Sample records for material miscellaneous packaging

  1. 40 CFR 59.1 - Final determinations under Section 183(e)(3)(C) of the CAA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... furniture coatings; (b) Aerospace coatings; (c) Shipbuilding and repair coatings; (d) Lithographic printing materials; (e) Letterpress printing materials; (f) Flexible packaging printing materials; (g) Flat wood... materials; and (p) Miscellaneous industrial adhesives. [73 FR 58491, Oct. 7, 2008] ...

  2. Material flow analysis for an industry - A case study in packaging

    USGS Publications Warehouse

    Amey, E.B.; Sandgren, K.

    1996-01-01

    The basic materials used in packaging are glass, metals (primarily aluminum and steel), an ever-growing range of plastics, paper and paperboard, wood, textiles for bags, and miscellaneous other materials (such as glues, inks, and other supplies). They are fabricated into rigid, semi-rigid, or flexible containers. The most common forms of these containers include cans, drums, bottles, cartons, boxes, bags, pouches, and wraps. Packaging products are, for the most part, low cost, bulky products that are manufactured close to their customers. There is virtually no import or export of packaging products. A material flow analysis can be developed that looks at all inputs to an industrial sector, inventories the losses in processing, and tracks the fate of the material after its useful life. An example is presented that identifies the material inputs to the packaging industry, and addresses the ultimate fate of the materials used. ?? 1996 International Association for Mathematical Geology.

  3. 76 FR 37661 - Notification of Anticipated Delay in Administrative Appeal Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    .... PHMSA-2006-25736) Hazardous Materials; Miscellaneous Packaging Amendments (September 30, 2010; 75 FR... to 49 CFR 173.63(b) and Class 7 (radioactive) material conforming to 49 CFR 173.421 through 173.425... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...

  4. 75 FR 5375 - Hazardous Material; Miscellaneous Packaging Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ...In this final rule, PHMSA is amending packaging requirements in the Hazardous Materials Regulations to enhance compliance flexibility, improve clarity, and reduce regulatory burdens. Specifically, we are revising several packaging related definitions; adding provisions to allow more flexibility when preparing and transmitting closure instructions, including conditions under which closure instructions may be transmitted electronically; adding a requirement for shippers to retain packaging closure instructions; incorporating new language that will allow for a practicable means of stenciling the ``UN'' symbol on packagings; and clarifying a requirement to document the methodology used when determining whether a change in packaging configuration requires retesting as a new design or may be considered a variation of a previously tested design. This final rule also incorporates requirements for construction, maintenance, and use of Large Packagings.

  5. 78 FR 15303 - Hazardous Materials; Miscellaneous Amendments (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ..., designated as sharps, in non-DOT specification containers fitted into wheeled racks. Revise the requirements... regulated medical wastes, designated as sharps, in non-DOT specification containers fitted into wheeled... Code Amendment 35-10, section 5.4.1.4.3.2 requires empty uncleaned packagings, IBCs, bulk containers...

  6. 75 FR 60333 - Hazardous Material; Miscellaneous Packaging Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... minimum thickness requirements for remanufactured steel and plastic drums; (2) reinstate the previous... communication problem for emergency responders in that it may interfere with them discovering a large amount of... prescribed in Sec. 178.2(c). D. Minimum Thickness Requirement for Remanufactured Steel and Plastic Drums...

  7. Cleanup Verification Package for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Appel

    2006-11-02

    This cleanup verification package documents completion of remedial action for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault. The site consisted of an inactive solid waste storage vault used for temporary storage of slightly contaminated reactor parts that could be recovered and reused for the 100-F Area reactor operations.

  8. Cleanup Verification Package for the 118-F-1 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. J. Farris and H. M. Sulloway

    2008-01-10

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  9. Tractor Mechanics: Learning Activity Packages 1-19.

    ERIC Educational Resources Information Center

    Clemson Univ., SC. Vocational Education Media Center.

    Learning activity packages are presented for teaching tractor mechanics. The first of two sections deals with miscellaneous tasks and contains learning activity packages on cleaning the tractor and receiving new tractor parts. Section 2 is concerned with maintaining and servicing the electrical system, and it includes the following learning…

  10. Stationary Engineers Apprenticeship. Related Training Modules. 20.1-23.1 Miscellaneous.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with miscellaneous job skills needed by persons working in power plants. Addressed in the individual instructional packages included in the module are the following topics: transformers, circuit protection, construction of foundations…

  11. Nontargeted multicomponent analytical screening of plastic food contact materials using fast interpretation of deliverables via expert structure-activity relationship software.

    PubMed

    Rothenbacher, Thorsten; Schwack, Wolfgang

    2009-01-01

    Plastic packaging materials may release compounds into packed foodstuffs. To identify potential migrants of toxicological concern, resins, and multilayer foils (mainly polyethylene) intended for the production of food contact materials were extracted and analyzed by GC/mass spectrometry. To identify even compounds of low concentrations, AMDIS software was used and data evaluation was safeguarded by the Kovats retention index (RI) system. In this way, 46 compounds were identified as possible migrants. The expert structure-activity relationship software DEREK for Windows was utilized to evaluate all identified substances in terms of carcinogenicity, genotoxicity, thyroid toxicity, and miscellaneous endpoints for humans. Additionally, a literature search for these compounds was performed with Sci-Finder, but relevant data were missing for 28 substances. Seven compounds with adverse toxicological effects were identified. In addition, the RIs of 24 commercial additive standards, measured with a GC capillary column of intermediate polarity, are given.

  12. 77 FR 16940 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ...: Fiberglass Boat Manufacturing Materials, Section 218.890, Subpart JJ: Miscellaneous Industrial Adhesives...: Fiberglass Boat Manufacturing Materials, Sections 218.891, 218.892, 218.894, Subpart JJ: Miscellaneous..., Section 219.890, Subpart JJ: Miscellaneous Industrial Adhesives, Section 219.900; effective September 14...

  13. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part G: Miscellaneous system data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Functional and design data from various thematic mapper subsystems are presented. Coarse focus, modulation transfer function, and shim requirements are addressed along with spectral matching and spatial coverage tests.

  14. 78 FR 75449 - Miscellaneous Corrections; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... refer to Docket ID NRC-2013-0019 when contacting the NRC about the availability of information for this..., Packaging and containers, Radiation protection, Reporting and recordkeeping requirements, Scientific... region with the highest reference temperature. * * * * * * * * PART 52--LICENSES, CERTIFICATIONS, AND...

  15. 7 CFR 1212.8 - Handle.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE HONEY PACKERS AND IMPORTERS RESEARCH, PROMOTION, CONSUMER EDUCATION AND INDUSTRY INFORMATION ORDER Honey Packers and Importers Research, Promotion..., package, sell, transport, purchase or in any other way place honey or honey products, or causes them to be...

  16. 77 FR 42973 - Export and Reexport Controls to Rwanda and United Nations Sanctions Under the Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...

  17. High Integrity Can Design Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaber, E.L.

    1998-08-01

    The National Spent Nuclear Fuel Program is chartered with facilitating the disposition of DOE-owned spent nuclear fuel to allow disposal at a geologic repository. This is done through coordination with the repository program and by assisting DOE Site owners of SNF with needed information, standardized requirements, packaging approaches, etc. The High Integrity Can (HIC) will be manufactured to provide a substitute or barrier enhancement for normal fuel geometry and cladding. The can would be nested inside the DOE standardized canister which is designed to interface with the repository waste package. The HIC approach may provide the following benefits over typicalmore » canning approaches for DOE SNF. (a) It allows ready calculation and management of criticality issues for miscellaneous. (b) It segments and further isolates damaged or otherwise problem materials from normal SNF in the repository package. (c) It provides a very long term corrosion barrier. (d) It provides an extra internal pressure barrier for particulates, gaseous fission products, hydrogen, and water vapor. (e) It delays any potential release of fission products to the repository environment. (f) It maintains an additional level of fuel geometry control during design basis accidents, rock-fall, and seismic events. (g) When seal welded, it could provide the additional containment required for shipments involving plutonium content in excess of 20 Ci. (10 CFR 71.63.b) if integrated with an appropriate cask design. Long term corrosion protection is central to the HIC concept. The material selected for the HIC (Hastelloy C-22) has undergone extensive testing for repository service. The most severe theoretical interactions between iron, repository water containing chlorides and other repository construction materials have been tested. These expected chemical species have not been shown capable of corroding the selected HIC material. Therefore, the HIC should provide a significant barrier to DOE SNF dispersal long after most commercial SNF has degraded and begun moving into the repository environment.« less

  18. Bibliography: Codes, standards, procedures, specifications and reports relating to contamination control

    NASA Technical Reports Server (NTRS)

    Ledoux, F. N.

    1970-01-01

    The bibliography is arranged in separate sections under headings that include: (1) spacecraft cleanliness, (2) general cleaning, (3) clean room and work stations, (4) contamination, (5) decontamination, (6) manufacturing, (7) miscellaneous, (8) particle count analysis, (9) passivation, (10) packaging, (11) water, and (12) acids and detergents.

  19. 18 CFR 367.9100 - Account 910, Miscellaneous customer service and informational expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Miscellaneous customer service and informational expenses. 367.9100 Section 367.9100 Conservation of Power and... Account 910, Miscellaneous customer service and informational expenses. (a) This account must include the cost of labor, materials used and expenses incurred in connection with customer service and...

  20. Cleanup Verification Package for the 116-K-2 Effluent Trench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2006-04-04

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  1. 18 CFR 367.9050 - Account 905, Miscellaneous customer accounts expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Account 905, Miscellaneous customer accounts expenses. 367.9050 Section 367.9050 Conservation of Power and Water Resources..., Miscellaneous customer accounts expenses. (a) This account must include the cost of labor, materials used and...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona

    Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less

  3. Ohio Information Package: Community and Natural Resource Development. Bulletin 698, March 1989.

    ERIC Educational Resources Information Center

    Heimlich, Joe E., Comp.; And Others

    This booklet consists almost entirely of demographic data on Ohio presented in the form of charts and graphs. The information, for the most part, focuses on the period from 1980 to 1987 and is categorized into five sections: Population, Households, Families and Health; Employment; Income and Taxes; and Miscellaneous Ohio Information. Much of the…

  4. 27 CFR 21.42 - Formula No. 17.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...: 344.Processing medicinal chemicals (including alkaloids). 358.Processing other chemicals. 359.Processing miscellaneous products. (2) As a raw material: 575.Drugs and medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ...

  5. 27 CFR 21.42 - Formula No. 17.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: 344.Processing medicinal chemicals (including alkaloids). 358.Processing other chemicals. 359.Processing miscellaneous products. (2) As a raw material: 575.Drugs and medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ...

  6. 27 CFR 21.42 - Formula No. 17.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: 344.Processing medicinal chemicals (including alkaloids). 358.Processing other chemicals. 359.Processing miscellaneous products. (2) As a raw material: 575.Drugs and medicinal chemicals. 579.Other chemicals. (3) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ...

  7. 27 CFR 21.41 - Formula No. 13-A.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... medicinal chemicals (including alkaloids). 345.Processing blood and blood products. 349.Miscellaneous drug... photographic chemicals. 358.Processing other chemicals. 359.Processing miscellaneous products. 430.Sterilizing and preserving solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material...

