NASA Astrophysics Data System (ADS)
Terakado, Nobuaki; Takahashi, Ryosuke; Takahashi, Yoshihiro; Fujiwara, Takumi
2017-05-01
The control of heat flow has become increasingly important in energy saving and harvesting. Among various thermal management materials, spinon thermal conductivity materials are promising for heat flow control at microscales because they exhibit high, anisotropic thermal conductivity resulting from spin chains. However, there has been only little development of the materials for controlling heat flow. Here, we present the line patterning of the spin chain structure on a SrCuO2 nanocrystalline film by laser scanning. When the polarization direction of laser light was orthogonal to the scanning direction, we found that the spin-chain structure anisotropically grew on the patterned line.
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
40 CFR 230.23 - Current patterns and water circulation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or fill material can modify current patterns and water circulation by obstructing flow, changing the direction or velocity of water flow, changing the direction or velocity of water flow and circulation, or otherwise changing the dimensions of a water body. As a result, adverse changes can occur in: Location...
NASA Astrophysics Data System (ADS)
Hu, Yanying; Liu, Huijie; Du, Shuaishuai
2018-06-01
The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.
The design and fabrication of two portal vein flow phantoms by different methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunker, Bryan E., E-mail: bryan.yunker@ucdenver.edu; Lanning, Craig J.; Shandas, Robin
2014-02-15
Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound ormore » within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.« less
NASA Astrophysics Data System (ADS)
Woodward, Simon J. R.; Wöhling, Thomas; Stenger, Roland
2016-03-01
Understanding the hydrological and hydrogeochemical responses of hillslopes and other small scale groundwater systems requires mapping the velocity and direction of groundwater flow relative to the controlling subsurface material features. Since point observations of subsurface materials and groundwater head are often the basis for modelling these complex, dynamic, three-dimensional systems, considerable uncertainties are inevitable, but are rarely assessed. This study explored whether piezometric head data measured at high spatial and temporal resolution over six years at a hillslope research site provided sufficient information to determine the flow paths that transfer nitrate leached from the soil zone through the shallow saturated zone into a nearby wetland and stream. Transient groundwater flow paths were modelled using MODFLOW and MODPATH, with spatial patterns of hydraulic conductivity in the three material layers at the site being estimated by regularised pilot point calibration using PEST, constrained by slug test estimates of saturated hydraulic conductivity at several locations. Subsequent Null Space Monte Carlo uncertainty analysis showed that this data was not sufficient to definitively determine the spatial pattern of hydraulic conductivity at the site, although modelled water table dynamics matched the measured heads with acceptable accuracy in space and time. Particle tracking analysis predicted that the saturated flow direction was similar throughout the year as the water table rose and fell, but was not aligned with either the ground surface or subsurface material contours; indeed the subsurface material layers, having relatively similar hydraulic properties, appeared to have little effect on saturated water flow at the site. Flow path uncertainty analysis showed that, while accurate flow path direction or velocity could not be determined on the basis of the available head and slug test data alone, the origin of well water samples relative to the material layers and site contour could still be broadly deduced. This study highlights both the challenge of collecting suitably informative field data with which to characterise subsurface hydrology, and the power of modern calibration and uncertainty modelling techniques to assess flow path uncertainty in hillslopes and other small scale systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiscocks, J., E-mail: j.hiscocks@queensu.ca
Many studies of friction stir welding have shown that periodicity of metal flow around the tool pin may result in the formation of periodic differences in microstructure and texture in the weld nugget area correlated with the weld pitch. The current work investigates the periodicity of magnesium weld microtexture in the nugget region and its association with material flow using optical and electron microscopy. Two welds created in AZ80 at different processing conditions are presented in detail, one illustrating periodic longitudinal texture change, and one showing for the first time that periodic variations in texture, grain size, or composition aremore » not defining features of periodic nugget flow. While nugget texture is dominated by shear deformation, it was found here to be affected to a lesser degree by compaction of material behind the welding tool, which led to reduction in intensity of the shear texture fiber. The decreased tendency for magnesium based alloys to form periodic patterns as compared to aluminum based alloys is explained with reference to the shear textures. - Highlights: •It is shown here that periodic material flow in the nugget does not necessitate longitudinal texture patterns. •Longitudinal texture patterns are shown to be present or absent in Mg AZ80 based on processing conditions. •Texture in the nugget is mainly dictated by shear deformation, but has measurable effects from other deformation modes. •Explanation of why longitudinal texture change is frequently reported in aluminum but not magnesium alloys is provided. •A new vector visualization of material flow based on EBSD data analysis is shown.« less
The flow patterning capability of localized natural convection.
Huang, Ling-Ting; Chao, Ling
2016-09-14
Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.
Mantle flow through a tear in the Nazca slab inferred from shear wave splitting
NASA Astrophysics Data System (ADS)
Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh
2017-07-01
A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Optimization of landscape pattern [Chapter 8
John Hof; Curtis Flather
2007-01-01
A fundamental assumption in landscape ecology is that spatial patterns have significant influences on the flows of materials, energy, and information while processes create, modify, and maintain spatial patterns. Thus, it is of paramount importance in both theory and practice to address the questions of landscape pattern optimization ... For example, can landscape...
NASA Astrophysics Data System (ADS)
Niroobakhsh, Zahra; Litman, Matthew; Belmonte, Andrew
2017-11-01
We present an experimental study of pattern formation during the penetration of an aqueous surfactant solution into a liquid fatty acid in a Hele-Shaw cell. When a solution of the cationic surfactant cetylpyridinium chloride is injected into oleic acid, a wide variety of fingering patterns are observed as a function of surfactant concentration and flow rate, which are strikingly different than the classic Saffman-Taylor (ST) instability. We observe evidence of interfacial material forming between the two liquids, causing these instabilities. Moreover, the number of fingers decreases with increasing flow rate Q , while the average finger width increases with Q , both trends opposite to the ST case. Bulk rheology on related mixtures indicates a gel-like state. Comparison of experiments using other oils indicates the importance of pH and the carboxylic head group in the formation of the surfactant-fatty acid material.
Nakamura, Shinichiro; Kondo, Yasushi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya
2011-02-01
Identification of the flow of materials and substances associated with a product system provides useful information for Life Cycle Analysis (LCA), and contributes to extending the scope of complementarity between LCA and Materials Flow Analysis/Substances Flow Analysis (MFA/SFA), the two major tools of industrial ecology. This paper proposes a new methodology based on input-output analysis for identifying the physical input-output flow of individual materials that is associated with the production of a unit of given product, the unit physical input-output by materials (UPIOM). While the Sankey diagram has been a standard tool for the visualization of MFA/SFA, with an increase in the complexity of the flows under consideration, which will be the case when economy-wide intersectoral flows of materials are involved, the Sankey diagram may become too complex for effective visualization. An alternative way to visually represent material flows is proposed which makes use of triangulation of the flow matrix based on degrees of fabrication. The proposed methodology is applied to the flow of pig iron and iron and steel scrap that are associated with the production of a passenger car in Japan. Its usefulness to identify a specific MFA pattern from the original IO table is demonstrated.
Zhang, Qi; Gao, Bin; Chang, Yu
2017-02-27
BACKGROUND Partial support, as a novel support mode, has been widely applied in clinical practice and widely studied. However, the precise mechanism of partial support of LVAD in the intra-ventricular flow pattern is unclear. MATERIAL AND METHODS In this study, a patient-specific left ventricular geometric model was reconstructed based on CT data. The intra-ventricular flow pattern under 3 simulated conditions - "heart failure", "partial support", and "full support" - were simulated by using fluid-structure interaction (FSI). The blood flow pattern, wall shear stress (WSS), time-average wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated to evaluate the hemodynamic effects. RESULTS The results demonstrate that the intra-ventricular flow pattern is significantly changed by the support level of BJUT-II VAD. The intra-ventricular vortex was enhanced under partial support and was eliminated under full support, and the high OSI and RRT regions changed from the septum wall to the cardiac apex. CONCLUSIONS In brief, the support level of the BJUT-II VAD has significant effects on the intra-ventricular flow pattern. The partial support mode of BJUT-II VAD can enhance the intra-ventricular vortex, while the distribution of high OSI and RRT moved from the septum wall to the cardiac apex. Hence, the partial support mode of BJUT-II VAD can provide more benefit for intra-ventricular flow pattern.
NASA Astrophysics Data System (ADS)
Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul
2006-02-01
We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.
Three-dimensional flows in a hyperelastic vessel under external pressure.
Zhang, Sen; Luo, Xiaoyu; Cai, Zongxi
2018-05-09
We study the collapsible behaviour of a vessel conveying viscous flows subject to external pressure, a scenario that could occur in many physiological applications. The vessel is modelled as a three-dimensional cylindrical tube of nonlinear hyperelastic material. To solve the fully coupled fluid-structure interaction, we have developed a novel approach based on the Arbitrary Lagrangian-Eulerian (ALE) method and the frontal solver. The method of rotating spines is used to enable an automatic mesh adaptation. The numerical code is verified extensively with published results and those obtained using the commercial packages in simpler cases, e.g. ANSYS for the structure with the prescribed flow, and FLUENT for the fluid flow with prescribed structure deformation. We examine three different hyperelastic material models for the tube for the first time in this context and show that at the small strain, all three material models give similar results. However, for the large strain, results differ depending on the material model used. We further study the behaviour of the tube under a mode-3 buckling and reveal its complex flow patterns under various external pressures. To understand these flow patterns, we show how energy dissipation is associated with the boundary layers created at the narrowest collapsed section of the tube, and how the transverse flow forms a virtual sink to feed a strong axial jet. We found that the energy dissipation associated with the recirculation does not coincide with the flow separation zone itself, but overlaps with the streamlines that divide the three recirculation zones. Finally, we examine the bifurcation diagrams for both mode-3 and mode-2 collapses and reveal that multiple solutions exist for a range of the Reynolds number. Our work is a step towards modelling more realistic physiological flows in collapsible arteries and veins.
Pattern palette for complex fluid flows
NASA Astrophysics Data System (ADS)
Sandnes, B.
2012-04-01
From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.
Can Concentration - Discharge Relationships Diagnose Material Source During Extreme Events?
NASA Astrophysics Data System (ADS)
Karwan, D. L.; Godsey, S.; Rose, L.
2017-12-01
Floods can carry >90% of the basin material exported in a given year as well as alter flow pathways and material sources. In turn, sediment and solute fluxes can increase flood damages and negatively impact water quality and integrate physical and chemical weathering of landscapes and channels. Concentration-discharge (C-Q) relationships are used to both describe export patterns as well as compute them. Metrics for describing C-Q patterns and inferring their controls are vulnerable to infrequent sampling that affects how C-Q relationships are interpolated and interpreted. C-Q relationships are typically evaluated from multiple samples, but because hydrological extremes are rare, data are often unavailable for extreme events. Because solute and sediment C-Q relationships likely respond to changes in hydrologic extremes in different ways, there is a pressing need to define their behavior under extreme conditions, including how to properly sample to capture these patterns. In the absence of such knowledge, improving load estimates in extreme floods will likely remain difficult. Here we explore the use of C-Q relationships to determine when an event alters a watershed system such that it enters a new material source/transport regime. We focus on watersheds with sediment and discharge time series include low-frequency and/or extreme events. For example, we compare solute and sediment patterns in White Clay Creek in southeastern Pennsylvania across a range of flows inclusive of multiple hurricanes for which we have ample ancillary hydrochemical data. TSS is consistently mobilized during high flow events, even during extreme floods associated with hurricanes, and sediment fingerprinting indicates different sediment sources, including in-channel remobilization and landscape erosion, are active at different times. In other words, TSS mobilization in C-Q space is not sensitive to the source of material being mobilized. Unlike sediments, weathering solutes in this watershed tend to exhibit a relatively chemostatic C-Q pattern, except during the runoff-dominated Hurricane Irene, when they exhibit a diluting C-Q pattern. Finally, we summarize the vulnerability of these observations to shifts in sampling effort to highlight the utility and limitations of C-Q-derived export patterns.
Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Kramer, M. J.
1983-01-01
The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.
Production facility layout by comparing moment displacement using BLOCPLAN and ALDEP Algorithms
NASA Astrophysics Data System (ADS)
Tambunan, M.; Ginting, E.; Sari, R. M.
2018-02-01
Production floor layout settings include the organizing of machinery, materials, and all the equipments used in the production process in the available area. PT. XYZ is a company that manufactures rubber and rubber compounds for retreading tire threaded with hot and cold cooking system. In the production of PT. XYZ is divided into three interrelated parts, namely Masterbatch Department, Department Compound, and Procured Thread Line Department. PT. XYZ has a production process with material flow is irregular and the arrangement of machine is complicated and need to be redesigned. The purpose of this study is comparing movement displacement using BLOCPLAN and ALDEP algorithm in order to redesign existing layout. Redesigning the layout of the production floor is done by applying algorithms of BLOCPLAN and ALDEP. The algorithm used to find the best layout design by comparing the moment displacement and the flow pattern. Moment displacement on the floor layout of the company’s production currently amounts to 2,090,578.5 meters per year and material flow pattern is irregular. Based on the calculation, the moment displacement for the BLOCPLAN is 1,551,344.82 meter per year and ALDEP is 1,600,179 meter per year. Flow Material resulted is in the form of straight the line.
Parikh, Jehill D.; Kakarla, Jayant; Keavney, Bernard; O’Sullivan, John J.; Ford, Gary A.; Blamire, Andrew M.; Hollingsworth, Kieren G.
2017-01-01
Aim To investigate atrial flow patterns in the normal adult heart, to explore whether caval vein arrangement and patency of the foramen ovale (PFO) may be associated with flow pattern. Materials and Methods Time-resolved, three-dimensional velocity encoded magnetic resonance imaging (4D flow) was employed to assess atrial flow patterns in thirteen healthy subjects (6 male, 40 years, range 25–50) and thirteen subjects (6 male, 40 years, range 21–50) with cryptogenic stroke and patent foramen ovale (CS-PFO). Right atrial flow was defined as vortical, helico-vortical, helical and multiple vortices. Time-averaged and peak systolic and diastolic flows in the caval and pulmonary veins and their anatomical arrangement were compared. Results A spectrum of right atrial flow was observed across the four defined categories. The right atrial flow patterns were strongly associated with the relative position of the caval veins. Right atrial flow patterns other than vortical were more common (p = 0.015) and the separation between the superior and inferior vena cava greater (10±5mm versus 3±3mm, p = 0.002) in the CS-PFO group. In the left atrium all subjects except one had counter-clockwise vortical flow. Vortex size varied and was associated with left lower pulmonary vein flow (systolic r = 0.61, p = 0.001, diastolic r = 0.63 p = 0.002). A diastolic vortex was less common and time-averaged left atrial velocity was greater in the CS-PFO group (17±2cm/sec versus 15±1, p = 0.048). One CS-PFO subject demonstrated vortical retrograde flow in the descending aortic arch; all other subjects had laminar descending aortic flow. Conclusion Right atrial flow patterns in the normal heart are heterogeneous and are associated with the relative position of the caval veins. Patterns, other than ‘typical’ vortical flow, are more prevalent in the right atrium of those with cryptogenic stroke in the context of PFO. Left atrial flow patterns are more homogenous in normal hearts and show a relationship with flow arising from the left pulmonary veins. PMID:28282389
Regional material flow accounting and environmental pressures: the Spanish case.
Sastre, Sergio; Carpintero, Óscar; Lomas, Pedro L
2015-02-17
This paper explores potential contributions of regional material flow accounting to the characterization of environmental pressures. With this aim, patterns of material extraction, trade, consumption, and productivity for the Spanish regions were studied within the 1996-2010 period. The main methodological variation as compared to whole-country based approaches is the inclusion of interregional trade, which can be separately assessed from the international exchanges. Each region was additionally profiled regarding its commercial exchanges with the rest of the regions and the rest of the world and the related environmental pressures. Given its magnitude, interregional trade is a significant source of environmental pressure. Most of the exchanges occur across regions and different extractive and trading patterns also arise at this scale. These differences are particularly great for construction minerals, which in Spain represent the largest share of extracted and consumed materials but do not cover long distances, so their impact is visible mainly at the regional level. During the housing bubble, economic growth did not improve material productivity.
Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.
2015-11-01
Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.
Simulation of interior ballistics flows in a shock tube
NASA Astrophysics Data System (ADS)
Seiler, F.
1983-07-01
The flow in front of and behind a projectile was investigated in a interior ballistics shock tube simulator. Flow patterns and heat flow were examined for flows with and without gas leakage. The boundary layers behind the piston can clearly be shown by differential interferograms. The dependence of the heat flow into the measuring tube wall on the base form is smaller than the signal perturbations. Flow patterns show no appreciable effect of gas leakage on the flow behind the piston; strong flow effects arise in front of the piston. The same effects are shown by heat flow measurements. In case of gas leakage heat flows into the tube wall before the piston reaches the wall. In the slit between piston and wall a maximum heat flow is found. High temperature gradients, due to the fact that hot gases come closer to the tube wall than in the boundary layer flow behind the piston, lead to high thermal loading of the wall materials which can cause cracks.
MAPPING SUNKEN POLLUTANT POOLS WITH DEPTH FINDERS
Many hazardous substances and mixtures are immiscible with and more dense than water. When spillages or releases into waterbodies occur, the hazardous materials will disperse in a pattern controlled by physical properties of the material, flow and dispersion effects, and topograp...
Lorenz, David L.; Robertson, Dale M.; Hall, David W.; Saad, David A.
2009-01-01
Many actions have been taken to reduce nutrient and suspended-sediment concentrations and the amount of nutrients and sediment transported in streams as a result of the Clean Water Act and subsequent regulations. This report assesses how nutrient and suspended-sediment concentrations and loads in selected streams have changed during recent years to determine if these actions have been successful. Flow-adjusted and overall trends in concentrations and trends in loads from 1993 to 2004 were computed for total nitrogen, dissolved ammonia, total organic nitrogen plus ammonia, dissolved nitrite plus nitrate, total phosphorus, dissolved phosphorus, total suspended material (total suspended solids or suspended sediment), and total suspended sediment for 49 sites in the Upper Mississippi, Ohio, Red, and Great Lakes Basins. Changes in total nitrogen, total phosphorus, and total suspended-material loads were examined from 1975 to 2003 at six sites to provide a longer term context for the data examined from 1993 to 2004. Flow-adjusted trends in total nitrogen concentrations at 19 of 24 sites showed tendency toward increasing concentrations, and overall trends in total nitrogen concentrations at 16 of the 24 sites showed a general tendency toward increasing concentrations. The trends in these flow-adjusted total nitrogen concentrations are related to the changes in fertilizer nitrogen applications. Flow-adjusted trends in dissolved ammonia concentrations from 1993 to 2004 showed a widespread tendency toward decreasing concentrations. The widespread, downward trends in dissolved ammonia concentrations indicate that some of the ammonia reduction goals of the Clean Water Act are being met. Flow-adjusted and overall trends in total organic plus ammonia nitrogen concentrations from 1993 to 2004 did not show a distinct spatial pattern. Flow-adjusted and overall trends in dissolved nitrite plus nitrate concentrations from 1993 to 2004 also did not show a distinct spatial pattern. Flow-adjusted trends in total phosphorus concentrations were upward at 24 of 40 sites. Overall trends in total phosphorus concentrations were mixed and showed no spatial pattern. Flow-adjusted and overall trends in dissolved phosphorus concentrations were consistently downward at all of the sites in the eastern part of the basins studied. The reduction in phosphorus fertilizer use and manure production east of the Mississippi River could explain most of the observed trends in dissolved phosphorus. Flow-adjusted trends in total suspended-material concentrations showed distinct spatial patterns of increasing tendencies throughout the western part of the basins studied and in Illinois and decreasing concentrations throughout most of Wisconsin, Iowa, and in the eastern part of the basins studied. Flow-adjusted trends in total phosphorus were strongly related to the flow-adjusted trends in suspended materials. The trends in the flow-adjusted suspended-sediment concentrations from 1993 to 2004 resembled those for suspended materials. The long-term, nonmonotonic trends in total nitrogen, total phosphorus, and suspended-material loads for 1975 to 2003 were described by local regression, LOESS, smoothing for six sites. The statistical significance of those trends cannot be determined; however, the long-term changes found for annual streamflow and load data indicate that the monotonic trends from 1993 to 2004 should not be extrapolated backward in time.
Imaging Electron Motion in a Few Layer MoS2 Device
NASA Astrophysics Data System (ADS)
Bhandari, S.; Wang, K.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.
2017-06-01
Ultrathin sheets of MoS2 are a newly discovered 2D semiconductor that holds great promise for nanoelectronics. Understanding the pattern of current flow will be crucial for developing devices. In this talk, we present images of current flow in MoS2 obtained with a Scanned Probe Microscope (SPM) cooled to 4 K. We previously used this technique to image electron trajectories in GaAs/AlGaAs heterostructures and graphene. The charged SPM tip is held just above the sample surface, creating an image charge inside the device that scatters electrons. By measuring the change in resistance ΔR while the tip is raster scanned above the sample, an image of electron flow is obtained. We present images of electron flow in an MoS2 device patterned into a hall bar geometry. A three-layer MoS2 sheet is encased by two hBN layers, top and bottom, and patterned into a hall-bar with multilayer graphene contacts. An SPM image shows the current flow pattern from the wide contact at the end of the device for a Hall density n = 1.3×1012 cm-2. The SPM tip tends to block flow, increasing the resistance R. The pattern of flow was also imaged for a narrow side contact on the sample. At density n = 5.4×1011 cm-2; the pattern seen in the SPM image is similar to the wide contact. The ability to image electron flow promises to be very useful for the development of ultrathin devices from new 2D materials.
Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow
Yeh, Syun-Ru; Seul, Michael; Shraiman, Boris I.
2017-01-01
Suspensions of colloidal particles form a variety of ordered planar structures at an interface in response to an a.c. or d.c. electric field applied normal to the interface1–3. This field-induced pattern formation can be useful, for example, in the processing of materials. Here we explore the origin of the ordering phenomenon. We present evidence suggesting that the long-ranged attraction between particles which causes aggregation is mediated by electric-field-induced fluid flow. We have imaged an axially symmetric flow field around individual particles on a uniform electrode surface. The flow is induced by distortions in the applied electric field owing to inhomogeneities in the ‘double layer’ of ions and counterions at the electrode surface. The beads themselves can create these inhomogeneities, or alternatively, we can modify the electrode surfaces by lithographic patterning so as to introduce specified patterns into the aggregated structures. PMID:28943661
NASA Technical Reports Server (NTRS)
Hung, R. J.
1995-01-01
A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.
Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.
Fielding, S M; Marenduzzo, D; Cates, M E
2011-04-01
We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society
Schwieger, Wilhelm; Machoke, Albert Gonche; Weissenberger, Tobias; Inayat, Amer; Selvam, Thangaraj; Klumpp, Michael; Inayat, Alexandra
2016-06-13
'Hierarchy' is a property which can be attributed to a manifold of different immaterial systems, such as ideas, items and organisations or material ones like biological systems within living organisms or artificial, man-made constructions. The property 'hierarchy' is mainly characterised by a certain ordering of individual elements relative to each other, often in combination with a certain degree of branching. Especially mass-flow related systems in the natural environment feature special hierarchically branched patterns. This review is a survey into the world of hierarchical systems with special focus on hierarchically porous zeolite materials. A classification of hierarchical porosity is proposed based on the flow distribution pattern within the respective pore systems. In addition, this review might serve as a toolbox providing several synthetic and post-synthetic strategies to prepare zeolitic or zeolite containing material with tailored hierarchical porosity. Very often, such strategies with their underlying principles were developed for improving the performance of the final materials in different technical applications like adsorptive or catalytic processes. In the present review, besides on the hierarchically porous all-zeolite material, special focus is laid on the preparation of zeolitic composite materials with hierarchical porosity capable to face the demands of industrial application.
Jung, Yushin; Lee, Howon; Park, Tae-Joon; Kim, Sungsik; Kwon, Sunghoon
2015-10-22
The demand for patterning functional materials precisely on surfaces of stimuli-responsive devices has increased in many research fields. In situ polymerization technology is one of the most convenient ways to place the functional materials on a desired location with micron-scale accuracy. To fabricate stimuli-responsive surfaces, controlling concentration of the functional material is much as important as micropatterning them. However, patterning and controlling concentration of the functional materials simultaneously requires an additional process, such as preparing multiple co-flow microfluidic structures and numbers of solutions with various concentrations. Despite applying these processes, fabricating heterogeneous patterns in large scale (millimeter scale) is still impossible. In this study, we propose an advanced in situ polymerization technique to pattern the surface in micron scale in a concentration-controlled manner. Because the concentration of the functional materials is manipulated by self-assembly on the surface, a complex pattern could be easily fabricated without any additional procedure. The complex pattern is pre-designed with absorption amount of the functional material, which is pre-determined by the duration of UV exposure. We show that the resolution reaches up to 2.5 μm and demonstrate mm-scale objects, maintaining the same resolution. We also fabricated Multi-bit barcoded micro particles verify the flexibility of our system.
MEAN FLOW AND TURBULENCE MEASUREMENTS AROUND A 2-D ARRAY OF BUILDINGS IN A WIND TUNNEL
In order to predict the dispersion of harmful materials released in or near an urban environment, it is important to first understand the complex flow patterns which result from the interaction of the wind with buildings and, more commonly, clusters of buildings. Recent advanc...
Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M
2007-09-01
We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.
Interfacial pattern changes of imprinted multilayered material in milli- and microscales
NASA Astrophysics Data System (ADS)
Yonekura, Kazuhiro; Tokumaru, Kazuki; Tsumori, Fujio
2018-06-01
Nanoimprint lithography (NIL) is a technique that transfers a mold pattern of nanometer order to the surface of a resist material by heating and pressing. NIL is an excellent technology in terms of high productivity, accuracy, and resolution. Recently, NIL has been applied to the processing of different multilayered materials, in which it is possible to process multiple materials simultaneously. In this processing of multilayered materials, it is possible to form an interfacial pattern between the upper layer and the lower layer simultaneously with patterning on the mold surface. This interface pattern can be controlled by the deformation characteristics, initial thickness, and so forth. In this research, we compared the interfacial pattern changes of imprinted multilayered materials in milli- and microscales. For multilayered imprint using multiple materials, it is important to know the flow of the resist and its dependence on the scale. If there is similarity in the relationship produced by the scale on the imprinted samples, a process design with a number of feedbacks could be realized. It also becomes easier to treat structures in the millimeter scale for the experiment. In this study, we employed micropowder imprint (µPI) for multilayered material imprint. A compound sheet of alumina powder and polymer binder was used for imprint. Two similar experiments in different scales, micro- and millimeter scales, were carried out. Results indicate that the interfacial patterns of micro- and millimeter-scale-imprinted samples are similar.
Sensing Structures Inspired by Blind Cave Fish
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.
2009-03-01
Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.
Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S
2018-08-17
This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.
NASA Astrophysics Data System (ADS)
Bilanych, V.; Komanicky, V.; Lacková, M.; Feher, A.; Kuzma, V.; Rizak, V.
2015-10-01
We observe the change of surface relief on amorphous Ge-As-Se thin films after irradiation with an electron beam. The beam softens the glass and induces various topological surface changes in the irradiated area. The film relief change depends on the film thickness, deposited charge, and film composition. Various structures are formed: Gausian-like cones, extremely sharp Taylor cones, deep craters, and craters with large spires grown on the side. Our investigation shows that these effects can be at least partially a result of electro-hydrodynamic material flow, but the observed phenomena are likely more complex. When we irradiated structural patterns formed by the electron beam with a red laser beam, we could not only fully relax the produced patterns, but also form very complex and intricate superstructures. These organized meso- and nano-scale structures are formed by a combination of photo-induced structural relaxation, light interference on structures fabricated by the e-beam, and photo-induced material flow.
Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow
NASA Astrophysics Data System (ADS)
Elashnikov, Roman; Fitl, Premysl; Svorcik, Vaclav; Lyutakov, Oleksiy
2017-02-01
Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as "reversible" or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.
ERIC Educational Resources Information Center
Mason, David H.
1988-01-01
Introduces a life science classroom activity for developing a knowledge of the human skeletal system, environmental poisoning, and bone growth pattern. Provides the situation, an organizational flow chart, relevant information materials, and directions. (YP)
DEM study of granular flow around blocks attached to inclined walls
NASA Astrophysics Data System (ADS)
Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng
2017-06-01
Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.
K Jawed, M; Hadjiconstantinou, N G; Parks, D M; Reis, P M
2018-03-14
We develop and perform continuum mechanics simulations of carbon nanotube (CNT) deployment directed by a combination of surface topography and rarefied gas flow. We employ the discrete elastic rods method to model the deposition of CNT as a slender elastic rod that evolves in time under two external forces, namely, van der Waals (vdW) and aerodynamic drag. Our results confirm that this self-assembly process is analogous to a previously studied macroscopic system, the "elastic sewing machine", where an elastic rod deployed onto a moving substrate forms nonlinear patterns. In the case of CNTs, the complex patterns observed on the substrate, such as coils and serpentines, result from an intricate interplay between van der Waals attraction, rarefied aerodynamics, and elastic bending. We systematically sweep through the multidimensional parameter space to quantify the pattern morphology as a function of the relevant material, flow, and geometric parameters. Our findings are in good agreement with available experimental data. Scaling analysis involving the relevant forces helps rationalize our observations.
Flow diagram analysis of electrical fatalities in construction industry.
Chi, Chia-Fen; Lin, Yuan-Yuan; Ikhwan, Mohamad
2012-01-01
The current study reanalyzed 250 electrical fatalities in the construction industry from 1996 to 2002 into seven patterns based on source of electricity (power line, energized equipment, improperly installed or damaged equipment), direct contact or indirect contact through some source of injury (boom vehicle, metal bar or pipe, and other conductive material). Each fatality was coded in terms of age, company size, experience, performing tasks, source of injury, accident cause and hazard pattern. The Chi-square Automatic Interaction Detector (CHAID) was applied to the coded data of the fatal electrocution to find a subset of predictors that might derive meaningful classifications or accidents scenarios. A series of Flow Diagrams was constructed based on CHAID result to illustrate the flow of electricity travelling from electrical source to human body. Each of the flow diagrams can be directly linked with feasible prevention strategies by cutting the flow of electricity.
Comparison of in-situ and optical current-meter estimates of rip-current circulation
NASA Astrophysics Data System (ADS)
Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.
2016-12-01
Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.
Fundamental Study of Material Flow in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
1999-01-01
The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.
NASA Astrophysics Data System (ADS)
Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi
2018-06-01
Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x- y- z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.
NASA Astrophysics Data System (ADS)
Fujinami, Taku; Kigami, Hiroshi; Unno, Noriyuki; Taniguchi, Jun; Satake, Shin-ichi
2018-03-01
Total internal reflection fluorescence microscopy (TIRFM) is a promising method for measuring fluid flow close to a wall with nanoscale resolution in a process that is termed "multilayer nanoparticle image velocimetry" (MnPIV). TIRFM uses evanescent light that is generated on a substrate (typically a glass slide) by total internal reflection of light. Many researchers have previously studied x-y-z (3D) flows of water close to flat glass slides using MnPIV. On the other hand, a fluid flow close to a structured surface is also important. To measure flows of water near micro-patterns, we previously developed an MnPIV technique that uses a refractive-index-matching method. In previous study, the micropattern is made of a thermoplastic material with a refractive index that closely matches that of water. In this study, ultraviolet nanoimprint lithography was used for fabricating the appropriate micro-patterns because this technique can fabricate a pattern with a high resolution. As a result, we succeeded in performing MnPIV in water with a circular hole array pattern made by ultraviolet nanoimprint using a refractive-index-matching method. We believe that this technique will be helpful in elucidating fluid flows around microstructures.
NASA Astrophysics Data System (ADS)
Stroock, Abraham Duncan
This thesis presents the use of patterned surfaces for controlling fluid dynamics on a sub-millimeter scale, and for fabricating a new class of polymeric materials. In chapters 1--4, chemical and mechanical structures were used to control the form of flows of fluids in microchannels. This work was done in the context of the development of microfluidic technology for performing chemical tasks in portable, integrated devices. Chapter 1 reviews this work for an audience of chemists who are potential users of these techniques in the development of micro-analytical and micro-synthetic devices. Appendix 1 contains a more general review of microfluidics. Chapter 2 presents experimental results on the use of patterned surface charge density to create new electroosmotic (EO) flows in microchannels; the chapter includes a successful model of the observed flows. In Chapter 3, patterns of topography on the wall of a microchannel were used to generate recirculation in pressure-driven flows. The design and characterization of an efficient mixer based on these flows is presented. A theoretical treatment of these flows is given in Appendix 2. The experimental methods used for the work with both EO and pressure-driven flows are presented in Chapter 4. In Chapter 5, a pattern of asymmetrical grooves in a heated plate was used to perturb Marangoni-Benard (M-B) convection, a dynamic system that spontaneously forms patterned flows. The interaction of the imposed pattern and the inherent pattern of the M-B convection led to a net flow in the plane of convecting layer of fluid. The direction of this flow depended on the orientation of the asymmetrical grooves, the temperature difference across the layer, and the thickness of the layer. A phenomenological model is presented to explain this ratchet effect in which local recirculation was coupled into a global flow. In Chapter 6, surfaces patterned by microcontact printing were used as a workbench on which to build molecularly thin polymer films of well-defined lateral size and shape for subsequent release into solution; the released structures are referred to as two-dimensional (2D) polymers. This type of structure has been a theoretical curiosity and an experimental challenge for several decades. The key element of this method was the use of hydrophobic interactions as a "switchable" adhesive that attached the films to the surface during growth in water and then allowed the completed films to be removed in air. The structure and chemical composition of the films was characterized.
Experimental system for the control of surgically induced infections
NASA Technical Reports Server (NTRS)
Tevebaugh, M. D.
1971-01-01
The development tests to be performed on the experimental system are described in detail. The test equipment, conditions, and procedures are given. The portable clean room tests include assembly, collapsability, portability, and storage; laminar flow rate; static pressure; air flow pattern; and electrostatic buildup. The other tests are on the ventilation system, human factors evaluation, electrical subsystem, and material compatibility.
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641
Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong
2010-01-01
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, A.V.
1983-10-12
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Solid oxide fuel cell having compound cross flow gas patterns
Fraioli, Anthony V.
1985-01-01
A core construction for a fuel cell is disclosed having both parallel and cross flow passageways for the fuel and the oxidant gases. Each core passageway is defined by electrolyte and interconnect walls. Each electrolyte wall consists of cathode and anode materials sandwiching an electrolyte material. Each interconnect wall is formed as a sheet of inert support material having therein spaced small plugs of interconnect material, where cathode and anode materials are formed as layers on opposite sides of each sheet and are electrically connected together by the interconnect material plugs. Each interconnect wall in a wavy shape is connected along spaced generally parallel line-like contact areas between corresponding spaced pairs of generally parallel electrolyte walls, operable to define one tier of generally parallel flow passageways for the fuel and oxidant gases. Alternate tiers are arranged to have the passageways disposed normal to one another. Solid mechanical connection of the interconnect walls of adjacent tiers to the opposite sides of the common electrolyte wall therebetween is only at spaced point-like contact areas, 90 where the previously mentioned line-like contact areas cross one another.
Multiphase imaging of gas flow in a nanoporous material using remote-detection NMR
NASA Astrophysics Data System (ADS)
Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex
2006-04-01
Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering or as reactors. We report a model study on silica aerogel using a time-of-flight magnetic resonance imaging technique to characterize the flow field and explain the effects of heterogeneities in the pore structure on gas flow and dispersion with 129Xe as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides insights into the dynamics of flow in porous media where several phases or chemical species may be present.
NASA Astrophysics Data System (ADS)
Jafarinik, S.; Viparelli, E.
2017-12-01
Recent research recognized the existence of bedrock channels in low-slope rivers, but little is known about the morphodynamics of bedrock-alluvial and alluvial-bedrock transitions in these systems. Bedrock-alluvial and alluvial-bedrock transitions are fluvial features separating bedrock and alluvial reaches. In the bedrock reach the river bed is partially covered with alluvium. An increase in sediment supply to an alluvial reach results in channel bed aggradation. An increase in sediment supply to a bedrock reach, on the other hand, results in a reduction of the exposed bedrock. Mathematical modeling of the alluvial morphodynamics of bedrock reaches reveals that these transitions can characterize transient or equilibrium conditions. Model results show that the magnitude of the alluvial equilibrium slope and the depth of the bedrock surface relative to the downstream water surface base level have a primary control on the equilibrium conditions. Further, numerical results show that when a stable bedrock-alluvial transition forms, the bed material transport capacity in bedrock reach decreases in the flow direction. On the contrary, when a stable alluvial-bedrock transition forms the bed material transport capacity in the bedrock reach increases in the flow direction. These spatial changes in bed material transport capacity are associated with spatial changes in alluvial cover and flow hydrodynamics. Here we present a one-dimensional formulation of alluvial morphodynamics that accounts for the non-uniformity of the bed material and for the spatial change in flow resistances associated with the spatial and temporal changes in flow hydrodynamics of the bedrock reaches. This change in flow resistances can be associated with 1) changes in skin friction due to longitudinal changes in the grain size distribution of the bed surface, and/or 2) changes in bedform geometry associated with the interaction between the alluvial cover and the underlying bedrock. The model has been validated against laboratory experiments with stable alluvial-bedrock transitions and is applied to describe the spatial changes in flow characteristics and sediment sorting patterns upstream of a stable bedrock-alluvial transition.
NASA Astrophysics Data System (ADS)
Bukač, M.
2016-05-01
We model the interaction between an incompressible, viscous fluid, thin elastic structure and a poroelastic material. The poroelastic material is modeled using the Biot's equations of dynamic poroelasticity. The fluid, elastic structure and the poroelastic material are fully coupled, giving rise to a nonlinear, moving boundary problem with novel energy estimates. We present a modular, loosely coupled scheme where the original problem is split into the fluid sub-problem, elastic structure sub-problem and poroelasticity sub-problem. An energy estimate associated with the stability of the scheme is derived in the case where one of the coupling parameters, β, is equal to zero. We present numerical tests where we investigate the effects of the material properties of the poroelastic medium on the fluid flow. Our findings indicate that the flow patterns highly depend on the storativity of the poroelastic material and cannot be captured by considering fluid-structure interaction only.
An integrated study to evaluate debris flow hazard in alpine environment
NASA Astrophysics Data System (ADS)
Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara
2018-05-01
Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.
Reutilisation-extended material flows and circular economy in China.
Li, Nan; Zhang, Tianzhu; Liang, Sai
2013-06-01
Circular economy (CE), with its basic principle of Reduce, Reuse, and Recycle, has been determined as the key strategy for the national development plan by the Chinese government. Given the economy-wide material flow analysis (EW-MFA) that leaves the inner flow of resource reutilisation unidentified, the reutilisation-extended EW-MFA is first introduced to evaluate and analyse the material input, solid waste generation, and reutilisation simultaneously. The total amount of comprehensive reutilisation (CR) is divided into three sub-flows, namely, reutilisation, recycle, and reuse. Thus, this model is used to investigate the resource CR in China from 2000 to 2010. China's total amount of CR and its sub-flows, as well as the CR rate, remain to have a general upward trend. By the year 2010, about 60% of the overall solid waste generation had already been reutilised, and more than 20% of the total resource requirement was reutilised resource. Moreover, the growth patterns of the CR sub flows show different characteristics. Interpretations of resource reutilisation-related laws and regulations of CE and the corresponding policy suggestions are proposed based on the results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Integrated current collector and catalyst support
Bregoli, Lawrence J.
1985-10-22
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Integrated current collector and catalyst support
Bregoli, L.J.
1984-10-17
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Evaluating groundwater flow using passive electrical measurements
NASA Astrophysics Data System (ADS)
Voytek, E.; Revil, A.; Singha, K.
2016-12-01
Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.
Ablation in the slit in combustion
NASA Astrophysics Data System (ADS)
Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.
2017-12-01
The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.
Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Working, Dennis C. (Inventor)
2005-01-01
A fluid-control electro-active device includes a piezo-diaphragm made from a ferroelectric material sandwiched by first and second electrode patterns configured to introduce an electric field into the ferroelectric material when voltage is applied thereto. The electric field originates at a region of the ferroelectric material between the first and second electrode patterns, and extends radially outward from this region of the ferroelectric material and substantially parallel to the plane of the ferroelectric material. The piezo-diaphragm deflects symmetrically about this region in a direction substantially perpendicular to the electric field. An annular region coupled to and extending radially outward from the piezo-diaphragm perimetrically borders the piezo-diaphragm, A housing is connected to the region and at least one fluid flow path with piezo-diaphragm disposed therein.
The Montaguto earth flow: nine years of observation and analysis
Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.
2016-01-01
This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.
The study of flow pattern and phase-change problem in die casting process
NASA Technical Reports Server (NTRS)
Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.
1996-01-01
The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.
Flow-structure Interaction Modeling of a Fish Caudal Fin during Steady Swimming
NASA Astrophysics Data System (ADS)
Liu, Geng; Geng, Biao; Zheng, Xudong; Xue, Qian; Dong, Haibo
2017-11-01
It's widely thought that the flexibilities of fish fins play critical roles in propulsive performance enhancement (such as thrust augment and efficiency improvement) in nature. In order to explore the formation mechanisms of the fish fin's flexible morphing and its hydrodynamic benefits as well, a high-fidelity flow-structure/membrane interaction modeling of the fish caudal fin is conducted in this work. Following the realistic configuration of the fish caudal fin, a thin membrane supported by a series of beams is constructed. The material properties of the membrane and the beams are reversely determined by the realistic fin morphing obtained from the high-speed videos and the high fidelity flow-structure interaction simulations. With the accurate material property, we investigate the interplay between structure, kinematics and fluid flow in caudal fin propulsion. Detailed analyses on the relationship between the flexural stiffness, fin morphing patterns, hydrodynamic forces and vortex dynamics are then conducted.
NASA Astrophysics Data System (ADS)
Vasisht, Vishwas V.; Dutta, Sudeep K.; Del Gado, Emanuela; Blair, Daniel L.
2018-01-01
We use a combination of confocal microscopy, rheology, and molecular dynamics simulations to investigate jammed emulsions under shear, by analyzing the 3D droplets rearrangements in the shear frame. Our quantitative analysis of local dynamics reveals elementary nonaffine rearrangements that underlie the onset of the flow at small strains. We find that the mechanism of unjamming and the upturn in the material flow curve are associated to a qualitative change in spatiotemporal correlations of such rearrangements with the applied shear rate. At high shear rates, droplet clusters follow coordinated, stringlike motion. Conversely, at low shear rates, the elementary nonaffine rearrangements exhibit longer-ranged correlations, with complex spatiotemporal patterns. The 3D microscopic details provide novel insights into the specific features of the material flow curve, common to a large class of technologically relevant soft disordered solids and new fundamental ingredients for constitutive models.
