Sample records for material fatigue database

  1. Fatigue Crack Growth Database for Damage Tolerance Analysis

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.

    2005-01-01

    The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.

  2. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  3. Computer programs to characterize alloys and predict cyclic life using the total strain version of strainrange partitioning: Tutorial and users manual, version 1.0

    NASA Technical Reports Server (NTRS)

    Saltsman, James F.

    1992-01-01

    This manual presents computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of Strainrange Partitioning (TS-SRP). An extensive database has also been developed in a parallel effort. This database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life prediction methods as well. This users manual, software, and database are all in the public domain and are available through COSMIC (382 East Broad Street, Athens, GA 30602; (404) 542-3265, FAX (404) 542-4807). Two disks accompany this manual. The first disk contains the source code, executable files, and sample output from these programs. The second disk contains the creep-fatigue data in a format compatible with these programs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less

  5. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  6. A high temperature fatigue life prediction computer code based on the total strain version of StrainRange Partitioning (SRP)

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Saltsman, James F.

    1993-01-01

    A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infusedmore » and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of various resins, fabrics and pry drop thicknesses. Adhesive joint tests using typical blade adhesives included both generic testing of materials parameters using a notched-lap-shear test geometry developed in this study, and also a series of simulated blade web joint geometries fabricated by an industry partner.« less

  8. Are There Any Natural Remedies That Reduce Chronic Fatigue Associated with Chronic Fatigue Syndrome?

    MedlinePlus

    ... management of chronic fatigue syndrome. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed Feb. 23, 2015. Magnesium. Natural Medicines Comprehensive Database. http://www.naturaldatabase.com. Accessed Feb. 24, 2015. ...

  9. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Samborsky, Daniel D.; Miller, David A.

    Wind turbine blades are designed to several major structural conditions, including tip deflection, strength and b uckling during severe loading, as well as very high numbers of fatigue cycles and various service environments. The MSU Database Program has, since 1989, addressed the broad range of properties needed for current and potential blade materials through stati c and fatigue testing and test development in cooperation with Sandia National Laboratories and wind industry and supplier partners. This report is the latest in a series, giving test results and analysis for the period 2010 - 2015. Program data are compiled in a publicmore » database [1] and other reports and publications given in the cited references. The report begins with an executive summary and introductory material including background discussion of previous related studies. Section 3 describes experimental methods including processing, test methods, instrumentation and test development. Section 4 provides static tension, compression and shear stress - strain properties in three directions using coupons sectioned from a thick infused unidirectional glass/epoxy laminate. The nonlinear, shear dominated static properties were characterized with loading - u nloading - reloading (LUR) tests in tension and compression to increasing load levels, for +-45O laminates. Section 5 explores the origins of tensile fatigue sensitivity in glass fiber dominated laminates with variations in fabric architecture including speci ally prepared fabrics and aligned strand laminates. Several types of resins are considered, with variations in resin toughness and bonding to fibers, as well as cure cycle variations for an epoxy. Conclusions are drawn as to the limits of tensile fatigue r esistance and the effects of resin type and fabric architecture, including the behavior of a commercial aligned glass strand product. Interactions between cyclic fatigue response and creep are addressed for off - axis (+-45O) glass/epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank« less

  10. An Assessment of Cumulative Axial and Torsional Fatigue in a Cobalt-Base Superalloy

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    2010-01-01

    Cumulative fatigue under axial and torsional loading conditions can include both load-order (higMow and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538 C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., "Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequance Effects," in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281-301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. "Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading," Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165-182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren-langer-Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions is discussed. Possible reasons for the observed differences between the computed and observed summations of cycle fractions are rationalized in terms of the observed ever lutions of cyclic axial and shear stress ranges in the cumulative fatigue tests.

  11. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  12. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for modified 9Cr-1Mo can be developed for other materials. 3. Due to the assumptions used to develop the strip-yield model, model predictions are expected to show some scatter, especially in some situations. Several areas of future research are proposed from these conclusions: 1. Alternative methods for predicting fatigue crack growth, especially a constitutive fatigue crack growth model, 2. Continued development of new material models and refinement the existing ones, and 3. Implementation of the present creep-fatigue model as a user-defined subroutine in a finite element solver.

  13. Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications

    NASA Astrophysics Data System (ADS)

    Toplosky, V. J.; Walsh, R. P.; Han, K.

    2010-04-01

    Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.

  14. Quantitative assessment of motor fatigue: normative values and comparison with prior-polio patients.

    PubMed

    Meldrum, Dara; Cahalane, Eibhlis; Conroy, Ronan; Guthrie, Richard; Hardiman, Orla

    2007-06-01

    Motor fatigue is a common complaint of polio survivors and has a negative impact on activities of daily living. The aim of this study was to establish a normative database for hand grip strength and fatigue and to investigate differences between prior-polio subjects and normal controls. Static and dynamic hand grip fatigue and maximum voluntary isometric contraction (MVIC) of hand grip were measured in subjects with a prior history of polio (n = 44) and healthy controls (n = 494). A normative database of fatigue was developed using four indices of analysis. Compared with healthy controls, subjects with prior polio had significantly reduced hand grip strength but developed greater hand grip fatigue in only one fatigue index. Quantitative measurement of fatigue in the prior-polio population may be useful in order to detect change over time and to evaluate treatment strategies.

  15. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weakermore » regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.« less

  16. Traditional Chinese medicinal herbs for the treatment of idiopathic chronic fatigue and chronic fatigue syndrome.

    PubMed

    Adams, Denise; Wu, Taixiang; Yang, Xunzhe; Tai, Shusheng; Vohra, Sunita

    2009-10-07

    Chronic fatigue is increasingly common. Conventional medical care is limited in treating chronic fatigue, leading some patients to use traditional Chinese medicine therapies, including herbal medicine. To assess the effectiveness of traditional Chinese medicine herbal products in treating idiopathic chronic fatigue and chronic fatigue syndrome. The following databases were searched for terms related to traditional Chinese medicine, chronic fatigue, and clinical trials: CCDAN Controlled Trials Register (July 2009), MEDLINE (1966-2008), EMBASE (1980-2008), AMED (1985-2008), CINAHL (1982-2008), PSYCHINFO (1985-2008), CENTRAL (Issue 2 2008), the Chalmers Research Group PedCAM Database (2004), VIP Information (1989-2008), CNKI (1976-2008), OCLC Proceedings First (1992-2008), Conference Papers Index (1982-2008), and Dissertation Abstracts (1980-2008). Reference lists of included studies and review articles were examined and experts in the field were contacted for knowledge of additional studies. Selection criteria included published or unpublished randomized controlled trials (RCTs) of participants diagnosed with idiopathic chronic fatigue or chronic fatigue syndrome comparing traditional Chinese medicinal herbs with placebo, conventional standard of care (SOC), or no treatment/wait lists. The outcome of interest was fatigue. 13 databases were searched for RCTs investigating TCM herbal products for the treatment of chronic fatigue. Over 2400 references were located. Studies were screened and assessed for inclusion criteria by two authors. No studies that met all inclusion criteria were identified. Although studies examining the use of TCM herbal products for chronic fatigue were located, methodologic limitations resulted in the exclusion of all studies. Of note, many of the studies labelled as RCTs and conducted in China did not utilize rigorous randomization procedures. Improvements in methodology in future studies is required for meaningful synthesis of data.

  17. 75 FR 61761 - Renewal of Charter for the Chronic Fatigue Syndrome Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... professionals, and the biomedical, academic, and research communities about chronic fatigue syndrome advances... accessing the FACA database that is maintained by the Committee Management Secretariat under the General Services Administration. The Web site address for the FACA database is http://fido.gov/facadatabase . Dated...

  18. Mechanical Properties of Plasma-Sprayed ZrO2-8 wt% Y2O3 Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2004-01-01

    Mechanical behavior of free standing, plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings, including strength, fracture toughness, fatigue, constitutive relation, elastic modulus, and directionality, has been determined under various loading-specimen configurations. This report presents and describes a summary of mechanical properties of the plasma-sprayed coating material to provide them as a design database.

  19. Fatigue strength degradation of metals in corrosive environments

    NASA Astrophysics Data System (ADS)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  20. Hierarchically-Driven Approach for Quantifying Fatigue Crack Initiation and Short Crack Growth Behavior in Aerospace Materials

    DTIC Science & Technology

    2016-08-31

    crack initiation and SCG mechanisms (initiation and growth versus resistance). 2. Final summary Here, we present a hierarchical form of multiscale...prismatic faults in -Ti: A combined quantum mechanics /molecular mechanics study 2. Nano-indentation and slip transfer (critical in understanding crack...initiation) 3. An extended-finite element framework (XFEM) to study SCG mechanisms 4. Atomistic methods to develop a grain and twin boundaries database

  1. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  2. Decision fatigue: A conceptual analysis.

    PubMed

    Pignatiello, Grant A; Martin, Richard J; Hickman, Ronald L

    2018-03-01

    Decision fatigue is an applicable concept to healthcare psychology. Due to a lack of conceptual clarity, we present a concept analysis of decision fatigue. A search of the term "decision fatigue" was conducted across seven research databases, which yielded 17 relevant articles. The authors identified three antecedent themes (decisional, self-regulatory, and situational) and three attributional themes (behavioral, cognitive, and physiological) of decision fatigue. However, the extant literature failed to adequately describe consequences of decision fatigue. This concept analysis provides needed conceptual clarity for decision fatigue, a concept possessing relevance to nursing and allied health sciences.

  3. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  4. Materials Research for High Speed Civil Transport and Generic Hypersonics-Metals Durability

    NASA Technical Reports Server (NTRS)

    Schulz, Paul; Hoffman, Daniel

    1996-01-01

    This report covers a portion of an ongoing investigation of the durability of titanium alloys for the High Speed Civil Transport (HSCT). Candidate alloys need to possess an acceptable combination of properties including strength and toughness as well as fatigue and corrosion resistance when subjected to the HSCT operational environment. These materials must also be capable of being processed into required product forms while maintaining their properties. Processing operations being considered for this airplane include forming, welding, adhesive bonding, and superplastic forming with or without diffusion bonding. This program was designed to develop the material properties database required to lower the risk of using advanced titanium alloys on the HSCT.

  5. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  6. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.

    1999-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  7. A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.

    2000-01-01

    An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.

  8. An experimental method to quantify the impact fatigue behavior of rocks

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Kanopoulos, Patrick; Luo, Xuedong; Xia, Kaiwen

    2014-07-01

    Fatigue failure is an important failure mode of engineering materials. The fatigue behavior of both ductile and brittle materials has been under investigation for many years. While the fatigue failure of ductile materials is well established, only a few studies have been carried out on brittle materials. In addition, most fatigue studies on rocks are conducted under quasi-static loading conditions. To address engineering applications involving repeated blasting, this paper proposes a method to quantify the impact fatigue properties of rocks. In this method, a split Hopkinson pressure bar system is adopted to exert impact load on the sample, which is placed in a specially designed steel sleeve to limit the displacement of the sample and thus to enable the recovery of the rock after each impact. The method is then applied to Laurentian granite, which is fine-grained and isotropic material. The results demonstrate that this is a practicable means to conduct impact fatigue tests on rocks and other brittle solids.

  9. The effect of matrix microstructure on cyclic response and fatigue behavior of particle- reinforced 2219 aluminum: Part I. room temperature behavior

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; Allison, J. E.; van Aken, D. C.

    1995-12-01

    The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.

  10. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  11. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  12. A Cyclic-Plasticity-Based Mechanistic Approach for Fatigue Evaluation of 316 Stainless Steel Under Arbitrary Loading

    DOE PAGES

    Barua, Bipul; Mohanty, Subhasish; Listwan, Joseph T.; ...

    2017-12-05

    In this paper, a cyclic-plasticity based fully mechanistic fatigue modeling approach is presented. This is based on time-dependent stress-strain evolution of the material over the entire fatigue life rather than just based on the end of live information typically used for empirical S~N curve based fatigue evaluation approaches. Previously we presented constant amplitude fatigue test based related material models for 316 SS base, 508 LAS base and 316 SS- 316 SS weld which are used in nuclear reactor components such as pressure vessels, nozzles, and surge line pipes. However, we found that constant amplitude fatigue data based models have limitationmore » in capturing the stress-strain evolution under arbitrary fatigue loading. To address the above mentioned limitation, in this paper, we present a more advanced approach that can be used for modeling the cyclic stress-strain evolution and fatigue life not only under constant amplitude but also under any arbitrary (random/variable) fatigue loading. The related material model and analytical model results are presented for 316 SS base metal. Two methodologies (either based on time/cycle or based on accumulated plastic strain energy) to track the material parameters at a given time/cycle are discussed and associated analytical model results are presented. From the material model and analytical cyclic plasticity model results, it is found that the proposed cyclic plasticity model can predict all the important stages of material behavior during the entire fatigue life of the specimens with more than 90% accuracy« less

  13. Elevated Temperature Fatigue Endurance of Three Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2007-01-01

    High-cycle fatigue endurance of three candidate materials for the acoustic liners of the Enabling Propulsion Materials Nozzle Program was investigated. The ceramic matrix composite materials investigated were N720/AS (Nextel 720, 3M Corporation), Sylramic S200 (Dow Corning), and UT 22. High-cycle fatigue tests were conducted in air at 910 C on as-machined specimens and on specimens subjected to tensile cyclic load excursions every 160 hr followed by thermal exposure at 910 C in a furnace up to total exposure times of 2066 and 4000 hr. All the fatigue tests were conducted in air at 100 Hz with a servohydraulic test machine. In the as-machined condition, among the three materials investigated only the Sylramic S200 exhibited a deterministic type of high-cycle fatigue behavior. Both the N720/AS and UT-22 exhibited significant scatter in the experimentally observed high-cycle fatigue lives. Among the thermally exposed specimens, N720/AS and Sylramic S200 materials exhibited a reduction in the high-cycle fatigue lives, particularly at the exposure time of 4000 hr.

  14. Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)

    NASA Astrophysics Data System (ADS)

    Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.

    2018-03-01

    Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.

  15. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  16. Crystal viscoplasticity model for the creep-fatigue interactions in single-crystal Ni-base superalloy CMSX-8

    DOE PAGES

    Estrada Rodas, Ernesto A.; Neu, Richard W.

    2017-09-11

    A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less

  17. The fatigue life prediction of aluminium alloy using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike

    2013-09-01

    The behavior of the fatigue life of the industrial materials is very important. In many cases, the material with experiencing fatigue life cannot be avoided, however, there are many ways to control their behavior. Many investigations of the fatigue life phenomena of alloys have been done, but it is high cost and times consuming computation. This paper report the modeling and simulation approaches to predict the fatigue life behavior of Aluminum Alloys and resolves some problems of computation. First, the simulation using genetic algorithm was utilized to optimize the load to obtain the stress values. These results can be used to provide N-cycle fatigue life of the material. Furthermore, the experimental data was applied as input data in the neural network learning, while the samples data were applied for testing of the training data. Finally, the multilayer perceptron algorithm is applied to predict whether the given data sets in accordance with the fatigue life of the alloy. To achieve rapid convergence, the Levenberg-Marquardt algorithm was also employed. The simulations results shows that the fatigue behaviors of aluminum under pressure can be predicted. In addition, implementation of neural networks successfully identified a model for material fatigue life.

  18. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  19. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  20. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatiguemore » tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.« less

  1. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang; Sokolov, Mikhail A; Sham, Sam

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure formore » both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.« less

  2. Experimental and modeling results of creep-fatigue life of Inconel 617 and Haynes 230 at 850 °C

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L., III; Busby, Jeremy T.; Mo, Kun; Stubbins, James F.

    2013-01-01

    Creep-fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 °C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep-fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep-fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep-fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep-fatigue life. The linear damage summation could predict the creep-fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep-fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep-fatigue life prediction results for both materials.

  3. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  4. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie Corinne Scheidt

    1994-01-01

    This thesis presents the on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes four effects that typically reduce lifetime strength: high temperature, mechanical fatigue, creep, and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for four variables, namely, high temperature, mechanical fatigue, creep, and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using the current version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of mechanical fatigue, creep, and thermal fatigue was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  5. Cancer-Related Fatigue and Its Associations with Depression and Anxiety: A Systematic Review

    PubMed Central

    Brown, Linda F.; Kroenke, Kurt

    2010-01-01

    Background Fatigue is an important symptom in cancer and has been shown to be associated with psychological distress. Objectives This review assesses evidence regarding associations of CRF with depression and anxiety. Methods Database searches yielded 59 studies reporting correlation coefficients or odds ratios. Results Combined sample size was 12,103. Average correlation of fatigue with depression, weighted by sample size, was 0.56 and for anxiety, 0.46. Thirty-one instruments were used to assess fatigue, suggesting a lack of consensus on measurement. Conclusion This review confirms the association of fatigue with depression and anxiety. Directionality needs to be better delineated in longitudinal studies. PMID:19855028

  6. Evaluation of materials during outdoor testing using a computer-controlled test apparatus

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2006-01-01

    Ultraviolet radiation, moisture, heat, and cyclic fatigue are some of the stressors that cause materials to degrade outdoors. Considerable research has addressed the effects of ultraviolet radiation and moisture on the rate of this degradation. An often overlooked stressor on materials, during outdoor testing, is the cyclic fatigue. Cyclic fatigue is caused by self-...

  7. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic Ball Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2016-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  8. Microstructural and Material Quality Effects on Rolling Contact Fatigue of Highly Elastic Intermetallic NiTi Ball Bearings

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Howard, S. Adam; Thomas, Fransua; Stanford, Malcolm K.

    2017-01-01

    Rolling element bearings made from highly-elastic intermetallic materials (HIM)s, such as 60NiTi, are under development for applications that require superior corrosion and shock resistance. Compared to steel, intermetallics have been shown to have much lower rolling contact fatigue (RCF) stress capability in simplified 3-ball on rod (ASTM STP 771) fatigue tests. In the 3-ball tests, poor material quality and microstructural flaws negatively affect fatigue life but such relationships have not been established for full-scale 60NiTi bearings. In this paper, 3-ball-on-rod fatigue behavior of two quality grades of 60NiTi are compared to the fatigue life of full-scale 50mm bore ball bearings made from the same materials. 60NiTi RCF rods with material or microstructural flaws suffered from infant mortality failures at all tested stress levels while high quality 60NiTi rods exhibited no failures at lower stress levels. Similarly, tests of full-scale bearings made from flawed materials exhibited early surface fatigue and through crack type failures while bearings made from high quality material did not fail even in long-term tests. Though the full-scale bearing test data is yet preliminary, the results suggest that the simplified RCF test is a good qualitative predictor of bearing performance. These results provide guidance for materials development and to establish minimum quality levels required for successful bearing operation and life.

  9. Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures.

    PubMed

    Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S

    2016-03-01

    In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Structure-property relations and modeling of small crack fatigue behavior of various magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bernard, Jairus Daniel

    Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.

  11. Fatigue properties of JIS H3300 C1220 copper for strain life prediction

    NASA Astrophysics Data System (ADS)

    Harun, Muhammad Faiz; Mohammad, Roslina

    2018-05-01

    The existing methods for estimating strain life parameters are dependent on the material's monotonic tensile properties. However, a few of these methods yield quite complicated expressions for calculating fatigue parameters, and are specific to certain groups of materials only. The Universal Slopes method, Modified Universal Slopes method, Uniform Material Law, the Hardness method, and Medians method are a few existing methods for predicting strain-life fatigue based on monotonic tensile material properties and hardness of material. In the present study, nine methods for estimating fatigue life and properties are applied on JIS H3300 C1220 copper to determine the best methods for strain life estimation of this ductile material. Experimental strain-life curves are compared to estimations obtained using each method. Muralidharan-Manson's Modified Universal Slopes method and Bäumel-Seeger's method for unalloyed and low-alloy steels are found to yield batter accuracy in estimating fatigue life with a deviation of less than 25%. However, the prediction of both methods only yield much better accuracy for a cycle of less than 1000 or for strain amplitudes of more than 1% and less than 6%. Manson's Original Universal Slopes method and Ong's Modified Four-Point Correlation method are found to predict the strain-life fatigue of copper with better accuracy for a high number of cycles of strain amplitudes of less than 1%. The differences between mechanical behavior during monotonic and cyclic loading and the complexity in deciding the coefficient in an equation are probably the reason for the lack of a reliable method for estimating fatigue behavior using the monotonic properties of a group of materials. It is therefore suggested that a differential approach and new expressions be developed to estimate the strain-life fatigue parameters for ductile materials such as copper.

  12. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  13. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1989-01-01

    High pressure turbopumps for advanced reusable liquid propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several fold increase in life and over a 200 C increase in temperature capability over the current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  14. Fiber reinforced superalloys for rocket engines

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Stephens, Joseph R.

    1988-01-01

    High-pressure turbopumps for advanced reusable liquid-propellant rocket engines such as that for the Space Shuttle Main Engine (SSME) require turbine blade materials that operate under extreme conditions of temperature, hydrogen environment, high-cycle fatigue loading, thermal fatigue and thermal shock. Such requirements tax the capabilities of current blade materials. Based on projections of properties for tungsten fiber reinforced superalloy (FRS) composites, it was concluded that FRS turbine blades offer the potential of a several-fold increase in life and over a 200C increase in temperature capability over current SSME blade material. FRS composites were evaluated with respect to mechanical property requirements for SSME blade applications. Compared to the current blade material, the thermal shock resistance of FRS materials is excellent, two to nine times better, and their thermal fatigue resistance is equal to or higher than the current blade material. FRS materials had excellent low and high-cycle fatigue strengths, and thermal shock-induced surface microcracks had no influence on their fatigue strength. The material also exhibited negligible embrittlement when exposed to a hydrogen environment.

  15. Comparison of dynamic fatigue behavior between SiC whisker-reinforced composite and monolithic silicon nitrides

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1991-01-01

    The dynamic fatigue behavior of 30 vol percent silicon nitride whisker-reinforced composite and monolithic silicon nitrides were determined as a function of temperature from 1100 to 1300 C in ambient air. The fatigue susceptibility parameter, n, decreased from 88.1 to 20.1 for the composite material, and from 50.8 to 40.4 for the monolithic, with increasing temperature from 1100 to 1300 C. A transition in the dynamic fatigue curve occurred for the composite material at a low stressing rate of 2 MPa/min at 1300 C, resulting in a very low value of n equals 5.8. Fractographic analysis showed that glassy phases in the slow crack growth region were more pronounced in the composite compared to the monolithic material, implying that SiC whisker addition promotes the formation of glass rich phases at the grain boundaries, thereby enhancing fatigue. These results indicate that SiC whisker addition to Si3 N4 matrix substantially deteriorates fatigue resistance inherent to the matrix base material for this selected material system.

  16. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE PAGES

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...

    2017-10-06

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  17. Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Stevens, G. L.; Tregoning, R.

    The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less

  18. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  19. The Boeing 747 fatigue integrity program

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.

    1972-01-01

    The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.

  20. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  1. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  2. Fatigue damage characterization of braided and woven fiber reinforced polymer matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Montesano, John

    The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.

  3. Fatigue Characterization of Fire Resistant Syntactic Foam Core Material

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Mynul

    Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.

  4. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  5. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  6. Microstructure-fatigue crack propagation relationship in TiB{sub 2} particulate reinforced Zn (ZA-8) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, W.; Zhang, J.; Wang, Z.

    1995-10-01

    The relationship between microstructure and propagation behavior of fatigue crack in TiB{sub 2} particulate reinforced ZA-8 Zn alloy and in the corresponding constituent matrix material was studied in three point bending fatigue tests with well-polished and pre-etched specimens. Special attention was paid to the observation of microstructure along the crack path as well as on the fracture surface. Mechanism for the difference in fatigue crack growth behavior of the two materials was investigated. The present results indicate that the addition of reinforcement modified the solidification process of the matrix material leading to a considerable change in the matrix microstructure. Thismore » change in the matrix microstructure and the presence of reinforcing particles considerably affected the fatigue crack propagation behavior in the material.« less

  7. Influence of subsolvus thermomechanical processing on the low-cycle fatigue properties of haynes 230 alloy

    NASA Astrophysics Data System (ADS)

    Vecchio, Kenneth S.; Fitzpatrick, Michael D.; Klarstrom, Dwaine

    1995-03-01

    Strain-controlled low-cycle fatigue tests have been conducted in air at elevated temperature to determine the influence of subsolvus thermomechanical processing on the low-cycle fatigue (LCF) behavior of HAYNES 230 alloy. A series of tests at various strain ranges was conducted on material experimentally processed at 1121 °C, which is below the M23C6 carbide solvus temperature, and on material fully solution annealed at 1232 °C. A comparative strain-life analysis was performed on the LCF results, and the cyclic hardening/softening characteristics were examined. At 760 °C and 871 °C, the fatigue life of the experimental 230/1121 material was improved relative to the standard 230/1232 material up to a factor of 3. The fatigue life advantage of the experimental material was related primarily to a lower plastic (inelastic) strain amplitude response for a given imposed total strain range. It appears the increase in monotonic flow stress exhibited by the finer grain size experimental material has been translated into an increase in cyclic flow stress at the 760 °C and 871 °C test temperatures. Both materials exhibited entirely transgranular fatigue crack initiation and propagation modes at these temperatures. The LCF performance of the experimental material in tests performed at 982 °C was improved relative to the standard material up to a factor as high as 2. The life advantage of the 230/1121 material occurred despite having a larger plastic strain amplitude than the standard 230/1232 material for a given total strain range. Though not fully understood at present, it is suspected that this behavior is related to the deleterious influence of grain boundaries in the fatigue crack initiations of the standard processed material relative to the experimental material, and ultimately to differences in carbide morphology as a result of thermomechanical processing.

  8. Fatigue failure of metal components as a factor in civil aircraft accidents

    NASA Technical Reports Server (NTRS)

    Holshouser, W. L.; Mayner, R. D.

    1972-01-01

    A review of records maintained by the National Transportation Safety Board showed that 16,054 civil aviation accidents occurred in the United States during the 3-year period ending December 31, 1969. Material failure was an important factor in the cause of 942 of these accidents. Fatigue was identified as the mode of the material failures associated with the cause of 155 accidents and in many other accidents the records indicated that fatigue failures might have been involved. There were 27 fatal accidents and 157 fatalities in accidents in which fatigue failures of metal components were definitely identified. Fatigue failures associated with accidents occurred most frequently in landing-gear components, followed in order by powerplant, propeller, and structural components in fixed-wing aircraft and tail-rotor and main-rotor components in rotorcraft. In a study of 230 laboratory reports on failed components associated with the cause of accidents, fatigue was identified as the mode of failure in more than 60 percent of the failed components. The most frequently identified cause of fatigue, as well as most other types of material failures, was improper maintenance (including inadequate inspection). Fabrication defects, design deficiencies, defective material, and abnormal service damage also caused many fatigue failures. Four case histories of major accidents are included in the paper as illustrations of some of the factors invovled in fatigue failures of aircraft components.

  9. Shorter Versus Longer Shift Durations to Mitigate Fatigue and Fatigue-Related Risks in Emergency Medical Services Personnel and Related Shift Workers: A Systematic Review

    DOT National Transportation Integrated Search

    2018-01-11

    Background: This study comprehensively reviewed the literature on the impact of shorter versus longer shifts on critical and important outcomes for Emergency Medical Services (EMS) personnel and related shift worker groups. Methods: Six databases (e....

  10. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed.

  11. Impact and residual fatigue behavior of ARALL and AS6/5245 composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    Aramide fiber reinforced aluminum laminates (ARALL) represent a cross between resin matrix composites and metals. The purpose of this study was to evaluate the impact sensitivity of this concept. Two types of ARALL (7075 aluminum prestrained and 2024 aluminum not prestrained) were tested through static indentation and the results compared to sheet 2024-T3 and 7075-T6 aluminum alloys. A state-of-the-art composite (AS6/5245) was also tested and compared to the ARALL. Further, the two types of ARALL material and the composite were dynamically impacted at two energy levels and fatigue tested to determine residual fatigue strength. Both forms of the ARALL material had worse impact resistance than monolithic sheet aluminum. The ARALL material made with 2024-T3 aluminum had better impact resistance than did the laminates made with 7075-T6 aluminum. The ARALL materials are at least equal to the composite material in impact damage resistance and are better for impact detection. The composite material has higher residual fatigue strength after impact than the ARALL material and is 25 percent lighter. The prestraining of the ARALL greatly reduces the fatigue growth of impact damage.

  12. Dynamic and static fatigue behavior of sintered silicon nitrides

    NASA Technical Reports Server (NTRS)

    Chang, J.; Khandelwal, P.; Heitman, P. W.

    1987-01-01

    The dynamic and static fatigue behavior of Kyocera SN220M sintered silicon nitride at 1000 C was studied. Fractographic analysis of the material failing in dynamic fatigue revealed the presence of slow crack growth (SCG) at stressing rates below 41 MPa/min. Under conditions of static fatigue this material also displayed SCG at stresses below 345 MPa. SCG appears to be controlled by microcracking of the grain boundaries. The crack velocity exponent (n) determined from both dynamic and static fatigue tests ranged from 11 to 16.

  13. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  14. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  15. The Role of Viscoelasticity on the Fatigue of Angle-ply Polymer Matrix Composites at High and Room Temperatures- A Micromechanical Approach

    NASA Astrophysics Data System (ADS)

    Sayyidmousavi, Alireza; Bougherara, Habiba; Fawaz, Zouheir

    2015-06-01

    A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery's single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.

  16. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  17. Design solutions for the solar cell interconnect fatigue fracture problem

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Ross, R. G., Jr.

    1982-01-01

    Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.

  18. [Prevalence of chronic fatigue syndrome in 4 family practices in Leiden].

    PubMed

    Versluis, R G; de Waal, M W; Opmeer, C; Petri, H; Springer, M P

    1997-08-02

    To determine the prevalence of chronic fatigue syndrome (CFS) in general practice. Descriptive. General practice and primary health care centres in Leyden region, the Netherlands. RNUH-LEO is a computerized database which contains the anonymous patient information of one general practice (with two practitioners) and four primary health care centres. The fourteen participating general practitioners were asked what International Classification of Primary Care (ICPC) code they used to indicate a patient with chronic fatigue or with CFS. With these codes and with the code for depression patients were selected from the database. It then was determined whether these patients met the criteria of CFS by Holmes et al. The general practitioners used 10 codes. Including the code for depression a total of 601 patients were preselected from a total of 23,000 patients in the database. Based on the information from the patients' records in the database, 42 of the preselected patients were selected who might fulfill the Holmes' criteria of CFS. According to the patients' own general practitioner, 25 of the 42 patients would fulfil the Holmes' criteria. The men:women ratio was 1:5. The prevalence of CFS in the population surveyed was estimated to be at least 1.1 per 1,000 patients.

  19. Reliability Quantification of the Flexure: A Critical Stirling Convertor Component

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward J.

    2004-01-01

    Uncertainties in the manufacturing, fabrication process, material behavior, loads, and boundary conditions results in the variation of the stresses and strains induced in the flexures and its fatigue life. Past experience and the test data at material coupon levels revealed a significant amount of scatter of the fatigue life. Owing to these facts, the design of the flexure, using conventional approaches based on safety factor or traditional reliability based on similar equipment considerations does not provide a direct measure of reliability. Additionally, it may not be feasible to run actual long term fatigue tests due to cost and time constraints. Therefore it is difficult to ascertain material fatigue strength limit. The objective of the paper is to present a methodology and quantified results of numerical simulation for the reliability of flexures used in the Stirling convertor for their structural performance. The proposed approach is based on application of finite element analysis method in combination with the random fatigue limit model, which includes uncertainties in material fatigue life. Additionally, sensitivity of fatigue life reliability to the design variables is quantified and its use to develop guidelines to improve design, manufacturing, quality control and inspection design process is described.

  20. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys.

    PubMed

    Lin, Chia-Wei; Ju, Chien-Ping; Chern Lin, Jiin-Huey

    2005-06-01

    The purpose of the present study is to compare the high-cycle fatigue behavior of newly developed Ti-7.5Mo alloy with that of c.p. Ti, Ti-13Nb-13Zr and Ti-6Al-4V alloys in their as-cast state. Experimental results indicate that Ti-6Al-4V and c.p. Ti have higher stress-controlled fatigue resistance but lower strain-controlled fatigue resistance than Ti-7.5Mo and Ti-13Nb-13Zr. Among four materials Ti-7.5Mo demonstrates the best strain-controlled fatigue performance. The fracture surfaces of the present materials are comprised of three morphologically distinct zones: crack initiation zone, crack propagation zone, and the final-stage overload zone. The fatigue cracks almost always initiate from casting-induced surface/subsurface pores. A river pattern is observed in the propagation zone. In the overload zone dimples are typically observed. Three factors most significantly affecting the fatigue performance of the present materials are the presence of the casting-induced surface/subsurface pores; the location of the pores; and the inherent mechanical properties of the materials.

  1. Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature

    NASA Astrophysics Data System (ADS)

    Shi, K. K.; Xie, H.; Zheng, B.; Fu, X. L.

    2018-06-01

    Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material’s mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.

  2. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    NASA Astrophysics Data System (ADS)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  3. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database

    PubMed Central

    Everett, Kay D.; Conway, Claire; Desany, Gerard J.; Baker, Brian L.; Choi, Gilwoo; Taylor, Charles A.; Edelman, Elazer R.

    2016-01-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006–2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices. PMID:26467552

  4. Structural Mechanics Predictions Relating to Clinical Coronary Stent Fracture in a 5 Year Period in FDA MAUDE Database.

    PubMed

    Everett, Kay D; Conway, Claire; Desany, Gerard J; Baker, Brian L; Choi, Gilwoo; Taylor, Charles A; Edelman, Elazer R

    2016-02-01

    Endovascular stents are the mainstay of interventional cardiovascular medicine. Technological advances have reduced biological and clinical complications but not mechanical failure. Stent strut fracture is increasingly recognized as of paramount clinical importance. Though consensus reigns that fractures can result from material fatigue, how fracture is induced and the mechanisms underlying its clinical sequelae remain ill-defined. In this study, strut fractures were identified in the prospectively maintained Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience Database (MAUDE), covering years 2006-2011, and differentiated based on specific coronary artery implantation site and device configuration. These data, and knowledge of the extent of dynamic arterial deformations obtained from patient CT images and published data, were used to define boundary conditions for 3D finite element models incorporating multimodal, multi-cycle deformation. The structural response for a range of stent designs and configurations was predicted by computational models and included estimation of maximum principal, minimum principal and equivalent plastic strains. Fatigue assessment was performed with Goodman diagrams and safe/unsafe regions defined for different stent designs. Von Mises stress and maximum principal strain increased with multimodal, fully reversed deformation. Spatial maps of unsafe locations corresponded to the identified locations of fracture in different coronary arteries in the clinical database. These findings, for the first time, provide insight into a potential link between patient adverse events and computational modeling of stent deformation. Understanding of the mechanical forces imposed under different implantation conditions may assist in rational design and optimal placement of these devices.

  5. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  6. The influence of matrix microstructure

    NASA Astrophysics Data System (ADS)

    Vyletel, G. M.; Allison, J. E.; Aken, D. C.

    1993-11-01

    The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and artificially aged 2219/TiC/15p and unreinforced 2219 Al were investigated utilizing plastic strain-controlled and stress-controlled testing. The cyclic response of both the reinforced and un-reinforced materials was similar for all plastic strain amplitudes tested except that the saturation stress level for the composite was always greater than that of the unreinforced material. The cyclic response of the naturally aged materials exhibited cyclic hardening and, in some cases, cyclic softening, while the cyclic response for the artificially aged materials showed no evidence of either cyclic hardening or softening. The higher ductility of the unreinforced material made it more resistant to fatigue failure at high strains, and thus, at a given plastic strain, it had longer fatigue life. It should be noted that the tensile ductilities of the 2219/TiC/15p were significantly higher than those previously reported for 2XXX-series composites. During stress-controlled test-ing at stresses below 220 MPa, the presence of TiC particles lead to an improvement in fatigue life. Above 220 MPa, no influence of TiC reinforcement on fatigue life could be detected. In both the composite and unreinforced materials, the low-cycle and high-cycle fatigue lives were found to be virtually independent of matrix microstructure.

  7. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  8. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  9. The effect of erosion on the fatigue limit of metallic materials for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kordatos, E. Z.; Exarchos, D. A.; Matikas, T. E.

