. Sonix has developed ultrasonic imaging systems used worldwide for microelectronics, materials research, and commercial nondestructive evaluation (NDE). In 1993, Sonix won the U.S. Department of Commerce "Excellence in Exporting" award. Lewis chose to work with Sonix for two main reasons: (1) Sonix is an innovative leader in ultrasonic imaging systems, and (2) Sonix was willing to apply the improvements we developed with our in-house Sonix equipment. This symbiotic joint effort has produced mutual benefits. Sonix recognized the market potential of our new and highly sensitive methods for ultrasonic assessment of material quality. We, in turn, see the cooperative effort as an effective means for transferring our technology while helping to improve the product of a domestic firm.

  14. SEM and microCT validation for en face OCT imagistic evaluation of endodontically treated human teeth

    NASA Astrophysics Data System (ADS)

    Negrutiu, Meda L.; Nica, Luminita; Sinescu, Cosmin; Topala, Florin; Ionita, Ciprian; Bradu, Adrian; Petrescu, Emanuela L.; Pop, Daniela M.; Rominu, Mihai; Podoleanu, Adrian Gh.

    2011-03-01

    Successful root canal treatment is based on diagnosis, treatment planning, knowledge of tooth anatomy, endodontic access cavity design, controlling the infection by thorough cleaning and shaping, methods and materials used in root canal obturation. An endodontic obturation must be a complete, three-dimensional filling of the root canal system, as close as possible to cemento-dentinal junction, without massive overfilling or underfilling. There are several known methods which are used to assess the quality of the endodontic sealing, but most are invasive. These lead to the destruction of the samples and often no conclusion could be drawn in respect to the existence of any microleakage in the investigated areas of interest. Using an time domain en-face OCT system, we have recently demonstrated real time thorough evaluation of quality of root canal fillings. The purpose of this in vitro study was to validate the en face OCT imagistic evaluation of endodontically treated human teeth by using scanning electron microscopy (SEM) and microcomputer tomography (μCT). SEM investigations evidenced the nonlinear aspect of the interface between the endodontic filling material and the root canal walls and materials defects in some samples. The results obtained by μCT revealed also some defects inside the root-canal filling and at the interfaces between the material and the root canal walls. The advantages of the OCT method consist in non-invasiveness and high resolution. In addition, en face OCT investigations permit visualization of the more complex stratified structure at the interface between the filling material and the dental hard tissue.

  15. Long Duration Space Materials Exposure (LDSE)

    NASA Technical Reports Server (NTRS)

    Allen, David; Schmidt, Robert

    1992-01-01

    The Center on Materials for Space Structures (CMSS) at Case Western Reserve University is one of seventeen Commercial Centers for the Development of Space. It was founded to: (1) produce and evaluate materials for space structures; (2) develop passive and active facilities for materials exposure and analysis in space; and (3) develop improved material systems for space structures. A major active facility for materials exposure is proposed to be mounted on the exterior truss of the Space Station Freedom (SSF). This Long Duration Space Materials Exposure (LDSE) experiment will be an approximately 6 1/2 ft. x 4 ft. panel facing into the velocity vector (RAM) to provide long term exposure (up to 30 years) to atomic oxygen, UV, micro meteorites, and other low earth orbit effects. It can expose large or small active (instrumented) or passive samples. These samples may be mounted in a removable Materials Flight Experiment (MFLEX) carrier which may be periodically brought into the SSF for examination by CMSS's other SSF facility, the Space Materials Evaluation Facility (SMEF), which will contain a Scanning Electron Microscope, a Variable Angle & Scanning Ellipsometer, a Fourier Transform Infrared Spectrometer, and other analysis equipment. These facilities will allow commercial firms to test their materials in space and promptly obtain information on their materials survivability in the LEO environment.

  16. Influence of socioeconomic status on trauma center performance evaluations in a Canadian trauma system.

    PubMed

    Moore, Lynne; Turgeon, Alexis F; Sirois, Marie-Josée; Murat, Valérie; Lavoie, André

    2011-09-01

    Trauma center performance evaluations generally include adjustment for injury severity, age, and comorbidity. However, disparities across trauma centers may be due to other differences in source populations that are not accounted for, such as socioeconomic status (SES). We aimed to evaluate whether SES influences trauma center performance evaluations in an inclusive trauma system with universal access to health care. The study was based on data collected between 1999 and 2006 in a Canadian trauma system. Patient SES was quantified using an ecologic index of social and material deprivation. Performance evaluations were based on mortality adjusted using the Trauma Risk Adjustment Model. Agreement between performance results with and without additional adjustment for SES was evaluated with correlation coefficients. The study sample comprised a total of 71,784 patients from 48 trauma centers, including 3,828 deaths within 30 days (4.5%) and 5,549 deaths within 6 months (7.7%). The proportion of patients in the highest quintile of social and material deprivation varied from 3% to 43% and from 11% to 90% across hospitals, respectively. The correlation between performance results with or without adjustment for SES was almost perfect (r = 0.997; 95% CI 0.995-0.998) and the same hospital outliers were identified. We observed an important variation in SES across trauma centers but no change in risk-adjusted mortality estimates when SES was added to adjustment models. Results suggest that after adjustment for injury severity, age, comorbidity, and transfer status, disparities in SES across trauma center source populations do not influence trauma center performance evaluations in a system offering universal health coverage. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Performance evaluation for different sensing surface of BICELLs bio-transducers for dry eye biomarkers