Mechanochemical pattern formation in simple models of active viscoelastic fluids and solids
NASA Astrophysics Data System (ADS)
Alonso, Sergio; Radszuweit, Markus; Engel, Harald; Bär, Markus
2017-11-01
The cytoskeleton of the organism Physarum polycephalum is a prominent example of a complex active viscoelastic material wherein stresses induce flows along the organism as a result of the action of molecular motors and their regulation by calcium ions. Experiments in Physarum polycephalum have revealed a rich variety of mechanochemical patterns including standing, traveling and rotating waves that arise from instabilities of spatially homogeneous states without gradients in stresses and resulting flows. Herein, we investigate simple models where an active stress induced by molecular motors is coupled to a model describing the passive viscoelastic properties of the cellular material. Specifically, two models for viscoelastic fluids (Maxwell and Jeffrey model) and two models for viscoelastic solids (Kelvin-Voigt and Standard model) are investigated. Our focus is on the analysis of the conditions that cause destabilization of spatially homogeneous states and the related onset of mechano-chemical waves and patterns. We carry out linear stability analyses and numerical simulations in one spatial dimension for different models. In general, sufficiently strong activity leads to waves and patterns. The primary instability is stationary for all active fluids considered, whereas all active solids have an oscillatory primary instability. All instabilities found are of long-wavelength nature reflecting the conservation of the total calcium concentration in the models studied.
Nuclear Magnetic Resonance Relaxation and Imaging Studies on Water Flow in Soil Cores
NASA Astrophysics Data System (ADS)
Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Stapf, Siegfried
2010-05-01
Magnetic resonance imaging (MRI) is applied to the study of flow processes in a model and a natural soils core. Since flow velocities in soils are mostly too slow to be monitored directly by MRI flow velocity imaging, Gd-DTPA was used as contrast agent for the first time for flow processes in soils. Apart from its chemical stability the main advantage is the anionic net charge in neutral aqueous solution. Here we can show that this property hinders the adsorption at soil mineral surfaces and therefore retardation. Gd-DTPA turns out to be a very convenient conservative tracer for the investigation of flow processes in model and natural soil cores. With respect to the flow processes in the coaxial model soil column and the natural soil column we found total different flow patterns: In the first case tracer plume moves quite homogeneously only in the inner highly conductive core. No penetration into the outer fine material takes place. In contrast, the natural soil core shows a flow pattern which is characterized by preferential paths avoiding dense regions and preferring loose structures. In the case of the simpler model column also the local flow velocities are calculated by the application of a peak tracking algorithm.
Ranjan, Ashwini; Webster, Thomas J
2009-07-29
The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.
Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).
Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun
2009-10-21
Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.
Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan
2015-01-01
Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980
Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan
2015-08-11
Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.
Flow and Fracture in Drying Nanoparticle Suspensions
NASA Astrophysics Data System (ADS)
Dufresne, E. R.; Corwin, E. I.; Greenblatt, N. A.; Ashmore, J.; Wang, D. Y.; Dinsmore, A. D.; Cheng, J. X.; Xie, X. S.; Hutchinson, J. W.; Weitz, D. A.
2003-11-01
Drying aqueous suspensions of monodisperse silica nanoparticles can fracture in remarkable patterns. As the material solidifies, evenly spaced cracks invade from the drying surface, with individual cracks undergoing intermittent motion. We show that the growth of cracks is limited by the advancement of the compaction front, which is governed by a balance of evaporation and flow of fluid at the drying surface. Surprisingly, the macroscopic dynamics of drying show signatures of molecular-scale fluid effects.
Controlled overspray spray nozzle
NASA Technical Reports Server (NTRS)
Prasthofer, W. P. (Inventor)
1981-01-01
A spray system for a multi-ingredient ablative material wherein a nozzle A is utilized for suppressing overspray is described. The nozzle includes a cyclindrical inlet which converges to a restricted throat. A curved juncture between the cylindrical inlet and the convergent portion affords unrestricted and uninterrupted flow of the ablative material. A divergent bell-shaped chamber and adjustable nozzle exit B is utilized which provides a highly effective spray pattern in suppressing overspray to an acceptable level and producing a homogeneous jet of material that adheres well to the substrate.
Lively, R.S.; Morey, G.B.; Mossler, J.H.
1997-01-01
As part of a regional geochemical investigation of lower Paleozoic strata in the Hollandale embayment of southeastern Minnesota, elemental concentrations in acid-insoluble residues were determined for carbonate rock in the Middle Ordovician Galena Group. Elemental distribution patterns within the insoluble residues, particularly those of Ti, Al, and Zr, show that the Wisconsin dome and the Wisconsin arch, which contributed sediment to the embayment prior to Galena time, continued as weak sources of sediment during this period. In contrast, trace metals commonly associated with Mississippi Valley-type lead-zinc mineralization, including Pb, Zn, Cu, Ag, Ni, Co, As, and Mo, show dispersal patterns that are independent of those associated with primary depositional phenomena. These trace metals are concentrated in southern Minnesota in carbonate rocks near the interface between limestone- and dolostone-dominated strata. Dispersal patterns imply that the metals were carried by a north-flowing regional ground-water system. The results show that the geochemical attributes of insoluble residues can be used to distinguish provenance and transport directions of primary sediments within a depositional basin from effects of subsequent regional ground-water flow systems.
Metal flow and temperature in direct extrusion of large-size aluminum billets
NASA Astrophysics Data System (ADS)
Valberg, Henry; Costa, André L. M.
2018-05-01
FEM-analysis is used to study thermo-mechanical conditions in aluminum rod extrusion for billets with large size corresponding to that used in industrial production. In the analysis, focus is on how the metal flow and the temperature conditions in the extrusion material is affected by the extrusion velocity in terms of the ram speed used in the extrusion process. In the study, metal flow is characterized by the deformations in extrusion subjected to a perfect grid pattern, consisting of orthogonal crossing lines, added into the longitudinal mid-plane of the initial billet. The analysis shows that metal flow in extrusion conducted at a low ram speed of 1 mms-1, is predicted significantly different from that at a high speed of 5 mms-1, or above. As regards the thermal conditions in the extrusion material, they are also predicted significantly different, at the low and the high ram speed level. A likely explanation why metal flow is different at low and high ram speeds may be that flow is altered because of the concurrent change in the temperature field within the billet.
NASA Astrophysics Data System (ADS)
Kamalak, Hakan; Canbay, C. Aksu; Yiğit, Oktay; Altin, Serdar
2018-03-01
In this study, we investigated the structural stability, thermal conductivity, thermal analysis, materials' homogeneity of newly developed flowable composites. 6 different dental flowable composite resins; Grandio Flow (GF), Charisma Flow (CF), Tetric N Flow (TNF), Clearfil Majesty Flow (CMF),3M Filtek Ultimate Flow (3MFU), Voco Amaris Flow (VFA) were used. Restorations were made in standard teflon molds and the materials were light-cured for 20s in a 6 mm × 2 mm teflon mould. After polymerization, samples were kept in distilled water at 37 °C/24 h .It was found that the composites have multiphase component such as metallic dopant and organic binder. The XRD investigation showed that there was a broad halo in the pattern which indicates the organic section in the composites. The FTIR results indicate the bond structure of the composites. The temperature dependence of the thermal conductivity of the composites were found below to 5 mW/K value depending on the type of the composites, which are low enough for dental application. The micro-hardness of the samples was analyzed and the result was compared.
Singer, Michael B.; Dunne, Thomas
2006-01-01
A stochastic flood generator and calibrated sediment transport formulae were used to assess the decadal impact of major river rehabilitation strategies on two fraction bed material sediment flux and net storage, first‐order indicators of aquatic riverine habitat, in a large river system. Model boundary conditions were modified to reflect the implementation of three major river rehabilitation strategies being considered in the Sacramento River Valley: gravel augmentation, setting back of levees, and flow alteration. Fifty 30‐year model simulations were used to compute probabilities of the response in sediment flux and net storage to these strategies. Total annual average bed material sediment flux estimates were made at six gauged river cross sections, and ∼60 km reach‐scale sediment budgets were evaluated between them. Gravel augmentation to improve spawning habitat induced gravel accumulation locally and/or downstream, depending on the added mixture. Levee setbacks to recreate the river corridor reduced flow stages for most flows and hence lowered sediment flux. Flow alteration to mimic natural flow regimes systematically decreased total annual average flux, suggesting that high‐magnitude low‐frequency transport events do not affect long‐term trends in bed material flux. The results indicate that each rehabilitation strategy reduces sediment transport in its target reaches and modulates imbalances in total annual bed material sediment budgets at the reach scale. Additional risk analysis is necessary to identify extreme conditions associated with variable hydrology that could affect rehabilitation over decades. Sensitivity analysis suggests that sorting of bed material sediment is the most important determinant of modeled transport and storage patterns.
Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej
2017-01-01
Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour. PMID:29104346
Moore, Lee R; Williams, P Stephen; Chalmers, Jeffrey J; Zborowski, Maciej
2017-04-01
Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.
Origins of Folding Instabilities on Polycrystalline Metal Surfaces
NASA Astrophysics Data System (ADS)
Beckmann, N.; Romero, P. A.; Linsler, D.; Dienwiebel, M.; Stolz, U.; Moseler, M.; Gumbsch, P.
2014-12-01
Wear and removal of material from polycrystalline metal surfaces is inherently connected to plastic flow. Here, plowing-induced unconstrained surface plastic flow on a nanocrystalline copper surface has been studied by massive molecular dynamics simulations and atomic force microscopy scratch experiments. In agreement with experimental findings, bulges in front of a model asperity develop into vortexlike fold patterns that mark the disruption of laminar flow. We identify dislocation-mediated plastic flow in grains with suitably oriented slip systems as the basic mechanism of bulging and fold formation. The observed folding can be fundamentally explained by the inhomogeneity of plasticity on polycrystalline surfaces which favors bulge formation on grains with suitably oriented slip system. This process is clearly distinct from Kelvin-Helmholtz instabilities in fluids, which have been previously suggested to resemble the formed surface fold patterns. The generated prow grows into a rough chip with stratified lamellae that are identified as the precursors of wear debris. Our findings demonstrate the importance of surface texture and grain structure engineering to achieve ultralow wear in metals.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S
2015-10-21
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
NASA Astrophysics Data System (ADS)
Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.
2017-05-01
The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.
Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds
NASA Astrophysics Data System (ADS)
Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.
2017-10-01
Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).
Exploration of microfluidic devices based on multi-filament threads and textiles: A review
Nilghaz, A.; Ballerini, D. R.; Shen, W.
2013-01-01
In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179
NASA Astrophysics Data System (ADS)
Wang, H. G.; Zhang, J. L.; Ramli, M. F.; Mao, M. X.; Ye, J. M.; Yang, W. Q.; Wu, Z. P.
2016-11-01
The moisture content of granules in fluidised bed drying, granulation and coating processes can typically be between 1%~25%, resulting in the change of permittivity and conductivity during the processes. Electrical capacitance tomography (ECT) has been used for this purpose, but has a limit because too much water can cause a problem in capacitance measurement. Considering that microwave tomography (MWT) has a wide range of frequency (1~2.5 GHz) and can be used to measure materials with high permittivity and conductivity, the objective of this research is to combine ECT and MWT together to investigate the solids concentration with different moisture content and different flow patterns. The measurement results show that both ECT and MWT are functions of moisture content as well as flow patterns, and their measurements are complementary to each other. This is the first time that these two tomography modalities have been combined together and applied to image the complex solids distribution. The obtained information may be used for the process control of fluidised bed drying, granulation and coating to improve operation efficiency.
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, Richard M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ∼80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ∼2 m s−1during most of the runout. Segregation was measured by placing ∼600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ∼6–7.5 cm s−1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Grain-size segregation and levee formation in geophysical mass flows
Johnson, C.G.; Kokelaar, B.P.; Iverson, R.M.; Logan, M.; LaHusen, R.G.; Gray, J.M.N.T.
2012-01-01
Data from large-scale debris-flow experiments are combined with modeling of particle-size segregation to explain the formation of lateral levees enriched in coarse grains. The experimental flows consisted of 10 m3 of water-saturated sand and gravel, which traveled ~80 m down a steeply inclined flume before forming an elongated leveed deposit 10 m long on a nearly horizontal runout surface. We measured the surface velocity field and observed the sequence of deposition by seeding tracers onto the flow surface and tracking them in video footage. Levees formed by progressive downslope accretion approximately 3.5 m behind the flow front, which advanced steadily at ~2 m s-1 during most of the runout. Segregation was measured by placing ~600 coarse tracer pebbles on the bed, which, when entrained into the flow, segregated upwards at ~6–7.5 cm s-1. When excavated from the deposit these were distributed in a horseshoe-shaped pattern that became increasingly elevated closer to the deposit termination. Although there was clear evidence for inverse grading during the flow, transect sampling revealed that the resulting leveed deposit was strongly graded laterally, with only weak vertical grading. We construct an empirical, three-dimensional velocity field resembling the experimental observations, and use this with a particle-size segregation model to predict the segregation and transport of material through the flow. We infer that coarse material segregates to the flow surface and is transported to the flow front by shear. Within the flow head, coarse material is overridden, then recirculates in spiral trajectories due to size-segregation, before being advected to the flow edges and deposited to form coarse-particle-enriched levees.
Urban infrastructure and longitudinal stream profiles
NASA Astrophysics Data System (ADS)
Lindner, G. A.; Miller, A. J.
2009-12-01
Urban streams usually are highly engineered or modified by human activity and are conventionally thought of as being geometrically, and thus hydraulically, simple. The work presented here, a contribution to NSF CNH Project 0709659, is designed to capture the influence of urban infrastructure on the character of longitudinal profiles and flow hydraulics along streams in the Baltimore metropolitan area. Detailed topographic data sets are derived from LiDAR supplemented by total-station surveys of the channel bed and low-flow water surface. These in turn are used to drive 2D depth-averaged hydraulic models comparing flow conditions over a range of urban development patterns and stormwater management regimes. Results from stream surveys of 1-2 km length indicate that channels in older, highly urbanized areas typically have straight planforms and strongly stepped profiles characterized by a series of deep, stagnant pools with short intervening riffles or runs. This pattern is associated with frequent interruption of the channel profile by bridges, culverts, road embankments and other artificial structures. In one survey reach of the Dead Run watershed, 50 percent of cumulative channel length has zero gradient at low flow, and 50 percent of cumulative head loss is accounted for by only 4 percent of channel length. In the suburban Red Run watershed recent development has occurred under strict stormwater management regulations with minimal encroachment on the riparian zone. Although their average gradients are similar, the Red Run survey reach is steeper than the Dead Run reach over most its length but has a smaller fraction of total head loss caused by local slope breaks. Modeling results indicate that these differences in stream morphology are associated with differences in velocity, flow pattern, and residence time at base flow; the stepped nature of the profile in the older urban area becomes less pronounced at intermediate to high flows, but the controlling influence of infrastructure may become dominant again during large floods. Because flashy urban streams have lower and more persistent low flows as well as more extreme flood flows, these hydraulic patterns may have implications for both biogeochemical cycling at base flow and transport and deposition of sediment and other constituents during flood periods. Continuing research will develop a typology of urban streams in terms of the influence of engineering practices on flow patterns and material transport.
NASA Astrophysics Data System (ADS)
Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.
2018-03-01
Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).
Wiedenhofer, Dominik; Lauk, Christian; Haas, Willi; Tanikawa, Hiroki; Miatto, Alessio; Haberl, Helmut
2017-01-01
Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term path-dependencies because of their longevity. Fostering a transition toward environmentally sustainable patterns of resource use requires a more complete understanding of stock-flow relations. Here we show that about half of all materials extracted globally by humans each year are used to build up or renew in-use stocks of materials. Based on a dynamic stock-flow model, we analyze stocks, inflows, and outflows of all materials and their relation to economic growth, energy use, and CO2 emissions from 1900 to 2010. Over this period, global material stocks increased 23-fold, reaching 792 Pg (±5%) in 2010. Despite efforts to improve recycling rates, continuous stock growth precludes closing material loops; recycling still only contributes 12% of inflows to stocks. Stocks are likely to continue to grow, driven by large infrastructure and building requirements in emerging economies. A convergence of material stocks at the level of industrial countries would lead to a fourfold increase in global stocks, and CO2 emissions exceeding climate change goals. Reducing expected future increases of material and energy demand and greenhouse gas emissions will require decoupling of services from the stocks and flows of materials through, for example, more intensive utilization of existing stocks, longer service lifetimes, and more efficient design. PMID:28167761
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is produced by a boulder-bedrock constriction that rapidly decreases the channel width above the pool by roughly 25 percent. The width constriction creates highly turbulent flow capable of scouring bed material through the pool. The high velocity core that is produced through the pool center appears to be enhanced by the formation of a large eddy directly below the boulder. Values of unit stream power and shear stress indicate that the pool exit is an area of deposition of bed material due to a decrease in tractive force. The presence of a strong transverse velocity gradient suggests that only a portion of the flow is responsible for scouring bed material. After we eliminate the dead water zone, the lowest five percent of the velocity range, patterns of effective width between pools and riffles begin to emerge. The ratio of flow width between adjacent pools and riffles is one measure of flow convergence. At a discharge of 0.5 cms, the ratio of effective width between pools and riffles is roughly 1:1, implying that there is uniform flow with little flow convergence. At a discharge of 5.15 cms the width ratio between the pool and riffle is about 1:3, demonstrating the strong convergent flow patterns at the pool head. The observed effective width relationship suggests that when considering restoration designs, boulders should be placed in areas that replicate natural convergence and divergence patterns in order to maximize pool area and depth.
N7 logic via patterning using templated DSA: implementation aspects
NASA Astrophysics Data System (ADS)
Bekaert, J.; Doise, J.; Gronheid, R.; Ryckaert, J.; Vandenberghe, G.; Fenger, G.; Her, Y. J.; Cao, Y.
2015-07-01
In recent years, major advancements have been made in the directed self-assembly (DSA) of block copolymers (BCP). Insertion of DSA for IC fabrication is seriously considered for the 7 nm node. At this node the DSA technology could alleviate costs for multiple patterning and limit the number of masks that would be required per layer. At imec, multiple approaches for inserting DSA into the 7 nm node are considered. One of the most straightforward approaches for implementation would be for via patterning through templated DSA; a grapho-epitaxy flow using cylindrical phase BCP material resulting in contact hole multiplication within a litho-defined pre-pattern. To be implemented for 7 nm node via patterning, not only the appropriate process flow needs to be available, but also DSA-aware mask decomposition is required. In this paper, several aspects of the imec approach for implementing templated DSA will be discussed, including experimental demonstration of density effect mitigation, DSA hole pattern transfer and double DSA patterning, creation of a compact DSA model. Using an actual 7 nm node logic layout, we derive DSA-friendly design rules in a logical way from a lithographer's view point. A concrete assessment is provided on how DSA-friendly design could potentially reduce the number of Via masks for a place-and-routed N7 logic pattern.
Method for fabricating a microscale anemometer
NASA Technical Reports Server (NTRS)
Liu, Chang (Inventor); Chen, Jack (Inventor)
2008-01-01
Method for fabricating a microscale anemometer on a substrate. A sacrificial layer is formed on the substrate, and a metal thin film is patterned to form a sensing element. At least one support for the sensing element is patterned. The sacrificial layer is removed, and the sensing element is lifted away from the substrate by raising the supports, thus creating a clearance between the sensing element and the substrate to allow fluid flow between the sensing element and the substrate. The supports are raised preferably by use of a magnetic field applied to magnetic material patterned on the supports.
Predicting vertically-nonsequential wetting patterns with a source-responsive model
Nimmo, John R.; Mitchell, Lara
2013-01-01
Water infiltrating into soil of natural structure often causes wetting patterns that do not develop in an orderly sequence. Because traditional unsaturated flow models represent a water advance that proceeds sequentially, they fail to predict irregular development of water distribution. In the source-responsive model, a diffuse domain (D) represents flow within soil matrix material following traditional formulations, and a source-responsive domain (S), characterized in terms of the capacity for preferential flow and its degree of activation, represents preferential flow as it responds to changing water-source conditions. In this paper we assume water undergoing rapid source-responsive transport at any particular time is of negligibly small volume; it becomes sensible at the time and depth where domain transfer occurs. A first-order transfer term represents abstraction from the S to the D domain which renders the water sensible. In tests with lab and field data, for some cases the model shows good quantitative agreement, and in all cases it captures the characteristic patterns of wetting that proceed nonsequentially in the vertical direction. In these tests we determined the values of the essential characterizing functions by inverse modeling. These functions relate directly to observable soil characteristics, rendering them amenable to evaluation and improvement through hydropedologic development.
Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions
NASA Astrophysics Data System (ADS)
Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.
2015-12-01
Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.
Resource Use in Small Island States: Material Flows in Iceland and Trinidad and Tobago, 1961-2008.
Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina
2014-04-01
Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption.
Coastal ocean transport patterns in the central Southern California Bight
Noble, M.A.; Rosenberger, K.J.; Hamilton, P.; Xu, J. P.
2009-01-01
In the past decade, several large programs that monitor currents and transport patterns for periods from a few months to a few years were conducted by a consortium of university, federal, state, and municipal agencies in the central Southern California Bight, a heavily urbanized section of the coastal ocean off the west coast of the United States encompassing Santa Monica Bay, San Pedro Bay, and the Palos Verdes shelf. These programs were designed in part to determine how alongshelf and cross-shelf currents move sediments, pollutants, and suspended material through the region. Analysis of the data sets showed that the current patterns in this portion of the Bight have distinct changes in frequency and amplitude with location, in part because the topography of the shelf and upper slope varies rapidly over small spatial scales. However, because the mean, subtidal, and tidal-current patterns in any particular location were reasonably stable with time, one could determine a regional pattern for these current fields in the central Southern California Bight even though measurements at the various locations were obtained at different times. In particular, because the mean near-surface flows over the San Pedro and Palos Verdes shelves are divergent, near-surface waters from the upper slope tend to carry suspended material onto the shelf in the northwestern portion of San Pedro Bay. Water and suspended material are also carried off the shelf by the mean and subtidal flow fields in places where the orientation of the shelf break changes abruptly. The barotropic tidal currents in the central Southern California Bight flow primarily alongshore, but they have pronounced amplitude variations over relatively small changes in alongshelf location that are not totally predicted by numerical tidal models. Nonlinear internal tides and internal bores at tidal frequencies are oriented more across the shelf. They do not have a uniform transport direction, since they move fine sediment from the shelf to the slope in Santa Monica Bay, but carry suspended material from the mid-shelf to the beach in San Pedro Bay. It is clear that there are a large variety of processes that transport sediments and contaminants along and across the shelf in the central Southern California Bight. However, because these processes have a variety of frequencies and relatively small spatial scales, the dominant transport processes tend to be localized and have dissimilar characteristics even in adjacent regions of this small part of the coastal ocean. ?? 2009 The Geological Society of America.
Niu, Shan Dong; Lyu, Xiao; Shi, Yang Yang
2018-02-01
Under the theoretical framework of sustainable intensification of agricultural land-use (SIALU), We used material flow analysis (MFA) method to establish evaluation index system for SIALU by utilizing data in 2000, 2005, 2010 and 2015 to quantify the level of SIALU of 17 cities in Shandong Province, and analyzed the variation in input-output of resources factors of agricultural land, spatial distribution of resource productivity and environmental economic efficiency, in order to reveal spatial-temporal differentiation of SIALU. Results showed that the direct material input to agricultural lands decreased, whereas hidden flow, stock and pollutant emissions increased gradually from 2000 to 2015. The material productivity of all cities in the province showed that the coastal areas in the peninsula were relatively lower than the southern region, and the level of material productivity in the northwest region was relatively higher. Environmental economic efficiency was gradually enhanced, and the western region was relatively higher than coastal area of the peninsula. During the period examined here, the spatial pattern of SIALU of various cities showed clustered distribution change, with the western region tending to gradually increase and the eastern region tending to gradually reduce. The dynamics of SIALU among different regions were divided into six grades: Northwestern Shandong > Northern Shandong > Southwestern Shandong > Southern Shandong > Central Shandong > Coastal areas of Shandong Peninsula.
Partial entrainment of gravel bars during floods
Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.; Montgomery, David R.
2002-01-01
Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress τ0* of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to τ0* with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root‐mean‐square error of 0.09). Variation in partial entrainment for a given τ0* demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < τ0*< 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.
A novel jet-based nano-hydroxyapatite patterning technique for osteoblast guidance
Li, Xiang; Koller, Garrit; Huang, Jie; Di Silvio, Lucy; Renton, Tara; Esat, Minoo; Bonfield, William; Edirisinghe, Mohan
2010-01-01
Surface topography is well known to play a crucial role in influencing cellular responses to an implant material and is therefore important in bone tissue regeneration. A novel jet-based patterning technique, template-assisted electrohydrodynamic atomization spraying, was recently devised to control precisely the surface structure as well as its dimensions. In the present study, a detailed investigation of this patterning process was carried out. A range of nano-hydroxyapatite (nHA) line-shaped patterns <20 µm in width were successfully deposited on a commercially pure Ti surface by controlling the flow of an nHA suspension in an electric field. In vitro studies showed that the nHA patterns generated are capable of regulating the human osteoblast cell attachment and orientation. PMID:19493897
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
Riparian vegetation controls on channels formed in non-cohesive sediment
NASA Astrophysics Data System (ADS)
Gran, K.; Tal, M.; Paola, C.
2002-05-01
Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments, vegetation is reseeded following repeat high flow events, simulating the natural process of vegetation encroachment on the floodplain and channel.
The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010
Schaffartzik, Anke; Mayer, Andreas; Gingrich, Simone; Eisenmenger, Nina; Loy, Christian; Krausmann, Fridolin
2014-01-01
Since the World War II, many economies have transitioned from an agrarian, biomass-based to an industrial, minerals-based metabolic regime. Since 1950, world population grew by factor 2.7 and global material consumption by factor 3.7–71 Gigatonnes per year in 2010. The expansion of the resource base required by human societies is associated with growing pressure on the environment and infringement on the habitats of other species. In order to achieve a sustainability transition, we require a better understanding of the currently ongoing metabolic transition and its potential inertia. In this article, we present a long-term global material flow dataset covering material extraction, trade, and consumption of 177 individual countries between 1950 and 2010. We trace patterns and trends in material flows for six major geographic and economic country groupings and world regions (Western Industrial, the (Former) Soviet Union and its allies, Asia, the Middle East and Northern Africa, Latin America and the Caribbean, and Sub-Saharan Africa) as well as their contribution to the emergence of a global metabolic profile during a period of rapid industrialization and globalization. Global average material use increased from 5.0 to 10.3 tons per capita and year (t/cap/a) between 1950 and 2010. Regional metabolic rates range from 4.5 t/cap/a in Sub-Saharan Africa to 14.8 t/cap/a in the Western Industrial grouping. While we can observe a stabilization of the industrial metabolic profile composed of relatively equal shares of biomass, fossil energy carriers, and construction minerals, we note differences in the degree to which other regions are gravitating toward a similar form of material use. Since 2000, Asia has overtaken the Western Industrial grouping in terms of its share in global resource use although not in terms of its per capita material consumption. We find that at a sub-global level, the roles of the world regions have changed. There are, however, no signs yet that this will lead to stabilization or even a reduction of global resource use. PMID:25844026
Scanning wave photopolymerization enables dye-free alignment patterning of liquid crystals
Hisano, Kyohei; Aizawa, Miho; Ishizu, Masaki; Kurata, Yosuke; Nakano, Wataru; Akamatsu, Norihisa; Barrett, Christopher J.; Shishido, Atsushi
2017-01-01
Hierarchical control of two-dimensional (2D) molecular alignment patterns over large areas is essential for designing high-functional organic materials and devices. However, even by the most powerful current methods, dye molecules that discolor and destabilize the materials need to be doped in, complicating the process. We present a dye-free alignment patterning technique, based on a scanning wave photopolymerization (SWaP) concept, that achieves a spatial light–triggered mass flow to direct molecular order using scanning light to propagate the wavefront. This enables one to generate macroscopic, arbitrary 2D alignment patterns in a wide variety of optically transparent polymer films from various polymerizable mesogens with sufficiently high birefringence (>0.1) merely by single-step photopolymerization, without alignment layers or polarized light sources. A set of 150,000 arrays of a radial alignment pattern with a size of 27.4 μm × 27.4 μm were successfully inscribed by SWaP, in which each individual pattern is smaller by a factor of 104 than that achievable by conventional photoalignment methods. This dye-free inscription of microscopic, complex alignment patterns over large areas provides a new pathway for designing higher-performance optical and mechanical devices. PMID:29152567
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications
Porter, Mark L.; Jiménez-Martínez, Joaquín; Martinez, Ricardo Martin; ...
2015-08-20
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. In this paper, we have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works inmore » both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. Finally, the experiments include fracture–matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO 2 (scCO 2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO 2–brine–oil.« less
Temporal Patterns in Dissolved Organic Carbon Composition in an Urban Lake
NASA Astrophysics Data System (ADS)
Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.
2017-12-01
Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity to process allochthonous carbon from the urban environment. Ongoing work is comparing these results to other periods in the 10-year time series to test if the driver-DOC relationships are robust over longer time-scales and evaluating how changes in lake management and climate have altered DOC over time.
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.
1996-01-01
A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.
NASA Astrophysics Data System (ADS)
Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar
2017-09-01
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.
Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk
2016-11-01
The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.
Parametric Study of Sealant Nozzle
NASA Astrophysics Data System (ADS)
Yamamoto, Yoshimi
It has become apparent in recent years the advancement of manufacturing processes in the aerospace industry. Sealant nozzles are a critical device in the use of fuel tank applications for optimal bonds and for ground service support and repair. Sealants has always been a challenging area for optimizing and understanding the flow patterns. A parametric study was conducted to better understand geometric effects of sealant flow and to determine whether the sealant rheology can be numerically modeled. The Star-CCM+ software was used to successfully develop the parametric model, material model, physics continua, and simulate the fluid flow for the sealant nozzle. The simulation results of Semco sealant nozzles showed the geometric effects of fluid flow patterns and the influences from conical area reduction, tip length, inlet diameter, and tip angle parameters. A smaller outlet diameter induced maximum outlet velocity at the exit, and contributed to a high pressure drop. The conical area reduction, tip angle and inlet diameter contributed most to viscosity variation phenomenon. Developing and simulating 2 different flow models (Segregated Flow and Viscous Flow) proved that both can be used to obtain comparable velocity and pressure drop results, however; differences are seen visually in the non-uniformity of the velocity and viscosity fields for the Viscous Flow Model (VFM). A comprehensive simulation setup for sealant nozzles was developed so other analysts can utilize the data.
Estimating perceived phonatory pressedness in singing from flow glottograms.
Sundberg, Johan; Thalén, Margareta; Alku, Paavo; Vilkman, Erkki
2004-03-01
The normalized amplitude quotient (NAQ), defined as the ratio between the peak-to-peak amplitude of the flow pulse and the negative peak amplitude of the differentiated flow glottogram and normalized with respect to period time, has been shown to be related to glottal adduction. Glottal adduction, in turn, affects mode of phonation and hence perceived phonatory pressedness. The relationship between NAQ and perceived phonatory pressedness was analyzed in a material collected from a professional female singer and singing teacher who sang a triad pattern in breathy, flow, neutral, and pressed phonation in three different loudness conditions (soft, middle, loud). In addition, she also sang the same triad pattern in four different styles of singing, classical, pop, jazz, and blues, in the same three loudness conditions. A panel of experts rated the degree of perceived phonatory press along visual analogue scales. Comparing the obtained mean rated pressedness ratings with the mean NAQ values for the various triads showed that about 73% of the variation in perceived pressedness could be accounted for by variations of NAQ.
Carbon allocation in forest ecosystems
Creighton M. Litton; James W. Raich; Michael G. Ryan
2007-01-01
Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...
Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Zickefoose, Charles S.
This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…
NASA Astrophysics Data System (ADS)
Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng
2018-02-01
A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Zeoli, Antonio; Belmaggio, Pietro; Folco, Luigi
2008-03-01
Three-dimensional laboratory physical experiments have been used to investigate the influence of bedrock topography and ablation on ice flow. Different models were tested in a Plexiglas box, where a transparent silicone simulating ice in nature was allowed to flow. Experimental results show how the flow field (in terms of both flow lines and velocity) and variations in the topography of the free surface and internal layers of the ice are strongly influenced by the presence and height of bedrock obstacles. In particular, the buttressing effect forces the ice to slow down, rise up, and avoid the obstacle; the higher the bedrock barrier, the more pronounced the process. Only limited uplift of internal layers is observed in these experiments. In order to exhume deep material embedded in the ice, ablation (simulated by physically removing portions of silicone from the model surface to maintain a constant topographic depression) must be included in the physical models. In this case, the analogue ice replenishes the area of material removal, thereby allowing deep layers to move vertically to the surface and severely altering the local ice flow pattern. This process is analogous to the ice flow model proposed in the literature for the origin of meteorite concentrations in blue ice areas of the Antarctic plateau.
Improvement and analysis of the hydrogen-cerium redox flow cell
NASA Astrophysics Data System (ADS)
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-09-01
The H2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm-2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50 °C. The H2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
NASA Astrophysics Data System (ADS)
Tanaka, H.; Shiomi, Y.; Ma, K.-F.
2017-11-01
To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.
Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.
2014-01-01
The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.
Open problems in active chaotic flows: Competition between chaos and order in granular materials.
Ottino, J. M.; Khakhar, D. V.
2002-06-01
There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.
Interdisciplinary Pathways for Urban Metabolism Research
NASA Astrophysics Data System (ADS)
Newell, J. P.
2011-12-01
With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material urban metabolism, which adds spatial differentiation to materials flows and form, as well as a focus on equity, access, and governance dimensions of the urban metabolism.
Surface-directed capillary system; theory, experiments and applications.
Bouaidat, Salim; Hansen, Ole; Bruus, Henrik; Berendsen, Christian; Bau-Madsen, Niels Kristian; Thomsen, Peter; Wolff, Anders; Jonsmann, Jacques
2005-08-01
We present a capillary flow system for liquid transport in microsystems. Our simple microfluidic system consists of two planar parallel surfaces, separated by spacers. One of the surfaces is entirely hydrophobic, the other mainly hydrophobic, but with hydrophilic pathways defined on it by photolithographic means. By controlling the wetting properties of the surfaces in this manner, the liquid can be confined to certain areas defined by the hydrophilic pathways. This technique eliminates the need for alignment of the two surfaces. Patterned plasma-polymerized hexafluoropropene constitutes the hydrophobic areas, whereas the untreated glass surface constitutes the hydrophilic pathways. We developed a theoretical model of the capillary flow and obtained analytical solutions which are in good agreement with the experimental results. The capillarity-driven microflow system was also used to pattern and immobilize biological material on planar substrates: well-defined 200 microm wide strips of human cells (HeLa) and fluorescence labelled proteins (fluorescein isothiocyanate-labelled bovine serum albumin, i.e., FITC-BSA) were fabricated using the capillary flow system presented here.
A constitutive law for dense granular flows.
Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier
2006-06-08
A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
NASA Astrophysics Data System (ADS)
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
Fluid Flow Prediction with Development System Interwell Connectivity Influence
NASA Astrophysics Data System (ADS)
Bolshakov, M.; Deeva, T.; Pustovskikh, A.
2016-03-01
In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.
Martian Mystery: Do Some Materials Flow Uphill?
NASA Technical Reports Server (NTRS)
1999-01-01
Some of the geological features of Mars defy conventional, or simple, explanations. A recent example is on the wall of a 72 kilometer-wide (45 mile-wide) impact crater in Promethei Terra. The crater (above left) is located at 39oS, 247oW. Its inner walls appear in low-resolution images to be deeply gullied. A high resolution Mars Orbiter Camera (MOC) image shows that each gully on the crater's inner wall contains a tongue of material that appears to have flowed (to best see this, click on the icon above right and examine the full image). Ridges and grooves that converge toward the center of each gully and show a pronounced curvature are oriented in a manner that seems to suggest that material has flowed from the top toward the bottom of the picture. This pattern is not unlike pouring pancake batter into a pan... the viscous fluid will form a steep, lobate margin and spread outward across the pan. The ridges and grooves seen in the image are also more reminiscent of the movement of material out and away from a place of confinement, as opposed to the types of features seen when they flow into a more confined area. Mud and lava-flows, and even some glaciers, for the most part behave in this manner. From these observations, and based solely on the appearance, one might conclude that the features formed by moving from the top of the image towards the bottom. But this is not the case! The material cannot have flowed from the top towards the bottom of the area seen in the high resolution image (above, right), because the crater floor (which is the lowest area in the image) is at the top of the picture. The location and correct orientation of the high resolution image is shown by a white box in the context frame on the left. Since gravity pulls the material in the gullies downhill not uphill the pattern of ridges and grooves found on these gully-filling materials is puzzling. An explanation may lie in the nature of the material (e.g., how viscous was the pancake batter-like material?) and how rapidly it moved, but for now this remains an unexplained martian phenomenon. The context image (above, left) was taken by the MOC red wide angle camera at the same time that the MOC narrow angle camera obtained the high resolution view (above, right). Context images such as this provide a simple way to determine the location of each new high resolution view of the planet. Both images are illuminated from the upper left. The high resolution image covers an area 3 km (1.9 mi) across. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.Geological mechanism of hazardous debris flows in central Taiwan
NASA Astrophysics Data System (ADS)
Chen, H.; Chen, R. H.; Lin, M. L.; Su, D. Y.
2003-04-01
GEOLOGICAL MECHANISM OF HAZARDOUS DEBRIS FLOWS IN CENTRAL PART OF TAIWAN H. Chen (1), R. H. Chen (2), M. L. Lin (2), D.Y. Su (3) (1) Department of Geosciences, National Taiwan University, (2) Department of Civil Engineering, National Taiwan University, (3) MAA Ltd., Taiwan hche02@esc.cam.ac.uk/Fax:+44-01223-333450 This study revealed that the distribution of rock discontinuities, geomaterial characteristics and water pressure were the major hazardous factors of the triggering mechanism in the debris flows. Attention is drawn to the discontinuities pattern within the sidewalls of the gullies, which emphasized the significance of material slumping and forming the accumulated deposits in the gullies. The accumulated deposits are the main source of the debris flow once the disaster is triggered and produced large quantities of debris. A modified channel box test was used to comprehend the effect of water sources in this study. The results of this experimental test displayed that water supplied from the bottom or the top will both cause large material movement. But water supplied from the bottom tends to cause a larger and faster flow than water from the top. The visual evidence of a flushed network of discontinuities exposed after the debris flow provided in situ indications of increased pore water pressure. This rapidly increasing water pressure evidently contributed a sizable dynamic force to initiate movement of the debris flow. The heavy slurry became an effective cutting device to erode the sidewalls and move large quantities of the debris materials to the end of the gullies. Based on field investigations and laboratory tests, the precipitation could increase the water content and water pressure, and decrease the shear strength of the gullies material. It also can add confirmation to this research that debris flows are triggered by accumulated deposits from sidewalls and moved by high intensity precipitation.
Yang, Jie; Tang, Chongjun; Chen, Lihua; Liu, Yaojun; Wang, Lingyun
2017-01-01
Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land) in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface flows associated with bare land. PMID:28792507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-08-30
The Saltstone facility has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The dry feeds and the salt solution are already mixed in the mixer prior to being transferred to the hopper tank. The hopper modeling study through this work will focusmore » on fluid stirring and agitation, instead of traditional mixing in the literature, in order to keep the tank contents in motion during their residence time so that they will not be upset or solidified prior to transferring the grout to the Saltstone disposal facility. The primary objective of the work is to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed with the FLUENT{trademark} codes. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. The modeling results show that when the two-stage agitator consisting of a 45{sup o} pitched propeller and radial flat-plate blades is run at 140 rpm speed with 28 in diameter, the agitator provides an adequate stirring of the feed materials for a wide range of yield stresses (1 to 21 Pa) and the vortex system is shed into the remote region of the tank boundary by the blade passage in an efficient way. The results of this modeling study were used to develop the design guidelines for the agitator stirring and dispersion of the Saltstone feed materials in a hopper tank.« less
Cogan, N G; Wolgemuth, C W
2011-01-01
The behavior of collections of oceanic bacteria is controlled by metabolic (chemotaxis) and physical (fluid motion) processes. Some sulfur-oxidizing bacteria, such as Thiovulum majus, unite these two processes via a material interface produced by the bacteria and upon which the bacteria are transiently attached. This interface, termed a bacterial veil, is formed by exo-polymeric substances (EPS) produced by the bacteria. By adhering to the veil while continuing to rotate their flagella, the bacteria are able to exert force on the fluid surroundings. This behavior induces a fluid flow that, in turn, causes the bacteria to aggregate leading to the formation of a physical pattern in the veil. These striking patterns are very similar in flavor to the classic convection instability observed when a shallow fluid is heated from below. However, the physics are very different since the flow around the veil is mediated by the bacteria and affects the bacterial densities. In this study, we extend a model of a one-dimensional veil in a two-dimensional fluid to the more realistic two-dimensional veil in a three-dimensional fluid. The linear stability analysis indicates that the Peclet number serves as a bifurcation parameter, which is consistent with experimental observations. We also solve the nonlinear problem numerically and are able to obtain patterns that are similar to those observed in the experiments.
Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks
2015-12-31
AFRL-RQ-WP-TP-2016-0079 FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING NEURAL NETWORKS (POSTPRINT) Abdeel J...Journal Article Postprint 01 October 2013 – 22 June 2015 4. TITLE AND SUBTITLE FLOW PATTERN IDENTIFICATION OF HORIZONTAL TWO-PHASE REFRIGERANT FLOW USING...networks were used to automatically identify two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments
Nano scale devices: Fabrication, actuation, and related fluidic dynamics
NASA Astrophysics Data System (ADS)
Jing, Hao
Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for cilia beating through the use of magnetic nanowires. We apply our custom magnetic system, 3DFM, to drive these magnetic nanowires rotating with desired patterns and frequencies in a liquid chamber. High speed movies of passive tracers in the oscillating 3-D flow fields reveal the spatio-temporal structure of the induced fluid motion. Complementing these experimental studies, we have developed a family of exact solutions of the Stoke's equations for a spheroid sweeping a double cone in free space, and an asymptotic solution for a spinning slender rod sweeping an upright cone above a flat, infinite no-slip plane. We are using these solutions to develop a mathematical package to quantitatively model, and predict the tracer motion induced by the spinning nano-rods with and without Brownian noise. To understand the effect of these epicyclical flows on molecular conformations, we have studied the conformation of fluorescently labeled, single DNA molecules (lambda-DNA) in the flow produced by a precessing nanowire. The flow patterns in a viscoelastic medium about a precessing nanowire are also presented to reveal the epicyclical flows in a more bio-related environment.