  8. The graphics and data acquisition software package

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.

    1981-01-01

    A software package was developed for use with micro and minicomputers, particularly the LSI-11/DPD-11 series. The package has a number of Fortran-callable subroutines which perform a variety of frequently needed tasks for biomedical applications. All routines are well documented, flexible, easy to use and modify, and require minimal programmer knowledge of peripheral hardware. The package is also economical of memory and CPU time. A single subroutine call can perform any one of the following functions: (1) plot an array of integer values from sampled A/D data, (2) plot an array of Y values versus an array of X values; (3) draw horizontal and/or vertical grid lines of selectable type; (4) annotate grid lines with user units; (5) get coordinates of user controlled crosshairs from the terminal for interactive graphics; (6) sample any analog channel with program selectable gain; (7) wait a specified time interval, and (8) perform random access I/O of one or more blocks of a sequential disk file. Several miscellaneous functions are also provided.

  9. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  10. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  11. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  12. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  13. 49 CFR 173.459 - Mixing of fissile material packages with non-fissile or fissile-excepted material packages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mixing of fissile material packages with non... (Radioactive) Materials § 173.459 Mixing of fissile material packages with non-fissile or fissile-excepted material packages. Mixing of fissile material packages with other types of Class 7 (radioactive) materials...

  14. 28 CFR 16.206 - Transcripts, minutes, and miscellaneous documents concerning Commission meetings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Transcripts, minutes, and miscellaneous documents concerning Commission meetings. 16.206 Section 16.206 Judicial Administration DEPARTMENT OF JUSTICE PRODUCTION OR DISCLOSURE OF MATERIAL OR INFORMATION Public Observation of Parole Commission...

  15. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Packaging materials. 191.13 Section 191.13 Customs... (CONTINUED) DRAWBACK General Provisions § 191.13 Packaging materials. (a) Imported packaging material... packaging material when used to package or repackage merchandise or articles exported or destroyed pursuant...

  16. 46 CFR 176.816 - Miscellaneous systems and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 100 GROSS TONS) INSPECTION AND CERTIFICATION Material Inspections § 176.816 Miscellaneous systems and equipment. At each initial and subsequent inspection for certification the owner or managing operator shall be prepared to test and make available for inspection all items in the ship's outfit, such as ground...

  17. 27 CFR 21.39 - Formula No. 6-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chemicals. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.39 Formula No. 6-B. (a) Formula. To every 100 gallons of alcohol add: One-half gallon of pyridine bases. (b) Authorized uses. (1) As a raw material: 523.Miscellaneous ethyl...

  18. 27 CFR 21.39 - Formula No. 6-B.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chemicals. (2) Miscellaneous uses: 812.Product development and pilot plant uses (own use only). ... and Authorized Uses § 21.39 Formula No. 6-B. (a) Formula. To every 100 gallons of alcohol add: One-half gallon of pyridine bases. (b) Authorized uses. (1) As a raw material: 523.Miscellaneous ethyl...

  19. 7 CFR 58.419 - Curd mill and miscellaneous equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... metal particles. The wires in the curd knives shall be stainless steel, kept tight and replaced when..., shovels, scoops, paddles, strainers, and miscellaneous equipment shall be stainless steel or of material... of the curd mill should be of stainless steel. All pieces of equipment shall be so constructed that...

  20. 7 CFR 58.419 - Curd mill and miscellaneous equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... metal particles. The wires in the curd knives shall be stainless steel, kept tight and replaced when..., shovels, scoops, paddles, strainers, and miscellaneous equipment shall be stainless steel or of material... of the curd mill should be of stainless steel. All pieces of equipment shall be so constructed that...

  1. 40 CFR 270.23 - Specific part B information requirements for miscellaneous units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for miscellaneous units. 270.23 Section 270.23 Protection of Environment ENVIRONMENTAL PROTECTION... characteristics, materials of construction, and dimensions of the unit; (2) Detailed plans and engineering reports... address and ensure compliance of the unit with each factor in the environmental performance standards of...

  2. Green Packaging Management of Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Guirong; Zhao, Zongjian

    From the connotation of green logistics management, we discuss the principles of green packaging, and from the two levels of government and enterprises, we put forward a specific management strategy. The management of green packaging can be directly and indirectly promoted by laws, regulations, taxation, institutional and other measures. The government can also promote new investment to the development of green packaging materials, and establish specialized institutions to identify new packaging materials, standardization of packaging must also be accomplished through the power of the government. Business units of large scale through the packaging and container-based to reduce the use of packaging materials, develop and use green packaging materials and easy recycling packaging materials for proper packaging.

  3. ksc-84pc-248

    NASA Image and Video Library

    2013-10-19

    KSC-84PC-248 (For release Aug. 27, 1984) --- The Continuous Flow Electrophoresis System (CFES) is being installed in the middeck of the Orbiter Discovery in preparation for the flight of mission STS-41D in June. The CFES, originating from the McDonnell Douglas Astronautics Co. includes a fluid systems module, and experiment control and monitoring module, a sample storage module and a pump/accumulator package along with miscellaneous equipment stored in a middeck locker. Photo credit: NASA

  4. 20. VIEW OF THE INTERIOR OF THE ADVANCED SIZE REDUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF THE INTERIOR OF THE ADVANCED SIZE REDUCTION FACILITY USED TO CUT PLUTONIUM CONTAMINATED GLOVE BOXES AND MISCELLANEOUS LARGE EQUIPMENT DOWN TO AN EASILY PACKAGED SIZE FOR DISPOSAL. ROUTINE OPERATIONS WERE PERFORMED REMOTELY, USING HOISTS, MANIPULATOR ARMS, AND GLOVE PORTS TO REDUCE BOTH INTENSITY AND TIME OF RADIATION EXPOSURE TO THE OPERATOR. (11/6/86) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  5. Zeus++ - A GUI-Based Flowfield Analysis Tool, Version 1.0, User’s Manual

    DTIC Science & Technology

    1999-02-01

    A.B. and Priolo, F.J., Personal Communication and unpublished documentation. 9 . Tecplot v7.0 Plotting Package, Amtec Engineering, 1998. lO.Hymer... 9 . SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 5. FUNDING NUMBERS 8. PERFORMING ORGANIZATION REPORT NUMBER NSWCDD/TR-98/147 10...12 7 VON KARMAN OGIVE PARAMETERS 13 HAACK SERIES NOSE PARAMETERS 13 9 POWER SERIES NOSE PARAMETERS 14 10 MISCELLANEOUS OPTIONS 15 11

  6. Overhauling, updating and augmenting NASA spacelink electronic information system

    NASA Technical Reports Server (NTRS)

    Blake, Jean A.

    1991-01-01

    NASA/Spacelink is a collection of NASA information and educational materials stored on a computer at the MSFC. It is provided by the NASA Educational Affairs Division and is operated by the Education Branch of the Marshall Center Public Affairs Office. It is designed to communicate with a wide variety of computers and modems, especially those most commonly found in classrooms and homes. It was made available to the public in February, 1988. The system may be accessed by educators and the public over regular telephone lines. NASA/Spacelink is free except for the cost of long distance calls. Overhauling and updating Spacelink was done to refurbish NASA/Spacelink, a very valuable resource medium. Several new classroom activities and miscellaneous topics were edited and entered into Spacelink. One of the areas that received a major overhaul (under the guidance of Amos Crisp) was the SPINOFFS BENEFITS, the great benefits resulting from America's space explorations. The Spinoff Benefits include information on a variety of topics including agriculture, communication, the computer, consumer, energy, equipment and materials, food, health, home, industry, medicine, natural resources, public services, recreation, safety, sports, and transportation. In addition to the Space Program Spinoff Benefits, the following is a partial list of some of the material updated and introduced: Astronaut Biographies, Miscellaneous Aeronautics Classroom Activities, Miscellaneous Astronomy Classroom Activities, Miscellaneous Rocketry Classroom Activities, Miscellaneous Classroom Activities, NASA and Its Center, NASA Areas of Research, NASA Patents, Licensing, NASA Technology Transfer, Pictures from Space Classroom Activities, Status of Current NASA Projects, Using Art to Teach Science, and Word Puzzles for Use in the Classroom.

  7. Millwright Apprenticeship. Related Training Modules. 15.1-15.5 Miscellaneous.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of five learning modules on miscellaneous topics is one of six such packets developed for apprenticeship training for millwrights. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators, study guide (a…

  8. Packaging Your Training Materials

    ERIC Educational Resources Information Center

    Espeland, Pamela

    1977-01-01

    The types of packaging and packaging materials to use for training materials should be determined during the planning of the training programs, according to the packaging market. Five steps to follow in shopping for packaging are presented, along with a list of packaging manufacturers. (MF)

  9. 77 FR 22504 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... material to absorb the entire contents of the inner packaging, before being placed in its outer package... combination packaging intended for the air transportation of liquid hazardous materials is capable of..., leakproof receptacle or intermediate packaging containing sufficient absorbent material to absorb the entire...

  10. 49 CFR 173.428 - Empty Class 7 (radioactive) materials packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty Class 7 (radioactive) materials packaging... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.428 Empty Class 7 (radioactive) materials packaging. A packaging which previously contained Class 7 (radioactive...

  11. 19 CFR 10.2022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.2022... Trade Promotion Agreement Rules of Origin § 10.2022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail...

  12. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging... requirement, the value of such packaging materials and containers will be taken into account as originating or...

  13. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 381.144 Section... Packaging materials. (a) Edible products may not be packaged in a container which is composed in whole or in... to health. All packaging materials must be safe for the intended use within the meaning of section...

  14. 19 CFR 10.922 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.922... Trade Promotion Agreement Rules of Origin § 10.922 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale...

  15. 19 CFR 10.922 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.922... Trade Promotion Agreement Rules of Origin § 10.922 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale...

  16. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  17. 19 CFR 10.922 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.922... Trade Promotion Agreement Rules of Origin § 10.922 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale...

  18. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale, if...

  19. 19 CFR 10.3022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.3022...-Colombia Trade Promotion Agreement Rules of Origin § 10.3022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail...

  20. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  1. 19 CFR 10.3022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.3022...-Colombia Trade Promotion Agreement Rules of Origin § 10.3022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail...

  2. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  3. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  4. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale, if...

  5. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  6. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  7. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  8. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  9. 19 CFR 10.1022 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.1022... Free Trade Agreement Rules of Origin § 10.1022 Retail packaging materials and containers. (a) Effect on tariff shift rule. Packaging materials and containers in which a good is packaged for retail sale, if...

  10. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  11. Acid Rain: Resource Materials for Schools.

    ERIC Educational Resources Information Center

    American Biology Teacher, 1983

    1983-01-01

    Provides listings of acid rain resource material groups under: (1) printed materials (pamphlets, books, articles); (2) audiovisuals (slide/tape presentations, tape, video-cassette); (3) miscellaneous (buttons, pocket lab, umbrella); (4) transparencies; (5) bibliographies; and (6) curriculum materials. Sources and prices (when applicable) are…

  12. 76 FR 82163 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... combination packagings prohibit Class 1 (explosive) and Class 7 (radioactive) material to be offered for... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... material, packing group assignments, special provisions, packaging authorizations, packaging sections, air...