    2018-03-01

    This work deals with the study of the fatigue behavior of metallic materials for aerospace applications which have undergone erosion. Particularly, an innovative non-destructive methodology based on infrared lock-in thermography was applied on aluminum samples for the rapid determination of their fatigue limit. The effect of erosion on the structural integrity of materials can lead to a catastrophic failure and therefore an efficient assessment of the fatigue behavior is of high importance. Infrared thermography (IRT) as a non-destructive, non-contact, real time and full field method can be employed in order the fatigue limit to be rapidly determined. The basic principle of this method is the detection and monitoring of the intrinsically dissipated energy due to the cyclic fatigue loading. This methodology was successfully applied on both eroded and non-eroded aluminum specimens in order the severity of erosion to be evaluated.

  10. [Treatment on fatigue of patients with postpolio syndrome. A systematic review].

    PubMed

    Aguila-Maturana, Ana M; Alegre-De Miquel, Cayetano

    2010-05-16

    Fatigue is the most common symptom and the most disabling in patients with post-polio syndrome. To analyze the effectiveness of various treatments used to improve fatigue syndrome patients post-polio. Systematic review. Is defined a bibliographic search strategy in Medline (from 1961), EMBASE (from 1980), ISI Web of Knowledge and Cochrane Library, Cochrane Central Register of Controlled Trials (CENTRAL), AMED (January 1985), EMI and Physiotherapy Evidence Database (PEDro) until February 2008, the population defined (post-polio syndrome patients) and intervention (any treatment for fatigue in these patients). Outcome were selected as different scales of fatigue and fatigue or vitality dimension scales quality of life. Clinical trials were selected. We retrieved 396 articles, of which 23 were analyzed in detail. Finally, 19 were included in the analysis, a total of 705 patients. Lamotrigine, bromocriptine, aerobics and flexibility exercises, hydrokinesitherapy and technical aids are treatment techniques that reduce more fatigue in these patients.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, I.; Sinclair, C.I.K.; Magne, E.

    This paper describes the life extension of a semi-submersible drilling rig built in the early 1970`s. A nominal design life of 20 years was estimated at the time of building; however, in the interim period, numerous improvements have been made in fatigue life estimation ad life improvement techniques, raising the possibility that a further 20 years of operation could be considered. The life extension strategy made use of a number of aspects of offshore technology which were not available at the time of construction of the rig. Finite element studies and results from offshore research programs were used to gaugemore » the effect of fatigue life improvement techniques. The program demonstrated the feasibility of extending the operation of the rig for a further 20 years, with the interval between in-service inspection increased to every five years. It also provided a valuable database of fracture toughness data for the rig materials, which may be used in future work to address reliability issues.« less

  12. Effects of environment and frequency on the fatigue behavior of the spallation neutron source (SNS) target container material - 316 LN stainless steel

    NASA Astrophysics Data System (ADS)

    Tian, Hongbo

    As the candidate target container material of the new Spallation Neutron Source (SNS) being designed and constructed at the Oak Ridge National Laboratory (ORNL), Type 316 low-carbon nitrogen-added (LN) stainless steel (SS) will operate in an aggressive environment, subjected to intense fluxes of high-energy protons and neutrons while exposed to liquid mercury. The current project is oriented toward materials studies regarding the effects of test environment and frequency on the fatigue behavior of 316 LN SS. In order to study the structural applications of this material and improve the fundamental understanding of the fatigue damage mechanisms, fatigue tests were performed in air and mercury environments at various frequencies and R ratios (R = sigma min/sigmamax, sigmamin and sigmamax are the applied minimum and maximum stresses, respectively). Fatigue data were developed for the structural design and engineering applications of this material. Specifically, high-cycle fatigue tests, fatigue crack-propagation tests, and ultrahigh cycle fatigue tests up to 10 9 cycles were conducted in air and mercury with test frequencies from 10 Hz to 700 Hz. Microstructure characterizations were performed using optical microscopy (OM), scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). It was found that mercury doesn't seem to have a large impact on the crack-initiation behavior of 316 LN SS. However, the crack-propagation mechanisms in air and mercury are different in some test conditions. Transgranular cracks seem to be the main mechanism in air, and intergranular in mercury. A significant specimen self-heating effect was found during high-cycle faituge. Theoretical calculation was performed to predict temperature responses of the material subjected to cyclic deformation. The predicted cyclic temperature evolution seems to be in good agreement with the experimental results.

  13. Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.

    PubMed

    Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S

    1998-01-01

    In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry.

  14. Total strain version of strainrange partitioning for thermomechanical fatigue at low strains

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1987-01-01

    A new method is proposed for characterizing and predicting the thermal fatigue behavior of materials. The method is based on three innovations in characterizing high temperature material behavior: (1) the bithermal concept of fatigue testing; (2) advanced, nonlinear, cyclic constitutive models; and (3) the total strain version of traditional strainrange partitioning.

  15. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  16. Fatigue failure of materials under broad band random vibrations

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Lanz, R. W.

    1971-01-01

    The fatigue life of material under multifactor influence of broad band random excitations has been investigated. Parameters which affect the fatigue life are postulated to be peak stress, variance of stress and the natural frequency of the system. Experimental data were processed by the hybrid computer. Based on the experimental results and regression analysis a best predicting model has been found. All values of the experimental fatigue lives are within the 95% confidence intervals of the predicting equation.

  17. Chronic debilitating fatigue in Irish general practice: a survey of general practitioners' experience.

    PubMed

    Fitzgibbon, E J; Murphy, D; O'Shea, K; Kelleher, C

    1997-10-01

    Doctors are called upon to treat chronic debilitating fatigue without the help of a protocol of care. To estimate the incidence of chronic debilitating fatigue in Irish general practice, to obtain information on management strategy and outcome, to explore the attitudes of practitioners (GPs) towards the concept of a chronic fatigue syndrome (CFS), and to recruit practitioners to a prospective study of chronic fatigue in primary care. A total of 200 names were selected from the database of the Irish College of General Practitioners (ICGP); 164 of these were eligible for the study. Altogether, 118 questionnaires were returned (72%). Ninety-two (78%) responders identified cases of chronic fatigue, giving an estimated 2.1 cases per practice and an incidence of 1 per 1000 population. All social classes were represented, with a male to female ratio of 1:2. Eleven disparate approaches to treatment were advocated. Many (38%) were dissatisfied with the quality of care delivered, and 45% seldom or hardly ever referred cases for specialist opinion. The majority (58%) accepted CFS as a distinct entity, 34% were undecided, and 8% rejected it. Forty-two (35%) GPs volunteered for a prospective study. Chronic fatigue is found in Irish general practice among patients of both sexes and all social classes. Doctors differ considerably in their management of patients and are dissatisfied with the quality of care they deliver. Many cases are not referred for specialist opinion. A prospective database is required to accurately assess the scale of this public health problem and to develop a protocol of care.

  18. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  19. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    NASA Astrophysics Data System (ADS)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  20. New method of determination of spot welding-adhesive joint fatigue life using full field strain evolution

    NASA Astrophysics Data System (ADS)

    Sadowski, T.; Kneć, M.

    2016-04-01

    Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.

  1. High-temperature low cycle fatigue behavior of a gray cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less

  2. Reliability and Validity of Survey Instruments to Measure Work-Related Fatigue in the Emergency Medical Services Setting: A Systematic Review.

    PubMed

    Patterson, P Daniel; Weaver, Matthew D; Fabio, Anthony; Teasley, Ellen M; Renn, Megan L; Curtis, Brett R; Matthews, Margaret E; Kroemer, Andrew J; Xun, Xiaoshuang; Bizhanova, Zhadyra; Weiss, Patricia M; Sequeira, Denisse J; Coppler, Patrick J; Lang, Eddy S; Higgins, J Stephen

    2018-02-15

    This study sought to systematically search the literature to identify reliable and valid survey instruments for fatigue measurement in the Emergency Medical Services (EMS) occupational setting. A systematic review study design was used and searched six databases, including one website. The research question guiding the search was developed a priori and registered with the PROSPERO database of systematic reviews: "Are there reliable and valid instruments for measuring fatigue among EMS personnel?" (2016:CRD42016040097). The primary outcome of interest was criterion-related validity. Important outcomes of interest included reliability (e.g., internal consistency), and indicators of sensitivity and specificity. Members of the research team independently screened records from the databases. Full-text articles were evaluated by adapting the Bolster and Rourke system for categorizing findings of systematic reviews, and the rated data abstracted from the body of literature as favorable, unfavorable, mixed/inconclusive, or no impact. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology was used to evaluate the quality of evidence. The search strategy yielded 1,257 unique records. Thirty-four unique experimental and non-experimental studies were determined relevant following full-text review. Nineteen studies reported on the reliability and/or validity of ten different fatigue survey instruments. Eighteen different studies evaluated the reliability and/or validity of four different sleepiness survey instruments. None of the retained studies reported sensitivity or specificity. Evidence quality was rated as very low across all outcomes. In this systematic review, limited evidence of the reliability and validity of 14 different survey instruments to assess the fatigue and/or sleepiness status of EMS personnel and related shift worker groups was identified.

  3. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  4. Development of high-speed balancing technology

    NASA Technical Reports Server (NTRS)

    Demuth, R.; Zorzi, E.

    1981-01-01

    An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.

  5. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  6. Corrosion fatigue of high strength fastener materials in seawater. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipton, D.G.

    1983-12-01

    Environmental effects can significantly reduce the fatigue life of metals. As such, corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L40 high strength steel blade-to-hub attachment bolt at the MOD-0A 200 kW wind turbine generator in Oahu, Hawaii prompted the current test program. Tests were undertaken to confirm the dramatic reduction of fatigue strength of AISI 41L40 in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials. AISI 41L40, AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35Nmore » were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data were fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.« less

  7. Hydraulic Fatigue-Testing Machine

    NASA Technical Reports Server (NTRS)

    Hodo, James D.; Moore, Dennis R.; Morris, Thomas F.; Tiller, Newton G.

    1987-01-01

    Fatigue-testing machine applies fluctuating tension to number of specimens at same time. When sample breaks, machine continues to test remaining specimens. Series of tensile tests needed to determine fatigue properties of materials performed more rapidly than in conventional fatigue-testing machine.

  8. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  9. Movement kinematics and cyclic fatigue of NiTi rotary instruments: a systematic review.

    PubMed

    Ferreira, F; Adeodato, C; Barbosa, I; Aboud, L; Scelza, P; Zaccaro Scelza, M

    2017-02-01

    The aim of this review was to provide a detailed analysis of the literature concerning the correlation between different movement kinematics and the cyclic fatigue resistance of NiTi rotary endodontic instruments. From June 2014 to August 2015, four independent reviewers comprehensively and systematically searched the Medline (PubMed), EMBASE, Web of Science, Scopus and Google Scholar databases for works published since January 2005, using the following search terms: endodontics; nickel-titanium rotary files; continuous rotation; reciprocating motion; cyclic fatigue. In addition to the electronic searches, manual searches were performed to include articles listed in the reference sections of high-impact published articles that were not indexed in the databases. Laboratory studies in English language were considered for this review. The electronic and manual searches resulted in identification of 75 articles. Based on the inclusion criteria, 32 articles were selected for analysis of full-text copies. Specific analysis was then made of 20 articles that described the effects of reciprocating and continuous movements on cyclic fatigue of the instruments. A wide range of testing conditions and methodologies have been used to compare the cyclic fatigue resistance of rotary endodontic instruments. Most studies report that reciprocating motion improves the fatigue resistance of endodontic instruments, compared to continuous rotation, independent of other variables such as the speed of rotation, the angle or radius of curvature of simulated canals, geometry and taper, or the surface characteristics of the NiTi instruments. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Accceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings

    NASA Astrophysics Data System (ADS)

    Apinis, R.

    2004-03-01

    The possibility of using high-frequency loading in fatigue tests of polymer composite materials is discussed. A review of studies on the use of high-frequency loading of organic-, carbon-, and glass-fiber-reinforced plastics is presented. The results obtained are compared with those found in conventional low-frequency loadings. A rig for fatigue tests of rigid materials at loading frequencies to 500 Hz is described, and results for an LM-L1 unidirectional glass-fiber plastic in loadings with frequencies of 17 and 400 Hz are given. These results confirm that it is possible to accelerate the fatigue testing of polymer composite materials by considerably increasing the loading frequency. The necessary condition for using this method is an intense cooling of specimens to prevent them from vibration heating.

  11. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  12. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Dreshfield, R. L.

    1980-01-01

    Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

  13. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  14. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718

    NASA Astrophysics Data System (ADS)

    Suárez, Alfredo; Veiga, Fernando; de Lacalle, Luis N. López; Polvorosa, Roberto; Lutze, Steffen; Wretland, Anders

    2016-11-01

    This work investigates the effects of ultrasonic vibration-assisted milling on important aspects such us material surface integrity, tool wear, cutting forces and fatigue resistance. As an alternative to natural application of ultrasonic milling in brittle materials, in this study, ultrasonics have been applied to a difficult-to-cut material, Alloy 718, very common in high-temperature applications. Results show alterations in the sub-superficial part of the material which could influence fatigue resistance of the material, as it has been observed in a fatigue test campaign of specimens obtained with the application of ultrasonic milling in comparison with another batch obtained applying conventional milling. Tool wear pattern was found to be very similar for both milling technologies, concluding the study with the analysis of cutting forces, exhibiting certain improvement in case of the application of ultrasonic milling with a more stable evolution.

  15. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review

    NASA Astrophysics Data System (ADS)

    Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.

    2017-12-01

    The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

  16. X-ray Diffraction as a Means to Assess Fatigue Performance of Shot-Peened Materials

    DTIC Science & Technology

    2012-06-01

    titanium 6 - 4 fatigue data exhibited similar trends to the 9310 steel material. Low shot- peening intensities (4A and 8A) improved fatigue performance... 6 Figure 4 ...7 Figure 4 . Residual stress and diffraction peak width data from the beta-STOA titanium 6Al-4V disks. attributed to the hardness of the

  17. A Systematic Review of Studies Using the Multidimensional Assessment of Fatigue Scale.

    PubMed

    Belza, Basia; Miyawaki, Christina E; Liu, Minhui; Aree-Ue, Suparb; Fessel, Melissa; Minott, Kenya R; Zhang, Xi

    2018-04-01

    To review how the Multidimensional Assessment of Fatigue (MAF) has been used and evaluate its psychometric properties. We conducted a database search using "multidimensional assessment of fatigue" or "MAF" as key terms from 1993 to 2015, and located 102 studies. Eighty-three were empirical studies and 19 were reviews/evaluations. Research was conducted in 17 countries; 32 diseases were represented. Nine language versions of the MAF were used. The mean of the Global Fatigue Index ranged from 10.9 to 49.4. The MAF was reported to be easy-to-use, had strong reliability and validity, and was used in populations who spoke languages other than English. The MAF is an acceptable assessment tool to measure fatigue and intervention effectiveness in various languages, diseases, and settings across the world.

  18. A differential CDM model for fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1992-01-01

    A multiaxial, isothermal, continuum damage mechanics (CDM) model for fatigue of a unidirectional metal matrix composite volume element is presented. The model is phenomenological, stress based, and assumes a single scalar internal damage variable, the evolution of which is anisotropic. The development of the fatigue damage model, (i.e., evolutionary law) is based on the definition of an initially transversely isotropic fatigue limit surface, a static fracture surface, and a normalized stress amplitude function. The anisotropy of these surfaces and function, and therefore the model, is defined through physically meaningful invariants reflecting the local stress and material orientation. This transversely isotropic model is shown, when taken to it's isotropic limit, to directly simplify to a previously developed and validated isotropic fatigue continuum damage model. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation in attempting to characterize a class of composite materials, and (2) the capability of the formulation in predicting anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Also, specific material parameters representing an initial characterization of the composite system SiC/Ti 15-3 and the matrix material (Ti 15-3) are reported.

  19. Thermography detection on the fatigue damage

    NASA Astrophysics Data System (ADS)

    Yang, Bing

    It has always been a great temptation in finding new methods to in-situ "watch" the material fatigue-damage processes so that in-time reparations will be possible, and failures or losses can be minimized to the maximum extent. Realizing that temperature patterns may serve as fingerprints for stress-strain behaviors of materials, a state-of-art infrared (IR) thermography camera has been used to "watch" the temperature evolutions of both crystalline and amorphous materials "cycle by cycle" during fatigue experiments in the current research. The two-dimensional (2D) thermography technique records the surface-temperature evolutions of materials. Since all plastic deformations are related to heat dissipations, thermography provides an innovative method to in-situ monitor the heat-evolution processes, including plastic-deformation, mechanical-damage, and phase-transformation characteristics. With the understanding of the temperature evolutions during fatigue, thermography could provide the direct information and evidence of the stress-strain distribution, crack initiation and propagation, shear-band growth, and plastic-zone evolution, which will open up wide applications in studying the structural integrity of engineering components in service. In the current research, theoretical models combining thermodynamics and heat-conduction theory have been developed. Key issues in fatigue, such as in-situ stress-strain states, cyclic softening and hardening observations, and fatigue-life predictions, have been resolved by simply monitoring the specimen-temperature variation during fatigue. Furthermore, in-situ visulizations as well as qualitative and quantitative analyses of fatigue-damage processes, such as Luders-band evolutions, crack propagation, plastic zones, and final fracture, have been performed by thermography. As a method requiring no special sample preparation or surface contact by sensors, thermography provides an innovative and convenient method to in-situ monitor and analyze the mechanical-damage processes of materials and components.

  20. Psychometric properties of instruments used to measure fatigue in children and adolescents with cancer: a systematic review.

    PubMed

    Tomlinson, Deborah; Hinds, Pamela S; Ethier, Marie-Chantal; Ness, Kirsten K; Zupanec, Sue; Sung, Lillian

    2013-01-01

    Despite the recognized distressing symptom of fatigue in children with cancer, little information is available to assist in the selection of an instrument to be used to measure fatigue. The objectives of this study were to 1) describe the instruments that have been used to measure cancer-related fatigue in children and adolescents and 2) summarize the psychometric properties of the most commonly used instruments used to measure fatigue in children and adolescents with cancer. Five major electronic databases were systematically searched for studies using a fatigue measurement scale in a population of children or adolescents with cancer. Fatigue scales used in those studies were included in the review. From a total of 1753 articles, 25 were included. We identified two main fatigue measurement instruments used in a pediatric oncology population: 1) the Fatigue Scale-Child/Fatigue Scale-Adolescent and the proxy report versions for parents and staff and 2) the PedsQL™ Multidimensional Fatigue Scale. These two scales show similar attributes with reasonably good internal consistency and responsiveness. Either the Fatigue Scale or PedsQL Multidimensional Fatigue Scale can be incorporated into clinical research. Future research should focus on identifying specific fatigue measures more suited to different purposes such as comparative trials or identification of high-risk groups. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  1. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  2. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure

    NASA Astrophysics Data System (ADS)

    Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong

    2016-09-01

    Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.

  3. Corrosion fatigue in nitrocarburized quenched and tempered steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim Khani, M.; Dengel, D.

    1996-05-01

    In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-{mu}m-thick electroless Ni-P layer, in order to compare corrosion fatigue behaviormore » between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 10{sup 8} cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.« less

  4. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-08-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  5. Driver fatigue and road safety on Poland's national roads.

    PubMed

    Jamroz, Kazimierz; Smolarek, Leszek

    2013-01-01

    This paper presents an overview of factors causing driver fatigue as described in the literature. Next, a traffic crash database for 2003-2007 is used to identify the causes, circumstances and consequences of accidents caused by driver fatigue on Poland's national roads. The results of the study were used to build a model showing the relationship between the concentration of road accidents and casualties, and the time of day. Finally, the level of relative accident risk at night-time versus daytime is defined. A map shows the risk of death and severe injury on the network of Poland's national roads. The paper suggests to road authorities steps to reduce fatigue-related road accidents in Poland.

  6. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  7. Surface fatigue life and failure characteristics of EX-53, CBS 1000M, and AISI 9310 gear materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    Spur gear endurance tests and rolling-element surface fatigue tests are conducted to investigate EX-53 and CBS 1000M steels for use as advanced application gear materials, to determine their endurance characteristics, and to compare the results with the standard AISI 9310 gear material. The gear pitch diameter is 8.89 cm (3.50 in). Gear test conditions are an oil inlet temperature of 320 K (116 F), an oil outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench-type rolling-element fatigue tests are conducted at ambient temperature with a bar specimen speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa (700 ksi). The EX-53 test gears have a surface fatigue life of twice that of the AISI 9310 spur gears. The CBS 1000M test gears have a surface fatigue life of more than twice that of the AISI 9310 spur gears. However, the CBS 1000M gears experience a 30-percent tooth fracture failure which limits its use as a gear material. The rolling-contact fatigue lines of RC bar specimens of EX-53 and ASISI 9310 are approximately equal. However, the CBS 1000M RC specimens have a surface fatigue life of about 50 percent that of the AISI 9310.

  8. Materials testing protocol for small joint prostheses.

    PubMed

    Savory, K M; Hutchinson, D T; Bloebaum, R

    1994-10-01

    In this article, a protocol for the evaluation of new materials for small joint prostheses is introduced. The testing methods employed in the protocol were developed by reviewing reported clinical failure modes and conditions found in vivo. The methods developed quantitatively evaluates the fatigue, fatigue crack propagation, and wear resistance properties of materials. For this study, a silicone elastomer similar to Dow Corning Silastic HP100, a radiation stable polypropylene, and a copolymer of polypropylene and ethylene propylene-diene monomer (EPDM) are evaluated. None of the materials tested demonstrated the ideal properties that are sought in a self-hinging joint prostheses. The silicone elastomer had excellent wear properties; however, cracks quickly propagated, causing catastrophic failure when fatigued. Conversely, the copolymer showed excellent fatigue crack propagation resistance and less than favorable wear properties. The polypropylene did not perform well in any evaluation.

  9. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    PubMed

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  10. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  11. Problems of the high-cycle fatigue of the materials intended for the parts of modern gas-turbine engines and power plants

    NASA Astrophysics Data System (ADS)

    Petukhov, A. N.

    2010-10-01

    The problems related to the determination of the life of the structural materials applied for important parts in gas-turbine engines and power plants from the results of high-cycle fatigue tests are discussed. Methods for increasing the reliability of the high-cycle fatigue characteristics and the factors affecting the operational reliability are considered.

  12. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  13. Mechanical Behavior of Additive Manufactured Layered Materials, Part 2: Stainless Steels

    DTIC Science & Technology

    2015-04-30

    and/or excellent cyclic fatigue behavior: stainless - steel 316L and 17-4PH. Additive materials were fabricated at a leading-edge facility using their...Tensile deformation Representative engineering stress- strain data from measurements obtained with our stainless steel specimens are shown in... fatigue behavior Cyclic fatigue strengths demonstrated by the DMLS stainless steels fabricated in the horizontal orientation were almost equal to

  14. Effect of service usage on tensile, fatigue, and fracture properties of 7075-T6 and 7178-T6 aluminum alloys

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1975-01-01

    A study has been made to determine the effects of extensive service usage on some basic material properties of 7075-T6 and 7178-T6 aluminum alloy materials. The effects of service usage were determined by comparing material properties for new material (generally obtained from the literature) with those for material cut from the center wing box of a C-130B transport airplane with 6385 flight-hours of service. The properties investigated were notched and unnotched fatigue strengths, fatigue-crack-growth rate, fracture toughness, and tensile properties. For the properties investigated and the parameter ranges considered (crack length, stress ratio, etc.), the results obtained showed no significant difference between service and new materials.

  15. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  16. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  17. A method for predicting the fatigue life of pre-corroded 2024-T3 aluminum from breaking load tests

    NASA Astrophysics Data System (ADS)

    Gruenberg, Karl Martin

    Characterization of material properties is necessary for design purposes and has been a topic of research for many years. Over the last several decades, much progress has been made in identifying metrics to describe fracture mechanics properties and developing procedures to measure the appropriate values. However, in the context of design, there has not been as much success in quantifying the susceptibility of a material to corrosion damage and its subsequent impact on material behavior in the framework of fracture mechanics. A natural next step in understanding the effects of corrosion damage was to develop a link between standard material test procedures and fatigue life in the presence of corrosion. Simply stated, the goal of this investigation was to formulate a cheaper and quicker method for assessing the consequences of corrosion on remaining fatigue life. For this study, breaking load specimens and fatigue specimens of a single nominal gage (0.063″) of aluminum alloy 2024-T3 were exposed to three levels of corrosion. The breaking load specimens were taken from three different material lots, and the fatigue tests were carried out at three stress levels. All failed specimens, both breaking load and fatigue specimens, were examined to characterize the damage state(s) and failure mechanism(s). Correlations between breaking load results and fatigue life results in the presence of corrosion damage were developed using a fracture mechanics foundation and the observed mechanisms of failure. Where breaking load tests showed a decrease in strength due to increased corrosion exposure, the corresponding set of fatigue tests showed a decrease in life. And where breaking load tests from different specimen orientations exhibited similar levels of strength, the corresponding set of fatigue specimens showed similar lives. The spread from shortest to longest fatigue lives among the different corrosion conditions decreased at the higher stress levels. Life predictions based on breaking load data were generally shorter than the experimental lives by an average of 20%. The life prediction methodology developed from this investigation is a very valuable tool for the purpose of assessing material substitution for aircraft designers, alloy differentiation for manufacturers, or inspection intervals and aircraft retirement schedules for aircraft in service.

  18. The ultimate state of polymeric materials and laminated and fibrous composites under asymmetric high-cycle loading

    NASA Astrophysics Data System (ADS)

    Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.

    2008-01-01

    The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.

  19. Fatigue Lives Of Laser-Cut Metals

    NASA Technical Reports Server (NTRS)

    Martin, Michael R.

    1988-01-01

    Fatigue lives made to approach those attainable by traditional grinding methods. Fatigue-test specimens prepared from four metallic alloys, and material removed from specimens by manual grinding, by Nd:glass laser, and by Nd:YAG laser. Results of fatigue tests of all specimens indicated reduction of fatigue strengths of laser-fired specimens. Laser machining holds promise for improved balancing of components of gas turbines.

  20. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  1. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  2. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  3. High Velocity Burner Rig Oxidation and Thermal Fatigue Behavior of Si3N4- and SiC Base Ceramics to 1370 Deg C

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Johnston, J. R.

    1978-01-01

    One SiC material and three Si3N4 materials including hot-pressed Si3N4 as a baseline were exposed in a Mach-1-gas-velocity burner rig simulating a turbine engine environment. Criteria for the materials selection were: potential for gas-turbine usage, near-net-shape fabricability and commercial/domestic availability. Cyclic exposures of test vanes up to 250 cycles (50 hr at temperature) were at leading-edge temperatures to 1370 C. Materials and batches were compared as to weight change, surface change, fluorescent penetrant inspection, and thermal fatigue behavior. Hot-pressed Si3N4 survived the test to 1370 C with slight weight losses. Two types of reaction-sintered Si3N4 displayed high weight gains and considerable weight-change variability, with one material exhibiting superior thermal fatigue behavior. A siliconized SiC showed slight weight gains, but considerable batch variability in thermal fatigue.

  4. Corrosion fatigue in nitrocarburized quenched and tempered steels

    NASA Astrophysics Data System (ADS)

    Khani, M. Karim; Dengel, D.

    1996-05-01

    In order to investigate the fatigue strength and fracture mechanism of salt bath nitrocarburized steels, specimens of the steels SAE 4135 and SAE 4140, in a quenched and tempered state, and additionally in a salt bath nitrocarburized and oxidizing cooled state as well as in a polished (after the oxidizing cooling) and renewed oxidized state, were subjected to comparative rotating bending fatigue tests in inert oil and 5 pct NaCl solution. In addition, some of the quenched and tempered specimens of SAE 4135 material were provided with an approximately 50-μm-thick electroless Ni-P layer, in order to compare corrosion fatigue behavior between the Ni-P layer and the nitride layers. Long-life corrosion fatigue tests of SAE 4135 material were carried out under small stresses in the long-life range up to 108 cycles with a test frequency of 100 Hz. Fatigue tests of SAE 4140 material were carried out in the range of finite life (low-cycle range) with a test frequency of 13 Hz. The results show that the 5 pct NaCl environment drastically reduced fatigue life, but nitrocarburizing plus oxidation treatment was found to improve the corrosion fatigue life over that of untreated and Ni-P coated specimens. The beneficial effect of nitrocarburizing followed by oxidation treatment on cor-rosion fatigue life results from the protection rendered by the compound layer by means of a well-sealed oxide layer, whereby the pores present in the compound layer fill up with oxides. The role of inclusions in initiating fatigue cracks was investigated. It was found that under corrosion fatigue conditions, the fatigue cracks started at cavities along the interfaces of MnS inclusions and matrix in the case of quenched and tempered specimens. The nitrocarburized specimens, however, showed a superposition of pitting corrosion and corrosion fatigue in which pores and nonmetallic inclusions in the compound layer play a predominant role concerning the formation of pits in the substrate.

  5. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  6. DETERMINATION OF THE CREEP–FATIGUE INTERACTION DIAGRAM FOR ALLOY 617

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, J. K.; Carroll, L. J.; Sham, T. -L.

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, creep-fatigue testing was performed. Testing has been performed primarily on a single heat of material at 850 and 950°C for total strain ranges of 0.3 to 1% and tensile hold times as long as 240 minutes. At 850°C, increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain-controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutesmore » at the 1.0% strain range. At 950°C, the creep-fatigue cycles to failure becomes constant with increasing hold times, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep-fatigue interaction D-diagram. Results from earlier creep-fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D-diagram. The methodology for calculating the damage fractions will be presented, and the effects of strain rate, strain range, temperature, hold time, and strain profile (i.e. holds in tension, compression or both) on the creep-fatigue damage will be explored.« less

  7. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  8. Repeatability of testing procedures for resilient modulus and fatigue.

    DOT National Transportation Integrated Search

    1989-04-01

    Extensive use of diametral resilient modulus and fatigue testing is made by the Oregon State Highway Division to evaluate asphaltic concrete materials. Test results on similar materials (e.g., adjacent field cores), however, often indicate a poor lev...

  9. Prevalence, Incidence, and Classification of Chronic Fatigue Syndrome in Olmsted County, Minnesota, as Estimated Using the Rochester Epidemiology Project

    PubMed Central

    Vincent, Ann; Brimmer, Dana J.; Whipple, Mary O.; Jones, James F.; Boneva, Roumiana; Lahr, Brian D.; Maloney, Elizabeth; St. Sauver, Jennifer L.; Reeves, William C.

    2012-01-01

    Objective To estimate the prevalence and incidence of chronic fatigue syndrome in Olmsted County, Minnesota, using the 1994 case definition and describe exclusionary and comorbid conditions observed in patients who presented for evaluation of long-standing fatigue. Patients and Methods We conducted a retrospective medical record review of potential cases of chronic fatigue syndrome identified from January 1, 1998, through December 31, 2002, using the Rochester Epidemiology Project, a population-based database. Patients were classified as having chronic fatigue syndrome if the medical record review documented fatigue of 6 months' duration, at least 4 of 8 chronic fatigue syndrome–defining symptoms, and symptoms that interfered with daily work or activities. Patients not meeting all of the criteria were classified as having insufficient/idiopathic fatigue. Results We identified 686 potential patients with chronic fatigue, 2 of whom declined consent for medical record review. Of the remaining 684 patients, 151 (22%) met criteria for chronic fatigue syndrome or insufficient/idiopathic fatigue. The overall prevalence and incidence of chronic fatigue syndrome and insufficient/idiopathic fatigue were 71.34 per 100,000 persons and 13.16 per 100,000 person-years vs 73.70 per 100,000 persons and 13.58 per 100,000 person-years, respectively. The potential cases included 482 patients (70%) who had an exclusionary condition, and almost half the patients who met either criterion had at least one nonexclusionary comorbid condition. Conclusion The incidence and prevalence of chronic fatigue syndrome and insufficient/idiopathic fatigue are relatively low in Olmsted County. Careful clinical evaluation to identify whether fatigue could be attributed to exclusionary or comorbid conditions rather than chronic fatigue syndrome itself will ensure appropriate assessment for patients without chronic fatigue syndrome. PMID:23140977

  10. Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts.

    PubMed

    Saxby, Dyani J; Matthews, Gerald; Warm, Joel S; Hitchcock, Edward M; Neubauer, Catherine

    2013-12-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  11. A Preliminary Review of Fatigue Among Rail Staff

    PubMed Central

    Fan, Jialin; Smith, Andrew P.

    2018-01-01

    Background: Fatigue is a severe problem in the rail industry, which may jeopardize train crew's health and safety. Nonetheless, a preliminary review of all empirical evidence for train crew fatigue is still lacking. The aim of the present paper is, therefore, to provide a preliminary description of occupational fatigue in the rail industry. This paper reviews the literature with the research question examining the risk factors associated with train crew fatigue, covering both papers published in refereed journals and reports from trade organizations and regulators. It assesses the progress of research on railway fatigue, including research on the main risk factors for railway fatigue, the association between fatigue and railway incidents, and how to better manage fatigue in the railway industry. Methods: Systematic searches were performed in both science and industry databases. The searches considered studies published before August 2017. The main exclusion criterion was fatigue not being directly measured through subjective or objective methods. Results: A total of 31 studies were included in the main review. The causes of fatigue included long working hours, heavy workload, early morning or night shifts, and insufficient sleep. Poor working environment, particular job roles, and individual differences also contributed to fatigue. Conclusion: Fatigue in the rail industry includes most of the features of occupational fatigue, and it is also subject to industry-specific factors. The effect of fatigue on well-being and the fatigued population in the railway industry are still not clear. Future studies can consider associations between occupational risk factors and perceived fatigue by examining the prevalence of fatigue and identifying the potential risk factors in staff within the railway industry. PMID:29867630

  12. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.

    PubMed

    Belli, Renan; Geinzer, Eva; Muschweck, Anna; Petschelt, Anselm; Lohbauer, Ulrich

    2014-04-01

    For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The aim of this study was to compare the fatigue resistance of modern dental ceramic materials versus dental resin composites in order to address such conflicts. Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 and stored for 14 days in distilled water at 37°C. The following ceramic materials were selected for testing: a high-strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e-max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (Trilux Forte, Vita). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, Voco; Tetric EvoCeram, Ivoclar-Vivadent; and CeramX Duo, Dentsply). Fifteen specimens were tested in water for initial strength (σin) in 4-point bending. Using the same test set-up, the residual flexural fatigue strength (σff) was determined using the staircase approach after 10(4) cycles at 0.5 Hz (n=25). Weibull parameters σ0 and m were calculated for the σin specimens, whereas the σff and strength loss in percentage were obtained from the fatigue experiment. The zirconium oxide ceramic showed the highest σin and σff (768 and 440 MPa, respectively). Although both lithium disilicate ceramics were similar in the static test, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material Clearfil Majesty Posterior showed superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss (29.6% and 32%, respectively), whereas the other materials lost between 41% and 62% of their flexural strength after cyclic loading. Dental ceramics and resin composite materials show equivalent fatigue strength degradation at loads around 0.5σin values. Apart from the zirconium oxide and the lithium disilicate ceramics, resin composites generally showed better σff after 10,000 cycles than the fluorapatite glass-ceramic and the feldspathic porcelain. Resin composite restorations may be used as an equivalent alternative to glass-rich-ceramic inlays regarding mechanical performance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Fatigue of concrete subjected to biaxial loading in the tension region

    NASA Astrophysics Data System (ADS)

    Subramaniam, Kolluru V. L.

    Rigid airport pavement structures are subjected to repeated high-amplitude loads resulting from passing aircraft. The resulting stress-state in the concrete is a biaxial combination of compression and tension. It is of interest to model the response of plain concrete to such loading conditions and develop accurate fatigue-based material models for implementation in mechanistic pavement design procedures. The objective of this work is to characterize the quasi-static and low-cycle fatigue response of concrete subjected to biaxial stresses in the tensile-compression-tension (t-C-T) region, where the principal tensile stress is larger in magnitude than the principal compressive stress. An experimental investigation of material behavior in the biaxial t-C-T region is conducted. The experimental setup consists of the following test configurations: (a) notched concrete beams tested in three-point bend configuration, and (b) hollow concrete cylinders subjected to torsion with or without superimposed axial tensile force. The damage imparted to the material is examined using mechanical measurements and an independent nondestructive evaluation (NDE) technique based on vibration measurements. The failure of concrete in t-C-T region is shown to be a local phenomenon under quasi-static and fatigue loading, wherein the specimen fails owing to a single crack. The crack propagation is studied using the principles of fracture mechanics. It is shown that the crack propagation resulting from the t-C-T loading can be predicted using mode I fracture parameters. It is observed that crack growth in constant amplitude fatigue loading is a two-phase process: a deceleration phase followed by an acceleration stage. The quasi-static load envelope is shown to predict the crack length at fatigue failure. A fracture-based fatigue failure criterion is proposed, wherein the fatigue failure can be predicted using the critical mode I stress intensity factor. A material model for the damage evolution during fatigue loading of concrete in terms of crack propagation is proposed. The crack growth acceleration stage is shown to follow Paris law. The model parameters obtained from uniaxial fatigue tests are shown to be sufficient for predicting the considered biaxial fatigue response.