Destabilization of confined granular packings due to fluid flow
NASA Astrophysics Data System (ADS)
Monloubou, Martin; Sandnes, Bjørnar
2016-04-01
Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells
NASA Astrophysics Data System (ADS)
Shekhar, R.; Evans, J. W.
Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.
Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA
May, Christine L.; Gresswell, Robert E.
2004-01-01
Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.
Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel
NASA Astrophysics Data System (ADS)
Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin
2018-04-01
In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.
NASA Astrophysics Data System (ADS)
Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin
2018-01-01
This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
Flow Patterns During Friction Stir Welding
NASA Technical Reports Server (NTRS)
Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)
2002-01-01
Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.
Improvement and analysis of the hydrogen-cerium redox flow cell
Tucker, Michael C.; Weiss, Alexandra; Weber, Adam Z.
2016-08-03
In this paper, the H 2-Ce redox flow cell is optimized using commercially-available cell materials. Cell performance is found to be sensitive to the upper charge cutoff voltage, membrane boiling pretreatment, methanesulfonic-acid concentration, (+) electrode surface area and flow pattern, and operating temperature. Performance is relatively insensitive to membrane thickness, Cerium concentration, and all features of the (-) electrode including hydrogen flow. Cell performance appears to be limited by mass transport and kinetics in the cerium (+) electrode. Maximum discharge power of 895 mW cm -2 was observed at 60 °C; an energy efficiency of 90% was achieved at 50more » °C. Finally, the H 2-Ce cell is promising for energy storage assuming one can optimize Ce reaction kinetics and electrolyte.« less
The Physical Economy of the United States of America
Gierlinger, Sylvia; Krausmann, Fridolin
2012-01-01
The United States is not only the world's largest economy, but it is also one of the world's largest consumers of natural resources. The country, which is inhabited by some 5% of the world's population, uses roughly one-fifth of the global primary energy supply and 15% of all extracted materials. This article explores long-term trends and patterns of material use in the United States. Based on a material flow account (MFA) that is fully consistent with current standards of economy-wide MFAs and covers domestic extraction, imports, and exports of materials for a 135-year period, we investigated the evolution of the U.S. industrial metabolism. This process was characterized by an 18-fold increase in material consumption, a multiplication of material use per capita, and a shift from renewable biomass toward mineral and fossil resources. In spite of considerable improvements in material intensity, no dematerialization has happened so far; in contrast to other high-income countries, material use has not stabilized since the 1970s, but has continued to grow. This article compares patterns and trends of material use in the United States with those in Japan and the United Kingdom and discusses the factors underlying the disproportionately high level of U.S. per capita resource consumption. PMID:24436632
NASA Astrophysics Data System (ADS)
Xu, G.; Lavelle, J. W.
2016-12-01
A numerical model of ocean flow and transport is used to extrapolate observations of currents and hydrography and infer patterns of material flux in the deep ocean around Axial Volcano--the destination node of the Ocean Observatories Initiative (OOI)'s Cabled Array. Using an inverse method, the model is made to approximate measured deep ocean flow around this site during a 35-day time period in 2002. The model is then used to extract month-long mean patterns and examine smaller-scale spatial and temporal variability around Axial. Like prior observations, model month-long mean currents flow anti-cyclonically (clockwise) around the volcano's summit in toroidal form at speeds of up to 7 cm/s. The mean vertical circulation has a net effect of pumping water out of the caldera. Temperature and salinity iso-surfaces sweep upward and downward on opposite sides of the volcano with vertical excursions of up to 70 m. As a time mean, the temperature (salinity) anomaly takes the form of a cold (briny) dome above the summit. Passive tracer material released at the location of the ASHES vent field exits the caldera through its southern open end and over the western bounding wall driven by vertical flow. Once outside the caldera, the tracer circles the summit in clockwise fashion, while gradually bleeding southwestward into the ambient ocean. Another tracer release experiment using a source of 2-day duration inside and near the northern end of the caldera suggests a residence time of the fluid at that locale of 5-6 days.
Coherent-fields, their responsive colloids, and life's origins.
NASA Astrophysics Data System (ADS)
Mitra-Delmotte, G.; Mitra, A. N.
2015-10-01
In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.
Transient Characterization of Type B Particles in a Transport Riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Monazam, E.R.; Mei, J.S.
2007-01-01
Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the risermore » followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.« less
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
NASA Astrophysics Data System (ADS)
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Mantle convection pattern and subcrustal stress field under South America
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1980-01-01
The tectonic, igneous and metallogenic features of South America are discussed in terms of the crustal deformation associated with stresses due to mantle convection as inferred from the high degree harmonics in the geopotential field. The application of Runcorn's model for the laminar viscous flows in the upper mantle to satellite and gravity data results in a convection pattern which reveals the ascending flows between the descending Nazca plate and the overlying South American plate as well as segments of the descending Nazca plate beneath South America. The arc volcanism in South America is shown apparently to be related to the upwelling of high-temperature material induced by the subduction of the Nazca plate, with the South American basin systems associated with downwelling mantle flows. The resulting tensional stress fields are shown to be regions of structural kinship characterized by major concentrations of ore deposits and related to the cordillera, shield and igneous systems and the upward Andean movements. It is suggested that the upwelling convection flows in the upper mantle, coupled with crustal tension, have provided an uplift mechanism which has forced the hydrothermal systems in the basement rocks to the surface.
Continuum modelling of segregating tridisperse granular chute flow
NASA Astrophysics Data System (ADS)
Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.
2018-03-01
Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.
Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors
NASA Astrophysics Data System (ADS)
Singh, J. L.; Kumar, Umesh; Kumawat, N.; Kumar, Sunil; Kain, Vivekanand; Anantharaman, S.; Sinha, A. K.
2012-10-01
Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS#2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.
Sobczynski, Daniel J.; Charoenphol, Phapanin; Heslinga, Michael J.; Onyskiw, Peter J.; Namdee, Katawut; Thompson, Alex J.; Eniola-Adefeso, Omolola
2014-01-01
The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid) (PLGA) spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer) is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases. PMID:25229244
Bayramzadeh, Sara; Joseph, Anjali; San, Dee; Khoshkenar, Amin; Taaffe, Kevin; Jafarifiroozabadi, Roxana; Neyens, David M
2018-01-01
To assess how the adjacencies of functionally different areas within operating rooms (ORs) can influence the circulating nurse's (CN) workflow patterns and disruptions. The CN plays a significant role in promoting patient safety during surgical procedures by observing, monitoring, and managing potential threats at and around the surgical field. Their work requires constant movement to different parts of the OR to support team members. The layout of the OR and crowded and cluttered environment might impact the CN's workflow and cause disruptions during the surgery. A convenience sample of 25 surgeries were video recorded and thematically coded for CN's activities, locations, and flow disruptions. The OR layout was categorized into transitional zones and functional zones (workstations, supply zones, support zones, and sterile areas around the surgical table). CN's activities were classified into patient-, equipment-, material-, and information-related activities. Flow disruptions included those related to environmental hazards and layout. The CN traveled through multiple zones during 91% of the activities. The CN's workstation acted as a main hub from which the CN made frequent trips to both sides of the surgical table, the foot of the OR table, supply zones, and support zones. Transitional zones accounted for 58.3% of all flow disruption that the CN was involved in whereas 28% occurred in areas surrounding the OR bed. The similarity of the movement and flow disruption patterns, despite variations in OR layout, highlighted the adjacencies required between major zones that CNs regularly visit. These optimum adjacencies should be considered while designing ORs such that they are more efficient and safer.
NASA Astrophysics Data System (ADS)
Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.
2017-12-01
Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream-groundwater interactions on nutrient cycling.
Tan, C; Liu, W L; Dong, F
2016-06-28
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).
Liu, W. L.; Dong, F.
2016-01-01
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959
Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.
Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O
2017-07-18
When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.
Predesigned surface patterns and topological defects control the active matter.
NASA Astrophysics Data System (ADS)
Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg
Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
Active Polar Gels: a Paradigm for Cytoskeletal Dynamics
NASA Astrophysics Data System (ADS)
Julicher, Frank
2006-03-01
The cytoskeleton of eucaryotic cells is an intrinsically dynamic network of rod-like filaments. Active processes on the molecular scale such as the action of motor proteins and the polymerization and depolymerization of filaments drive active dynamic behaviors while consuming chemical energy in the form of a fuel. Such emergent dynamics is regulated by the cell and is important for many cellular processes such as cell locomotion and cell division. From a general point of view the cytoskeleton represents an active gel-like material with interesting material properties. We present a general theory of active viscoelastic materials made of polar filaments which is motivated by the the cytoskeleton. The continuous consumption of a fuel generates a non- equilibrium state characterized by the generation of flows and stresses. Our theory can be applied to experiments in which cytoskeletal patterns are set in motion by active processes such as those which are at work in cells. It can also capture generic aspects of the flows and stress profiles which occur during cell locomotion.
A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.
2017-01-01
Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.
Two-Piece Screens for Decontaminating Granular Material
NASA Technical Reports Server (NTRS)
Backes, Douglas; Poulter, Clay; Godfrey, Max; Dutton, Melinda; Tolman, Dennis
2009-01-01
Two-piece screens have been designed specifically for use in filtering a granular material to remove contaminant particles that are significantly wider or longer than are the desired granules. In the original application for which the twopiece screens were conceived, the granular material is ammonium perchlorate and the contaminant particles tend to be wires and other relatively long, rigid strands. The basic design of the twopiece screens can be adapted to other granular materials and contaminants by modifying critical dimensions to accommodate different grain and contaminant- particle sizes. A two-piece screen of this type consists mainly of (1) a top flat plate perforated with circular holes arranged in a hexagonal pattern and (2) a bottom plate that is also perforated with circular holes (but not in a pure hexagonal pattern) and is folded into an accordion structure. Fabrication of the bottom plate begins with drilling circular holes into a flat plate in a hexagonal pattern that is interrupted, at regular intervals, by parallel gaps. The plate is then folded into the accordion structure along the gaps. Because the folds are along the gaps, there are no holes at the peaks and valleys of the accordion screen. The top flat plate and the bottom accordion plate are secured within a metal frame. The resulting two-piece screen is placed at the bottom opening of a feed hopper containing the granular material to be filtered. Tests have shown that such long, rigid contaminant strands as wires readily can pass through a filter consisting of the flat screen alone and that the addition of the accordion screen below the flat screen greatly increases the effectiveness of removal of wires and other contaminant strands. Part of the reason for increased effectiveness is in the presentation of the contaminant to the filter surface. Testing has shown that wire type contamination will readily align itself parallel to the material direction flow. Since this direction of flow is nearly always perpendicular to the filter surface holes, the contamination is automatically aligned to pass through. The two-filter configuration reduces the likelihood that a given contaminant strand will be aligned with the flow of material by eliminating the perpendicular presentation angle. Thus, for wires of a certain diameter, a two-piece screen is 20 percent more effective than is the corresponding flat perforated plate alone, even if the holes in the flat plate are narrower. An accordion screen alone is similarly effective in catching contaminants, but lumps of agglomerated granules of the desired material often collect in the valleys and clog the screen. The addition of a flat screen above the accordion screen prevents clogging of the accordion screen. Flat wire screens have often been used to remove contaminants from granular materials, and are about as effective as are the corresponding perforated flat plates used alone.
Controlling flows in microchannels with patterned surface charge and topography.
Stroock, Abraham D; Whitesides, George M
2003-08-01
This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).
Flow patterns and transition characteristics for steam condensation in silicon microchannels
NASA Astrophysics Data System (ADS)
Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Hao, Tingting
2011-07-01
This study investigated the two-phase flow patterns and transition characteristics for steam condensation in silicon microchannels with different cross-sectional geometries. Novel experimental techniques were developed to determine the local heat transfer rate and steam quality by testing the temperature profile of a copper cooler. Flow regime maps for different microchannels during condensation were established in terms of steam mass flux and steam quality. Meanwhile, the correlation for the flow pattern transition was obtained using different geometrical and dimensionless parameters for steam condensation in microchannels. To better understand the flow mechanisms in microchannels, the condensation flow patterns, such as annular flow, droplet flow, injection flow and intermittent flow, were captured and analyzed. The local heat transfer rate showed the nonlinear variations along the axial direction during condensation. The experimental results indicate that the flow patterns and transition characteristics strongly depend on the geometries of microchannels. With the increasing steam mass flux and steam quality, the annular/droplet flow expands and spans over a larger region in the microchannels; otherwise the intermittent flow occupies the microchannels. The dimensionless fitting data also reveal that the effect of surface tension and vapor inertia dominates gravity and viscous force at the specified flow pattern transitional position.
NASA Technical Reports Server (NTRS)
Munro, Duncan C.; Mouginis-Mark, Peter J.
1990-01-01
SPOT-1 HRV, and large format-camera images were used to investigate the distribution and structure of erupted materials on Isla Fernandina, Galapagos Islands. Maps of lava flows, fissures, cones and topography derived from these data allow the first study of the entire subaerial segment of this geographically remote and ecologically sensitive volcano. No significant departure from a uniform distribution of erupted lava with azimuth can be detected. Short (less than 4 km) lava flows commonly have their source in the summit region and longer (greater than 8 km) lava flows originate from vents at lower elevations. Catastrophic landslides are proposed as a possible explanation for the asymmetry of the coastline with respect to the caldera.
Fabrication and Operation of Paper-Based Analytical Devices
NASA Astrophysics Data System (ADS)
Jiang, Xiao; Fan, Z. Hugh
2016-06-01
This review focuses on the fabrication techniques and operational components of microfluidic paper-based analytical devices (μPADs). Being low-cost, user-friendly, fast, and simple, μPADs have seen explosive growth in the literature in the last decade. Many different materials and technologies have been employed to fabricate μPADs for various applications, including those that employ patterning, the creation of physical boundaries, and three-dimensional structures. In addition to fabrication techniques, flow control and other operational components in μPADs are of great interest. These components enable μPADs to control flow rates, direct flow paths via valves, sequentially deliver reagents automatically, and display test results, all of which will make μPADs more suitable for point-of-care applications.
A survey of the selenochemistry of major, minor and trace elements.
NASA Technical Reports Server (NTRS)
Schmitt, R. A.; Laul, J. C.
1973-01-01
Average data for igneous and/or metaigneous rocks and soils from seven lunar sites are presented. There are compositional similarities between Apollo 11 and Luna 16 eastern maria, Ap 12 and 15 western maria, and between Ap 16 and L 20 highlands. Subtle differences do exist between the paired mare sites and the two highland sites and striking differences between the eastern and western maria. Chondritic normalized REE (rare earth element) patterns for igneous rocks and soils from all sites range from 7-350 generally with negative Eu anomalies. Anorthositic gabbroes to anorthosites, presumably highland material, exhibit a positive Eu anomaly. The REE patterns or Sr isotopic ratios suggest two lava flows each for the L 16 and Ap 14 sites, at least four lava flows for the Ap 11 and 12 site and about six for the Ap 15 site.
An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.
Oettinger, David; Haller, George
2016-10-01
Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.
Gas liquid flow at microgravity conditions - Flow patterns and their transitions
NASA Technical Reports Server (NTRS)
Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.
1987-01-01
The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.
Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel
NASA Astrophysics Data System (ADS)
Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.
This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.
Physical oceanographic investigation of Massachusetts and Cape Cod Bays
Geyer, W. Rockwell; Gardner, George B.; Brown, Wendell S.; Irish, James D.; Butman, Bradford; Loder, T.C.; Signell, Richard P.
1992-01-01
This physical oceanographic study of the Massachusetts Bays (fig. 1) was designed to provide for the first time a bay-wide description of the circulation and mixing processes on a seasonal basis. Most of the measurements were conducted between April 1990 and June 1991 and consisted of moored observations to study the current flow patterns (fig. 2), hydrographic surveys to document the changes in water properties (fig. 3), high-resolution surveys of velocity and water properties to provide information on the spatial variability of the flow, drifter deployments to measure the currents, and acquisition of satellite images to provide a bay-wide picture of the surface temperature and its spatial variability. A longterm objective of the Massachusetts Bays program is to develop an understanding of the transport of water, dissolved substances and particles throughout the bays. Because horizontal and vertical transport is important to biological, chemical, and geological processes in Massachusetts and Cape Cod Bays, this physical oceanographic study will have broad application and will improve the ability to manage and monitor the water and sediment quality of the Bays. Key results are:There is a marked seasonal variation in stratification in the bays, from well mixed conditions during the winter to strong stratification in the summertime. The stratification acts as a partial barrier to exchange between the surface waters and the deeper waters and causes the motion of the surface waters to be decoupled from the more sluggish flow of the deep waters. During much of the year, there is weak but persistent counterclockwise flow around the bays, made up of southwesterly flow past Cape Ann, southward flow along the western shore, and outflow north of Race Point. The data suggest that this residual flow pattern reverses in fall. Fluctuations caused by wind and density variations are typically larger than the long-term mean. With the exception of western Massachusetts Bay, flushing of the Bays is largely the result of the mean throughflow. Residence time estimates of the surface waters range from 20-45 days. The deeper water has a longer residence time, but its value is difficult to estimate. There is evidence that the deep waters in Stellwagen Basin are not renewed between the onset of stratification and the fall cooling period.Current measurements made near the new outfall site in western Massachusetts Bay suggest that water and material discharged there are not swept away in a consistent direction by a well-defined steady current but are mixed and transported by a variety of processes, including the action of tides, winds, and river inflow. One-day particle excursions are typically less than 10 km. The outfall is apparently located in a region to the west of the basin-wide residual flow pattern.Observations in western Massachusetts Bay, near the location of the future Boston sewage outfall, show that the surficial sediments are episodically resuspended from the seafloor during storms. The observations suggest onshore transport of suspended material during tranquil periods and episodic offshore and southerly alongshore transport of resuspended sediments during storms. The spatial complexity of the flow in the Massachusetts Bays is typical of nearshore areas that have irregular coastal shorelines and topography and currents that are forced locally by wind and river runoff as well as by the flow in adjacent regions. Numerical models are providing a mechanism to interpret the complex spatial flow patterns that cannot be completely resolved by field observations and to investigate key physical processes that control the physics of water and particle transport.
Harvey, Judson W.; Noe, Gregory B.; Larsen, Laurel G.; Crimaldi, John P.
2009-01-01
Transport of particulate organic material can impact watershed sediment and nutrient budgets and can alter the geomorphologic evolution of shallow aquatic environments. Prediction of organic aggregate (“floc”) transport in these environments requires knowledge of how hydraulics and biota affect the entrainment, settling, and aggregation of particles. This study evaluated the aggregation and field transport dynamics of organic floc from a low‐gradient floodplain wetland with flow‐parallel ridges and sloughs in the Florida Everglades. Floc dynamics were evaluated in a rotating annular flume and in situ in the field. Under present managed conditions in the Everglades, floc is not entrained by mean flows but is suspended via biological production in the water column and bioturbation. Aggregation was a significant process affecting Everglades floc at high flume flow velocities (7.0 cm s−1) and during recovery from high flow; disaggregation was not significant for the tested flows. During moderate flows when floc dynamics are hydrodynamically controlled, it is possible to model floc transport using a single “operative floc diameter” that accurately predicts fluxes downstream and to the bed. In contrast, during high flows and recovery from high flows, aggregation dynamics should be simulated. When entrained by flow in open‐water sloughs, Everglades floc will be transported downstream in multiple deposition and reentrainment events but will undergo net settling when transported onto ridges of emergent vegetation. We hypothesize that net transport of material from open to vegetated areas during high flows is critical for forming and maintaining distinctive topographic patterning in the Everglades and other low‐gradient floodplains.
Carlson, D.
2010-01-01
Joints within unconsolidated material such as glacial till can be primary avenues for the flow of electrical charge, water, and contaminants. To facilitate the siting and design of remediation programs, a need exists to map anisotropic distribution of such pathways within glacial tills by determining the azimuth of the dominant joint set. The azimuthal survey method uses standard resistivity equipment with a Wenner array rotated about a fixed center point at selected degree intervals that yields an apparent resistivity ellipse. From this ellipse, joint set orientation can be determined. Azimuthal surveys were conducted at 21 sites in a 500-km2 (193 mi2) area around Milwaukee, Wisconsin, and more specifically, at sites having more than 30 m (98 ft) of glacial till (to minimize the influence of underlying bedrock joints). The 26 azimuthal surveys revealed a systematic pattern to the trend of the dominant joint set within the tills, which is approximately parallel to ice flow direction during till deposition. The average orientation of the joint set parallel with the ice flow direction is N77??E and N37??E for the Oak Creek and Ozaukee tills, respectively. The mean difference between average direct observation of joint set orientations and average azimuthal resistivity results is 8??, which is one fifth of the difference of ice flow direction between the Ozaukee and Oak Creek tills. The results of this study suggest that the surface azimuthal electrical resistivity survey method used for local in situ studies can be a useful noninvasive method for delineating joint sets within shallow geologic material for regional studies. Copyright ?? 2010 The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerik, A.; Kruhl, J. H.
2006-12-01
The quantitative analysis of patterns as a geometric arrangement of material domains with specific geometric or crystallographic properties such as shape, size or crystallographic orientation has been shown to be a valuable tool with a wide field of applications in geo- and material sciences. Pattern quantification allows an unbiased comparison of experimentally generated or theoretical patterns with patterns of natural origin. In addition to this, the application of different methods can also provide information about different pattern forming processes. This information includes the distribution of crystals in a matrix - to analyze i.e. the nature and orientation of flow within a melt - or the governing shear strain regime at the point of time the pattern was formed as well as nature of fracture patterns of different scales, all of which are of great interest not only in structural and engineering geology, but also in material sciences. Different approaches to this problem have been discussed over the past fifteen years, yet only few of the methods were applied successfully at least to single examples (i.e. Velde et al., 1990; Harris et al., 1991; Peternell et al., 2003; Volland &Kruhl, 2004). One of the reasons for this has been the high expenditure of time that was necessary to prepare and analyse the samples. To overcome this problem, a first selection of promising methods have been implemented into a growing collection of software tools: (1) The modifications that Harris et al. (1991) have suggested for the Cantor's dust method (Velde et al., 1990) and which have been applied by Volland &Kruhl (2004) to show the anisotropy in a breccia sample. (2) A map-counting method that uses local box-counting dimensions to map the inhomogeneity of a crystal distribution pattern. Peternell et al. (2003) have used this method to analyze the distribution of phenocrysts in a porphyric granite. (3) A modified perimeter method that relates the directional dependence of the perimeter of grain boundaries to the anisotropy of the pattern (Peternell et al., 2003). We have used the resulting new possibilities to analyze numerous patterns of natural, experimental and mathematical origin in order to determine the scope of applicability of the different methods and present these results along with an evaluation of their individual sensitivities and limitations. References: Harris, C., Franssen, R. &Loosveld, R. (1991): Fractal analysis of fractures in rocks: the Cantor's Dust method comment. Tectonophysics 198: 107-111. Peternell, M., Andries, F. &Kruhl, J.H. (2003): Magmatic flow-pattern anisotropies - analyzed on the basis of a new 'map-mounting' fractal geometry method. DRT Tectonics conference, St. Malo, Book of Abstracts. Velde, B., Dubois, J., Touchard, G. &Badri, A. (1990): Fractal analysis of fractures in rocks: the Cantor's Dust method. Tectonophysics (179): 345-352. Volland, S. &Kruhl, J.H. (2004): Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW-Sardinia. Journal of Structural Geology 26: 1499- 1510.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, W.
1982-08-10
Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less
The role of geology in sediment supply and bedload transport patterns in coarse-grained streams
Sandra E. Ryan
2007-01-01
This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...
Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.
Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T
2013-01-01
Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.
Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system
NASA Astrophysics Data System (ADS)
Ye, Jing; Guo, Liejin
2013-07-01
The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.
NASA Astrophysics Data System (ADS)
Lewis, Q. W.; Rhoads, B. L.
2017-12-01
The merging of rivers at confluences results in complex three-dimensional flow patterns that influence sediment transport, bed morphology, downstream mixing, and physical habitat conditions. The capacity to characterize comprehensively flow at confluences using traditional sensors, such as acoustic Doppler velocimeters and profiles, is limited by the restricted spatial resolution of these sensors and difficulties in measuring velocities simultaneously at many locations within a confluence. This study assesses two-dimensional surficial patterns of flow structure at a small stream confluence in Illinois, USA, using large scale particle image velocimetry (LSPIV) derived from videos captured by unmanned aerial systems (UAS). The method captures surface velocity patterns at high spatial and temporal resolution over multiple scales, ranging from the entire confluence to details of flow within the confluence mixing interface. Flow patterns at high momentum ratio are compared to flow patterns when the two incoming flows have nearly equal momentum flux. Mean surface flow patterns during the two types of events provide details on mean patterns of surface flow in different hydrodynamic regions of the confluence and on changes in these patterns with changing momentum flux ratio. LSPIV data derived from the highest resolution imagery also reveal general characteristics of large-scale vortices that form along the shear layer between the flows during the high-momentum ratio event. The results indicate that the use of LSPIV and UAS is well-suited for capturing in detail mean surface patterns of flow at small confluences, but that characterization of evolving turbulent structures is limited by scale considerations related to structure size, image resolution, and camera instability. Complementary methods, including camera platforms mounted at fixed positions close to the water surface, provide opportunities to accurately characterize evolving turbulent flow structures in confluences.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Impact of lithosphere rheology on the dynamic topography
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras; Koptev, Alexander
2014-05-01
Dynamic topography is a key observable signature of the Earth's and planetary (e.g. Venus) mantle dynamics. In general view, it reflects complex mantle flow patterns, and hence is supposed to correlate at different extent with seismic tomography, SKS fast orientations, geodetic velocity fields and geoid anomalies. However, identification of dynamic topography had no systematic success, specifically in the Earth's continents. Here we argue that lithosphere rheology, in particular, rheological stratification of continents, results in modulation of dynamic topography, converting commonly expected long-wavelength/small amplitude undulations into short-wavelength surface undulations with wide amplitude spectrum, superimposed onto "tectonic" topography. These ideas are explored in 3D using unprecedentedly high resolution numerical experiments (grid step size 2-3 km for 1500x1500x600 km computational area) incorporating realistic rheologically stratified lithosphere. Such high resolution is actually needed to resolve small-scale crustal faulting and inter-layer coupling/uncoupling that shape surface topography. The results reveal strikingly discordant, counterintuitive features of 3D dynamic topography, going far beyond the inferences from previous models. In particular, even weak anisotropic tectonic stress field results both in large-scale small-amplitude dynamic topography and in strongly anisotropic short-wavelength (at least in one direction) dynamic topography with wide amplitude range (from 100 to 2000-3000 m), including basins and ranges and large-scale linear normal and strike-slip faults. Even very slightly pre-stressed strong lithosphere yields and localizes deformation much easier , than un-prestressed one, in response to plume impact and mantle flow. The results shed new light on the importance of lithosphere rheology and active role of lithosphere in mantle-lithosphere interactions as well as on the role of mantle flow and far-field stresses in tectonic-scale deformation. We show, for example, that crustal fault patterns initiated by plume impact are rapidly re-organized in sub-linear rifts and spreading centers, which orientation is largely dictated (e.g., perpendicular to) by the direction of the tectonic far-field stress field, as well as the plume-head material soon starts to flow along the sub-linear rifted shear zones in crustal and mantle lithosphere further amplifying their development. The final surface deformation and mantle flow patterns rapidly loose the initial axisymmetric character and take elongated sub-linear shapes whereas brittle deformation at surface is amplified and stabilized by coherent flow of mantle/plume-head material from below. These "tectonically" looking dynamic topography patterns are quite different from those expected from conventional models as well as from those directly observed, for example, on Venus where plume-lithosphere interactions produce only axisymmetric coronae domal-shaped features with radiating extensional rifts, suggesting that the Venusian lithosphere is rheologically too weak , and its crust is too thin, to produce any significant impact on the dynamic topography.
Basalt fiber reinforced polymer composites: Processing and properties
NASA Astrophysics Data System (ADS)
Liu, Qiang
A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.
Shanthi, C; Pappa, N
2017-05-01
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Ground-water levels and flow near the industrial excess landfill, Uniontown, Ohio
Bair, E.S.; Norris, S.E.
1989-01-01
Under an interagency contractual agreement with the Agency for Toxic Substances and Disease Registration, the U.S. Geological Survey evaluated geologic and hydrogeologic data available for the Industrial Excess Landfill (IEL) site in Uniontown, Ohio. During previous studies, ground-water contaminations was detected in observation wells installed at the site and in residential wells near the site. Water levels recorded on drillers' logs from 279 wells were used to characterize the regional ground-water flow system in the area of the IEL site. On the basis of the gross lithologic differences between the unconsolidated glacial-drift material and the indurated bedrock, and the inferred differences in their hydraulic properties, the flow system in the area of the IEL site was divided into two regional aquifers: a shallow, unconfined glacial-drift aquifer and a deeper, semiconfined bedrock aquifer. About 33 percent of the drillers' logs were from wells completed in the glacial-drift aquifer, whereas 67 percent were from wells completed in the bedrock aquifer. A composite potentiometric-surface map of the glacial drift aquifer shows that the IEL site appears to straddle a prominent ground-water ridge that trends northeast-southwest. Ground water flows radially away from this ridge, primarily to the northwest and to the southeast; as a result flow in the glacial-drift aquifer as the IEL site moves in a radial pattern away from the site in all directions. A composite, regional potentiometric-surface map of the bedrock aquifer shows a similar shows a similar elongated ground-water ridge trending northeast-southwest across the north-western corner of the IEL site; however, it does not appear that the IEL site straddles the ground-water ridge in the bedrock potentiometric surface. As a consequence of the radial-type of flow pattern in the glacial-drift aquifer at the IEL site, the direction of potential off-site movement of a contaminant at the IEL site, This radial type of flow pattern may explain the nonuniform distribution of some of the contaminants detected in observation wells and residential wells, particularly if specific contaminants were not disposed of uniformly across the site. Available data also indicate a downward flow component within the glacial-drift aquifer, as manifested by a reduction of hydraulic heads with increasing depth of wells near the site. Such downward flow is consistent with the presence of the ground-water ridge, which would serve as a local recharge area within the regional flow system. Consequently, contaminants present at the site will flow both laterally within the local flow patterns and vertically downward within the flow system.
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kukowski, Nina; Kley, Jonas
2017-04-01
In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses, displacement rate or lithological parameters of the cover, our models suggest that the reversal of material flow usually requires vertical displacements between 700 and 2000 m. The transition from downward to upward flow occurs at smaller fault displacements, if the initial overburden thickness and the overburden density are high and if sedimentation rate keeps pace with the displacement rate of the sub-salt normal fault.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-09-17
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2014-05-01
To acquire knowledge of solute transport through the unsaturated zone in the shallow subsurface is decisive to assess groundwater quality, nutrient cycling or to plan remediation strategies. The shallow subsurface is characterized by structural heterogeneity and strongly influenced by atmospheric conditions. This leads to changing flow directions, strong temporal changes in saturation and heterogeneous water fluxes during infiltration and evaporation events. Recent studies (e.g. Lehmann and Or, 2009; Bechtold et al.,2011) demonstrated the importance of lateral flow and solute transport during evaporation conditions (upward flux). The heterogeneous structure in these studies was constructed using two types of sand with strong material contrasts and arranged in parallel with a vertical orientation. Lateral transport and redistribution of solute from coarse to fine media was observed deeper in the soil column and from fine to coarse close to the soil surface. However, if boundary conditions are reversed due to precipitation, the flow field is not necessarily reversed in the same manner, resulting in entirely different transport patterns for downward and upward flow. Therefore, considering net-flow rates alone is misleading when describing transport under those conditions. In this contribution we analyze transport of a solute in the shallow subsurface to assess effects resulting from the temporal change of heterogeneous soil structures due to dynamic flow conditions. Two-dimensional numerical simulations of unsaturated flow and transport are conducted using a coupled finite volume and random walk particle tracking algorithm to quantify solute transport and leaching rates. Following previous studies (Lehmann and Or, 2009; Bechtold et al., 2011), the chosen domain is composed of two materials, coarse and fine sand, arranged in parallel with a vertical orientation. Hence, one sharp interface of strong material heterogeneity is induced. During evaporation both sands are assumed to stay under liquid-flow dominated evaporation conditions ("stage 1"). Simulations considering dynamic (infiltration-evaporation) and steady (solely infiltration) boundary conditions are carried out. The influence of dynamic boundary conditions (intensity and duration of precipitation and evaporation events) is examined in a multitude of simulations. If flow rates smaller than the saturated hydraulic conductivity of both materials are chosen to be applied as boundary condition, simulation results indicate that the flow field within the domain is exactly reversed. However, if applied flow rates exceed the saturated hydraulic conductivity of one material, the flow field is not just reversed, but different flow paths during downward and upward flow are observed. Results show the tendency of faster solute leaching under dynamic boundary conditions compared to steady infiltration conditions with the same net-infiltration rate. We use a double domain transport method as an upscaled model to reproduce vertically averaged concentration profiles with net flux only and compare the model parameters for information about flow dynamics and soil heterogeneity.
Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall
NASA Astrophysics Data System (ADS)
Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad
2017-11-01
We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.
Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation
Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.
2014-01-01
Periodic movement of large, thick landslides on discrete basal surfaces produces modifications of the topographic surface, creates faults and folds, and influences the locations of springs, ponds, and streams (Baum, et al., 1993; Coe et al., 2009). The geometry of the basal-slip surface, which can be controlled by geological structures (e.g., fold axes, faults, etc.; Revellino et al., 2010; Grelle et al., 2011), and spatial variation in the rate of displacement, are responsible for differential deformation and kinematic segmentation of the landslide body. Thus, large landslides are often composed of several distinct kinematic elements. Each element represents a discrete kinematic domain within the main landslide that is broadly characterized by stretching (extension) of the upper part of the landslide and shortening (compression) near the landslide toe (Baum and Fleming, 1991; Guerriero et al., in review). On the basis of this knowledge, we used photo interpretive and GPS field mapping methods to map structures on the surface of the Montaguto earth flow in the Apennine Mountains of southern Italy at a scale of 1:6,000. (Guerriero et al., 2013a; Fig.1). The earth flow has been periodically active since at least 1954. The most extensive and destructive period of activity began on April 26, 2006, when an estimated 6 million m3 of material mobilized, covering and closing Italian National Road SS90, and damaging residential structures (Guerriero et al., 2013b). Our maps show the distribution and evolution of normal faults, thrust faults, strike-slip faults, flank ridges, and hydrological features at nine different dates (October, 1954; June, 1976; June, 1991; June, 2003; June, 2005; May, 2006; October, 2007; July, 2009; and March , 2010) between 1954 and 2010. Within the earth flow we recognized several kinematic elements and associated structures (Fig.2a). Within each kinematic element (e.g. the earth flow neck; Fig.2b), the flow velocity was highest in the middle, and lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, Jerald A.
1997-01-01
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, J.A.
1997-08-26
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.
Spatial patterns of plastic debris along Estuarine shorelines.
Browne, Mark A; Galloway, Tamara S; Thompson, Richard C
2010-05-01
The human population generates vast quantities of waste material. Macro (>1 mm) and microscopic (<1 mm) fragments of plastic debris represent a substantial contamination problem. Here, we test hypotheses about the influence of wind and depositional regime on spatial patterns of micro- and macro-plastic debris within the Tamar Estuary, UK. Debris was identified to the type of polymer using Fourier-transform infrared spectroscopy (FT-IR) and categorized according to density. In terms of abundance, microplastic accounted for 65% of debris recorded and mainly comprised polyvinylchloride, polyester, and polyamide. Generally, there were greater quantities of plastic at downwind sites. For macroplastic, there were clear patterns of distribution for less dense items, while for microplastic debris, clear patterns were for denser material. Small particles of sediment and plastic are both likely to settle slowly from the water-column and are likely to be transported by the flow of water and be deposited in areas where the movements of water are slower. There was, however, no relationship between the abundance of microplastic and the proportion of clay in sediments from the strandline. These results illustrate how FT-IR spectroscopy can be used to identify the different types of plastic and in this case was used to indicate spatial patterns, demonstrating habitats that are downwind acting as potential sinks for the accumulation of debris.
Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.
NASA Astrophysics Data System (ADS)
Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain
2017-04-01
Rock fractures invaded by a water flow, are often subjected to dissolution, which let grow and evolve the initial fracture network, by evacuating the eroded minerals under a solute form. In the case of fast kinetic of dissolution, local erosion rate is set by the advection of the solute. The erosion velocity decreases indeed with the solute concentration at the interface and vanishes when this concentration reaches the saturation value. Even in absence of an imposed or external flow, advection can drive the dissolution, when buoyancy effects due to gravity induce a solutal convection flow, which controls the erosive dynamics and modifies the shape of the dissolving interface. Here, we investigate using model experiments with fast dissolving materials and numerical simulations in simplified situations, solutal convection induced by dissolution. Results are interpreted regarding a linear stability analysis of the corresponding solutal Rayleigh-Benard instability. A dissolving surface is suspended above a water height, initially at rest. In a first step, solute flux is transported through a growing diffusion layer. Then after an onset time, once the layer exceeds critical width, convection flow starts under the form of falling plumes. A dynamic equilibrium results in average from births and deaths of intermittent plumes, setting the size of the solute concentration boundary layer at the interface and thus the erosion velocity. Solutal convection can also induce a pattern on the dissolving interface. We show experimentally with suspended and inclined blocks of salt and sugar, that in a linear stage, the first wavelength of the dissolution pattern corresponds to the wavelength of the convection instability. Then pattern evolves to more complex shapes due to non-linear interactions between the flow and the eroded interface. More generally, we inquire what are the conditions to observe a such solutal convection instability in geological situations and if the properties of dissolution patterns can be related to the characteristic of the convective flow. C. Oltéan, F. Golfier and M.A. Buès, Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture, J. Geophys. Res. Solid Earth, 118(5), 2038-2048 (2013) C. Cohen, M. Berhanu, J. Derr and S. Courrech du Pont, Erosion patterns on dissolving and melting bodies (2015 Gallery of Fluid motion), Phys. Rev. Fluids, 1, 050508 (2016) T. S. Sullivan, Y. Liu, and R. E. Ecke, Turbulent solutal convection and surface patterning in solid dissolution, Phys. Rev. E 54, 486 (1996)
Laminar mixing in a small floating zone
NASA Technical Reports Server (NTRS)
Harriott, George M.
1987-01-01
The relationship between the flow and solute fields during steady mass transfer of a dilute component is analyzed for multi-cellular rotating flows in the floating zone process of semiconductor growth. When the recirculating flows are weak in relation to the rate of crystal growth, a closed-form solution clearly shows the link between the convection pattern in the melt and the solute distribution across the surface of the growing solid. In the limit of strong convection, finite element calculations demonstrate the tendency of the composition to become uniform over the majority of the melt. The solute segregation in the product crystal is greatest when the recirculating motion is comparable to the rate of crystal growth, and points to the danger in attempting to grow compositionally uniform materials from a nearly convectionless melt.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
Oil-flow separation patterns on an ogive forebody
NASA Technical Reports Server (NTRS)
Keener, E. R.
1981-01-01
Oil flow patterns on a symmetric tangent ogive forebody having a fineness ratio of 3.5 are presented for angles of attack up to 88 deg at a transitional Reynolds number of 8 million (based on base diameter) and a Mach number of 0.25. Results show typical surface flow separation patterns, the magnitude of surface flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wakelike flow regimes.
Effect of diastolic flow patterns on the function of the left ventricle
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Mittal, Rajat
2013-11-01
Direct numerical simulations are used to study the effect of intraventricular flow patterns on the pumping efficiency and the blood mixing and transport characteristics of the left ventricle. The simulations employ a geometric model of the left ventricle which is derived from contrast computed tomography. A variety of diastolic flow conditions are generated for a fixed ejection fraction in order to delineate the effect of flow patterns on ventricular performance. The simulations indicate that the effect of intraventricular blood flow pattern on the pumping power is physiologically insignificant. However, diastolic flow patterns have a noticeable effect on the blood mixing as well as the residence time of blood cells in the ventricle. The implications of these findings on ventricular function are discussed.
Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding
NASA Technical Reports Server (NTRS)
Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.
2004-01-01
In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.
Continuum Mechanical and Computational Aspects of Material Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, Eliot
2015-02-11
Fluid flows are typically classified as laminar or turbulent. While the glassy, regular flow of water from a slightly opened tap is laminar, the sinuous, irregular flow of water from a fully opened tap is turbulent. In a laminar flow, the velocity and other relevant fields are deterministic functions of position and time. Photos taken at different times, no matter how far removed, of steady laminar flow from a tap will be identical. In a turbulent flow, the velocity and other relevant fields manifest complex spatial and temporal fluctuations. A video of steady turbulent flow from a tap will exhibitmore » a constantly changing pattern and many length and time scales. In nature and technology, laminar flows are more the exception than the rule. Fluvial, oceanic, pyroclastic, atmospheric, and interstellar flows are generally turbulent, as are the flows of blood through the left ventricle and air in the lungs. Flows around land, sea, and air vehicles and through pipelines, heating, cooling, and ventilation systems are generally turbulent, as are most flows involved in industrial processing, combustion, chemical reactions, and crystal growth. Over the past year, a significant portion of our research activity has focused on numerical studies of Navier-Stokes-αβ model and extensions thereof. Our results regarding these and other approaches to turbulence modeling are described below.« less
NASA Astrophysics Data System (ADS)
Kincaid, C.
2005-12-01
Subduction of oceanic lithosphere provides a dominant driving force for mantle dynamics and plate tectonics, and strongly modulates the thermal evolution of the mantle. Magma generation in arc environments is related to slab temperatures, slab dehydration/wedge hydration processes and circulation patterns in the mantle wedge. A series of laboratory experiments is used to model three-dimensional aspects of flow in subduction zones, and the consequent temperature variations in the slab and overlying mantle wedge. The experiments utilize a tank of glucose syrup to simulate the mantle and a Phenolic plate to represent subducting oceanic lithosphere. Different modes of plate sinking are produced using hydraulic pistons. The effects of longitudinal, rollback and slab-steepening components of slab motions are considered, along with different thicknesses of the over-riding lithosphere. Models look specifically at how distinct modes of back-arc spreading alter subduction zone temperatures and flow in the mantle wedge. Results show remarkably different temperature and circulation patterns when spreading is produced by rollback of the trench-slab-arc relative to a stationary overriding back-arc plate versus spreading due to motion of the overriding plate away from a fixed trench location. For rollback-induced spreading, flow trajectories in the wedge are shallow (e.g., limited upwelling), both the sub-arc and back-arc regions are supplied by material flowing around the receding slab. Flow lines in the sub-arc wedge are strongly trench-parallel. In these cases, strong lateral variations in slab surface temperature (SST) are recorded (hot at plate center, cool at plate edge). When the trench is fixed in space and spreading is produced by motion of the overriding plate, strong vertical flow velocities are recorded in the wedge, both the shallow sub-arc and back-arc regions are supplied by flow from under the overriding plate producing strong vertical shear. In these cases SSTs are nearly uniform across the plate. Results have implications for geochemical and seismic models of 3-D flow in subduction zones influenced by back-arc spreading, such as the Marianas.