  13. Types, production and assessment of biobased food packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging performs an essential function, but packaging materials can have a negative impact on the environment. This book describes the latest advances in bio-based food packaging materials. Book provides a comprehensive review on bio-based, biodegradable and recycled materials and discusses t...

  14. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review.

    PubMed

    Mousavi Khaneghah, Amin; Hashemi, Seyed Mohammad Bagher; Eş, Ismail; Fracassetti, Daniela; Limbo, Sara

    2018-07-01

    Interest in the utilization of antimicrobial active packaging for food products has increased in recent years. Antimicrobial active packaging involves the incorporation of antimicrobial compounds into packaging materials, with the aim of maintaining or extending food quality and shelf life. Plant extracts, essential oils, organic acids, bacteriocins, inorganic substances, enzymes, and proteins are used as antimicrobial agents in active packaging. Evaluation of the antimicrobial activity of packaging materials using different methods has become a critical issue for both food safety and the commercial utilization of such packaging technology. This article reviews the different types of antimicrobial agents used for active food packaging materials, the main incorporation techniques, and the assessment methods used to examine the antimicrobial activity of packaging materials, taking into account their safety as food contact materials.

  15. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Packaging materials. 317.24 Section... INSPECTION AND CERTIFICATION LABELING, MARKING DEVICES, AND CONTAINERS General § 317.24 Packaging materials... packaging materials must be safe for their intended use within the meaning of section 409 of the Federal...

  16. Practical fundamentals of glass, rubber, and plastic sterile packaging systems.

    PubMed

    Sacha, Gregory A; Saffell-Clemmer, Wendy; Abram, Karen; Akers, Michael J

    2010-01-01

    Sterile product packaging systems consist of glass, rubber, and plastic materials that are in intimate contact with the formulation. These materials can significantly affect the stability of the formulation. The interaction between the packaging materials and the formulation can also affect the appropriate delivery of the product. Therefore, a parenteral formulation actually consists of the packaging system as well as the product that it contains. However, the majority of formulation development time only considers the product that is contained in the packaging system. Little time is spent studying the interaction of the packaging materials with the contents. Interaction between the packaging and the contents only becomes a concern when problems are encountered. For this reason, there are few scientific publications that describe the available packaging materials, their advantages and disadvantages, and their important product attributes. This article was created as a reference for product development and describes some of the packaging materials and systems that are available for parenteral products.

  17. 21 CFR 181.22 - Certain substances employed in the manufacture of food-packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food-packaging materials. 181.22 Section 181.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... of food-packaging materials. Prior to the enactment of the food additives amendment to the Federal... manufacturing practice for food-packaging materials includes the restriction that the quantity of any of these...

  18. 78 FR 29016 - Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material AGENCY: Nuclear..., ``Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material.'' This draft... regulations for the packaging and transportation of radioactive material in Part 71 of Title 10 of the Code of...

  19. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  20. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  1. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  2. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... package or container or on a package or container containing a residue of a hazardous material. (5... bracing a hazardous materials package in a freight container or transport vehicle. (13) Segregating a hazardous materials package in a freight container or transport vehicle from incompatible cargo. (14...

  3. 49 CFR 172.316 - Packagings containing materials classed as ORM-D.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packagings containing materials classed as ORM-D... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.316 Packagings containing materials classed as ORM-D. (a) Each non-bulk packaging containing a material classed as ORM-D must be marked on at...

  4. 3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water.

    PubMed

    Riaz, Muhammad Adil; McKay, Gordon; Saleem, Junaid

    2017-12-01

    Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.

  5. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...

  6. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...

  7. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...

  8. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...

  9. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... packaging supplier will be accepted by Program inspectors to establish that the use of material complies.... Official establishments and packaging suppliers providing written guaranties to those official...

  10. 9 CFR 317.24 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supplier under whose brand name and firm name the material is marketed to the official establishment. The... packaging materials must be traceable to the applicable guaranty. (c) The guaranty by the packaging supplier.... Official establishments and packaging suppliers providing written guaranties to those official...

  11. 76 FR 73570 - Pipeline Safety: Miscellaneous Changes to Pipeline Safety Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    ... pipeline facilities to facilitate the removal of liquids and other materials from the gas stream. These... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts... Changes to Pipeline Safety Regulations AGENCY: Pipeline and Hazardous Materials Safety Administration...

  12. 16 CFR 303.14 - Products containing unknown fibers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., secondhand materials, textile by-products, or waste materials of unknown, and for practical purposes... the fiber content disclosure otherwise required by the Act and regulations, indicate that such product is composed of miscellaneous scraps, rags, odd lots, textile by-products, secondhand materials (in...

  13. Effectiveness of some recent antimicrobial packaging concepts.

    PubMed

    Vermeiren, L; Devlieghere, F; Debevere, J

    2002-01-01

    A new type of active packaging is the combination of food-packaging materials with antimicrobial substances to control microbial surface contamination of foods. For both migrating and non-migrating antimicrobial materials, intensive contact between the food product and packaging material is required and therefore potential food applications include especially vacuum or skin-packaged products, e.g. vacuum-packaged meat, fish, poultry or cheese. Several antimicrobial compounds have been combined with different types of carriers (plastic and rubber articles, paper-based materials, textile fibrils and food-packaging materials). Until now, however, few antimicrobial concepts have found applications as a food-packaging material. Antimicrobial packaging materials cannot legally be used in the EU at the moment. The potential use would require amendments of several different legal texts involving areas such as food additives, food packaging, hygiene, etc. The main objective of this paper is to provide a state of the art about the different types of antimicrobial concepts, their experimental development and commercialization, and to present a case study summarizing the results of investigations on the feasibility of a low-density polyethylene (LDPE)-film containing triclosan to inhibit microbial growth on food surfaces and consequently prolong shelf-life or improve microbial food safety. In contrast with the strong antimicrobial effect in in-vitro simulated vacuum-packaged conditions against the psychrotrophic food pathogen L. monocytogenes, the 1000 mg kg(-1) containing triclosan film did not effectively reduce spoilage bacteria and growth of L. monocytogenes on refrigerated vacuum-packaged chicken breasts stored at 7 degrees C.

  14. 77 FR 14445 - Leakage Tests on Packages for Shipment of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0045] Leakage Tests on Packages for Shipment of..., ``Leakage Tests on Packages for Radioactive Material.'' ADDRESSES: You can access publicly available... Materials--Leakage Tests on Packages for Shipment'' approved February 1998. The NRC staff developed and...

  15. 77 FR 18871 - Administrative Guide for Verifying Compliance With Packaging Requirements for Shipment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Packaging Requirements for Shipment and Receipt of Radioactive Material AGENCY: Nuclear Regulatory... with Packaging Requirements for Shipment and Receipt of Radioactive Material.'' This regulatory guide... for transporting licensed material under 10 CFR part 71, ``Packaging and Transportation of Radioactive...

  16. Natural biopolymer-based nanocomposite films for packaging applications.

    PubMed

    Rhim, Jong-Whan; Ng, Perry K W

    2007-01-01

    Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as the consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance can be recovered by applying a nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased modulus and strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have a huge potential for application in the active food packaging industry. In this review, recent advances in the preparation of natural biopolymer-based films and their nanocomposites, and their potential use in packaging applications are addressed.

  17. The Model 9977 Radioactive Material Packaging Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G.

    2015-10-09

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of Title 10 the Code of Federal Regulations Part 71. A radioactive material shipping package, in combination with its contents, must perform three functions (please note that the performance criteria specified in the Code of Federal Regulations have alternate limits for normal operations and after accident conditions): Containment, the package must “contain” the radioactive material within it; Shielding, the packaging must limit its users and the public to radiation doses within specified limits; and Subcriticality, themore » package must maintain its radioactive material as subcritical« less

  18. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  19. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  20. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  1. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  2. 46 CFR 109.559 - Explosives and radioactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Explosives and radioactive materials. 109.559 Section 109.559 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.559 Explosives and radioactive materials. Except as authorized by...

  3. 76 FR 15901 - Acquisition Regulation Miscellaneous Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... obsolete material is being removed. DATES: Submit comments by May 23, 2011. ADDRESSES: You may submit... order to update references to other federal and Departmental directives, remove obsolete material and... efficient and transparent. This rule will not adversely affect in a material way the economy, productivity...

  4. 77 FR 36017 - Regulatory Guide 7.3, Procedures for Picking Up and Receiving Packages of Radioactive Material

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... Receiving Packages of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Guide (RG) 7.3, ``Procedures for Picking Up and Receiving Packages of Radioactive Material.'' The guide..., ``Administrative Guide for Verifying Compliance with Packaging Requirements for Shipment and Receipt of Radioactive...

  5. 75 FR 27205 - Hazardous Materials: Incorporation of Special Permits Into Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... manufacture, marking, sale and use of certain packagings for transportation of hazardous materials. These... packagings prepared in accordance with Sec. 173.13. Authorize, for certain hazardous materials, external...

  6. 76 FR 41241 - Proposed Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Material.'' The CoC defines the packaging, radioactive material content, and transportation restrictions... Radioactive Materials Packages; (3) Type of Request: New; (4) Purpose: This information collection is in... approved a radioactive material package as meeting the applicable safety standards [[Page 41242

  7. 49 CFR 173.25 - Authorized packagings and overpacks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Authorized packagings and overpacks. 173.25...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.25 Authorized packagings and overpacks. (a) Authorized packages containing hazardous materials may...

  8. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... noted. (a) An individual package containing 2 grams or less of fissile material. (b) An individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and...

  9. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... noted. (a) An individual package containing 2 grams or less of fissile material. (b) An individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and...

  10. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... noted. (a) An individual package containing 2 grams or less of fissile material. (b) An individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and...

  11. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... noted. (a) An individual package containing 2 grams or less of fissile material. (b) An individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and...

  12. 49 CFR 173.453 - Fissile materials-exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... noted. (a) An individual package containing 2 grams or less of fissile material. (b) An individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile material. Lead, beryllium, graphite, and...