  14. Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement

    NASA Astrophysics Data System (ADS)

    White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos

    2003-01-01

    For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.

  15. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  16. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  17. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    NASA Astrophysics Data System (ADS)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  18. Development of a remote-controlled fatigue test machine using a laser extensometer for investigation of irradiation effect on fatigue properties

    NASA Astrophysics Data System (ADS)

    Yonekawa, M.; Ishii, T.; Ohmi, M.; Takada, F.; Hoshiya, T.; Niimi, M.; Ioka, I.; Miwa, Y.; Tsuji, H.

    2002-12-01

    In order to investigate effects of neutron irradiation on fatigue properties of nuclear materials, a remote-controlled high temperature fatigue test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). A small-sized fatigue specimen having double blades to measure strain with a laser extensometer was designed for this machine. A strain amplitude in fatigue tests of a completely reversed push-pull type using a triangular wave was controlled with an accuracy of ±3% of the total strain range during test. Low cycle fatigue tests of type 304 stainless steel irradiated in JMTR at 823 K up to a fast neutron fluence of 1×10 25 n/m 2 ( E>1 MeV) were performed in total strain ranges of 0.7-1.4% at 823 K using the designed small-sized specimens.

  19. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  20. Effect of electric discharge machining on the fatigue life of Inconel 718

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Collins, M. R.

    1988-01-01

    The effect of electric discharge machining on the fatigue life of Inconel 718 alloy at room temperature was investigated. Data were generated in the uniaxial tension fatigue mode at ambient temperature using flat 3.175 mm thick specimens. The specimens were machined on a wire-cut electric discharge machine at cutting speeds ranging from 0.5 to 2 mm per minute. The specimens were fatigued at a selected stress, and the resulting fatigue lives compared with that of the virgin material. The surfaces of the fatigued specimens were examined under optical and scanning electron microscopes, and the roughness of the surfaces was measured using a standard profilometer. From the results of the investigation, it was concluded that the fatigue life of the specimens machined using EDM decreased slightly as compared with that of the virgin material, but remained unchanged as the cutting speed was changed. The results are explained using data produced employing microhardness measurements, profilometry, and optical and scanning microscopy.

  1. Comparison of enamel bond fatigue durability between universal adhesives and two-step self-etch adhesives: Effect of phosphoric acid pre-etching.

    PubMed

    Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-03-30

    The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.

  2. Docetaxel-related fatigue in men with metastatic prostate cancer: a descriptive analysis.

    PubMed

    Bergin, A R T; Hovey, E; Lloyd, A; Marx, G; Parente, P; Rapke, T; de Souza, P

    2017-09-01

    Fatigue is a prevalent and debilitating side effect of docetaxel chemotherapy in metastatic prostate cancer. A better understanding of the kinetics and nature of docetaxel-related fatigue may provide a framework for intervention. This secondary analysis was performed using the MOTIF database, from a phase III, randomised, double-blind, placebo-controlled study of modafinil (200 mg/day for 15 days) for docetaxel-related fatigue in men with metastatic prostate cancer [1]. The pattern of fatigue was analysed using the MDASI (MD Anderson Symptom Inventory) score. The impact of modafinil, cumulative docetaxel exposure, age and smoking status on fatigue kinetics were explored. Fatigue-related symptoms were assessed using the SOMA6 (fatigue and related symptoms) subset of the SPHERE (Somatic and Psychological Health Report). Mood was tracked using the short form 36 health survey questionnaire (SF-36). Across four docetaxel cycles, fatigue scores were higher in the first week and decreased over weeks two and three. Whilst men randomised to modafinil had reduced fatigue scores, cumulative docetaxel had little impact. Younger men (55-68 years) had significantly reduced fatigue scores, whereas current and ex-smokers had higher scores. There was no significant change in mood status or haemoglobin across treatment cycles. Men described both 'somnolence' and 'muscle fatigue' contributing significantly to their symptom complex. Assessment and management of docetaxel-related fatigue remains an important challenge. Given the complex, multifactorial nature of fatigue, identification through structured interview and interventions targeted to specific 'at risk' groups may be the most beneficial. Understanding the temporal pattern (kinetics) and nature of fatigue is critical to guide this process.

  3. Fatigue properties of dissimilar metal laser welded lap joints

    NASA Astrophysics Data System (ADS)

    Dinsley, Christopher Paul

    This work involves laser welding austenitic and duplex stainless steel to zinc-coated mild steel, more specifically 1.2mm V1437, which is a Volvo Truck Coiporation rephosphorised mild steel. The work investigates both tensile and lap shear properties of similar and dissimilar metal laser welded butt and lap joints, with the majority of the investigation concentrating on the fatigue properties of dissimilar metal laser welded lap joints. The problems encountered when laser welding zinc-coated steel are addressed and overcome with regard to dissimilar metal lap joints with stainless steel. The result being the production of a set of guidelines for laser welding stainless steel to zinc-coated mild steel. The stages of laser welded lap joint fatigue life are defined and the factors affecting dissimilar metal laser welded lap joint fatigue properties are analysed and determined; the findings suggesting that dissimilar metal lap joint fatigue properties are primarily controlled by the local stress at the internal lap face and the early crack growth rate of the material at the internal lap face. The lap joint rotation, in turn, is controlled by sheet thickness, weld width and interfacial gap. Laser welded lap joint fatigue properties are found to be independent of base material properties, allowing dissimilar metal lap joints to be produced without fatigue failure occurring preferentially in the weaker parent material, irrespective of large base material property differences. The effects of Marangoni flow on the compositions of the laser weld beads are experimentally characterised. The results providing definite proof of the stirring mechanism within the weld pool through the use of speeds maps for chromium and nickel. Keywords: Laser welding, dissimilar metal, Zinc-coated mild steel, Austenitic stainless steel, Duplex stainless steel, Fatigue, Lap joint rotation, Automotive.

  4. The effects of Nitinol phases on corrosion and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Denton, Melissa

    The purpose of these studies was to provide a detailed understanding of Nitinol phases and their effects on corrosion and fatigue life. The two primary phases, austenite and martensite, were carefully evaluated with respect to material geometry, corrosion behavior, wear, and fatigue life. Material characterization was performed using several techniques that include metallography, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray photoelectron spectrum (XPS), and Auger electron spectroscopy (AES). Uniaxial tensile tests were conducted to determine the mechanical properties such as elongation, ultimate tensile strength, modulus, transformation strain, and plateau stress. In addition, accelerated wear testing and four point bend fatigue testing were completed to study the fatigue life and durability of the material. The corrosion of Nitinol was found to be dependent on various surface conditions. Electrochemical corrosion behavior of each phase was investigated using cyclic potentiodyamic polarization testing. The corrosion response of electropolished Nitinol was found to be acceptable, even after durability testing. Stress-induced martensite had a lower breakdown potential due to a rougher surface morphology, while thermally induced martensite and austenite performed similarly well. The surface conditioning also had a significant effect on Nitinol mechanical properties. Electropolishing provided a smooth mirror finish that reduced localized texture and enhanced the ductility of the material. Quasi-static mechanical properties can be good indicators of fatigue life, but further fatigue testing revealed that phase transformations had an important role as well. The governing mechanisms for the fatigue life of Nitinol were determined to be both martesitic phase transformations and surface defects. A new ultimate dislocation strain model was proposed based on specific accelerated step-strain testing.

  5. In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Matikas, Theodore E.; Na, Jeong K.; Sathish, Shamachary

    1999-02-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. A previous experiment using the f-2f technique on Ti-6Al-4V dog bone specimen fatigued at different stage of fatigue has shown that the material nonlinearity exhibit large change compared to the other ultrasonic parameter. Real-time monitoring of the nonlinearity may be a future tool to characterize early fatigue damage in the material. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. For the first time, a real-time experiment has been performed on a dog-bone specimen from zero fatigue al the way to the final fracture.

  6. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  7. Probabilistic analysis for fatigue strength degradation of materials

    NASA Technical Reports Server (NTRS)

    Royce, Lola

    1989-01-01

    This report presents the results of the first year of a research program conducted for NASA-LeRC by the University of Texas at San Antonio. The research included development of methodology that provides a probabilistic treatment of lifetime prediction of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Linear elastic fracture mechanics is utilized in the latter model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs, RANDOM2, RANDOM3, and RANDOM4. These programs determine the random lifetime of an engine component, in mechanical load cycles, to reach a critical fatigue strength or crack size. The material considered was a cast nickel base superalloy, one typical of those used in the Space Shuttle Main Engine.

  8. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  9. The direct-stress fatigue strength of 17S-T aluminum alloy throughout the range from 1/2 to 500,000,000 cycles of stress

    NASA Technical Reports Server (NTRS)

    Hartmann, E C; Stickley, G W

    1942-01-01

    Fatigue-test were conducted on six specimens made from 3/4-inch-diameter 17S-T rolled-and-drawn rod for the purpose of obtaining additional data on the fatigue life of the material at stresses up to the static strength. The specimens were tested in direct tension using a stress range from zero to a maximum in tension. A static testing machine was used to apply repeated loads in the case of the first three specimens; the other three specimens were tested in a direct tension-compression fatigue machine. The direct-stress fatigue curve obtained for the material indicates that, in the range of stresses above about two-thirds the tensile strength, the fatigue strength is higher than might be expected by simply extrapolating the ordinary curve of stress plotted against the number of cycles determined at lower stresses.

  10. Computational Fatigue Life Analysis of Carbon Fiber Laminate

    NASA Astrophysics Data System (ADS)

    Shastry, Shrimukhi G.; Chandrashekara, C. V., Dr.

    2018-02-01

    In the present scenario, many traditional materials are being replaced by composite materials for its light weight and high strength properties. Industries like automotive industry, aerospace industry etc., are some of the examples which uses composite materials for most of its components. Replacing of components which are subjected to static load or impact load are less challenging compared to components which are subjected to dynamic loading. Replacing the components made up of composite materials demands many stages of parametric study. One such parametric study is the fatigue analysis of composite material. This paper focuses on the fatigue life analysis of the composite material by using computational techniques. A composite plate is considered for the study which has a hole at the center. The analysis is carried on (0°/90°/90°/90°/90°)s laminate sequence and (45°/-45°)2s laminate sequence by using a computer script. The life cycles for both the lay-up sequence are compared with each other. It is observed that, for the same material and geometry of the component, cross ply laminates show better fatigue life than that of angled ply laminates.

  11. Considerations concerning fatigue life of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Bartolotta, Paul A.

    1993-01-01

    Since metal matrix composites (MMC) are composed from two very distinct materials each having their own physical and mechanical properties, it is feasible that the fatigue resistance depends on the strength of the weaker constituent. Based on this assumption, isothermal fatigue lives of several MMC's were analyzed utilizing a fatigue life diagram approach. For each MMC, the fatigue life diagram was quantified using the mechanical properties of its constituents. The fatigue life regions controlled by fiber fracture and matrix were also quantitatively defined.

  12. Hydrogen effects on materials for CNG/H2 blends.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, David; Keller, Jay O.; Somerday, Brian P.

    2010-09-01

    No concerns for Hydrogen-Enriched Compressed Natural gas (HCNG) in steel storage tanks if material strength is < 950 MPa. Recommend evaluating H{sub 2}-assisted fatigue cracking in higher strength steels at H{sub 2} partial pressure in blend. Limited fatigue testing on higher strength steel cylinders in H{sub 2} shows promising results. Impurities in Compressed Natural Gas (CNG) (e.g., CO) may provide extrinsic mechanism for mitigating H{sub 2}-assisted fatigue cracking in steel tanks.

  13. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaw, P.K.; Logsdon, W.A.; Begley, J.A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 Cl 2a and SA533 Gr A Cl 2 pressure vessel steels and the corresponding automatic submerged arc weldments were developed in a high-temperature pressurized water (HPW) environment at 288{degrees} C (550{degrees} F) and 7.2 MPa (1044 psi) at load ratios of 0.20 and 0.50. The properties were generally conservative compared to American Society of Mechanical Engineers Section XI water environment reference curve. The growth rate of fatigue cracks in the base materials, however, was faster in the HPW environment than in a 288{degrees} C (550{degrees} F) base line air environment. Themore » growth rate of fatigue cracks in the two submerged arc weldments was also accelerated in the HPW environment but to a lesser degree than that demonstrated by the base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials compared the weldments attributed to a different sulfide composition and morphology.« less

  14. Effects of temperature, thermal exposure, and fatigue on an alumina/aluminum composite

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1980-01-01

    An experimental investigation of the mechanical properties and microstructure of an aluminum matrix/polycrystalline alumina fiber composite material is discussed. The effects of fabrication, isothermal exposure (up to 10,000 hours at 590 K), thermal cycling (6000 cycles between 200 K and 590 K), fatigue (1,000,000 tension-tension cycles) were determined by mechanical testing and metallurgical analysis. The fabrication process severely degraded the fiber strength by reducing the alumina to a nonstoichiometric form and quenching in the resultant vacancies and stress fields. However, isothermal exposure, thermal cycling, and fatigue cycling all restored the fiber strength by enhancing vacancy annihilation. Comparison of the as-fabricated material with other aerospace materials shows that it is an attractive candidate for select applications. Long duration isothermal exposure weakened the matrix by overaging and through the diffusional loss of lithium to a surface reaction forming lithium carbonate. Thermal cycling initiated cracks in the matrix and fibers. Tension-tension fatigue cycling caused no apparent damage to the as-fabricated material but in fact, strengthened it to the rule-of-mixtures value. Fatigue cycling after thermal exposure did have a cumulative damage effect.

  15. The effect of weld porosity on the cryogenic fatigue strength of ELI grade Ti-5Al-2.5Sn

    NASA Technical Reports Server (NTRS)

    Rogers, P. R.; Lambdin, R. C.; Fox, D. E.

    1992-01-01

    The effect of weld porosity on the fatigue strength of ELI grade Ti-5Al-2.5Sn at cryogenic temperature was determined. A series of high cycle fatigue (HCF) and tensile tests were performed at -320 F on specimens made from welded sheets of the material. All specimens were tested with weld beads intact and some amount of weld offset. Specimens containing porosity and control specimens containing no porosity were tested. Results indicate that for the weld configuration tested, the fatigue life of the material is not affected by the presence of spherical embedded pores.

  16. Assessing fatigue in inflammatory bowel disease: comparison of three fatigue scales.

    PubMed

    Norton, C; Czuber-Dochan, W; Bassett, P; Berliner, S; Bredin, F; Darvell, M; Forbes, A; Gay, M; Ream, E; Terry, H

    2015-07-01

    Fatigue is commonly reported by patients with inflammatory bowel disease (IBD), both in quiescent and active disease. Few fatigue scales have been tested in IBD. To assess three fatigue assessment scales in IBD and to determine correlates of fatigue. Potential participants (n = 2131) were randomly selected from an IBD organisation's members' database; 605 volunteered and were posted three fatigue scales: Inflammatory Bowel Disease Fatigue scale, Multidimensional Fatigue Inventory and Multidimensional Assessment Fatigue scale and questionnaires assessing anxiety, depression, quality of life (QoL) and IBD activity. The questionnaires were tested for stability over time with another group (n = 70) of invited participants. Internal consistency was measured by Cronbach's alpha and test-retest reliability by the intraclass correlation coefficient (ICC). Four hundred and sixty-five of 605 (77%) questionnaires were returned; of 70 invited, 48/70 returned test (68.6%) and 41/70 (58.6%) returned retest. The three scales are highly correlated (P < 0.001). Test-retest suggests reasonable agreement with ICC values between 0.65 and 0.84. Lower age, female gender, IBD diagnosis, anxiety, depression and QoL were associated with fatigue (P < 0.001) on univariable analysis. However, on multivariable analysis only depression and low QoL were consistently associated with fatigue, while female gender was associated on most scales. IBD diagnosis, age and other factors were not consistently associated with severity or impact of fatigue once other variables were controlled for. All three fatigue scales are likely to measure IBD fatigue adequately. Responsiveness to change has not been tested. Depression, poorer QoL and probably female gender are the major associations of fatigue in IBD. © 2015 John Wiley & Sons Ltd.

  17. Strand Plasticity Governs Fatigue in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  18. Intrinsically higher fatigue cracking resistance of the penetrable and movable incoherent twin boundary

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Zhang, P.; Zhang, Z. J.; Zhang, Z. F.

    2014-01-01

    Incoherent twin boundaries (ITBs) are widespread and play a crucial role in unidirectional deformation behavior of materials, however, the intrinsic role of individual ITB under cyclic loading remains elusive. Here we show the fatigue cracking behavior of Cu bicrystal with an ITB as its sole interface for the first time. The slip bands (SBs) could transfer through the ITB; meanwhile, the ITB could migrate with the motion of partial dislocations. Both the penetrability and mobility contribute to the higher fatigue cracking resistance of the ITB and hence the fatigue crack nucleates along the SBs preferentially. These new findings not only shed light on the fatigue cracking mechanisms of a penetrable boundary with direct evidence but also could provide important implications for future interfacial optimization of metallic materials.

  19. Cognitive and affective mechanisms of pain and fatigue in multiple sclerosis.

    PubMed

    Arewasikporn, Anne; Turner, Aaron P; Alschuler, Kevin N; Hughes, Abbey J; Ehde, Dawn M

    2018-06-01

    To examine the extent to which pain catastrophizing, fatigue catastrophizing, positive affect, and negative affect simultaneously mediated the associations between common symptoms of multiple sclerosis (MS; i.e., pain, fatigue) and impact on daily life, depressive symptoms, and resilience. Participants were community-dwelling adults with MS (N = 163) reporting chronic pain, fatigue, and/or moderate depressive symptoms. Multiple mediation path analysis was used to model potential mediators of pain and fatigue separately, using baseline data from a randomized controlled trial comparing two symptom self-management interventions. In the pain model, pain catastrophizing was a mediator of pain intensity with pain interference and depression. Negative affect was a mediator of pain intensity with depression and resilience. In the fatigue model, fatigue catastrophizing was a mediator of fatigue intensity with fatigue impact and depression. Positive affect was a mediator of fatigue intensity with depression and resilience. These findings provide preliminary support for the presence of differential effects of cognitive-affective mediators and suggest potential targets for psychological interventions based on an individual's clinical presentation. The differential mediating effects also support the inclusion of both positive and negative aspects of psychological health in models of pain and fatigue, which would not be otherwise apparent if negative constructs were examined in isolation. To our knowledge, this is the first study to utilize a multivariate path analysis approach to examine cognitive-affective mediators of pain and fatigue in MS, while also examining positive and negative constructs concurrently. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. The influence of fatigue on decision-making in athletes: a systematic review.

    PubMed

    Almonroeder, Thomas Gus; Tighe, Sarah Marie; Miller, Taylor Matthew; Lanning, Christopher Ray

    2018-06-14

    A potential challenge associated with sports is that athletes must often perform the cognitive processing associated with decision-making (i.e., movement selection) when fatigued. The purpose of this systematic review was to summarise studies that have analysed the extent to which fatigue influences the effects of decision-making on lower extremity mechanics during execution of common sports manoeuvres. We specifically focused on mechanics associated with ACL injury risk. Reviewers searched the PubMed, SPORTDiscus, CINAHL and Web of Science databases. The search identified 183 unique articles. Five of these articles met our eligibility criteria. Two of the studies incorporated fatigue protocols where athletes progressed to exhaustion and found that the effects of decision-making on mechanics were more pronounced with fatigue. The nature of the results appears to indicate that fatigue may compromise an athlete's cognitive processing in a manner that diminishes their ability to control movement when rapid decision-making is required. However, three subsequent studies utilised fatigue protocols designed to mimic sports participation and found that fatigue did not influence the effects of decision-making on mechanics. In general, these findings appear to indicate that fatigue may only affect the cognitive processing associated with decision-making when athletes approach a state of exhaustion.

  1. Effects of foot reflexology on fatigue, sleep and pain: a systematic review and meta-analysis.

    PubMed

    Lee, Jeongsoon; Han, Misook; Chung, Younghae; Kim, Jinsun; Choi, Jungsook

    2011-12-01

    The purpose of this study was to evaluate the effectiveness of foot reflexology on fatigue, sleep and pain. A systematic review and meta-analysis were conducted. Electronic database and manual searches were conducted on all published studies reporting the effects of foot reflexology on fatigue, sleep, and pain. Forty four studies were eligible including 15 studies associated with fatigue, 18 with sleep, and 11 with pain. The effects of foot reflexology were analyzed using Comprehensive Meta-Analysis Version 2.0. The homogeneity and the fail-safe N were calculated. Moreover, a funnel plot was used to assess publication bias. The effects on fatigue, sleep, and pain were not homogeneous and ranged from 0.63 to 5.29, 0.01 to 3.22, and 0.43 to 2.67, respectively. The weighted averages for fatigue, sleep, and pain were 1.43, 1.19, and 1.35, respectively. No publication bias was detected as evaluated by fail-safe N. Foot reflexology had a larger effect on fatigue and sleep and a smaller effect on pain. This meta-analysis indicates that foot reflexology is a useful nursing intervention to relieve fatigue and to promote sleep. Further studies are needed to evaluate the effects of foot reflexology on outcome variables other than fatigue, sleep and pain.

  2. Major League Baseball pace-of-play rules and their influence on predicted muscle fatigue during simulated baseball games.

    PubMed

    Sonne, Michael W L; Keir, Peter J

    2016-11-01

    Major League Baseball (MLB) has proposed rule changes to speed up baseball games. Reducing the time between pitches may impair recovery from fatigue. Fatigue is a known precursor to injury and may jeopardise joint stability. This study examined how fatigue accumulated during baseball games and how different pace of play initiatives may influence fatigue. Pitcher data were retrieved from a public database. A predictive model of muscle fatigue estimated muscle fatigue in 8 arm muscles. A self-selected pace (22.7 s), 12 s pace (Rule 8.04 from the MLB) and a 20 s rest (a pitch clock examined in the 2014 Arizona Fall League (AFL)) were examined. Significantly more muscle fatigue existed in both the AFL and Rule 8.04 conditions, when compared to the self-selected pace condition (5.01 ± 1.73%, 3.95 ± 1.20% and 3.70 ± 1.10% MVC force lost, respectively). Elevated levels of muscle fatigue are predicted in the flexor-pronator mass, which is responsible for providing elbow stability. Reduced effectiveness of the flexor-pronator mass may reduce the active contributions to joint rotational stiffness, increasing strain on the ulnar collateral ligament (UCL) and possibly increasing injury risk.

  3. Microstructurally based variations on the dwell fatgue life of titanium alloy IMI 834

    NASA Technical Reports Server (NTRS)

    Thomsen, Mark L.; Hoeppner, David W.

    1994-01-01

    An experimental study was undertaken to determine the role of microstructure on the fatigue life reduction observed in titanium alloy IMI 834 under dwell loading conditions. The wave forms compared were a trapezoid with 15 and 30 second hold times at the maximum test load and a baseline, 10 Hertz, haversine. The stress ratio for both loading wave forms was 0.10. The fatigue loading of each specimen was conducted in a vacuum within a scanning electron microscope chamber which minimized the possibility that the laboratory environment would adversely affect the material behavior. Two microstructural conditions were investigated in the experimental program. The first involved standard 'disk' material with equiaxed alpha in a transformed beta matrix. The second material was cut from the same disk forging as the first but was heat treated to obtain a martensitic alpha prime microstructure. Tensile tests were performed prior to the onset of the fatigue loading portion of the study, and it was determined that the yield strengths of the specimens from both material conditions were within ten percent. The maximum fatigue loads were chosen to be 72 percent of the average yield strength for both materials as determined from the tensile tests. It was found that the cycles to failure from the 10 Hertz loading wave form were reduced by a factor of approximately five when the loading was changed to the trapezoidal wave form for the standard 'disk' material. The fatigue life reduction for the martensitic structure under identical test conditions was approximately 1.75. The improvement observed with the martensitic structure also was accompanied by an increase in overall fatigue life for the wave forms tested. This paper will review the results and conclusions of this effort.

  4. Tensile and fatigue data for irradiated and unirradiated AISI 310 stainless steel and titanium - 5 percent aluminum - 2.5 percent tin: Application of the method of universal slopes

    NASA Technical Reports Server (NTRS)

    Debogdan, C. E.

    1973-01-01

    Irradiated and unirradiated tensile and fatigue specimens of AISI 310 stainless steel and Ti-5Al-2.5Sn were tested in the range of 100 to 10,000 cycles to failure to determine the applicability of the method of universal slopes to irradiated materials. Tensile data for both materials showed a decrease in ductility and increase in ultimate tensile strength due to irradiation. Irradiation caused a maximum change in fatigue life of only 15 to 20 percent for both materials. The method of universal slopes predicted all the fatigue data for the 310 SS (irradiated as well as unirradiated) within a life factor of 2. For the titanium alloy, 95 percent of the data was predicted within a life factor of 3.

  5. Methodology for Evaluation of Fatigue Crack-Growth Resistance of Aluminum Alloys under Spectrum Loading.

    DTIC Science & Technology

    1982-04-01

    fatigue life , except for the 2024 - T351 alloy which had a significantly longer spectrum fatigue life than the other alloys and 2) for...OF FATIGUE CRACK GROWTH OF ALUMINUM ALLOYS UNDER SPECTRUM LOADING MATERIALS PRESENT EFFORT FUTURE EFFORT 2024 - T351 2020-T651 2024 -T851 TMT2020-T6X51...the same spectrum fatigue life . The 2024 - T351 alloy had a significantly longer spectrum

  6. Acute effects of muscle fatigue on anticipatory and reactive postural control in older individuals: a systematic review of the evidence.

    PubMed

    Papa, Evan V; Garg, Hina; Dibble, Leland E

    2015-01-01

    Falls are the leading cause of traumatic brain injury and fractures and the No. 1 cause of emergency department visits by older adults. Although declines in muscle strength and sensory function contribute to increased falls in older adults, skeletal muscle fatigue is often overlooked as an additional contributor to fall risk. In an effort to increase awareness of the detrimental effects of skeletal muscle fatigue on postural control, we sought to systematically review research studies examining this issue. The specific purpose of this review was to provide a detailed assessment of how anticipatory and reactive postural control tasks are influenced by acute muscle fatigue in healthy older individuals. An extensive search was performed using the CINAHL, Scopus, PubMed, SPORTDiscus, and AgeLine databases for the period from inception of each database to June 2013. This systematic review used standardized search criteria and quality assessments via the American Academy for Cerebral Palsy and Developmental Medicine Methodology to Develop Systematic Reviews of Treatment Interventions (2008 version, revision 1.2, AACPDM, Milwaukee, Wisconsin). A total of 334 citations were found. Six studies were selected for inclusion, whereas 328 studies were excluded from the analytical review. The majority of articles (5 of 6) utilized reactive postural control paradigms. All studies incorporated extrinsic measures of muscle fatigue, such as declines in maximal voluntary contraction or available active range of motion. The most common biomechanical postural control task outcomes were spatial measures, temporal measures, and end-points of lower extremity joint kinetics. On the basis of systematic review of relevant literature, it appears that muscle fatigue induces clear deteriorations in reactive postural control. A paucity of high-quality studies examining anticipatory postural control supports the need for further research in this area. These results should serve to heighten awareness regarding the potential negative effects of acute muscle fatigue on postural control and support the examination of muscle endurance training as a fall risk intervention in future studies.

  7. A Critical Plane-energy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Wei, Haoyang

    A new critical plane-energy model is proposed in this thesis for multiaxial fatigue life prediction of homogeneous and heterogeneous materials. Brief review of existing methods, especially on the critical plane-based and energy-based methods, are given first. Special focus is on one critical plane approach which has been shown to work for both brittle and ductile metals. The key idea is to automatically change the critical plane orientation with respect to different materials and stress states. One potential drawback of the developed model is that it needs an empirical calibration parameter for non-proportional multiaxial loadings since only the strain terms are used and the out-of-phase hardening cannot be considered. The energy-based model using the critical plane concept is proposed with help of the Mroz-Garud hardening rule to explicitly include the effect of non-proportional hardening under fatigue cyclic loadings. Thus, the empirical calibration for non-proportional loading is not needed since the out-of-phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature and it is shown the proposed model can work for both proportional and non-proportional loadings without the empirical calibration. Next, the model is extended for the fatigue analysis of heterogeneous materials integrating with finite element method. Fatigue crack initiation of representative volume of heterogeneous materials is analyzed using the developed critical plane-energy model and special focus is on the microstructure effect on the multiaxial fatigue life predictions. Several conclusions and future work is drawn based on the proposed study.

  8. Thermomechanical fatigue life prediction for several solders

    NASA Astrophysics Data System (ADS)

    Wen, Shengmin

    Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.

  9. Characterization and Modeling of Asphalt Binder Fatigue

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz

    Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.

  10. Factors that affect the fatigue strength of power transmission shafting

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.

    1984-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  11. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  12. A model for predicting high-temperature fatigue failure of a W/Cu composite

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1991-01-01

    The material studied, a tungsten-fiber-reinforced, copper-matrix composite, is a candidate material for rocket nozzle liner applications. It was shown that at high temperatures, fatigue cracks initiate and propagate inside the copper matrix through a process of initiation, growth, and coalescence of grain boundary cavities. The ductile tungsten fibers neck and rupture locally after the surrounding matrix fails, and complete failure of the composite then ensues. A simple fatigue life prediction model is presented for the tungsten/copper composite system.

  13. Evaluation of Orientation Dependence of Fracture Toughness and Fatigue Crack Propagation Behavior of As-Deposited ARCAM EBM Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Seifi, Mohsen; Dahar, Matthew; Aman, Ron; Harrysson, Ola; Beuth, Jack; Lewandowski, John J.

    2015-03-01

    This preliminary work documents the effects of test orientation with respect to build and beam raster directions on the fracture toughness and fatigue crack growth behavior of as-deposited EBM Ti-6Al-4V. Although ASTM/ISO standards exist for determining the orientation dependence of various mechanical properties in both cast and wrought materials, these standards are evolving for materials produced via additive manufacturing (AM) techniques. The current work was conducted as part of a larger America Makes funded project to begin to examine the effects of process variables on the microstructure and fracture and fatigue behavior of AM Ti-6Al-4V. In the fatigue crack growth tests, the fatigue threshold, Paris law slope, and overload toughness were determined at different load ratios, R, whereas fatigue precracked samples were tested to determine the fracture toughness. The as-deposited material exhibited a fine-scale basket-weave microstructure throughout the build, and although fracture surface examination revealed the presence of unmelted powders, disbonded regions, and isolated porosity, the resulting mechanical properties were in the range of those reported for cast and wrought Ti-6Al-4V. Remote access and control of testing was also developed at Case Western Reserve University to improve efficiency of fatigue crack growth testing.

  14. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    NASA Astrophysics Data System (ADS)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the experimental data for the dual-phase Ti-6Al-4V and were applied to the beta annealed variant in order to estimate stress-life behavior using a small-sample approach. Based on this research, designers should be better able to make reliable estimates of fatigue strength parameters using small-sample testing.

  15. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will be demonstrated that while some Pb-free materials show severe property degradation under cyclic loading, other materials such as BNT-BKT-BZT essentially exhibit fatigue- free piezoelectric properties with chemical doping or other modifications. Based on these results, these new Pb-free materials have great potential for use in piezoelectric applications requiring a large number of drive cycles such as MEMS devices or high frequency actuators.

  16. TS-SRP/PACK - COMPUTER PROGRAMS TO CHARACTERIZE ALLOYS AND PREDICT CYCLIC LIFE USING THE TOTAL STRAIN VERSION OF STRAINRANGE PARTITIONING

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1994-01-01

    TS-SRP/PACK is a set of computer programs for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the total strain version of the Strainrange Partitioning (TS-SRP). The user should be thoroughly familiar with the TS-SRP method before attempting to use any of these programs. The document for this program includes a theory manual as well as a detailed user's manual with a tutorial to guide the user in the proper use of TS-SRP. An extensive database has also been developed in a parallel effort. This database is an excellent source of high-temperature, creep-fatigue test data and can be used with other life-prediction methods as well. Five programs are included in TS-SRP/PACK along with the alloy database. The TABLE program is used to print the datasets, which are in NAMELIST format, in a reader friendly format. INDATA is used to create new datasets or add to existing ones. The FAIL program is used to characterize the failure behavior of an alloy as given by the constants in the strainrange-life relations used by the total strain version of SRP (TS-SRP) and the inelastic strainrange-based version of SRP. The program FLOW is used to characterize the flow behavior (the constitutive response) of an alloy as given by the constants in the flow equations used by TS-SRP. Finally, LIFE is used to predict the life of a specified cycle, using the constants characterizing failure and flow behavior determined by FAIL and FLOW. LIFE is written in interpretive BASIC to avoid compiling and linking every time the equation constants are changed. Four out of five programs in this package are written in FORTRAN 77 for IBM PC series and compatible computers running MS-DOS and are designed to read data using the NAMELIST format statement. The fifth is written in BASIC version 3.0 for IBM PC series and compatible computers running MS-DOS version 3.10. The executables require at least 239K of memory and DOS 3.1 or higher. To compile the source, a Lahey FORTRAN compiler is required. Source code modifications will be necessary if the compiler to be used does not support NAMELIST input. Probably the easiest revision to make is to use a list-directed READ statement. The standard distribution medium for this program is a set of two 5.25 inch 360K MS-DOS format diskettes. The contents of the diskettes are compressed using the PKWARE archiving tools. The utility to unarchive the files, PKUNZIP.EXE, is included. TS-SRP/PACK was developed in 1992.

  17. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the hydrogen induced failure mechanism in this material during cyclic loading. The secondary objective of this investigation was to determine the role of inclusions and their influence in affecting the fatigue crack growth rate of this material. Compact tension and tensile specimens were prepared as per ASTM E-647, E-399 and E-8 standards. The specimens were tested in three different heat treated conditions i.e. annealed (as received) as well as two austempered conditions. These specimens were precharged with hydrogen (ex situ) using cathodic charging method at a constant current density at three different time periods ranging from 150 to 250 hours before conducting fatigue crack growth tests. Mode 1 type fatigue tests were then performed in ambient atmosphere at constant amplitude using load ratio R of 0.1. The near threshold fatigue crack growth rate, fatigue threshold and the fatigue crack growth rate in the linear region were determined. Fatigue crack growth behaviour of specimens without any dissolve hydrogen were then compared with the specimens with different concentration of dissolved hydrogen. The test results show that the dissolved hydrogen concentration increases with the increase in charging time in all three heat treated conditions and the hydrogen uptake shows a strong dependence on the microstructure of the alloy. It was also observed that the microstructure has a significant influence of on the fatigue crack growth and SCC behaviour of the alloy with dissolved hydrogen. As the dissolved hydrogen concentration increases, the fatigue threshold was found to decrease and the near threshold crack growth rate increases in all three heat treated conditions showing the deleterious effect of hydrogen, but to a different extent in each condition. Current test results also indicate that the fatigue crack growth rates in the linear region increases as the dissolved hydrogen content increases in all three heat treated conditions. It is also observed that increasing the austempering temperature decreases the resistance to hydrogen embrittlement. An interesting phenomenon was also observed in annealed specimen charged with hydrogen for 250 h which had an unusually high fatigue threshold (DeltaKth).

  18. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  19. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  20. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  1. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage

    PubMed Central

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-01-01

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts. PMID:28773017

  2. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  3. Experimental Investigation of the Acoustic Nonlinear Behavior in Granular Polymer Bonded Explosives with Progressive Fatigue Damage.

    PubMed

    Yang, Zhanfeng; Tian, Yong; Li, Weibin; Zhou, Haiqiang; Zhang, Weibin; Li, Jingming

    2017-06-16

    The measurement of acoustic nonlinear response is known as a promising technique to characterize material micro-damages. In this paper, nonlinear ultrasonic approach is used to characterize the evolution of fatigue induced micro-cracks in polymer bonded explosives. The variations of acoustic nonlinearity with respect to fatigue cycles in the specimens are obtained in this investigation. The present results show a significant increase of acoustic nonlinearity with respect to fatigue cycles. The experimental observation of the correlation between the acoustic nonlinearity and fatigue cycles in carbon/epoxy laminates, verifies that an acoustic nonlinear response can be used to evaluate the progressive fatigue damage in the granular polymer bonded explosives. The sensitivity comparison of nonlinear and linear parameters of ultrasonic waves in the specimens shows that nonlinear acoustic parameters are more promising indicators to fatigue induced micro-damage than linear ones. The feasibility study of the micro-damage assessment of polymer bonded explosives by nonlinear ultrasonic technique in this work can be applied to damage identification, material degradation monitoring, and lifetime prediction of the explosive parts.