2016-03-30
Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Credit: NASA/Goddard/Arizona State University/LRO/LROC
2017-12-08
Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Investigate all of Chappy's ejecta, at full resolution: lroc.sese.asu.edu/posts/901 Credit: NASA/Goddard/Arizona State University/LRO/LROC
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Fan, Wenwen; Yuan, LinJiang; Li, Yonglin
2018-06-22
The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r = 5.0, it is 29.4 times of original floc sludge.
Using process monitor wafers to understand directed self-assembly defects
NASA Astrophysics Data System (ADS)
Cao, Yi; Her, YoungJun; Delgadillo, Paulina R.; Vandenbroeck, Nadia; Gronheid, Roel; Chan, Boon Teik; Hashimoto, Yukio; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.
2013-03-01
As directed self-assembly (DSA) has gained momentum over the past few years, questions about its application to high volume manufacturing have arisen. One of the major concerns is about the fundamental limits of defectivity that can be attained with the technology. If DSA applications demonstrate defectivity that rivals of traditional lithographic technologies, the pathway to the cost benefits of the technology creates a very compelling case for its large scale implementation. To address this critical question, our team at IMEC has established a process monitor flow to track the defectivity behaviors of an exemplary chemo-epitaxy application for printing line/space patterns. Through establishing this baseline, we have been able to understand both traditional lithographic defect sources in new materials as well as new classes of assembly defects associated with DSA technology. Moreover, we have explored new materials and processing to lower the level of the defectivity baseline. The robustness of the material sets and process is investigated as well. In this paper, we will report the understandings learned from the IMEC DSA process monitor flow.
Deriving Process-Driven Collaborative Editing Pattern from Collaborative Learning Flow Patterns
ERIC Educational Resources Information Center
Marjanovic, Olivera; Skaf-Molli, Hala; Molli, Pascal; Godart, Claude
2007-01-01
Collaborative Learning Flow Patterns (CLFPs) have recently emerged as a new method to formulate best practices in structuring the flow of activities within various collaborative learning scenarios. The term "learning flow" is used to describe coordination and sequencing of learning tasks. This paper adopts the existing concept of CLFP and argues…
NASA Astrophysics Data System (ADS)
Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin
2009-11-01
The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.
NASA Astrophysics Data System (ADS)
Hartnett, H. E.; Palta, M. M.; Grimm, N. B.; Ruhi, A.; van Shaijik, M.
2016-12-01
Tempe Town Lake (TTL) is a hydrologically-regulated reservoir in Tempe, Arizona. The lake has high primary production and receives dissolved organic carbon (DOC) from rainfall, storm flow, and upstream river discharge. We applied an ARIMA time-series model to a three-year period for which we have high-frequency chemistry, meteorology, and streamflow data and analyzed external (rainfall, stream flow) and internal (dissolved O2) drivers of DOC content and composition. DOC composition was represented by fluorescence-based indices (fluorescence index, humification index, freshness) related to DOC source (microbially- vs. terrestrially-derived) and reactivity DOC. Patterns in DOC concentration and composition suggest carbon cycling in the lake responds to both meteorological events and to anthropogenic activity. The fluorescence-derived DOC composition is consistent with seasonally-distinct inputs of algal- and terrestrially-derived carbon. For example, Tempe Town Lake is supersaturated in O2 over 70% of the time, suggesting the system is autotrophic and primary productivity (i.e., O2 saturation state) was the strongest driver of DOC concentration. In contrast, external drivers (rainfall pattern, streamflow) were the strongest determinants of DOC composition. Biological processes (e.g., algal growth) generate carbon in the lake during spring and summer, and high Fluorescence Index and Freshness values at this time are indicative of algal-derived material; these parameters generally decrease with rain or flow suggesting algal-derived carbon is diluted by external water inputs. During dry periods, carbon builds up on the land surface and subsequent rainfall events deliver terrestrial carbon to the lake. Further evidence that rain and streamflow deliver land-derived material are increases in the Humification Index (an indicator of terrestrial material) following rain/flow events. Our results indicate that Tempe Town Lake generates autochthonous carbon and has the capacity to process allochthonous carbon from the urban environment. Ongoing work is comparing these results to other periods in the 10-year time series to test if the driver-DOC relationships are robust over longer time-scales and evaluating how changes in lake management and climate have altered DOC over time.
Slagle, Steven E.; Lewis, Barney D.; Lee, Roger W.
1985-01-01
The shallow ground-water system in the northern Powder River Basin consists of Upper Cretaceous to Holocene aquifers overlying the Bearpaw Shale--namely, the Fox Hills Sandstone; Hell Creek, Fort Union, and Wasatch Formations; terrace deposits; and alluvium. Ground-water flow above the Bearpaw Shale can be divided into two general flow patterns. An upper flow pattern occurs in aquifers at depths of less than about 200 feet and occurs primarily as localized flow controlled by the surface topography. A lower flow pattern occurs in aquifers at depths from about 200 to 1,200 feet and exhibits a more regional flow, which is generally northward toward the Yellowstone River with significant flow toward the Powder and Tongue Rivers. The chemical quality of water in the shallow ground-water system in the study area varies widely, and most of the ground water does not meet standards for dissolved constituents in public drinking water established by the U.S. Environmental Protection Agency. Water from depths less than 200 feet generally is a sodium sulfate type having an average dissolved-solids concentration of 2,100 milligrams per liter. Sodium bicarbonate water having an average dissolved-solids concentration of 1,400 milligrams per liter is typical from aquifers in the shallow ground-water system at depths between 200 and 1,200 feet. Effects of surface coal mining on the water resources in the northern Powder River Basin are dependent on the stratigraphic location of the mine cut. Where the cut lies above the water-yielding zone, the effects will be minimal. Where the mine cut intersects a water-ielding zone, effects on water levels and flow patterns can be significant locally, but water levels and flow patterns will return to approximate premining conditions after mining ceases. Ground water in and near active and former mines may become more mineralized, owing to the placement of spoil material from the reducing zone in the unsaturated zone where the minerals are subject to oxidation. Regional effects probably will be small because of the limited areal extent of ground-water flow systems where mining is feasible. Results of digital models are presented to illustrate the effects of varying hydraulic properties on water-level changes resulting from mine dewatering. The model simulations were designed to depict maximum-drawdown situations. One simulation indicates that after 20 years of continuous dewatering of an infinite, homogeneous, isotropic aquifer that is 10 feet thick and has an initial potentiometric surface 10 feet above the top of the aquifer, water-level declines greater than 1 foot would generally be limited to within 7.5 miles of the center of the mine excavation; declines greater than 2 feet to within about 6 miles; declines greater than 5 feet to within about 3.7 miles; declines greater than 10 feet to within about 1.7 miles; and declines greater than 15 feet to within 1.2 miles.
Acoustic wave propagation in heterogeneous structures including experimental validation
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Dahl, Milo D.
1989-01-01
A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.
A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.
Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang
2018-01-01
The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.
Reaction patterns in a blinking vortex flow
NASA Astrophysics Data System (ADS)
Nugent, Carolyn
2005-11-01
We study the patterns formed by the excitable Belousov-Zhabotinsky reaction in a blinking vortex flow produced by magnetohydrodynamic forcing. Mixing in this flow is chaotic, as has been documented extensively in previous studies. The reaction is triggered by a silver wire, and the result is a pulse (``trigger wave'') that propagates through the system. We investigate the patterns formed by the propagating pulse and compare them with theoriesootnotetextT. Tel, A. de Moura, C. Grebogi and G. Karolyi, Phys. Rep. 413, 91 (2005). that predict fractal patterns determined by the unstable manifolds of the flow. We also consider ``burn-like'' reaction fronts, and compare the results with previous experiments for patterns of oscillatory reactions in this flow.
Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.
Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J. Rudi; Chang, Woo-Jin
2016-01-01
The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids. PMID:27814386
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuwakietkumjohn, N.; Rittidech, S.
The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis wasmore » established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)« less
Characterization of the mechanical behavior of sea ice as a frictional material
NASA Astrophysics Data System (ADS)
Lade, Poul V.
2002-12-01
The mechanical properties of sea ice are determined by the formation process, and the consequent material behavior at the element scale exhibits viscoelastic behavior at the early loading stages, followed by brittle fracture or ductile, irrecoverable deformation that may be captured by hardening/softening plasticity models with nonassociated flow. Failure of sea ice under different loading conditions follows a pattern that demonstrates its highly cross-anisotropic nature as well as its behavior as a frictional material. The interactions between the floes in the pack ice resemble those observed in granular materials. These materials are frictional in nature, they exhibit both contractive and dilative volume changes, the plastic flow is nonassociated, and their stiffnesses and strengths increase with confining pressure, but they do not have any strength when unconfined. The overall behavior of the pack ice may be close to isotropic. Constitutive modeling of this behavior may be achieved by models used in geotechnical engineering. Formation of leads and subsequent freezing of the water results in cementation between the ice floes, and the pack ice becomes stronger. The behavior of the pack ice may now be compared with that observed in cemented soils or concrete. For these materials, increasing amounts of cementation result in increasing rates of dilation when sheared, and this accounts for the largest contribution to the increase in shear strength.
Atomic-scale thermocapillary flow in focused ion beam milling
NASA Astrophysics Data System (ADS)
Das, Kallol; Johnson, Harley; Freund, Jonathan
2016-11-01
Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.
A microfluidic investigation of gas exsolution in glass and shale fracture networks
NASA Astrophysics Data System (ADS)
Porter, M. L.; Jimenez-Martinez, J.; Harrison, A.; Currier, R.; Viswanathan, H. S.
2016-12-01
Microfluidic investigations of pore-scale fluid flow and transport phenomena has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real-time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. In this work, we describe a unique high pressure (up to 10.3 MPa) and temperature (up to 80 °C) microfluidics experimental system that allows us to investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in fractured rocks. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase gas (CO2 and N2) injection experiments designed to enhance oil recovery. In these experiments gas was injected into micromodels saturated with oil and allowed to soak for approximately 12 hours at elevated pressures. The pressure in the system was then decreased to atmospheric, causing the gas to expand and/or dissolve out of solution, subsequently mobilizing the oil. In addition to the experimental results, we present a relatively simple model designed to quantify the amount of oil mobilized as a function of decreasing system pressure. We will show comparisons between the experiments and model, and discuss the potential use of the model in field-scale reservoir simulations.
NASA Astrophysics Data System (ADS)
Green, Kim; Brardinoni, Francesco; Alila, Younes
2014-05-01
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The monitoring network of sediment traps is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e., step pools, and riffle pools) and semi-alluvial morphologies (i.e., boulder cascades and forced step pools) on bedload entrainment and transport. Results suggest that patterns of bedload entrainment are influenced by flow resistance while the value of the critical dimensionless shear stress for mobilization of the surface D50 varies due to channel gradient, grain sheltering effects and, to a less extent, flow resistance. Regardless of channel morphology we observe: (i) equal-threshold entrainment for all mobile grains in channels with high grain and/or form resistance; and (ii) initial equal-threshold entrainment of calibers ≤ 22mm, and subsequent size-selective entrainment of coarser material in channels with low form resistance (e.g. riffle pool). Scaled fractional analysis reveals that in reaches with high flow resistance most bedload transport occurs in partial mobility fashion relative to the available bed material and that only material finer than 16mm attains full mobility during over-bank flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches with reduced flow resistance. Evaluation of bedload rating curves across sites identifies that grain effects predominate with respect to bedload flux whereas morphological effects (i.e. form resistance) play a secondary role. Application of selected empirical formulae developed in steep alpine channels present variable success in predicting transport rates in the study reaches.
Material transport in a wind and buoyancy forced mixed layer
NASA Astrophysics Data System (ADS)
Mensa, J. A.; Özgökmen, T.; Poje, A. C.; Imberger, J.
2016-02-01
Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (|u10|=5ms-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(l), than those reported by Okubo (1970), while the wind- and buoyancy forced case shows a good agreement with Okubo's diffusivity amplitude, and scaling consistent with Richardson's 4/3rd law, kD(l) l4/3. The modelling results provide a framework for measuring material dispersion by mixed layer flow in future observational programs.
Material transport in a convective surface mixed layer under weak wind forcing
NASA Astrophysics Data System (ADS)
Mensa, Jean A.; Özgökmen, Tamay M.; Poje, Andrew C.; Imberger, Jörg
2015-12-01
Flows in the upper ocean mixed layer are responsible for the transport and dispersion of biogeochemical tracers, phytoplankton and buoyant pollutants, such as hydrocarbons from an oil spill. Material dispersion in mixed layer flows subject to diurnal buoyancy forcing and weak winds (| u10 | = 5m s-1) are investigated using a non-hydrostatic model. Both purely buoyancy-forced and combined wind- and buoyancy-forced flows are sampled using passive tracers, as well as 2D and 3D particles to explore characteristics of horizontal and vertical dispersion. It is found that the surface tracer patterns are determined by the convergence zones created by convection cells within a time scale of just a few hours. For pure convection, the results displayed the classic signature of Rayleigh-Benard cells. When combined with a wind stress, the convective cells become anisotropic in that the along-wind length scale gets much larger than the cross-wind scale. Horizontal relative dispersion computed by sampling the flow fields using both 2D and 3D passive particles is found to be consistent with the Richardson regime. Relative dispersion is an order of magnitude higher and 2D surface releases transition to Richardson regime faster in the wind-forced case. We also show that the buoyancy-forced case results in significantly lower amplitudes of scale-dependent horizontal relative diffusivity, kD(ℓ), than those reported by Okubo (1970), while the wind- and buoyancy-forced case shows a good agreement with Okubo's diffusivity amplitude, and the scaling is consistent with Richardson's 4/3rd law, kD ∼ ℓ4/3. These modeling results provide a framework for measuring material dispersion by mixed layer flows in future observational programs.
Microfabrication of a spider-silk analogue through the liquid rope coiling instability
NASA Astrophysics Data System (ADS)
Gosselin, Frederick P.; Therriault, Daniel; Levesque, Martin
2012-02-01
Spider capture silk outperforms most synthetic materials in terms of specific toughness. We developed a technique to fabricate tough microstructured fibers inspired by the molecular structure of the spider silk protein. To fabricate microfibers (with diameter ˜30μm) with various mechanical properties, we yield the control of their exact geometry to the liquid rope coiling instability. This instability causes a thread of honey to wiggle as it buckles when hitting a surface. Similarly, we flow a filament of viscous polymer solution towards a substrate moving perpendicularly at a slower velocity than the filament flows. The filament buckles repetitively giving rise to periodic meanders and stitch patterns. As the solvent evaporates, the filament solidifies into a fiber with a geometry bestowed by the instability. Microtraction tests performed on fibers show interesting links between the mechanical properties and the instability patterns. Some coiling patterns give rise to high toughness due to the sacrificial bonds created when the viscous filament loops over itself and fuse. The sacrificial bonds in the microstructured fiber play an analogous role to that of the hydrogen bonds present in the molecular structure of the silk protein which give its toughness to spider silk.
Modelling unsaturated/saturated flow in weathered profiles
NASA Astrophysics Data System (ADS)
Ireson, A. M.; Ali, M. A.; Van Der Kamp, G.
2016-12-01
Vertical weathering profiles are a common feature of many geological materials, where the fracture or macropore porosity decreases progressively below the ground surface. The weathered near surface zone (WNSZ) has an enhanced storage and permeability. When the water table is deep, the WNSZ can act to buffer recharge. When the water table is shallow, intersecting the WNSZ, transmissivity and lateral saturated flow, increase with increasing water table elevation. Such a situation exists in the glacial till dominated landscapes of the Canadian prairies, effectively resulting in dynamic patterns of subsurface connectivity. Using dual permeability hydraulic properties with vertically scaled macroporosity, we show how the WNSZ can be represented in models. The resulting model can be more parsimonious than an equivalent model with two or more discrete layers, and more physically realistic. We implement our model in PARFLOW-CLM, and apply the model to a field site in the Canadian prairies. We are able to convincingly simulate shallow groundwater dynamics, and spatio-temporal patterns of groundwater connectivity.
The effects of surface topography control using liquid crystal elastomers on bodies in flow
NASA Astrophysics Data System (ADS)
Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory
2018-03-01
Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.
2012-02-01
Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael
2013-04-01
The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
A pattern-based analysis of clinical computer-interpretable guideline modeling languages.
Mulyar, Nataliya; van der Aalst, Wil M P; Peleg, Mor
2007-01-01
Languages used to specify computer-interpretable guidelines (CIGs) differ in their approaches to addressing particular modeling challenges. The main goals of this article are: (1) to examine the expressive power of CIG modeling languages, and (2) to define the differences, from the control-flow perspective, between process languages in workflow management systems and modeling languages used to design clinical guidelines. The pattern-based analysis was applied to guideline modeling languages Asbru, EON, GLIF, and PROforma. We focused on control-flow and left other perspectives out of consideration. We evaluated the selected CIG modeling languages and identified their degree of support of 43 control-flow patterns. We used a set of explicitly defined evaluation criteria to determine whether each pattern is supported directly, indirectly, or not at all. PROforma offers direct support for 22 of 43 patterns, Asbru 20, GLIF 17, and EON 11. All four directly support basic control-flow patterns, cancellation patterns, and some advance branching and synchronization patterns. None support multiple instances patterns. They offer varying levels of support for synchronizing merge patterns and state-based patterns. Some support a few scenarios not covered by the 43 control-flow patterns. CIG modeling languages are remarkably close to traditional workflow languages from the control-flow perspective, but cover many fewer workflow patterns. CIG languages offer some flexibility that supports modeling of complex decisions and provide ways for modeling some decisions not covered by workflow management systems. Workflow management systems may be suitable for clinical guideline applications.
Breathing simulator of workers for respirator performance test.
Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio
2015-01-01
Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.
Flow Visualization Techniques in Wind Tunnel Tests of a Full-Scale F/A-18 Aircraft
NASA Technical Reports Server (NTRS)
Lanser, Wendy R.; Botha, Gavin J.; James, Kevin D.; Bennett, Mark; Crowder, James P.; Cooper, Don; Olson, Lawrence (Technical Monitor)
1994-01-01
The proposed paper presents flow visualization performed during experiments conducted on a full-scale F/A-18 aircraft in the 80- by 120-Foot Wind-Tunnel at NASA Ames Research Center. The purpose of the flow-visualization experiments was to document the forebody and leading edge extension (LEX) vortex interaction along with the wing flow patterns at high angles of attack and low speed high Reynolds number conditions. This investigation used surface pressures in addition to both surface and off-surface flow visualization techniques to examine the flow field on the forebody, canopy, LEXS, and wings. The various techniques used to visualize the flow field were fluorescent tufts, flow cones treated with reflective material, smoke in combination with a laser light sheet, and a video imaging system for three-dimension vortex tracking. The flow visualization experiments were conducted over an angle of attack range from 20 deg to 45 deg and over a sideslip range from -10 deg to 10 deg. The various visualization techniques as well as the pressure distributions were used to understand the flow field structure. The results show regions of attached and separated flow on the forebody, canopy, and wings as well as the vortical flow over the leading-edge extensions. This paper will also present flow visualization comparisons with the F-18 HARV flight vehicle and small-scale oil flows on the F-18.
2002-12-04
The Tharsis Montes region on Mars is a major center of volcanic and tectonic activity. The channel in this image from NASA Mars Odyssey is west of the relatively small volcano called Biblis Patera although it shows no obvious relationship to that volcano. Instead, it may be related to the more distant, but more massive volcano Olympus Mons to the north. The channel may have hosted flowing lava at one time but now contains a material that has eroded into an impressive ridge-and-groove pattern. These features may be yardangs, landforms produced from the erosion by wind of sedimentary material. http://photojournal.jpl.nasa.gov/catalog/PIA04020
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollard, David; Aydin, Atilla
2005-02-22
Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, onmore » which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.« less
Effects of Regulation and Technology on End Uses of Nonfuel Mineral Commodities in the United States
Matos, Grecia R.
2007-01-01
The regulatory system and advancement of technologies have shaped the end-use patterns of nonfuel minerals used in the United States. These factors affected the quantities and types of materials used by society. Environmental concerns and awareness of possible negative effects on public health prompted numerous regulations that have dramatically altered the use of commodities like arsenic, asbestos, lead, and mercury. While the selected commodities represent only a small portion of overall U.S. materials use, they have the potential for harmful effects on human health or the environment, which other commodities, like construction aggregates, do not normally have. The advancement of technology allowed for new uses of mineral materials in products like high-performance computers, telecommunications equipment, plasma and liquid-crystal display televisions and computer monitors, mobile telephones, and electronic devices, which have become mainstream products. These technologies altered the end-use pattern of mineral commodities like gallium, germanium, indium, and strontium. Human ingenuity and people?s demand for different and creative services increase the demand for new materials and industries while shifting the pattern of use of mineral commodities. The mineral commodities? end-use data are critical for the understanding of the magnitude and character of these flows, assessing their impact on the environment, and providing an early warning of potential problems in waste management of products containing these commodities. The knowledge of final disposition of the mineral commodity allows better decisions as to how regulation should be tailored.
Segers, Patrick; Pineda, Victor; Cuellar, Hug; García-Dorado, David; Evangelista, Arturo
2017-01-01
Aortic wall stiffness, tear size and location and the presence of abdominal side branches arising from the false lumen (FL) are key properties potentially involved in FL enlargement in chronic aortic dissections (ADs). We hypothesize that temporal variations on FL flow patterns, as measured in a cross-section by phase-contrast magnetic resonance imaging (PC-MRI), could be used to infer integrated information on these features. In 33 patients with chronic descending AD, instantaneous flow profiles were quantified in the FL at diaphragm level by PC-MRI. We used a lumped-parameter model to assess the changes in flow profiles induced by wall stiffness, tear size/location, and the presence of abdominal side branches arising from the FL. Four characteristic FL flow patterns were identified in 31/33 patients (94%) based on the direction of flow in systole and diastole: BA = systolic biphasic flow and primarily diastolic antegrade flow (n = 6); BR = systolic biphasic flow and primarily diastolic retrograde flow (n = 14); MA = systolic monophasic flow and primarily diastolic antegrade flow (n = 9); MR = systolic monophasic flow and primarily diastolic retrograde flow (n = 2). In the computational model, the temporal variation of flow directions within the FL was highly dependent on the position of assessment along the aorta. FL flow patterns (especially at the level of the diaphragm) showed their characteristic patterns due to variations in the cumulative size and the spatial distribution of the communicating tears, and the incidence of visceral side branches originating from the FL. Changes in wall stiffness did not change the temporal variation of the flows whereas it importantly determined intraluminal pressures. FL flow patterns implicitly codify morphological information on key determinants of aortic expansion in ADs. This data might be taken into consideration in the imaging protocol to define the predictive value of FL flows. PMID:28125720
NASA Astrophysics Data System (ADS)
Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad
2018-05-01
In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.
Upgrading well plates using open microfluidic patterning.
Berry, Samuel B; Zhang, Tianzi; Day, John H; Su, Xiaojing; Wilson, Ilham Z; Berthier, Erwin; Theberge, Ashleigh B
2017-12-05
Cellular communication between multiple cell types is a ubiquitous process that is responsible for vital physiological responses observed in vivo (e.g., immune response, organ function). Many in vitro coculture strategies have been developed, both in traditional culture and microscale systems, and have shown the potential to recreate some of the physiological behaviors of organs or groups of cells. A fundamental limitation of current systems is the difficulty of reconciling the additional engineering requirements for creating soluble factor signaling systems (e.g., segregated cell culture) with the use of well-characterized materials and platforms that have demonstrated successful results and biocompatibility in assays. We present a new open-microfluidic platform, the Monorail Device, that is placed in any existing well plate or Petri dish and enables patterning of segregated coculture regions, thereby allowing the direct upgrade of monoculture experiments into multiculture assays. Our platform patterns biocompatible hydrogel walls via microfluidic spontaneous capillary flow (SCF) along a rail insert set inside commercially available cultureware, creating customized pipette-accessible cell culture chambers that require fewer cells than standard macroscale culture. Importantly, the device allows the use of native surfaces without additional modification or treatments, while creating permeable dividers for the diffusion of soluble factors. Additionally, the ease of patterning afforded by our platform makes reconfiguration of the culture region as simple as changing the rail insert. We demonstrate the ability of the device to pattern flows on a variety of cell culture surfaces and create hydrogel walls in complex and precise shapes. We characterize the physical parameters that enable a reproducible SCF-driven flow and highlight specialized design features that increase the ease of use of the device and control of the open microfluidic flow. Further, we present the performance of our platform according to useful coculture criteria, including permeability and integrity of our hydrogel walls and surface-sensitive cell culture. Lastly, we show the potential of this type of platform to create modular multikingdom culture systems that can be used to study soluble factor signaling between mammalian cells, bacteria, and fungi, as well as the potential for adaptation of this technology by researchers across multiple fields.
NASA Astrophysics Data System (ADS)
Kang, Dong-Won; Sichanugrist, Porponth; Konagai, Makoto
2016-07-01
We successfully designed and experimentally demonstrated an application of patterned MgF2 dielectric material at rear Al-doped ZnO (AZO)/Ag interface in thin film amorphous silicon oxide ( a-SiOx:H) solar cells. When it was realized in practical device process, MgF2 coverage with patterned morphology was employed to allow for current flow between the AZO and Ag against highly resistive MgF2 material. On the basis of the suggested structure, we found an improvement in quantum efficiency of the solar cells with the patterned MgF2. In addition, an enhancement of open circuit voltage ( V oc ) and fill factor ( FF) was observed. A remarkable increase in shunt resistance of the cells with the MgF2 would possibly indicate that the highly resistive MgF2 layer can partly suppress physical shunting across top and bottom electrodes caused by very thin absorber thickness of only 100 nm. The approach showed that our best-performing device revealed an essential improvement in conversion efficiency from 7.83 to 8.01% with achieving markedly high V oc (1.013 V) and FF (0.729). [Figure not available: see fulltext.
Flow patterns and bathymetric signatures on the delta front of a prograding river delta
NASA Astrophysics Data System (ADS)
Shaw, J.; Mohrig, D. C.; Wagner, R. W.
2016-02-01
The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.
Improved CFD Model to Predict Flow and Temperature Distributions in a Blast Furnace Hearth
NASA Astrophysics Data System (ADS)
Komiyama, Keisuke M.; Guo, Bao-Yu; Zughbi, Habib; Zulli, Paul; Yu, Ai-Bing
2014-10-01
The campaign life of a blast furnace is limited by the erosion of hearth refractories. Flow and temperature distributions of the liquid iron have a significant influence on the erosion mechanism. In this work, an improved three-dimensional computational fluid dynamics model is developed to simulate the flow and heat transfer phenomena in the hearth of BlueScope's Port Kembla No. 5 Blast Furnace. Model improvements feature more justified input parameters in turbulence modeling, buoyancy modeling, wall boundary conditions, material properties, and modeling of the solidification of iron. The model is validated by comparing the calculated temperatures with the thermocouple data available, where agreements are established within ±3 pct. The flow distribution in the hearth is discussed for intact and eroded hearth profiles, for sitting and floating coke bed states. It is shown that natural convection affects the flow in several ways: for example, the formation of (a) stagnant zones preventing hearth bottom from eroding or (b) the downward jetting of molten liquid promoting side wall erosion, or (c) at times, a vortex-like peripheral flow, promoting the "elephant foot" type erosion. A significant influence of coke bed permeability on the macroscopic flow pattern and the refractory temperature is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka
2015-11-10
We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less
Method of forming a package for MEMS-based fuel cell
Morse, Jeffrey D; Jankowski, Alan F
2013-05-21
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Method of forming a package for mems-based fuel cell
Morse, Jeffrey D.; Jankowski, Alan F.
2004-11-23
A MEMS-based fuel cell package and method thereof is disclosed. The fuel cell package comprises seven layers: (1) a sub-package fuel reservoir interface layer, (2) an anode manifold support layer, (3) a fuel/anode manifold and resistive heater layer, (4) a Thick Film Microporous Flow Host Structure layer containing a fuel cell, (5) an air manifold layer, (6) a cathode manifold support structure layer, and (7) a cap. Fuel cell packages with more than one fuel cell are formed by positioning stacks of these layers in series and/or parallel. The fuel cell package materials such as a molded plastic or a ceramic green tape material can be patterned, aligned and stacked to form three dimensional microfluidic channels that provide electrical feedthroughs from various layers which are bonded together and mechanically support a MEMOS-based miniature fuel cell. The package incorporates resistive heating elements to control the temperature of the fuel cell stack. The package is fired to form a bond between the layers and one or more microporous flow host structures containing fuel cells are inserted within the Thick Film Microporous Flow Host Structure layer of the package.
Observation of airplane flow fields by natural condensation effects
NASA Technical Reports Server (NTRS)
Campbell, James F.; Chambers, Joseph R.; Rumsey, Christopher L.
1988-01-01
In-flight condensation patterns can illustrate a variety of airplane flow fields, such as attached and separated flows, vortex flows, and expansion and shock waves. These patterns are a unique source of flow visualization that has not been utilized previously. Condensation patterns at full-scale Reynolds number can provide useful information for researchers experimenting in subscale tunnels. It is also shown that computed values of relative humidity in the local flow field provide an inexpensive way to analyze the qualitative features of the condensation pattern, although a more complete theoretical modeling is necessary to obtain details of the condensation process. Furthermore, the analysis revealed that relative humidity is more sensitive to changes in local static temperature than to changes in pressure.
Instability mechanisms in microfluidics and nanomaterials
NASA Astrophysics Data System (ADS)
Thamida, Sunil Kumar
Recent scientific advances in chemical engineering are leading to synthesis of micro-scale and nano-scale functional devices and materials. However, optimal design and performance of these devices and materials requires a fundamental under standing of the interfacial phenomena at micro-scale and nano-scale. Due to new physical forces unique to small scales, new phenomena appear that are unexpected at large scales. A study of new interfacial patterns that arise from various interfacial instabilities at these scales is carried out in this dissertation. Nevertheless, interfacial patterns ranging from micro to macro scale are ubiquitous in multiphase systems and material synthesis involving a surface reaction. Fractal break up of a thin viscous oil film dewetting between two separating plates is studied experimentally. Unlike the classical patterns of pores and dendrites, it forms a fractal pattern like a branching tree with its origin at the center of the circular film. Lubrication theory is extended to such a fractal geometry, which is unlike the circular geometry of a classical dewetting problem. A power law scaling is obtained for the radial air finger length distribution to construct an idealized Cayley fractal structure. Our theory yields a result that the plate detach time decreases by half in the limit of a fully fractal pattern that is confirmed experimentally. Nanopore formation in anodized alumina is also found to bear similarities to the interfacial pattern formation of the dewetting film between two separating plates. The oxide layer formed on the aluminum during the initial stages of anodizing is found to be unstable to perturbations on the scale of a few nanometers and hence it leads to the nanopore formation. A linear stability analysis of the dual interfacial dynamics followed by a leading mode projection produces a single evolution equation for the pores. Numerical simulations of the nonlinear model reveals the hexagonal packing and self-organization dynamics of the pores. In microfluidic devices, electrokinetic flow produces spiral vortices and corner aggregation of particles and proteins at an inner corner of a channel turn that is unexplained by the short ranged DLVO forces. Field leakage effect due to the non perfectly insulating wall reveals a nonlinear singular and ejecting slip velocity condition at an acute angled sharp corner. The complete flow streamlines, vortices and the corner entrainment are revealed by conformal mapping, harmonic analysis and numerical simulation using Lattice-Boltzmann-Method (LBM). The method of hodograph transform developed for the earlier projects to solve the Laplace equation is also applied to find optimum shapes of dispersion free turns for electro-osmotic microfluidic channels.
NASA Astrophysics Data System (ADS)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi
2014-05-01
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
NASA Astrophysics Data System (ADS)
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
Structure formation of 5083 alloy during friction stir welding
NASA Astrophysics Data System (ADS)
Zaikina, A. A.; Kolubaev, A. V.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.
2017-12-01
This paper provides a comparative study of structures obtained by friction stir welding and sliding friction of 5083 Al alloy. Optical and electron microscopy reveals identical fine-grained structures with a grain size of ˜5 µm both in the weld nugget zone and subsurface layer in friction independently of the initial grain size of the alloy. It has been suggested that the grain boundary sliding is responsible for the specific material flow pattern in both techniques considered.
Breathing simulator of workers for respirator performance test
YUASA, Hisashi; KUMITA, Mikio; HONDA, Takeshi; KIMURA, Kazushi; NOZAKI, Kosuke; EMI, Hitoshi; OTANI, Yoshio
2014-01-01
Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker’s respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns. PMID:25382381
NASA Astrophysics Data System (ADS)
Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.
2017-11-01
Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.
Transport processes in directional solidification and their effects on microstructure development
NASA Astrophysics Data System (ADS)
Mazumder, Prantik
The processing of materials with unique electronic, mechanical, optical and thermal properties plays a crucial role in modern technology. The quality of these materials depend strongly on the microstructures and the solute/dopant fields in the solid product, that are strongly influenced by the intricate coupling of heat and mass transfer and melt flow in the growth systems. An integrated research program is developed that include precisely characterized experiments and detailed physical and numerical modeling of the complex transport and dynamical processes. Direct numerical simulation of the solidification process is carried out that takes into account the unsteady thermo-solutal convection in the vertical Bridgman crystal growth system, and accurately models the thermal interaction between the furnace and the ampoule by appropriately using experimentally measured thermal profiles. The flow instabilities and transitions and the nonlinear evolution following the transitions are investigated by time series and flow pattern analysis. A range of complex dynamical behavior is predicted with increasing thermal Rayleigh number. The route to chaos appears as: steady convection --> transient mono-periodic --> transient bi-periodic --> transient quasiperiodic --> transient intermittent oscillation- relaxation --> stable intermittent oscillation-relaxation attractor. The spatio-temporal dynamics of the melt flow is found to be directly related to the spatial patterns observed experimentally in the solidified crystals. The application of the model to two phase Sn-Cd peritectic alloys showed that a new class of tree-like oscillating microstructure develops in the solid phase due to unsteady thermo-solutal convection in the liquid melt. These oscillating layered structures can give the illusion of band structures on a plane of polish. The model is applied to single phase solidification in the Al-Cu and Pb-Sn systems to characterize the effect of convection on the macroscopic shape and disorder in the primary arm spacing of the cellular/dendritic freezing front. The apparently puzzling experimental observation of higher disorder in the weakly convective Al-Cu system than that in the highly convective Pb-Sn system is explained by the numerical calculations.
Classification of pulsating flow patterns in curved pipes.
Tada, S; Oshima, S; Yamane, R
1996-08-01
The fully developed periodic laminar flow of incompressible Newtonian fluids through a pipe of circular cross section, which is coiled in a circle, was simulated numerically. The flow patterns are characterized by three parameters: the Womersley number Wo, the Dean number De, and the amplitude ratio beta. The effect of these parameters on the flow was studied in the range 2.19 < or = Wo < or = 50.00, 15.07 < or = De < or = 265.49 and 0.50 < or = beta < or = 2.00, with the curvature ratio delta fixed to be 0.05. The way the secondary flow evolved with increasing Womersley number and Dean number is explained. The secondary flow patterns are classified into three main groups: the viscosity-dominated type, the inertia-dominated type, and the convection-dominated type. It was found that when the amplitude ratio of the volumetric flow rate is equal to 1.0, four to six vortices of the secondary flow appear at high Dean numbers, and the Lyne-type flow patterns disappear at beta > or = 0.50.
Growth and characterization of III-V epitaxial films
NASA Astrophysics Data System (ADS)
Tripathi, A.; Adamski, J.
1991-11-01
Investigations were conducted on the growth of epitaxial layers using an Organo Metallic Chemical Vapor Deposition technique of selected III-V materials which are potentially useful for photonics and microwave devices. RL/ERX's MOCVD machine was leak checked for safety. The whole gas handling plumbing system has been leak checked and the problems were reported to the manufacturer, CVD Equipment Corporation of Dear Park, NY. CVD Equipment Corporation is making an effort to correct these problems and also supply the part according to our redesign specifications. One of the main emphasis during this contract period was understanding the operating procedure and writing an operating manual for this MOCVD machine. To study the dynamic fluid flow in the vertical reactor of this MOCVD machine, an experimental apparatus was designed, tested, and put together. This study gave very important information on the turbulent gas flow patterns in this vertical reactor. The turbulent flow affects the epitaxial growth adversely. This study will also help in redesigning a vertical reactor so that the turbulent gas flow can be eliminated.
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tools. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device (PVAD), the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5-15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient's behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mm Hg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition, high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood.
Simulations of Global Flows in Io’s Rarefied Atmosphere
NASA Astrophysics Data System (ADS)
Hoey, William A.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Walker, A. C.
2013-10-01
The sulfur-rich Ionian atmosphere is populated through a number of mechanisms, the most notable of which include sublimation from insolated surface frost deposits, material sputtering due to the impact of energetic ions from the Jovian plasma torus, and plume emission related to volcanic activity. While local flows are collisional at low altitudes on portions of the moon’s dayside, densities rapidly tend toward the free-molecular limit with altitude, necessitating non-continuum (rarefied gas dynamic) modeling and analysis. While recent work has modestly constrained the relative contributions of sputtering, sublimation, and volcanism to Io’s atmosphere, dynamic wind patterns driven by dayside sublimation and nightside condensation remain poorly understood. This work moves toward the explanation of mid-infrared observations that indicate an apparent super-rotating wind in Io’s atmosphere. In the present work, the Direct Simulation Monte Carlo method is employed in the modeling of Io’s rarefied atmosphere; simulations are computed in parallel, on a three-dimensional domain that spans the moon’s entire surface and extends hundreds of kilometers vertically, into the exobase. A wide range of physical phenomena have been incorporated into the atmospheric model, including: [1] the effects of planetary rotation; [2] surface temperature, surface frost inhomogeneity, and thermal inertia; [3] plasma heating and sputtering; [4] gas plumes from superimposed volcanic hot spots; and [5] multi-species chemistry. Furthermore, this work improves upon previous efforts by correcting for non-inertial effects in a moon-fixed reference frame. The influence of such effects on the development of global flow patterns and cyclonic wind is analyzed. The case in which Io transits Jupiter is considered, with the anti-Jovian hemisphere as the dayside. We predict that a circumlunar flow develops that is asymmetric about the subsolar point, and drives atmosphere from the warmer, dayside hemisphere toward the colder nightside. The resultant flow patterns, column densities, species concentrations, and temperatures are discussed in relation to previous simulations of Io in a pre-eclipse configuration. This research is supported via NASA-PATM.
Non Destructive Analysis of Fsw Welds using Ultrasonic Signal Analysis
NASA Astrophysics Data System (ADS)
Pavan Kumar, T.; Prabhakar Reddy, P.
2017-08-01
Friction Stir Welding is an evolving metal joining technique and is mostly used in joining materials which cannot be easily joined by other available welding techniques. It is a technique which can be used for welding dissimilar materials also. The strength of the weld joint is determined by the way in which these material are mixing with each other, since we are not using any filler material for the welding process the intermixing has a significant importance. The complication with the friction stir welding process is that there are many process parameters which effect this intermixing process such as tool geometry, rotating speed of the tool, transverse speed etc., In this study an attempt is made to compare the material flow and weld quality of various weldments by changing the parameters. Ultrasonic signal Analysis is used to characterize the microstructure of the weldments. use of ultrasonic waves is a non destructive, accurate and fast way of characterization of microstructure. In this method the relationship between the ultrasonic measured parameters and microstructures are evaluated using background echo and backscattered signal process techniques. The ultrasonic velocity and attenuation measurements are dependent on the elastic modulus and any change in the microstructure is reflected in the ultrasonic velocity. An insight into material flow is essential to determine the quality of the weld. Hence an attempt is made in this study to know the relationship between tool geometry and the pattern of material flow and resulting weld quality the experiments are conducted to weld dissimilar aluminum alloys and the weldments are characterized using and ultra Sonic signal processing. Characterization is also done using Scanning Electron Microscopy. It is observed that there is a good correlation between the ultrasonic signal processing results and Scanning Electron Microscopy on the observed precipitates. Tensile tests and hardness tests are conducted on the weldments and compared for determining the weld quality.
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-12-21
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.
Disruption of intracardiac flow patterns in the newborn infant.
Groves, Alan M; Durighel, Giuliana; Finnemore, Anna; Tusor, Nora; Merchant, Nazakat; Razavi, Reza; Hajnal, Jo V; Edwards, A David
2012-04-01
Consistent patterns of rotational intracardiac flow have been demonstrated in the healthy adult human heart. Intracardiac rotational flow patterns are hypothesized to assist in the maintenance of kinetic energy of inflowing blood, augmenting cardiac function. Newborn cardiac function is known to be suboptimal secondary to decreased receptor number and sympathetic innervation, increased afterload, and increased reliance on atrial contraction to support ventricular filling. Patterns of intracardiac flow in the newborn have not previously been examined. Whereas 5 of the 13 infants studied showed significant evidence of rotational flow within the right atrium, 8 infants showed little or no rotational flow. Presence or absence of rotational flow was not related to gestational age, birth weight, postnatal age, atrial size, or image quality. Despite absence of intra-atrial rotational flow, atrioventricular valve flow into the left and right ventricles later in the cardiac cycle could be seen, suggesting that visualization techniques were adequate. While further study is required to assess its exact consequences on cardiac mechanics and energetics, disruption to intracardiac flow patterns could be another contributor to the multifactorial sequence that produces newborn circulatory failure. We studied 13 newborn infants, using three-dimensional (3D) cardiac magnetic resonance phase-contrast imaging (spatial resolution 0.84 mm, temporal resolution 22.6 ms) performed without sedation/anesthesia.
Wolf, S.C.
1970-01-01
In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments southward except near Monterey Canyon which acts as a physiographic barrier and the extreme southern end of the bay where currents are non persistent. Some sediments are also transported offshore by rip currents and other agencies and deposited in deeper, quieter waters. Supply of sediments to the canyon head results in over-filling and steepening with subsequent mass movement of sediments seaward followed by deposition in channels and on the broad deep sea fan. ?? 1970.
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail A.; Hiesinger, H.; Erkeling, G.; Reiss, D.