  13. Savannah River Site Eastern Transportation Hub: A Concept For a DOE Eastern Packaging, Staging and Maintenance Center - 13143

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Jeffery L.; Adams, Karen; Maxted, Maxcine

    2013-07-01

    The Department of Energy (DOE) is working to de-inventory sites and consolidate hazardous materials for processing and disposal. The DOE administers a wide range of certified shipping packages for the transport of hazardous materials to include Special Nuclear Material (SNM), radioactive materials, sealed sources and radioactive wastes. A critical element to successful and safe transportation of these materials is the availability of certified shipping packages. There are over seven thousand certified packagings (i.e., Type B/Type AF) utilized within the DOE for current missions. The synergistic effects of consolidated maintenance, refurbishment, testing, certification, and costing of these services would allow formore » efficient management of the packagings inventory and to support anticipated future in-commerce shipping needs. The Savannah River Site (SRS) receives and ships radioactive materials (including SNM) and waste on a regular basis for critical missions such as consolidated storage, stabilization, purification, or disposition using H-Canyon and HB-Line. The Savannah River National Laboratory (SRNL) has the technical capability and equipment for all aspects of packaging management. SRS has the only active material processing facility in the DOE complex and is one of the sites of choice for nuclear material consolidation. SRS is a logical location to perform maintenance and periodic testing of the DOE fleet of certified packagings. This initiative envisions a DOE Eastern Packaging Staging and Maintenance Center (PSMC) at the SRS and a western hub at the Nevada National Security Site (NNSS), an active DOE Regional Disposal Site. The PSMC's would be the first place DOE would go to meet their radioactive packaging needs and the primary locations projects would go to disposition excess packaging for beneficial reuse. These two hubs would provide the centralized management of a packaging fleet rather than the current approach to design, procure, maintain and dispose of packagings on a project-by-project basis. This initiative provides significant savings in packaging costs and acceleration of project schedules. In addition to certified packaging, the PSMC would be well suited for select designs of 7A Type A packaging and Industrial Packaging. (authors)« less

  14. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2014-10-01 2014-10-01 false Liquid hazardous materials in non-bulk packagings... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  15. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2013-10-01 2013-10-01 false Liquid hazardous materials in non-bulk packagings... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS...

  16. 78 FR 1101 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... packaging maintains an equivalent level of performance to the originally tested packaging design must be... material, packing group assignments, special provisions, packaging authorizations, packaging sections, air... responsibilities related to packaging design variation, manufacturer notification, and recordkeeping requirements...

  17. 78 FR 54775 - Bulk Packaging To Allow for Transfer of Hazardous Liquid Cargoes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... the selection and use of packaging in the transportation of hazardous materials. This rule will... Pipeline and Hazardous Materials Safety Administration SBA Small Business Administration U.S.C. United... materials to and from bulk packaging on vessels. The Coast Guard is expanding the list of bulk packaging...

  18. Opportunities for cellulose nanomaterials in packaging films: a review and future trends

    Treesearch

    Nicole M. Stark

    2016-01-01

    Performance requirements for packaging films may include barrier properties, transparency, flexibility, and tensile strength. Conventional packaging materials such as plastic films and laminates, are typically made from petroleum-based polymers. Currently, there is a drive to develop sustainable packaging materials. These alternative materials must be able to be...

  19. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    PubMed

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  20. Leveraging Available Data to Support Extension of Transportation Packages Service Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Abramczyk, G.; Bellamy, S.

    Data obtained from testing shipping package materials have been leveraged to support extending the service life of select shipping packages while in nuclear materials transportation. Increasingly, nuclear material inventories are being transferred to an interim storage location where they will reside for extended periods of time. Use of a shipping package to store nuclear materials in an interim storage location has become more attractive for a variety of reasons. Shipping packages are robust and have a qualified pedigree for their performance in normal operation and accident conditions within the approved shipment period and storing nuclear material within a shipping packagemore » results in reduced operations for the storage facility. However, the shipping package materials of construction must maintain a level of integrity as specified by the safety basis of the storage facility through the duration of the storage period, which is typically well beyond the one year transportation window. Test programs have been established to obtain aging data on materials of construction that are the most sensitive/susceptible to aging in certain shipping package designs. The collective data are being used to support extending the service life of shipping packages in both transportation and storage.« less

  1. Multi-layered Poly-Dimethylsiloxane As A Non-Hermetic Packaging Material For Medical MEMS

    PubMed Central

    Lachhman, S.; Zorman, C.A.; Ko, W.H.

    2012-01-01

    Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer. This paper describes an effort to improve the performance of PDMS as packaging material by constructing the encapsulant from multiple, thin layers of PDMS as a part of a polymeric multi-material package PMID:23366225

  2. Effect of novel food processing methods on packaging: structure, composition, and migration properties.

    PubMed

    Guillard, V; Mauricio-Iglesias, M; Gontard, N

    2010-11-01

    Classical stabilization techniques (thermal treatments) usually involve food to be packed after being processed. On the contrary and increasingly, novel food processing methods, such as high pressure or microwaves, imply that both packaging and foodstuff undergo the stabilization treatment. Moreover, novel treatments (UV light, irradiation, ozone, cold plasma) are specifically used for disinfection and sterilization of the packaging material itself. Therefore, in the last several years a number of papers have focused on the effects of these new treatments on food-packaging interactions with a special emphasis on chemical migration and safety concerns. New packaging materials merged on the market with specific interest regarding the environment (i.e. bio-sourced materials) or mechanical and barrier properties (i.e. nanocomposites packaging materials). It is time to evaluate the knowledge about how these in-package food technologies affect food/packaging interactions, and especially for novel biodegradable and/or active materials. This article presents the effect of high pressure treatment, microwave heating, irradiation, UV-light, ozone and, cold plasma treatment on food/packaging interactions.

  3. Postsecondary Athletics and the Law: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Edmonds, Edmund P.

    1977-01-01

    Categories of this annotated list are: General Materials, Books; General Materials, Articles; Organizations; Sex Discrimination and Title IX; The NCAA and the Regulation of Collegiate Sports; Broadcasting; Transnational Sports; Sports Violence; Sports, Law, and Medicine; and Miscellaneous. (AF)

  4. NASA CORE (Central Operation of Resources for Educators) Educational Materials Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This educational materials catalog presents NASA CORE (Central Operation of Resources for Educators). The topics include: 1) Videocassettes (Aeronautics, Earth Resources, Weather, Space Exploration/Satellites, Life Sciences, Careers); 2) Slide Programs; 3) Computer Materials; 4) NASA Memorabilia/Miscellaneous; 5) NASA Educator Resource Centers; 6) and NASA Resources.

  5. 77 FR 24885 - Hazardous Materials; Miscellaneous Amendments (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... ``Dried residue of molten sulfur on tank cars shall meet the `Molten Sulphur Rail Car Guidance Document... reference material in the HMR should provide rail shippers of molten sulfur with a greater situational... hazardous material. In addition, PHMSA proposes to revise the entries for ``Sulfur, Molten'' specified in...

  6. 78 FR 14702 - Hazardous Materials: Miscellaneous Petitions for Rulemaking (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... Standard Specification for Polyethylene Plastics Molding and Extrusion Materials to provide a range of acceptable resin tolerances in the plastic drum and IBC material; Allow smokeless powder classed as a... incorporate by reference ASTM Standard 04976-06 without stating that plastic drums and IBCs made from...

  7. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  8. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  9. 18 CFR 1304.400 - Flotation devices and material, all floating structures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... material, all floating structures. 1304.400 Section 1304.400 Conservation of Power and Water Resources... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.400 Flotation devices and material, all floating structures. (a) All flotation for docks, boat mooring buoys, and other water-use structures and facilities...

  10. Edible packaging materials.

    PubMed

    Janjarasskul, Theeranun; Krochta, John M

    2010-01-01

    Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.

  11. 75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... non-bulk packagings in a revised set of requirements for Class 3 materials, thereby eliminating the... material classed as a combustible liquid in a non-bulk packaging unless the combustible liquid is a... package for limited quantities for Class 7 (radioactive materials) could be transported as a combustible...

  12. Effects of packaging materials on storage quality of peanut kernels

    PubMed Central

    Fu, Xiaoji; Xing, Shengping; Xiong, Huiwei; Min, Hua; Zhu, Xuejing; He, Jialin; Mu, Honglei

    2018-01-01

    In order to obtain optimum packaging materials for peanut kernels, the effects of four types of packaging materials on peanut storage quality (coat color, acid value, germination rate, relative damage, and prevention of aflatoxin contamination) were examined. The results showed that packaging materials had a major influence on peanut storage quality indexes. The color of the peanut seed coat packaged in the polyester/aluminum/polyamide/polyethylene (PET/AL/PA/PE) composite film bag did not change significantly during the storage period. Color deterioration was slower with polyamide/polyethylene (PA/PE) packaging materials than with polyethylene (PE) film bags and was slower in PE bags than in the woven bags. The use of PET/AL/PA/PE and PA/PE bags maintained peanut quality and freshness for more than one year and both package types resulted in better germination rates. There were significant differences between the four types of packaging materials in terms of controlling insect pests. The peanuts packaged in the highly permeable woven bags suffered serious invasion from insect pests, while both PET/AL/PA/PE and PA/PE bags effectively prevented insect infection. Peanuts stored in PET/AL/PA/PE and PA/PE bags were also better at preventing and controlling aflatoxin contamination. PMID:29518085

  13. Multi-layered poly-dimethylsiloxane as a non-hermetic packaging material for medical MEMS.

    PubMed

    Lachhman, S; Zorman, C A; Ko, W H

    2012-01-01

    Poly-dimethylsiloxane (PDMS) is an attractive material for packaging implantable biomedical microdevices owing to its biocompatibility, ease in application, and bio-friendly mechanical properties. Unfortunately, devices encapsulated solely by PDMS lack the longevity for use in chronic implant applications due to defect-related moisture penetration through the packaging layer caused by conventional deposition processes such as spin coating. This paper describes an effort to improve the performance of PDMS as a packaging material by constructing the encapsulant from multiple, thin roller casted layers of PDMS as a part of a polymeric multi-material package.

  14. Maldives. Package on population education for special interest groups developed.

    PubMed

    1995-01-01

    The Population Education Program of the Non-Formal Education Center has developed a package of Population Education for Special Interest Groups comprising a learning package and fieldworker's guide. The learning package is especially developed for teaching population education for out-of-school populations. Special interest groups in Maldives include newly married couples, adolescents, and working youth. Produced under the guidance of UNESCO, Bangkok, the package contains 36 different materials such as posters, charts, leaflets, booklets, stories, and illustrated booklets which may be taught in 36 to 45 periods. The materials deal with eight themes, namely, family size and family welfare, population and resources, delayed marriage and parenthood, responsible parenthood, population-related values and beliefs, women in development, AIDS/STD, and respect for old people. Accompanying the learning package is the fieldworker's guide used to teach the package. It contains individual guides for each of the 36 learning materials. The guide gives the titles of the materials, format, objectives of the materials, messages, target groups, and an overview of the content of each learning materials. The methodologies used for teaching the learning materials include role playing, group discussion, questioning, brainstorming, survey, creative writing, problem-solving and evaluation. The package will be used by fieldworkers to conduct island-based population education courses. full text

  15. Environmental Assessment of Packaging: The Consumer Point of View

    PubMed

    Van Dam YK

    1996-09-01

    When marketing environmentally responsible packaged products, the producer is confronted with consumer beliefs concerning the environmental friendliness of packaging materials. When making environmentally conscious packaging decisions, these consumer beliefs should be taken into account alongside the technical guidelines. Dutch consumer perceptions of the environmental friendliness of packaged products are reported and compared with the results of a life-cycle analysis assessment. It is shown that consumers judge environmental friendliness mainly from material and returnability. Furthermore, the consumer perception of the environmental friendliness of packaging material is based on the postconsumption waste, whereas the environmental effects of production are ignored. From the consumer beliefs concerning environmental friendliness implications are deduced for packaging policy and for environmental policy.KEY WORDS: Consumer behavior; Environment; Food; Packaging; Perception; Waste

  16. Natural biopolimers in organic food packaging

    NASA Astrophysics Data System (ADS)

    Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio

    2014-05-01

    Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology

  17. 76 FR 5215 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Compliance with Packaging Requirements for Shipment and Receipt of Radioactive Material,'' is temporarily... Code of Federal Regulations, Part 71, ``Packaging and Transportation of Radioactive Material'' (10 CFR... Compliance with Packaging Requirements for Shipments of Radioactive Materials,'' as an acceptable process for...