  4. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    2002-10-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  5. Technical evaluation report of the Specialists Meeting on Characterization of Low Cycle High Temperature Fatigue by the Strainrange Partitioning Method

    NASA Technical Reports Server (NTRS)

    Drapier, J. M.; Hirschberg, M. H.

    1979-01-01

    The ability of the Strainrange Partitioning Method SRP was evaluated to correlate the creep-fatigue behavior of gas turbine materials and to predict the creep fatigue life of laboratory specimens subjected to complex cycling conditions. A reference body of high temperature creep fatigue data which can be used in the evaluation of other SRP and low cycle high temperature fatigue predictive techniques was provided.

  6. Crack propagation modelling for high strength steel welded structural details

    NASA Astrophysics Data System (ADS)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, J.; Dutta, B.K.; Kushwaha, H.S.

    Leak-Before-Break (LBB) is being used to design the primary heat transport piping system of 500 MWe Indian Pressurized Heavy Water Reactors (IPHWR). The work is categorized in three directions to demonstrate three levels of safety against sudden catastrophic break. Level 1 is inherent in the design procedure of piping system as per ASME Sec.III with a well defined factor of safety. Level 2 consists of fatigue crack growth study of a postulated part-through flaw at the inside surface of pipes. Level 3 is stability analysis of a postulated leakage size flaw under the maximum credible loading condition. Developmental work relatedmore » to demonstration of level 2 and level 3 confidence is described in this paper. In a case study on fatigue crack growth on PHT straight pipes for level 2, negligible crack growth is predicted for the life of the reactor. For level 3 analysis, the R6 method has been adopted. A database to evaluate SIF of elbows with throughwall flaws under combined internal pressure and bending moment has been generated to provide one of the inputs for R6 method. The methodology of safety assessment of elbow using R6 method has been demonstrated for a typical pump discharge elbow. In this analysis, limit load of the cracked elbow has been determined by carrying out elasto-plastic finite element analysis. The limit load results compared well with those given by Miller. However, it requires further study to give a general form of limit load solution. On the experimental front, a set of small diameter pipe fracture experiments have been carried out at room temperature and 300{degrees}C. Two important observations of the experiments are - appreciable drop in maximum load at 300{degrees}C in case of SS pipes and out-of-plane crack growth in case of CS pipes. Experimental load deflection curves are finally compared with five J-estimation schemes predictions. A material database of PHT piping materials is also being generated for use in LBB analysis.« less

  8. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  9. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  10. Damage development in titanium metal-matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1993-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  11. Evaluation of Fatigue Crack Growth and Fracture Properties of Cryogenic Model Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Forth, Scott C.; Everett, Richard A., Jr.; Newman, James C., Jr.; Kimmel, William M.

    2002-01-01

    The criteria used to prevent failure of wind-tunnel models and support hardware were revised as part of a project to enhance the capabilities of cryogenic wind tunnel testing at NASA Langley Research Center. Specifically, damage-tolerance fatigue life prediction methods are now required for critical components, and material selection criteria are more general and based on laboratory test data. The suitability of two candidate model alloys (AerMet 100 and C-250 steel) was investigated by obtaining the fatigue crack growth and fracture data required for a damage-tolerance fatigue life analysis. Finally, an example is presented to illustrate the newly implemented damage tolerance analyses required of wind-tunnel model system components.

  12. Validity and everyday clinical applicability of lumbar muscle fatigue assessment methods in patients with chronic non-specific low back pain: a systematic review.

    PubMed

    Villafañe, Jorge H; Gobbo, Massimiliano; Peranzoni, Matteo; Naik, Ganesh; Imperio, Grace; Cleland, Joshua A; Negrini, Stefano

    2016-09-01

    This systematic literature review aimed at examining the validity and applicability in everyday clinical rehabilitation practise of methods for the assessment of back muscle fatiguability in patients with chronic non-specific low back pain (CNSLBP). Extensive research was performed in MEDLINE, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Embase, Physiotherapy Evidence Database (PEDro) and Cochrane Central Register of Controlled Trials (CENTRAL) databases from their inception to September 2014. Potentially relevant articles were also manually looked for in the reference lists of the identified publications. Studies examining lumbar muscle fatigue in people with CNSLBP were selected. Two reviewers independently selected the articles, carried out the study quality assessment and extracted the results. A modified Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) scale was used to evaluate the scientific rigour of the selected works. Twenty-four studies fulfilled the selection criteria and were included in the systematic review. We found conflicting data regarding the validity of methods used to examine back muscle fatigue. The Biering-Sorensen test, performed in conjunction with surface electromyography spectral analysis, turned out to be the most widely used and comparatively, the most optimal modality currently available to assess objective back muscle fatigue in daily clinical practise, even though critical limitations are discussed. Future research should address the identification of an advanced method for lower back fatigue assessment in patients with CNSLBP which, eventually, might provide physical therapists with an objective and reliable test usable in everyday clinical practise. Implications for Rehabilitation Despite its limitations, the Biering-Sorensen test is currently the most used, convenient and easily available fatiguing test for lumbar muscles. To increase validity and reliability of the Biering-Sorensen test, concomitant activation of synergistic muscles should be taken into account. Pooled mean frequency and half-width of the spectrum are currently the most valid electromyographic parameters to assess fatigue in chronic non-specific low back pain. Body mass index, grading of pain and level of disability of the study population should be reported to enhance research quality.

  13. Enhancement of the fatigue performance of Ti-6Al-4V implant products

    NASA Astrophysics Data System (ADS)

    Wimalasiri, Dematapaksha H. R. J.

    Implants surgery, in particular hip implants, is fast becoming a routine, popular approach for curing diseases such as, osteoarthritis and rheumatic arthritis. However one potential problem with the insertion of a metal implant is that of the risk of fatigue failure. Numerous factors affect the propensity of a metal to fatigue, none more so than the physical and stress state of the surface. This research is focused on an assessment of the role of manufacturing processes on the fatigue performance of hip implants made from a Ti-6Al-4V alloy. The role of surface defects, surface residual stresses and material microstructural properties which influence fatigue performance were examined. Characterization of the implant material and of the processes involved in actual hip implant manufacturing were conducted. Rotating bend fatigue testing using hour glass shaped specimens was conducted to evaluate the fatigue performance at selected manufacturing stages. The surface roughness/defects and residual stresses were measured prior to conducting fatigue tests. A variation of fatigue limit, attributed to variations of surface roughness and surface residual stress was observed. The influence of parameters such as, stress ratio and mean stress effect, variation of fracture mechanics parameters (e.g. DeltaK[th]) and the limiting threshold conditions for different stages of cracks were investigated in the context of Kitagawa-Takahashi (K-T) type diagrams. Experimental data was used to develop models which were used to calculate, (i). fatigue life at respective stress amplitude and, (ii). the fatigue limit of components with known surface roughness/defect size and residual stress. To evaluate material crack growth properties a surface replication method was used. The output from both models showed good correlation with experimental data. Comprehensive fractography was conducted using optical, secondary electron, and infinite focus microscopy to support the results obtained from fatigue testing. Analysis was performed on in-vivo hip implant failure data covering the last 12 years. Fatigue failures occur in two locations on the implant stem, namely the cone area and the neck area. These two locations were investigated separately to identify the factors, such as; the category of implant most vulnerable to failure, service life, design features, fixation with the host bone, crack initiation features and propagation details. An attempt was made to compare in-vivo fatigue features with experimental fatigue results. X-ray diffraction (XRD) was used to investigate the surface residual stresses resulting from different manufacturing processes. The results were confirmed and software and hardware settings were calibrated in accordance with the results obtained from XRD analysis conducted at National Physical Laboratories (NPL), UK. Surface roughness measurements were also conducted using stylus type surface profilometer. The knowledge gained from this research can be used to understand the causes and modes of in-vivo fatigue failure of hip implants made of Ti-6Al-4V. Understanding the fatigue/mechanical properties of the implant material enables recommendations and optimization of good practice in manufacturing to eliminate in-vivo fatigue failures.

  14. Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossbeck, M.L.; Liu, K.C.

    1980-01-01

    Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430/sup 0/C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by amore » factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material.« less

  15. Simulated Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Duplex Ti-6Al-4V

    DTIC Science & Technology

    2010-04-01

    of texture on  mechanical   properties  in an advanced  titanium  alloy,"  Materials Science and Engineering A, vol. 319‐321, pp. 409‐414, 2001.  Simulated... mechanisms  of fatigue facet nucleation in  titanium  alloys," Fatigue  and Fracture of Engineering Materials and  Structures , vol. 31, pp. 949‐958, 2008...crack initiation in Ti‐6Al‐4V  titanium   alloy," Fatigue and Fracture of Engineering Materials and  Structures , vol. 25, pp. 527‐545, 2002.  [20]  I

  16. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less

  17. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  18. Novel Electrochemical Test Bench for Evaluating the Functional Fatigue Life of Biomedical Alloys

    NASA Astrophysics Data System (ADS)

    Ijaz, M. F.; Dubinskiy, S.; Zhukova, Y.; Korobkova, A.; Pustov, Y.; Brailovski, V.; Prokoshkin, S.

    2017-08-01

    The aim of the present work was first to develop and validate a test bench that simulates the in vitro conditions to which the biomedical implants will be actually subjected in vivo. For the preliminary application assessments, the strain-controlled fatigue tests of biomedically pure Ti and Ti-Nb-Zr alloy in simulated body fluid were undertaken. The in situ open-circuit potential measurements from the test bench demonstrated a strong dependence on the dynamic cycling and kind of material under testing. The results showed that during fatigue cycling, the passive oxide film formed on the surface of Ti-Nb-Zr alloy was more resistant to fatigue degradation when compared with pure Ti. The Ti-Nb-Zr alloy exhibited prolonged fatigue life when compared with pure Ti. The fractographic features of both materials were also characterized using scanning electron microscopy. The electrochemical results and the fractographic evidence confirmed that the prolonged functional fatigue life of the Ti-Nb-Zr alloy is apparently ascribable to the reversible martensitic phase transformation.

  19. Modeling stiffness loss in boron/aluminum below the fatigue limit

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1982-01-01

    Boron/aluminum can develop significant internal matrix cracking when fatigued. These matrix cracks can result in a 40 percent secant modulus loss in some laminates, even when fatigued below the fatigue limit. It is shown that the same amount of fatigue damage will develop during stress or strain-controlled tests. Stacking sequence has little influence on secant modulus loss. The secant modulus loss in unidirectional composites is small, whereas the losses are substantial in laminates containing off-axis plies. A simple analysis is presented that predicts unnotched laminate secant modulus loss due to fatigue. The analysis is based upon the elastic modulus and Poisson's ratio of the fiber and matrix, fiber volume fraction, fiber orientations, and the cyclic-hardened yield stress of the matrix material. Excellent agreement was achieved between model predictions and experimental results. With this model, designers can project the material stiffness loss for design load or strain levels and assess the feasibility of its use in stiffness-critical parts.

  20. Methods for structural design at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.

    1973-01-01

    A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.

  1. Analysis of Lightweight Materials for the AM2 System

    DTIC Science & Technology

    2014-06-01

    and fatigue behavior in magnesium alloys . Materials Science & Engineering A (Structural Materials: Properties , Microstructure and Processing ), v 434...Table 7. Tensile properties of the alloys AA2024 or the T3 and T81 temper designations (Kuo et al . 2005...using a powder metallurgy technique, such as a standard cold compacting press and sintering process . However, the fatigue life of the liquid-based

  2. Accelerated Insertion of Materials - Composites

    DTIC Science & Technology

    2001-08-28

    Details • Damage Tolerance • Repair • Validation of Analysis Methodology • Fatigue • Static • Acoustic • Configuration Details • Damage Tolerance...Sensitivity – Fatigue – Adhesion – Damage Tolerance – All critical modes and environments Products: Material Specifications, B-Basis Design Allowables...Demonstrate damage tolerance AIM-C DARPA DARPA Workshop, Annapolis, August 27-28, 2001 Requalification of Polymer / Composite Parts • Material Changes – Raw

  3. Vibration fatigue using modal decomposition

    NASA Astrophysics Data System (ADS)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  4. Guided Imagery as a Treatment Option for Fatigue

    PubMed Central

    Menzies, Victoria; Jallo, Nancy

    2013-01-01

    Purpose Fatigue is one of the most common complaints experienced among the general population. Because fatigue is recognized as a biobehavioral occurrence, a biobehavioral intervention such as guided imagery may be effective in reducing self-reported fatigue. Therefore, the purpose of this study was to explore the research literature related to the use of guided imagery as a nonpharmacological mind-body intervention for the symptom of fatigue. Method The electronic databases MEDLINE, CINAHL, PsychInfo, Psychology and Behavioral Sciences Collection and the Cochrane Library were searched from January 1980 to June 2010. Findings Of 24 articles retrieved, eight met the inclusion criteria and were included in this systematic literature review. Findings were inconsistent regarding the effectiveness of guided imagery on fatigue. Studies varied in study length, duration of the applied guided imagery intervention, dosage, and whether the images were targeted to the purpose of the intervention. Implications Guided imagery is a simple, economic intervention with the potential to effectively treat fatigue, thus further research is warranted using systematic, well-designed methodologies Standardizing guided imagery interventions according to total duration of exposure and targeted imagery in a variety of different populations adequately powered to detect changes will contribute to and strengthen nursing’s symptom-management armamentarium. PMID:21772047

  5. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu

    2013-04-01

    CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    DTIC Science & Technology

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  7. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  8. Fatigue-Arrestor Bolts

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  9. Environmental Effects on Fatigue Behavior of Metals.

    DTIC Science & Technology

    1981-04-09

    Growth Rate Behavior Above and Below KISCC in Steels ," Journal of Materials, Vol. 6, No. 4, 1971, pp. 941-964. 3. Barsom, J. M., " Corrosion -Fatigue...T., and Inoue, K., " Corrosion Fatigue Behavior of 13 Cr Stainless Steel in Sodium-Chloride Aqueous Solution and Steam Environment," Corrosion -Fatigue...34Effect of Environment on the Fatigue Behavior of a Medium Carbon Steel ," Corrosion , Vol. 30, 1974, pp. 280-284. 98. Karpenko, G. V., Romaniv, A. N., and

  10. Environmental Effect on Evolutionary Cyclic Plasticity Material Parameters of 316 Stainless Steel: An Experimental & Material Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    2014-09-20

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the Department of Energy LWRS program for developing tools to understand the aging/failure mechanism and to predictmore » the remaining life of LWR components for anticipated 60-80 year operation.« less

  11. The Effects of Mental Fatigue on Physical Performance: A Systematic Review.

    PubMed

    Van Cutsem, Jeroen; Marcora, Samuele; De Pauw, Kevin; Bailey, Stephen; Meeusen, Romain; Roelands, Bart

    2017-08-01

    Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance. Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect. Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue. The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion.

  12. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  13. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for stainless steel 304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in stainless steel 304L and led to different results on fatigue life, depending on the test control mode. In step tests for stainless steel 304L, strong hardening induced by the first step of a high-low sequence significantly affects the fatigue behavior, depending on the test control mode used. For periodic overload tests of stainless steel 340L, hardening due to the overloads was progressive throughout life and more significant than in high-low step tests. For aluminum, no effect on deformation behavior was observed due to periodic overloads. However, the direction of the overloads was found to affect fatigue life, as tensile overloads led to longer lives, while compressive overloads led to shorter lives. Deformation and fatigue behaviors under random loading conditions are also presented and discussed for the two materials. The applicability of a common cumulative damage rule, the linear damage rule, is assessed for the two types of material, and for various loading conditions. While the linear damage rule associated with a strain-life or stress-life curve is shown to be fairly accurate for life predictions for aluminum, it is shown to poorly represent the behavior of stainless steel, especially in prestrained and high-low step tests, in load control. In order to account for prior deformation effects and achieve accurate fatigue life predictions for stainless steel, parameters including both stress and strain terms are required. The Smith-Watson-Topper and Fatemi-Socie approaches, as such parameters, are shown to correlate most test data fairly accurately. For damage accumulation under variable amplitude loading, the linear damage rule associated with strain-life or stress-life curves can lead to inaccurate fatigue life predictions, especially for materials presenting strong deformation memory effect, such as stainless steel 304L. The inadequacy of this method is typically attributed to the linear damage rule itself. On the contrary, this study demonstrates that damage accumulation using the linear damage rule can be accurate, provided that the linear damage rule is used in conjunction with parameters including both stress and strain terms. By including both loading history and response of the material in damage quantification, shortcomings of the commonly used linear damage rule approach can be circumvented in an effective manner. In addition, cracking behavior was also analyzed under various loading conditions. Results on microcrack initiation and propagation are presented in relation to deformation and fatigue behaviors of the materials. Microcracks were observed to form during the first few percent of life, indicating that most of the fatigue life of smooth specimens is spent in microcrack formation and growth. Analyses of fractured specimens showed that microcrack formation and growth is dependent on the loading history, and less important in aluminum than stainless steel 304L, due to the higher toughness of this latter material.

  14. Effect of exercise interventions on perceived fatigue in people with multiple sclerosis: synthesis of meta-analytic reviews.

    PubMed

    Safari, Reza; Van der Linden, Marietta L; Mercer, Tom H

    2017-06-01

    Although exercise training has been advocated as a nonpharmacological treatment for multiple sclerosis (MS) related fatigue, no consensus exists regarding its effectiveness. To address this, we collated meta-analytic reviews that explored the effectiveness of exercise training for the treatment of MS-related fatigue. We searched five online databases for relevant reviews, published since 2005, and identified 172 records. Five reviews were retained for systematic extraction of information and evidence quality analysis. Although our review synthesis indicated that exercise training interventions have a moderate effect on fatigue reduction in people with MS, no clear insight was obtained regarding the relative effectiveness of specific types or modes of exercise intervention. Moreover, Grading of Recommendation Assessment, Development and Evaluation revealed that the overall quality of evidence emanating from these five reviews was 'very low'.

  15. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  16. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept. Using the FASTRAN code, the fatigue-life of L-PBF Inconel 718 was accurately calculated using the size and shape of process-induced voids in the material. In addition, the maximum valley depth of the surface profile was found to be an appropriate representative of the initial surface flaw for fatigue-life prediction of AM materials in an as-built surface condition.

  17. Fatigue of Nitinol: The state-of-the-art and ongoing challenges.

    PubMed

    Mahtabi, M J; Shamsaei, Nima; Mitchell, M R

    2015-10-01

    Nitinol, a nearly equiatomic alloy of nickel and titanium, has been considered for a wide range of applications including medical and dental devices and implants as well as aerospace and automotive components and structures. The realistic loading condition in many of these applications is cyclic; therefore, fatigue is often the main failure mode for such components and structures. The fatigue behavior of Nitinol involves many more complexities compared with traditional metal alloys arising from its uniqueness in material properties such as superelasticity and shape memory effects. In this paper, a review of the present state-of-the-art on the fatigue behavior of superelastic Nitinol is presented. Various aspects of fatigue of Nitinol are discussed and microstructural effects are explained. Effects of material preparation and testing conditions are also reviewed. Finally, several conclusions are made and recommendations for future works are offered. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  19. A fatigue monitoring system based on time-domain and frequency-domain analysis of pulse data

    NASA Astrophysics Data System (ADS)

    Shen, Jiaai

    2018-04-01

    Fatigue is almost a problem that everyone would face, and a psychosis that everyone hates. If we can test people's fatigue condition and remind them of the tiredness, dangers in life, for instance, traffic accidents and sudden death will be effectively reduced, people's fatigued operations will be avoided. And people can be assisted to have access to their own and others' physical condition in time to alternate work with rest. The article develops a wearable bracelet based on FFT Pulse Frequency Spectrum Analysis and IBI's standard deviation and range calculation, according to people's heart rate (BPM) and inter-beat interval (IBI) while being tired and conscious. The hardware part is based on Arduino, pulse rate sensor, and Bluetooth module, and the software part is relied on network micro database and APP. By doing sample experiment to get more accurate standard value to judge tiredness, we prove that we can judge people's fatigue condition based on heart rate (BPM) and inter-beat interval (IBI).

  20. Tension and compression fatigue response of unnotched 3D braided composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.

    1992-01-01

    The unnotched compression and tension fatigue response of a 3-D braided composite was measured. Both gross compressive stress and tensile stress were plotted against cycles to failure to evaluate the fatigue life of these materials. Damage initiation and growth was monitored visually and by tracking compliance change during cycle loading. The intent was to establish by what means the strength of a 3-D architecture will start to degrade, at what point will it degrade beyond an acceptable level, and how this material will typically fail.

  1. Factors that affect the fatigue strength of power transmission shafting and their impact on design

    NASA Technical Reports Server (NTRS)

    Leowenthal, S. H.

    1986-01-01

    A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.

  2. Effects of Laser and Shot Peening on Fatigue Crack Growth in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Forman, Royce; Lyons, Jed

    2006-01-01

    The effects of laser, and shot peening on the fatigue life of Friction Stir Welds (FSW) have been investigated. The surface roughness resulting from various peening techniques was assessed, and the fracture surfaces microstructure was characterized. Laser peening resulted in an increase in fatigue life approximately 60%, while shot peening resulted in 10% increase when compared to the unpeened material. The surface roughness of shot peening was significantly higher compared to the base material, while specimens processed with laser peening were relatively smooth.

  3. [Attitude of cancer patients to fatigue: patient attitude in Switzerland and England].

    PubMed

    Glaus, Agnes; Frei, Irena Anna; Knipping, Cornelia; Ream, Emma; Browne, Natasha

    2002-10-01

    In the course of a cancer trajectory, many patients suffer from distressing fatigue. In past years, research has shown that care givers tend to underestimate or even to ignore this frequent phenomenon. Despite increasing knowledge, fatigue seems to remain an orphan topic in symptom management. A qualitative research strategy was used to explore the perception of cancer patients regarding the awareness of fatigue in professionals and the way they deal with it. Patients also evaluated the usefulness of some currently available information material about fatigue. The expert-opinion of cancer patients in Switzerland and England was analysed. Convenient sampling guided the selection process of seven patients in each country. A tape-recorded focus-group interview served as method to collect and transcribe data. Data were analysed according to the framework analyses by Richie & Spencer. Results were very similar in both countries. Patients stated a great need for more information regarding fatigue. They feel that care givers are not sufficiently aware of it and that a specific support is not part of current standard practice. The information material was well received and generally judged as very good and helpful. Communication barriers in professionals as well as in patients continue to exist. Patients wish to be better informed by care givers. The available information material serves well to support this information as they provide words for the unmentioned phenomenon. Far more professional fatigue education is needed to raise care givers' awareness.

  4. Biopsychosocial risk factors of persistent fatigue after acute infection: A systematic review to inform interventions.

    PubMed

    Hulme, Katrin; Hudson, Joanna L; Rojczyk, Philine; Little, Paul; Moss-Morris, Rona

    2017-08-01

    Fatigue is a prevalent and debilitating symptom, preceded by an acute infectious episode in some patients. This systematic review aimed to identify risk factors for the development of persistent fatigue after an acute infection, to develop an evidence-based working model of post-infectious fatigue. Electronic databases (Medline, PsycINFO and EMBASE) were searched, from inception to March 2016, for studies which investigated biopsychosocial risk factors of on-going fatigue after an acute infection. Inclusion criteria were: prospective design; biological, psychological or social risk factors; standardised measure of post-infectious fatigue (self-report scales or clinical diagnosis). Studies were excluded if the sample had a pre-existing medical condition, infection was conceptualised as 'vaccination' or they were intervention trials. A narrative synthesis was performed. Eighty-one full texts were screened, of which seventeen were included in the review. Over half included glandular fever populations. Other infections included dengue fever, 'general'/'viral' and Q-fever. Risk factors were summarised under biological, social, behavioural, cognitive and emotional subthemes. Patients' cognitive and behavioural responses to the acute illness, and pre-infection or baseline distress and fatigue were the most consistent risk factors for post-infectious fatigue. An empirical summary model is provided, highlighting the risk factors most consistently associated with persistent fatigue. The components of the model, the possible interaction of risk factors and implications for understanding the fatigue trajectory and informing preventative treatments are discussed. Copyright © 2017. Published by Elsevier Inc.

  5. Incidence of fatigue symptoms and diagnoses presenting in UK primary care from 1990 to 2001.

    PubMed

    Gallagher, Arlene M; Thomas, Janice M; Hamilton, William T; White, Peter D

    2004-12-01

    Little is known about whether the incidence of symptoms of fatigue presented in primary care, and the consequent diagnoses made, change over time. The UK General Practice Research Database was used to investigate the annual incidence of both fatigue symptoms and diagnoses recorded in UK primary care from 1990 to 2001. The overall incidence of all fatigue diagnoses decreased from 87 per 100 000 patients in 1990 to 49 in 2001, a reduction of 44%, while postviral fatigue syndromes decreased from 81% of all fatigue diagnoses in 1990 to 60% in 2001. Chronic fatigue syndrome (CFS) and myalgic encephalomyelitis (ME) together increased from 9% to 26% of all fatigue diagnoses. The incidence of fibromyalgia increased from less than 1 per 100 000 to 35 per 100 000. In contrast, there was no consistent change in the incidence of all recorded symptoms of fatigue, with an average of 1503 per 100 000, equivalent to 1.5% per year. CFS/ME and fibromyalgia were rarely diagnosed in children and were uncommon in the elderly. All symptoms and diagnoses were more common in females than in males. The overall incidence of fatigue diagnoses in general has fallen, but the incidence rates of the specific diagnoses of CFS/ME and fibromyalgia have risen, against a background of little change in symptom reporting. This is likely to reflect fashions in diagnostic labelling rather than true changes in incidence.

  6. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    PubMed

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio behavior of AM porous biomaterials is both quantitatively and qualitatively different from that of bulk materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Lamb Wave Response of Fatigued Composite Samples

    NASA Technical Reports Server (NTRS)

    Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.

    1994-01-01

    Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.

  8. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Trško, Libor; Guagliano, Mario; Bokůvka, Otakar; Nový, František; Jambor, Michal; Florková, Zuzana

    2017-04-01

    The ever more pressing and concurrent requirements of light design, increased performances and reliability, energy savings together with acceptable costs, is always pushing researchers and engineers toward the definition and application of new materials and treatments, able to guarantee superior properties and adequate repeatability and reliability. This means that one step beyond the definition of a potentially successful solution, a complete characterization of the new materials is needed, in order to get the right data and use them in the design process. A promising severe plastic deformation surface treatment to improve the fatigue properties of materials and metal parts is considered in this paper. The used treatment is called the severe shot peening, and it is derived from the conventional shot peening but with use of unusually high peening parameters. It was proven that it is able to generate a nanostructured surface layer of material, which results in superior fatigue properties when applied to many structural materials. The severe shot peening is applied to an AW 7075 Al alloy, widely used in mechanical and aeronautic constructions and the effects of such a treatment on this material are investigated in this paper, with particular emphasis on the ultra-high-cycle fatigue behavior. The results address the choice of the correct treatment parameters for getting an evaluable advantage of this treatment and are critically discussed for a complete understanding of the mechanisms leading to the modified fatigue behavior, in view of the future developments and research in the field.

  9. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  10. Influence of shear cutting parameters on the fatigue behavior of a dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paetzold, I.; Dittmann, F.; Feistle, M.; Golle, R.; Haefele, P.; Hoffmann, H.; Volk, W.

    2017-09-01

    The influence of the edge condition of car body and chassis components made of steel sheet on fatigue behavior under dynamic loading presents a major challenge for automotive manufacturers and suppliers. The calculated lifetime is based on material data determined by the fatigue testing of specimens with polished edges. Prototype components are often manufactured by milling or laser cutting, whereby in practice, the series components are produced by shear cutting due to its cost-efficiency. Since the fatigue crack in such components usually starts from a shear cut edge, the calculated and experimental determined lifetime will vary due to the different conditions at the shear cut edges. Therefore, the material data determined with polished edges can result in a non-conservative component design. The aim of this study is to understand the relationship between the shear cutting process and the fatigue behavior of a dual-phase steel sheet. The geometry of the shear cut edge as well as the depth and degree of work hardening in the shear affected zone can be adjusted by using specific shear cutting parameters, such as die clearance and cutting edge radius. Stress-controlled fatigue tests of unnotched specimens were carried out to compare the fatigue behavior of different edge conditions. By evaluating the results of the fatigue experiments, influential shear cutting parameters on fatigue behavior were identified. It was possible to assess investigated shear cutting strategies regarding the fatigue behavior of a high-strength steel DP800.

  11. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  12. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  13. Open hole and postimpact compressive fatigue of stitched and unstitched carbon-epoxy composites

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.; Poe, Clarence C.; Whitcomb, John D.

    1992-01-01

    The performance is studied of a stitched uniweave fabric composite and that of a toughened tape composite. The effects of stitching on compression fatigue life are addressed. Post impact compression fatigue and open hole fatigue tests were run on an AS4/3501-6 uniweave with stitching and a toughened IM7/8551-7 tape without stitching. Stitching was found to increase the thickness and consequently the weight of the composite material. The two materials were compared on an equal carbon content basis as well as on an equal weight basis. The excess thickness in the stitched uniweave composite was responsible for the lower fatigue life, on an equal carbon basis, compared to the toughened resin tape composite. Comparison of fatigue lives on an equal carbon content basis indicated that puncture or crimp type damage from stitching has very little effect on compression failure. Post impact fatigue test showed that although the damage area in the stitched uniweave composite was twice that of the toughened tape composite, the fatigue lives of the stitched composite were significantly longer than those of the toughened composite. Thus, it appears that the increase in thickness from stitching is much more of a penalty than crimped fibers or puncture type damage from stitching.

  14. Fatigue properties on the failure mode of a dental implant in a simulated body environment

    NASA Astrophysics Data System (ADS)

    Kim, Min Gun

    2011-10-01

    This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.

  15. Open hole and post-impact compression fatigue of stitched and unstitched carbon/epoxy composites

    NASA Technical Reports Server (NTRS)

    Portanova, M. A.; Poe, C. C., Jr.; Whitcomb, John D.

    1990-01-01

    The performance is studied of a stitched uniweave fabric composite and that of a toughened tape composite. The effects of stitching on compression fatigue life are addressed. Post impact compression fatigue and open hole fatigue tests were run on an AS4/3501-6 uniweave with stitching and a toughened IM7/8551-7 tape without stitching. Stitching was found to increase the thickness and consequently the weight of the composite material. The two materials were compared on an equal carbon content basis as well as on an equal weight basis. The excess thickness in the stitched uniweave composite was responsible for the lower fatigue life, on an equal carbon basis, compared to the toughened resin tape composite. Comparison of fatigue lives on an equal carbon content basis indicated that puncture or crimp type damage from stitching has very little effect on compression failure. Post impact fatigue test showed that although the damage area in the stitched uniweave composite was twice that of the toughened tape composite, the fatigue lives of the stitched composite were significantly longer than those of the toughened composite. Thus, it appears that the increase in thickness from stitching is much more of a penalty than crimped fibers or puncture type damage from stitching.

  16. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  17. Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implants

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Koike, Marie; Mason, Robert L.; Okabe, Toru

    2013-02-01

    Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.

  18. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  19. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  20. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1997-12-31

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less

  1. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  2. Tension and fatigue behavior of 316LVM 1x7 multi-strand cables used as implantable electrodes.

    PubMed

    Lewandowski, John J; Varadarajan, Ravikumar; Smith, Brian; Tuma, Chris; Shazly, Mostafa; Vatamanu, Luciano O

    2008-07-15

    The mechanical behavior of 316LVM 1x7 cables were evaluated in uniaxial tension, and in cyclic strain-controlled fatigue with the use of a Flex tester operated to provide fully reversed bending fatigue. The magnitude of cyclic strains imparted to each cable tested was controlled via the use of different diameter mandrels. Smaller diameter mandrels produced higher values of cyclic strain and lower fatigue life. Multiple samples were tested and analyzed via scanning electron microscopy. The fatigue results were analyzed via a Coffin-Manson-Basquin approach and compared to fatigue data obtained from the literature where testing was conducted on similar materials, but under rotating bending fatigue conditions.

  3. Fatigue among HIV-infected patients in the era of highly active antiretroviral therapy.

    PubMed

    Henderson, M; Safa, F; Easterbrook, P; Hotopf, M

    2005-09-01

    To describe the prevalence of operationally defined fatigue in an ethnically diverse HIV-infected population in south London, and to examine the association of fatigue with demographic characteristics, stage of disease, antiretroviral therapy and psychological factors. A descriptive comparative cross-sectional study of HIV-infected patients attending a London HIV clinic over a 5-month period in 2002 was performed. Demographic and clinical data were obtained from the local database. Participants completed four self-administered questionnaires-the Chalder Fatigue Scale (CFS), a measure of physical and mental fatigue; the General Health Questionnaire (GHQ-12) to detect anxiety and depression; the Medical Outcomes Study 36-Item Short-Form Health Survey (SF-36) to measure functional status, and the Illness Perception Questionnaire (IPQ). Fatigue 'cases' were defined as those scoring at least 4 on the CFS. Multivariate logistic regression was used to identify factors associated with the presence of fatigue. Two hundred and five patients were approached and 148 (72%) agreed to participate. Overall, 65% of patients were defined as fatigued. Significant psychological distress on the GHQ-12, functional impairment on the SF-36 and a higher CD4 count were all independently associated with the presence of fatigue. There was no association with use of antiretroviral therapy or demographic characteristics. The presence of fatigue in HIV-infected patients is most strongly associated with psychological factors and not with more advanced HIV disease or the use of highly active antiretroviral therapy. This highlights the importance of investigation and management of underlying depression and anxiety in patients presenting with fatigue.

  4. Predictors and treatment strategies of HIV-related fatigue in the combined antiretroviral therapy era.

    PubMed

    Jong, Eefje; Oudhoff, Lisanne A; Epskamp, Cynthia; Wagener, Marlies N; van Duijn, Miranda; Fischer, Steven; van Gorp, Eric Cm

    2010-06-19

    To assess predictors and reported treatment strategies of HIV-related fatigue in the combined antiretroviral (cART) era. Five databases were searched and reference lists of pertinent articles were checked. Studies published since 1996 on predictors or therapy of HIV-related fatigue measured by a validated instrument were selected. A total of 42 studies met the inclusion criteria. The reported HIV-related fatigue prevalence in the selected studies varied from 33 to 88%. The strongest predictors for sociodemographic variables were unemployment and inadequate income. Concerning HIV-associated factors, the use of cART was the strongest predictor. Comorbidity and sleeping difficulties were important factors when assessing physiological influences. Laboratory parameters were not predictive of fatigue. The strongest and most uniform associations were observed between fatigue and psychological factors such as depression and anxiety. Reported therapeutic interventions for HIV-related fatigue include testosterone, psycho-stimulants (dextroamphetamine, methylphenidate hydrochloride, pemoline, modafinil), dehydroepiandrosterone, fluoxetine and cognitive behavioural or relaxation therapy. HIV-related fatigue has a high prevalence and is strongly associated with psychological factors such as depression and anxiety. A validated instrument should be used to measure intensity and consequences of fatigue in HIV-infected individuals. In the case of fatigue, clinicians should not only search for physical mechanisms, but should question depression and anxiety in detail. There is a need for intervention studies comparing the effect of medication (antidepressants, anxiolytics) and behavioural interventions (cognitive-behavioural therapy, relaxation therapy, graded exercise therapy) to direct the best treatment strategy. Treatment of HIV-related fatigue is important in the care for HIV-infected patients and requires a multidisciplinary approach.