2014-01-01
Results of our detailed geological mapping and interpretation of the nature and relative and absolute model ages of units and structures in the SW portion of Utopia Planitia (20-45°N, 100-120°E) suggest the following. (1) The size-frequency distribution (SFD) of craters that both are buried by materials of the Vastitas Borealis units (VB) and superpose its surface indicate that the absolute model ages of terrain predating the emplacement of the VB is ˜3.7 Ga. (2) Lack of craters that are partly embayed by materials of the VB in the SW portion of Utopia Planitia implies that the emplacement of the VB was faster than the rate of accumulation of impact craters and is consistent with the geologically short time of emplacement of the VB due to catastrophic release of water from outflow channels (e.g., Carr, M.H. [1996]. Water on Mars. Oxford University Press, New York, p. 229). (3) The SFD of craters that superpose the surface of the VB indicates an absolute model age of ˜3.6-3.5 Ga. The absolute model ages of etched flows, which represent the upper stratigraphic limit of the VB, are estimated to be ˜3.5 Ga. (4) The majority of the larger (i.e., >1 km) impact craters show ejecta morphologies (rampart and pancake-like ejecta) that are indicative of the presence of ice/water in the target materials. The distal portions of the pancake-like ejecta are heavily degraded (not due to embayment). This suggests that these craters formed in targets that contained higher abundances of volatiles. (5) The diameter ranges of the craters with either rampart- or pancake-like ejecta are overlapping (from ˜2 to ˜60 km). Craters with pancake-like ejecta are concentrated within the central portion of the Utopia basin (less than ˜1000 km from the basin center) and rampart craters occur at the periphery of the basin. This pattern of the crater spatial distribution suggests that materials within the center of Utopia Planitia contained more ice/water. (6) Etched flows around the central portion of Utopia Planitia were erupted from beneath of the surface of the VB. Their morphology and pattern of degradation, however, are inconsistent with lava and, instead, indicate formation of the flows due to mud volcanism. (7) Etched flows are spatially associated with giant polygons and there is evidence that these features populated the center portion of Utopia Planitia before it was covered by the Elysium-derived units. The outer (southern) edge of the zone of polygonal troughs and etched flows approximately corresponds to the transition from pancake-like ejecta to rampart ejecta. This suggest that the outer edge of the zone of the polygons and flows may outline the deeper portions of the large body (˜2000 km across) of water/ice that likely existed in the center of Utopia Planitia in late Hesperian.
The Interlibrary Loan Transaction
Pings, Vern M.
1965-01-01
Although the number of items borrowed through interlibrary loan may not increase as dramatically as it has in the past ten years, the trend can be expected to continue because of the growing interdisciplinary nature of biomedical research and because of the anticipated improved bibliographic control of biomedical literature. To provide a framework for collecting data on volume of flow between institutions, on time requirements for processing operations, on cost of interlibrary transactions, on the efficiency of communication channels, and on alternative procedures for performing the transaction, block diagrams were prepared to show the flow of information and materials between individuals and institutions. These diagrams show the interinstitutional dependence; any alterations in procedures in one institution affect other institutions. Even though it can be clearly shown where alterations in the flow pattern can be effected, there are little quantitative data available to serve as a justification for maintaining or modifying existing procedures. PMID:14271114
The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal
NASA Astrophysics Data System (ADS)
Peng, Peihuo
2018-03-01
Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
NASA Astrophysics Data System (ADS)
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang
2017-09-01
Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keska, Jerry K.; Hincapie, Juan; Jones, Richard
In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Bulaevskii, Lev N.; Holesinger, Terry G.; Ronning, Filip; Weisse-Bernstein, Nina R.; Williamson, Todd L.; Mueller, Alexander H.; Hoffbauer, Mark A.; Rabin, Michael W.; Graf, Matthias J.
2013-05-01
The fabrication of high-quality thin superconducting films is essential for single-photon detectors. Their device performance is crucially affected by their material parameters, thus requiring reliable and nondestructive characterization methods after the fabrication and patterning processes. Important material parameters to know are the resistivity, superconducting transition temperature, relaxation time of quasiparticles, and uniformity of patterned wires. In this work, we characterize micropatterned thin NbN films by using transport measurements in magnetic fields. We show that from the instability of vortex motion at high currents in the flux-flow state of the IV characteristic, the inelastic lifetime of quasiparticles can be determined to be about 2 ns. Additionally, from the depinning transition of vortices at low currents, as a function of magnetic field, the size distribution of grains can be extracted. This size distribution is found to be in agreement with the film morphology obtained from scanning electron microscopy and high-resolution transmission electron microscopy images.
Plasma-assisted interface engineering of boron nitride nanostructure films.
Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri
2014-10-28
Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp
2014-05-10
In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less
NASA Technical Reports Server (NTRS)
Finstein, M. S.; Hogan, J. A.; Sager, J. C.; Cowan, R. M.; Strom, P. F.; Janes, H. W. (Principal Investigator)
1999-01-01
Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.
Finstein, M S; Hogan, J A; Sager, J C; Cowan, R M; Strom, P F
1999-01-01
Whereas Earth-based composting reactors that effectively control the process are batch operations with bottom-to-top airflow, in extraterrestrial application both the fresh waste and the air need to be introduced from above. Stabilized compost and used air would exit below. This materials flow pattern permits the addition of waste whenever generated, obviating the need for multiple reactors, and the incorporation of a commode in the lid. Top loading in turn dictates top-down aeration, so that the most actively decomposing material (greatest need for heat removal and O2 replenishment) is first encountered. This novel material and aeration pattern was tested in conjunction with temperature feedback process control. Reactor characteristics were: working, volume, 0.15 m3; charge, 2 kg dry biomass per day (comparable to a 3-4 person self-sufficient bioregenerative habitat); retention time, 7 days. Judging from temperature profile, O2 level, air usage, pressure head loss, moisture, and odor, the system was effectively controlled over a 35-day period. Dry matter disappearance averaged 25% (10-42%). The compost product was substantially, though not completely, stabilized. This demonstrates the compatibility of top-wise introduction of waste and air with temperature feedback process control.
How pattern is selected in drift wave turbulence: Role of parallel flow shear
NASA Astrophysics Data System (ADS)
Kosuga, Y.
2017-12-01
The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.
NASA Technical Reports Server (NTRS)
Dijkstra, Henk A.
1992-01-01
Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Galenko, Peter K.; Toropova, Lyubov V.
2018-01-01
Motivated by important applications in materials science and geophysics, we consider the steady-state growth of anisotropic needle-like dendrites in undercooled binary mixtures with a forced convective flow. We analyse the stable mode of dendritic evolution in the case of small anisotropies of growth kinetics and surface energy for arbitrary Péclet numbers and n-fold symmetry of dendritic crystals. On the basis of solvability and stability theories, we formulate a selection criterion giving a stable combination between dendrite tip diameter and tip velocity. A set of nonlinear equations consisting of the solvability criterion and undercooling balance is solved analytically for the tip velocity V and tip diameter ρ of dendrites with n-fold symmetry in the absence of convective flow. The case of convective heat and mass transfer mechanisms in a binary mixture occurring as a result of intensive flows in the liquid phase is detailed. A selection criterion that describes such solidification conditions is derived. The theory under consideration comprises previously considered theoretical approaches and results as limiting cases. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.
Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry
NASA Astrophysics Data System (ADS)
Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric
2013-11-01
Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.
Sheared bioconvection in a horizontal tube
NASA Astrophysics Data System (ADS)
Croze, O. A.; Ashraf, E. E.; Bees, M. A.
2010-12-01
The recent interest in using microorganisms for biofuels is motivation enough to study bioconvection and cell dispersion in tubes subject to imposed flow. To optimize light and nutrient uptake, many microorganisms swim in directions biased by environmental cues (e.g. phototaxis in algae and chemotaxis in bacteria). Such taxes inevitably lead to accumulations of cells, which, as many microorganisms have a density different to the fluid, can induce hydrodynamic instabilites. The large-scale fluid flow and spectacular patterns that arise are termed bioconvection. However, the extent to which bioconvection is affected or suppressed by an imposed fluid flow and how bioconvection influences the mean flow profile and cell transport are open questions. This experimental study is the first to address these issues by quantifying the patterns due to suspensions of the gravitactic and gyrotactic green biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow. With no flow, the dependence of the dominant pattern wavelength at pattern onset on cell concentration is established for three different tube diameters. For small imposed flows, the vertical plumes of cells are observed merely to bow in the direction of flow. For sufficiently high flow rates, the plumes progressively fragment into piecewise linear diagonal plumes, unexpectedly inclined at constant angles and translating at fixed speeds. The pattern wavelength generally grows with flow rate, with transitions at critical rates that depend on concentration. Even at high imposed flow rates, bioconvection is not wholly suppressed and perturbs the flow field.
Planetary geomorphology field studies: Washington and Alaska
NASA Technical Reports Server (NTRS)
Malin, M. C.
1984-01-01
Field studies of terrestrial landforms and the processes that shape them provide new directions to the study of planetary features. Investigations discussed address principally mudflow phenomena and drainage development. At the Valley of 10,000 Smokes (Katmai, AK) and Mount St. Helens, WA, studies of the development of erosional landforms (in particular, drainage) on fresh, new surfaces permitted analysis of the result of competition between geomorphic processes. Of specific interest is the development of stream pattern as a function of the competition between perennial seepage overland flow (from glacial or groundwater sources), ephemeral overland flow (from pluvial or seasonal melt sources), and ephemeral/perennial groundwater sapping, as a function of time since initial resurfacing, material properties, and seasonal/annual environmental conditions.
Ionic electroactive polymer actuators as active microfluidic mixers
Meis, Catherine; Montazami, Reza; Hashemi, Nastaran
2015-11-06
On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less
High index glass thin film processing for photonics and photovoltaic (PV) applications
NASA Astrophysics Data System (ADS)
Ogbuu, Okechukwu Anthony
To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are subsequently transferred into glass and polymer thin films via conformal wet etching. High refractive index chalcogenide glass (n = 2.6) thin films with composition As20Se80 was selected for backside LSG material due to their attractive properties. We developed an optimized integration protocol for LSG integration and successfully integrated these LSG structures at the back side of both 30 microm c-Si solar cells and standalone 30 microm c-Si wafers. Optical and electrical characterization of LSG on thin c-Si cells shows that LSG structures create higher absorption enhancement and external quantum efficiency at long wavelengths.
Cogendez, Ebru; Eken, Meryem Kurek; Bakal, Nuray; Gun, Ismet; Kaygusuz, Ecmel Isik; Karateke, Ates
2015-10-01
The purpose of this prospective study was to assess the role of power Doppler imaging in the differential diagnosis of benign intrauterine focal lesions such as endometrial polyps and submucous myomas using the characteristics of power Doppler flow mapping. A total of 480 premenopausal patients with abnormal uterine bleeding were evaluated by transvaginal ultrasonography (TVS) searching for intrauterine pathology. Sixty-four patients with a suspicious focal endometrial lesion received saline infusion sonography (SIS) after TVS. Fifty-eight patients with focal endometrial lesions underwent power Doppler ultrasound (PDUS). Three different vascular flow patterns were defined: Single vessel pattern, multiple vessel pattern, and circular flow pattern. Finally, hysteroscopic resection was performed in all cases, and Doppler flow characteristics were then compared with the final histopathological findings. Histopathological results were as follows: endometrial polyp: 40 (69 %), submucous myoma: 18 (31 %). Of the cases with endometrial polyps, 80 % demonstrated a single vessel pattern, 7.5 % a multiple vessel pattern, and 0 % a circular pattern. Vascularization was not observed in 12.5 % of patients with polyps. Of the cases with submucousal myomas, 72.2 % demonstrated a circular flow pattern, 27.8 % a multiple vessel pattern, and none of them showed a single vessel pattern. The sensitivity, specificity, and positive and negative predictive values of the single vessel pattern in diagnosing endometrial polyps were 80, 100, 100, and 69.2 %, respectively; and for the circular pattern in diagnosing submucous myoma, these were 72.2, 100, 100, and 88.9 %, respectively. Power Doppler blood flow mapping is a useful, practical, and noninvasive diagnostic method for the differential diagnosis of benign intrauterine focal lesions. Especially in cases of recurrent abnormal uterine bleeding, recurrent abortion, and infertility, PDUS can be preferred as a first-line diagnostic method.
1984-09-07
McConaugha et al., 1983). This retention mechanism is entirely dependent upon southerly winds of sufficient magnitude to drive a northward current. Since the...Chesapeake Bay Inflow Streamline Patterns for Periods of Northerly (Figure 6a) and Southerly (Figure 6b) Winds ..... ...... .... 2-2 7 Surface Salinity ...layer flow: Low salinity water from rivers and other fresh water inputs moves seaward in the upper layer, while high salinity shelf water is drawn into
2012-01-01
16.64 Figure 3. Venation map of Manduca sexta forewing [11]. 2.4. Venation Insect wings are formed from a complex makeup of polymer based chains, Chitin ...for coloration, but may subtly influence flow patterns and boundary layer structure over wings [4, 24]. There is significant understanding of chitin ...biological specimen to vary the bonding chains, assemblage of nanofibers and crystalline structure, the material properties of chitin can vary over a
2009-10-26
low-melting solders, low-melting casting metal and fire-melted valve elements in sprinkler systems. The main properties of the two LMPs are shown in...signal amplitude has been set to make the test chip accelerate periodically with 3.37G. Subsequently, the signal amplitude has been change in order to...pattern even at strong acceleration with liquid paraffin flowing freely around the LMP. Slight deformation can be detected due to the strong
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, D.E.
1979-11-01
The extraction of morphological parameters from biological cells by analysis of light-scatter patterns is described. A light-scattering measurement system has been designed and constructed that allows one to visually examine and photographically record biological cells or cell models and measure the light-scatter pattern of an individual cell or cell model. Using a laser or conventional illumination, the imaging system consists of a modified microscope with a 35 mm camera attached to record the cell image or light-scatter pattern. Models of biological cells were fabricated. The dynamic range and angular distributions of light scattered from these models was compared to calculatedmore » distributions. Spectrum analysis techniques applied on the light-scatter data give the sought after morphological cell parameters. These results compared favorably to shape parameters of the fabricated cell models confirming the mathematical model procedure. For nucleated biological material, correct nuclear and cell eccentricity as well as the nuclear and cytoplasmic diameters were determined. A method for comparing the flow equivalent of nuclear and cytoplasmic size to the actual dimensions is shown. This light-scattering experiment provides baseline information for automated cytology. In its present application, it involves correlating average size as measured in flow cytology to the actual dimensions determined from this technique. (ERB)« less
MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.
Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik
2016-01-01
Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.
Role of friction in vertically oscillated granular materials
NASA Astrophysics Data System (ADS)
Moon, Sung Joon; Swift, J. B.; Swinney, Harry L.
2002-11-01
We use a previously validated molecular dynamics simulation of vertically oscillated granular layers to study how the contact friction affects standing wave patterns. Our collision model follows Walton(O. R. Walton, in Particulate Two-Phase Flow), edited by M. C. Roco (Butterworth-Heinemann, Boston, 1993), p. 884.: Dissipation in the normal component of colliding velocity is characterized by the normal coefficient of restitution e (0<= e < 1), and interaction in the tangential component by the tangential coefficient of restitution β = β(μ,e,Φ), where -1<= β <= β_0, μ is the static coefficient of friction on the surface of grains, Φ is the collision angle, and β0 corresponds to the crossover between static and sliding friction. We varied the above parameters independently for the grain-grain collisions and for the grain-wall collisions. The grain-grain friction changes the phase diagram of patterns significantly, and the patterns become fuzzy as the friction is decreased. The grain-wall friction is necessary to stabilize the patterns.
Hwang, J J; Lin, J M; Hsu, K L; Lai, L P; Tseng, Y Z; Lee, Y T; Lien, W P
1999-01-01
To evaluate the correlation of the flow patterns of the four pulmonary veins as assessed by transesophageal echocardiography and the influence of significant mitral regurgitation on this correlation. Eighty-eight patients with normal sinus rhythm and variable underlying cardiovascular diseases underwent transthoracic and transesophageal echocardiographic studies. Doppler flow of the four pulmonary veins could not be adequately interpreted in 19 patients (22%). The left atrial dimension of these patients was significantly larger than that of the patients with complete study of the flow in the four pulmonary veins (49 +/- 6 vs. 43 +/- 7 mm; p < 0.05). Of the 69 patients with complete evaluation of the four pulmonary veins, 48 patients without significant mitral regurgitation were analyzed as group A, and the remaining 21 patients as group B. The peak systolic and diastolic forward flow velocities of the four pulmonary veins were measured and the ratio of peak systolic (S) to diastolic (D) flow velocity was calculated. Group A had a significantly larger S/D ratio in all four pulmonary veins than group B (p < 0.05 in each pulmonary vein measurement). There was good correlation of the flow pattern represented as S/D ratio between left upper and lower pulmonary veins (r = 0.90) and between right upper and lower pulmonary veins (r = 0.89) in group A. The correlation of the flow pattern among the four pulmonary veins deteriorated in group B. Pulmonary veins on the same side share rather similar flow patterns in comparison with pulmonary veins on the opposite sides. The correlation of flow patterns among the four pulmonary veins is good in subjects without significant mitral regurgitation, but it worsens in patients with significant mitral regurgitation. Therefore, cautious interpretation of flow patterns of the four pulmonary veins in patients with significant regurgitation is indicated for grading the severity of mitral regurgitation.
Sixty years of interest in flow and transport theories: Sources of inspiration and a few results
NASA Astrophysics Data System (ADS)
Raats, Peter A. C.
2016-04-01
By choosing to major in soil physics at Wageningen now exactly 60 years ago, I could combine my interest in exact sciences with my experience of growing up on a farm. I never regretted that choice. In the first twenty years, I profited much from close contacts with members of the immediate post-WW II generation of soil physicists (especially Jerry Bolt, Arnold Klute, Ed Miller, Champ Tanner, Wilford Gardner, John Philip, and Jan van Schilfgaarde), chemical engineers (especially at UW Madison the trio Bob Bird, Warren Stewart and Ed Lightfoot) and experts in continuum mechanics (especially at Johns Hopkins Clifford Truesdell and Jerald Ericksen). As graduate student at Illinois with Klute, to describe flow and transport theories in soil science I initially explored as possible framework thermodynamics of irreversible processes (TIP), but soon switched to the continuum theory of mixtures (CTM), initiated by Truesdell in 1957. In CTM, the balance of forces gave a rational basis for flux equations. CTM allowed me to deal with swelling/shrinkage, role of inertia, boundary conditions, and structured soils. Later, I did use TIP to deal with certain aspects of transfer of water and heat in soils and selective uptake of water and nutrients by plant roots. Recently, a variety of theories for upscaling from the pore scale to the Darcy scale have clarified the potential, limits and common ground of CTM and TIP. A great advantage of CTM is that it provides geometric tools suited for kinematic aspects of flow, transport, and growth/decay processes. In particular, the concept of material coordinates of the solid phase that I used in my PhD thesis to cope with large deformation due to swelling/shrinkage of soils, later also turned to be useful to deal with simultaneous shrinkage and decay in peat soils and compost heaps, and the growth of plant tissues. Also, by focusing on the material coordinates for the water, it became possible to describe transport of solutes in unsaturated soils and selective uptake of water and solutes in saline soils and to explore the rational basis for residence time distribution functions and input-output relationships for flow regions. It turns out to be useful to classify flow patterns on the basis of the presence or absence of time dependence, of the geometry of the region and of the intrinsic nature of the flow pattern arising from the form of the flux equation. For example, the fact that the flux of a fluid with spatially variable density cannot be expressed as proportional to the gradient of a single potential, implies possible non-zero helicity of the flow pattern. Generally, I enjoyed considerable freedom in the choice of theoretical and practical problems to study. Only quite late, I was faced with time consuming, overly strict accountability. I retired early, so as to live healthier and pursue freely my interest in our science and, especially, its history.
Cross-shelf transport into nearshore waters due to shoaling internal tides in San Pedro Bay, CA
Noble, Marlene A.; Burt Jones,; Peter Hamilton,; Xu, Jingping; George Robertson,; Rosenfeld, Leslie; John Largier,
2009-01-01
In the summer of 2001, a coastal ocean measurement program in the southeastern portion of San Pedro Bay, CA, was designed and carried out. One aim of the program was to determine the strength and effectiveness of local cross-shelf transport processes. A particular objective was to assess the ability of semidiurnal internal tidal currents to move suspended material a net distance across the shelf. Hence, a dense array of moorings was deployed across the shelf to monitor the transport patterns associated with fluctuations in currents, temperature and salinity. An associated hydrographic program periodically monitored synoptic changes in the spatial patterns of temperature, salinity, nutrients and bacteria. This set of measurements show that a series of energetic internal tides can, but do not always, transport subthermocline water, dissolved and suspended material from the middle of the shelf into the surfzone. Effective cross-shelf transport occurs only when (1) internal tides at the shelf break are strong and (2) subtidal currents flow strongly downcoast. The subtidal downcoast flow causes isotherms to tilt upward toward the coast, which allows energetic, nonlinear internal tidal currents to carry subthermocline waters into the surfzone. During these events, which may last for several days, the transported water remains in the surfzone until the internal tidal current pulses and/or the downcoast subtidal currents disappear. This nonlinear internal tide cross-shelf transport process was capable of carrying water and the associated suspended or dissolved material from the mid-shelf into the surfzone, but there were no observation of transport from the shelf break into the surfzone. Dissolved nutrients and suspended particulates (such as phytoplankton) transported from the mid-shelf into the nearshore region by nonlinear internal tides may contribute to nearshore algal blooms, including harmful algal blooms that occur off local beaches.
Hydromechanical Modeling of Fluid Flow in the Lower Crust
NASA Astrophysics Data System (ADS)
Connolly, J.
2011-12-01
The lower crust lies within an ambiguous rheological regime between the brittle upper crust and ductile sub-lithospheric mantle. This ambiguity has allowed two schools of thought to develop concerning the nature of fluid flow in the lower crust. The classical school holds that lower crustal rocks are inviscid and that any fluid generated by metamorphic devolatilization is squeezed out of rocks as rapidly as it is produced. According to this school, permeability is a dynamic property and fluid flow is upward. In contrast, the modern school uses concepts from upper crustal hydrology that presume implicitly, if not explicitly, that rocks are rigid or, at most, brittle. For the modern school, the details of crustal permeability determine fluid flow and as these details are poorly known almost anything is possible. Reality, to the extent that it is reflected by inference from field studies, offers some support to both schools. In particular, evidence of significant lateral and channelized fluid flow are consistent with flow in rigid media, while evidence for short (104 - 105 y) grain-scale fluid-rock interaction during much longer metamorphic events, suggests that reaction-generated grain-scale permeability is sealed rapidly by compaction; a phenomenon that is also essential to prevent extensive retrograde metamorphism. These observations provide a compelling argument for recognizing in conceptual models of lower crustal fluid flow that rocks are neither inviscid nor rigid, but compact by viscous mechanisms on a finite time-scale. This presentation will review the principle consequences of, and obstacles to, incorporating compaction in such models. The role of viscous compaction in the lower crust is extraordinarily uncertain, but ignoring this uncertainty in models of lower crustal fluid flow does not make the models any more certain. Models inevitably invoke an initial steady state hydraulic regime. This initial steady state is critical to model outcomes because it determines the compaction time and length scales and, thereby, the response of the system to perturbations. Unfortunately, because metamorphic devolatilization is the most probable source of lower crustal fluids, the assumption of an initial steady state leaves much to be desired. In truth, in the modeling of lower crustal fluid flow, less is known about the initial state than is known about possible perturbations to it, e.g., metamorphic fluid production. Compaction is a bad and good news story. The bad news is that local flow patterns may be influenced by unknowable details; the good news is that compaction-driven fluid flow has a tendency to self-organize. Self-organization eliminates the dependence on details that are present on spatial or temporal scales that are smaller than the compaction length and time scales. Porosity waves are the mechanism for this self-organization, through which dilational deformation is localized in time and space to create pathways for fluid expulsion. The resulting flow patterns are sensitive to material properties and initial state, thus, inversion of natural flow patterns offers the greatest hope for constraining the compaction scales. Knowledge of these scales is also important because they limit the influence of external forcings on flow patterns, e.g., a shear zone may induce lateral or downward fluid flow, but only on the compaction time and length scales.
NASA Astrophysics Data System (ADS)
Wu, Lin
2011-04-01
The distribution dynamics of a thin lubricant film on a bit-patterned media disk and its effect on the performance of the ultralow flying air bearing slider of disk drives are studied by direct numerical simulations. Our analysis shows that the physics governing lubricant distribution dynamics changes when deep enough sub-100-nm nanostructures are patterned on the disk surface. Air shearing under the slider that dominates lubricant flow on a flat disk may become negligible on a bit-patterned media disk. Surface tension and disjoining pressure become dominant factors instead. Our results show that disks with nanoscale patterns/roughness may no longer be treated as flat, and the air bearing load may strongly depend not only on the geometric detail of disk patterns but also on how lubricants are distributed on the patterns when slider-disk clearance is reduced to sub-10-nm. Air bearing load and consequently the slider's flying attitude are affected by disk pattern geometry, average lubricant thickness, and material properties of lubricant such as the surface tension coefficient and Hamaker constant. The significantly expanded parameter space, upon which ultralow flying slider's dynamics depends, has to be seriously considered in evaluating the head/disk interface tribology performance of next generation patterned media magnetic recording systems.
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.
Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan
2015-08-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.
Laser induced heating of coated carbon steel sheets: Consideration of melting and Marangoni flow
NASA Astrophysics Data System (ADS)
Shuja, S. Z.; Yilbas, B. S.
2013-04-01
Laser induced melting of coated carbon steel workpiece is simulated. The coating materials include tungsten carbide, alumina, and boron are incorporated in the simulations. The coating thickness is kept constant at 7.5 μm in the analysis. The enthalpy porosity method is used to account for the phase change in the irradiated region. The study is extended to include the influence of laser intensity transverse mode pattern (β) on the resulting melting characteristics. It is found that peak temperature predicted at the surface is higher for alumina and boron coatings than that of tungsten carbide coating. The influence of the laser intensity transverse mode pattern on the melting characteristics is considerable. Surface temperature predicted agrees with the thermocouple data.
NASA Astrophysics Data System (ADS)
Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael
2014-11-01
Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.
NASA Technical Reports Server (NTRS)
Hersh, A. S.
1979-01-01
The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.
Rock fragment movement in shallow rill flow - A laboratory study
NASA Astrophysics Data System (ADS)
Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Gronz, Oliver; Remke, Alexander; Iserloh, Thomas; Brings, Christine; Casper, Markus; Ries, Johannes B.
2014-05-01
Studies concerning rill erosion mainly deal with the erosion and transport of fine material. The transport of rock fragments is examined mostly for mountain rivers. But there are important differences between the conditions and processes in rivers and in rills: (1) In most cases, the river cuts into a coarse substrate, where fine material is sparse, whereas rill erosion occurs on arable land. So the main part of the substrate is fine material and only single rock fragments influence the processes. (2) In rivers, the water depth is relatively high. There are a lot of studies about hydraulic parameters in such flows, but there is almost nothing known about hydraulic conditions in surface runoff events of a few centimeters. Additionally, little information exists about the rock fragment movement as a part of rill erosion processes on arable land. This knowledge should be increased because rock fragments cause non-stationary water turbulences in rills, which enhance the erosive force of flowing water. Field experiments can only show the fact that a certain rock fragment has moved: The starting point and the final position can be estimated. But the moving path and especially the initiation of the movement is not detectable under field conditions. Hence, we developed a laboratory setup to analyze the movement of rock fragments depending on rock fragment properties (size, form), slope gradient, flow velocity and surface roughness. By observing the rock fragments with cameras from two different angles we are able (1) to measure the rotation angles of a rock fragment during the experiment and (2) to deduce different rock fragment movement patterns. On this poster we want to present the experimental setup, developed within the scope of a master thesis, and the results of these experiments.
Optimize Operating Conditions on Fine Particle Grinding Process with Vertically Stirred Media Mill
NASA Astrophysics Data System (ADS)
Yang, Yang; Rowson, Neil; Ingram, Andy
2016-11-01
Stirred media mill recently is commonly utilized among mining process due to its high stressing intensity and efficiency. However, the relationship between size reduction and flow pattern within the mixing pot is still not fully understand. Thus, this work investigates fine particle grinding process within vertically stirred media mills by altering stirrer geometry, tip speed and solids loading. Positron Emitting Particle Tracking (PEPT) technology is utilized to plot routine of particles velocity map. By tacking trajectory of a single particle movement within the mixing vessel, the overall flow pattern is possible to be plotted. Ground calcium carbonate, a main product of Imerys, is chosen as feeding material (feed size D80 30um) mixed with water to form high viscous suspension. To obtain fine size product (normally D80 approximately 2um), large amount of energy is drawn by grinding mill to break particles through impact, shear attrition or compression or a combination of them. The results indicate higher energy efficient is obtained with more dilute suspension. The optimized stirrer proves more energy-saving performance by altering the slurry circulate. Imerys Minerals Limited.
Smith, J.P.; Bullen, T.D.; Brabander, D.J.; Olsen, C.R.
2009-01-01
Strontium isotope (87Sr/86Sr) profiles in sediment cores collected from two subtidal harbor slips in the lower Hudson River estuary in October 2001 exhibit regular patterns of variability with depth. Using additional evidence from sediment Ca/Sr ratios, 137Cs activity and Al, carbonate (CaCO3), and organic carbon (OCsed) concentration profiles, it can be shown that the observed variability reflects differences in the relative input and trapping of fine-grained sediment from seaward sources vs. landward sources linked to seasonal-scale changes in freshwater flow. During high flow conditions, the geochemical data indicate that most of the fine-grained sediments trapped in the estuary are newly eroded basin materials. During lower (base) flow conditions, a higher fraction of mature materials from seaward sources with higher carbonate content is trapped in the lower estuary. Results show that high-resolution, multi-geochemical tracer approaches utilizing strontium isotope ratios (87Sr/86Sr) can distinguish sediment sources and constrain seasonal scale variations in sediment trapping and accumulation in dynamic estuarine environments. Low-energy, subtidal areas such as those in this study are important sinks for metastable, short-to-medium time scale sediment accumulation. These results also show that these same areas can serve as natural recorders of physical, chemical, and biological processes that affect particle and particle-associated material dynamics over seasonal-to-yearly time scales. ?? 2009.
Study of two-phase flow in helical and spiral coils
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Yan, AN; Omrani, Adel
1990-01-01
The principal purposes of the present study were to: (1) observe and develop a fundamental understanding of the flow regimes and their transitions occurring in helical and spiral coils; and (2) obtain pressure drop measurements of such flows, and, if possible, develop a method for predicting pressure drop in these flow geometries. Elaborating upon the above, the general intent is to develop criteria (preferably generalized) for establishing the nature of the flow dynamics (e.g. flow patterns) and the magnitude of the pressure drop in such configurations over a range of flow rates and fluid properties. Additionally, the visualization and identification of flow patterns were a fundamental objective of the study. From a practical standpoint, the conditions under which an annular flow pattern exists is of particular practical importance. In the possible practical applications which would implement these geometries, the working fluids are likely to be refrigerant fluids. In the present study the working fluids were an air-water mixture, and refrigerant 113 (R-113). In order to obtain records of flow patterns and their transitions, video photography was employed extensively. Pressure drop measurements were made using pressure differential transducers connected across pressure taps in lines immediately preceding and following the various test sections.
Materials in the economy; material flows, scarcity, and the environment
Wagner, Lorie A.
2002-01-01
The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.
Visualization and Hierarchical Analysis of Flow in Discrete Fracture Network Models
NASA Astrophysics Data System (ADS)
Aldrich, G. A.; Gable, C. W.; Painter, S. L.; Makedonska, N.; Hamann, B.; Woodring, J.
2013-12-01
Flow and transport in low permeability fractured rock is primary in interconnected fracture networks. Prediction and characterization of flow and transport in fractured rock has important implications in underground repositories for hazardous materials (eg. nuclear and chemical waste), contaminant migration and remediation, groundwater resource management, and hydrocarbon extraction. We have developed methods to explicitly model flow in discrete fracture networks and track flow paths using passive particle tracking algorithms. Visualization and analysis of particle trajectory through the fracture network is important to understanding fracture connectivity, flow patterns, potential contaminant pathways and fast paths through the network. However, occlusion due to the large number of highly tessellated and intersecting fracture polygons preclude the effective use of traditional visualization methods. We would also like quantitative analysis methods to characterize the trajectory of a large number of particle paths. We have solved these problems by defining a hierarchal flow network representing the topology of particle flow through the fracture network. This approach allows us to analyses the flow and the dynamics of the system as a whole. We are able to easily query the flow network, and use paint-and-link style framework to filter the fracture geometry and particle traces based on the flow analytics. This allows us to greatly reduce occlusion while emphasizing salient features such as the principal transport pathways. Examples are shown that demonstrate the methodology and highlight how use of this new method allows quantitative analysis and characterization of flow and transport in a number of representative fracture networks.
Evaluating the biogas potential of the dry fraction from pretreatment of food waste from households
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murto, Marika, E-mail: marika.murto@biotek.lu.se; Björnsson, Lovisa, E-mail: lovisa.bjornsson@miljo.lth.se; Environmental and Energy Systems Studies, Lund University, P.O. Box 118, SE-221 00 Lund
2013-05-15
Highlights: ► A novel approach for biogas production from a waste fraction that today is incinerated. ► Biogas production is possible in spite of the impurities of the waste. ► Tracer studies are applied in a novel way. ► Structural material is needed to improve the flow pattern of the waste. ► We provide a solution to biological treatment for the complex waste fraction. - Abstract: At the waste handling company NSR, Helsingborg, Sweden, the food waste fraction of source separated municipal solid waste is pretreated to obtain a liquid fraction, which is used for biogas production, and a drymore » fraction, which is at present incinerated. This pretreatment and separation is performed to remove impurities, however also some of the organic material is removed. The possibility of realising the methane potential of the dry fraction through batch-wise dry anaerobic digestion was investigated. The anaerobic digestion technique used was a two-stage process consisting of a static leach bed reactor and a methane reactor. Treatment of the dry fraction alone and in a mixture with structural material was tested to investigate the effect on the porosity of the leach bed. A tracer experiment was carried out to investigate the liquid flow through the leach beds, and this method proved useful in demonstrating a more homogenous flow through the leach bed when structural material was added. Addition of structural material to the dry fraction was needed to achieve a functional digestion process. A methane yield of 98 m{sup 3}/ton was obtained from the dry fraction mixed with structural material after 76 days of digestion. This was in the same range as obtained in the laboratory scale biochemical methane potential test, showing that it was possible to extract the organic content in the dry fraction in this type of dry digestion system for the production of methane.« less
Characteristics of Evaporator with a Lipuid-Vapor Separator
NASA Astrophysics Data System (ADS)
Ikeguchi, Masaki; Tanaka, Naoki; Yumikura, Tsuneo
Flow pattern of refrigerant in a heat exchanger tube changes depending on vapor quality, tube diameter, refrigerant flow rate and refrigerant properties. High flow rate causes mist flow where the quality is from 0.8 to 1.0. 1n this flow pattern, the liquid film detaches from the tube wall so that the heat flow is intervened. The heat transfer coefficient generally increases with the flow rate. But the pressure drop of refrigerant flow simultaneously increases and the region of the mist flow enlarges. In order to reduce the pressure drop and suppress the mist flow, we have developped a small liquid-vapor separator that removes the vapor from the evaporating refrigerant flow. This separator is equipped in the middle of the evaporator where the flow pattern is annular. The experiments to evaluate the effect of this separator were carried out and the following conclutions were obtained. (1) Average heat transfer coefficient increases by 30-60 %. (2) Pressure drop reduces by 20-30 %. (3) Cooling Capacity increases by 2-9 %.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.
Direction of unsaturated flow in a homogeneous and isotropic hillslope
Lu, N.; Kaya, B.S.; Godt, J.W.
2011-01-01
The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.
Shear induced alignment of short nanofibers in 3D printed polymer composites.
Yunus, Doruk Erdem; Shi, Wentao; Sohrabi, Salman; Liu, Yaling
2016-12-09
3D printing of composite materials offers an opportunity to combine the desired properties of composite materials with the flexibility of additive manufacturing in geometric shape and complexity. In this paper, the shear-induced alignment of aluminum oxide nanowires during stereolithography printing was utilized to fabricate a nanowire reinforced polymer composite. To align the fibers, a lateral oscillation mechanism was implemented and combined with wall pattern printing technique to generate shear flow in both vertical and horizontal directions. A series of specimens were fabricated for testing the composite material's tensile strength. The results showed that mechanical properties of the composite were improved by reinforcement of nanofibers through shear induced alignment. The improvement of tensile strength was approximately ∼28% by aligning the nanowires at 5 wt% (∼1.5% volume fraction) loading of aluminum oxide nanowires.
Large Eddy Simulation of Supercritical CO2 Through Bend Pipes
NASA Astrophysics Data System (ADS)
He, Xiaoliang; Apte, Sourabh; Dogan, Omer
2017-11-01
Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.
Smart material platforms for miniaturized devices: implications in disease models and diagnostics.
Verma, Ritika; Adhikary, Rishi Rajat; Banerjee, Rinti
2016-05-24
Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.
NASA Astrophysics Data System (ADS)
Sleep, Norman H.
2008-08-01
Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm or hot plume material are likely to extend laterally away from the volcanic edifices whether or not channeling occurs.
Process solutions for reducing PR residue over non-planar wafer
NASA Astrophysics Data System (ADS)
Lin, C. H.; Huang, C. H.; Yang, Elvis; Yang, T. H.; Chen, K. C.; Lu, Chih-Yuan
2011-03-01
SAS (Self-Aligned Source) process has been widely adopted on manufacturing NOR Flash devices. To form the SAS structure, the compromise between small space patterning and sufficiently removing photo resist residue in topographical substrate has been a critical challenge as the device scaling down. In this study, photo simulation, layout optimization, resist processing and tri-layer materials were evaluated to form defect-free and highly extendible SAS structure for NOR Flash devices. Photo simulation suggested more coherent light source allowed the incident light to reach the trench bottom that facilitates the removal of photo resist. Mask bias also benefited the process latitude extension for residue-free SAS printing. In the photo resist processing, both lowering the SB (Soft Bake) and raising PEB (Post-Exposure Bake) temperature of photo resist were helpful to broaden the process window but the final pattern profile was not good enough. Thermal flow for pos-exposure pattern shrinkage achieved small CD (Critical Dimension) patterning with residue-free, however the materials loading effect is another issue to be addressed at memory array boundary. Tri-layer scheme demonstrated good results in terms of free from residue, better substrate reflectivity control, enabling smaller space printing to loosen overlay specification and minimizing the poly gate clipping defect. It was finally proposed to combine with etch effort to from the SAS structure. Besides it is also promising to extend to even smaller technology nodes.
River capture controlling changes in the drainage pattern and river slope
NASA Astrophysics Data System (ADS)
Castelltort, Xavier; Colombo, Ferran
2016-04-01
The crystalline block of Les Guilleries, in the northeast of the Iberian Peninsula, is part of the Hercynian basement over which Palaeogene materials of the Ebro basinwere deposited . This massif is affected by a family of basement fractures of NW-SE direction which continue under the Paleogene cover. This is evident in the areas of contact between the two units. One of these areas affected by fractures was used by the primitive river Ter to transition, through a process of river capture, from the crystal unit Guilleries, with a rectangular drainage pattern, toward the sedimentary cover of the Ebro basin, with a meander drainage pattern. The fractured material that the river Ter used to deepen against the dip of the layers is more evident due to it being rigid and resistant to erosion, the Sandstones of Folgueroles Fm. The use of fractures resulted in a course of the river Ter that can be divided into three subparallel reaches with a shape of Z, which can be described as structural pseudomeanders. The change in the drainage pattern of the river between its passage accross the basement and the cover can never be the product of a process of antecedence or superimposition as has been proclaimed earlier. The rectangular pattern fits the structure of the crystalline massif. The meandering pattern on the cover is due to the difficulty of flowing through the Sandstones of Folgueroles Fm, and to the subsequent pressure loss affecting the current of the river that moves upstream beyond the Bellmunt Anticline. Up to the point where the pattern meander is conserved, river slope is below 1%. Upstream, the river slope increases significantly due to the adaptation of the river to a new layout.
Pattern Formation in Complex Fluids
NASA Astrophysics Data System (ADS)
Shelley, Michael
2000-03-01
Classical fluid instabilities -- such as the Saffman-Taylor instability in a Hele-Shaw cell -- are dramatically modified by using complex fluids. For example, polymeric liquids driven in a Hele-Shaw cell yield "dendritic" patterns with an apparent directional anisotropy. The dynamics of complex liquids can also lead to new instabilities and patterns, such as space-filling patterns formed by successive bucklings of growing "elastica" seen in the phase transition of a liquid crystalline material. Understanding such problems requires an interplay between physical modeling, mathematical analysis, and sophisticated nonlinear simulation. For the first problem, I will discuss a non-Newtonian version of Darcy's law for Hele-Shaw flow. This yields a free-boundary problem for the pattern formation, and requires the solution of a nonlinear elliptic equation in a time-dependent domain. This is pushing the development of adaptive grid methods that represent the geometry accurately and efficiently. Our simulations yield insight into how shear-thinning, as is evinced by polymeric liquids, can produce patterns reminiscent of experiment, with "dendritic fingers", side-branching, and reduced tip-splitting. In the second problem, a long filament in a smectic-A phase grows within an isotropic fluid. The splay deformation of the material gives this filament an elastic response. The macroscopic model describes the dynamics of a growing, elastic filament immersed in a Stokesian fluid. The model marries filament elasticity and tensile forces with a numerically tractable nonlocal slender-body theory. Analysis shows that growth of the filament, despite fluid drag, produces a buckling instability. When coupled to a nonlocal hydrodynamic self-interaction, our fully nonlinear simulations show that such instabilities iterate along the filament, and give "space-filling" patterns.
Flow Patterns in the Jugular Veins of Pulsatile Tinnitus Patients
Kao, Evan; Kefayati, Sarah; Amans, Matthew R.; Faraji, Farshid; Ballweber, Megan; Halbach, Van; Saloner, David
2017-01-01
Pulsatile Tinnitus (PT) is a pulse-synchronous sound heard in the absence of an external source. PT is often related to abnormal flow in vascular structures near the cochlea. One vascular territory implicated in PT is the internal jugular vein (IJV). Using computational fluid dynamics (CFD) based on patient-specific Magnetic Resonance Imaging (MRI), we investigated the flow within the IJV of seven subjects, four symptomatic and three asymptomatic of PT. We found that there were two extreme anatomic types classified by the shape and position of the jugular bulbs: elevated and rounded. PT patients had elevated jugular bulbs that led to a distinctive helical flow pattern within the proximal internal jugular vein. Asymptomatic subjects generally had rounded jugular bulbs that neatly redirected flow from the sigmoid sinus directly into the jugular vein. These two flow patterns were quantified by calculating the length-averaged streamline curvature of the flow within the proximal jugular vein: 130.3 ± 8.1 m-1 for geometries with rounded bulbs, 260.7 ± 29.4 m-1 for those with elevated bulbs (P < 0.005). Our results suggest that variations in the jugular bulb geometry lead to distinct flow patterns that are linked to PT, but further investigation is needed to determine if the vortex pattern is causal to sound generation. PMID:28057349
Sequential Learning and Recognition of Comprehensive Behavioral Patterns Based on Flow of People
NASA Astrophysics Data System (ADS)
Gibo, Tatsuya; Aoki, Shigeki; Miyamoto, Takao; Iwata, Motoi; Shiozaki, Akira
Recently, surveillance cameras have been set up everywhere, for example, in streets and public places, in order to detect irregular situations. In the existing surveillance systems, as only a handful of surveillance agents watch a large number of images acquired from surveillance cameras, there is a possibility that they may miss important scenes such as accidents or abnormal incidents. Therefore, we propose a method for sequential learning and the recognition of comprehensive behavioral patterns in crowded places. First, we comprehensively extract a flow of people from input images by using optical flow. Second, we extract behavioral patterns on the basis of change-point detection of the flow of people. Finally, in order to recognize an observed behavioral pattern, we draw a comparison between the behavioral pattern and previous behavioral patterns in the database. We verify the effectiveness of our approach by placing a surveillance camera on a campus.