  18. Trends in Food Packaging.

    ERIC Educational Resources Information Center

    Ott, Dana B.

    1988-01-01

    This article discusses developments in food packaging, processing, and preservation techniques in terms of packaging materials, technologies, consumer benefits, and current and potential food product applications. Covers implications due to consumer life-style changes, cost-effectiveness of packaging materials, and the ecological impact of…

  19. Atomic Oxygen Exposure of Power System and other Spacecraft Materials: Results of the EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Morton, Thomas L.; Ferguson, Dale C.

    1997-01-01

    In order to test their reactivity with Atomic Oxygen, twenty five materials were flown on the EOIM-3 (Evaluation of Oxygen Interactions with Materials) portion of the STS-46 Mission. These materials include refractory metals, candidate insulation materials, candidate radiator coatings, and a selection of miscellaneous materials. This report documents the results of the pre- and post-flight analysis of these materials.

  20. Radiation treatment for sterilization of packaging materials

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.

    2007-08-01

    Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.

  1. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... subject to all other requirements of this part, except as noted. (a) Individual package containing 2 grams or less fissile material. (b) Individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile...

  2. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... subject to all other requirements of this part, except as noted. (a) Individual package containing 2 grams or less fissile material. (b) Individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile...

  3. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... subject to all other requirements of this part, except as noted. (a) Individual package containing 2 grams or less fissile material. (b) Individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile...

  4. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... subject to all other requirements of this part, except as noted. (a) Individual package containing 2 grams or less fissile material. (b) Individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile...

  5. 10 CFR 71.15 - Exemption from classification as fissile material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... subject to all other requirements of this part, except as noted. (a) Individual package containing 2 grams or less fissile material. (b) Individual or bulk packaging containing 15 grams or less of fissile material provided the package has at least 200 grams of solid nonfissile material for every gram of fissile...

  6. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Packaging materials for use during the irradiation... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE... materials for use during the irradiation of prepackaged foods. The packaging materials identified in this...

  7. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Packaging materials for use during the irradiation... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE... materials for use during the irradiation of prepackaged foods. The packaging materials identified in this...

  8. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Packaging materials for use during the irradiation... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE... materials for use during the irradiation of prepackaged foods. The packaging materials identified in this...

  9. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Packaging materials for use during the irradiation... OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE... materials for use during the irradiation of prepackaged foods. The packaging materials identified in this...

  10. Influence of different materials on the thermal behavior of a CDIP-8 ceramic package

    NASA Astrophysics Data System (ADS)

    Weide, Kirsten; Keck, Christian

    1999-08-01

    The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.

  11. Degradation Behavior and Accelerated Weathering of Composite Boards Produced from Waste Tetra Pak® Packaging Materials

    Treesearch

    Nural Yilgor; Coskun Kose; Evren Terzi; Aysel Kanturk Figen; Rebecca Ibach; S. Nami Kartal; Sabriye Piskin

    2014-01-01

    Manufacturing panels from Tetra Pak® (TP) packaging material might be an alternative to conventional wood-based panels. This study evaluated some chemical and physical properties as well as biological, weathering, and fire performance of panels with and without zinc borate (ZnB) by using shredded TP packaging cartons. Such packaging material, a worldwide well-known...

  12. 9 CFR 381.144 - Packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., from the packaging supplier under whose brand name and firm name the material is marketed to the... distinguishing brand name or code designation appearing on the packaging material shipping container; must....13) will be acceptable. The management of the establishment must maintain a file containing...

  13. Teaching Old Packaging New Tricks - 12593

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Jeffery L.; Shuler, James M.

    2012-07-01

    Waste disposition campaigns have been an industry and government focus area since the mid- 1970's. With increased focus on this issue, and a lot of hard work, most waste packaging and transportation issues have been addressed. The material has been successfully shipped and dis-positioned. DOE has successfully de-inventoried materials from multiple sites to meet material consolidation, footprint reduction, nonproliferation, and regulatory obligations with cost savings from reduced maintenance and regulatory compliance. There has been a wide range of certified shipping packagings for the transportation of hazardous materials to meet most of the waste needs. The remaining materials are problematic, generallymore » low volume, and do not meet the certified content of the existing inventory of packaging. Designing, testing and certifying new packaging designs can be a long and expensive process and for small volumes of material it is cost prohibitive. One very cost effective option is to lease and use a certified packaging to overpack waste containers. There are many robust certified packagings available with the capability to envelope the waste content. The capability to use inner containers, inside the current fleet of certified casks or packaging, to address specific content problems of additional shielding (e.g., U-233) or containment (e.g., sodium bonded nuclear material) has successfully expanded the capability for timely cost effective shipment of unique contents. This option has been used successfully in the NAC-LWT, T-3 and other packagings. (authors)« less

  14. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials.

    PubMed

    Lee, Keun Taik

    2010-09-01

    This article explores the effects of physically manipulated packaging materials on the quality and safety of meat products. Recently, innovative measures for improving quality and extending the shelf-life of packaged meat products have been developed, utilizing technologies including barrier film, active packaging, nanotechnology, microperforation, irradiation, plasma and far-infrared ray (FIR) treatments. Despite these developments, each technology has peculiar drawbacks which will need to be addressed by meat scientists in the future. To develop successful meat packaging systems, key product characteristics affecting stability, environmental conditions during storage until consumption, and consumers' packaging expectations must all be taken into consideration. Furthermore, the safety issues related to packaging materials must also be taken into account when processing, packaging and storing meat products.

  15. Packaging films for electronic and space-related hardware

    NASA Astrophysics Data System (ADS)

    Shon, E. M.; Hamberg, O.

    1985-08-01

    Flexible packaging films are used to bag and/or wrap precision cleaned electronic or space hardware to protect them from environmental degradation during shipping and storage. Selection of packaging films depends on a knowledge of product requirements and packaging film characteristics. The literature presently available on protective packaging films has been updated to include new materials and to amplify space-related applications. Presently available packaging film materials are compared for their various characteristics: electrostatic discharge (ESD) control, flame retardancy, water vapor transmission rate, particulate shedding, molecular contamination, and transparency. The tradeoff between product requirements and the characteristics of the packaging films available are discussed. Selection considerations are given for the application of specific materials of space hardware-related applications. Applications for intimate, environmental, and electrostatic protective packaging are discussed.

  16. Life and stability testing of packaged low-cost energy storage materials

    NASA Astrophysics Data System (ADS)

    Frysinger, G. R.

    1980-07-01

    A low-cost laminated plastic film which is used to contain a Glauber's salt-based phase change thermal energy storage material in sausage like containers called Chubs was developed. Results of tests performed on the Chub packages themselves and on the thermal energy storage capacity of the packaged phase change material are described. From the test results, a set of specifications was drawn up for a film material which will satisfactorily contain the phase change material under anticipated operating conditions. Calorimetric testing of the phase change material with thermal cycling indicates that a design capacity of 45 to 50 Btu/lb for a delta T of 30 F can be used for the packaged material.

  17. Packaging food for radiation processing

    NASA Astrophysics Data System (ADS)

    Komolprasert, Vanee

    2016-12-01

    Irradiation can play an important role in reducing pathogens that cause food borne illness. Food processors and food safety experts prefer that food be irradiated after packaging to prevent post-irradiation contamination. Food irradiation has been studied for the last century. However, the implementation of irradiation on prepackaged food still faces challenges on how to assess the suitability and safety of these packaging materials used during irradiation. Irradiation is known to induce chemical changes to the food packaging materials resulting in the formation of breakdown products, so called radiolysis products (RP), which may migrate into foods and affect the safety of the irradiated foods. Therefore, the safety of the food packaging material (both polymers and adjuvants) must be determined to ensure safety of irradiated packaged food. Evaluating the safety of food packaging materials presents technical challenges because of the range of possible chemicals generated by ionizing radiation. These challenges and the U.S. regulations on food irradiation are discussed in this article.

  18. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts

    USDA-ARS?s Scientific Manuscript database

    The primary material used by the packaging industry is extruded polystyrene foam, which is commonly marketed as Styrofoam™. In its original formulation, Styrofoam™ is resistant to photolysis and effectively does not decompose. The light weight of Styrofoam™ packaging materials reduces the likelihood...

  19. 19 CFR 10.878 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... retail sale and for shipment. 10.878 Section 10.878 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  20. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... retail sale and for shipment. 10.815 Section 10.815 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  1. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... retail sale and for shipment. 10.815 Section 10.815 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  2. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... retail sale and for shipment. 10.815 Section 10.815 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  3. 19 CFR 10.878 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... retail sale and for shipment. 10.878 Section 10.878 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  4. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... retail sale and for shipment. 10.775 Section 10.775 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  5. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... retail sale and for shipment. 10.815 Section 10.815 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  6. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... retail sale and for shipment. 10.775 Section 10.775 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  7. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... retail sale and for shipment. 10.775 Section 10.775 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  8. 19 CFR 10.878 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... retail sale and for shipment. 10.878 Section 10.878 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  9. 19 CFR 10.815 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... retail sale and for shipment. 10.815 Section 10.815 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  10. 19 CFR 10.878 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... retail sale and for shipment. 10.878 Section 10.878 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  11. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... retail sale and for shipment. 10.775 Section 10.775 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  12. 19 CFR 10.775 - Packaging and packing materials and containers for retail sale and for shipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... retail sale and for shipment. 10.775 Section 10.775 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION... materials and containers for retail sale and for shipment. Packaging materials and containers in which a good is packaged for retail sale and packing materials and containers for shipment are to be...

  13. Development of expert system for biobased polymer material selection: food packaging application.

    PubMed

    Sanyang, M L; Sapuan, S M

    2015-10-01

    Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.

  14. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    NASA Astrophysics Data System (ADS)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average overrun rates for compressor station material, labor, miscellaneous, land, and total costs are 3%, 60%, 2%, -14%, and 11%, respectively, and cost overruns for cost components are influenced by location and year of completion to different degrees. Monte Carlo models are developed and simulated to evaluate the feasibility of an Alaska in-state gas pipeline by assigning triangular distribution of the values of economic parameters. Simulated results show that the construction of an Alaska in-state natural gas pipeline is feasible at three scenarios: 500 million cubic feet per day (mmcfd), 750 mmcfd, and 1000 mmcfd.