  5. Risk and predictors of fatigue after infectious mononucleosis in a large primary-care cohort.

    PubMed

    Petersen, I; Thomas, J M; Hamilton, W T; White, P D

    2006-01-01

    Fatigue has been found to complicate infectious mononucleosis (IM) when patients are directly asked about it. We do not know whether such fatigue is clinically significant, nor whether IM is a specific risk for fatigue (or whether it can follow other common infections). Various risk markers for post-infectious fatigue have been identified, but findings are inconsistent. To determine the risk of clinically reported fatigue (compared with depression) after IM (compared with both influenza and tonsillitis) in patients attending primary care, and to examine risk markers for post-IM fatigue. Comparison of matched primary-care cohorts. We identified 1438 adult patients with a positive heterophil antibody test for IM from the UK General Practice Research Database. These patients were individually matched on age, sex and practice to two comparison groups; one with a clinical diagnosis of influenza and the other of tonsillitis. The odds ratios (ORs) (95%CI) for reported fatigue after IM vs. influenza and tonsillitis were 4.4 (2.9-6.9) and 6.6 (4.2-10.4), respectively. Risk markers for post-IM fatigue included female sex and premorbid mood disorder. By comparison, the ORs for depression after IM vs. influenza and tonsillitis were 1.6 (0.9-2.6) and 2.3 (1.4-3.9), respectively. IM is a specific and significant risk for clinically reported fatigue, which is both separate from, and more common than, depression. Female sex and premorbid mood disorder are risk markers for fatigue. These can be used both to target prevention strategies and to explore aetiological mechanisms.

  6. Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance

    NASA Astrophysics Data System (ADS)

    Bonora, R.; Cioffi, M. O. H.; Voorwald, H. J. C.

    2017-05-01

    Surface improvement in steels is of great interest for applications in industry. The aim of this investigation is to study the effect of nitrogen ion implantation on the axial fatigue strength and wear resistance of 15-5 PH stainless steel. It is well know that electroplated coatings, which are used to improve abrasive wear and corrosion properties, affects negatively the fatigue strength. It is also important to consider requirements to reduce the use of coated materials with electroplated chromium and cadmium, that produce waste, which is harmful to health and environment. The HVOF (High velocity oxygen fuel) process provides hardness, wear strength and higher fatigue resistance in comparison to electroplated chromium. Plasma immersion ion implantation has been used to enhance the hardness, wear, fatigue and corrosion properties of metals and alloys. In the present research the fatigue life increased twice for 15-5 PH three hours PIII treated in comparison to base material. From the abrasive wear tests a lower pin mass reduction was observed, associated to the superficial treatments. The improvement of fatigue and mechanical performance is attributed to a combination of nitrides phase structure and compressive residual stresses during the PIII treatment.

  7. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  8. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions.

    PubMed

    Wendler, Michael; Belli, Renan; Valladares, Diana; Petschelt, Anselm; Lohbauer, Ulrich

    2018-06-01

    Chemical and mechanical degradation play a key role on the lifetime of dental restorative materials. Therefore, prediction of their long-term performance in the oral environment should base on fatigue, rather than inert strength data, as commonly observed in the dental material's field. The objective of the present study was to provide mechanistic fatigue parameters of current dental CAD/CAM materials under cyclic biaxial flexure and assess their suitability in predicting clinical fracture behaviors. Eight CAD/CAM materials, including polycrystalline zirconia (IPS e.max ZirCAD), reinforced glasses (Vitablocs Mark II, IPS Empress CAD), glass-ceramics (IPS e.max CAD, Suprinity PC, Celtra Duo), as well as hybrid materials (Enamic, Lava Ultimate) were evaluated. Rectangular plates (12×12×1.2mm 3 ) with highly polished surfaces were prepared and tested in biaxial cyclic fatigue in water until fracture using the Ball-on-Three-Balls (B3B) test. Cyclic fatigue parameters n and A* were obtained from the lifetime data for each material and further used to build SPT diagrams. The latter were used to compare in-vitro with in-vivo fracture distributions for IPS e.max CAD and IPS Empress CAD. Susceptibility to subcritical crack growth under cyclic loading was observed for all materials, being more severe (n≤20) in lithium-based glass-ceramics and Vitablocs Mark II. Strength degradations of 40% up to 60% were predicted after only 1 year of service. Threshold stress intensity factors (K th ) representing the onset of subcritical crack growth (SCG), were estimated to lie in the range of 0.37-0.44 of K Ic for the lithium-based glass-ceramics and Vitablocs Mark II and between 0.51-0.59 of K Ic for the other materials. Failure distributions associated with mechanistic estimations of strength degradation in-vitro showed to be useful in interpreting failure behavior in-vivo. The parameter K th stood out as a better predictor of clinical performance in detriment to the SCG n parameter. Fatigue parameters obtained from cyclic loading experiments are more reliable predictors of the mechanical performance of contemporary dental CAD/CAM restoratives than quasi-static mechanical properties. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  9. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  10. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    PubMed

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  11. The fatigue strength of riveted joints and lugs

    NASA Technical Reports Server (NTRS)

    Schijve, J

    1956-01-01

    This report deals with a number of tests on riveted joints and lugs for the primary purpose of comparing the several types of riveted joints and to study the effect of various factors on the fatigue strength of lugs. A check was made to ascertain whether or not an estimate of the fatigue life at a certain loading could be made from the dimensions of the joint and the fatigue data of the unnotched materials. Recommendations are made on the proportioning of joints to obtain better fatigue behavior.

  12. Screening, Assessment, and Management of Fatigue in Adult Survivors of Cancer: An American Society of Clinical Oncology Clinical Practice Guideline Adaptation

    PubMed Central

    Bower, Julienne E.; Bak, Kate; Berger, Ann; Breitbart, William; Escalante, Carmelita P.; Ganz, Patricia A.; Schnipper, Hester Hill; Lacchetti, Christina; Ligibel, Jennifer A.; Lyman, Gary H.; Ogaily, Mohammed S.; Pirl, William F.; Jacobsen, Paul B.

    2014-01-01

    Purpose This guideline presents screening, assessment, and treatment approaches for the management of adult cancer survivors who are experiencing symptoms of fatigue after completion of primary treatment. Methods A systematic search of clinical practice guideline databases, guideline developer Web sites, and published health literature identified the pan-Canadian guideline on screening, assessment, and care of cancer-related fatigue in adults with cancer, the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines In Oncology (NCCN Guidelines) for Cancer-Related Fatigue and the NCCN Guidelines for Survivorship. These three guidelines were appraised and selected for adaptation. Results It is recommended that all patients with cancer be evaluated for the presence of fatigue after completion of primary treatment and be offered specific information and strategies for fatigue management. For those who report moderate to severe fatigue, comprehensive assessment should be conducted, and medical and treatable contributing factors should be addressed. In terms of treatment strategies, evidence indicates that physical activity interventions, psychosocial interventions, and mind-body interventions may reduce cancer-related fatigue in post-treatment patients. There is limited evidence for use of psychostimulants in the management of fatigue in patients who are disease free after active treatment. Conclusion Fatigue is prevalent in cancer survivors and often causes significant disruption in functioning and quality of life. Regular screening, assessment, and education and appropriate treatment of fatigue are important in managing this distressing symptom. Given the multiple factors contributing to post-treatment fatigue, interventions should be tailored to each patient's specific needs. In particular, a number of nonpharmacologic treatment approaches have demonstrated efficacy in cancer survivors. PMID:24733803

  13. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy’s Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316SS) material which is widely used in the US reactors. Contrary to the conventional S~N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening)more » under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. In this paper (part-I) the fatigue experiments under different test and environment conditions and related stress-strain results for 316 SS are discussed. In a second paper (part-II) the related evolutionary cyclic plasticity material modeling techniques and results are discussed.« less

  14. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  15. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.

    PubMed

    Connelly, G M; Rimnac, C M; Wright, T M; Hertzberg, R W; Manson, J A

    1984-01-01

    The relative fatigue crack propagation resistance of plain and carbon fiber-reinforced ultrahigh molecular weight polyethylene (UHMWPE) was determined from cyclic loading tests performed on compact tension specimens machined from the tibial components of total knee prostheses. Both materials were characterized by dynamic mechanical spectroscopy, X-ray diffraction, and differential scanning calorimetry. The cyclic tests used loading in laboratory air at 5 Hz using a sinusoidal wave form. Dynamic mechanical spectroscopy showed that the reinforced UHMWPE had a higher elastic storage modulus than the plain UHMWPE, whereas X-ray diffraction and differential scanning calorimetry showed that the percent crystallinity and degree of order in the crystalline regions were similar for the two materials. Fatigue crack propagation in both materials proved to be very sensitive to small changes in the applied cyclic stress intensity range. A 10% increase in stress intensity resulted in approximately an order of magnitude increase in fatigue crack growth rate. The fatigue crack propagation resistance of the reinforced UHMWPE was found to be significantly worse than that of the plain UHMWPE. This result was attributed to poor bonding between the carbon fibers and the UHMWPE matrix and the ductile nature of the matrix itself.

  16. Entropy Production during Fatigue as a Criterion for Failure. A Local Theory of Fracture in Engineering Materials.

    DTIC Science & Technology

    1984-12-15

    7] used this interpretation as the basis for a hypothesis that microplastic hysteresis energy is a constant at fatigue failure. Although they were...that microplastic strain energy dissipated is not constant at fatigue failure, but suggested that it increases with fatigue lifetime in a predictable...nonlinear thermodynamics must be addressed. The microplastic hysteresis energy is related to dislocation theory, which is directly related to

  17. Probability of failure prediction for step-stress fatigue under sine or random stress

    NASA Technical Reports Server (NTRS)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  18. The measurement of fatigue in chronic illness: a systematic review of unidimensional and multidimensional fatigue measures.

    PubMed

    Whitehead, Lisa

    2009-01-01

    Fatigue is a common symptom associated with a wide range of chronic diseases. A large number of instruments have been developed to measure fatigue. An assessment regarding the reliability, validity, and utility of fatigue measures is time-consuming for the clinician and researcher, and few reviews exist on which to draw such information. The aim of this article is to present a critical review of fatigue measures, the populations in which the scales have been used, and the extent to which the psychometric properties of each instrument have been evaluated to provide clinicians and researchers with information on which to base decisions. Seven databases were searched for all articles that measured fatigue and offered an insight into the psychometric properties of the scales used over the period 1980-2007. Criteria for judging the "ideal" measure were developed to encompass scale usability, clinical/research utility, and the robustness of psychometric properties. Twenty-two fatigue measures met the inclusion criteria and were evaluated. A further 17 measures met some of the criteria, but have not been tested beyond initial development, and are reviewed briefly at the end of the article. The review did not identify any instrument that met all the criteria of an ideal instrument. However, a small number of short instruments demonstrated good psychometric properties (Fatigue Severity Scale [FSS], Fatigue Impact Scale [FIS], and Brief Fatigue Inventory [BFI]), and three comprehensive instruments demonstrated the same (Fatigue Symptom Inventory [FSI], Multidimensional Assessment of Fatigue [MAF], and Multidimensional Fatigue Symptom Inventory [MFSI]). Only four measures (BFI, FSS, FSI, and MAF) demonstrated the ability to detect change over time. The clinician and researcher also should consider the populations in which the scale has been used previously to assess its validity with their own patient group, and assess the content of a scale to ensure that the key qualitative aspects of fatigue of the population of interest are covered.

  19. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    NASA Astrophysics Data System (ADS)

    Frear, D. R.; Burchett, S. N.; Rashid, M. M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue. We present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.

  20. Fatigue-Life Prediction Methodology Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newmann, James C., Jr.; Phillips, Edward P.; Swain, M. H.

    1997-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using 'small-crack theory' for various materials and loading conditions. Crack-tip constraint factors, to account for three-dimensional state-of-stress effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta K(eff)) under constant-amplitude loading. Some modifications to the delta k(eff)-rate relations were needed in the near-threshold regime to fit measured small-crack growth rate behavior and fatigue endurance limits. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens made of two aluminum alloys and a steel under constant-amplitude and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks for the aluminum alloys and steel for edge-notched specimens. An equivalent-initial-flaw-size concept was used to calculate fatigue lives in other cases. Results from the tests and analyses agreed well.

  1. Progress Report on Long Hold Time Creep Fatigue of Alloy 617 at 850°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Laura Jill

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep-fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at themore » 0.3% strain range and 240 minutes at the 1.0% strain range. The creep-fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep-fatigue data are calculated for the creep-fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.« less

  2. Fatigue crack growth behavior of pressure vessel steels and submerged arc weldments in a high-temperature pressurized water environment

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Logsdon, W. A.; Begley, J. A.

    1989-10-01

    The fatigue crack growth rate (FCGR) properties of SA508 C1 2a and SA533 Gr A C1 2 pressure vessel steels and the corresponding automatic submerged are weldments were developed in a high-temperature pressurized water (HPW) environment at 288 °C (550°F) and 7.2 MPa (1044 psi) at load ratios of 0.02 and 0.50. The HPW enviromment FCGR properties of these pressure vessel steels and submerged arc weldments were generally conservative, compared with the approrpriate American Society of Mechanical Engineers (ASME) Section XI water environmental reference curve. The growth rate of fatigue cracks in the base materials, however, was considerably faster in the HPW environment than in a corresponding 288°C (550°F) base line air environment. The growth rate of fatigue cracks in the two submerged are weldments was also accelerated in the HPW environment but to a significantly lesser degree than that demonstrated by the corresponding base materials. In the air environment, fatigue striations were observed, independent of material and load ratio, while in the HPW environment, some intergranular facets were present. The greater environmental effect on crack growth rates displayed by the base materials, as compared with the weldments, was attributed to a different sulfide composition and morphology.

  3. PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model.

    PubMed

    Arabmotlagh, Mohammad; Bachmaier, Samuel; Geiger, Florian; Rauschmann, Michael

    2014-11-01

    Polymethylmethacrylate (PMMA) is the most commonly used void filler for augmentation of osteoporotic vertebral fracture, but the differing mechanical features of PMMA and osteoporotic bone result in overload and failure of adjacent bone. The aim of this study was to compare fatigue failure of bone after augmentation with PMMA-nanocrystalline hydroxyapatite (HA) composite material or with plain PMMA in a sheep model. After characterization of the mechanical properties of a composite material consisting of PMMA and defined amounts (10, 20, and 30% volume fraction) of HA, the composite material with 30% volume fraction HA was implanted in one distal femur of sheep; plain PMMA was implanted in the other femur. Native non-augmented bone served as control. Three and 6 months after implantation, the augmented bone samples were exposed to cyclic loading and the evolution of damage was investigated. The fatigue life was highest for the ovine native bone and lowest for bone-PMMA specimens. Bone-composite specimens showed significantly higher fatigue life than the respective bone-PMMA specimens in both 3- and 6-month follow-up groups. These results suggest that modification of mechanical properties of PMMA by addition of HA to approximate those of cancellous bone retards fatigue failure of the surrounding bone compared to augmented bone with plain PMMA. © 2014 Wiley Periodicals, Inc.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, F. S.

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting andmore » solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.« less

  5. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  6. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  7. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  8. The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    NASA Technical Reports Server (NTRS)

    Forth, S. C.; Johnston, W. M.; Seshadri, B. R.

    2006-01-01

    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.

  9. High strain rate and quasi-static tensile behaviour of Ti-6Al-4V after cyclic damage

    NASA Astrophysics Data System (ADS)

    Galán López, J.; Verleysen, P.; Degrieck, J.

    2012-08-01

    It is common that energy absorbing structural elements are subjected to a number of loading cycles before a crash event. Several studies have shown that previous fatigue can significantly influence the tensile properties of some materials, and hence the behaviour of structural elements made of them. However, when the capacity of absorbing energy of engineering materials is determined, fresh material without any fatigue damage is most often used. This study investigates the effect of fatigue damage on the dynamic tensile properties of Ti-6Al-4V in thin-sheet form. Results are completed with tests at quasi-static strain rates and observations of the fracture surfaces, and compared with results obtained from other alloys and steel grades. The experiments show that the dynamic properties of Ti-6Al-4V are not affected by a number of fatigue loading cycles high enough to significantly reduce the energy absorbing capabilities of EDM machined samples.

  10. Phenomenological aspects of fatigue cracking in as-received and hardened F82H modified steel exposed to lithiated water with dissolved hydrogen at 240°C

    NASA Astrophysics Data System (ADS)

    Maday, Marie-Françoise

    2000-12-01

    The low cycle fatigue (LCF) behaviour of F82H modified steel with three different degrees of hardness produced by specific thermal treatments has been investigated at 240°C under load control, in oxygen-free lithiated solutions containing either no or 2 ppm dissolved hydrogen. In all cases, it was found that the aqueous environments reduced the fatigue life of the material and promoted fracture modes different from those observed in air tests; the fracture modes comprised intergranular and transgranular quasi-cleavage separations as well as microvoid coalescence, which depended on material conditions and water chemistry. All these features were ascribed to a hydrogen-assisted-cracking (HAC) phenomenon, as the basic mechanism for controlling the fatigue behaviour of various F82H heats in lithiated solutions. The observed differences in HAC paths are discussed from the standpoint of material microstructural and substructural parameters.

  11. Fatigue and fracture properties of a super-austenitic stainless steel at 295 K and 4 K

    NASA Astrophysics Data System (ADS)

    McRae, D. M.; Walsh, R. P.; Dalder, E. N. C.; Litherland, S.; Trosen, M.; Kuhlmann, D. J.

    2014-01-01

    The tie plate structure for the ITER Central Solenoid (CS) is required to have high strength and good fatigue and fracture behavior at both room temperature and 4 K. A super-austenitic stainless steel - UNS 20910, commonly referred to by its trade name, Nitronic 50 (N50) - has been chosen for consideration to fulfill this task, due to its good room temperature and cryogenic yield strengths and weldability. Although N50 is often considered for cryogenic applications, little published data exists at 4 K. Here, a full series of tests have been conducted at 295 K and 4 K, and static tensile properties of four forgings of commercially-available N50 are reported along with fatigue life, fatigue crack growth rate (FCGR), and fracture toughness data. This study makes a significant contribution to the cryogenic mechanical properties database of high strength, paramagnetic alloys with potential for superconducting magnet applications.

  12. Sleepiness/fatigue and distraction/inattention as factors for fatal versus nonfatal commercial motor vehicle driver injuries.

    PubMed

    Bunn, T L; Slavova, S; Struttmann, T W; Browning, S R

    2005-09-01

    A retrospective population-based case-control study was conducted to determine whether driver sleepiness/fatigue and inattention/distraction increase the likelihood that a commercial motor vehicle collision (CVC) will be fatal. Cases were identified as CVC drivers who died (fatal) and controls were drivers who survived (nonfatal) an injury collision using the Kentucky Collision Report Analysis for Safer Highways (CRASH) electronic database from 1998-2002. Cases and controls were matched on unit type and roadway type. Conditional logistic regression was performed. Driver sleepiness/fatigue, distraction/inattention, age of 51 years of age and older, and nonuse of safety belts increase the odds that a CVC will be fatal. Primary safety belt law enactment and enforcement for all states, commercial vehicle driver education addressing fatigue and distraction and other approaches including decreased hours-of-service, rest breaks and policy changes, etc. may decrease the probability that a CVC will be fatal.

  13. Optimal management of fatigue in patients with systemic lupus erythematosus: a systematic review

    PubMed Central

    Yuen, Hon K; Cunningham, Melissa A

    2014-01-01

    Among the host of distressing pathophysiological and psychosocial symptoms, fatigue is the most prevalent complaint in patients with systemic lupus erythematosus (SLE). This review is to update the current findings on non-pharmacological, pharmacological, and modality strategies to manage fatigue in patients with SLE and to provide some recommendations on optimal management of fatigue based on the best available evidence. We performed a systematic literature search of the PubMed and Scopus databases to identify publications on fatigue management in patients with SLE. Based on the studies reported in the literature, we identified nine intervention strategies that have the potential to alleviate fatigue in patients with SLE. Of the nine strategies, aerobic exercise and belimumab seem to have the strongest evidence of treatment efficacy. N-acetylcysteine and ultraviolet-A1 phototherapy demonstrated low-to-moderate levels of evidence. Psychosocial interventions, dietary manipulation (low calorie or glycemic index diet) aiming for weight loss, vitamin D supplementation, and acupuncture all had weak evidence. Dehydroepiandrosterone is not recommended due to a lack of evidence for its efficacy. In addition to taking treatment efficacy and side effects into consideration, clinicians should consider factors such as cost of treatment, commitments, and burden to the patient when selecting fatigue management strategies for patients with SLE. Any comorbidities, such as psychological distress, chronic pain, sleep disturbance, obesity, or hypovitaminosis D, associated with fatigue should be addressed. PMID:25328393

  14. Fatigue performance of additively manufactured meta-biomaterials: The effects of topology and material type.

    PubMed

    Ahmadi, S M; Hedayati, R; Li, Y; Lietaert, K; Tümer, N; Fatemi, A; Rans, C D; Pouran, B; Weinans, H; Zadpoor, A A

    2018-01-01

    Additive manufacturing (AM) techniques enable fabrication of bone-mimicking meta-biomaterials with unprecedented combinations of topological, mechanical, and mass transport properties. The mechanical performance of AM meta-biomaterials is a direct function of their topological design. It is, however, not clear to what extent the material type is important in determining the fatigue behavior of such biomaterials. We therefore aimed to determine the isolated and modulated effects of topological design and material type on the fatigue response of metallic meta-biomaterials fabricated with selective laser melting. Towards that end, we designed and additively manufactured Co-Cr meta-biomaterials with three types of repeating unit cells and three to four porosities per type of repeating unit cell. The AM meta-biomaterials were then mechanically tested to obtain their normalized S-N curves. The obtained S-N curves of Co-Cr meta-biomaterials were compared to those of meta-biomaterials with same topological designs but made from other materials, i.e. Ti-6Al-4V, tantalum, and pure titanium, available from our previous studies. We found the material type to be far more important than the topological design in determining the normalized fatigue strength of our AM metallic meta-biomaterials. This is the opposite of what we have found for the quasi-static mechanical properties of the same meta-biomaterials. The effects of material type, manufacturing imperfections, and topological design were different in the high and low cycle fatigue regions. That is likely because the cyclic response of meta-biomaterials depends not only on the static and fatigue strengths of the bulk material but also on other factors that may include strut roughness, distribution of the micro-pores created inside the struts during the AM process, and plasticity. Meta-biomaterials are a special class of metamaterials with unusual or unprecedented combinations of mechanical, physical (e.g. mass transport), and biological properties. Topologically complex and additively manufactured meta-biomaterials have been shown to improve bone regeneration and osseointegration. The mechanical properties of such biomaterials are directly related to their topological design and material type. However, previous studies of such biomaterials have largely neglected the effects of material type, instead focusing on topological design. We show here that neglecting the effects of material type is unjustified. We studied the isolated and combined effects of topological design and material type on the normalized S-N curves of metallic bone-mimicking biomaterials and found them to be more strongly dependent on the material type than topological design. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Time perspective and social preference in older and younger adults: Effects of self-regulatory fatigue.

    PubMed

    Segerstrom, Suzanne C; Geiger, Paul J; Combs, Hannah L; Boggero, Ian A

    2016-09-01

    Socioemotional selectivity theory predicts that when perceived time in life is limited, people will prefer emotionally close social partners over less emotionally rewarding partners. Regulating social choices with regard to time perspective can make the best use of time with regard to well-being. However, doing so may depend on the self-regulatory capacity of the individual. Two studies, 1 with younger adults (N = 101) and 1 with younger (N = 42) and older (N = 39) adults, experimentally tested the effects of time perspective and self-regulatory fatigue on preferences for emotionally close partners and knowledgeable partners. In both studies and across younger and older adults, when self-regulatory fatigue was low, the perception of limited time resulted in a greater preference for close social partners relative to knowledgeable social partners. However, this shift was eliminated by self-regulatory fatigue. In Study 2, when fatigued, younger adults preferred close social partners to knowledgeable partners across time perspectives; older adults preferred close and knowledgeable partners more equally across time perspectives. These findings have implications for social decision-making and satisfaction among people who experience chronic self-regulatory fatigue. They also contradict previous suggestions that only younger adults are susceptible to self-regulatory fatigue. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Traffic accidents involving fatigue driving and their extent of casualties.

    PubMed

    Zhang, Guangnan; Yau, Kelvin K W; Zhang, Xun; Li, Yanyan

    2016-02-01

    The rapid progress of motorization has increased the number of traffic-related casualties. Although fatigue driving is a major cause of traffic accidents, the public remains not rather aware of its potential harmfulness. Fatigue driving has been termed as a "silent killer." Thus, a thorough study of traffic accidents and the risk factors associated with fatigue-related casualties is of utmost importance. In this study, we analyze traffic accident data for the period 2006-2010 in Guangdong Province, China. The study data were extracted from the traffic accident database of China's Public Security Department. A logistic regression model is used to assess the effect of driver characteristics, type of vehicles, road conditions, and environmental factors on fatigue-related traffic accident occurrence and severity. On the one hand, male drivers, trucks, driving during midnight to dawn, and morning rush hours are identified as risk factors of fatigue-related crashes but do not necessarily result in severe casualties. Driving at night without street-lights contributes to fatigue-related crashes and severe casualties. On the other hand, while factors such as less experienced drivers, unsafe vehicle status, slippery roads, driving at night with street-lights, and weekends do not have significant effect on fatigue-related crashes, yet accidents associated with these factors are likely to have severe casualties. The empirical results of the present study have important policy implications on the reduction of fatigue-related crashes as well as their severity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    NASA Technical Reports Server (NTRS)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  18. Effects of Oxygen Content on Tensile and Fatigue Performance of Ti-6Al-4 V Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Quintana, Oscar A.; Tong, Weidong

    2017-12-01

    We investigated the selective laser melting (SLM) process for development of Ti-6Al-4 V solid material with oxygen content corresponding to the extra low interstitial (ELI) and non-ELI conditions. The microstructure, chemistry, and tensile properties of samples in as-built and hot isostatically pressed (HIPed) condition were evaluated for both material types, while fatigue performance was evaluated by rotating bending fatigue tests on both smooth and notched SLM ELI and non-ELI Ti-6Al-4 V samples in HIPed condition.

  19. Endurance and failure characteristics of modified Vasco X-2, CBS 600 and AISI 9310 spur gears. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.

    1980-01-01

    Gear endurance tests and rolling-element fatigue tests were conducted to compare the performance of spur gears made from AISI 9310, CBS 600 and modified Vasco X-2 and to compare the pitting fatigue lives of these three materials. Gears manufactured from CBS 600 exhibited lives longer than those manufactured from AISI 9310. However, rolling-element fatigue tests resulted in statistically equivalent lives. Modified Vasco X-2 exhibited statistically equivalent lives to AISI 9310. CBS 600 and modified Vasco X-2 gears exhibited the potential of tooth fracture occurring at a tooth surface fatigue pit. Case carburization of all gear surfaces for the modified Vasco X-2 gears results in fracture at the tips of the gears.

  20. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  1. Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels

    NASA Technical Reports Server (NTRS)

    Yang, J. N.; Jones, D. L.

    1982-01-01

    A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.

  2. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal,more » 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.« less

  3. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives

    NASA Astrophysics Data System (ADS)

    Cerfontaine, B.; Collin, F.

    2018-02-01

    The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S- N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S- N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.

  4. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  5. Fatigue Properties of Butt Welded Aluminum Alloy and Carbon Steel Joints by Friction Stirring

    NASA Astrophysics Data System (ADS)

    Okane, M.; Shitaka, T.; Ishida, M.; Chaki, T.; Yasui, T.; Fukumoto, M.

    2017-05-01

    The butt dissimilar joints of Al-Mg-Si alloy JIS A6063 and carbon steel JIS S45C by means of friction stir welding were prepared for investigating fatigue properties of the joints. The joining tool used has cemented carbide thread probe and a shoulder made of alloy tool steel. All the fatigue tests were carried out under a load-controlled condition with a load ratio R=0.1 in air at room temperature. From the experimental results, it was found that hardness near the interface in A6063 was lower than that of base material. Three types of fatigue fracture occurred even in case of same welding condition. The first one was fracture at boundary between the lower hardness region and base material in A6063, the second type was initiated in the stir zone by FSW process and the last one was fracture at interface. Fatigue strength in case of the second one was lower than others. Furthermore, to investigate the effect of heat treatment on fatigue properties of the dissimilar joints, fatigue tests were also carried out with using the specimens which were heat treated under the same condition to aging process in T6 treatment. Fatigue fracture was initiated at interface between A6063 and S45C in case of the heat treated specimen, but fatigue strength was improved approximately 25% as compared with that of the non-heat treated specimen.

  6. Multi-parameter vital sign database to assist in alarm optimization for general care units.

    PubMed

    Welch, James; Kanter, Benjamin; Skora, Brooke; McCombie, Scott; Henry, Isaac; McCombie, Devin; Kennedy, Rosemary; Soller, Babs

    2016-12-01

    Continual vital sign assessment on the general care, medical-surgical floor is expected to provide early indication of patient deterioration and increase the effectiveness of rapid response teams. However, there is concern that continual, multi-parameter vital sign monitoring will produce alarm fatigue. The objective of this study was the development of a methodology to help care teams optimize alarm settings. An on-body wireless monitoring system was used to continually assess heart rate, respiratory rate, SpO 2 and noninvasive blood pressure in the general ward of ten hospitals between April 1, 2014 and January 19, 2015. These data, 94,575 h for 3430 patients are contained in a large database, accessible with cloud computing tools. Simulation scenarios assessed the total alarm rate as a function of threshold and annunciation delay (s). The total alarm rate of ten alarms/patient/day predicted from the cloud-hosted database was the same as the total alarm rate for a 10 day evaluation (1550 h for 36 patients) in an independent hospital. Plots of vital sign distributions in the cloud-hosted database were similar to other large databases published by different authors. The cloud-hosted database can be used to run simulations for various alarm thresholds and annunciation delays to predict the total alarm burden experienced by nursing staff. This methodology might, in the future, be used to help reduce alarm fatigue without sacrificing the ability to continually monitor all vital signs.

  7. Materials Characterization of Electron Beam Melted Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Telesman, Jack; Martin, Richard E.; Locci, Ivan E.; Garg, Anita; Ring, Andrew J.

    2016-01-01

    An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed on samples fabricated on an ARCAM A2X EBM machine. The specimens were fabricated under eight separate builds with the material divided into two lots for material testing purposes. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Several nondestructive evaluation (NDE) techniques were utilized to characterize the samples both before and after HIP. The test matrix included tensile, high cycle fatigue, low cycle fatigue, fracture toughness, and fatigue crack growth at cryogenic, room, and elevated temperatures. The mechanical properties of the EBM Ti-6Al-4V are compared to conventional Ti-6Al-4V in the annealed condition. Fractography was performed to determine failure initiation site. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.

  8. Psychometric properties of the Multidimensional Assessment of Fatigue scale in traumatic brain injury: an NIDRR Traumatic Brain Injury Model Systems study.

    PubMed

    Lequerica, Anthony; Bushnik, Tamara; Wright, Jerry; Kolakowsky-Hayner, Stephanie A; Hammond, Flora M; Dijkers, Marcel P; Cantor, Joshua

    2012-01-01

    To investigate the psychometric properties of the Multidimensional Assessment of Fatigue (MAF) scale in a traumatic brain injury (TBI) sample. Prospective survey study. Community. One hundred sixty-seven individuals with TBI admitted for inpatient rehabilitation, enrolled into the TBI Model Systems national database, and followed up at either the first or second year postinjury. Not applicable. Multidimensional Assessment of Fatigue. The initial analysis, using items 1 to 14, which are based on a 10-point rating scale, found that only 1 item ("walking") misfit the overall construct of fatigue in this TBI population. However, this 10-point rating scale was found to have disordered thresholds. When ratings were collapsed into 4 response categories, all MAF items used to calculate the Global Fatigue Index formed a unidimensional scale. Findings generally support the unidimensionality of the MAF when used in a TBI population but call into question the use of a 10-point rating scale for items 1 to 14. Further study is needed to investigate the use of a 4-category rating scale across all items and the fit of the "walking" item for a measure of fatigue among individuals with TBI.

  9. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  10. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  11. A Three-Parameter Model for Predicting Fatigue Life of Ductile Metals Under Constant Amplitude Multiaxial Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Li, Jing; Zhang, Zhong-ping

    2013-04-01

    In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.

  12. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    NASA Astrophysics Data System (ADS)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior and fracture morphology between the two materials, related to the differences in properties. Altogether these results provided a means for proposing an explanation of the mechanism of reinforcement (and damage tolerance enhancement) provided by carbon nanotubes in hybrid composite materials.

  13. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  14. Shot-Peening Sensitivity of Aerospace Materials

    DTIC Science & Technology

    2007-05-01

    19. The beta-STOA titanium , Kt = 1 cyclic fatigue data. 41 Beta-STOA Ti- 6 - 4 Kt = 1.75 - Stress versus Cycles to Failure 80 85 90 95 100 105...The beta-STOA titanium , Kt = 1.75 cyclic fatigue data. Beta-STOA Ti- 6 - 4 Kt = 2.5 - Stress versus Cycles to Failure 60 65 70 75 80 85 90 1.E+03 1... 4 4.2 Phase 2. Fatigue/XRD-RSA/Surface Roughness Assessment ....................................... 6 4.2.1 Fatigue

  15. Simulation-Based Extreme Value Marked Correlations in Fatigue of Advanced Engineering Alloys (PREPRINT)

    DTIC Science & Technology

    2010-04-01

    000 the response of damage dependent processes like fatigue crack formation, a framework is needed that accounts for the extreme value life...many different damage processes (e.g. fatigue, creep, fracture). In this work, multiple material volumes for both IN100 and Ti-6Al-4V are simulated via...polycrystalline P/M Ni-base superalloy IN100 Typically, fatigue damage formation in polycrystalline superalloys has been linked to the existence of

  16. Thermal Exposure and Environment Effects on Tension, Fracture and Fatigue of 5XXX Alloys Tested in Different Orientations

    DTIC Science & Technology

    2017-12-27

    were determined and the effects of changes in loading rate and solution on this susceptibility were determined. Technical Approach The technical... approach followed in this completed work has been to conduct quasi- static fracture and fatigue experiments on 5XXX commercial aluminum alloys of interest...Metallic Materials Studied by Correlative Tomography", in 38th Riso International Symposium on Materials Science - IOP Conf. Series: Materials Science

  17. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    PubMed

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  18. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites

    NASA Astrophysics Data System (ADS)

    Serdinak, Thomas E.

    1994-05-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks.

  19. Post-impact fatigue of cross-plied, through-the-thickness reinforced carbon/epoxy composites. M.S. Thesis - Clemson Univ.

    NASA Technical Reports Server (NTRS)

    Serdinak, Thomas E.

    1994-01-01

    An experimental investigation of the post-impact fatigue response of integrally woven carbon/epoxy composites was conducted. Five different through-the-thickness (TTT) reinforcing fibers were used in an experimental textile process that produced an integrally woven (0/90/0/90/0/90/0/90/0)(sub T) ply layup with 21K AS4 carbon tow fiber. The resin was Hercules 3501-6, and the five TTT reinforcing fibers were Kevlar, Toray carbon, AS4 carbon, glass, and IM6 carbon. The purpose of this investigation was to study the post-impact fatigue response of these material systems and to identify the optimum TTT fiber. Samples were impacted with one half inch diameter aluminum balls with an average velocity of 543 ft/sec. Post-impact static compression and constant amplitude tension-compression fatigue tests were conducted. Fatigue tests were conducted with a loading ratio of R=-5, and frequency of 4 Hz. Damage growth was monitored using x-radiographic and sectioning techniques and by examining the stress-strain response (across the impact site) throughout the fatigue tests. The static compressive stress versus far-field strain response was nearly linear for all material groups. All the samples had a transverse shear failure mode. The average compressive modulus (from far-field strain) was about 10 Msi. The average post-impact static compressive strength was about 35.5 Ksi. The IM6 carbon sample had a strength of over 40 Ksi, more than 16 percent stronger than average. There was considerable scatter in the S-N data. However, the IM6 carbon samples clearly had the best fatigue response. The response of the other materials, while worse than IM6 carbon, could not be ranked definitively. The initial damage zones caused by the impact loading and damage growth from fatigue loading were similar for all five TTT reinforcing materials. The initial damage zones were circular and consisted of delaminations, matrix cracks and ply cracks. Post-impact fatigue loading caused delamination growth, ply cracking and fiber bundle failures, typically 45 deg from impact load direction. During the initial 97 percent of fatigue life, delaminations, ply cracks and fiber bundle failures primarily grew at and near the impact site. During the final 3 percent of life, damage grew rapidly transverse to the loading direction as a through-the-thickness transverse shear failure. The stress-strain response was typically linear during the initial 50 percent of life, and stiffness dropped about 20 percent during this period. During the next 47 percent of life, stiffness dropped about 34 percent, and the stress-strain response was no longer linear. The stiffness decreased about 23 percent during the final 3 percent of life. These trends were typical of all the materials tested. Therefore, by monitoring stiffness loss, fatigue failure could be accurately anticipated.