Wang, Shuli; Yu, Nianzuo; Wang, Tieqiang; Ge, Peng; Ye, Shunsheng; Xue, Peihong; Liu, Wendong; Shen, Huaizhong; Zhang, Junhu; Yang, Bai
2016-05-25
This article shows morphology-patterned stripes as a new platform for directing flow guidance of the fluid in microfluidic devices. Anisotropic (even unidirectional) spreading behavior due to anisotropic wetting of the underlying surface is observed after integrating morphology-patterned stripes with a Y-shaped microchannel. The anisotropic wetting flow of the fluid is influenced by the applied pressure, dimensions of the patterns, including the period and depth of the structure, and size of the channels. Fluids with different surface tensions show different flowing anisotropy in our microdevice. Moreover, the morphology-patterned surfaces could be used as a microvalve, and gas-water separation in the microchannel was realized using the unidirectional flow of water. Therefore, benefiting from their good performance and simple fabrication process, morphology-patterned surfaces are good candidates to be applied in controlling the fluid behavior in microfluidics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toma, P.R.; Vargas, E.; Kuru, E.
Flow-pattern instabilities have frequently been observed in both conventional gas-lifting and unloading operations of water and oil in low-pressure gas and coalbed reservoirs. This paper identifies the slug-to-annular flow-pattern transition (STA) during upward gas/liquid transportation as a potential cause of flow instability in these operations. It is recommended that the slug-flow pattern be used mainly to minimize the pressure drop and gas compression work associated with gas-lifting large volumes of oil and water. Conversely, the annular flow pattern should be used during the unloading operation to produce gas with relatively small amounts of water and condensate. New and efficient artificialmore » lifting strategies are required to transport the liquid out of the depleted gas or coalbed reservoir level to the surface. This paper presents held data and laboratory measurements supporting the hypothesis that STA significantly contributes to flow instabilities and should therefore be avoided in upward gas/liquid transportation operations. Laboratory high-speed measurements of flow-pressure components under a broad range of gas-injection rates including STA have also been included to illustrate the onset of large STA-related flow-pressure oscillations. The latter body of data provides important insights into gas deliquification mechanisms and identifies potential solutions for improved gas-lifting and unloading procedures. A comparison of laboratory data with existing STA models was performed first. Selected models were then numerically tested in field situations. Effective field strategies for avoiding STA occurrence in marginal and new (offshore) field applications (i.e.. through the use of a slug or annular flow pattern regimen from the bottomhole to wellhead levels) are discussed.« less
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.
Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E
2018-06-22
Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.
Four cells or two? Are four convection cells really necessary?
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Heelis, R. A.
1994-01-01
This paper addresses the question whether a four-cell convection pattern in the polar cap ionosphere is required by observations, or whether the data are fully explainable by a (perhaps highly distorted) two-cell convection pattern. We present convection data from Atmosphere Explorer C, which, if only the flow component in the sunward-antisunward direction were measured, could be explained either as one of two possible distorted two-cell patterns or as a full four-cell pattern. However, neither of the distorted two-cell patterns that are consistent with the sunward-antisunward flow component can be made consistent with the dawn-dusk flow component over the entire spacecraft trajectory, without postulating a severe flow kink and extra field-aligned currents sunward of the spacecraft track. In addition, the zero potential point (which in a four-cell model would mark the division between the two reverse convection cells) also exactly corresponded to the location of the reversal of the east-west component in the flow, a feature predicted from the four-cell model but more difficult to explain in a distorted two-cell model. Because the pattern was repeated on two consecutive passes, time variations can probably be ruled out as a cause of the sunward flow. Between the two northern hemisphere dayside passes, a southern hemisphere nightside pass also showed a region of sunward flow in the polar cap. The fact that in this case the sunward flow was not confined to the dayside also favors a four-cell explanation.
Improved alternatives for estimating in-use material stocks.
Chen, Wei-Qiang; Graedel, T E
2015-03-03
Determinations of in-use material stocks are useful for exploring past patterns and future scenarios of materials use, for estimating end-of-life flows of materials, and thereby for guiding policies on recycling and sustainable management of materials. This is especially true when those determinations are conducted for individual products or product groups such as "automobiles" rather than general (and sometimes nebulous) sectors such as "transportation". We propose four alternatives to the existing top-down and bottom-up methods for estimating in-use material stocks, with the choice depending on the focus of the study and on the available data. We illustrate with aluminum use in automobiles the robustness of and consistencies and differences among these four alternatives and demonstrate that a suitable combination of the four methods permits estimation of the in-use stock of a material contained in all products employing that material, or in-use stocks of different materials contained in a particular product. Therefore, we anticipate the estimation in the future of in-use stocks for many materials in many products or product groups, for many regions, and for longer time periods, by taking advantage of methodologies that fully employ the detailed data sets now becoming available.
Genome-wide introgression among distantly related Heliconius butterfly species.
Zhang, Wei; Dasmahapatra, Kanchon K; Mallet, James; Moreira, Gilson R P; Kronforst, Marcus R
2016-02-27
Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene. Here we characterize genome-wide patterns of introgression between H. besckei, the only species with a red and yellow banded 'postman' wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna. We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix, known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei. We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene/cydno clades. Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.
PIV measurements in a compact return diffuser under multi-conditions
NASA Astrophysics Data System (ADS)
Zhou, L.; Lu, W. G.; Shi, W. D.
2013-12-01
Due to the complex three-dimensional geometries of impellers and diffusers, their design is a delicate and difficult task. Slight change could lead to significant changes in hydraulic performance and internal flow structure. Conversely, the grasp of the pump's internal flow pattern could benefit from pump design improvement. The internal flow fields in a compact return diffuser have been investigated experimentally under multi-conditions. A special Particle Image Velocimetry (PIV) test rig is designed, and the two-dimensional PIV measurements are successfully conducted in the diffuser mid-plane to capture the complex flow patterns. The analysis of the obtained results has been focused on the flow structure in diffuser, especially under part-load conditions. The vortex and recirculation flow patterns in diffuser are captured and analysed accordingly. Strong flow separation and back flow appeared at the part-load flow rates. Under the design and over-load conditions, the flow fields in diffuser are uniform, and the flow separation and back flow appear at the part-load flow rates, strong back flow is captured at one diffuser passage under 0.2Qdes.
NASA Technical Reports Server (NTRS)
Joulain, P.; Cordeiro, P.; Torero, J. L.
2001-01-01
Motivated by fire safety concerns and the advent of long-term micro-gravity facilities, a cooperative program has been developed to study the mechanisms and material properties that control flow assisted (co-current) flame spread. This program has used as a common fire scenario a reacting steady-state boundary layer. Preliminary studies explored the aerodynamics of a reacting boundary layer by simulating a condensed fuel by means of a gas burner. Stability curves for ethane air flames were obtained and different burning regimes were identified. An important feature of this study was the independent identification of the different mechanisms leading to the instability of the flow. It was observed that fuel injection velocity and thermal expansion independently contributed to the separation of the flow at the leading edge of the burner. The occurrence of separation resulted in complex three-dimensional flow patterns that have a dominant effect on critical fire safety parameters such as the stand-off distance and flame length. This work was extended to a solid fuel (PMMA) leading to a Sounding Rocket experiment (Mini-Texus-6). The solid phase showed similar flow patterns, mostly present at low flow velocities (<100 mm/s) but the results clearly demonstrated that the thermal balance at the pyrolyzing fuel surface is the dominant mechanism that controls both stand-off distance and flame length. This thermal balance could be described in a global manner by means of a total mass transfer or "B" number. This "B" number incorporates surface re-radiation, radiative feedback and in-depth heat conduction as first prescribed by Emmons. The mass transfer number becomes the single parameter that determines the evolution of these fire safety variables (flame length, stand-off distance) and therefore can be used as a ranking criterion to assess the flammability of materials. The particular configuration is representative of the NASA upward flame spread test (Test 1) therefore this approach can be used in the interpretation of the results obtained from this test. Nevertheless, complete validation of this approach has not been fully achieved due, mainly because all the measurements necessary to compare with the theoretical predictions have not been obtained. Following these studies two different directions have been taken. The first attempts to elucidate the details of the gas phase combustion reaction and the associated flow field by means of quantitative and qualitative measurements. The second approach, a more practical one, is to apply this methodology to the assessment of material flammability. The former is currently being conducted with a gas burner because it allows for easier control and longer experimentation time. The results obtained so far will be presented in more detail. The latter is a new program therefore only a brief summary of the objectives will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Some observations of separated flow on finite wings
NASA Technical Reports Server (NTRS)
Winkelmann, A. E.; Ngo, H. T.; De Seife, R. C.
1982-01-01
Wind tunnel test results for aspects of flow over airfoils exhibiting single and multiple trailing edge stall 'mushroom' cells are reported. Rectangular wings with aspect ratios of 4.0 and 9.0 were tested at Reynolds numbers of 480,000 and 257,000, respectively. Surface flow patterns were visualized by means of a fluorescent oil flow technique, separated flow was observed with a tuft wand and a water probe, spanwise flow was studied with hot-wire anemometry, smoke flow and an Ar laser illuminated the centerplane flow, and photographs were made of the oil flow patterns. Swirl patterns on partially and fully stalled wings suggested vortex flow attachments in those regions, and a saddle point on the fully stalled AR=4.0 wing indicated a secondary vortex flow at the forward region of the separation bubble. The separation wake decayed downstream, while the tip vortex interacted with the separation bubble on the fully stalled wing. Three mushroom cells were observed on the AR=9.0 wing.
Sefiane, Khellil
2014-04-01
The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Controls on Thermal Discharge in Yellowstone NAtional Park, Wyoming
NASA Astrophysics Data System (ADS)
Mohrmann, Jacob Steven
2007-10-01
Significant fluctuations in discharge occur in hot springs in Yellowstone National Park on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 2002). The purpose of this study was to determine the interval of the fluctuations in discharge and to explain what causes those discharge patterns in three thermally influenced streams in Yellowstone National Park. By monitoring flow in these streams, whose primary source of input is thermal discharge, we were able to find several significant patterns of discharge fluctuations. Patterns were found by using two techniques of spectral analysis. The spectral analyses completed involved using the program "R" as well as Microsoft Excel, both of which use Fourier transforms. The Fourier transform is a linear operator that identifies frequencies in the original function. Stream flow data were collected using a FloDar open channel flow monitor. The flow meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period of approximately two weeks each during the Fall. Flow data were also used from 15-minute data interval from a USGS gaging station at Tantalus Creek. Patterns of discharge fluctuation were found in each stream. By comparing spectral analysis results of flow data with spectral analysis of published tide data and barometric pressure data, connections were drawn between fluctuations in tidal and barometric-pressure patterns and flow patterns. Also, visual comparisons used to identify potential correspondence with earthquakes and precipitation events. At Tantalus Creek, patterns were affected only by barometric pressure changes. At White Creek, one pattern was attributed to barometric pressure fluctuations, and another pattern was found that could be associated with earth-tide forces. At Rabbit Creek, these patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric pressure or earth tide forces, was found at Rabbit and White Creeks. The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest a physical link between the sites, which are close (2.5 km). The time pattern could be a result of a shared hydrothermal aquifer, convectively heating and discharging at both streams. However, the common time pattern could also be the result of independent factors, which coincidentally caused a similar time pattern.
Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.
2006-01-01
Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (<100 m) and 10 deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.
Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)
Lee, Wah-Keat; Socha, John J
2009-01-01
Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159
Vacuum-assisted fluid flow in microchannels to pattern substrates and cells.
Shrirao, Anil B; Kung, Frank H; Yip, Derek; Cho, Cheul H; Townes-Anderson, Ellen
2014-09-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon et al 1999 Adv. Mater 11 946) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm(2). Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.
Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells
Shrirao, Anil B.; Kung, Frank H.; Yip, Derek; Cho, Cheul H.; Townes-Anderson, Ellen
2014-01-01
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology. PMID:24989641
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III
2008-01-01
(25-50 S, 180-210 E) is host to numerous coronae and small volcanic centers (paterae and shield fields), focused (Aditi and Sirona Dorsa) and distributed (penetrative north-south trending wrinkle ridges) contractional deformation, and radial and linear extensional structures, all of which contribute materials to and/or deform the expansive surrounding plains (Nsomeka and Wawalag Planitiae). Regional plains, which are a northern extension of regional plains mapped in the Barrymore Quadrangle V-59 [1], dominate the V-50 quadrangle. Previous mapping divided the regional plains into two members: regional plains, members a and b [2]. A re-evaluation of these members has determined that a continuous and consistent unit contact does not exist; however, the majority of this radar unit or surficial unit will still be displayed on the final map as a stipple pattern as it is a prevalent feature of the quadrangle. With minimal tessera or highland material, much of the quadrangle s oldest materials are plains units (the regional plains). Much of these plains are covered with small shield edifices that exhibit a variety of material contributions (or flows). In the northwest, several flows emerge and flow to the southeast from Diana-Dali Chasmata. Local corona- and mons-fed flows superpose the regional plains; however, earlier stages of volcano-tectonic centers marked by arcuate and radial structural elements, including terrain so heavily deformed that it takes on a new appearance, may have developed prior to or concurrently with the region plains. Northtrending deformation belts disrupt the central portion of the map area and wrinkle ridges parallel these larger belts. Isabella crater, in the northeastern quadrant, is highly asymmetric and displays two prominent ejecta blanket morphologies, which generally correlate with distance from the impact structure suggesting that ejecta block size or ejecta blanket thickness may be the cause. The crater floor is very dark and shows no direct connection with the large outflow to the south, which emphasizes the asymmetry observed. Isabella crater ejecta and outflow materials clearly postdate several small craters in the vicinity.
Self-aligned quadruple patterning using spacer on spacer integration optimization for N5
NASA Astrophysics Data System (ADS)
Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter
2017-04-01
To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.
Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID
2008-05-06
A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Experimental Testing and Modeling of a Pneumatic Regolith Delivery System for ISRU
NASA Technical Reports Server (NTRS)
Santiago-Maldonado, Edgardo; Dominquez, Jesus A.; Mantovani, James G.
2011-01-01
Excavating and transporting planetary regolith are examples of surface activities that may occur during a future space exploration mission to a planetary body. Regolith, whether it is collected on the Moon, Mars or even an asteroid, consists of granular minerals, some of which have been identified to be viable resources that can be mined and processed chemically to extract useful by-products, such as oxygen, water, and various metals and metal alloys. Even the depleted "waste" material from such chemical processes may be utilized later in the construction of landing pads and protective structures at the site of a planetary base. One reason for excavating and conveying planetary regolith is to deliver raw regolith material to in-situ resource utilization (ISRU) systems. The goal of ISRU is to provide expendable supplies and materials at the planetary destination, if possible. An in-situ capability of producing mission-critical substances such as oxygen will help to extend the mission and its success, and will greatly lower the overall cost of a mission by either eliminating, or significantly reducing, the need to transport the same expendable materials from the Earth. In order to support the goals and objectives of present and future ISRU projects, NASA seeks technology advancements in the areas of regolith conveying. Such systems must be effective, efficient and provide reliable performance over long durations while being exposed to the harsh environments found on planetary surfaces. These conditions include contact with very abrasive regolith particulates, exposure to high vacuum or dry (partial) atmospheres, wide variations in temperature, reduced gravity, and exposure to space radiation. Regolith conveying techniques that combine reduced failure modes and low energy consumption with high material transfer rates will provide significant value for future space exploration missions to the surfaces of the moon, Mars and asteroids. Pneumatic regolith conveying has demonstrated itself to be a viable delivery system through testing under terrestrial and reduced gravity conditions in recent years. Modeling and experimental testing have been conducted at NASA Kennedy Space Center to study and advance pneumatic planetary regolith delivery systems in support of NASA's ISRU project. The goal of this work is to use the model to predict solid-gas flow patterns in reduced gravity environments for ISRU inlet gas line allowing the eductor inlet gas flow to vary and depend on the flow pattern developed at the eductor as inferred by the experimental observations.
Divergent growth strategies between red algae and kelps influence biomechanical properties.
Krumhansl, Kira A; Demes, Kyle W; Carrington, Emily; Harley, Christopher D G
2015-11-01
Morphology and material properties are the main components of the mechanical design of organisms, with species groups developing different optimization strategies in the context of their physical environment. For intertidal and subtidal seaweeds, possessing highly flexible and extensible tissues allows individuals to bend and reconfigure in flow, thereby reducing drag. Previous research has shown that aging may compromise these qualities. Tissue age increases with distance from the blade's meristem, which differs in its position on kelps and red algae. Here, we assess whether longitudinal patterns of blade material properties differ between these two algal groups according to tissue age. We performed tensile tests on tissues samples excised from various positions along the extent of blades in nine kelp species (basal growth) and 15 species of red algae (apical growth). We found that older tissues were less flexible and extensible than younger tissues in all species tested. As predicted, tissue near the basal meristem in kelp was more flexible and extensible than older tissue at the blade's distal end. The opposite pattern was observed for red algae, with the most flexible and extensible tissues found near the apical meristem at the distal ends of blades. We propose that divergent patterns in the distribution of material properties along blades may have different consequences for the performance of kelps and red algae. The positioning of younger tissues at the blade base for kelps may enable these species to attain larger body sizes in wave-swept habitats. © 2015 Botanical Society of America.
NASA Technical Reports Server (NTRS)
Smalley, I. J.
1981-01-01
The formation of polygon patterns in the development of crack networks in cooling basalt flows and similar contracting systems, and under natural conditions in an essentially unbounded basalt flow, are analyzed, and the characteristics of hexagonal and pentagonal patterns in isotropic stress fields are discussed.
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
NASA Astrophysics Data System (ADS)
Du, Yang; Xin, Ming Dao
1999-03-01
This paper developed a new type of three dimensional inner microfin tube. The experimental results of the flow patterns for the horizontal condensation inside these tubes are reported in the paper. The flow patterns for the horizontal condensation inside the new made tubes are divided into annular flow, stratified flow and intermittent flow within the test conditions. The experiments of the local heat transfer coefficients for the different flow patterns have been systematically carried out. The experiments of the local heat transfer coefficients changing with the vapor dryness fraction have also been carried out. As compared with the heat transfer coefficients of the two dimensional inner microfin tubes, those of the three dimensional inner microfin tubes increase 47-127% for the annular flow region, 38-183% for the stratified flow and 15-75% for the intermittent flow, respectively. The enhancement factor of the local heat transfer coefficients is from 1.8-6.9 for the vapor dryness fraction from 0.05 to 1.
Flow visualization methods for field test verification of CFD analysis of an open gloveport
Strons, Philip; Bailey, James L.
2017-01-01
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
Zimmermann, H; Tashiro, T; Komiya, Y; Kurokawa, M
1989-02-01
Axonal transport was studied using a single vertebrate neuron, the giant electromotor neuron of the electric catfish, Malapterurus electricus. The electric organs of this strongly electric fish are innervated by two neurons whose axons form one electric nerve each. After injection of [35S]methionine into the spinal cord at the level of the two perikarya radioactively labelled material is exported by fast flow as a small wave with a velocity of 5.8 mm/h and a somal release time of 91 min (29 degrees C). Slow flow investigated between 15 and 39 days had a velocity of 1.36 mm/d at 29 degrees C. Analysis of radiolabelled proteins by polyacrylamide gel electrophoresis revealed different patterns of labelling between slow and fast flow. The relative molecular mass of the two major proteins labelled on slow flow correspond to actin and tubulin. Labelled proteins of higher relative molecular mass may correspond to neurofilament proteins. Our results suggest that this vertebrate single-neuron and single-axon system can be used successfully for axonal transport studies.
NASA Astrophysics Data System (ADS)
Chan, Iatneng
2012-02-01
In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.
An Improved Simulation of the Diurnally Varying Street Canyon Flow
NASA Astrophysics Data System (ADS)
Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha
2012-11-01
The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.
An efficient liner cooling scheme for advanced small gas turbine combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.
1993-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.
NASA Astrophysics Data System (ADS)
Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard
2017-06-01
At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.
Studies of Two-Phase Flow Dynamics and Heat Transfer at Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Witte, Larry C.; Bousman, W. Scott; Fore, Larry B.
1996-01-01
The ability to predict gas-liquid flow patterns is crucial to the design and operation of two-phase flow systems in the microgravity environment. Flow pattern maps have been developed in this study which show the occurrence of flow patterns as a function of gas and liquid superficial velocities as well as tube diameter, liquid viscosity and surface tension. The results have demonstrated that the location of the bubble-slug transition is affected by the tube diameter for air-water systems and by surface tension, suggesting that turbulence-induced bubble fluctuations and coalescence mechanisms play a role in this transition. The location of the slug-annular transition on the flow pattern maps is largely unaffected by tube diameter, liquid viscosity or surface tension in the ranges tested. Void fraction-based transition criteria were developed which separate the flow patterns on the flow pattern maps with reasonable accuracy. Weber number transition criteria also show promise but further work is needed to improve these models. For annular gas-liquid flows of air-water and air- 50 percent glycerine under reduced gravity conditions, the pressure gradient agrees fairly well with a version of the Lockhart-Martinelli correlation but the measured film thickness deviates from published correlations at lower Reynolds numbers. Nusselt numbers, based on a film thickness obtained from standard normal-gravity correlations, follow the relation, Nu = A Re(sup n) Pr(exp l/3), but more experimental data in a reduced gravity environment are needed to increase the confidence in the estimated constants, A and n. In the slug flow regime, experimental pressure gradient does not correlate well with either the Lockhart-Martinelli or a homogeneous formulation, but does correlate nicely with a formulation based on a two-phase Reynolds number. Comparison with ground-based correlations implies that the heat transfer coefficients are lower at reduced gravity than at normal gravity under the same flow conditions. Nusselt numbers can be correlated in a fashion similar to Chu and Jones.
NASA Astrophysics Data System (ADS)
Salaorni, E.; Stoffel, M.; Tutubalina, O.; Chernomorets, S.; Seynova, I.; Sorg, A.
2017-01-01
Lahars are highly concentrated, water-saturated volcanic hyperconcentrated flows or debris flows containing pyroclastic material and are a characteristic mass movement process on volcanic slopes. On Kamchatka Peninsula (Russian Federation), lahars are widespread and may affect remote settlements. Historical records of past lahar occurrences are generally sparse and mostly limited to events which damaged infrastructure on the slopes or at the foot of volcanoes. In this study, we present a tree-ring-based reconstruction of spatiotemporal patterns of past lahar activity at Shiveluch volcano. Using increment cores and cross sections from 126 Larix cajanderi trees, we document 34 events covering the period AD 1729-2012. Analyses of the seasonality of damage in trees reveal that 95% of all lahars occurred between October and May and thus point to the predominant role of the sudden melt of the snow cover by volcanic material. These observations suggest that most lahars were likely syn-eruptive and that lahar activity is largely restricted to periods of volcanic activity. By contrast, rainfall events do not seem to play a significant role in lahar triggering.
Syn, C.K.; Lesuer, D.R.
1995-07-04
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.
Syn, Chol K.; Lesuer, Donald R.
1995-01-01
A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James L.
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
Complex magnetohydrodynamic low-Reynolds-number flows.
Xiang, Yu; Bau, Haim H
2003-07-01
The interaction between electric currents and a magnetic field is used to produce body (Lorentz) forces in electrolyte solutions. By appropriate patterning of the electrodes, one can conveniently control the direction and magnitude of the electric currents and induce spatially and temporally complicated flow patterns. This capability is useful, not only for fundamental flow studies, but also for inducing fluid flow and stirring in minute devices in which the incorporation of moving components may be difficult. This paper focuses on a theoretical and experimental study of magnetohydrodynamic flows in a conduit with a rectangular cross section. The conduit is equipped with individually controlled electrodes uniformly spaced at a pitch L. The electrodes are aligned transversely to the conduit's axis. The entire device is subjected to a uniform magnetic field. The electrodes are divided into two groups A and C in such a way that there is an electrode of group C between any two electrodes of group A. We denote the various A and C electrodes with subscripts, i.e., A(i) and C(i), where i=0,+/-1,+/-2, .... When positive and negative potentials are, respectively, applied to the even and odd numbered A electrodes, opposing electric currents are induced on the right and left hand sides of each A electrode. These currents generate transverse forces that drive cellular convection in the conduit. We refer to the resulting flow pattern as A. When electrodes of group C are activated, a similar flow pattern results, albeit shifted in space. We refer to this flow pattern as C. By alternating periodically between patterns A and C, one induces Lagrangian chaos. Such chaotic advection may be beneficial for stirring fluids, particularly in microfluidic devices. Since the flow patterns A and C are shifted in space, they also provide a mechanism for Lagrangian drift that allows net migration of passive tracers along the conduit's length.
Sul, Bora; Oppito, Zachary; Jayasekera, Shehan; Vanger, Brian; Zeller, Amy; Morris, Michael; Ruppert, Kai; Altes, Talissa; Rakesh, Vineet; Day, Steven; Robinson, Risa; Reifman, Jaques; Wallqvist, Anders
2018-05-01
Computational models are useful for understanding respiratory physiology. Crucial to such models are the boundary conditions specifying the flow conditions at truncated airway branches (terminal flow rates). However, most studies make assumptions about these values, which are difficult to obtain in vivo. We developed a computational fluid dynamics (CFD) model of airflows for steady expiration to investigate how terminal flows affect airflow patterns in respiratory airways. First, we measured in vitro airflow patterns in a physical airway model, using particle image velocimetry (PIV). The measured and computed airflow patterns agreed well, validating our CFD model. Next, we used the lobar flow fractions from a healthy or chronic obstructive pulmonary disease (COPD) subject as constraints to derive different terminal flow rates (i.e., three healthy and one COPD) and computed the corresponding airflow patterns in the same geometry. To assess airflow sensitivity to the boundary conditions, we used the correlation coefficient of the shape similarity (R) and the root-mean-square of the velocity magnitude difference (Drms) between two velocity contours. Airflow patterns in the central airways were similar across healthy conditions (minimum R, 0.80) despite variations in terminal flow rates but markedly different for COPD (minimum R, 0.26; maximum Drms, ten times that of healthy cases). In contrast, those in the upper airway were similar for all cases. Our findings quantify how variability in terminal and lobar flows contributes to airflow patterns in respiratory airways. They highlight the importance of using lobar flow fractions to examine physiologically relevant airflow characteristics.
Visualization of flows in a motored rotary combustion engine using holographic interferometry
NASA Technical Reports Server (NTRS)
Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.
1986-01-01
The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.
Kim, Seokyeon; Jeong, Seongmin; Woo, Insoo; Jang, Yun; Maciejewski, Ross; Ebert, David S
2018-03-01
Geographic visualization research has focused on a variety of techniques to represent and explore spatiotemporal data. The goal of those techniques is to enable users to explore events and interactions over space and time in order to facilitate the discovery of patterns, anomalies and relationships within the data. However, it is difficult to extract and visualize data flow patterns over time for non-directional statistical data without trajectory information. In this work, we develop a novel flow analysis technique to extract, represent, and analyze flow maps of non-directional spatiotemporal data unaccompanied by trajectory information. We estimate a continuous distribution of these events over space and time, and extract flow fields for spatial and temporal changes utilizing a gravity model. Then, we visualize the spatiotemporal patterns in the data by employing flow visualization techniques. The user is presented with temporal trends of geo-referenced discrete events on a map. As such, overall spatiotemporal data flow patterns help users analyze geo-referenced temporal events, such as disease outbreaks, crime patterns, etc. To validate our model, we discard the trajectory information in an origin-destination dataset and apply our technique to the data and compare the derived trajectories and the original. Finally, we present spatiotemporal trend analysis for statistical datasets including twitter data, maritime search and rescue events, and syndromic surveillance.
Network structure of subway passenger flows
NASA Astrophysics Data System (ADS)
Xu, Q.; Mao, B. H.; Bai, Y.
2016-03-01
The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.
Flow-driven instabilities during pattern formation of Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
Gholami, A.; Steinbock, O.; Zykov, V.; Bodenschatz, E.
2015-06-01
The slime mold Dictyostelium discoideum is a well known model system for the study of biological pattern formation. In the natural environment, aggregating populations of starving Dictyostelium discoideum cells may experience fluid flows that can profoundly change the underlying wave generation process. Here we study the effect of advection on the pattern formation in a colony of homogeneously distributed Dictyostelium discoideum cells described by the standard Martiel-Goldbeter model. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. The evolution of small perturbations in cAMP concentrations is studied analytically in the linear regime and by corresponding numerical simulations. We show that flow can significantly influence the dynamics of the system and lead to a flow-driven instability that initiate downstream traveling cAMP waves. We also show that boundary conditions have a significant effect on the observed patterns and can lead to a new kind of instability.
Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns
NASA Astrophysics Data System (ADS)
Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.
2017-07-01
Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua
2016-11-04
A fluorimetric Hg 2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the "coffee stains" toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized "coffee stains". On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg 2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of "coffee stains" on test strips may expand the scope of applications of test strips-based "point-of-care" analysis methods or detection devices in the biomedical and environmental fields.
Analysis of moving surface structures at a laser-induced boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2014-10-01
Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.
Magnetic fields and flows between 1 AU and 0.3 AU during the primary mission of HELIOS 1
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.; Mariani, F.; Bavassano, B.; Villante, U.; Rosenbauer, H.; Schwenn, R.; Harvey, J.
1978-01-01
The recurrent flow and field patterns observed by HELIOS 1, and the relation between these patterns and coronal holes are discussed. Four types of recurrent patterns were observed: a large recurrent stream, a recurrent slow (quiet) flow, a rapidly evolving flow, and a recurrent compound stream. There recurrent streams were not stationary, for although the sources recurred at approximately the same longitudes on successive rotations, the shapes and latitudinal patterns changed from one rotation to the next. A type of magnetic field and plasma structure characterized by a low ion temperature and a high magnetic field intensity is described as well as the structures of stream boundaries between the sun at approximately 0.3 AU.
NASA Astrophysics Data System (ADS)
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard
2017-11-01
Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
GIS-based modeling of debris flow processes in an Alpine catchment, Antholz valley, Italy
NASA Astrophysics Data System (ADS)
Sandmeier, Christine; Damm, Bodo; Terhorst, Birgit
2010-05-01
Debris flows are frequent natural hazards in mountain regions, which seriously can threat human lives and economic values. In the European Alps the occurrence of debris flows might even increase with respect to climate change, including permafrost degradation, glacier retreat and variable precipitation patterns. Thus, detailed understanding of process parameters and spatial distribution of debris flows is necessary to take appropriate protection measures for risk assessment. In this context, numerical models have been developed and applied successfully for simulation and prediction of debris-flow hazards and related process areas. In our study a GIS-based model is applied in an alpine catchment to address the following questions: Where are potential initiating areas of debris flows? How much material can be mobilized? What is the influence of topography and precipitation? The study area is located in the Antholz valley in the eastern Alps of Northern Italy. The investigated catchment of the Klammbach creek comprises 6.5 km² and is divided into two sub-catchments. Geologically it is dominated by metamorphic rock and altitudes range between 1310 and 3270 m. In summer 2005 a debris flow of more than 100000 m³ took place, originating from a steep, sparsely vegetated debris cone in the western part of the catchment. According to a regional study, the lower permafrost boundary in this area has risen by 250 m. In a first step, during a field survey, geomorphological mapping was performed, several channel cross-sections were measured and sediment samples were taken. Using mapping results and aerial images, a geomorphological map was created. In further steps, results from the field work, the geomorphological map and existing digital data sets, including a digital elevation model with 2.5 m resolution, are used to derive input data for the modeling of debris flow processes. The model framework ‘r.debrisflow' based on GRASS GIS is applied (Mergili, 2008*), as it is capable of simulating the potential spatial patterns of debris flow deposition, as well as their initiation and movement. Furthermore it is a freely available and opensource software and can thus be improved and extended. ‘r.debrisflow' couples a hydraulic, a slope stability, a sediment transport and a debris flow runout model, which are combined differently in 6 simulation modes. In a first step, model parameters are calibrated using the runout only mode with known parameters of the 2005 debris flow. Finally, the full mode will be used to evaluate the debris-flow potential of the whole catchment. First results from the geomorphological mapping reveal numerous surface forms, like levees, debris flow lobes or scars that indicate past and recent debris flow activity in the area. In both sub-catchments, there are large areas of unconsolidated, sparsely or unvegetated sediments, surrounded by high rock walls, which conduct precipitation rapidly into the debris. The two sub-catchments, however, have different topographic characteristics, which can be analyzed with the model in more detail. In a next step, the potential starting areas of future debris flows shall be identified and the potential amount of mobilized material shall be estimated by the model. *Mergili, M. (2008): Integrated modelling of debris flows with Open Source GIS. Ph.D. thesis. University of Innsbruck. http://www.uibk.ac.at/geographie/personal/mergili/dissertation.pdf
NASA Technical Reports Server (NTRS)
Daileda, J. J.
1975-01-01
An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.
Rotating drum tests of particle suspensions within a fines dispersion
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei
2014-05-01
Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.
NASA Astrophysics Data System (ADS)
Patel, Shivam; Usmani, Abdullah Y.; Muralidhar, K.
2017-06-01
Physiological flows in rigid diseased arterial flow phantoms emulating an abdominal aortic aneurysm (AAA) under rest conditions with aorto-iliac bifurcation and iliac stenosis are examined in vitro through 2D PIV measurements. Flow characteristics are first established in the model resembling a symmetric AAA with a straight outlet tube. The influence of aorto-iliac bifurcation and iliac stenosis on AAA flow dynamics is then explored through a comparison of the nature of flow patterns, vorticity evolution, vortex core trajectory and hemodynamic factors against the reference configuration. Specifically, wall shear stress and oscillatory shear index in the bulge portion of the models are of interest. The results of this investigation indicate overall phenomenological similarity in AAA flow patterns across the models. The pattern is characterized by a central jet and wall-bounded vortices whose strength increases during the deceleration phase as it moves forward. The central jet impacts the wall of AAA at its distal end. In the presence of an aorto-iliac bifurcation as well as iliac stenosis, the flow patterns show diminished strength, expanse and speed of propagation of the primary vortices. The positions of the instantaneous vortex cores, determined using the Q-function, correlate with flow separation in the bulge, flow resistance due to a bifurcation, and the break in symmetry introduced by a stenosis in one of the legs of the model. Time-averaged WSS in a healthy aorta is around 0.70 N m-2 and is lowered to the range ±0.2 N m-2 in the presence of the downstream bifurcation with a stenosed common iliac artery. The consequence of changes in the flow pattern within the aneurysm on disease progression is discussed.
Flow Pattern Phenomena in Two-Phase Flow in Microchannels
NASA Astrophysics Data System (ADS)
Keska, Jerry K.; Simon, William E.
2004-02-01
Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.
Addla, Sanjai Kumar; Marri, Rajender Reddy; Daayana, Sai Lakshmi; Irwin, Paul
2010-09-01
The aim of our study was to access the variability of maximum flow rate (Q(max)), average flow rate (Q(av)) and flow pattern while varying the point of impact of flow on the flowmeter. Water was delivered through a motorised tube holder in a standardised experimental set up. Flow was directed in 4 different directions on the funnel; 1) Periphery, 2) Base, 3) Centre and, 4) in a cruising motion from the periphery of the funnel to the centre and back again. The variation in the Q(max), Q(av) and the flow pattern were studied at 4 different flow rates. The variables recorded when the flow was directed at the centre of the funnel was taken as baseline. There was a significant difference in the Q(max) and Q(av)when the point of impact was at the periphery or in a cruising motion compared to the centre. The difference was more marked with cruising motion with a characteristic flow pattern. The maximum percentage difference in Q(av) was 4.1%, whereas the difference in Q(max) was higher at 16.6% on comparing crusing motion with the values from the centre. We have demonstrated a significant variation in Q(max), Q(av) and flow pattern with change in the point of impact on the flowmeter. Though the changes in Q(av) were statistically significant, the alteration in the recorded Q(max) values was more striking. Our study emphasizes the importance of combining Q(av) and flow pattern along with Q(max) in interpretation of results of uroflowmetry. © 2010 Wiley-Liss, Inc.
Design space exploration for early identification of yield limiting patterns
NASA Astrophysics Data System (ADS)
Li, Helen; Zou, Elain; Lee, Robben; Hong, Sid; Liu, Square; Wang, JinYan; Du, Chunshan; Zhang, Recco; Madkour, Kareem; Ali, Hussein; Hsu, Danny; Kabeel, Aliaa; ElManhawy, Wael; Kwan, Joe
2016-03-01
In order to resolve the causality dilemma of which comes first, accurate design rules or real designs, this paper presents a flow for exploration of the layout design space to early identify problematic patterns that will negatively affect the yield. A new random layout generating method called Layout Schema Generator (LSG) is reported in this paper, this method generates realistic design-like layouts without any design rule violation. Lithography simulation is then used on the generated layout to discover the potentially problematic patterns (hotspots). These hotspot patterns are further explored by randomly inducing feature and context variations to these identified hotspots through a flow called Hotspot variation Flow (HSV). Simulation is then performed on these expanded set of layout clips to further identify more problematic patterns. These patterns are then classified into design forbidden patterns that should be included in the design rule checker and legal patterns that need better handling in the RET recipes and processes.
The social construction of copyright ethics and values.
Slaughter, Sheila; Rhoades, Gary
2010-06-01
This study is based on analysis of copyright policies and 26 interviews with science and engineering faculty at three research universities on the topic of copyright beliefs, values, and practices, with emphasis on copyright of instructional materials, courseware, tools, and texts. Given that research universities now emphasize increasing external revenue flows through marketing of intellectual property, we expected copyright to follow the path of patents and lead to institutional emphasis of policies and practices that enhanced universities' intellectual property portfolios, accompanied by an increase in copyrighting by professors. Although this pattern occurred with regard to institutions, professors offered a more varied pattern, with some fully participating in commercialization of copyright and embracing entrepreneurial values, while others resisted or subverted commercial activity in favor of traditional science and engineering values.
Three-dimensional vortex patterns in a starting flow
NASA Astrophysics Data System (ADS)
Freymuth, P.; Finaish, F.; Bank, W.
1985-12-01
Freymuth et al. (1983, 1984, 1985) have conducted investigations involving chordwise vortical-pattern visualizations in a starting flow of constant acceleration around an airfoil. Detailed resolution of vortical shapes in two dimensions could be obtained. No visualization in the third spanwise dimension is needed as long as the flow remains two-dimensional. However, some time after flow startup, chordwise vortical patterns become blurred, indicating the onset of turbulence. The present investigation is concerned with an extension of the flow visualization from a chordwise cross section to the spanwise dimension. The investigation has the objective to look into the two-dimensionality of the initial vortical developments and to resolve three-dimensional effects during the transition to turbulence. Attention is given to the visualization method, the chordwise vs spanwise visualization in the two-dimensional regime, the spanwise visualization of transition, and the visualization of vortical patterns behind the trailing edge.
NASA Astrophysics Data System (ADS)
Chen, Yi-Chieh; Li, Tsung-Han; Lin, Hung-Yu; Chen, Kao-Tun; Wu, Chun-Sheng; Lai, Ya-Chieh; Hurat, Philippe
2018-03-01
Along with process improvement and integrated circuit (IC) design complexity increased, failure rate caused by optical getting higher in the semiconductor manufacture. In order to enhance chip quality, optical proximity correction (OPC) plays an indispensable rule in the manufacture industry. However, OPC, includes model creation, correction, simulation and verification, is a bottleneck from design to manufacture due to the multiple iterations and advanced physical behavior description in math. Thus, this paper presented a pattern-based design technology co-optimization (PB-DTCO) flow in cooperation with OPC to find out patterns which will negatively affect the yield and fixed it automatically in advance to reduce the run-time in OPC operation. PB-DTCO flow can generate plenty of test patterns for model creation and yield gaining, classify candidate patterns systematically and furthermore build up bank includes pairs of match and optimization patterns quickly. Those banks can be used for hotspot fixing, layout optimization and also be referenced for the next technology node. Therefore, the combination of PB-DTCO flow with OPC not only benefits for reducing the time-to-market but also flexible and can be easily adapted to diversity OPC flow.
Baillif, Stéphanie; Leduff, Frank; Hartmann, Daniel J; Kodjikian, Laurent
2013-01-01
To compare the adherence and structural organization of Staphylococcus epidermidis biofilm on intraocular lenses (IOLs). IOLs made of 3 different biomaterials [polymethyl methacrylate (PMMA), hydrophilic acrylic or hydrophobic acrylic] were incubated into an S. epidermidis bacterial solution. Scanning electron microscopy was used to count the bound bacteria and to analyze the structural biofilm architecture. After 4-6 h of incubation, adherence was statistically weakest on the hydrophilic acrylic polymer. On the hydrophobic acrylic material, the bacterial cells tended to cover the substratum in a horizontal spread in a continuous monolayer. On the hydrophilic acrylic material or on the PMMA material bacterial cells tended to form only few, small scattered cell clusters. The data suggest that the pattern of S. epidermidis adhesion varies with the IOL biomaterial. Hydrophobic IOLs seem to be more permissive to S. epidermidis adhesion. Copyright © 2013 S. Karger AG, Basel.
Slug to churn transition analysis using wire-mesh sensor
NASA Astrophysics Data System (ADS)
H. F. Velasco, P.; Ortiz-Vidal, L. E.; Rocha, D. M.; Rodriguez, O. M. H.
2016-06-01
A comparison between some theoretical slug to churn flow-pattern transition models and experimental data is performed. The flow-pattern database considers vertical upward air-water flow at standard temperature and pressure for 50 mm and 32 mm ID pipes. A briefly description of the models and its phenomenology is presented. In general, the performance of the transition models is poor. We found that new experimental studies describing objectively both stable and unstable slug flow-pattern are required. In this sense, the Wire Mesh Sensor (WMS) can assist to that aim. The potential of the WMS is outlined.
Schönberger, Markus; Deutsch, Steven; Manning, Keefe B.