  15. Development of active, nanoparticle, antimicrobial technologies for muscle-based packaging applications.

    PubMed

    Morris, Michael A; Padmanabhan, Sibu C; Cruz-Romero, Malco C; Cummins, Enda; Kerry, Joseph P

    2017-10-01

    Fresh and processed muscle-based foods are highly perishable food products and packaging plays a crucial role in providing containment so that the full effect of preservation can be achieved through the provision of shelf-life extension. Conventional packaging materials and systems have served the industry well, however, greater demands are being placed upon industrial packaging formats owing to the movement of muscle-based products to increasingly distant markets, as well as increased customer demands for longer product shelf-life and storage capability. Consequently, conventional packaging materials and systems will have to evolve to meet these challenges. This review presents some of the new strategies that have been developed by employing novel nanotechnological concepts which have demonstrated some promise in significantly extending the shelf-life of muscle-based foods by providing commercially-applicable, antimicrobially-active, smart packaging solutions. The primary focus of this paper is applied to subject aspects, such as; material chemistries employed, forming methods utilised, interactions of the packaging functionalities including nanomaterials employed with polymer substrates and how such materials ultimately affect microbes. In order that such materials become industrially feasible, it is important that safe, stable and commercially-viable packaging materials are shown to be producible and effective in order to gain public acceptance, legislative approval and industrial adoption. Copyright © 2017. Published by Elsevier Ltd.

  16. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2011-10-01 2011-10-01 false Liquid hazardous materials in non-bulk packagings...

  17. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2012-10-01 2012-10-01 false Liquid hazardous materials in non-bulk packagings...

  18. 49 CFR 172.312 - Liquid hazardous materials in non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... offered or intended for transportation by aircraft, packages containing flammable liquids in inner... 49 Transportation 2 2010-10-01 2010-10-01 false Liquid hazardous materials in non-bulk packagings...

  19. Food Packaging Materials

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The photos show a few of the food products packaged in Alure, a metallized plastic material developed and manufactured by St. Regis Paper Company's Flexible Packaging Division, Dallas, Texas. The material incorporates a metallized film originally developed for space applications. Among the suppliers of the film to St. Regis is King-Seeley Thermos Company, Winchester, Ma'ssachusetts. Initially used by NASA as a signal-bouncing reflective coating for the Echo 1 communications satellite, the film was developed by a company later absorbed by King-Seeley. The metallized film was also used as insulating material for components of a number of other spacecraft. St. Regis developed Alure to meet a multiple packaging material need: good eye appeal, product protection for long periods and the ability to be used successfully on a wide variety of food packaging equipment. When the cost of aluminum foil skyrocketed, packagers sought substitute metallized materials but experiments with a number of them uncovered problems; some were too expensive, some did not adequately protect the product, some were difficult for the machinery to handle. Alure offers a solution. St. Regis created Alure by sandwiching the metallized film between layers of plastics. The resulting laminated metallized material has the superior eye appeal of foil but is less expensive and more easily machined. Alure effectively blocks out light, moisture and oxygen and therefore gives the packaged food long shelf life. A major packaging firm conducted its own tests of the material and confirmed the advantages of machinability and shelf life, adding that it runs faster on machines than materials used in the past and it decreases product waste; the net effect is increased productivity.

  20. 49 CFR 176.156 - Defective packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... packages. (a) No leaking, broken, or otherwise defective package containing Class 1 (explosive) materials.... (b) No Class 1 (explosive) material, which for any reason has deteriorated or undergone a change of...

  1. 77 FR 30976 - Hazardous Materials: Miscellaneous Petitions for Rulemaking (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... in specifications for resins used in the manufacture of plastic drums and Intermediate Bulk...-06, Standard Specification for Polyethylene Plastics Molding and Extrusion Materials, discussed in....801(c)(7) to ASTM D4976-06 Standard Specification for Polyethylene Plastics Molding and Extrusion...

  2. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  3. 49 CFR 173.212 - Non-bulk packagings for solid hazardous materials in Packing Group II.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.212 Non-bulk packagings for solid hazardous materials in Packing Group II. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  4. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  5. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  6. 49 CFR 173.213 - Non-bulk packagings for solid hazardous materials in Packing Group III.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.213 Non-bulk packagings for solid hazardous materials in Packing Group III. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  7. 49 CFR 173.211 - Non-bulk packagings for solid hazardous materials in Packing Group I.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Non-bulk packagings for solid hazardous materials... Hazardous Materials Other Than Class 1 and Class 7 § 173.211 Non-bulk packagings for solid hazardous materials in Packing Group I. (a) When § 172.101 of this subchapter specifies that a solid hazardous...

  8. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this section; and (3) For gases a water capacity of 30 mL (1.8 cubic inches) or less. (d) Outer... outer packaging must not exceed the limits provided in the following paragraphs. For outer packagings..., rigid outer packaging. (5) Placement of the material in the package or packing different materials in...

  9. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this section; and (3) For gases a water capacity of 30 mL (1.8 cubic inches) or less. (d) Outer... outer packaging must not exceed the limits provided in the following paragraphs. For outer packagings..., rigid outer packaging. (5) Placement of the material in the package or packing different materials in...

  10. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging... requirement. The United States importer of good C decides to use the build-down method, RVC=((AV−VNM)/AV... content requirement. In applying this method, the non-originating blister packages are taken into account...

  11. 49 CFR 173.6 - Materials of trade exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SHIPMENTS AND PACKAGINGS General § 173.6 Materials of trade exceptions. When transported by motor vehicle in... solids, liquids, and sharps, the outer packaging must be a strong, tight packaging securely closed and...) Packagings must be leak tight for liquids and gases, sift proof for solids, and be securely closed, secured...

  12. 49 CFR 173.6 - Materials of trade exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SHIPMENTS AND PACKAGINGS General § 173.6 Materials of trade exceptions. When transported by motor vehicle in... solids, liquids, and sharps, the outer packaging must be a strong, tight packaging securely closed and...) Packagings must be leak tight for liquids and gases, sift proof for solids, and be securely closed, secured...

  13. 49 CFR 173.6 - Materials of trade exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SHIPMENTS AND PACKAGINGS General § 173.6 Materials of trade exceptions. When transported by motor vehicle in... outer packaging must be securely closed to prevent leaks or punctures. For solids, liquids, and sharps...) Packaging. (1) Packagings must be leak tight for liquids and gases, sift proof for solids, and be securely...

  14. 49 CFR 173.6 - Materials of trade exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SHIPMENTS AND PACKAGINGS General § 173.6 Materials of trade exceptions. When transported by motor vehicle in... solids, liquids, and sharps, the outer packaging must be a strong, tight packaging securely closed and...) Packagings must be leak tight for liquids and gases, sift proof for solids, and be securely closed, secured...

  15. A Thermodynamics Course Package in Onenote

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.; Medlin, J. Will; deGrazia, Janet; McDanel, Katherine P.

    2014-01-01

    A ready-to-use package of active-learning materials for a semester-long chemical engineering thermodynamics course was prepared for instructors, and similar materials are being prepared for a material and energy balance course. The course package includes ConcepTests, explanations of the ConcepTests for instructors, links to screencasts, chapter…

  16. 21 CFR 109.15 - Use of polychlorinated biphenyls (PCB's) in establishments manufacturing food-packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... establishments manufacturing food-packaging materials. 109.15 Section 109.15 Food and Drugs FOOD AND DRUG... polychlorinated biphenyls (PCB's) in establishments manufacturing food-packaging materials. (a) Polychlorinated...). These accidents in turn caused the contamination of food products intended for human consumption (meat...

  17. 21 CFR 509.15 - Use of polychlorinated biphenyls (PCB's) in establishments manufacturing food-packaging materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... establishments manufacturing food-packaging materials. 509.15 Section 509.15 Food and Drugs FOOD AND DRUG... polychlorinated biphenyls (PCB's) in establishments manufacturing food-packaging materials. (a) Polychlorinated...). These accidents in turn caused the contamination of food products intended for human consumption (meat...

  18. 14 CFR 135.23 - Manual contents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... packages that are marked or labeled as containing hazardous materials or that show signs of containing... packages that do not conform to the Hazardous Materials Regulations in 49 CFR parts 171 through 180 or that... information to ensure the following: (A) That packages containing hazardous materials are properly offered and...

  19. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Profiling of metal ions leached from pharmaceutical packaging materials.

    PubMed

    Fliszar, Kyle A; Walker, David; Allain, Leonardo

    2006-01-01

    Metal leachables from packaging components can affect the safety and efficacy of a pharmaceutical formulation. As liquid formulations continue to contain surfactants, salts, and chelating agents coupled with lower drug levels, the interaction between the formulation and the packaging material becomes more important. This study examines the interaction of commonly used packaging materials with extraction solvents representative of liquid formulations found in the pharmaceutical industry stressed under conditions encountered during accelerated stability studies.

  1. Influence of factors on release of antimicrobials from antimicrobial packaging materials.

    PubMed

    Wu, Yu-Mei; Wang, Zhi-Wei; Hu, Chang-Ying; Nerín, Cristina

    2018-05-03

    Antimicrobial packaging materials (films or coatings) (APMs) have aroused great interest among the scientists or the experts specialized in material science, food science, packaging engineering, biology and chemistry. APMs have been used to package the food, such as dairy products, poultry, meat (e.g., beef), salmon muscle, pastry dough, fresh pasta, bakery products, fruits, vegetables and beverages. Some materials have been already commercialized. The ability of APMs to extend the shelf-life of the food depends on the release rate of the antimicrobials (AMs) from the materials to the food. The optimum rate is defined as target release rate (TRR). To achieve TRR, the influencing factors of the release rate should be considered. Herein we reviewed for the first time these factors and their influence on the release. These factors mainly include the AMs, food (or food simulant), packaging materials, the interactions among them, the temperature and environmental relative humidity (RH).

  2. Antimicrobial agent-free hybrid cationic starch/sodium alginate polyelectrolyte films for food packaging materials.

    PubMed

    Şen, Ferhat; Uzunsoy, İrem; Baştürk, Emre; Kahraman, Memet Vezir

    2017-08-15

    This study aimed to develop polyelectrolyte structured antimicrobial food packaging materials that do not contain any antimicrobial agents. Cationic starch was synthesized and characterized by FT-IR spectroscopy and 1 H NMR spectroscopy. Its nitrogen content was determined by Kjeldahl method. Polyelectrolyte structured antimicrobial food packaging materials were prepared using starch, cationic starch and sodium alginate. Antimicrobial activity of materials was defined by inhibition zone method (disc diffusion method). Thermal stability of samples was evaluated by TGA and DSC. Hydrophobicity of samples was determined by contact angle measurements. Surface morphology of samples was investigated by SEM. Moreover, gel contents of samples were determined. The obtained results prove that produced food packaging materials have good thermal, antimicrobial and surface properties, and they can be used as food packaging material in many industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 27 CFR 555.30 - Reporting theft or loss of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Reporting theft or loss of... and Miscellaneous Provisions § 555.30 Reporting theft or loss of explosive materials. (a) Any licensee or permittee who has knowledge of the theft or loss of any explosive materials from his stock shall...

  4. Examination of SR101 shipping packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W. L.

    Four SR101 shipping packages were removed from service and provided for disassembly and examination of the internal fiberboard assemblies. These packages were 20 years old, and had experienced varying levels of degradation. Two of the packages were successfully disassembled and fiberboard samples were removed from these packages and tested. Mechanical and thermal property values are generally comparable to or higher than baseline values measured on fiberboard from 9975 packages, which differs primarily in the specified density range. While baseline data for the SR101 material is not available, this comparison with 9975 material suggests that the material properties of the SR101more » fiberboard have not significantly degraded.« less

  5. 49 CFR 38.4 - Miscellaneous instructions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... are subject to conventional engineering tolerances for material properties and field conditions... that applies only when the conditions described are present. (3) May denotes an option or alternative...