  20. Pictorial Representation of Self and Illness Measure (PRISM): a graphic instrument to assess suffering in fatigued cancer survivors.

    PubMed

    Gielissen, Marieke F M; Prins, Judith B; Knoop, Hans; Verhagen, Stans; Bleijenberg, Gijs

    2013-06-01

    The Pictorial Representation of Self and Illness Measure (PRISM) measures in a simple, graphic way the burden of suffering due to illness. The question addressed in this study is whether the PRISM is a valid instrument to measure suffering in cancer survivors experiencing severe fatigue. Quantitative and qualitative data of a previous randomized controlled trial demonstrating the efficacy of cognitive behavior therapy (CBT) especially designed for postcancer fatigue was used to assess convergent validity and sensitivity to change in a sample of 83 cancer survivors. The PRISM, yielding self-illness separation (SIS-fatigue = suffering due to fatigue; SIS-cancer = suffering due to cancer), fatigue severity (Checklist Individual Strength; CIS-fatigue), functional impairment, psychological well-being, quality of life, and coping with the experience of cancer (Impact of Event Scale; IES). Moderate significant correlations were found with the PRISM and the above-mentioned measures. On the basis of SIS scores, the sample was divided into two separate groups: cancer survivors who suffered more because of fatigue and cancer survivors who suffered more because they had cancer in the past. The two groups had different scores on CIS-fatigue and IES, in line with that aspect that caused them the most suffering. The qualitative data confirmed this finding. Participants in the CBT condition demonstrated a significant difference between SIS-fatigue at baseline versus 6 months later compared with those in the waiting list condition. No change of SIS-cancer was found. The PRISM seems to be a valuable tool in fatigue research and clinical practice. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  1. A Novel Probabilistic Multi-Scale Modeling and Sensing Framework for Fatigue Life Prediction of Aerospace Structures and Materials: DCT Project

    DTIC Science & Technology

    2012-08-25

    Accel- erated Crystal Plasticity FEM Simulations (submitted). 5. M. Anahid, M. Samal and S. Ghosh, Dwell fatigue crack nucleation model based on using...4] M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of

  2. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.

  3. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Solbach, Andreas; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    Laser Additive Manufacturing (LAM) enables economical production of complex lightweight structures as well as patient individual implants. Due to these possibilities the additive manufacturing technology gains increasing importance in the aircraft and the medical industry. Yet these industries obtain high quality standards and demand predictability of material properties for static and dynamic load cases. However, especially fatigue and crack propagation properties are not sufficiently determined. Therefore this paper presents an analysis and simulation of crack propagation behavior considering Laser Additive Manufacturing specific defects, such as porosity and surface roughness. For the mechanical characterization of laser additive manufactured titanium alloy Ti-6Al-4V, crack propagation rates are experimentally determined and used for an analytical modeling and simulation of fatigue. Using experimental results from HCF tests and simulated data, the fatigue and crack resistance performance is analyzed considering material specific defects and surface roughness. The accumulated results enable the reliable prediction of the defects influence on fatigue life of laser additive manufactured titanium components.

  4. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  5. Ultrasonic fatigue of a high strength steel

    NASA Astrophysics Data System (ADS)

    Koster, M.; Wagner, G.; Eifler, D.

    2010-07-01

    At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.

  6. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shupeng; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principlemore » of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.« less

  7. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    NASA Astrophysics Data System (ADS)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  8. Effects of crystalline quality and electrode material on fatigue in Pb(Zr,Ti)O3 thin film capacitors

    NASA Astrophysics Data System (ADS)

    Lee, J.; Johnson, L.; Safari, A.; Ramesh, R.; Sands, T.; Gilchrist, H.; Keramidas, V. G.

    1993-07-01

    Pb(Zr(0.52)Ti(0.48))O3 (PZT)/Y1Ba2Cu3O(x) (YBCO) heterostructures were grown by pulsed laser deposition, in which PZT films were epitaxial, highly oriented, or polycrystalline. These PZT films were obtained by varying the deposition temperature from 550 to 760 C or by using various substrates such as SrTiO3 (100), MgO (100), and r-plane sapphire. PZT films with Pt top electrodes exhibited large fatigue with 35-50 percent loss of the remanent polarization after 10 exp 9 cycles, depending on the crystalline quality. Polycrystalline films showed better fatigue resistance than epitaxial or highly oriented films. However, PZT films with both top and bottom YBCO electrodes had significantly improved fatigue resistance for both epitaxial and polycrystalline films. Electrode material seems to be a more important parameter in fatigue than the crystalline quality of the PZT films.

  9. The effect of hold-times on the fatigue behavior of type AISI 316L stainless steel under deuteron irradiation

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Mueller, R.

    1998-10-01

    Strain controlled fatigue tests have been performed in torsion at 400°C on type 316L stainless steel samples in both 20% cold worked and annealed conditions during an irradiation with 19 MeV deuterons. A hold-time was imposed in the loading cycle. For the cold worked (cw) material, at shear strain ranges of 1.13% and 1.3%, irradiation creep induced stress relaxation led to the built up of a mean stress. The fatigue life was significantly reduced in comparison to thermal control tests. For the annealed (ann) material, tested under similar experimental conditions, irradiation creep effects were negligibly small compared to cyclic and irradiation hardening. The fatigue life was only slightly reduced. Continuous cycling tests conducted under irradiation conditions lay in the scatter band of the thermal control tests. The difference in fatigue life between continuous cycling and hold-time tests is attributed mainly to the observed difference in irradiation hardening.

  10. Use of atomic force microscopy for characterizing damage evolution during fatigue

    NASA Astrophysics Data System (ADS)

    Cretegny, Laurent

    2000-10-01

    A study of the development of surface fatigue damage in PH 13-8 Mo stainless steel and copper by atomic force microscopy (AFM) was performed. AFM observations allow highly automated, quantitative characterization of surface deformation with a resolution of 5 nm or better, which is ideal for understanding fatigue damage evolution. A secondary objective was to establish a correlation between fatigue life exhausted and impedance spectroscopy. Strain controlled fatigue tests were conducted both in high and low cycle fatigue regimes, and interruptions of the fatigue tests allowed characterizing the evolution of the surface upset at various life-fractions. In the low strain amplitude tests on stainless steel (Deltaepsilonpl/2 = 0.0026%), surface damage occurred in the shape of narrow streaks at the interface between martensite laths where reverted austenite was present. The streaks eventually coalesced to form crack nuclei. In high strain amplitude tests (Deltaepsilon pl/2 = 0.049%), fatigue surface damage was essentially dominated by the formation of extrusions. In copper, both low (Deltaepsilonpl/2 = 0.061%) and high (Deltaepsilonpl/2 = 0.134%) strain amplitude tests showed the formation of slip bands (mainly extrusions) across entire grains. Protrusions were present only in copper specimens tested at the high strain amplitude. Crack nucleation in the low strain amplitude tests occurred in both materials at the interface between a region that sustained a high level of deformation and one with little evidence of surface upset. This commonality between these two materials that are otherwise very dissimilar in nature suggests a universal scheme for location of fatigue crack nucleation sites during HCF. A procedure was developed in this study to quantitatively characterize the amount of irreversible surface strain. The proposed formalism is applicable to any material, independently of the type of surface damage, and leads to a criterion for crack nucleation based on physical evidence of surface damage. A correlation between fatigue damage and impedance spectroscopy measurements was shown in copper, in particular during the primary cyclic hardening stage. The measurements were however less sensitive to the development of surface upset that occurred beyond that stage.

  11. Damage Resistance of Titanium Aluminide Evaluated

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Draper, Susan L.; Baaklini, George Y.; Pereira, J. Michael; Austin, Curt

    2000-01-01

    As part of the aviation safety goal to reduce the aircraft accident rate, NASA has undertaken studies to develop durable engine component materials. One of these materials, g-TiAl, has superior high-temperature material properties. Its low density provides improved specific strength and creep resistance in comparison to currently used titanium alloys. However, this intermetallic is inherently brittle, and long life durability is a potential problem. Of particular concern is the material s sensitivity to defects, which may form during the manufacturing process or in service. To determine the sensitivity of TiAl to defects, a team consisting of GE Aircraft Engines, Precision Cast Parts, and NASA was formed. The work at the NASA Glenn Research Center at Lewis Field has concentrated on the fatigue response to specimens containing defects. The overall objective of this work is to determine the influence of defects on the high cycle fatigue life of TiAl-simulated low-pressure turbine blades. Two types of defects have been introduced into the specimens: cracking from impact damage and casting porosity. For both types of defects, the cast-to-size fatigue specimens were fatigue tested at 650 C and 100 Hz until failure.

  12. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  13. Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald

    2017-05-01

    This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.

  14. Fatigue life prediction in bending from axial fatigue information

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.

    1982-01-01

    Bending fatigue in the low cyclic life range differs from axial fatigue due to the plastic flow which alters the linear stress-strain relation normally used to determine the nominal stresses. An approach is presented to take into account the plastic flow in calculating nominal bending stress (S sub bending) based on true surface stress. These functions are derived in closed form for rectangular and circular cross sections. The nominal bending stress and the axial fatigue stress are plotted as a function of life (N sub S) and these curves are shown for several materials of engineering interest.

  15. Cyclic Hardness Test PHYBALCHT: A New Short-Time Procedure to Estimate Fatigue Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar

    Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.

  16. Application of an Energy-Based Life Prediction Model to Bithermal and Thermomechanical Fatigue

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.; Kalluri, Sreeramesh; Halford, Gary R.

    1994-01-01

    The inelastic hysteresis energy applied to the material in a cycle is used as the basis for predicting nonisothermal fatigue life of a wrought cobalt-base superalloy, Haynes 188, from isothermal fatigue data. Damage functions that account for hold-time effects and time-dependent environmental phenomena such as oxidation and hot corrosion are proposed in terms of the inelastic hysteresis energy per cycle. The proposed damage functions are used to predict the bithermal and thermomechanical fatigue lives of Haynes 188 between 316 and 760 C from isothermal fatigue data. Predicted fatigue lives of all but two of the nonisothermal tests are within a factor of 1.5 of the experimentally observed lives.

  17. Fatigue Strength of Airplane and Engine Materials

    NASA Technical Reports Server (NTRS)

    Matthaes, Kurt

    1934-01-01

    This report was undertaken to give a brief summary of the laws governing the fatigue stresses and of the most important strength coefficients necessary for the correct dimensioning of the structural members.

  18. Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2017-01-01

    Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007

  19. Ceramic Bearings For Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1989-01-01

    Report reviews data from three decades of research on bearings containing rolling elements and possibly other components made of ceramics. Ceramic bearings attractive for use in gas-turbine engines because ceramics generally retain strengths and resistances to corrosion over range of temperatures greater than typical steels used in rolling-element bearings. Text begins with brief description of historical developments in field. Followed by discussion of effects of contact stress on fatigue life of rolling element. Supplemented by figures and tables giving data on fatigue lives of rolling elements made of various materials. Analyzes data on effects of temperature and speed on fatigue lives for several materials and operating conditions. Followed by discussion of related topic of generation of heat in bearings, with consideration of effects of bearing materials, lubrication, speeds, and loads.

  20. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  1. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  2. Minutes of the Conference on the International Committee on Aeronautical Fatigue (10th) Held in Melbourne, Australia on May 1967

    DTIC Science & Technology

    1968-02-01

    Effects A room temperature, axial-loading low-cycle fatigue investigation on 2024 -T4 and 7075--T6 aluminum alloys ...Hudson, C. Michael: Investigation of the Effect of Stress Ratio on Fatigue Crack Growth in 7075-T6 Aluminum Alloy . To be presented at Symposium on...Stress Ratio on Fatigue Crack Growth and Mode of Fracture in 2024 -T4 and 7075-T6 Aluminum Alloys in the Low-Cycle Range. Air Force Materials Laboratory

  3. Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile

    NASA Astrophysics Data System (ADS)

    Nanninga, N.; White, C.; Dickson, R.

    2011-10-01

    Fatigue properties of specimens taken from different locations along the length of a hollow AA6082 extrusion, where charge weld (interface between successive billets in multi-billet extrusions) properties and the degree of coring (accumulation of highly sheared billet surface material at back end of billet) are expected to vary, have been evaluated. The fatigue strength of transverse specimens containing charge welds is lower near the front of the extrusion where the charge weld separation is relatively large. The relationship between fatigue failure and charge weld separation appears to be directly related to charge weld properties. The lower fatigue properties of the specimens are likely associated with early overload fatigue failure along the charge weld interface. Coring does not appear to have significantly affected fatigue behavior.

  4. An engineering approach to the prediction of fatigue behavior of unnotched/notched fiber reinforced composite laminates

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. V.; Mclaughlin, P. V., Jr.

    1978-01-01

    An engineering approach is proposed for predicting unnotched/notched laminate fatigue behavior from basic lamina fatigue data. The fatigue analysis procedure was used to determine the laminate property (strength/stiffness) degradation as a function of fatigue cycles in uniaxial tension and in plane shear. These properties were then introduced into the failure model for a notched laminate to obtain damage growth, residual strength, and failure mode. The approach is thus essentially a combination of the cumulative damage accumulation (akin to the Miner-Palmgren hypothesis and its derivatives) and the damage growth rate (similar to the fracture mechanics approach) philosophies. An analysis/experiment correlation appears to confirm the basic postulates of material wearout and the predictability of laminate fatigue properties from lamina fatigue data.

  5. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  6. Grain boundary engineering: fatigue fracture

    NASA Astrophysics Data System (ADS)

    Das, Arpan

    2017-04-01

    Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material's microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.

  7. Progressive Failure And Life Prediction of Ceramic and Textile Composites

    NASA Technical Reports Server (NTRS)

    Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.

    1998-01-01

    An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.

  8. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage mechanism. The C+E samples were tested only in air. At 1000 K, NiAl exhibited a superior fatigue life when compared to most superalloys on a plastic strain basis, but was inferior to most superalloys on a stress basis.

  9. Fatigue Behavior and Deformation Mechanisms in Inconel 718 Superalloy Investigated

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The nickel-base superalloy Inconel 718 (IN 718) is used as a structural material for a variety of components in the space shuttle main engine (SSME) and accounts for more than half of the total weight of this engine. IN 718 is the bill-of-material for the pressure vessels of nickel-hydrogen batteries for the space station. In the case of the space shuttle main engine, structural components are typically subjected to startup and shutdown load transients and occasional overloads in addition to high-frequency vibratory loads from routine operation. The nickel-hydrogen battery cells are prooftested before service and are subjected to fluctuating pressure loads during operation. In both of these applications, the structural material is subjected to a monotonic load initially, which is subsequently followed by fatigue. To assess the life of these structural components, it is necessary to determine the influence of a prior monotonic load on the subsequent fatigue life of the superalloy. An insight into the underlying deformation and damage mechanisms is also required to properly account for the interaction between the prior monotonic load and the subsequent fatigue loading. An experimental investigation was conducted to establish the effect of prior monotonic straining on the subsequent fatigue behavior of wrought, double-aged, IN 718 at room temperature. First, monotonic strain tests and fully-reversed, strain-controlled fatigue tests were conducted on uniform-gage-section IN 718 specimens. Next, fully reversed fatigue tests were conducted under strain control on specimens that were monotonically strained in tension. Results from this investigation indicated that prior monotonic straining reduced the fatigue resistance of the superalloy particularly at the lowest strain range. Some of the tested specimens were sectioned and examined by transmission electron microscopy to reveal typical microstructures as well as the active deformation and damage mechanisms under each of the loading conditions. In monotonically strained specimens, deformation during the subsequent fatigue loading was mainly confined to the deformation bands initiated during the prior monotonic straining. This can cause dislocations to move more readily along the previously activated deformation bands and to pile up near grain boundaries, eventually making the grain boundaries susceptible to fatigue crack initiation. The mechanisms inferred from the microstructural investigation were extremely valuable in interpreting the influence of prior monotonic straining on the subsequent fatigue life of Inconel 718 superalloy.

  10. The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study.

    PubMed

    Daratsianos, Nikolaos; Musabegovic, Ena; Reimann, Susanne; Grüner, Manfred; Jäger, Andreas; Bourauel, Christoph

    2013-05-01

    To describe the effect of fatigue on the strength of the bracket-adhesive-enamel complex and characterize the fatigue behavior of the materials tested. Upper central incisor brackets (Discovery(®), Dentaurum) were bonded with a light-curing (Transbond XT™, 3M Unitek) and a chemically-curing adhesive (Concise™, 3M Unitek) on bovine teeth embedded in cylindrical resign bases and stored in water at 37(±2)°C for 24 (±2)h. The first 15 specimens were tested with a universal testing machine ZMART.PRO(®) (Zwick GmbH & Co. KG, Ulm, Germany) for ultimate shear bond strength according to the DIN-13990-2-standard. The remaining three groups of 20 specimens underwent fatigue staircase testing of 100, 1000 and 3000 cycles at 1Hz with a self-made testing machine. The survived specimens were subjected to shear strength testing. The fatigued specimens showed decreased shear strength with both adhesives at all cycle levels. The shear strength after fatigue for 100, 1000 and 3000 cycles was in the Concise™-groups 34.8%, 59.0%, 47.3% and in the Transbond™ XT-groups 33.6%, 23.1%, 27.3% relative to the ultimate shear strength. The fatigue life of the Concise™-groups decreased with increasing stress and Transbond™ XT showed lower fatigue ratio with no obvious trend. The specimens bonded with Transbond™ XT showed typically favorable fracture modes in contrary to Concise™. Fatigue of the bracket-adhesive-enamel complex decreased its shear strength. The staircase method can provide a standardized experimental protocol for fatigue studies, however testing at various cycle numbers is recommended. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    NASA Technical Reports Server (NTRS)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  12. A Comparison Study of Machine Learning Based Algorithms for Fatigue Crack Growth Calculation.

    PubMed

    Wang, Hongxun; Zhang, Weifang; Sun, Fuqiang; Zhang, Wei

    2017-05-18

    The relationships between the fatigue crack growth rate ( d a / d N ) and stress intensity factor range ( Δ K ) are not always linear even in the Paris region. The stress ratio effects on fatigue crack growth rate are diverse in different materials. However, most existing fatigue crack growth models cannot handle these nonlinearities appropriately. The machine learning method provides a flexible approach to the modeling of fatigue crack growth because of its excellent nonlinear approximation and multivariable learning ability. In this paper, a fatigue crack growth calculation method is proposed based on three different machine learning algorithms (MLAs): extreme learning machine (ELM), radial basis function network (RBFN) and genetic algorithms optimized back propagation network (GABP). The MLA based method is validated using testing data of different materials. The three MLAs are compared with each other as well as the classical two-parameter model ( K * approach). The results show that the predictions of MLAs are superior to those of K * approach in accuracy and effectiveness, and the ELM based algorithms show overall the best agreement with the experimental data out of the three MLAs, for its global optimization and extrapolation ability.

  13. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  14. A microstructurally based model of solder joints under conditions of thermomechanical fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frear, D.R.; Burchett, S.N.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints in increasingly becoming an important reliability issue. In this paper we present two computational methodologies that have been developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions that are based on metallurgical tests as fundamental input for constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations from this model agree well with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. Themore » single phase model is a computational technique that was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests and the results showed an adequate fit to experimental results. The single-phase model could be very useful for conditions where microstructural evolution is not a dominant factor in fatigue.« less

  15. Effect of grinding on the fatigue life of titanium alloy (5 Al-2.5 Sn) under dry and wet conditions

    NASA Technical Reports Server (NTRS)

    Rangaswamy, Partha; Terutung, Hendra; Jeelani, Shaik

    1989-01-01

    The principal factors in the performance of aerospace materials are strength-to-weight ratio, fatigue life, fracture toughness, survivability and, of course, reliability. Machining processes and, in particular, grinding under adverse conditions have been found to cause damage to surface integrity and affect the residual stress distribution in the surface and subsurface region. These effects have a direct bearing on the fatigue life. In this investigation the effects of grinding conditions on the fatigue life of Titanium 5 Al-2.5Sn were studied. This alloy is used in ground form in the manufacturing of some critical components in the space shuttle's main engine. It is essential that materials for such applications be properly characterized for use in severe service conditions. Flat sub-size specimens 0.1 inch thick were ground on a surface grinding machine equipped with a variable speed motor at speeds of 2000 to 6000 rpm using SiC wheels of grit sizes 60 and 120. The grinding parameters used in this investigation were chosen from a separate study. The ground specimens were then fatigued at a selected stress and the resulting lives were compared with that of the virgin material. The surfaces of the specimens were examined under a scanning electron microscope, and the roughness and hardness were measured using a standard profilometer and microhardness tester, respectively. The fatigue life of the ground specimens was found to decrease with the increase in speed for both dry and wet conditions. The fatigue life of specimens ground under wet conditions showed a significant increase at the wheel speed of 2000 rpm for both the grit sizes and thereafter decreased with increase profilometry, microhardness measurements and scanning electron microscopic examination.

  16. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

    PubMed

    Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O

    2013-11-12

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

  17. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism

    PubMed Central

    Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.

    2013-01-01

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284

  18. A Review of the Fatigue Properties of Additively Manufactured Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Zhang, Tiantian; Ryder, Matthew A.; Lados, Diana A.

    2018-03-01

    Various additive manufacturing (AM) technologies have been used to fabricate Ti-6Al-4V. The fatigue performance of Ti-6Al-4V varies from process to process. In this review, fatigue properties of Ti-6Al-4V alloys made by different AM technologies and post-fabrication treatments were compiled and discussed to correlate with the materials' characteristic features, primarily surface roughness and porosity. Microstructure anisotropy and porosity effects on fatigue crack growth and fatigue life are also presented and discussed. A modified Kitagawa-Takahashi diagram developed from current available fatigue data was used to quantify the influence of defects on fatigue strength. This review aims to assist in selecting/optimizing AM processes to achieve high fatigue resistance in Ti-6Al-4V, as well as provide a better understanding of the advantages and limitations of current AM techniques in producing titanium alloys.

  19. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  20. Fatigue behavior of a ceramic matrix composite (CMC), 2D C{sub fiber}/SiC{sub matrix}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, P.A.; Rosa, L.G.; Steen, M.

    The material described in this study is a 2D CMC of continuous carbon fibers embedded in a SiC matrix. This work presents the tensile behaviour of the material at room temperature (RT) and 1200{degrees}C. Results of uniaxial tension-tension fatigue tests carried out at both temperatures (RT and 1200{degrees}C) are also presented.

  1. Risk of fatigue in cancer patients receiving anti-EGFR monoclonal antibodies: results from a systematic review and meta-analysis of randomized controlled trial.

    PubMed

    Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang

    2018-04-01

    To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.

  2. Risk markers for both chronic fatigue and irritable bowel syndromes: a prospective case-control study in primary care.

    PubMed

    Hamilton, W T; Gallagher, A M; Thomas, J M; White, P D

    2009-11-01

    Fatigue syndromes and irritable bowel syndrome (IBS) often occur together. Explanations include being different manifestations of the same condition and simply sharing some symptoms. A matched case-control study in UK primary care, using data collected prospectively in the General Practice Research Database (GPRD). The main outcome measures were: health-care utilization, specific symptoms and diagnoses. Risk markers were divided into distant (from 3 years to 1 year before diagnosis) and recent (1 year before diagnosis). A total of 4388 patients with any fatigue syndrome were matched to two groups of patients: those attending for IBS and those attending for another reason. Infections were specific risk markers for both syndromes, with viral infections being a risk marker for a fatigue syndrome [odds ratios (ORs) 2.3-6.3], with a higher risk closer to onset, and gastroenteritis a risk for IBS (OR 1.47, compared to a fatigue syndrome). Chronic fatigue syndrome (CFS) shared more distant risk markers with IBS than other fatigue syndromes, particularly other symptom-based disorders (OR 3.8) and depressive disorders (OR 2.3), but depressive disorders were a greater risk for CFS than IBS (OR 2.4). Viral infections were more of a recent risk marker for CFS compared to IBS (OR 2.8), with gastroenteritis a greater risk for IBS (OR 2.4). Both fatigue and irritable bowel syndromes share predisposing risk markers, but triggering risk markers differ. Fatigue syndromes are heterogeneous, with CFS sharing predisposing risks with IBS, suggesting a common predisposing pathophysiology.

  3. The effect of notches and pits on corrosion fatigue strength

    NASA Astrophysics Data System (ADS)

    Tatner, Ian

    An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed calculation of the elastic stress intensity factor (K[t]) for the specimen geometry used. The experimental results together with numerical results of FEA were used to calculate of the notch strength reduction factor (K[f]) for the material. This has been used to derive the notch sensitivity factors (q) for both materials.The results of fatigue tests in air showed that although both materials have similar tensile strength their plain fatigue strengths are different. The sensitivity of the fatigue strength to notches was also found to be significantly different. The marageing steel showed a higher sensitivity to a notch than the FV520B.An empirical model has been proposed to quantify the notch sensitivity and the effects of various microstructural features on the fatigue strength. A model has been developed to predict the serviceable life of a peak hardened FV520B turbine blade subjected to aggressive low load conditions during start-up and non-aggressive high load conditions during continual running. The model is based on the conclusions suggested in the work of a threshold stress intensity factor being reached where a fatigue crack will grow from a corrosion pit at the root of a notch. The model is then used to highlight the life reduction caused to steam turbine blades due to increased numbers of start-up cycles.

  4. Fatigue of survivors following cardiac surgery: positive influences of preoperative prayer coping.

    PubMed

    Ai, Amy L; Wink, Paul; Shearer, Marshall

    2012-11-01

    Fatigue symptoms are common among individuals suffering from cardiac diseases, but few studies have explored longitudinally protective factors in this population. This study examined the effect of preoperative factors, especially the use of prayer for coping, on long-term postoperative fatigue symptoms as one aspect of lack of vitality in middle-aged and older patients who survived cardiac surgery. The analyses capitalized on demographics, faith factors, mental health, and on medical comorbidities previously collected via two-wave preoperative interviews and standardized information from the Society of Thoracic Surgeons' national database. The current participants completed a mailed survey 30 months after surgery. Two hierarchical regressions were performed to evaluate the extent to which religious factors predicted mental and physical fatigue, respectively, after controlling for key demographics, medical indices, and mental health. Preoperative prayer coping, but not other religious factors, predicted less mental fatigue at the 30-month follow-up, after controlling for key demographics, medical comorbidities, cardiac function (previous cardiovascular intervention, congestive heart failure, left ventricular ejection fraction, New York Heart Association Classification), mental health (depression, anxiety), and protectors (optimism, hope, social support). Male gender, preoperative anxiety, and reverence in secular context predicted more mental fatigue. Physical fatigue increased with age, medical comorbidities, and preoperative anxiety. Including health control beliefs in the model did not eliminate this effect. Prayer coping may have independent and positive influences on less fatigue in individuals who survived cardiac surgery. However, future research should investigate mechanisms of this association. ©2012 The British Psychological Society.

  5. Mind-Body Treatments for the Pain-Fatigue-Sleep Disturbance Symptom Cluster in Persons with Cancer

    PubMed Central

    Kwekkeboom, Kristine L.; Cherwin, Catherine H.; Lee, Jun W.; Wanta, Britt

    2011-01-01

    Purpose To synthesize evidence regarding mind-body interventions that have shown efficacy in treating two or more symptoms in the pain-fatigue-sleep disturbance cancer symptom cluster. Design A literature search was conducted using CINAHL, Medline, and PsychInfo databases through March 2009. Methods Studies were categorized based on the type of mind-body intervention (relaxation, imagery / hypnosis, cognitive-behavioral therapy / coping skills training [CBT/CST], meditation, music, and virtual reality), and a preliminary review was conducted with respect to efficacy for pain, fatigue, and sleep disturbance. Mind-body interventions were selected for review if there was evidence of efficacy for at least two of the three symptoms. Forty-three studies, addressing five types of mind-body interventions met criteria and are summarized in this review. Findings Imagery / hypnosis and CBT / CST interventions have produced improvement in all three cancer-related symptoms individually: pain, fatigue, and sleep disturbance. Relaxation has resulted in improvements in pain and sleep disturbance. Meditation interventions have demonstrated beneficial effects on fatigue and sleep disturbance. Music interventions have demonstrated efficacy for pain and fatigue. No trials were found that tested the mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster. Conclusions Efficacy studies are needed to test the impact of relaxation, imagery / hypnosis, CBT / CST, meditation and music interventions in persons with cancer experiencing concurrent pain, fatigue, and sleep disturbance. These mind-body interventions could help patients manage all symptoms in the cluster with a single treatment strategy. PMID:19900778

  6. The Fatigue Assessment Scale: quality and availability in sarcoidosis and other diseases.

    PubMed

    Hendriks, Celine; Drent, Marjolein; Elfferich, Marjon; De Vries, Jolanda

    2018-06-07

    Fatigue is a problem experienced by many patients suffering from chronic diseases, including sarcoidosis patients. It has a substantial influence on patients' quality of life (QoL). It is, therefore, important to properly assess fatigue with a valid and reliable measure. The Fatigue Assessment Scale (FAS) is the only validated self-reporting instrument classifying fatigue in sarcoidosis. The aim of this review was to examine the psychometric properties of the FAS and the diseases and languages in which it has been used. Studies among sarcoidosis patients were also reviewed in terms of outcomes. Studies were identified by searching the electronic bibliographic database Pubmed. Search terms used were: FAS and fatigue. Articles were included in the review if the FAS had been used to assess fatigue. Since its introduction, the FAS was used in 26 different diseases or conditions, including stroke, neurologic disorders, rheumatoid arthritis, idiopathic pulmonary fibrosis and sarcoidosis. Its reliability and validity have proved to be good. Unidimensionality has been established. So far, the FAS is available in 20 languages and widely used in sarcoidosis. Digital versions as well as PDFs of various languages are available online (www.wasog.org). The FAS has good psychometric qualities for the diseases in which it has been examined, including sarcoidosis, and can be used in clinical practice. Healthcare workers can use the FAS to assess fatigue in the management, follow-up and clinical care programmes for their patients consistently across countries, as well as in clinical research.

  7. Determinants of seafarers' fatigue: a systematic review and quality assessment.

    PubMed

    Dohrmann, Solveig Boeggild; Leppin, Anja

    2017-01-01

    Fatigue jeopardizes seafarer's health and safety. Thus, knowledge on determinants of fatigue is of great importance to facilitate its prevention. However, a systematic analysis and quality assessment of all empirical evidence specifically for fatigue are still lacking. The aim of the present article was therefore to systematically detect, analyze and assess the quality of this evidence. Systematic searches in ten databases were performed. Searches considered articles published in scholarly journals from 1980 to April 15, 2016. Nineteen out of 98 eligible studies were included in the review. The main reason for exclusion was fatigue not being the outcome variable. Most evidence was available for work time-related factors suggesting that working nights was most fatiguing, that fatigue levels were higher toward the end of watch or shift, and that the 6-h on-6-h off watch system was the most fatiguing. Specific work demands and particularly the psychosocial work environment have received little attention, but preliminary evidence suggests that stress may be an important factor. A majority of 12 studies were evaluated as potentially having a high risk of bias. Realistic countermeasures ought to be established, e.g., in terms of shared or split night shifts. As internal as well as external validity of many study findings was limited, the range of factors investigated was insufficient and few studies investigated more complex interactions between different factors, knowledge derived from studies of high methodological quality investigating different factors, including psychosocial work environments, are needed to support future preventive programs.

  8. Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis.

    PubMed

    Kollock, Roger O; Games, Kenneth E; Wilson, Alan E; Sefton, JoEllen M

    2016-11-01

     Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs.  To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue.  We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015.  To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure.  Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time.  Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = -0.22, 95% confidence interval = -0.42, -0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = -0.27, 95% confidence interval = -0.50, -0.04) but not at the cervical or thoracic region.  Vehicle exposure increased fatigue at the lumbar region.

  9. Vehicle Exposure and Spinal Musculature Fatigue in Military Warfighters: A Meta-Analysis

    PubMed Central

    Kollock, Roger O.; Games, Kenneth E.; Wilson, Alan E.; Sefton, JoEllen M.

    2016-01-01

    Context: Spinal musculature fatigue from vehicle exposure may place warfighters at risk for spinal injuries and pain. Research on the relationship between vehicle exposure and spinal musculature fatigue is conflicting. A better understanding of the effect of military duty on musculoskeletal function is needed before sports medicine teams can develop injury-prevention programs. Objective: To determine if the literature supports a definite effect of vehicle exposure on spinal musculature fatigue. Data Sources: We searched the MEDLINE, Military & Government Collection (EBSCO), National Institute for Occupational Safety and Health Technical Information Center, PubMed, and Web of Science databases for articles published between January 1990 and September 2015. Study Selection: To be included, a study required a clear sampling method, preexposure and postexposure assessments of fatigue, a defined objective measurement of fatigue, a defined exposure time, and a study goal of exposing participants to forces related to vehicle exposure. Data Extraction: Sample size, mean preexposure and postexposure measures of fatigue, vehicle type, and exposure time. Data Synthesis: Six studies met the inclusion criteria. We used the Scottish Intercollegiate Guidelines Network algorithm to determine the appropriate tool for quality appraisal of each article. Unweighted random-effects model meta-analyses were conducted, and a natural log response ratio was used as the effect metric. The overall meta-analysis demonstrated that vehicle exposure increased fatigue of the spinal musculature (P = .03; natural log response ratio = −0.22, 95% confidence interval = −0.42, −0.02). Using the spinal region as a moderator, we observed that vehicle ride exposure significantly increased fatigue at the lumbar musculature (P = .02; natural log response ratio = −0.27, 95% confidence interval = −0.50, −0.04) but not at the cervical or thoracic region. Conclusions: Vehicle exposure increased fatigue at the lumbar region. PMID:28068167

  10. Thermal-Mechanical Stress Analysis of PWR Pressure Vessel and Nozzles under Grid Load-Following Mode: Interim Report on the Effect of Cyclic Hardening Material Properties and Pre-existing Cracks on Stress Analysis Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable under the work package for environmentally assisted fatigue as part of DOE’s Light Water Reactor Sustainability Program. In a previous report (September 2015), we presented tensile and fatigue test data and related hardening material properties for 508 low-alloys steel base metal and other reactor metals. In this report, we present thermal-mechanical stress analysis of the reactor pressure vessel and its hot-leg and cold-leg nozzles based on estimated material properties. We also present results frommore » thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting cracks in the reactor nozzles (axial or circumferential crack). In addition, results from validation stress analysis based on tensile and fatigue experiments are reported.« less

  11. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  12. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  13. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  14. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  15. Proposed framework for thermomechanical life modeling of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.

    1993-01-01

    The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed framework.

  16. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel

    PubMed Central

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Krscanski, Sanjin; Brcic, Marino; Li, Qiang; Niu, Jitai

    2016-01-01

    The correct choice of a material in the process of structural design is the most important task. This study deals with determining and analyzing the mechanical properties of the material, and the material resistance to short-time creep and fatigue. The material under consideration in this investigation is austenitic stainless steel X6CrNiTi18-10. The results presenting ultimate tensile strength and 0.2 offset yield strength at room and elevated temperatures are displayed in the form of engineering stress-strain diagrams. Besides, the creep behavior of the steel is presented in the form of creep curves. The material is consequently considered to be creep resistant at temperatures of 400 °C and 500 °C when subjected to a stress which is less than 0.9 of the yield strength at the mentioned temperatures. Even when the applied stress at a temperature of 600 °C is less than 0.5 of the yield strength, the steel may be considered as resistant to creep. Cyclic tensile fatigue tests were carried out at stress ratio R = 0.25 using a servo-pulser machine and the results were recorded. The analysis shows that the stress level of 434.33 MPa can be adopted as a fatigue limit. The impact energy was also determined and the fracture toughness assessed. PMID:28773424

  17. Preliminary metallographic studies of ball fatigue under rolling-contact conditions

    NASA Technical Reports Server (NTRS)

    Bear, H Robert; Butler, Robert H

    1957-01-01

    The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.

  18. Characterization of fatigue behavior of 2-D woven fabric reinforced ceramic matrix composite at elevated temperature. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groner, D.J.

    This study investigated the fatigue behavior and associated damage mechanisms in notched and unnotched enhanced SiC/SiC ceramic matrix composite specimens at 1100 deg C. Stiffness degradation, strain variation, and hysteresis were evaluated to characterize material behavior. Microscopic examination was performed to characterize damage mechanisms. During high cycle/low stress fatigue tests, far less fiber/matrix interface debond was evident than in low cycle/high stress fatigue tests. Notched specimens exhibited minimal stress concentration during monotonic tensile testing and minimal notch sensitivity during fatigue testing. Damage mechanisms were also similar to unnotched.