    NASA Astrophysics Data System (ADS)

    Laguna, M. F.; Holgado, M.; Santamaría, B.; López, A.; Maigler, M.; Lavín, A.; de Vicente, J.; Soria, J.; Suarez, T.; Bardina, C.; Jara, M.; Sanza, F. J.; Casquel, R.; Otón, A.; Riesgo, T.

    2015-03-01

    Biophotonic Sensing Cells (BICELLs) are demonstrated to be an efficient technology for label-free biosensing and in concrete for evaluating dry eye diseases. The main advantage of BICELLs is its capability to be used by dropping directly a tear into the sensing surface without the need of complex microfluidics systems. Among this advantage, compact Point of Care read-out device is employed with the capability of evaluating different types of BICELLs packaged on Biochip-Kits that can be fabricated by using different sensing surfaces material. In this paper, we evaluate the performance of the combination of three sensing surface materials: (3-Glycidyloxypropyl) trimethoxysilane (GPTMS), SU-8 resist and Nitrocellulose (NC) for two different biomarkers relevant for dry eye diseases: PRDX-5 and ANXA-11.

  18. BOCA BASIC BUILDING CODE. 4TH ED., 1965 AND 1967. BOCA BASIC BUILDING CODE ACCUMULATIVE SUPPLEMENT.

    ERIC Educational Resources Information Center

    Building Officials Conference of America, Inc., Chicago, IL.

    NATIONALLY RECOGNIZED STANDARDS FOR THE EVALUATION OF MINIMUM SAFE PRACTICE OR FOR DETERMINING THE PERFORMANCE OF MATERIALS OR SYSTEMS OF CONSTRUCTION HAVE BEEN COMPILED AS AN AID TO DESIGNERS AND LOCAL OFFICIALS. THE CODE PRESENTS REGULATIONS IN TERMS OF MEASURED PERFORMANCE RATHER THAN IN RIGID SPECIFICATION OF MATERIALS OR METHODS. THE AREAS…

  19. Research of laser stealth performance test technology

    NASA Astrophysics Data System (ADS)

    Chen, Zhen-xing; Shi, Sheng-bing; Han, Fu-li; Wu, Yan-lin; Song, Chun-yan

    2014-09-01

    Laser stealth is an important way of photoelectric stealth weapons systems. According to operational principle of laser range finder, we actively explore and study the stealth performance approval testing technology of laser stealth materials, and bring forward and establish the stealth performance field test methods of stealth efficiency evaluation. Through contrastive test of two kinds of materials, the method is correct and effective.

  20. Responses of Cell Renewal Systems to Long-term Low-Level Radiation Exposure: A Feasibility Study Applying Advanced Molecular Biology Techniques on Available Histological and Cytological Material of Exposed Animals and Men

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fliedner Theodor M.; Feinendegen Ludwig E.; Meineke Viktor

    2005-02-28

    First results of this feasibility study showed that evaluation of the stored material of the chronically irradiated dogs with modern molecular biological techniques proved to be successful and extremely promising. Therefore an in deep analysis of at least part of the huge amount of remaining material is of outmost interest. The methods applied in this feasibility study were pathological evaluation with different staining methods, protein analysis by means of immunohistochemistry, strand break analysis with the TdT-assay, DNA- and RNA-analysis as well as genomic examination by gene array. Overall more than 50% of the investigated material could be used. In particularmore » the results of an increased stimulation of the immune system within the dogs of the 3mSv group as both compared to the control and higher dose groups gives implications for the in depth study of the cellular events occurring in context with low dose radiation. Based on the findings of this study a further evaluation and statistically analysis of more material can help to identify promising biomarkers for low dose radiation. A systematic evaluation of a correlation of dose rates and strand breaks within the dog tissue might moreover help to explain mechanisms of tolerance to IR. One central problem is that most sequences for dog specific primers are not known yet. The discovery of the dog genome is still under progress. In this study the isolation of RNA within the dog tissue was successful. But up to now there are no gene arrays or gene chips commercially available, tested and adapted for canine tissue. The uncritical use of untested genomic test systems for canine tissue seems to be ineffective at the moment, time consuming and ineffective. Next steps in the investigation of genomic changes after IR within the stored dog tissue should be limited to quantitative RT-PCR of tested primer sequences for the dog. A collaboration with institutions working in the field of the discovery of the dog genome could have synergistic effects.« less

Top