  6. Highway Maintenance Equipment Operator. Miscellaneous Equipment. Training Materials.

    ERIC Educational Resources Information Center

    Perky, Sandra Dutreau; And Others

    This curriculum guide provides instructional materials to assist in training equipment operators in the safe and effective use of highway maintenance equipment. It includes six units of instruction covering the small, specialized equipment used in maintenance operations. Each unit of instruction consists of eight basic components: performance…

  7. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  8. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  9. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  10. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  11. 27 CFR 555.26 - Prohibited shipment, transportation, receipt, possession, or distribution of explosive materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., transportation, receipt, possession, or distribution of explosive materials. 555.26 Section 555.26 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Administrative and Miscellaneous Provisions § 555.26 Prohibited shipment...

  12. 32 CFR 235.6 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... review material offered or to be offered for sale or rental on property under DoD jurisdiction and... Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS SALE OR RENTAL... determines that any material offered for sale or rental on property under DoD jurisdiction is sexually...

  13. 77 FR 40385 - Withdrawal of Regulatory Guide 7.3; Procedures for Picking Up and Receiving Packages of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Picking Up and Receiving Packages of Radioactive Material AGENCY: Nuclear Regulatory Commission. ACTION... Receiving Packages of Radioactive Material.'' The RG is being withdrawn because it is outdated and the..., ``Administrative Guide for Verifying Compliance with Packaging Requirements for Shipment and Receipt of Radioactive...

  14. 49 CFR 171.1 - Applicability of Hazardous Materials Regulations (HMR) to persons and functions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transportation of hazardous materials in commerce and to pre-transportation and transportation functions. (a..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked..., reconditions, repairs, or tests a packaging or a component of a packaging that is represented, marked...

  15. 48 CFR 552.211-89 - Non-manufactured wood packaging material for export.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Non-manufactured wood... and Clauses 552.211-89 Non-manufactured wood packaging material for export. As prescribed in 511.204(b)(4), insert the following clause: Non-Manufactured Wood Packaging Material for Export (JAN 2010) (a...

  16. 48 CFR 552.211-89 - Non-manufactured wood packaging material for export.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Non-manufactured wood... and Clauses 552.211-89 Non-manufactured wood packaging material for export. As prescribed in 511.204(b)(4), insert the following clause: Non-Manufactured Wood Packaging Material for Export (JAN 2010) (a...

  17. 48 CFR 552.211-89 - Non-manufactured wood packaging material for export.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Non-manufactured wood... and Clauses 552.211-89 Non-manufactured wood packaging material for export. As prescribed in 511.204(b)(4), insert the following clause: Non-Manufactured Wood Packaging Material for Export (JAN 2010) (a...

  18. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  19. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  20. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  1. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  2. 48 CFR 552.211-89 - Non-manufactured wood packaging material for export.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Non-manufactured wood... and Clauses 552.211-89 Non-manufactured wood packaging material for export. As prescribed in 511.204(b)(4), insert the following clause: Non-Manufactured Wood Packaging Material for Export (JAN 2010) (a...

  3. 48 CFR 552.211-89 - Non-manufactured wood packaging material for export.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Non-manufactured wood... and Clauses 552.211-89 Non-manufactured wood packaging material for export. As prescribed in 511.204(b)(4), insert the following clause: Non-Manufactured Wood Packaging Material for Export (JAN 2010) (a...

  4. 21 CFR 179.45 - Packaging materials for use during the irradiation of prepackaged foods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Packaging materials for use during the irradiation... OF HEALTH AND HUMAN SERVICES (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF... irradiation of prepackaged foods. The packaging materials identified in this section may be safely subjected...

  5. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...

  6. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...

  7. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...

  8. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...

  9. 49 CFR 173.224 - Packaging and control and emergency temperatures for self-reactive materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Packaging and control and emergency temperatures... temperatures for self-reactive materials. (a) General. When the § 172.101 table of this subchapter specifies... packagings meeting Packing Group I are not authorized. Self-reactive materials which require temperature...

  10. Stability of flavoured phytosterol-enriched drinking yogurts during storage as affected by different packaging materials.

    PubMed

    Semeniuc, Cristina Anamaria; Cardenia, Vladimiro; Mandrioli, Mara; Muste, Sevastiţa; Borsari, Andrea; Rodriguez-Estrada, Maria Teresa

    2016-06-01

    The aim of this study was to investigate the influence of different packaging materials on storage stability of flavoured phytosterol-enriched drinking yogurts. White vanilla (WV) and blood orange (BO) phytosterol-enriched drinking yogurts conditioned in mono-layer and triple-layer co-extruded plastic bottles were stored at +6 ± 1 °C for 35 days (under alternating 12 h light and 12 h darkness) to simulate shelf-life conditions. Samples were collected at three different storage times and subjected to determination of total sterol content (TSC), peroxide value (PV) and thiobarbituric acid reactive substances (TBARs). TSC was not significantly affected by packaging material or storage time and met the quantity declared on the label. PV was significantly influenced by yogurt type × packaging material × storage time interaction and TBARs by packaging material × storage time interaction. Between the two packaging materials, the triple-layer plastic mini bottle with black coloured and completely opaque intermediate layer offered the best protection against lipid oxidation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Packaging and Transportation Safety

    DOT National Transportation Integrated Search

    1997-01-31

    This Guide supplements the Department of Energy (DOE) Order, DOE O 460.1A, PACKAGING AND TRANSPORTATION SAFETY, 10-2-96, by providing clarifying material for the implementation of packaging and transportation safety of hazardous materials. DOE O 460....

  12. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    PubMed

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  13. Safety analysis report for packaging (onsite) steel drum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, W.A.

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  14. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, K.; Bellamy, S.; Daugherty, W.

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintainmore » integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.« less

  15. 75 FR 27273 - Hazardous Materials; Packages Intended for Transport by Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ...PHMSA proposes to amend requirements in the Hazardous Materials Regulations to enhance the integrity of inner packagings or receptacles of combination packagings containing liquid hazardous material by ensuring they remain intact when subjected to the reduced pressure and other forces encountered in air transportation. In order to substantially decrease the likelihood of a hazardous materials release, the proposed amendments: prescribe specific test protocols and standards for determining whether an inner packaging or receptacle is capable of meeting the pressure differential requirements specified in the regulations and, consistent with the 2011-2012 edition of the International Civil Aviation Organization Technical Instructions for the Safe Transport of Dangerous Goods by Aircraft (ICAO Technical Instructions), require the closures on all inner packagings containing liquids within a combination packaging to be secured by a secondary means or, under certain circumstances, permit the use of a liner.

  16. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation.

    PubMed

    Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D

    2013-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. 32 CFR 196.455 - Textbooks and curricular material.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Textbooks and curricular material. 196.455 Section 196.455 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Discriminatio...

  18. 47 CFR 101.307 - Tariffs, reports, and other material required to be submitted to the Commission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Tariffs, reports, and other material required to be submitted to the Commission. 101.307 Section 101.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Miscellaneous Common...

  19. 47 CFR 101.307 - Tariffs, reports, and other material required to be submitted to the Commission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Tariffs, reports, and other material required to be submitted to the Commission. 101.307 Section 101.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Miscellaneous Common...

  20. 47 CFR 101.307 - Tariffs, reports, and other material required to be submitted to the Commission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Tariffs, reports, and other material required to be submitted to the Commission. 101.307 Section 101.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Miscellaneous Common...

  1. 47 CFR 101.307 - Tariffs, reports, and other material required to be submitted to the Commission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Tariffs, reports, and other material required to be submitted to the Commission. 101.307 Section 101.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Miscellaneous Common...

  2. 47 CFR 101.307 - Tariffs, reports, and other material required to be submitted to the Commission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Tariffs, reports, and other material required to be submitted to the Commission. 101.307 Section 101.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Miscellaneous Common...

  3. New technology for food systems and security.

    PubMed

    Yau, N J Newton

    2009-01-01

    In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.

  4. 21 CFR 181.22 - Certain substances employed in the manufacture of food-packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Certain substances employed in the manufacture of food-packaging materials. 181.22 Section 181.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Food Ingredients § 181.22 Certain substances employed in the manufacture of food-packaging materials...

  5. 78 FR 60726 - Hazardous Materials Regulations: Penalty Guidelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ..., Radioactive Materials, Compressed Gases in cylinders; Packaging Manufacturers, Drum Manufacturers and... Administrative practices and procedure, Hazardous materials transportation, Packaging and containers, Penalties... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part...

  6. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  7. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  8. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  9. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... maintained to keep roofs and outside areas free of dry product. Only packaging materials that are used within a day's operation may be kept in the packaging area. These materials shall be kept on metal racks or...

  10. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States wasmore » the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.« less

  11. Contamination in food from packaging material.

    PubMed

    Lau, O W; Wong, S K

    2000-06-16

    Packaging has become an indispensible element in the food manufacturing process, and different types of additives, such as antioxidants, stabilizers, lubricants, anti-static and anti-blocking agents, have also been developed to improve the performance of polymeric packaging materials. Recently the packaging has been found to represent a source of contamination itself through the migration of substances from the packaging into food. Various analytical methods have been developed to analyze the migrants in the foodstuff, and migration evaluation procedures based on theoretical prediction of migration from plastic food contact material were also introduced recently. In this paper, the regulatory control, analytical methodology, factors affecting the migration and migration evaluation are reviewed.

  12. Packaging strategies for printed circuit board components. Volume I, materials & thermal stresses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Austin, Kevin N.; Adolf, Douglas Brian

    2011-09-01

    Decisions on material selections for electronics packaging can be quite complicated by the need to balance the criteria to withstand severe impacts yet survive deep thermal cycles intact. Many times, material choices are based on historical precedence perhaps ignorant of whether those initial choices were carefully investigated or whether the requirements on the new component match those of previous units. The goal of this program focuses on developing both increased intuition for generic packaging guidelines and computational methodologies for optimizing packaging in specific components. Initial efforts centered on characterization of classes of materials common to packaging strategies and computational analysesmore » of stresses generated during thermal cycling to identify strengths and weaknesses of various material choices. Future studies will analyze the same example problems incorporating the effects of curing stresses as needed and analyzing dynamic loadings to compare trends with the quasi-static conclusions.« less

  13. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  14. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  15. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  16. 21 CFR 358.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... USE MISCELLANEOUS EXTERNAL DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Wart Remover Drug Products... skin in a thin layer. (c) Plaster vehicle. A fabric, plastic, or other suitable backing material in...

  17. 7 CFR 319.40-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... issued a specific permit. Humus, compost, and litter. Partially or wholly decayed plant matter. Import... materials; humus; compost; and litter. Regulated wood packaging material. Wood packaging material other than...

  18. 7 CFR 319.40-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... issued a specific permit. Humus, compost, and litter. Partially or wholly decayed plant matter. Import... materials; humus; compost; and litter. Regulated wood packaging material. Wood packaging material other than...

  19. 7 CFR 319.40-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... issued a specific permit. Humus, compost, and litter. Partially or wholly decayed plant matter. Import... materials; humus; compost; and litter. Regulated wood packaging material. Wood packaging material other than...