  19. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  20. Computational micromechanics of fatigue of microstructures in the HCF–VHCF regimes

    DOE PAGES

    Castelluccio, Gustavo M.; Musinski, William D.; McDowell, David L.

    2016-05-19

    Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Though fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. This paper discusses multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) tomore » very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. Finally, we discuss some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes.« less

  1. Development of a high-frequency and large-stroke fatigue testing system for rubber

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang

    2017-04-01

    The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.

  2. Aspects of fracture mechanics in cryogenic model design. Part 2: NTF materials

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Lisagor, W. B.

    1983-01-01

    Results of fatigue crack growth and fracture toughness tests conducted on three candidate materials are presented. Fatigue crack growth and fracture toughness tests were conducted on NITRONIC 40 at room temperature and -275 F. Fracture toughness tests were also conducted on Vascomax 200 and 250 maraging steel from room temperature to -320 F. NITRONIC 40 was used to make the Pathfinder 1 model. The fatigue crack growth rate tests were conducted at room temperature and -275 F on three-point notch bend specimens. The fracture toughness tests on the as received and stress relieved materials at -275 F were conducted on the center crack tension specimens. Toughness tests were also conducted on Vascomax CVM-200 and CVM-250 maraging steel from room temperature to -320 F using round and rectangular compact specimens.

  3. Common Bolted Joint Analysis Tool

    NASA Technical Reports Server (NTRS)

    Imtiaz, Kauser

    2011-01-01

    Common Bolted Joint Analysis Tool (comBAT) is an Excel/VB-based bolted joint analysis/optimization program that lays out a systematic foundation for an inexperienced or seasoned analyst to determine fastener size, material, and assembly torque for a given design. Analysts are able to perform numerous what-if scenarios within minutes to arrive at an optimal solution. The program evaluates input design parameters, performs joint assembly checks, and steps through numerous calculations to arrive at several key margins of safety for each member in a joint. It also checks for joint gapping, provides fatigue calculations, and generates joint diagrams for a visual reference. Optimum fastener size and material, as well as correct torque, can then be provided. Analysis methodology, equations, and guidelines are provided throughout the solution sequence so that this program does not become a "black box:" for the analyst. There are built-in databases that reduce the legwork required by the analyst. Each step is clearly identified and results are provided in number format, as well as color-coded spelled-out words to draw user attention. The three key features of the software are robust technical content, innovative and user friendly I/O, and a large database. The program addresses every aspect of bolted joint analysis and proves to be an instructional tool at the same time. It saves analysis time, has intelligent messaging features, and catches operator errors in real time.

  4. Cyclic Fatigue of Brittle Materials with an Indentation-Induced Flaw System

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1996-01-01

    The ratio of static to cyclic fatigue life, or 'h ratio', was obtained numerically for an indentation flaw system subjected to sinusoidal loading conditions. Emphasis was placed on developing a simple, quick lifetime prediction tool. The solution for the h ratio was compared with experimental static and cyclic fatigue data obtained from as-indented 96 wt.% alumina specimens tested in room-temperature distilled water.

  5. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  6. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth.

    PubMed

    Ausiello, Pietro; Franciosa, Pasquale; Martorelli, Massimo; Watts, David C

    2011-05-01

    In restored teeth, stresses at the tooth-restoration interface during masticatory processes may fracture the teeth or the restoration and cracks may grow and propagate. The aim was to apply numerical methodologies to simulate the behavior of a restored tooth and to evaluate fatigue lifetimes before crack failure. Using a CAD-FEM procedure and fatigue mechanic laws, the fatigue damage of a restored molar was numerically estimated. Tessellated surfaces of enamel and dentin were extracted by applying segmentation and classification algorithms, to sets of 2D image data. A user-friendly GUI, which enables selection and visualization of 3D tessellated surfaces, was developed in a MatLab(®) environment. The tooth-boundary surfaces of enamel and dentin were then created by sweeping operations through cross-sections. A class II MOD cavity preparation was then added into the 3D model and tetrahedral mesh elements were generated. Fatigue simulation was performed by combining a preliminary static FEA simulation with classical fatigue mechanical laws. Regions with the shortest fatigue-life were located around the fillets of the class II MOD cavity, where the static stress was highest. The described method can be successfully adopted to generate detailed 3D-FE models of molar teeth, with different cavities and restorative materials. This method could be quickly implemented for other dental or biomechanical applications. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Fatigue Damage Assessment Leveraging Nondestructive Evaluation Data

    NASA Astrophysics Data System (ADS)

    Mazur, K.; Wisner, B.; Kontsos, A.

    2018-05-01

    Fatigue in materials depends on several microstructural parameters. The length and time scales involved in such processes have been investigated by characterization methods that target microstructural effects or that rely on specimen-level observations. Combinations of in situ and ex situ techniques are also used to correlate microstructural changes to bulk properties. We present herein an effort to directly link local changes with specimen-level fatigue damage assessment. To achieve this goal, grain-scale observations in an aluminum alloy are linked with deformation measurements made by digital image correlation and with acoustic emission monitoring obtained from inside the scanning electron microscope. Damage assessment is attempted using a data-processing framework that involves noise removal, data reduction, and classification. The results demonstrate that nondestructive evaluation combined with small-scale testing can provide a means for fatigue damage assessment applicable to a broad range of materials and testing conditions.

  8. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  9. Effects of fatigue and environment on residual strengths of center-cracked graphite/epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Bigelow, Catherine A.

    1989-01-01

    The effects of fatigue, moisture conditioning, and heating on the residual tension strengths of center-cracked graphite/epoxy buffer strip panels were evaluated using specimens made with T300/5208 graphite epoxy in a 16-ply quasi-isotropic layup, with two different buffer strip materials, Kevlar-49 or S-glass. It was found that, for panels subjected to fatigue loading, the residual strengths were not significantly affected by the fatigue loading, the number of repetitions of the loading spectrum, or the maximum strain level. The moisture conditioning reduced the residual strengths of the S-glass buffer strip panels by 10 to 15 percent below the ambient results, but increased the residual strengths of the Kevlar-49 buffer strip panels slightly. For both buffer strip materials, the heat increased the residual strengths of the buffer strip panels slightly over the ambient results.

  10. The tensile and fatigue properties of DIN 1.4914 martensitic stainless steel after 590 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Victoria, M.

    1992-09-01

    Tensile and low cycle fatigue subsize specimens of DIN 1.4914 martensitic steel (MANET) have been irradiated with 590 MeV protons to doses up to 1 dpa and at temperatures between 363 and 703 K. The helium produced by spallation reactions was measured as 130 appm/dpa. A strong radiation hardening is found, which decreases as the irradiation temperature increases. The tensile elongation is reduced after irradiation, but the fracture mode is always ductile and transgranular. The radition hardening produced at low irradiation temperatures is recovered after annealing at higher temperatures. Continous softening is observed during low cycle fatigue testing. The rate of softening of the irradiated material is stonger than that of the unirradiated material and tends to reach the saturation level of the latter. The irradiation badly affects the fatigue life, particularly in the temperature domain of dynamic strain ageing between 553 and 653 K.

  11. Scanning Electron Microscope Mapping System Developed for Detecting Surface Defects in Fatigue Specimens

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kantzos, Peter T.

    2002-01-01

    An automated two-degree-of-freedom specimen positioning stage has been developed at the NASA Glenn Research Center to map and monitor defects in fatigue specimens. This system expedites the examination of the entire gauge section of fatigue specimens so that defects can be found using scanning electron microscopy (SEM). Translation and rotation stages are driven by microprocessor-based controllers that are, in turn, interfaced to a computer running custom-designed software. This system is currently being used to find and record the location of ceramic inclusions in powder metallurgy materials. The mapped inclusions are periodically examined during interrupted fatigue experiments. The number of cycles to initiate cracks from these inclusions and the rate of growth of initiated cracks can then be quantified. This information is necessary to quantify the effect of this type of defect on the durability of powder metallurgy materials. This system was developed with support of the Ultra Safe program.

  12. Assessment of Fatigue Resistance of Aluminide Layers on MAR 247 Nickel Super Alloy with Full-Field Optical Strain Measurements

    NASA Astrophysics Data System (ADS)

    Kukla, D.; Brynk, T.; Pakieła, Z.

    2017-08-01

    This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.

  13. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, L.; Carroll, M.

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatiguemore » for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.« less

  14. The characterization of copper alloys for the application of fusion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, S.; Fukaya, K.; Eto, M.

    Three kinds of candidate copper alloys for divertor structural materials of fusion experimental reactors, that is, Oxygen Free High thermal conductivity Copper (OFHC), alumina disperse reinforced copper (DSC) and the composite of W and Cu (W/Cu), were prepared for strength and fatigue tests at temperatures ranging from R.T. to 500 C in a vacuum. High temperature strength of DSC and W/Cu with rapid fracture after peak loading at the temperatures is higher than that of OFHC by factor of 2, but fracture strains of DFC and W/Cu are smaller than that of OFHC. Fatigue life of DSC, which shows themore » same fatigue behavior of OFHC at room temperature, is longer than other materials at 400 C. Remarkable fatigue life reduction of OFHC found in this experiment is to be due to recrystallization of OFHC yielded above 400 C.« less

  15. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    NASA Astrophysics Data System (ADS)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  16. Biologic interventions for fatigue in rheumatoid arthritis.

    PubMed

    Almeida, Celia; Choy, Ernest H S; Hewlett, Sarah; Kirwan, John R; Cramp, Fiona; Chalder, Trudie; Pollock, Jon; Christensen, Robin

    2016-06-06

    Fatigue is a common and potentially distressing symptom for patients with rheumatoid arthritis (RA), with no accepted evidence-based management guidelines. Evidence suggests that biologic interventions improve symptoms and signs in RA as well as reducing joint damage. To evaluate the effect of biologic interventions on fatigue in rheumatoid arthritis. We searched the following electronic databases up to 1 April 2014: Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Current Controlled Trials Register, the National Research Register Archive, The UKCRN Portfolio Database, AMED, CINAHL, PsycINFO, Social Science Citation Index, Web of Science, and Dissertation Abstracts International. In addition, we checked the reference lists of articles identified for inclusion for additional studies and contacted key authors. We included randomised controlled trials if they evaluated a biologic intervention in people with rheumatoid arthritis and had self reported fatigue as an outcome measure. Two reviewers selected relevant trials, assessed methodological quality and extracted data. Where appropriate, we pooled data in meta-analyses using a random-effects model. We identified 32 studies for inclusion in this current review. Twenty studies evaluated five anti-tumour necrosis factor (anti-TNF) biologic agents (adalimumab, certolizumab, etanercept, golimumab and infliximab), and 12 studies focused on five non-anti-TNF biologic agents (abatacept, canakinumab, rituximab, tocilizumab and an anti-interferon gamma monoclonal antibody). All but two of the studies were double-blind randomised placebo-controlled trials. In some trials, patients could receive concomitant disease-modifying anti-rheumatic drugs (DMARDs). These studies added either biologics or placebo to DMARDs. Investigators did not change the dose of the latter from baseline. In total, these studies included 9946 participants in the intervention groups and 4682 participants in the control groups. Overall, quality of randomised controlled trials was moderate with a low to unclear risk of bias in the reporting of the outcome of fatigue. We downgraded the quality of the studies from high to moderate because of potential reporting bias (studies included post hoc analyses favouring reporting of positive result and did not always include all randomised individuals). Some studies recruited only participants with early disease. The studies used five different instruments to assess fatigue in these studies: the Functional Assessment of Chronic Illness Therapy Fatigue Domain (FACIT-F), Short Form-36 Vitality Domain (SF-36 VT), Visual Analogue Scale (VAS) (0 to 100 or 0 to 10) and the Numerical Rating Scale (NRS). We calculated standard mean differences for pooled data in meta-analyses. Overall treatment by biologic agents led to statistically significant reduction in fatigue with a standardised mean difference of -0.43 (95% confidence interval (CI) -0.38 to -0.49). This equates to a difference of 6.45 units (95% CI 5.7 to 7.35) of FACIT-F score (range 0 to 52). Both types of biologic agents achieved a similar level of improvement: for anti-TNF agents, this stood at -0.42 (95% CI -0.35 to -0.49), equivalent to 6.3 units (95% CI 5.3 to 7.4) on the FACIT-F score; and for non-anti-TNF agents, it was -0.46 (95% CI -0.39 to -0.53), equivalent to 6.9 units (95% CI 5.85 to 7.95) on the FACIT-F score. In most studies, the double-blind period was 24 weeks or less. No study assessed long-term changes in fatigue. Treatment with biologic interventions in patients with active RA can lead to a small to moderate improvement in fatigue. The magnitude of improvement is similar for anti-TNF and non-anti-TNF biologics. However, it is unclear whether the improvement results from a direct action of the biologics on fatigue or indirectly through reduction in inflammation, disease activity or some other mechanism.

  17. Adaption of an In-Situ Microscale Tension Technique to Enable Fatigue Testing (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    mechanical properties , including fatigue performance, are strongly related to the crystallographic texture of these alloys.[5-7] With the combined use...effects, exploration of deformation micromechanisms, and measurement of the local properties in a bulk material (e.g., variations in the local...Approved for public release; distribution unlimited 9 microstructure of this material , would be expected to exhibit a reduction in mechanical properties

  18. Automated predesign of aircraft

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.

    1978-01-01

    Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.

  19. Factors Influencing the Fatigue Strength of Materials

    NASA Technical Reports Server (NTRS)

    Bollenrath, F

    1941-01-01

    A number of factors are considered which influence the static and fatigue strength of materials under practical operating conditions as contrasted with the relations obtaining under conditions of the usual testing procedure. Such factors are interruptions in operation, periodically fluctuating stress limits and mean stresses with periodic succession of several groups and stress states, statistical changes and succession of stress limits and mean stresses, frictional corrosion at junctures, and notch effects.

  20. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  1. Effect of additional heat treatment of 2024-T3 on the growth of fatigue crack in air and in vacuum

    NASA Technical Reports Server (NTRS)

    Louwaard, E. P.

    1986-01-01

    In order to determine the influence of ductility on the fatigue crack growth rate of aluminum alloys, fatigue tests were carried out on central notched specimens of 2024-T3 and 2024-T8 sheet material. The 2024-T8 material was obtained by an additional heat treatment applied on 2024-T3 (18 hours at 192 C), which increased the static yield strength from 43.6 to 48.9 kgf/sq mm. A change in the ultimate strength was not observed. Fatigue tests were carried out on both materials in humid air and in high vacuum. According to a new crack propagation model, crack extension is supported to be caused by a slip-related process and debonding triggered by the environment. This model predicts an effect of the ductility on the crack growth rate which should be smaller in vacuum than in humid air; however, this was not confirmed. In humid air the crack-growth rate in 2024-T8 was about 2 times faster than in 2024-T3, while in vacuum the ratio was about 2.5. Crack closure measurements gave no indications that crack closure played a significant role in both materials. Some speculative explanations are briefly discussed.

  2. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1983-01-01

    Biaxial fatigue is often encountered in the complex thermo-mechanical loadings present in gas turbine engines. Engine strain histories can involve non-constant temperature, mean stress, creep, environmental effects, both isotropic and anisotropic materials and non-proportional loading. Life prediction for the general case involving all the above factors is not a practicable research project. The current research program is limited to isothermal fatigue at room temperature and 1200 F of Hastalloy-X for both proportional and non-proportional loading. An improved method for predicting the fatigue life and deformation response under biaxial cycle loading is sought.

  3. Examining depletion theories under conditions of within-task transfer.

    PubMed

    Brewer, Gene A; Lau, Kevin K H; Wingert, Kimberly M; Ball, B Hunter; Blais, Chris

    2017-07-01

    In everyday life, mental fatigue can be detrimental across many domains including driving, learning, and working. Given the importance of understanding and accounting for the deleterious effects of mental fatigue on behavior, a growing body of literature has studied the role of motivational and executive control processes in mental fatigue. In typical laboratory paradigms, participants complete a task that places demand on these self-control processes and are later given a subsequent task. Generally speaking, decrements to subsequent task performance are taken as evidence that the initial task created mental fatigue through the continued engagement of motivational and executive functions. Several models have been developed to account for negative transfer resulting from this "ego depletion." In the current study, we provide a brief literature review, specify current theoretical approaches to ego-depletion, and report an empirical test of current models of depletion. Across 4 experiments we found minimal evidence for executive control depletion along with strong evidence for motivation mediated ego depletion. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Fatigue behavior of a 2XXX series aluminum alloy reinforced with 15 vol Pct SiCp

    NASA Astrophysics Data System (ADS)

    Bonnen, J. J.; Allison, J. E.; Jones, J. W.

    1991-05-01

    The fatigue behavior of a naturally aged powder metallurgy 2xxx series aluminum alloy (Alcoa MB85) and a composite made of this alloy with 15 vol pct SiCp, has been investigated. Fatigue lives were determined using load-controlled axial testing of unnotched cylindrical samples. The influence of mean stress was determined at stress ratios of -1, 0.1, and 0.7. Mean stress had a significant influence on fatigue life, and this influence was consistent with that normally observed in metals. At each stress ratio, the incorporation of SiC reinforcement led to an increase in fatigue life at low and intermediate stresses. When considered on a strain-life basis, however, the composite materials had a somewhat inferior resistance to fatigue. Fatigue cracks initiated from several different microstructural features or defect types, but fatigue life did not vary significantly with the specific initiation site. As the fatigue crack advanced away from the fatigue crack initiation site, increasing numbers of SiC particles were fractured, in agreement with crack-tip process zone models.

  5. Bipolar ferroelectric fatigue in (K0.5Na0.5)(Nb0.7Ta0.3)O3 ceramics and improved fatigue endurance on addition of ZnO

    NASA Astrophysics Data System (ADS)

    Vineetha, P.; Shanmuga Priya, B.; Venkata Saravanan, K.

    2018-04-01

    Ferroelectric ceramics are the key components in piezoelectric devices used today, thus long term reliability is a major industrial concern. The two important things that have to be considered in the ferroelectric material based device are aging and fatigue. The first one describes degradation with time whereas the later one is characterized by the change of material property during electrical loading. In the present work ferroelectric polarization and bipolar fatigue properties of undoped and ZnO doped lead free (K0.5Na0.5)(Nb0.7Ta0.3)O3 (KNNT) ceramics prepared by solid state reaction method were investigated. X-ray diffraction analysis of the samples reveal perovskite monoclinic phase along with the secondary phase of K2Nb4O11. The ferroelectric studies indicate that ZnO addition reduce fatigue as well as a well saturated hysteresis loop is obtained. The results reveal that addition of ZnO enhances the ferroelectric properties of KNNT ceramics.

  6. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  7. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  8. Micromechanics Based Failure Analysis of Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Sertse, Hamsasew M.

    In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.

  9. Dynamic fatigue of a machinable glass-ceramic

    NASA Technical Reports Server (NTRS)

    Smyth, K. K.; Magida, M. B.

    1982-01-01

    To assess the stress corrosion susceptibility of a machinable glass-ceramic, its dynamic fatigue behavior was investigated by measuring its strength as a function of stress rate. Fracture mechanics techniques were used to analyse the results for the purpose of making lifetime predictions for components of this material. This material was concluded to have only moderate resistance to stress in ambient conditions. The effects of specimen size on strength were assessed for the material used in this study: it was concluded that the Weibull edge-flaw scaling law adequately describes the observed strength-size relationship.

  10. A new criterion for predicting rolling-element fatigue lives of through-hardened steels

    NASA Technical Reports Server (NTRS)

    Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.

    1972-01-01

    A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.

  11. Quick Reaction Evaluation of Materials and Processes. Delivery Order 0011: Engineering Properties, Fatigue, and Crack Growth Data on SCS-6/Ti-6Al-4V Titanium Matrix Composite (16 Ply) Panels

    DTIC Science & Technology

    2009-05-01

    tabs were bonded to the specimen using a TIG welding process to ensure adhesion of the tabs throughout the experiment. The shear specimens and the...AFRL-RX-WP-TR-2010-4175 QUICK REACTION EVALUATION OF MATERIALS AND PROCESSES Delivery Order 0011: Engineering Properties, Fatigue, and Crack...From - To) May 2009 Final 03 April 2006 – 29 May 2009 4. TITLE AND SUBTITLE QUICK REACTION EVALUATION OF MATERIALS AND PROCESSES Delivery Order

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  13. Computer simulation of solder joint failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchett, S.N.; Frear, D.R.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less

  14. Early detection of materials degradation

    NASA Astrophysics Data System (ADS)

    Meyendorf, Norbert

    2017-02-01

    Lightweight components for transportation and aerospace applications are designed for an estimated lifecycle, taking expected mechanical and environmental loads into account. The main reason for catastrophic failure of components within the expected lifecycle are material inhomogeneities, like pores and inclusions as origin for fatigue cracks, that have not been detected by NDE. However, material degradation by designed or unexpected loading conditions or environmental impacts can accelerate the crack initiation or growth. Conventional NDE methods are usually able to detect cracks that are formed at the end of the degradation process, but methods for early detection of fatigue, creep, and corrosion are still a matter of research. For conventional materials ultrasonic, electromagnetic, or thermographic methods have been demonstrated as promising. Other approaches are focused to surface damage by using optical methods or characterization of the residual surface stresses that can significantly affect the creation of fatigue cracks. For conventional metallic materials, material models for nucleation and propagation of damage have been successfully applied for several years. Material microstructure/property relations are well established and the effect of loading conditions on the component life can be simulated. For advanced materials, for example carbon matrix composites or ceramic matrix composites, the processes of nucleation and propagation of damage is still not fully understood. For these materials NDE methods can not only be used for the periodic inspections, but can significantly contribute to the material scientific knowledge to understand and model the behavior of composite materials.

  15. Postirradiation thermocyclic loading of ferritic-martensitic structural materials

    NASA Astrophysics Data System (ADS)

    Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.

    Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.

  16. Scanning and Transmission Electron Microscopy of High Temperature Materials

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.

  17. Fatigue test results of the rotating steel blades of steam turbine K-25-0.6 GEO with ion-plasma coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Arkad'ev, D. A.; Temkin, S. G.; Senina, N. A.

    2016-12-01

    Fatigue test results of the rotating steel blades of the fourth stage of the K-25-0.6 low pressure cylinder Geo steam turbine manufactured in the Kaluga Turbine Plant (hereinafter, KTP) with the ion-plasma coating were presented. Coating formation was carried out at the National Research University (MPEI) on the Gefest vacuum pilot plant by the magnetron sputtering method. Characteristics of the obtained coating were analyzed with the use of the scientific-research equipment of the National Research University (MPEI). Fatigue tests of the rotating blades and determination of the fatigue strength of the material with the ion-plasma coating were carried out on the electrodynamic vibration machines VEDS-400A in the KTP structural laboratory. The following characteristics were obtained after tests: Ti-TiN composition, 10-11 μm thickness, 1200 HV 0.05 microhardness. Fatigue tests showed that destruction, regardless of availability or nonavailability of the coating, took place by cross-section in the root zone both on the leading and trailing edges of the blade, i.e., in the most stressed zones. It was found out that the maximum stresses during tests were revealed in the root section along the trailing edge on the blade pressure side, and the less stresses were on the leading edge. Fatigue strength of the working blades after coating formation increased by 12% minimum. Results of the fatigue tests prove the previously obtained data concerning 10-12% increase of the fatigue strength of the blade steel with the ion-plasma coating and allow claiming that the process of their formation exerts the positive influence on the fatigue characteristics of the blade materials.

  18. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development.

    PubMed

    Latimer-Cheung, Amy E; Pilutti, Lara A; Hicks, Audrey L; Martin Ginis, Kathleen A; Fenuta, Alyssa M; MacKibbon, K Ann; Motl, Robert W

    2013-09-01

    To conduct a systematic review of evidence surrounding the effects of exercise training on physical fitness, mobility, fatigue, and health-related quality of life in adults with multiple sclerosis (MS). The databases included EMBASE, 1980 to 2011 (wk 12); Ovid MEDLINE and Ovid OLDMEDLINE, 1947 to March (wk 3) 2011; PsycINFO, 1967 to March (wk 4) 2011; CINAHL all-inclusive; SPORTDiscus all-inclusive; Cochrane Library all-inclusive; and Physiotherapy Evidence Database all-inclusive. The review was limited to English-language studies (published before December 2011) of people with MS that evaluated the effects of exercise training on outcomes of physical fitness, mobility, fatigue, and/or health-related quality of life. One research assistant extracted data and rated study quality. A second research assistant verified the extraction and quality assessment. From the 4362 studies identified, 54 studies were included in the review. The extracted data were analyzed using a descriptive approach. There was strong evidence that exercise performed 2 times per week at a moderate intensity increases aerobic capacity and muscular strength. The evidence was not consistent regarding the effects of exercise training on other outcomes. Among those with mild to moderate disability from MS, there is sufficient evidence that exercise training is effective for improving both aerobic capacity and muscular strength. Exercise may improve mobility, fatigue, and health-related quality of life. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Crack initiation modeling of a directionally-solidified nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Gordon, Ali Page

    Combustion gas turbine components designed for application in electric power generation equipment are subject to periodic replacement as a result of cracking, damage, and mechanical property degeneration that render them unsafe for continued operation. In view of the significant costs associated with inspecting, servicing, and replacing damaged components, there has been much interest in developing models that not only predict service life, but also estimate the evolved microstructural state of the material. This thesis explains manifestations of microstructural damage mechanisms that facilitate fatigue crack nucleation in a newly-developed directionally-solidified (DS) Ni-base superalloy components exposed to elevated temperatures and high stresses. In this study, models were developed and validated for damage and life prediction using DS GTD-111 as the subject material. This material, proprietary to General Electric Energy, has a chemical composition and grain structure designed to withstand creep damage occurring in the first and second stage blades of gas-powered turbines. The service conditions in these components, which generally exceed 600°C, facilitate the onset of one or more damage mechanisms related to fatigue, creep, or environment. The study was divided into an empirical phase, which consisted of experimentally simulating service conditions in fatigue specimens, and a modeling phase, which entailed numerically simulating the stress-strain response of the material. Experiments have been carried out to simulate a variety of thermal, mechanical, and environmental operating conditions endured by longitudinally (L) and transversely (T) oriented DS GTD-111. Both in-phase and out-of-phase thermo-mechanical fatigue tests were conducted. In some cases, tests in extreme environments/temperatures were needed to isolate one or at most two of the mechanisms causing damage. Microstructural examinations were carried out via SEM and optical microscopy. A continuum crystal plasticity model was used to simulate the material behavior in the L and T orientations. The constitutive model was implemented in ABAQUS and a parameter estimation scheme was developed to obtain the material constants. A physically-based model was developed for correlating crack initiation life based on the experimental life data and predictions are made using the crack initiation model. Assuming a unique relationship between the damage fraction and cycle fraction with respect to cycles to crack initiation for each damage mode, the total crack initiation life has been represented in terms of the individual damage components (fatigue, creep-fatigue, creep, and oxidation-fatigue) observed at the end state of crack initiation.

  20. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE PAGES

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary; ...

    2017-02-20

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  1. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    PubMed

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Establishment of new design criteria for GlidCop ® X-ray absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jeff T.; Nudell, Jeremy; Navrotski, Gary

    Here, an engineering research program has been conducted at the Advanced Photon Source (APS) in order to determine the thermomechanical conditions that lead to crack formation in GlidCop ®, a material commonly used to fabricate X-ray absorbers at X-ray synchrotron facilities. This dispersion-strengthened copper alloy is a proprietary material and detailed technical data of interest to the synchrotron community is limited. The results from the research program have allowed new design criteria to be established for GlidCop ® X-ray absorbers based upon the thermomechanically induced fatigue behavior of the material. X-ray power from APS insertion devices was used to exposemore » 30 GlidCop ® samples to 10000 thermal loading cycles each under various beam power conditions, and all of the samples were metallurgically examined for crack presence/geometry. In addition, an independent testing facility was hired to measure temperature-dependent mechanical data and uniaxial mechanical fatigue data for numerous GlidCop ® samples. Data from these studies support finite element analysis (FEA) simulation and parametric models, allowing the development of a thermal fatigue model and the establishment of new design criteria so that the thermomechanically induced fatigue life of X-ray absorbers may be predicted. It is also demonstrated how the thermal fatigue model can be used as a tool to geometrically optimize X-ray absorber designs.« less

  3. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  4. Ares I-X USS Material Testing

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Smith, Stephen W.; Raju, Ivatury S.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). Material characterization tests were conducted to quantify the material behavior for use in the CIFS analyses. Fatigue crack growth rate, Charpy impact, and fracture tests were conducted on the parent and welded A516 Grade 70 steel. The crack growth rate tests confirmed that the material behaved in agreement with literature data and that a salt water environment would not significantly degrade the fatigue resistance. The Charpy impact tests confirmed that the fracture resistance of the material did not have a significant reduction for the expected operational temperatures of the vehicle.

  5. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  6. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  7. Life extension of self-healing polymers with rapidly growing fatigue cracks.

    PubMed

    Jones, A S; Rule, J D; Moore, J S; Sottos, N R; White, S R

    2007-04-22

    Self-healing polymers, based on microencapsulated dicyclopentadiene and Grubbs' catalyst embedded in the polymer matrix, are capable of responding to propagating fatigue cracks by autonomic processes that lead to higher endurance limits and life extension, or even the complete arrest of the crack growth. The amount of fatigue-life extension depends on the relative magnitude of the mechanical kinetics of crack propagation and the chemical kinetics of healing. As the healing kinetics are accelerated, greater fatigue life extension is achieved. The use of wax-protected, recrystallized Grubbs' catalyst leads to a fourfold increase in the rate of polymerization of bulk dicyclopentadiene and extends the fatigue life of a polymer specimen over 30 times longer than a comparable non-healing specimen. The fatigue life of polymers under extremely fast fatigue crack growth can be extended through the incorporation of periodic rest periods, effectively training the self-healing polymeric material to achieve higher endurance limits.

  8. Experimental Constraints on the Fatigue of Icy Satellite Lithospheres by Tidal Forces

    NASA Astrophysics Data System (ADS)

    Hammond, Noah P.; Barr, Amy C.; Cooper, Reid F.; Caswell, Tess E.; Hirth, Greg

    2018-02-01

    Fatigue can cause materials that undergo cyclic loading to experience brittle failure at much lower stresses than under monotonic loading. We propose that the lithospheres of icy satellites could become fatigued and thus weakened by cyclical tidal stresses. To test this hypothesis, we performed a series of laboratory experiments to measure the fatigue of water ice at temperatures of 198 K and 233 K and at a loading frequency of 1 Hz. We find that ice is not susceptible to fatigue at our experimental conditions and that the brittle failure stress does not decrease with increasing number of loading cycles. Even though fatigue was not observed at our experimental conditions, colder temperatures, lower loading frequencies, and impurities in the ice shells of icy satellites may increase the likelihood of fatigue crack growth. We also explore other mechanisms that may explain the weak behavior of the lithospheres of some icy satellites.

  9. Fatigue-life behavior and matrix fatigue crack spacing in unnotched SCS-6/Timetal 21S metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ward, G. T.; Herrmann, D. J.; Hillberry, B. M.

    1993-01-01

    Fatigue tests of the SCS-6/Timetal 21S composite system were performed to characterize the fatigue behavior for unnotched conditions. The stress-life behavior of the unnotched (9/90)2s laminates was investigated for stress ratios of R = 0.1 and R = 0.3. The occurrence of matrix cracking was also examined in these specimens. This revealed multiple matrix crack initiation sites throughout the composite, as well as evenly spaced surface cracks along the length of the specimens. No difference in fatigue lives were observed for stress ratios of R = 0.1 and R = 0.3 when compared on a stress range basis. The unnotched SCS-6/Timetal 21S composites had shorter fatigue lives than the SCS-6/Ti-15-3 composites, however the neat Timetal 21S matrix material had a longer fatigue life than the neat Ti-15-3.

  10. Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects

    PubMed Central

    Martin, Caitlin; Sun, Wei

    2012-01-01

    One of the major failure modes of bioprosthetic heart valves is non-calcific structural deterioration due to fatigue of the tissue leaflets. Experimental methods to characterize tissue fatigue properties are complex and time-consuming. A constitutive fatigue model that could be calibrated by isolated material tests would be ideal for investigating the effects of more complex loading conditions. However, there is a lack of tissue fatigue damage models in the literature. To address these limitations, in this study, a phenomenological constitutive model was developed to describe the stress softening and permanent set effects of tissue subjected to long-term cyclic loading. The model was used to capture characteristic uniaxial fatigue data for glutaraldehyde-treated bovine pericardium and was then implemented into finite element software. The simulated fatigue response agreed well with the experimental data and thus demonstrates feasibility of this approach. PMID:22945802

  11. Fatigue strength of a magnesium MA2-1 alloy after equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Terent'ev, V. F.; Dobatkin, S. V.; Prosvirnin, D. V.; Bannykh, I. O.; Kopylov, V. I.; Serebryany, V. N.

    2010-09-01

    The fatigue strength of a magnesium MA2-1 alloy is studied after annealing and equal-channel angular pressing (ECAP). The ultrafine-grained structure formed upon ECAP is shown to increase the plasticity of the material during static tension, to decrease the cyclic life to failure, and not to decrease the fatigue limit. The mechanisms of crack nucleation and growth during cyclic deformation are investigated.

  12. Application of Weakest Link Probabilistic Framework for Fatigue Notch Factor to Aero Engine Materials

    DTIC Science & Technology

    2014-08-25

    11 distributed cyclic microplasticity . Recent approaches have been developed to incorporate these finite process zone effects at notches [25, 26...the distribution of microvoids [50] or microplasticity [51]. According to the hypotheses on which the weakest link theory is based, given a structure...high cycle fatigue regime, where scatter of heterogeneous microplasticity in the fatigue specimen is a common occurrence. The probability of success

  13. Evaluation of Delamination Onset and Growth Characterization Methods under Mode I Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2013-01-01

    Double-cantilevered beam specimens of IM7/8552 graphite/epoxy from two different manufacturers were tested in static and fatigue to compare the material characterization data and to evaluate a proposed ASTM standard for generating Paris Law equations for delamination growth. Static results were used to generate compliance calibration constants for reducing the fatigue data, and a delamination resistance curve, GIR, for each material. Specimens were tested in fatigue at different initial cyclic GImax levels to determine a delamination onset curve and the delamination growth rate. The delamination onset curve equations were similar for the two sources. Delamination growth rate was calculated by plotting da/dN versus GImax on a log-log scale and fitting a Paris Law. Two different data reduction methods were used to calculate da/dN. To determine the effects of fiber-bridging, growth results were normalized by the delamination resistance curves. Paris Law exponents decreased by 31% to 37% after normalizing the data. Visual data records from the fatigue tests were used to calculate individual compliance constants from the fatigue data. The resulting da/dN versus GImax plots showed improved repeatability for each source, compared to using averaged static data. The Paris Law expressions for the two sources showed the closest agreement using the individually fit compliance data.

  14. Mind-body treatments for the pain-fatigue-sleep disturbance symptom cluster in persons with cancer.

    PubMed

    Kwekkeboom, Kristine L; Cherwin, Catherine H; Lee, Jun W; Wanta, Britt

    2010-01-01

    Co-occurring pain, fatigue, and sleep disturbance comprise a common symptom cluster in patients with cancer. Treatment approaches that target the cluster of symptoms rather than just a single symptom need to be identified and tested. To synthesize evidence regarding mind-body interventions that have shown efficacy in treating two or more symptoms in the pain-fatigue-sleep disturbance cancer symptom cluster. A literature search was conducted using CINAHL, Medline, and PsychInfo databases through March 2009. Studies were categorized based on the type of mind-body intervention (relaxation, imagery/hypnosis, cognitive-behavioral therapy/coping skills training [CBT/CST], meditation, music, and virtual reality), and a preliminary review was conducted with respect to efficacy for pain, fatigue, and sleep disturbance. Mind-body interventions were selected for review if there was evidence of efficacy for at least two of the three symptoms. Forty-three studies addressing five types of mind-body interventions met criteria and are summarized in this review. Imagery/hypnosis and CBT/CST interventions have produced improvement in all the three cancer-related symptoms individually: pain, fatigue, and sleep disturbance. Relaxation has resulted in improvements in pain and sleep disturbance. Meditation interventions have demonstrated beneficial effects on fatigue and sleep disturbance. Music interventions have demonstrated efficacy for pain and fatigue. No trials were found that tested the mind-body interventions specifically for the pain-fatigue-sleep disturbance symptom cluster. Efficacy studies are needed to test the impact of relaxation, imagery/hypnosis, CBT/CST, meditation, and music interventions in persons with cancer experiencing concurrent pain, fatigue, and sleep disturbance. These mind-body interventions could help patients manage all the symptoms in the cluster with a single treatment strategy. Copyright 2010 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  15. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  16. Strain energy release rate as a function of temperature and preloading history utilizing the edge delamination fatique test method

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.