2012-01-01
Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tool. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device, the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5 to 15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient’s behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mmHg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood. PMID:22929894
Effect of spatial organisation behaviour on upscaling the overland flow formation in an arable land
NASA Astrophysics Data System (ADS)
Silasari, Rasmiaditya; Blöschl, Günter
2014-05-01
Overland flow during rainfall events on arable land is important to investigate as it affects the land erosion process and water quality in the river. The formation of overland flow may happen through different ways (i.e. Hortonian overland flow, saturation excess overland flow) which is influenced by the surface and subsurface soil characteristics (i.e. land cover, soil infiltration rate). As the soil characteristics vary throughout the entire catchment, it will form distinct spatial patterns with organised or random behaviour. During the upscaling of hydrological processes from plot to catchment scale, this behaviour will become substantial since organised patterns will result in higher spatial connectivity and thus higher conductivity. However, very few of the existing studies explicitly address this effect of spatial organisations of the patterns in upscaling the hydrological processes to the catchment scale. This study will assess the upscaling of overland flow formation with concerns of spatial organisation behaviour of the patterns by application of direct field observations under natural conditions using video camera and soil moisture sensors and investigation of the underlying processes using a physical-based hydrology model. The study area is a Hydrological Open Air Laboratory (HOAL) located at Petzenkirchen, Lower Austria. It is a 64 ha catchment with land use consisting of arable land (87%), forest (6%), pasture (5%) and paved surfaces (2%). A video camera is installed 7m above the ground on a weather station mast in the middle of the arable land to monitor the overland flow patterns during rainfall events in a 2m x 6m plot scale. Soil moisture sensors with continuous measurement at different depth (5, 10, 20 and 50cm) are installed at points where the field is monitored by the camera. The patterns of overland flow formation and subsurface flow state at the plot scale will be generated using a coupled surface-subsurface flow physical-based hydrology model. The observation data will be assimilated into the model to verify the corresponding processes between surface and subsurface flow during the rainfall events. The patterns of conductivity then will be analyzed at catchment scale using the spatial stochastic analysis based on the classification of soil characteristics of the entire catchment. These patterns of conductivity then will be applied in the model at catchment scale to see how the organisational behaviour can affect the spatial connectivity of the hydrological processes and the results of the catchment response. A detailed modelling of the underlying processes in the physical-based model will allow us to see the direct effect of the spatial connectivity to the occurring surface and subsurface flow. This will improve the analysis of the effect of spatial organisations of the patterns in upscaling the hydrological processes from plot to catchment scale.
NASA Astrophysics Data System (ADS)
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.
2011-01-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. PMID:21974603
Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R
2011-09-01
Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics
Dose Analysis of the Model 112A Pulserad Pulsed X-Ray Generator by Its Cyltran
1989-12-01
field was performed by R. B. Pietruszka [Ref. 1] using the dosimetry system which consists of Thermoluminescent Dosimeter ( TLD ) and associated TLD ...has the same pattern at a specific angle of the dominant electron flow. For a Marx charge of 75 kV, Figure 18 shows the absorbed dose in TLD normalized... Electron energy (1.66 MeV to 0.05 MeV) 3 materials 56 minutes 45 minutes (Ta, Al, TLD ) 68 APPENDIX F. MEASURED EXPOSURE VARIATION Marx Charge 75 kV
FEM modeling of postseismic deformation of poroelastic material
NASA Astrophysics Data System (ADS)
Kawamoto, S.; Ito, T.; Hirahara, K.
2004-12-01
Following a large earthquake, postseismic deformation in the focal region has been observed by GPS, leveling measurements and the other geodetic measurements. To explain the postseismic deformation, researchers have proposed and well investigated two physical mechanisms of afterslip and viscoelastic relaxation. In some cases, however, there have been observed postseismic deformation which can not be explained by these mechanisms. Therefore, another mechanism has been proposed, where the crust is treated as "poroelastic material". This concept is called "poroelasticity". In this concept, postseismic deformation is caused by pore fluid flow due to the coseismic stress redistribution. We explored, therefore, the postseismic deformation due to pore fluid flow in a poroelastic material using finite element method (FEM), which can easily handle lateral variations of hydraulic diffusivity and elastic or plastic property. We used the FEM program 'CAMBIOT3D' originally developed by Geotech. Lab. Gunma University, Japan (2003). Because this program was developed for soil mechanics, we must have modified so as to calculate deformation due to earthquake faulting. We implemented the 'split node technique' (Melosh and Refsky, 1981) to calculate the coseismic deformation. In addition to this, we modified the program to calculate the deformation taking into account the Skempton's B. This coefficient B determines what fraction of the coseismic stress due to an earthquake is allotted to pore pressure. Without Skempton's B, coseismic pore pressure becomes too large and hence postseismic deformation is calculated too large. We evaluated the postseismic deformation in a poroelastic material to show that the poroelastic deformation is quite different from that of afterslip and viscoelastic relaxation models. In this presentation, we show the postseismic deformation due to pore fluids flow in a poroelastic material and the effect of Skempton's B. Especially, we discuss what different pattern of postseismic deformation is produced depending on the lateral variation of hydraulic diffusivity structures in and around the fault zone, which structures have been differently inferred from fault zone core sampling researches and so on.
Multilevel integration of patternable low-κ material into advanced Cu BEOL
NASA Astrophysics Data System (ADS)
Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.
2010-04-01
In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.
St Clair, James J. H.; Burns, Zackory T.; Bettaney, Elaine M.; Morrissey, Michael B.; Otis, Brian; Ryder, Thomas B.; Fleischer, Robert C.; James, Richard; Rutz, Christian
2015-01-01
Social-network dynamics have profound consequences for biological processes such as information flow, but are notoriously difficult to measure in the wild. We used novel transceiver technology to chart association patterns across 19 days in a wild population of the New Caledonian crow—a tool-using species that may socially learn, and culturally accumulate, tool-related information. To examine the causes and consequences of changing network topology, we manipulated the environmental availability of the crows' preferred tool-extracted prey, and simulated, in silico, the diffusion of information across field-recorded time-ordered networks. Here we show that network structure responds quickly to environmental change and that novel information can potentially spread rapidly within multi-family communities, especially when tool-use opportunities are plentiful. At the same time, we report surprisingly limited social contact between neighbouring crow communities. Such scale dependence in information-flow dynamics is likely to influence the evolution and maintenance of material cultures. PMID:26529116
Modeling Microscale Electro-thermally Induced Vortex Flows
NASA Astrophysics Data System (ADS)
Paul, Rajorshi; Tang, Tian; Kumar, Aloke
2017-11-01
In presence of a high frequency alternating electric field and a laser induced heat source, vortex flows are generated inside micro-channels. Such electro-thermally influenced micro-vortices can be used for manipulating nano-particles, programming colloidal assemblies, trapping biological cells as well as for fabricating designed bacterial biofilms. In this study, a theoretical model is developed for microscale electro-thermally induced vortex flows with multiple heat sources. Semi-analytical solutions are obtained, using Hankel transformation and linear superposition, for the temperature, pressure and velocity fields. The effect of material properties such as electrical and thermal conductivities, as well as experimental parameters such as the frequency and strength of the alternating electric field, and the intensity and heating profile of the laser source, are systematically investigated. Resolution for a pair of laser sources is determined by analyzing the strength of the micro-vortices under the influence of two heating sources. Results from this work will provide useful insights into the design of efficient optical tweezers and Rapid Electrokinetic Patterning techniques.
Yue, Jun; Rebrov, Evgeny V; Schouten, Jaap C
2014-05-07
We report a three-phase slug flow and a parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 μm connected to a cross-flow mixer. The three-phase slug flow pattern is characterized by a flow of decane droplets containing single elongated nitrogen bubbles, which are separated by water slugs. This flow pattern was observed at a superficial velocity of decane (in the range of about 0.6 to 10 mm s(-1)) typically lower than that of water for a given superficial gas velocity in the range of 30 to 91 mm s(-1). The parallel-slug flow pattern is characterized by a continuous water flow in one part of the channel cross section and a parallel flow of decane with dispersed nitrogen bubbles in the adjacent part of the channel cross section, which was observed at a superficial velocity of decane (in the range of about 2.5 to 40 mm s(-1)) typically higher than that of water for each given superficial gas velocity. The three-phase slug flow can be seen as a superimposition of both decane-water and nitrogen-decane slug flows observed in the chip when the flow of the third phase (viz. nitrogen or water, respectively) was set at zero. The parallel-slug flow can be seen as a superimposition of the decane-water parallel flow and the nitrogen-decane slug flow observed in the chip under the corresponding two-phase flow conditions. In case of small capillary numbers (Ca ≪ 0.1) and Weber numbers (We ≪ 1), the developed two-phase pressure drop model under a slug flow has been extended to obtain a three-phase slug flow model in which the 'nitrogen-in-decane' droplet is assumed as a pseudo-homogeneous droplet with an effective viscosity. The parallel flow and slug flow pressure drop models have been combined to obtain a parallel-slug flow model. The obtained models describe the experimental pressure drop with standard deviations of 8% and 12% for the three-phase slug flow and parallel-slug flow, respectively. An example is given to illustrate the model uses in designing bifurcated microchannels that split the three-phase slug flow for high-throughput processing.
Functional polymer sheet patterning using microfluidics.
Li, Minggan; Humayun, Mouhita; Kozinski, Janusz A; Hwang, Dae Kun
2014-07-22
Poly(dimethylsiloxane) (PDMS)-based microfluidics provide a novel approach to advanced material synthesis. While PDMS has been successfully used in a wide range of industrial applications, due to the weak mechanical property channels generally possess low aspect ratios (AR) and thus produce microparticles with similarly low ARs. By increasing the channel width to nearly 1 cm, AR to 267, and implementing flow lithography, we were able to establish the slit-channel lithography. Not only does this allow us to synthesize sheet materials bearing multiscale features and tunable chemical anisotropy but it also allows us to fabricate functional layered sheet structures in a one-step, high-throughput fashion. We showcased the technique's potential role in various applications, such as the synthesis of planar material with micro- and nanoscale features, surface morphologies, construction of tubular and 3D layered hydrogel tissue scaffolds, and one-step formation of radio frequency identification (RFID) tags. The method introduced offers a novel route to functional sheet material synthesis and sheet system fabrication.
DSMC Simulations of Irregular Source Geometries for Io's Pele Plume
NASA Astrophysics Data System (ADS)
McDoniel, William; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.
2010-10-01
Volcanic plumes on Io represent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D rarefied gas dynamics method (DSMC) is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. These deposition patterns, such as the deposition ring's shape and orientation, as well as the presence and shape of ash deposits around the vent, are linked to the shape of the vent from which the plume material arises. We will present three-dimensional simulations for a variety of possible vent geometries for Pele based on observations of the volcano's caldera. One is a curved line source corresponding to a Galileo IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire lava lake at the center of the plume. The curvature of the former is seen to be sufficient to produce the features seen in observations of Pele's deposition pattern, but the particular orientation of the source is found to be such that it cannot match the orientation of these features on Io's surface. The latter corrects the error in orientation while losing some of the structure, suggesting that the actual source may correspond well with part of the shore of the lava lake. In addition, we are collaborating with a group at the University of Illinois at Urbana-Champaign to develop a hybrid method to link the continuum flow beneath Io's surface and very close to the vent to the more rarefied flow in the large volcanic plumes. This work was funded by NASA-PATM grant NNX08AE72G.
Flowing gas, non-nuclear experiments on the gas core reactor
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Suckling, D. H.; Copper, C. G.
1972-01-01
Flow tests were conducted on models of the gas core (cavity) reactor. Variations in cavity wall and injection configurations were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or freon to simulate the central nuclear fuel gas. All tests were run in the down-firing direction so that gravitational effects simulated the acceleration effect of a rocket. Results show that acceptable flow patterns with high volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity along the cavity wall, using louvered or oblique-angle-honeycomb injection schemes.
Complex Greenland outlet glacier flow captured
Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
2016-01-01
The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316
Shear-Modulated Electroosmotic Flow on a Patterned Charged Surface
NASA Astrophysics Data System (ADS)
Wei, Hsien-Hung
2004-11-01
The effect of imposing shear flow on a charge-modulated electroosmotic flow is theoretically investigated. The flow pattern can contain saddle points or closed streamlines, depending on the relative strength of an imposed shear to the applied electrical field. The formation of closed streamlines could be advantageous for trapping non-diffusive particles in desired locations. Different time periodic alternating flows and their corresponding particle trajectories are also examined for assessing strategies for creating efficient mixing.
NASA Technical Reports Server (NTRS)
Canacci, Victor A.; Braun, M. Jack
1994-01-01
The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.
Flow-separation patterns on symmetric forebodies
NASA Technical Reports Server (NTRS)
Keener, Earl R.
1986-01-01
Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.
Suslov, Sergey A; Bozhko, Alexandra A; Sidorov, Alexander S; Putin, Gennady F
2012-07-01
Flow patterns arising in a vertical differentially heated layer of nonconducting ferromagnetic fluid placed in an external uniform transverse magnetic field are studied experimentally and discussed from the point of view of the perturbation energy balance. A quantitative criterion for detecting the parametric point where the dominant role in generating a flow instability is transferred between the thermogravitational and thermomagnetic mechanisms is suggested, based on the disturbance energy balance analysis. A comprehensive experimental study of various flow patterns is undertaken, and the existence is demonstrated of oblique thermomagnetic waves theoretically predicted by Suslov [Phys. Fluids 20, 084101 (2008)] and superposed onto the stationary magnetoconvective pattern known previously. It is found that the wave number of the detected convection patterns depends sensitively on the temperature difference across the layer and on the applied magnetic field. In unsteady regimes its value varies periodically by a factor of almost 2, indicating the appearance of two different competing wave modes. The wave numbers and spatial orientation of the observed dominant flow patterns are found to be in good agreement with theoretical predictions.
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Spiral Laminar Flow: a Survey of a Three-Dimensional Arterial Flow Pattern in a Group of Volunteers.
Stonebridge, P A; Suttie, S A; Ross, R; Dick, J
2016-11-01
Spiral laminar flow was suggested as potentially the predominant arterial blood flow pattern many years ago. Computational fluid dynamics and flow rig testing have suggested there are advantages to spiral laminar flow. The aim of this study was to identify whether spiral laminar is the predominant flow pattern in a cohort of volunteers. This study included 42 volunteers (mean age 66.8 years). Eleven arterial sites were examined, comprising bilateral examination of the common carotid artery, internal carotid artery, external carotid artery, common femoral artery, superficial femoral artery, and the infra renal aorta. The presence or absence of spiral laminar flow, the peak systolic velocity, and the rotational velocity were assessed by colour Duplex scanning. The incidence of spiral laminar flow ranged from 81% in the internal carotid artery to 90% in the common carotid artery and the infra renal aorta. Overall, in 58% of all right-sided arteries the rotation was clockwise and 42% anticlockwise. In all left-sided arteries these numbers were reversed. Analysis on the basis of volunteer rather than examination site showed that 41/42 (97%) had more sites with spiral laminar flow than without. Only one volunteer had more sites exhibiting non-spiral laminar flow. Spiral laminar flow was the predominant flow pattern in the study population. This observation raises questions and suggests a need for further studies concerning the form and function of the left ventricle, the geometry of the arterial system, and the function of the arterial wall. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hou, T. H.
1985-01-01
High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.
Altered Actin Centripetal Retrograde Flow in Physically Restricted Immunological Synapses
Yu, Cheng-han; Wu, Hung-Jen; Kaizuka, Yoshihisa; Vale, Ronald D.; Groves, Jay T.
2010-01-01
Antigen recognition by T cells involves large scale spatial reorganization of numerous receptor, adhesion, and costimulatory proteins within the T cell-antigen presenting cell (APC) junction. The resulting patterns can be distinctive, and are collectively known as the immunological synapse. Dynamical assembly of cytoskeletal network is believed to play an important role in driving these assembly processes. In one experimental strategy, the APC is replaced with a synthetic supported membrane. An advantage of this configuration is that solid structures patterned onto the underlying substrate can guide immunological synapse assembly into altered patterns. Here, we use mobile anti-CD3ε on the spatial-partitioned supported bilayer to ligate and trigger T cell receptor (TCR) in live Jurkat T cells. Simultaneous tracking of both TCR clusters and GFP-actin speckles reveals their dynamic association and individual flow patterns. Actin retrograde flow directs the inward transport of TCR clusters. Flow-based particle tracking algorithms allow us to investigate the velocity distribution of actin flow field across the whole synapse, and centripetal velocity of actin flow decreases as it moves toward the center of synapse. Localized actin flow analysis reveals that, while there is no influence on actin motion from substrate patterns directly, velocity differences of actin are observed over physically trapped TCR clusters. Actin flow regains its velocity immediately after passing through confined TCR clusters. These observations are consistent with a dynamic and dissipative coupling between TCR clusters and viscoelastic actin network. PMID:20686692
CHARACTERISTICS OF SOLAR MERIDIONAL FLOWS DURING SOLAR CYCLE 23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Sarbani; Antia, H. M., E-mail: sarbani.basu@yale.ed, E-mail: antia@tifr.res.i
2010-07-01
We have analyzed available full-disk data from the Michelson Doppler Imager on board SOHO using the 'ring diagram' technique to determine the behavior of solar meridional flows over solar cycle 23 in the outer 2% of the solar radius. We find that the dominant component of meridional flows during solar maximum was much lower than that during the minima at the beginning of cycles 23 and 24. There were differences in the flow velocities even between the two minima. The meridional flows show a migrating pattern with higher-velocity flows migrating toward the equator as activity increases. Additionally, we find thatmore » the migrating pattern of the meridional flow matches those of sunspot butterfly diagram and the zonal flows in the shallow layers. A high-latitude band in meridional flow appears around 2004, well before the current activity minimum. A Legendre polynomial decomposition of the meridional flows shows that the latitudinal pattern of the flow was also different during the maximum as compared to that during the two minima. The different components of the flow have different time dependences, and the dependence is different at different depths.« less
Cilia driven flow networks in the brain
NASA Astrophysics Data System (ADS)
Wang, Yong; Faubel, Regina; Westendorf, Chrsitian; Eichele, Gregor; Bodenschatz, Eberhard
Neurons exchange soluble substances via the cerebrospinal fluid (CSF) that fills the ventricular system. The walls of the ventricular cavities are covered with motile cilia that constantly beat and thereby induce a directional flow. We recently discovered that cilia in the third ventricle generate a complex flow pattern leading to partitioning of the ventricular volume and site-directed transport paths along the walls. Transient and daily recurrent alterations in the cilia beating direction lead to changes in the flow pattern. This has consequences for delivery of CSF components along the near wall flow. The contribution of this cilia-induced flow to overall CSF flow remains to be investigated. The state-of-art lattice Boltzmann method is adapted for studying the CFS flow. The 3D geometry of the third ventricle at high resolution was reconstructed. Simulation of CSF flow without cilia in this geometry confirmed that the previous idea about unidirectional flow does not explain how different components of CSF can be delivered to their various target sites. We study the contribution of the cilia-induced flow pattern to overall CSF flow and identify target areas for site-specific delivery of CSF-constituents with respect to the temporal changes.
Venturi flow meter and Electrical Capacitance Probe in a horizontal two-phase flow
NASA Astrophysics Data System (ADS)
Monni, G.; Caramello, M.; De Salve, M.; Panella, B.
2015-11-01
The paper presents the results obtained with a spool piece (SP) made of a Venturi flow meter (VMF) and an Electrical Capacitance Probe (ECP) in stratified two-phase flow. The objective is to determine the relationship between the test measurements and the physical characteristics of the flow such as superficial velocities, density and void fraction. The outputs of the ECP are electrical signals proportional to the void fraction between the electrodes; the parameters measured by the VFM are the total and the irreversible pressure losses of the two- phase mixture. The fluids are air and demineralized water at ambient conditions. The flow rates are in the range of 0,065-0,099 kg/s for air and 0- 0,039 kg/s (0-140 l/h) for water. The flow patterns recognized during the experiments are stratified, dispersed and annular flow. The presence of the VFM plays an important role on the alteration of the flow pattern due to wall flow detachment phenomena. The signals of differential pressure of the VFM in horizontal configuration are strongly dependent on the superficial velocities and on the flow pattern because of a lower symmetry of the flow with respect to the vertical configuration.
Temporal evolution of age data under transient pumping conditions
NASA Astrophysics Data System (ADS)
Leray, S.; De Dreuzy, J.; Aquilina, L.; Vergnaud, V.; Labasque, T.; Bour, O.; Le Borgne, T.
2013-12-01
While most age data derived from tracers have been analyzed in steady-state flow conditions, we determine their temporal evolution under transient pumping conditions. Starting pumping in a well modifies the natural flow patterns induced by the topographical gradient to a mainly convergent flow to the well. Our study is based on a set of models made up of a shallowly dipping aquifer overlain by a less permeable aquitard. These settings are characteristic of the crystalline aquifer of Plœmeur (Brittany, France) located in a highly fractured zone at the contact between a granite and micaschists. Under a pseudo steady-state flow assumption (instantaneous shift between two steady-state flow fields), we solve the transport equation with a backward particle-tracking method and determine the temporal evolution of the concentrations at the pumping well of the four atmospheric tracers CFC 11, CFC 12, CFC 113 and SF6. We show that apparent ages deduced from these concentrations evolve both because of the flow patterns modifications and because of the non-linear evolution of the atmospheric tracer concentrations. Flow patterns modifications only intervene just after the start of pumping, when the initially piston-like residence time distribution is transformed to a broader distribution mixing residence times from a wide variety of flow lines. Later, while flow patterns and the supplying volume of the pumping well still evolve, the residence time distributions are hardly modified and apparent ages are solely altered by the non-linear atmospheric tracer concentrations that progressively modifies the weighting of the residence time distribution. These results are confirmed by the observations at the site of Plœmeur in the pumping area. First, long term chloride observations confirm the quick evolution of the flow patterns after the start of pumping. Second, posterior and more recent evolutions of apparent ages derived from CFCs are consistent with the modeling results revealing in turn the marginal effect of the 20-year pumping on the first 70 years of the residence time distribution. We conclude that the temporal evolution of apparent ages should be used with great care for identifying the temporal evolution of the flow patterns as the apparent age evolution can have two sources - the transient flow patterns and transient tracer atmospheric concentrations. We argue that both evolutions either controlled by transient flow patterns or by transient tracer atmospheric concentrations provide key information that can be further used for the characterization of the hydrogeological system. This study illustrates that the temporal evolution of apparent ages could be used for models segregation and slightly compensate for the small number of tracers.
Decompositions of injection patterns for nodal flow allocation in renewable electricity networks
NASA Astrophysics Data System (ADS)
Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin
2017-08-01
The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
The Face that Launched a Thousand Slips
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.
2013-01-01
Helene, (approximately 17.6 kilometers mean radius) is an L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded kilometer-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 meters, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the formative processes been active in the recent past? 5) Finally, is the surface accreting or eroding? The smooth character of the leading edge hemisphere of Helene and the dominance of mass wasting suggest that the surface is composed of fine-grained debris, probably dominated by dust-size to small gravel particles. The Lagrangian points of saturnian satellites are locations where planetesimals might have accreted to form co-orbital satellites such as and they may capture ejecta from their master moon. Published models suggest that Helene is a site of net accretion, but we find no extant explanation for the dominance of fine grain sizes for the surface (and probable subsurface) composition of Helene and the other Lagrangian satellites. Observation of the mass wasting tracks on Helene suggests the presence of well-defined streams of debris with low bordering levees that may be depositional features or remnants of the dissected higher surface. Some flows in grazing illumination appear to have a convex cross-section. This mass-flow morphology might be consistent with the occurrence of large-scale flow events, but which might have occurred through rapid emplacement or slow glacier-like creep. On the other hand, small craters appear to have been "softened" by creep-like processes, indicating ongoing mass wasting.
NASA Astrophysics Data System (ADS)
Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel; Vanderborght, Jan
2016-04-01
Quantification of flow and solute transport in the shallow subsurface adjacent to the atmosphere is decisive to prevent groundwater pollution and conserve groundwater quality, to develop successful remediation strategies and to understand nutrient cycling. In nature, due to erratic precipitation-evaporation patterns, soil moisture content and related hydraulic conductivity in the vadose zone are not only variable in space but also in time. Flow directions and flow paths locally change between precipitation and evaporation periods. This makes the identification and description of solute transport processes in the vadose zone a complex problem. Recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a) focused on the investigation of upward transport of solutes during evaporation in heterogeneous soil columns, where heterogeneity was introduced by a sharp vertical material interface between two types of sand. Lateral solute transport through the interface in both (lateral) directions was observed at different depths of the investigated soil columns. Following recent approaches, we conduct two-dimensional numerical simulations in a similar setup which is composed of two sands with a sharp vertical material interface. The investigation is broadened from the sole evaporation to combined precipitation-evaporation cycles in order to quantify transport processes resulting from the combined effects of heterogeneous soil structure and dynamic flow conditions. Simulations are performed with a coupled finite volume and random walk particle tracking algorithm (Ippisch et al., 2006; Bechtold et al., 2011b). By comparing scenarios with cyclic boundary conditions and stationary counterparts with the same net flow rate, we found that duration and intensity of precipitation and evaporation periods potentially have an influence on lateral redistribution of solutes and thus leaching rates. Whether or not dynamic boundary conditions lead to significant deviations in the transport behavior depends on the magnitude of the flow rates and hydraulic conductivity curves of the materials. Based on the unsaturated hydraulic conductivity at the intersection point of conductivity curves, we are able to define an estimate of flow rates at which the dynamic of the upper boundary condition significantly alters preferential flow paths through the system. If flow rates are low, with regard to the materials hydraulic conductivity at the intersection point, the influence of dynamic boundary conditions is small. If flow rates are in the range of the unsaturated hydraulic conductivity at intersection, solute is trapped in the fine material during upwards transport, which results in a more pronounced tailing. For flow rates exceeding the intersection conductivity, a redistribution at the soil surface can occur. References: Bechtold, M., S. Haber-Pohlmeier, J. Vanderborght, A. Pohlmeier, T.P.A. Ferré and H. Veerecken. 2011a. Near-surface solute redistribution during evaporation. Geophys. Res. Lett., 38, L17404, doi:10.1029/2011GL048147. Bechtold, M., J. Vanderborght, O. Ippisch and H. Vereecken. 2011b. Efficient random walk particle tracking algorithm for advective dispersive transport in media with discontinuous dispersion coefficients and water contents. Water Resour. Res., 47, W10526, doi: 10.1029/2010WR010267. Ippisch O., H.-J. Vogel and P. Bastian. 2006. Validity limits fort he van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789, doi: 10.1016/j.advwateres.2005.12.011. Lehmann, P. and D. Or. 2009. Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E, 80, 046318, doi:10.1103/PhysRevE.80.046318.
Two phase flow bifurcation due to turbulence: transition from slugs to bubbles
NASA Astrophysics Data System (ADS)
Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2015-09-01
The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.
The epidemic spreading model and the direction of information flow in brain networks.
Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P
2017-05-15
The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
NASA Technical Reports Server (NTRS)
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Sharif, Dawod; Rofe, Guy; Sharif-Rasslan, Amal; Goldhammer, Ehud; Makhoul, Nabeel; Shefer, Arie; Hassan, Amin; Rauchfleisch, Shmuel; Rosenschein, Uri
2008-06-01
The temporal behavior of the coronary microcirculation in acute myocardial infarction may affect outcome. Diastolic deceleration time and early systolic flow reversal derived from coronary artery blood flow velocity patterns reflect microcirculatory function. To assess left anterior descending coronary artery flow velocity patterns using Doppler transthoracic echocardiography after primary percutaneous coronary intervention, in patients with anterior AMI. Patterns of flow velocity patterns of the LAD were obtained using transthoracic echocardiography-Doppler in 31 consecutive patients who presented with anterior AMI. Measurements were done at 6 hours, 36-48 hours, and 5 days after successful PPCI. Measurements of DDT and pressure half times (Pt%), as well as observation for ESFR were performed. In the first 2 days following PPCI, the average DDT (600 +/- 340 msec) was shorter than on day 5 (807 +/- 332 msec) (P < 0.012), FVP in the first 2 days were dynamic and bidirectional: from short DDT (< 600 msec) to long DDT (> 600 msec) and vice versa. On day 5 most DDTs became longer. Pt1/2 at 6 hours was not different than at day 2 (174 +/- 96 vs. 193 +/- 99 msec, P = NS) and became longer on day 5 (235 +/- 98 msec, P = 0.012). Bidirectional patterns were also observed in the ESFR in 6 patients (19%) at baseline, in 4 (13%) at 36 hours, and in 2 (6.5%) on day 5 after PPCI. Flow velocity patterns of the LAD after PPCI in AMI are dynamic and reflect unpredictable changes in microcirculation.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices
NASA Astrophysics Data System (ADS)
Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.
2006-04-01
We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.
Instability patterns in a miscible core annular flow
NASA Astrophysics Data System (ADS)
D'Olce, Marguerite; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique; Talon, Laurent
2006-11-01
Laboratoire FAST, batiment 502, campus universitaire, 91405 Orsay Cedex (France). Experiments are performed with two miscible fluids of equal density but different viscosities. The fluids are injected co-currently and concentrically into a cylindrical pipe. The so-obtained base state is an axisymmetric parallel flow, for which the ratio of the flow rates of the two fluids monitors the relative amount (and so the radius) of the fluids. Depending on this relative amount and on the total flow rate of the fluids, unstable axisymmetric patterns such as mushrooms and pearls are observed. We delineate the diagram of occurrence of the two patterns and characterize the instabilities.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Quantitative analysis of skin flap blood flow in the rat using laser Doppler velocimetry.
Marks, N J
1985-01-01
Two experiments carried out on rat skin flaps are described, where microvascular flow has been measured noninvasively by a laser Doppler velocimeter. Using this technique it is possible to define the limits of an axial pattern flap in terms of microvascular flow; this was found to increase when the flap is elevated. 'Random-pattern' perfusion is defined by a fall in flow. This recovers sequentially along the flap, and at a constant rate at all sites. A differential in microvascular perfusion is thus maintained along a random-pattern flap for at least the first postoperative week. In a second experiment it is shown that there appears to be a linear relationship between the reduction in skin blood flow in a random-pattern flap and the distance from the base at which the measurements are made. It is suggested that these data support the view that the blood flow in a skin flap recovers primarily from its base rather than via peripheral neovascularization, and that this is due to vascular collaterals opening within the flap rather than to a relaxation of sympathetic tone. PMID:3156992
NASA Astrophysics Data System (ADS)
Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.
2017-12-01
Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation canopies in determining fine sediment deposition rates and influence nitrogen and carbon biogeochemistry. Emerging tools and data streams, such as information flow analysis of lidar-derived vegetation biovolume and topography, can help identify the relative roles of autogenic vs. external forcing in these landscapes.
Stabilization of active matter by flow-vortex lattices and defect ordering
Doostmohammadi, Amin; Adamer, Michael F.; Thampi, Sumesh P.; Yeomans, Julia M.
2016-01-01
Active systems, from bacterial suspensions to cellular monolayers, are continuously driven out of equilibrium by local injection of energy from their constituent elements and exhibit turbulent-like and chaotic patterns. Here we demonstrate both theoretically and through numerical simulations, that the crossover between wet active systems, whose behaviour is dominated by hydrodynamics, and dry active matter where any flow is screened, can be achieved by using friction as a control parameter. Moreover, we discover unexpected vortex ordering at this wet–dry crossover. We show that the self organization of vortices into lattices is accompanied by the spatial ordering of topological defects leading to active crystal-like structures. The emergence of vortex lattices, which leads to the positional ordering of topological defects, suggests potential applications in the design and control of active materials. PMID:26837846
Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line
2011-01-01
Among the molecular milieu of the cell, the membrane bilayer stands out as a complex and elusive synthetic target. We report a microfluidic assembly line that produces uniform cellular compartments from droplet, lipid, and oil/water interface starting materials. Droplets form in a lipid-containing oil flow and travel to a junction where the confluence of oil and extracellular aqueous media establishes a flow-patterned interface that is both stable and reproducible. A triangular post mediates phase transfer bilayer assembly by deflecting droplets from oil, through the interface, and into the extracellular aqueous phase to yield a continuous stream of unilamellar phospholipid vesicles with uniform and tunable size. The size of the droplet precursor dictates vesicle size, encapsulation of small-molecule cargo is highly efficient, and the single bilayer promotes functional insertion of a bacterial transmembrane pore. PMID:21309555
Possible effects of two-phase flow pattern on the mechanical behavior of mudstones
NASA Astrophysics Data System (ADS)
Goto, H.; Tokunaga, T.; Aichi, M.
2016-12-01
To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
Kerner, Boris S
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
Portnoy, D S; Puritz, J B; Hollenbeck, C M; Gelsleichter, J; Chapman, D; Gold, J R
2015-12-01
Sex-biased dispersal is expected to homogenize nuclear genetic variation relative to variation in genetic material inherited through the philopatric sex. When site fidelity occurs across a heterogeneous environment, local selective regimes may alter this pattern. We assessed spatial patterns of variation in nuclear-encoded, single nucleotide polymorphisms (SNPs) and sequences of the mitochondrial control region in bonnethead sharks (Sphyrna tiburo), a species thought to exhibit female philopatry, collected from summer habitats used for gestation. Geographic patterns of mtDNA haplotypes and putatively neutral SNPs confirmed female philopatry and male-mediated gene flow along the northeastern coast of the Gulf of Mexico. A total of 30 outlier SNP loci were identified; alleles at over half of these loci exhibited signatures of latitude-associated selection. Our results indicate that in species with sex-biased dispersal, philopatry can facilitate sorting of locally adaptive variation, with the dispersing sex facilitating movement of potentially adaptive variation among locations and environments. © 2015 John Wiley & Sons Ltd.
Microscale diffusion measurements and simulation of a scaffold with a permeable strut.
Lee, Seung Youl; Lee, Byung Ryong; Lee, Jongwan; Kim, Seongjun; Kim, Jung Kyung; Jeong, Young Hun; Jin, Songwan
2013-10-10
Electrospun nanofibrous structures provide good performance to scaffolds in tissue engineering. We measured the local diffusion coefficients of 3-kDa FITC-dextran in line patterns of electrospun nanofibrous structures fabricated by the direct-write electrospinning (DWES) technique using the fluorescence recovery after photobleaching (FRAP) method. No significant differences were detected between DWES line patterns fabricated with polymer supplied at flow rates of 0.1 and 0.5 mL/h. The oxygen diffusion coefficients of samples were estimated to be ~92%-94% of the oxygen diffusion coefficient in water based on the measured diffusion coefficient of 3-kDa FITC-dextran. We also simulated cell growth and distribution within spatially patterned scaffolds with struts consisting of either oxygen-permeable or non-permeable material. The permeable strut scaffolds exhibited enhanced cell growth. Saturated depths at which cells could grow to confluence were 15% deeper for the permeable strut scaffolds than for the non-permeable strut scaffold.
Pasta, Salvatore; Rinaudo, Antonino; Luca, Angelo; Pilato, Michele; Scardulla, Cesare; Gleason, Thomas G.; Vorp, David A.
2014-01-01
The aortic dissection (AoD) of an ascending thoracic aortic aneurysm (ATAA) initiates when the hemodynamic loads exerted on the aneurysmal wall overcome the adhesive forces holding the elastic layers together. Parallel coupled, two-way fluid–structure interaction (FSI) analyses were performed on patient-specific ATAAs obtained from patients with either bicuspid aortic valve (BAV) or tricuspid aortic valve (TAV) to evaluate hemodynamic predictors and wall stresses imparting aneurysm enlargement and AoD. Results showed a left-handed circumferential flow with slower-moving helical pattern in the aneurysm's center for BAV ATAAs whereas a slight deviation of the blood flow toward the anterolateral region of the ascending aorta was observed for TAV ATAAs. Blood pressure and wall shear stress were found key hemodynamic predictors of aneurysm dilatation, and their dissimilarities are likely associated to the morphological anatomy of the aortic valve. We also observed discontinues, wall stresses on aneurysmal aorta, which was modeled as a composite with two elastic layers (i.e., inhomogeneity of vessel structural organization). This stress distribution was caused by differences on elastic material properties of aortic layers. Wall stress distribution suggests AoD just above sinotubular junction. Moreover, abnormal flow and lower elastic material properties that are likely intrinsic in BAV individuals render the aneurysm susceptible to the initiation of AoD. PMID:23664314
Design of Friction Stir Welding Tool for Avoiding Root Flaws
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-01-01
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426
Design of Friction Stir Welding Tool for Avoiding Root Flaws.
Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng
2013-12-12
In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.
Xue, Mianqiang; Xu, Zhenming
2013-05-07
Technologies could be integrated in different ways into automatic recycling lines for a certain kind of electronic waste according to practical requirements. In this study, a new kind of pneumatic separator with openings at the dust hooper was applied combing with electrostatic separation for recycling waste printed circuit boards. However, the flow pattern and the particles' movement behavior could not be obtained by experimental methods. To better control the separation quantity and the material size distribution, computational fluid dynamics was used to model the new pneumatic separator giving a detailed understanding of the mechanisms. Simulated results showed that the tangential velocity direction reversed with a relatively small value. Axial velocity exhibited two sharp decreases at the x axis. It is indicated that the bottom openings at the dust hopper resulted in an enormous change in the velocity profile. A new phenomenon that was named dusting was observed, which would mitigate the effect of particles with small diameter on the following electrostatic separation and avoid materials plugging caused by the waste printed circuit boards special properties effectively. The trapped materials were divided into seven grades. Experimental results showed that the mass fraction of grade 5, grade 6, and grade 7 materials were 27.54%, 15.23%, and 17.38%, respectively. Grade 1 particles' mass fraction was reduced by 80.30% compared with a traditional separator. Furthermore, the monocrystalline silicon content in silicon element in particles with a diameter of -0.091 mm was 18.9%, higher than that in the mixed materials. This study could serve as guidance for the future material flow control, automation control, waste recycling, and semiconductor storage medium destruction.
Influence of fast advective flows on pattern formation of Dictyostelium discoideum
Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard
2018-01-01
We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179
NASA Astrophysics Data System (ADS)
Taji, S. G.; Parishwad, G. V.; Sane, N. K.
2014-07-01
This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.
Flow visualization for investigating stator losses in a multistage axial compressor
NASA Astrophysics Data System (ADS)
Smith, Natalie R.; Key, Nicole L.
2015-05-01
The methodology and implementation of a powder-paint-based flow visualization technique along with the illuminated flow physics are presented in detail for application in a three-stage axial compressor. While flow visualization often accompanies detailed studies, the turbomachinery literature lacks a comprehensive study which both utilizes flow visualization to interrupt the flow field and explains the intricacies of execution. Lessons learned for obtaining high-quality images of surface flow patterns are discussed in this study. Fluorescent paint is used to provide clear, high-contrast pictures of the recirculation regions on shrouded vane rows. An edge-finding image processing procedure is implemented to provide a quantitative measure of vane-to-vane variability in flow separation, which is approximately 7 % of the suction surface length for Stator 1. Results include images of vane suction side corner separations from all three stages at three loading conditions. Additionally, streakline patterns obtained experimentally are compared with those calculated from computational models. Flow physics associated with vane clocking and increased rotor tip clearance and their implications to stator loss are also investigated with this flow visualization technique. With increased rotor tip clearance, the vane surface flow patterns show a shift to larger separations and more radial flow at the tip. Finally, the effects of instrumentation on the flow field are highlighted.
Numerical modelling of strain in lava tubes
NASA Astrophysics Data System (ADS)
Merle, Olivier
The strain within lava tubes is described in terms of pipe flow. Strain is partitioned into three components: (a) two simple shear components acting from top to bottom and from side to side of a rectangular tube in transverse section; and (b) a pure shear component corresponding to vertical shortening in a deflating flow and horizontal compression in an inflating flow. The sense of shear of the two simple shear components is reversed on either side of a central zone of no shear. Results of numerical simulations of strain within lava tubes reveal a concentric pattern of flattening planes in section normal to the flow direction. The central node is a zone of low strain, which increases toward the lateral borders. Sections parallel to the flow show obliquity of the flattening plane to the flow axis, constituting an imbrication. The strain ellipsoid is generally of plane strain type, but can be of constriction or flattening type if thinning (i.e. deflating flow) or thickening (i.e. inflating flow) is superimposed on the simple shear regime. The strain pattern obtained from numerical simulation is then compared with several patterns recently described in natural lava flows. It is shown that the strain pattern revealed by AMS studies or crystal preferred orientations is remarkably similar to the numerical simulation. However, some departure from the model is found in AMS measurements. This may indicate inherited strain recorded during early stages of the flow or some limitation of the AMS technique.
Transthoracic Ultrafast Doppler Imaging of Human Left Ventricular Hemodynamic Function
Osmanski, Bruno-Félix; Maresca, David; Messas, Emmanuel; Tanter, Mickael; Pernot, Mathieu
2016-01-01
Heart diseases can affect intraventricular blood flow patterns. Real-time imaging of blood flow patterns is challenging because it requires both a high frame rate and a large field of view. To date, standard Doppler techniques can only perform blood flow estimation with high temporal resolution within small regions of interest. In this work, we used ultrafast imaging to map in 2D human left ventricular blood flow patterns during the whole cardiac cycle. Cylindrical waves were transmitted at 4800 Hz with a transthoracic phased array probe to achieve ultrafast Doppler imaging of the left ventricle. The high spatio-temporal sampling of ultrafast imaging permits to rely on a much more effective wall filtering and to increase sensitivity when mapping blood flow patterns during the pre-ejection, ejection, early diastole, diastasis and late diastole phases of the heart cycle. The superior sensitivity and temporal resolution of ultrafast Doppler imaging makes it a promising tool for the noninvasive study of intraventricular hemodynamic function. PMID:25073134
Multiple Near Wake Patterns Behind Annular Rings
NASA Astrophysics Data System (ADS)
Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro
1996-11-01
Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.
Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama
Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.
1996-01-01
Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.
Vortex shedding in bileaflet heart valve prostheses.
Gross, J M; Shermer, C D; Hwang, N H
1988-01-01
A dynamic study of two geometrically similar bileaflet heart valve prostheses (HVP) was performed using a physiologic mock circulatory flow loop. The HVPs studied were the 25 mm St. Jude Medical (SJM) and the 25 mm Carbomedics (CMI) in the aortic position and the 27 mm SJM and 27 mm CMI in the mitral position. All data were collected at a heart rate of 70 beats/min and a cardiac output of 5.0 L/min. Flow visualization was conducted in the transparent flow chambers of the pulsatile mock circulatory flow loop using a 15 mW He-Ne laser light source. A cylindrical lens and optics system converted the incident laser beam into a thin parallel light plane, and 420 microns tracer particles were suspended in the testing fluid to illuminate the flow field at selected planes. Frame-by-frame analysis of the 16 mm high-speed cine provides detailed phasic flow patterns in the vicinity of the HVP. A series of still photographs of flow patterns, taken at approximately 22.5 degrees phase intervals, are sequentially presented for each HVP. In the aortic position, a Karman-like vortex pattern appears downstream of the SJM at the end of the ejection phase. The CMI exhibits a rather symmetrical ejection flow pattern that turns into random motion immediately after the onset of ejection. In the mitral position, the SJM again exhibits a strong core flow during ventricular filling, whereas the CMI produces a more diffuse pattern during the same period. A pair of vortices shed from both the SJM and CMI are clearly visible toward the end of the ventricular filling phase. The vortex mechanisms are discussed in light of leaflet boundary layer formation.