  17. Materials testing of the IUS techroll seal material

    NASA Technical Reports Server (NTRS)

    Nichols, R. L.; Hall, W. B.

    1984-01-01

    As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.

  18. Dynamic and static fatigue of a machinable glass ceramic

    NASA Technical Reports Server (NTRS)

    Magida, M. B.; Forrest, K. A.; Heslin, T. M.

    1984-01-01

    The dynamic and static fatigue behavior of a machinable glass ceramic was investigated to assess its susceptibility to stress corrosion-induced delayed failure. Fracture mechanics techniques were used to analyze the results so that lifetime predictions for components of this material could be made. The resistance to subcritical crack growth of this material was concluded to be only moderate and was found to be dependent on the size of its microstructure.

  19. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices.

    PubMed

    Ritchie, R O; Dauskardt, R H; Pennisi, F J

    1992-01-01

    A scanning electron microscopy study is reported of the nature and morphology of fracture surfaces in pyrocarbons commonly used for the manufacture of mechanical heart-valve prostheses. Specifically, silicon-alloyed low-temperature-isotropic (LTI)-pyrolytic carbon is examined, both as a coating on graphite and as a monolithic material, following overload, stress corrosion (static fatigue), and cyclic fatigue failures in a simulated physiological environment of 37 degrees C Ringer's solution. It is found that, in contrast to most metallic materials yet in keeping with many ceramics, there are no distinct fracture morphologies in pyro-carbons which are characteristic of a specific mode of loading; fracture surfaces appear to be identical for both catastrophic and subcritical crack growth under either sustained or cyclic loading. We conclude that caution should be used in assigning the likely cause of failure of pyrolytic carbon heart-valve components using fractographic examination.

  20. Impact and residual fatigue behavior of ARALL and AS6/5245 composite material

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    The impact sensitivity of aramide fiber-reinforced aluminum laminates (ARALL) was investigated by testing two types of ARALL (7075 aluminum prestrained and 2024 aluminum not prestrained), via static indentation, and the results were compared to those of sheet aluminum alloys 7075-T6 and 2024-T3 and to a state of the art composite AS6/5245. It was found that the impact resistance of the two ARALL samples was inferior to that of monolithic sheet aluminum samples, although the ARALL material made with 2024-T3 aluminum was superior to that made with 7075-T6 aluminum. The impact damage resistance of ARALL materials was at least equal to that of AS6/5245, and the AS6/5245 had higher residual tension-tension fatigue strength after impact than the ARALL samples. It was also found that the prestraining of the ARALL reduced the fatigue growth of impact damage.

  1. Role of dietary modification in alleviating chronic fatigue syndrome symptoms: a systematic review.

    PubMed

    Jones, Kathryn; Probst, Yasmine

    2017-08-01

    To review the evidence for the role of dietary modifications in alleviating chronic fatigue syndrome symptoms. A systematic literature review was guided by PRISMA and conducted using Scopus, CINAHL Plus, Web of Science and PsycINFO scientific databases (1994-2016) to identify relevant studies. Twenty-two studies met the inclusion criteria, the quality of each paper was assessed and data extracted into a standardised tabular format. Positive outcomes were highlighted in some included studies for polyphenol intakes in animal studies, D-ribose supplementation in humans and aspects of symptom alleviation for one of three polynutrient supplement studies. Omega three fatty acid blood levels and supplementation with an omega three fatty acid supplement also displayed positive outcomes in relation to chronic fatigue syndrome symptom alleviation. Limited dietary modifications were found useful in alleviating chronic fatigue syndrome symptoms, with overall evidence narrow and inconsistent across studies. Implications for public health: Due to the individual and community impairment chronic fatigue syndrome causes the population, it is vital that awareness and further focused research on this topic is undertaken to clarify and consolidate recommendations and ensure accurate, useful distribution of information at a population level. © 2017 The Authors.

  2. Rolling-element fatigue life of AMS 5749 corrosion resistant, high temperature bearing steel

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Hodder, R. S.

    1977-01-01

    The rolling element fatigue lives of AMS 5749 and AISI M-50 were compared in tests run in the five ball fatigue tester and the rolling contact fatigue tester. The effects of double vacuum melting and retained austenite on the life of AMS 5749 were determined in five ball fatigue tests. The double vacuum melting process consisted of induction vacuum melting followed by vacuum arc remelting (VIM-VAR). In the five ball tests, VIM-VAR AMS 5749 gave lives at least six times that of VIM-VAR AISI M-50. Similar tests in the rolling contact fatigue tester showed no significant difference in the lives of the two materials. The rolling element fatigue life of VIM-VAR AMS 5749 was at least 14 times that of vacuum induction melted AMS 5749. A trend toward increased rolling element fatigue life with decreased retained austenite is apparent, but the confidence that all experimental differences are significant is not great.

  3. Material fatigue data obtained by card-programmed hydraulic loading system

    NASA Technical Reports Server (NTRS)

    Davis, W. T.

    1967-01-01

    Fatigue tests using load distributions from actual loading histories encountered in flight are programmed on punched electronic accounting machine cards. With this hydraulic loading system, airframe designers can apply up to 55 load levels to a test specimen.

  4. Bearingless helicopter main rotor development. Volume 2: Combined load fatigue evaluation of weathered graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Rackiewicz, J. J.

    1977-01-01

    Small scale combined load fatigue tests were conducted on six artificially and six naturally weathered test specimens. The test specimen material was unidirectionally oriented A-S graphite - woven glass scrim epoxy resin laminate.

  5. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on themore » fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.« less

  6. The Relationships Between Microstructure, Tensile Properties and Fatigue Life in Ti-5Al-5V-5Mo-3Cr-0.4Fe (Ti-5553)

    NASA Astrophysics Data System (ADS)

    Foltz, John W., IV

    beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.

  7. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    NASA Astrophysics Data System (ADS)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-03-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  8. Welding Residual Stress Analysis and Fatigue Strength Assessment at Elevated Temperature for Multi-pass Dissimilar Material Weld Between Alloy 617 and P92 Steel

    NASA Astrophysics Data System (ADS)

    Lee, Juhwa; Hwang, Jeongho; Bae, Dongho

    2018-07-01

    In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.

  9. Characterization and damage evaluation of advanced materials

    NASA Astrophysics Data System (ADS)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.

  10. The multiaxial fatigue response of cylindrical geometry under proportional loading subject to fluctuating tractions

    NASA Astrophysics Data System (ADS)

    Martinez, Rudy D.

    A multiaxial fatigue model is proposed, as it would apply to cylindrical geometry in the form of industrial sized pressure vessels. The main focus of the multiaxial fatigue model will be based on using energy methods with the loading states confined to fluctuating tractions under proportional loading. The proposed fatigue model is an effort to support and enhance existing fatigue life predicting methods for pressure vessel design, beyond the ASME Boiler and Pressure Vessel codes, ASME Section VIII Division 2 and 3, which is currently used in industrial engineering practice for pressure vessel design. Both uniaxial and biaxial low alloy pearlittic-ferritic steel cylindrical cyclic test data are utilized to substantiate the proposed fatigue model. Approximate material hardening and softening aspects from applied load cycling states and the Bauschinger effect are accounted for by adjusting strain control generated hysteresis loops and the cyclic stress strain curve. The proposed fatigue energy model and the current ASME fatigue model are then compared with regards to the accuracy of predicting fatigue life cycle consistencies.

  11. Fatigue Characterization of Alloy 10: a 1300F Disk Alloy for Small Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2000-01-01

    A detailed fatigue characterization of Alloy 10, a high strength nickel-based disk alloy, was conducted on test coupons machined from a 'pancake' forging. Smooth bar, strain controlled fatigue testing at various R-ratios was run at representative bore, 750 F, and rim, 1300 F, temperatures. This was followed by notch fatigue testing (Kt=2) run under load control. Analysis of the fatigue data using a Smith-Watson-Topper approach and finite element analysis of the notch root was employed to understand material behavior in these tests. Smooth bar fatigue data showed a significant R-ratio dependence at either test temperature which could be accounted for using a Smith-Watson-Topper parameter (SWT). In general, fatigue life was longer at 750 F than 1300 F for a given SWT. For notch fatigue tests, life was longer at 750 F than 1300 F but only at higher stresses. This was attributed to differences in alloy strength. At lower stresses, finite element analysis suggested that convergence of fatigue life at both temperatures resulted from relaxation of stresses at the notch root in the 1300 F tests.

  12. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  13. Hydrogen effects on Ni-Ti fatigue performance by self -heating method

    NASA Astrophysics Data System (ADS)

    Rokbani, M.; Saint-Sulpice, L.; Arbab Chirani, S.; Bouraoui, T.

    2017-10-01

    Ni-Ti superelastic alloys are extensively used in manufacturing biomedical devices because of their high mechanical performance, good fatigue durability and biocompatibility compared to traditional metallic materials. During clinical use, most of these devices are intended to work under cyclic or repetitive loadings and may be in contact with corrosive environments leading to unexpected failures. It is however recognized that the fatigue-environment interaction, especially fatigue-hydrogen absorption, can be the main cause of these failures. The aim of this work is to investigate the fatigue behavior of superelastic Ni-Ti intended for manufacturing medical devices at high number of cycles (HCF) with a particular emphasis to the effect of hydrogen on fatigue properties. Fatigue tests were analyzed using self-heating measurements based on observing thermal effects during cyclic loadings. The results obtained with self-heating approach showed a trend of a decrease in the fatigue life of Ni-Ti alloys after hydrogen absorption and the fatigue limit extrapolated will be compared with the results obtained with the classical S-N curves method.

  14. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis.

  15. The Potential of Wearable Sensor Technology for EVA Glove Ergonomic Evaluation

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane; Norcross, Jason R.; Rajulu, Sudhakar

    2014-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). Many of these injuries refer to the gloves worn during EVA as the root cause. While pressurized, the bladder and outer material of these gloves restrict movement and create pressure points while performing tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally a more severe injury, onycholysis (fingernail delamination). The most common injury causes are glove contact (pressure point/rubbing), ill-fitting gloves, and/or performing EVA tasks in pressurized gloves. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals over 57% of the total injuries to the upper extremities during EVA training occurred either to the metacarpophalangeal (MCP) joint, fingernail, or the fingertip. Twenty-five of these injuries resulted in a diagnosis of onycholysis

  16. Protocol for a systematic review of psychological interventions for cancer-related fatigue in post-treatment cancer survivors.

    PubMed

    Corbett, Teresa; Devane, Declan; Walsh, Jane C; Groarke, AnnMarie; McGuire, Brian E

    2015-12-04

    Fatigue is a common symptom in cancer patients that can persist beyond the curative treatment phase. Some evidence has been reported for interventions for fatigue during active treatment. However, to date, there is no systematic review on psychological interventions for fatigue after the completion of curative treatment for cancer. This is a protocol for a systematic review that aims to evaluate the effectiveness of psychological interventions for cancer-related fatigue in post-treatment cancer survivors. This systematic review protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) database. We will search the Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library), PubMed, MEDLINE, EMBASE, CINAHL, PsycINFO, and relevant sources of grey literature. Randomised controlled trials (RCTs) which have evaluated psychological interventions in adult cancer patients after the completion of treatment, with fatigue as an outcome measure, will be included. Two review authors will independently extract data from the selected studies and assess the methodological quality using the Cochrane Collaboration Risk of Bias Tool. Most existing evidence on cancer-related fatigue is from those in active cancer treatment. This systematic review and meta-analysis will build upon previous evaluations of psychological interventions in people during and after cancer treatment. With the growing need for stage-specific research in cancer, this review seeks to highlight a gap in current practice and to strengthen the evidence base of randomised controlled trials in the area. PROSPERO CRD42014015219.

  17. Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress

    NASA Astrophysics Data System (ADS)

    Gibaud, Thomas; Perge, Christophe; Lindström, Stefan B.; Taberlet, Nicolas; Manneville, Sébastien

    Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g., construction materials, but much less has been done on soft materials. Here, we characterize the fatigue dynamics of a colloidal gel. Fatigue is induced by large amplitude oscillatory stress (LAOStress), and the local displacements of the gel are measured through high-frequency ultrasonic imaging. We show that fatigue eventually leads to rupture and fluidization. We evidence four successive steps associated with these dynamics: (i) the gel first remains solid, (ii) it then slides against the walls, (iii) the bulk of the sample becomes heterogeneous and displays solid-fluid coexistence, and (iv) it is finally fully fluidized. It is possible to homogeneously scale the duration of each step with respect to the stress oscillation amplitude $\\sigma_0$. The data are compatible with both exponential and power-law scalings with $\\sigma_0$, which hints at two possible interpretations in terms of delayed yielding in terms activated processes or of the Basquin law. Surprisingly, we find that the model parameters behave nonmonotonically as we change the oscillation frequency and/or the gel concentration.

  18. Fatigue and fail-safe design features of the DC-10 airplane

    NASA Technical Reports Server (NTRS)

    Stone, M. E.

    1972-01-01

    The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.

  19. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  20. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    NASA Astrophysics Data System (ADS)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  1. Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1991-01-01

    Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.

  2. Flexural fatigue of short glass fiber reinforced a blend of polyphenylene ether ketone and polyphenylene sulfide

    NASA Astrophysics Data System (ADS)

    Zhou, Jiang; D'Amore, Alberto; Yang, Yuming; He, Tianbai; Li, Binyao; Nicolais, Luigi

    1994-05-01

    Flexural fatigue tests were conducted on injection molded glass fiber reinforced a blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending with different stress ratios and different frequencies. The fatigue behavior of this material was described. The constructed S-N curves shift their trends obviously at the maximum cyclic stress being about 80% of the ultimate flexural strength. Examinations of failure surfaces for various loading conditions show that the fatigue failure mechanisms appear to be matrix yielding at high stresses and crack growth at low stresses. Analyses of the fatigue data at various stress ratios reveal that the data at low stress superimpose to form a single curve which is nearly linear when they are plotted as stress range versus number of cycles to failure in bilogarithmic axes, while the data at high stresses also converge to yield a single curve when they are plotted as ( S max S range)1/2 against specimen lifetimes ( S max is the maximum stress and S range is the stress range). These results show that for the studied material the main factor influencing the lifetime is the stress range at low stresses and the parameter ( S max S range)1/2 at high stresses. Comparison of fatigue data in the frequency range of 0.89 7.0 Hz was made, no significant effect of frequency on the fatigue behavior is found.

  3. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  4. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    PubMed Central

    Liu, Xuesong; Berto, Filippo

    2018-01-01

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140

  5. Life prediction technologies for aeronautical propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1990-01-01

    Fatigue and fracture problems continue to occur in aeronautical gas turbine engines. Components whose useful life is limited by these failure modes include turbine hot-section blades, vanes, and disks. Safety considerations dictate that catastrophic failures be avoided, while economic considerations dictate that catastrophic failures be avoided, while economic considerations dictate that noncatastrophic failures occur as infrequently as possible. Therefore, the decision in design is making the tradeoff between engine performance and durability. LeRC has contributed to the aeropropulsion industry in the area of life prediction technology for over 30 years, developing creep and fatigue life prediction methodologies for hot-section materials. At the present time, emphasis is being placed on the development of methods capable of handling both thermal and mechanical fatigue under severe environments. Recent accomplishments include the development of more accurate creep-fatigue life prediction methods such as the total strain version of LeRC's strain-range partitioning (SRP) and the HOST-developed cyclic damage accumulation (CDA) model. Other examples include the development of a more accurate cumulative fatigue damage rule - the double damage curve approach (DDCA), which provides greatly improved accuracy in comparison with usual cumulative fatigue design rules. Other accomplishments in the area of high-temperature fatigue crack growth may also be mentioned. Finally, we are looking to the future and are beginning to do research on the advanced methods which will be required for development of advanced materials and propulsion systems over the next 10-20 years.

  6. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    PubMed

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  7. NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the first annual report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the many factors entailed in flight - and cabin-crew fatigue and documenting the decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable, automated procedures that improve understanding of the levels and characteristics of flight - and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable flight crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases, much larger than can be handled practically by human experts.

  8. Second Interim Report NASA - easyJet Collaboration on the Human Factors Monitoring Program (HFMP) Study

    NASA Technical Reports Server (NTRS)

    Srivistava, Ashok N.; Barton, Phil

    2012-01-01

    This is the second interim report jointly prepared by NASA and easyJet on the work performed under the agreement to collaborate on a study of the factors entailed in flight and cabin-crew fatigue, and decreases in performance associated with fatigue. The objective of this Agreement is to generate reliable procedures that aid in understanding the levels and characteristics of flight and cabin-crew fatigue factors, both latent and proximate, whose confluence will likely result in unacceptable crew performance. This study entails the analyses of numerical and textual data collected during operational flights. NASA and easyJet are both interested in assessing and testing NASA s automated capabilities for extracting operationally significant information from very large, diverse (textual and numerical) databases; much larger than can be handled practically by human experts.

  9. Biomarkers of Fatigue: Metabolomics Profiles Predictive of Cognitive Performance

    DTIC Science & Technology

    2013-05-01

    metabolites. The latest version of the Human Metabolome Database (v. 2.5; released August , 2009) includes approximately 8,000 identified mammalian...monoamine oxidase; COMT , catechol-O-methyl transferase. (Modiefied from Rubí and Maechler, 2010). Ovals indicate metabolites found to be significantly

  10. Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials Held at Miami Beach, Florida on 15-18 December 1969

    DTIC Science & Technology

    1970-12-01

    a Circular Hole A.S. Kobayashi and D.E. Maiden 217 Fatigue Performance of High Strength An Effective Strain Concept for Steels as Related to Their a ...in AFLC Col. H.B. Morrison, Jr. 899 Results of Analysis, Fatigue Testing and Usage of a High Speed Aircraft Subjected to Combined Peacetime and High ...on the level of the in a recent study of the fatigue performance of some stable elastic limit that can be produced by dislocation pin- high yield

  11. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  12. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  13. The Effects of Fiber Orientation and Volume Fraction of Fiber on Mechanical Properties of Additively Manufactured Composite Material

    NASA Astrophysics Data System (ADS)

    Kuchipudi, Suresh Chandra

    Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.

  14. Evaluating the suitability of highly cross-linked and remelted materials for use in posterior stabilized knees.

    PubMed

    Huot, J Caitlin; Van Citters, Douglas W; Currier, John H; Currier, Barbara H; Mayor, Michael B; Collier, John P

    2010-11-01

    Posterior stabilized (PS) knee designs are a popular choice for cruciate sacrificing knee arthroplasty procedures. The introduction of PS inserts fabricated from highly cross-linked and remelted Ultra High Molecular Weight Polyethylene (UHMWPE) has recently generated concern as these materials have been shown to possess reduced mechanical properties. This study investigated whether highly cross-linked and remelted UHMWPE material (referred to as XRP) can be expected to perform similarly to historical gamma-air polyethylene, which has suffered few reported incidences of tibial post failure. Never-implanted gamma-air PS tibial inserts shelf-aged 14 years were examined and compared to XRP materials. Evaluation of oxidation levels, impact toughness, and fatigue strength demonstrated never-implanted gamma-air PS tibial inserts to possess nonuniform mechanical properties. Despite severe oxidation along the exterior of gamma-air tibial posts, comparatively low oxidation levels at the center of the tibial posts corresponded to sufficiently high mechanical properties. XRP material (75 kGy) showed superior impact toughness over shelf aged gamma-air material; however, tibial post fatigue testing demonstrated XRP material (100 kGy) to be less resistant to fatigue failure than historical gamma-air material. Results from this study indicate that XRP materials (100 kGy) may demonstrate an inferior resistance to tibial post failure than historical polyethylene. © 2010 Wiley Periodicals, Inc.

  15. QRC Evaluation of Materials and Processes.

    DTIC Science & Technology

    1982-10-01

    Fatigue Crack Growth Data for Normal and "Soft" Aluminum 2024 - T351 65 27...Spectrum Fatigue Crack Growth Data for Normal and "Soft" Aluminum 7075-T651 66 28 Constant Amplitude FCGR Data for Normal and "Soft" Aluminum 2024 - T351 67...in Figure 29. The same trends observed in the spectrum fatigue tests are repeated in the S constant amplitude data: for aluminum 2024 - T351 , the

  16. Comparative thermal fatigue resistances of twenty-six nickel and cobalt base alloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1975-01-01

    Thermal fatigue resistances were determined from fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials with directional solidification and surface protection of definite benefit. The alloy-coating combination with the highest thermal fatigue resistance was directionally solidified NASA TAZ-8A with an RT-XP coating. It oxidation resistance was excellent, showing almost no weight change after 15 000 fluidized bed cycles.

  17. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  18. Development of the Damage Tolerance Criteria for an Aging Fleet

    DTIC Science & Technology

    2014-10-20

    show that it is possible to increase the fatigue life of aluminium alloys (2024 T3) repaired with composite materials doped with MWNT. Also, it is...possible to detect corrosion effects due to galvanic effects between MWNT and aluminium alloys . Motivation Currently it’s possible and it’s not...Objectives General Goal To study the fatigue life of aluminium alloys used in aeronautics and to investigate how to increase the fatigue

  19. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  20. Variable amplitude fatigue crack growth characteristics of railroad tank car steel volume III

    DOT National Transportation Integrated Search

    2006-12-01

    The load history that railroad tank cars experience has a significant variable amplitude characteristic. Although previous efforts have been directed toward understanding baseline fatigue crack growth behavior of TC-128B steel as a function of materi...

  1. Fatigue study of a GRP pedestrian bridge : final report.

    DOT National Transportation Integrated Search

    1986-01-01

    Static and cyclic load tests were conducted on a 16-ft long bridge constructed with fiberglass materials. Approximately 1.6 million cycles of loads were applied to the deck to study the fatigue characteristics of the bridge. The location and magnitud...

  2. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  3. Fatigue Behavior of AM60B Subjected to Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Kang, H.; Kari, K.; Khosrovaneh, A. K.; Nayaki, R.; Su, X.; Zhang, L.; Lee, Y.-L.

    Magnesium alloys are considered as an alternative material to reduce vehicle weight due to their weight which are 33% lighter than aluminum alloys. There has been a significant expansion in the applications of magnesium alloys in automotives components in an effort to improve fuel efficiency through vehicle mass reduction. In this project, a simple front shock tower of passenger vehicle is constructed with various magnesium alloys. To predict the fatigue behavior of the structure, fatigue properties of the magnesium alloy (AM60B) were determined from strain controlled fatigue tests. Notched specimens were also tested with three different variable amplitude loading profiles obtained from the shock tower of the similar size of vehicle. The test results were compared with various fatigue prediction results. The effect of mean stress and fatigue prediction method were discussed.

  4. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    DTIC Science & Technology

    2016-12-01

    sharpening of the crack tip and deformation of a portion of the newly formed surface (the surface created during loading portion of the cycle) during...cracking process is that the size of the final plastic zone formed by pre-cracking can affect the crack growth rate in subsequent testing. To...similar. In other structural materials, such as aluminium , striations are often well-defined. Typically, fatigue striations on an aluminium fracture

  5. Understanding the Reliability of Solder Joints Used in Advanced Structural and Electronics Applications: Part 2 - Reliability Performance.

    DOE PAGES

    Vianco, Paul T.

    2017-03-01

    Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at themore » solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.« less

  6. Dynamic fatigue of a machinable glass-ceramic

    NASA Technical Reports Server (NTRS)

    Smyth, K. K.; Magida, M. B.

    1983-01-01

    To assess the stress-corrosion susceptibility of a machinable glass-ceramic, its dynamic fatigue behavior was investigated by measuring its strength as a function of stress rate. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for components of this material. This material was concluded to have only moderate resistance (N = 30) to stress corrosion in ambient conditions. The effects of specimen size on strength were assessed for the material used in this study; it was concluded that the Weibull edge-flaw scaling law adequately describes the observed strength-size relation.

  7. Fatigue Crack Growth in Peened Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Hatamleh, Omar

    2008-01-01

    Friction stir welding induces residual stresses that accelerates fatigue crack growth in the weld nugget. Shot peening over the weld had little effect on growth rate. Laser peening over the weld retarded the growth rate: Final crack growth rate was comparable to the base, un-welded material. Crack tunneling evident from residual compressive stresses. 2195-T8 fracture surfaces were highly textured. Texturing makes comparisons difficult as the material system is affecting the data as much as the processing. Material usage becoming more common in space applications requiring additional work to develop useful datasets for damage tolerance analyses.

  8. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    NASA Astrophysics Data System (ADS)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth rates in this material, and this could render unconservative the inspection intervals determined by damage tolerant analyses based on pristine, uncorroded structure in aircraft where this alloy and damage mechanism are present. The problem is further compounded in the event that prior-corrosion damage and corrosion fatigue act synergisticaliy to increase cracking rates.

  9. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steelmore » chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of the hybrid joint. The effect of different fatigue test frequencies on the sample temperature and the resulting fatigue life was also examined.« less

  10. Multilayer Pressure Vessel Materials Testing and Analysis Phase 2

    NASA Technical Reports Server (NTRS)

    Popelar, Carl F.; Cardinal, Joseph W.

    2014-01-01

    To provide NASA with a suite of materials strength, fracture toughness and crack growth rate test results for use in remaining life calculations for the vessels described above, Southwest Research Institute® (SwRI®) was contracted in two phases to obtain relevant material property data from a representative vessel. An initial characterization of the strength, fracture and fatigue crack growth properties was performed in Phase 1. Based on the results and recommendations of Phase 1, a more extensive material property characterization effort was developed in this Phase 2 effort. This Phase 2 characterization included additional strength, fracture and fatigue crack growth of the multilayer vessel and head materials. In addition, some more limited characterization of the welds and heat affected zones (HAZs) were performed. This report

  11. Test Method for the Fatigue Life of Layered TiB/Ti Functionally Graded Beams Subjected to Fully Reversed Bending

    NASA Astrophysics Data System (ADS)

    Byrd, Larry; Rickerd, Greg; Wyen, Travis; Cooley, Glenn; Quast, Jeff

    2008-02-01

    Sonic fatigue of aircraft is characterized by fully reversed bending of components subjected to acoustic excitation. This problem is compounded in high temperature environments because solutions for acoustics which tend to result in stiff structures make thermal problems worse. Conversely solutions to the thermal problem which allow expansion often fail in the presence of high acoustic levels. Errors in fatigue life prediction in the combined environment often range from a factor of 4 to 10. This results in either heavy, overly stiff structure or premature failure. This work will test the hypothesis that the fatigue life of a layered functionally graded material (FGM) will be dominated by the failure of the stiffest outer layer. This is based on the observation that for isotropic materials the life is approximately 90% crack initiation and only 10% crack growth before failure. Four sets of cantilever specimens will be tested using an electro-mechanical shaker for base excitation. The excitation will be narrow band random around the fundamental frequency. Two sets of specimens are of uniform composition consisting of 85%TiB/Ti and two are graded specimens consisting of layers that vary from commercially pure titanium to 85%TiB/Ti. Strain vs number of cycles to failure curves will be generated with both constant amplitude sine and narrow band random around the fundamental frequency excitation. The results will be examined to compare life of the uniform material to the functionally graded material. Also to be studied will be the use of Miner's rule to predict the fatigue life of the randomly excited specimens.

  12. Influence of pelvic floor muscle fatigue on stress urinary incontinence: a systematic review.

    PubMed

    Thomaz, Rafaela Prusch; Colla, Cássia; Darski, Caroline; Paiva, Luciana Laureano

    2018-02-01

    Stress urinary incontinence (SUI) is the most common urinary complaint among women and is defined by the International Continence Society as any involuntary loss of urine due to physical effort, sneezing or coughing. Many women with SUI state that the loss of urine occurs after performing repetitive movements, which may suggest that it is the result of fatigue of the pelvic floor muscles (PFM). Thus, we performed the systematic review of the literature on the influence of PFM fatigue on the development or worsening of the symptoms of SUI in women. The PubMed, Scopus, EMBASE, PEDro, LILACS, SciELO, Cochrane Library, Google Scholar, CINAHL and Periódicos CAPES databases were searched for articles using the keywords "fatigue", "pelvic floor", "stress urinary incontinence" and "women", in Portuguese and in English. Methodological quality was assessed using the Downs and Black scale, and the data collected from the studies were analyzed descriptively. Of the 2,010 articles found, five met the inclusion criteria and were analyzed. They were published between 2004 and 2015, and included a total of 30,320 women with ages ranging from 24 to 53.6 years. Of the studies analyzed, three showed an association between fatigue and SUI, and two did not show such an association. This study confirmed that PFM fatigue can influence the development and/or worsening of SUI.

  13. Discrete statistical model of fatigue crack growth in a Ni-base superalloy, capable of life prediction

    NASA Astrophysics Data System (ADS)

    Boyd-Lee, Ashley; King, Julia

    1992-07-01

    A discrete statistical model of fatigue crack growth in a nickel base superalloy Waspaloy, which is quantitative from the start of the short crack regime to failure, is presented. Instantaneous crack growth rate distributions and persistence of arrest distributions are used to compute fatigue lives and worst case scenarios without extrapolation. The basis of the model is non-material specific, it provides an improved method of analyzing crack growth rate data. For Waspaloy, the model shows the importance of good bulk fatigue crack growth resistance to resist early short fatigue crack growth and the importance of maximizing crack arrest both by the presence of a proportion of small grains and by maximizing grain boundary corrugation.

  14. Effect of Embedded Piezoelectric Sensors on Fracture Toughness and Fatigue Resistance of Composite Laminates Under Mode I Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2006-01-01

    Double-cantilevered beam (DCB) specimens of a glass/epoxy composite material with embedded piezoelectric sensors were tested both statically and under fatigue loading to determine the effect of the embedded material on the Mode I fracture toughness and fatigue resistance compared to baseline data without the embedded elements. A material known as LaRC-Macrofiber Composite (LaRC-MFC (TradeMark)), or MFC, was embedded at the midplane of the specimen during the layup. Specimens were manufactured with the embedded MFC material either at the loaded end of the specimen to simulate an initial delamination; or with the MFC material located at the delaminating interface, with a Teflon film at the loaded end to simulate an initial delamination. There were three types of specimens with the embedded material at the delaminating interface: co-cured with no added adhesive; cured with a paste adhesive applied to the embedded element; or cured with a film adhesive added to the embedded material. Tests were conducted with the sensors in both the passive and active states. Results were compared to baseline data for the same material without embedded elements. Interlaminar fracture toughness values (G(sub Ic)) for the passive condition showed little change when the MFC was at the insert end. Passive results varied when the MFC was at the delaminating interface. For the co-cured case and with the paste adhesive, G(sub Ic) decreased compared to the baseline toughness, whereas, for the film adhesive case, G(sub Ic) was significantly greater than the baseline toughness, but the failure was always catastrophic. When the MFC was in the active state, G(sub Ic) was generally lower compared to the passive results. Fatigue tests showed little effect of the embedded material whether it was active or passive compared to baseline values.

  15. Fatigue response of perforated titanium for application in laminar flow control

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Miller, Jennifer L.; Newman, Jr., James

    1996-01-01

    The room temperature tensile and fatigue response of non-perforated and perforated titanium for laminar flow control application was investigated both experimentally and analytically. Results showed that multiple perforations did not affect the tensile response, but did reduce the fatigue life. A two dimensional finite element stress analysis was used to determine that the stress fields from adjacent perforations did not influence one another. The stress fields around the holes did not overlap one another, allowing the materials to be modeled as a plate with a center hole. Fatigue life was predicted using an equivalent MW flow size approach to relate the experimental results to microstructural features of the titanium. Predictions using flaw sizes ranging from 1 to 15 microns correlated within a factor of 2 with the experimental results by using a flow stress of 260 MPa. By using two different flow stresses in the crack closure model and correcting for plasticity, the experimental results were bounded by the predictions for high applied stresses. Further analysis of the complex geometry of the perforations and the local material chemistry is needed to further understand the fatigue behavior of the perforated titanium.

  16. Draft ASME Boiler and Pressure Vessel Code Section III, Division 5, Section HB, Subsection B, Code Case for Alloy 617 and Background Documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Julie Knibloe

    2015-08-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutesmore » at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep fatigue data are calculated for the creep fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.« less

  17. Fatigue Behavior under Multiaxial Stress States Including Notch Effects and Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Gates, Nicholas R.

    The central objective of the research performed in this study was to be able to better understand and predict fatigue crack initiation and growth from stress concentrations subjected to complex service loading histories. As such, major areas of focus were related to the understanding and modeling of material deformation behavior, fatigue damage quantification, notch effects, cycle counting, damage accumulation, and crack growth behavior under multiaxial nominal loading conditions. To support the analytical work, a wide variety of deformation and fatigue tests were also performed using tubular and plate specimens made from 2024-T3 aluminum alloy, with and without the inclusion of a circular through-thickness hole. However, the analysis procedures implemented were meant to be general in nature, and applicable to a wide variety of materials and component geometries. As a result, experimental data from literature were also used, when appropriate, to supplement the findings of various analyses. Popular approaches currently used for multiaxial fatigue life analysis are based on the idea of computing an equivalent stress/strain quantity through the extension of static yield criteria. This equivalent stress/strain is then considered to be equal, in terms of fatigue damage, to a uniaxial loading of the same magnitude. However, it has often been shown, and was shown again in this study, that although equivalent stress- and strain-based analysis approaches may work well in certain situations, they lack a general robustness and offer little room for improvement. More advanced analysis techniques, on the other hand, provide an opportunity to more accurately account for various aspects of the fatigue failure process under both constant and variable amplitude loading conditions. As a result, such techniques were of primary interest in the investigations performed. By implementing more advanced life prediction methodologies, both the overall accuracy and the correlation of fatigue life predictions were found to improve for all loading conditions considered in this study. The quantification of multiaxial fatigue damage was identified as being a key area of improvement, where the shear-based Fatemi-Socie (FS) critical plane damage parameter was shown to correlate all fully-reversed constant amplitude fatigue data relatively well. Additionally, a proposed modification to the FS parameter was found to result in improved life predictions in the presence of high tensile mean stress and for different ratios of nominal shear to axial stress. For notched specimens, improvements were also gained through the use of more robust notch deformation and stress gradient models. Theory of Critical Distances (TCD) approaches, together with pseudo stress-based plasticity modeling techniques for local stress-strain estimation, resulted in better correlation of multiaxial fatigue data when compared to traditional approaches such as Neuber's rule with fatigue notch factor. Since damage parameters containing both stress and strain terms, such as the FS parameter, are able to reflect changes in fatigue damage due to transient material hardening behavior, this issue was also investigated with respect to its impact on variable amplitude life predictions. In order to ensure that material deformation behavior was properly accounted for, stress-strain predictions based on an Armstrong-Frederick-Chaboche style cyclic plasticity model were first compared to results from deformation tests performed under a variety of complex multiaxial loading conditions. The model was simplified based on the assumption of Masing material behavior, and a new transient hardening formulation was proposed so that all modeling parameters could be determined from a relatively limited amount of experimental data. Overall, model predictions were found to agree fairly well with experimental results for all loading histories considered. Finally, in order to evaluate life prediction procedures under realistic loading conditions, variable amplitude fatigue tests were performed using axial, torsion, and combined axial-torsion loading histories derived from recorded flight test data on the lower wing skin area of a military patrol aircraft (tension-dominated). While negligible improvements in life predictions were obtained through the consideration of transient material deformation behavior for these histories, crack initiation definition was found to have a slightly larger impact on prediction accuracy. As a result, when performing analyses using the modified FS damage parameter, transient stress-strain response, and a 0.2 mm crack initiation definition, nearly all variable amplitude fatigue lives, for un-notched and notched specimens, were predicted within a factor of 3 of experimental results. However, variable amplitude life predictions were still more non-conservative than those observed for constant amplitude loading conditions.

  18. Fatigue behavior of AAR Class A railroad wheel steel at ambient and elevated temperatures.

    DOT National Transportation Integrated Search

    2006-12-01

    This report documents a test program to determine the material properties (chemical composition, tensile, and fatigue) at ambient and elevated temperatures of a Class A wheel steel as designated by the Association of American Railroads. The 3 tempera...

  19. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  20. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.

Top