Garden City Vein Complex, Gale Crater, Mars: Implications for Late Diagenetic Fluid Flow
NASA Astrophysics Data System (ADS)
Kronyak, R. E.; Kah, L. C.; Blaney, D. L.; Sumner, D. Y.; Fisk, M. R.; Rapin, W.; Nachon, M.; Mangold, N.; Grotzinger, J. P.; Wiens, R. C.
2015-12-01
Calcium sulfate filled fractures are observed in nearly all stratigraphic units encountered by the Mars Science Laboratory (MSL) Curiosity rover. The mm-scale of veins, however, provides little evidence for emplacement style. From sols 924-949, Curiosity observed a vein rich outcrop called Garden City, which shows variation in both thickness and complexity of veins. Extensive Mastcam and MAHLI imaging was conducted across the outcrop to provide textural detail that can be related to emplacement mechanisms. Additionally, Curiosity collected geochemical data on 17 ChemCam targets and 7 APXS targets, shedding light on the composition and variety of potential vein fluids. The Garden City vein system records (1) the presence of distinct dark-toned and light-toned (calcium sulfate) mineralization, and (2) the presence of laminated, epitaxial, and brecciated fabrics that suggest multiple emplacement modes. Dark-toned mineralization is observed as erosionally resistant ridges predominantly along fracture walls. Although erosional resistance may reflect the permeability of host rock to fracture-borne fluids, at Garden City, laminated textures suggest that at least some mineralization may have occurred as fracture-fill. Light-toned mineralization often bisects dark-toned material, indicating re-use of fluid pathways. Light-toned veinlets permeate fracture walls, and the largest veins entrain host rock and dark-toned material within calcium sulfate matrix. Such brecciation indicates high forces associated with fluid expulsion. Elsewhere, linear patterns occur broadly perpendicular to fracture walls, and are interpreted to represent epitaxial crystal growth, suggesting lower flow rates and fluid flow pressures within the fracture system. Together these observations indicate multiple episodes of fluid flow in the Gale Crater system.
Venus tectonic styles and crustal differentiation
NASA Technical Reports Server (NTRS)
Kaula, W. M.; Lenardic, A.
1992-01-01
Two of the most important constraints are known from Pioneer Venus data: the lack of a system of spreading rises, indicating distributed deformation rather than plate tectonics; and the high gravity/topography ratio, indicating the absence of an asthenosphere. In addition, the high depth/diameter ratios of craters on Venus indicate that Venus probably has no more crust than Earth. The problems of the character of tectonics and crustal formation and recycling are closely coupled. Venus appears to lack a recycling mechanism as effective as subduction, but may also have a low rate of crustal differentiation because of a mantle convection pattern that is more distributed, less concentrated, than Earth's. Distributed convection, coupled with the nonlinear dependence of volcanism on heat flow, would lead to much less magmatism, despite only moderately less heat flow, compared to Earth. The plausible reason for this difference in convective style is the absence of water in the upper mantle of Venus. We have applied finite element modeling to problems of the interaction of mantle convection and crust on Venus. The main emphasis has been on the tectonic evolution of Ishtar Terra, as the consequence of convergent mantle flow. The early stage evolution is primarily mechanical, with crust being piled up on the down-stream side. Then the downflow migrates away from the center. In the later stages, after more than 100 m.y., thermal effects develop due to the insulating influence of the thickened crust. An important feature of this modeling is the entrainment of some crustal material in downflows. An important general theme in both convergent and divergent flows is that of mixing vs. stratification. Models of multicomponent solid-state flow obtain that lower-density crustal material can be entrained and recycled, provided that the ration of low-density to high-density material is small enough (as in subducted slabs on Earth). The same considerations should apply in upflows; a small percent of partial melt may be carried along with its matrix and never escape to the surface. Models that assume melt automatically rising to the crust and no entrainment or other mechanism of recycling lower-density material obtain oscillatory behavior, because it takes a long time for heat to build up enough to overcome a Mg-rich low-density residuum. However, these models develop much thicker crust than consistent with estimates from crater depth/diameter ratios.
Experimental study on hydraulic characteristic around trash rack of a pumping station
NASA Astrophysics Data System (ADS)
Zhou, MinZhe; Li, TongChun; Lin, XiangYang; Liu, XiaoQing; Ding, Yuan; Liu, GuangYuan
2017-11-01
This paper focuses on flow pattern around trash rack of intake of a pumping station project. This pumping station undertake the task of supplying up to 3,500,000 m3 water per day for a megacity. Considering the large flow rate, high lift, multi-pipe supply and long-time operation in this water conveyance pumping station, we built a physical model test to measure the flow velocity and observe the flow pattern to verify the reasonability of preliminary design. In this test, we set 3 layers of current meters around each trash rack of intake in reservoir to collect the flow velocity. Furthermore, we design 2 operating conditions of 9 pumps to observe the change of flow pattern. Finally, we found the velocity data were in a normal range under 2 different operating conditions of the 9 pump units.
Retention time and flow patterns in Lake Marion, South Carolina, 1984
Patterson, G.G.; Harvey, R.M.
1995-01-01
In 1984, six dye tracer tests were made on Lake Marion to determine flow patterns and retention times under conditions of high and low flow. During the high-flow tests, with an average inflow of about 29,000 cubic feet per second, the approximate travel time through the lake for the peak tracer concentration was 14 days. The retention time was about 20 days. During the low-flow tests, with an average inflow of about 9,000 cubic feet per second, the approximate travel time was 41 days, and the retention time was about 60 days. The primary factors controlling movement of water in the lake are lake inflow and outflow. The tracer cloud moved consistently downstream, slowing as the lake widened. Flow patterns in most of the coves, and in some areas along the northeastern shore, are influenced more by tributary inflow than by factors attributable to water from the main body of the lake.
Three-dimensionally patterned energy absorptive material and method of fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duoss, Eric; Frank, James M.; Kuntz, Joshua
A three-dimensionally patterned energy absorptive material and fabrication method having multiple layers of patterned filaments extrusion-formed from a curable pre-cursor material and stacked and cured in a three-dimensionally patterned architecture so that the energy absorptive material produced thereby has an engineered bulk property associated with the three-dimensionally patterned architecture.
Inferring sediment connectivity from high-resolution DEMs of Difference
NASA Astrophysics Data System (ADS)
Heckmann, Tobias; Vericat, Damià
2017-04-01
Topographic changes due to the erosion and deposition of bedrock, sediments and soil can be measured by differencing Digital Elevation Models (DEM) acquired at different points in time. So-called morphological sediment budgets can be computed from such DEMs of Difference (DoD) on an areal rather than a point basis. The advent of high-resolution and highly accurate surveying techniques (e.g. LiDAR, SfM), together with recent advances of survey platforms (e.g. UaVs) provides opportunities to improve the spatial and temporal scale (in terms of extent and resolution), the availability and quality of such measurements. Many studies have used DoD to investigate and interpret the spatial pattern of positive and negative vertical differences in terms of erosion and deposition, or of horizontal movement. Vertical differences can be converted to volumes, and negative (erosion) and positive (deposition) volumetric changes aggregated for spatial units (e.g., landforms, hillslopes, river channels) have been used to compute net balances. We argue that flow routing algorithms common in digital terrain analysis provide a means to enrich DoD-based investigations with some information about (potential) sediment pathways - something that has been widely neglected in previous studies. Where the DoD indicates a positive surface change, flow routing delineates the upslope area where the deposited sediment has potentially been derived from. In the downslope direction, flow routing indicates probable downslope pathways of material eroded/detached/entrained where the DoD shows negative surface change. This material has either been deposited along these pathways or been flushed out of the area of investigation. This is a question of sediment connectivity, a property of a system (i.e. a hillslope, a sub-/catchment) that describes its potential to move sediment through itself. The sediment pathways derived from the DEM are related to structural connectivity, while the spatial pattern of (net) erosion and deposition has emerged from sediment transfer between the two epochs of the DoD (i.e. functional connectivity). In this study, we use multitemporal raster DEMs generated (i) from terrestrial LiDAR surveys and (ii) by a landscape evolution model to compute DoDs. Flow accumulation is used to compute, for the contributing area of each raster cell, (i) the net balance and (ii) the total sum of material eroded. The net balance represents the sediment yield of the contributing area. In the case of a study area delimited by a catchment boundary, it is either negative (more sediment eroded than deposited within the contributing area, i.e. net export) or zero (eroded material has been re-deposited within the contributing area). Finally, the ratio of sediment yield and gross erosion is called the sediment delivery ratio (SDR). This number has been used as a "performance factor" indicating the degree of sediment connectivity, as it describes the proportion of material eroded on the local scale that is being delivered to the outlet of the contributing area. The evaluation of a DoD to compute the SDR overcomes one major criticism of the SDR, namely that gross erosion is generally estimated (e.g. by empirical USLE-type equations) rather than measured. Both our proposed approach and the concept of SDR are subject to a number of caveats, which we will discuss in our contribution. In any case, we advocate more detailed analyses of DoD using flow routing algorithms in order to include information on potential sediment pathways in morphological sediment budgets for hillslopes and catchments.
Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement
NASA Astrophysics Data System (ADS)
Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.
2017-12-01
Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.
The significance of sediment transport in arroyo development
Meyer, David F.
1989-01-01
Arroyo widening dominates postincisional arroyo development, and the manner of widening is dependent on the grain size of bed material transported by the channel. When bed material is predominantly gravel, subaqueous bars that alternate from one side of the channel to the other form during high flows in initially narrow, often straight, arroyos. These alternate bars grow and become coarse-grained point bars. Moderate and low flows cannot rework these coarse bars, and the channel meanders around them. Arroyo walls opposite the bars are undercut and eroded. With progressive arroyo widening by erosion of cut banks, high-flow channel width increases, and depth decreases, reducing channel competence. Gravel is deposited in midchannel bars, point bars are reworked, and the channel becomes braided. As braiding becomes dominant, both arroyo walls are eroded. This conceptual model of coarse-grained arroyo development is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the San Simon, San Pedro, and Santa Cruz Rivers in southeast Arizona. When bed material is predominantly sand, the channel pattern within initial arroyos is typically braided, and both arroyo walls are actively eroded. Alternate bars may form within single-thread, high-flow channels, but they are reworked during recessional flows, and the .low-flow channel is again braided. With progressive arroyo widening, fine sand, silt, and clay carried in suspension are deposited across a flood plain within the wide arroyo, causing the channel to meander. This fine-grained arroyo development model is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the Rio Puerco, New Mexico. Experimental investigations using physical models in which incised channels were monitored through time indicate that the rate of arroyo widening is dependent on the amount of bedload transported through a reach. This is documented by the relations between the rate of arroyo erosion and the observed sediment transport, the channel slope, the channel width and the channel width-to-depth ratio. When a small amount of bed material is being transported, arroyos do not widen whether they are narrow (arroyo width-to-depth ratios between 1.5 and 3.1), intermediate (between 2.5 and 4.8), or wide (greater than 4.9). Arroyo widening resumes when a larger supply of bed material is introduced. Arroyo widening decreases through time because with progressive increases of arroyo width, the frequency with which unstable channels within the arroyo impinge upon arroyo walls decreases. Arroyos become wider in a downstream direction in response to the cumulative effect of upstream sediment production.
Crushed cement concrete substitution for construction aggregates; a materials flow analysis
Kelly, Thomas
1998-01-01
An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.
Eisner, A D; Martonen, T B
1989-11-01
This paper describes the production and calibration of a miniature psychrometer treated with a specially developed porous coating. The investigation was conducted to determine localized patterns of rapidly changing temperature and relative humidity in dynamic flowing gas environments (e.g., with particular attention to future applications to the human respiratory system). The technique involved the use of dry miniature thermocouples and wetted miniature thermocouples coated with boron nitride to act as a wicking material. A precision humidity generator was developed for calibrating the psychrometer. It was found that, in most cases, the measured and expected (i.e., theoretically predicted) relative humidity agreed to within 0.5 to 1.0 percent relative humidity. Procedures that would decrease this discrepancy even further were pinpointed, and advantages of using the miniature psychrometer were assessed.
How surface functional groups influence fracturation in nanofluids droplets dry-outs
NASA Astrophysics Data System (ADS)
Brutin, David; Carle, Florian
2012-11-01
We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.
Russell, G.M.; Goodwin, C.R.
1987-01-01
Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
On the pulse boiling frequency in thermosyphons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.F.; Wang, J.C.Y.
1992-02-01
The unsteady periodic boiling phenomenon, pulse boiling, appearing in the evaporator of thermosyphons has been mentioned and investigated by many researchers. The heat transfer coefficient in evaporators was predicted according to different considerations of flow patterns. For instance, Shiraishi et al. proposed a method based on a combination flow pattern: the nucleate boiling in a liquid pool and the evaporation from a falling condensate film. Liu et al. only considered a pure pulse boiling flow pattern, and Xin et al. focused on the flow pattern of the continuous boiling process without pulse phenomenon. Besides, the forming conditions of pulse boilingmore » were also described differently. Xin et al. also reported that pulse boiling cannot occur in a carbon-steel/water heat pipe; Ma et al., however, observed this phenomenon in a carbon-steel/water thermosyphon. Nearly all researchers mentioned that this phenomenon indeed exists in glass/water thermosyphons. Although the influential factors have been discussed qualitatively, the quantitative analysis has yet to be conducted. This study focuses on the pulse boiling frequency as a criterion for the determination of flow patterns, and attempts are made to predict the frequency both experimentally and theoretically.« less
NASA Astrophysics Data System (ADS)
Lodge, R. W.; Lescinsky, D. T.
2006-12-01
Polygonal joints in lava flows ("columns") are commonly equant leading to a model of formation associated with cooling in an isotropic stress field. This model, however, does not explain rectangular columns, sheet-like fractures, fractures with crosscutting relationships, and fractures with orientations other than perpendicular to the cooling surface. These fracture patterns are often observed at glaciated volcanoes. The presence of preferential fracture orientations suggests an applied stress component likely due to environmental conditions such as the presence of glaciers or flow dynamics such as down-slope settling or flow margin inflation. During this study we investigated the formation and significance of these non-equant fracture patterns to propose a model for their formation. These `abnormal' fracture patterns have not been discussed in the literature and may be important to better understanding the cooling conditions of such lava flows. To test these possibilities we studied Kokostick Butte dacite flow, OR (near South Sister), and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these flows have well developed sheet-like fractures and display evidence of ice-contact during eruption and emplacement. Sheet fractures are long and continuous fractures that have perpendicular connecting fractures forming rectangular columns. The sheet-like fractures are largely parallel to each other on the exposure surface and the connecting fractures vary locally from primary fractures (associated with cooling toward flow interior) to secondary fractures (associated with cooling by water infiltration). Detailed measurements of fracture orientations and spacing were collected at Kokostick Butte and Mazama Ridge to examine the relationship between the sheet fractures and flow geometry. Preliminary results support this relationship and suggest these patterns likely form due to shear associated with small amounts of flow advance by the rapidly cooling lava. Laboratory studies have been undertaken to complement the field observations and measurements. Starch- water experiments have been proven a useful analogue for lava column formation. Various experimental setups involving different mixture thicknesses and compression of the mixture were utilized to simulate the stresses acting during ponding of lava against glacial ice and to produce different fracture morphologies and patterns. Initial results show that compression of the starch slurry results in non-equant fracture patterns with some sheet-like fracturing present.
Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials
NASA Astrophysics Data System (ADS)
Wałowski, Grzegorz; Filipczak, Gabriel
2017-10-01
This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.
A multi points ultrasonic detection method for material flow of belt conveyor
NASA Astrophysics Data System (ADS)
Zhang, Li; He, Rongjun
2018-03-01
For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.
Hoffmann, R; Haager, P; Lepper, W; Franke, A; Hanrath, P
2003-01-01
Background: Analysis of myocardial blush grade (MBG) and coronary flow velocity pattern has been used to obtain direct or indirect information about microvascular damage and reperfusion injury after percutaneous transluminal coronary angiography for acute myocardial infarction. Objective: To evaluate the relation between coronary blood flow velocity pattern and MBG immediately after angioplasty plus stenting for acute myocardial infarction. Design: The coronary blood flow velocity pattern in the infarct related artery was determined immediately after angioplasty in 35 patients with their first acute myocardial infarct using a Doppler guide wire. Measurements were related to MBG as a direct index of microvascular function in the infarct zone. Results: Coronary flow velocity patterns were different between patients with absent myocardial blush (n = 14), reduced blush (n = 7), or normal blush (n = 14). The following variables (mean (SD)) differed significantly between the three groups: systolic peak flow velocity (cm/s): absent blush 10.9 (4.2), reduced blush 14.2 (6.4), normal blush 19.2 (11.2); p = 0.036; diastolic deceleration rate (ms): absent blush 103 (58), reduced blush 80 (65), normal blush 50 (19); p = 0.025; and diastolic–systolic velocity ratio: absent blush 4.06 (2.18), reduced blush 2.02 (0.55), normal blush 1.88 (1.03); p = 0.002. In a multivariate analysis MBG was the only variable with a significant impact on the diastolic deceleration rate (p = 0.034,) while age, infarct location, time to revascularisation, infarct vessel diameter, and maximum creatine kinase had no significant impact. Conclusions: The coronary flow velocity pattern in the infarct related epicardial artery is primarily determined by the microvascular function of the dependent myocardium, as reflected by MBG. PMID:12975402
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke
Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less
Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors
NASA Astrophysics Data System (ADS)
Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.
2018-01-01
Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.
Resource Use in Small Island States
Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina
2014-01-01
Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption. PMID:25505367
Simulating pattern-process relationships to validate landscape genetic models
A. J. Shirk; S. A. Cushman; E. L. Landguth
2012-01-01
Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...
Study of dynamics of two-phase flow through a minichannel by means of recurrences
NASA Astrophysics Data System (ADS)
Litak, Grzegorz; Górski, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2017-05-01
By changing air and water flow rates in the two-phase (air-water) flow through a minichannel, we observed the evolution of air bubbles and slugs patterns. This spatiotemporal behaviour was identified qualitatively by using a digital camera. Simultaneously, we provided a detailed analysis of these phenomena by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish particular patterns, we used recurrence plots and recurrence quantification analysis. Finally, we showed that the maxima of various recurrence quantificators obtained from the laser time series could follow the bubble and slugs patterns in studied ranges of air and water flows.
DDR process and materials for novel tone reverse technique
NASA Astrophysics Data System (ADS)
Shigaki, Shuhei; Shibayama, Wataru; Takeda, Satoshi; Tamura, Mamoru; Nakajima, Makoto; Sakamoto, Rikimaru
2018-03-01
We developed the novel process and material which can be created reverse-tone pattern without any collapse. The process was Dry Development Rinse (DDR) process, and the material used in this process was DDR material. DDR material was containing siloxane polymer which could be replaced the space area of the photo resist pattern. And finally, the reverse-tone pattern could be obtained by dry etching process without any pattern collapse issue. DDR process could be achieved fine line and space patterning below hp14nm without any pattern collapse by combination of PTD or NTD photo resist. DDR materials were demonstrated with latest coater track at imec. DDR process was fully automated and good CD uniformity was achieved after dry development. Detailed evaluation could be achieved with whole wafer such a study of CD uniformity (CDU). CDU of DDR pattern was compared to pre-pattern's CDU. Lower CDU was achieved and CDU healing was observed with special DDR material. By further evaluation, special DDR material showed relatively small E-slope compared to another DDR material. This small E-slope caused CDU improvement.
The role of varying flow on channel morphology: a flume experiment
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.
2017-12-01
Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.
PFEM-based modeling of industrial granular flows
NASA Astrophysics Data System (ADS)
Cante, J.; Dávalos, C.; Hernández, J. A.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.-Å.
2014-05-01
The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response—varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.
Taming active turbulence with patterned soft interfaces.
Guillamat, P; Ignés-Mullol, J; Sagués, F
2017-09-15
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
Comparison of dialysis membrane diffusion samplers and two purging methods in bedrock wells
Imbrigiotta, T.E.; Ehlke, T.A.; Lacombe, P.J.; Dale, J.M.; ,
2002-01-01
Collection of ground-water samples from bedrock wells using low-flow purging techniques is problematic because of the random spacing, variable hydraulic conductivity, and variable contamination of contributing fractures in each well's open interval. To test alternatives to this purging method, a field comparison of three ground-water-sampling techniques was conducted on wells in fractured bedrock at a site contaminated primarily with volatile organic compounds. Constituent concentrations in samples collected with a diffusion sampler constructed from dialysis membrane material were compared to those in samples collected from the same wells with a standard low-flow purging technique and a hybrid (high-flow/low-flow) purging technique. Concentrations of trichloroethene, cis-1,2-dichloroethene, vinyl chloride, calcium, chloride, and alkalinity agreed well among samples collected with all three techniques in 9 of the 10 wells tested. Iron concentrations varied more than those of the other parameters, but their pattern of variation was not consistent. Overall, the results of nonparametric analysis of variance testing on the nine wells sampled twice showed no statistically significant difference at the 95-percent confidence level among the concentrations of volatile organic compounds or inorganic constituents recovered by use of any of the three sampling techniques.
Niu, Ye; Zhang, Xu; Si, Ting; Zhang, Yuntian; Qi, Lin; Zhao, Gang; Xu, Ronald X; He, Xiaoming; Zhao, Yi
2017-12-01
Geometric and mechanical characterizations of hydrogel materials at the microscale are attracting increasing attention due to their importance in tissue engineering, regenerative medicine, and drug delivery applications. Contemporary approaches for measuring the these properties of hydrogel microbeads suffer from low-throughput, complex system configuration, and measurement inaccuracy. In this work, a continuous-flow device is developed to measure geometric and viscoelastic properties of hydrogel microbeads by flowing the microbeads through a tapered microchannel with an array of interdigitated microelectrodes patterned underneath the channel. The viscoelastic properties are derived from the trajectories of microbeads using a quasi-linear viscoelastic model. The measurement is independent of the applied volumetric flow rate. The results show that the geometric and viscoelastic properties of Ca-alginate hydrogel microbeads can be determined independently and simultaneously. The bulky high-speed optical systems are eliminated, simplifying the system configuration and making it a truly miniaturized device. A throughput of up to 394 microbeads min -1 is achieved. This study may provide a powerful tool for mechanical profiling of hydrogel microbeads to support their wide applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihoon; Moridis, George J.
We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.« less
Kim, Jihoon; Moridis, George J.
2014-12-01
We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production scenarios.« less
NASA Astrophysics Data System (ADS)
Liang, Fachun; Zheng, Hongfeng; Yu, Hao; Sun, Yuan
2016-03-01
A novel ultrasonic pulse echo method is proposed for flow pattern identification in a horizontal pipe with gas-liquid two-phase flow. A trace of echoes reflected from the pipe’s internal wall rather than the gas-liquid interface is used for flow pattern identification. Experiments were conducted in a horizontal air-water two-phase flow loop. Two ultrasonic transducers with central frequency of 5 MHz were mounted at the top and bottom of the pipe respectively. The experimental results show that the ultrasonic reflection coefficient of the wall-gas interface is much larger than that of the wall-liquid interface due to the large difference in the acoustic impedance of gas and liquid. The stratified flow, annular flow and slug flow can be successfully recognized using the attenuation ratio of the echoes. Compared with the conventional ultrasonic echo measurement method, echoes reflected from the inner surface of a pipe wall are independent of gas-liquid interface fluctuation, sound speed, and gas and liquid superficial velocities, which makes the method presented a promising technique in field practice.
Laser imaging in liquid-liquid flows
NASA Astrophysics Data System (ADS)
Abidin, M. I. I. Zainal; Park, Kyeong H.; Voulgaropoulos, Victor; Chinaud, Maxime; Angeli, Panagiota
2016-11-01
In this work, the flow patterns formed during the horizontal flow of two immiscible liquids are studied. The pipe is made from acrylic, has an ID of 26 mm and a length of 4 m. A silicone oil (5cSt) and a water/glycerol mixture are used as test fluids. This set of liquids is chosen to match the refractive indices of the phases and enable laser based flow pattern identification. A double pulsed Nd:Yag laser was employed (532mm) with the appropriate optics to generate a laser sheet at the middle of the pipe. The aqueous phase was dyed with Rhodamine 6G, to distinguish between the two phases. Experiments were carried out for mixture velocities ranging from 0.15 to 2 m/s. Different inlet designs were used to actuate flow patterns in a controlled way and observe their development downstream the test section. A static mixer produced dispersed flow at the inlet which separated downstream due to enhanced coalescence. On the other hand, the use of a cylindrical bluff body at the inlet created non-linear interfacial waves in initially stratified flows from which drops detached leading to the transition to dispersed patterns. From the detailed images important flow parameters were measured such as wave characteristics and drop size. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.
NASA Astrophysics Data System (ADS)
Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi
2018-02-01
A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.
A Streamlined Form in Lethe Vallis
2016-09-08
This image shows a portion of Lethe Vallis, an outflow channel that also transported lava. Another investigation of this area (Balme et al., 2011) discovered a repeat pattern of dune-like forms in the channel interpreted as fluvial dunes (or, giant current ripples) which are dunes formed by flowing water. This is one of only a few places on Mars where these pristine-appearing landforms have been identified. The channel formed by catastrophic floods, during which it produced the prominent crater-cored, teardroped-shaped island in the middle. The island has the blunter end pointing upstream and the long tail pointing downstream. Both the island and the fluvial dunes were formed by these extreme floods and their size is an indicator of the enormous discharges required to create them. The margins of the channel also show the terminal front of a pristine lava flow unit that inundated the channel from the south and the dunes show the remnants of another older lava flow. The top of the island displays polygonal patterned ground texture, which is a characteristic of periglacial processes in ice-rich ground. The dark materials from the channel and island walls are probably dark sand being eroded from an underlying horizontal basaltic (lava) layer. The crater at the core of the island has elongated dunes and reticulate dust ridges inside. This single image thus contains features formed by periglacial, volcanic, fluvial, impact, aeolian and mass wasting processes, all in one place. http://photojournal.jpl.nasa.gov/catalog/PIA21039
Planform Dynamics of a Mixed Bedrock-Alluvial Meandering River
NASA Astrophysics Data System (ADS)
Rhoads, B. L.; Konsoer, K. M.; Best, J.; Garcia, M. H.; Abad, J. D.
2013-12-01
The planform evolution of meandering rivers involves dynamic interactions among planform geometry, three-dimensional flow structure, bed morphology, sediment transport, and bank resistance. Modes of interaction among these factors in different types of bends have yet to be completely determined. This paper examines flow structure, bed morphology, and planform evolution in three different types of bends on the Wabash River, Illinois: an elongated loop with forested banks and extensive bedrock at the downstream end of the bend (Horseshoe Bend), an elongated loop with unforested banks and local bedrock control within the bend (Maier Bend), and a series of simple bends with forested banks and no bedrock control. Data consist of velocity measurements obtained between May 2011 and February 2013 for bankfull or near-bankfull flows using acoustic Doppler current profilers. Rates of migration and planform evolution were determined through GIS-based analysis of historical aerial photography from 1938 to present, including annual photos in recent years. Lidar data, sediment samples, and multi-beam echosounding data provide information on bed morphology, on the spatial extent of bedrock, and on bank materials. Horseshoe Bend has not moved substantially over the historical period of record. This lack of migration is in part related to extensive bedrock control, but also reflects high near-bank flow resistance produced by LWD and the relatively high resistance of bank materials to erosion. At Maier Bend, migration rates are high due to low resistance of bank materials to erosion, resulting in bend extension; however, the pattern of extension has been strongly influenced by the local outcropping of bedrock into the channel. In the simple bends, planform evolution has been dominated by translation, despite migration of the channel into forested sections of the floodplain. Bed morphology in these bends, especially the structure of point bars, strongly influences flow structure, resulting in high velocities near the outer bank well downstream of the bend apex. The results show that bedrock control can have an important influence on the planform evolution of mixed alluvial-bedrock rivers, yet also highlight the substantive effects of planform geometry, bed morphology, and bank resistance on bend development in these types of rivers.
Brooks, G.R.; Holmes, C.W.
1990-01-01
Depositional patterns and sedimentary processes influencing modern southwest Florida carbonate slope development have been identified based upon slope morphology, seismic facies and surface sediment characteristics. Three slope-parallel zones have been identified: (1) an upper slope progradational zone (100-500 m) characterized by seaward-trending progradational clinoforms and sediments rich in shelf-derived carbonate material, (2) a lower gullied slope zone (500-800 m) characterized by numerous gullies formed by the downslope transport of gravity flows, and (3) a base-of-slope zone (> 800 m) characterized by thin, lens-shaped gravity flow deposits and irregular topography interpreted to be the result of bottom currents and slope failure along the basal extensions of gullies. Modern slope development is interpreted to have been controlled by the offshelf transport of shallow-water material from the adjacent west Florida shelf, deposition of this material along a seaward advancing sediment front, and intermittent bypassing of the lower slope by sediments transported in the form of gravity flows via gullies. Sediments are transported offshelf by a combination of tides and the Loop Current, augmented by the passage of storm frontal systems. Winter storm fronts produce cold, dense, sediment-laden water that cascades offshelf beneath the strong, eastward flowing Florida Current. Sediments are eventually deposited in a relatively low energy transition zone between the Florida Current on the surface and a deep westward flowing counter current. The influence of the Florida Current is evident in the easternmost part of the study area as eastward prograding sediments form a sediment drift that is progressively burying the Pourtales Terrace. The modern southwest Florida slope has seismic reflection and sedimentological characteristics in common with slopes bordering both the non-rimmed west Florida margin and the rimmed platform of the northern Bahamas, and shows many similarities to the progradational Miocene section along the west Florida slope. As with rimmed platform slopes, development of non-rimmed platform slopes can be complex and controlled by a combination of processes that result in a variety of configurations. Consequently, the distinction between the two slope types based solely upon seismic and sedimentological characteristics may not be readily discernible. ?? 1990.
Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.
Chen, Wei-Qiang; Graedel, T E; Nuss, Philip; Ohno, Hajime
2016-04-05
Based on the combination of the U.S. economic input-output table and the stocks and flows framework for characterizing anthropogenic metal cycles, this study presents a methodology for building material flow networks of bulk metals in the U.S. economy and applies it to aluminum. The results, which we term the Input-Output Material Flow Networks (IO-MFNs), achieve a complete picture of aluminum flow in the entire U.S. economy and for any chosen industrial sector (illustrated for the Automobile Manufacturing sector). The results are compared with information from our former study on U.S. aluminum stocks and flows to demonstrate the robustness and value of this new methodology. We find that the IO-MFN approach has the following advantages: (1) it helps to uncover the network of material flows in the manufacturing stage in the life cycle of metals; (2) it provides a method that may be less time-consuming but more complete and accurate in estimating new scrap generation, process loss, domestic final demand, and trade of final products of metals, than existing material flow analysis approaches; and, most importantly, (3) it enables the analysis of the material flows of metals in the U.S. economy from a network perspective, rather than merely that of a life cycle chain.
NASA Astrophysics Data System (ADS)
Dunkerley, David; Brown, Kate
1999-08-01
The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.
Numerical investigation of debris materials prior to debris flow hazards using satellite images
NASA Astrophysics Data System (ADS)
Zhang, N.; Matsushima, T.
2018-05-01
The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.
Qiao, Yuchun; Shang, Jizhen; Li, Shuying; Feng, Luping; Jiang, Yao; Duan, Zhiqiang; Lv, Xiaoxia; Zhang, Chunxian; Yao, Tiantian; Dong, Zhichao; Zhang, Yu; Wang, Hua
2016-01-01
A fluorimetric Hg2+ test strip has been developed using a lotus-inspired fabrication method for suppressing the “coffee stains” toward the uniform distribution of probe materials through creating a hydrophobic drying pattern for fast solvent evaporation. The test strips were first loaded with the model probes of fluorescent gold-silver nanoclusters and then dried in vacuum on the hydrophobic pattern. On the one hand, here, the hydrophobic constraining forces from the lotus surface-like pattern could control the exterior transport of dispersed nanoclusters on strips leading to the minimized “coffee stains”. On the other hand, the vacuum-aided fast solvent evaporation could boost the interior Marangoni flow of probe materials on strips to expect the further improved probe distribution on strips. High aqueous stability and enhanced fluorescence of probes on test strips were realized by the hydrophilic treatment with amine-derivatized silicane. A test strips-based fluorimetry has thereby been developed for probing Hg2+ ions in wastewater, showing the detection performances comparable to the classic instrumental analysis ones. Such a facile and efficient fabrication route for the bio-inspired suppression of “coffee stains” on test strips may expand the scope of applications of test strips-based “point-of-care” analysis methods or detection devices in the biomedical and environmental fields. PMID:27812040
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.
Semizer-Cuming, Devrim; Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape
Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55–64%) and seedlings (75–98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26–45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback. PMID:29053740
Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994
NASA Technical Reports Server (NTRS)
Bousman, William Scott
1995-01-01
Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
Borowski, Dariusz; Czuba, Bartosz; Kaczmarek, Piotr; Włoch, Agata; Pawłowicz, Paweł; Wyrwas, Dorota; Wielgos, Mirosław; Sodowski, Krzysztof; Szaflik, Krzysztof
2006-03-01
Umbilical venous pulsation is an important sign of hemodynamic compromise, especially during fetal heart failure and asphyxia. The aim of this study was to determine of the blow flow in the middle cerebral artery and the umbilical artery in fetuses with umbilical venous pulsations. The investigation included 18 fetuses with signs of the intrauterine growth restriction and umbilical venous pulsations after 28th weeks of gestation. We evaluated cerebral-placental ratio (CPR) and pulsation index (PI) in the middle cerebral artery (MCA) and the umbilical artery (UA). We observed brain sparring effect in all cases of analyzing fetuses. There were 77,8% of abnormal flow pattern in umbilical artery. 13 fetuses had a single pulsation pattern in umbilical vein and another 5 had double pulsation pattern. The coexistence of umbilical vein pulsation and abnormal flow pattern in umbilical artery is closely related to increased perinatal mortality.
NASA Astrophysics Data System (ADS)
Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume
2016-05-01
In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.
Emergy accounting of the Province of Siena: towards a thermodynamic geography for regional studies.
Pulselli, R M; Pulselli, F M; Rustici, M
2008-01-01
This research is part of the SPIn-Eco project for the Province of Siena, Italy, and applies an environmental accounting method to a region with reference to its population, human activities, natural cycles, infrastructures and other settings. This study asserts that the consumption of resources due to the human economy is a source of great concern because of the load it places on the biosphere. Environmental resources locally used, whether directly or indirectly, from both renewable energy fluxes and storage of materials and energies, are investigated. In this paper emergy analysis is presented and applied to the Province of Siena and to each of its municipalities, in order to evaluate the main flows of energy and materials that supply the territorial system, including human subsystems, with reference to their actual environmental cost. Therefore, the behaviour of the whole system and the interactions between natural and human agents were studied; in other words, the attitudes of the territorial systems toward resource use as revealed by their patterns of emergy consumption were observed. Once expressed in units of the same form of energy through the emergy evaluation, categories of resource consumption and systems of varying scales and organization are compared. Furthermore, indexes of environmental performance based on emergy are calculated. Flows of energy and materials are assessed, and their intensities, which vary throughout the area of the Province, are then visualized on maps.
Microstructure of Friction Stir Welded AlSi9Mg Cast with 5083 and 2017A Wrought Aluminum Alloys
NASA Astrophysics Data System (ADS)
Hamilton, C.; Kopyściański, M.; Dymek, S.; Węglowska, A.; Pietras, A.
2018-03-01
Wrought aluminum alloys 5083 and 2017A were each joined with cast aluminum alloy AlSi9Mg through friction stir welding in butt weld configurations. For each material system, the wrought and cast alloy positions, i.e., the advancing side or the retreating side, were exchanged between welding trials. The produced weldments were free from cracks and discontinuities. For each alloy configuration, a well-defined nugget comprised of alternating bands of the welded alloys characterized the microstructure. The degree of mixing, however, strongly depended on which wrought alloy was present and on its position during processing. In all cases, the cast AlSi9Mg alloy dominated the weld center regardless of its position during welding. Electron backscattered diffraction analysis showed that the grain size in both alloys (bands) constituting the nugget was similar and that the majority of grain boundaries exhibited a high angle character (20°-60°). Regardless of the alloy, however, all grains were elongated along the direction of the material plastic flow during welding. A numerical simulation of the joining process visualized the material flow patterns and temperature distribution and helped to rationalize the microstructural observations. The hardness profiles across the weld reflected the microstructure formed during welding and correlated well with the temperature changes predicted by the numerical model. Tensile specimens consistently fractured in the cast alloy near the weld nugget.
NASA Technical Reports Server (NTRS)
Pu, M.; Griffin, B. P.; Vandervoort, P. M.; Stewart, W. J.; Fan, X.; Cosgrove, D. M.; Thomas, J. D.
1999-01-01
Although alteration in pulmonary venous flow has been reported to relate to mitral regurgitant severity, it is also known to vary with left ventricular (LV) systolic and diastolic dysfunction. There are few data relating pulmonary venous flow to quantitative indexes of mitral regurgitation (MR). The object of this study was to assess quantitatively the accuracy of pulmonary venous flow for predicting MR severity by using transesophageal echocardiographic measurement in patients with variable LV dysfunction. This study consisted of 73 patients undergoing heart surgery with mild to severe MR. Regurgitant orifice area (ROA), regurgitant stroke volume (RSV), and regurgitant fraction (RF) were obtained by quantitative transesophageal echocardiography and proximal isovelocity surface area. Both left and right upper pulmonary venous flow velocities were recorded and their patterns classified by the ratio of systolic to diastolic velocity: normal (>/=1), blunted (<1), and systolic reversal (<0). Twenty-three percent of patients had discordant patterns between the left and right veins. When the most abnormal patterns either in the left or right vein were used for analysis, the ratio of peak systolic to diastolic flow velocity was negatively correlated with ROA (r = -0.74, P <.001), RSV (r = -0.70, P <.001), and RF (r = -0.66, P <.001) calculated by the Doppler thermodilution method; values were r = -0.70, r = -0.67, and r = -0.57, respectively (all P <.001), for indexes calculated by the proximal isovelocity surface area method. The sensitivity, specificity, and predictive values of the reversed pulmonary venous flow pattern for detecting a large ROA (>0.3 cm(2)) were 69%, 98%, and 97%, respectively. The sensitivity, specificity, and predictive values of the normal pulmonary venous flow pattern for detecting a small ROA (<0.3 cm(2)) were 60%, 96%, and 94%, respectively. However, the blunted pattern had low sensitivity (22%), specificity (61%), and predictive values (30%) for detecting ROA of greater than 0.3 cm(2) with significant overlap with the reversed and normal patterns. Among patients with the blunted pattern, the correlation between the systolic to diastolic velocity ratio was worse in those with LV dysfunction (ejection fraction <50%, r = 0.23, P >.05) than in those with normal LV function (r = -0.57, P <.05). Stepwise linear regression analysis showed that the peak systolic to diastolic velocity ratio was independently correlated with RF (P <.001) and effective stroke volume (P <.01), with a multiple correlation coefficient of 0.71 (P <.001). In conclusion, reversed pulmonary venous flow in systole is a highly specific and reliable marker of moderately severe or severe MR with an ROA greater than 0.3 cm(2), whereas the normal pattern accurately predicts mild to moderate MR. Blunted pulmonary venous flow can be seen in all grades of MR with low predictive value for severity of MR, especially in the presence of LV dysfunction. The blunted pulmonary venous flow pattern must therefore be interpreted cautiously in clinical practice as a marker for severity of MR.
NASA Astrophysics Data System (ADS)
Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu
2015-09-01
Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).
Influence of pulsatile flow on LDL transport in the arterial wall.
Sun, Nanfeng; Wood, Nigel B; Hughes, Alun D; Thom, Simon A M; Xu, X Yun
2007-10-01
The accumulation of low-density lipoprotein (LDL) is one of the important factors in atherogenesis. Two different time scales may influence LDL transport in vivo: (1) LDL transport is coupled to blood flow with a pulse cycle of around 1 s in humans; (2) LDL transport within the arterial wall is mediated by transmural flow in the order of 10(-8) m/s. Most existing models have assumed steady flow conditions and overlooked the interactions between physical phenomena with different time scales. The objective of this study was to investigate the influence of pulsatile flow on LDL transport and examine the validity of steady flow assumption. The effect of pulsatile flow on transmural transport was incorporated by using a lumen-free cyclic (LFC) and a lumen-free time-averaged (LFTA) procedures. It is found that the steady flow simulation predicted a focal distribution in the post-stenotic region, differing from the diffuse distribution pattern produced by the pulsatile flow simulation. The LFTA procedure, in which time-averaged shear-dependent transport properties calculated from instantaneous wall shear stress (WSS) were used, predicted a similar distribution pattern to the LFC simulations. We conclude that the steady flow assumption is inadequate and instantaneous hemodynamic conditions have important influence on LDL transmural transport in arterial geometries with disturbed and complicated flow patterns.
NASA Astrophysics Data System (ADS)
Bourguet, Remi; Gsell, Simon; Braza, Marianna
2017-11-01
The flow patterns developing downstream of slender bodies with bluff cross-section have been the object of intense research in the past decades. Particular attention was paid to the vortex patterns emerging in the plane perpendicular to the body axis. In the present study, focus is placed on the spanwise structure of the flow, in the early turbulent regime. The existence of dominant spanwise wavelengths had already been reported. However, many aspects remained to be explored, among others, the streamwise evolution of the spanwise patterns and their possible alteration when the body oscillates. These aspects are examined here on the basis of direct numerical simulations of the flow past a circular cylinder at Reynolds number 3900. The body is either fixed or subjected to vortex-induced vibrations. A systematic analysis of the spanwise patterns reveals persistent trends of their amplitude and wavelength in the different compartments of the flow, i.e. the separating shear layer and wake regions. Physical mechanisms are proposed to explain these trends. It is also found that the spanwise structure of the flow is differently altered in these two regions once the cylinder vibrates, the alteration being concentrated in the separating shear layers.
Patterns in the sky: Natural visualization of aircraft flow fields
NASA Technical Reports Server (NTRS)
Campbell, James F.; Chambers, Joseph R.
1994-01-01
The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.
PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Kwangsu; Chae, Jongchul; Cao Wenda
2010-09-20
The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of H{alpha} images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s{sup -1}. The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to themore » associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13{sup 0} and 39{sup 0} in the spine and the barb, respectively.« less