  20. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment bymore » the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)« less

  1. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitaraman, S; Kim, S; Biswas, D

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use ofmore » the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.« less

  2. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Indirect food additives resulting from packaging materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG... FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  3. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Indirect food additives resulting from packaging materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG... FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  4. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Indirect food additives resulting from packaging materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG... FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  5. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Indirect food additives resulting from packaging materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG... FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  6. 21 CFR 570.13 - Indirect food additives resulting from packaging materials prior sanctioned for animal feed and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Indirect food additives resulting from packaging materials prior sanctioned for animal feed and pet food. 570.13 Section 570.13 Food and Drugs FOOD AND DRUG... FOOD ADDITIVES General Provisions § 570.13 Indirect food additives resulting from packaging materials...

  7. Nanocellulose in green food packaging.

    PubMed

    Vilarinho, Fernanda; Sanches Silva, Ana; Vaz, M Fátima; Farinha, José Paulo

    2018-06-13

    The development of packaging materials with new functionalities and lower environmental impact is now an urgent need of our society. On one hand, the shelf-life extension of packaged products can be an answer to the exponential increase of worldwide demand for food. On the other hand, uncertainty of crude oil prices and reserves has imposed the necessity to find raw materials to replace oil-derived polymers. Additionally, consumers' awareness toward environmental issues increasingly pushes industries to look with renewed interest to "green" solutions. In response to these issues, numerous polymers have been exploited to develop biodegradable food packaging materials. Although the use of biopolymers has been limited due to their poor mechanical and barrier properties, these can be enhanced by adding reinforcing nanosized components to form nanocomposites. Cellulose is probably the most used and well-known renewable and sustainable raw material. The mechanical properties, reinforcing capabilities, abundance, low density, and biodegradability of nanosized cellulose make it an ideal candidate for polymer nanocomposites processing. Here we review the potential applications of cellulose based nanocomposites in food packaging materials, highlighting the several types of biopolymers with nanocellulose fillers that have been used to form bio-nanocomposite materials. The trends in nanocellulose packaging applications are also addressed.

  8. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    PubMed Central

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-01-01

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field. PMID:28773026

  9. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    PubMed

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  10. 75 FR 53593 - Hazardous Materials: Minor Editorial Corrections and Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... transportation, Packaging and containers, Radioactive materials, Reporting and recordkeeping requirements... section specifies general requirements for packaging hazardous materials for transportation by aircraft... contamination on motor vehicles used to transport Class 7 radioactive materials under exclusive use conditions...

  11. Numeric analysis of terahertz wave propagation in familiar packaging materials

    NASA Astrophysics Data System (ADS)

    Zhang, Lihong; Yang, Guang

    2015-10-01

    To assess the potential application of terahertz waves in security examination, the transmission characteristics of terahertz waves in packaging materials should be studied. This paper simulates the propagation of terahertz waves in cloth and paper, studies the changes of shape and position of crest of terahertz waves before and after these materials, and gets the law of these changes, which has potential applications in thickness measurement for the thin insulated materials; gives reflected and transmitted wave of terahertz waves, and computes reflected and transmitted coefficient, indicates the good transmission properties of these materials for terahertz waves, which provides the theoretical basis for the realization of contactless security examination of packaged post, package and people pass the important passageway (such as airport and station).

  12. Remaining Sites Verification Package for the 100-F-26:15 Miscellaneous Pipelines Associated with the 132-F-6, 1608-F Waste Water Pumping Station, Waste Site Reclassification Form 2007-031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-03-18

    The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. Hazardous Material Packaging and Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less

  14. 7 CFR 1230.629 - Registration and voting procedures for importers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF.... Brown, P.O. Box 44366, Washington, DC 20026-4366. Importers may pick up the voting materials in-person...

  15. 7 CFR 1230.629 - Registration and voting procedures for importers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF.... Brown, P.O. Box 44366, Washington, DC 20026-4366. Importers may pick up the voting materials in-person...

  16. Bricklaying Curriculum: Principles of Bricklaying. Instructional Materials. Revised.

    ERIC Educational Resources Information Center

    Turcotte, Raymond J.; Hendrix, Laborn J.

    This volume is the second in a two-volume core curriculum designed for use in teaching a course in bricklaying. Covered in the first four units are hand tools, power tools, miscellaneous equipment, and builder's levels. The second section of the guide comprises units on the following building materials: mortars, masonry units, and anchors and…

  17. 21. VIEW OF THE SUPERCOMPACTOR. THE SUPERCOMPACTOR WAS USED TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW OF THE SUPERCOMPACTOR. THE SUPERCOMPACTOR WAS USED TO REDUCE THE VOLUME OF MISCELLANEOUS PLUTONIUM CONTAMINATED MATERIALS SUCH AS GLOVES, PAPER, AND LIGHTWEIGHT METALS. THESE MATERIALS WERE COMPACTED INTO A DRUM FOR DISPOSAL. (4/4/91) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  18. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques.

    PubMed

    Mlalila, Nichrous; Kadam, Dattatreya M; Swai, Hulda; Hilonga, Askwar

    2016-09-01

    In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.

  19. Flexible Foam Protection Materials for Constellation Space Suit Element Portable Life Support Subsystem Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.; Orndoff, Evelyne S.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be very robust and function in the extreme lunar thermal vacuum environment for up to one hundred Extravehicular Activity (EVA) missions. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating commercial off-the-shelf (COTS) foam protection materials. It also presents the materials properties test results and impact drop test results of the various foam materials evaluated in the study. The findings from this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam properties or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  20. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. 19 CFR 102.15 - Disregarded materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Disregarded materials. 102.15 Section 102.15... TREASURY RULES OF ORIGIN Rules of Origin § 102.15 Disregarded materials. (a) The following materials shall...: (1) Packaging materials and containers in which a good is packaged for retail sale that are...

  2. 19 CFR 102.15 - Disregarded materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Disregarded materials. 102.15 Section 102.15... TREASURY RULES OF ORIGIN Rules of Origin § 102.15 Disregarded materials. (a) The following materials shall...: (1) Packaging materials and containers in which a good is packaged for retail sale that are...

  3. 49 CFR 173.4a - Excepted quantities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of withstanding without leakage the pressure differential specified in § 173.27(c) of this part. (b... ice), and lithium batteries and cells. (c) Inner packaging limits. The maximum quantity of hazardous..., rigid outer packaging. (5) Placement of the material in the package or packing different materials in...

  4. Optimizing biomass blends for manufacturing molded packaging materials using mycelium

    USDA-ARS?s Scientific Manuscript database

    Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...

  5. Mass Transfer Study of Chlorine Dioxide Gas Through Polymeric Packaging Materials

    USDA-ARS?s Scientific Manuscript database

    A continuous system for measuring the mass transfer of gaseous chlorine dioxide (ClO2), a strong oxidizing agent and used in food and pharmaceutical packaging, through 10 different types of polymeric packaging material was developed utilizing electrochemical sensor as a detector. Permeability, diff...

  6. 49 CFR 178.609 - Test requirements for packagings for infectious substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... paragraph (c), which, for test purposes, categorizes packagings according to their material characteristics... performance may be rapidly affected by moisture; plastics that may embrittle at low temperature; and other... the appropriate test. Table I—Tests Required Material of Outer packaging Fiberboard Plastics Other...

  7. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging.

    PubMed

    Lin, Zhuangsheng; Goddard, Julie

    2018-02-01

    Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications. © 2018 Institute of Food Technologists®.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loftin, B.; Abramczyk, G.; Koenig, R.

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223more » caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.« less

  9. Food safety concerns deriving from the use of silver based food packaging materials.

    PubMed

    Pezzuto, Alessandra; Losasso, Carmen; Mancin, Marzia; Gallocchio, Federica; Piovesana, Alessia; Binato, Giovanni; Gallina, Albino; Marangon, Alberto; Mioni, Renzo; Favretti, Michela; Ricci, Antonia

    2015-01-01

    The formulation of innovative packaging solutions, exerting a functional antimicrobial role in slowing down food spoilage, is expected to have a significant impact on the food industry, allowing both the maintenance of food safety criteria for longer periods and the reduction of food waste. Different materials are considered able to exert the required antimicrobial activity, among which are materials containing silver. However, challenges exist in the application of silver to food contact materials due to knowledge gaps in the production of ingredients, stability of delivery systems in food matrices and health risks caused by the same properties which also offer the benefits. Aims of the present study were to test the effectiveness and suitability of two packaging systems, one of which contained silver, for packaging and storing Stracchino cheese, a typical Italian fresh cheese, and to investigate if there was any potential for consumers to be exposed to silver, via migration from the packaging to the cheese. Results did not show any significant difference in the effectiveness of the packaging systems on packaged Stracchino cheese, excluding that the active packaging systems exerted an inhibitory effect on the growth of spoilage microorganisms. Moreover, silver migrated into the cheese matrix throughout the storage time (24 days). Silver levels in cheese finally exceeded the maximum established level for the migration of a non-authorised substance through a functional barrier (Commission of the European Communities, 2009). This result poses safety concerns and strongly suggests the need for more research aimed at better characterizing the new packaging materials in terms of their potential impacts on human health and the environment.

  10. Romanian experience on packaging testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieru, G.

    2007-07-01

    With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances.more » The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)« less

  11. Natural additives and agricultural wastes in biopolymer formulations for food packaging.

    PubMed

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  12. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    NASA Astrophysics Data System (ADS)

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-02-01

    The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.

  13. Natural additives and agricultural wastes in biopolymer formulations for food packaging

    PubMed Central

    Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso

    2014-01-01

    The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975

  14. Advancements in meat packaging.

    PubMed

    McMillin, Kenneth W

    2017-10-01

    Packaging of meat provides the same or similar benefits for raw chilled and processed meats as other types of food packaging. Although air-permeable packaging is most prevalent for raw chilled red meat, vacuum and modified atmosphere packaging offer longer shelf life. The major advancements in meat packaging have been in the widely used plastic polymers while biobased materials and their integration into composite packaging are receiving much attention for functionality and sustainability. At this time, active and intelligent packaging are not widely used for antioxidant, antimicrobial, and other functions to stabilize and enhance meat properties although many options are being developed and investigated. The advances being made in nanotechnology will be incorporated into food packaging and presumably into meat packaging when appropriate and useful. Intelligent packaging using sensors for transmission of desired information and prompting of subsequent changes in packaging materials, environments or the products to maintain safety and quality are still in developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, James; Goins, Monty; Paul, Pran

    This safety analysis report for packaging (SARP) presents the results of the safety analysis prepared in support of the Consolidated Nuclear Security, LLC (CNS) request for licensing of the Model ES-3100 package with bulk highly enriched uranium (HEU) contents and issuance of a Type B(U) Fissile Material Certificate of Compliance. This SARP, published in the format specified in the Nuclear Regulatory Commission (NRC) Regulatory Guide 7.9 and using information provided in UCID-21218 and NRC Regulatory Guide 7.10, demonstrates that the Y-12 National Security Complex (Y-12) ES-3100 package with bulk HEU contents meets the established NRC regulations for packaging, preparation formore » shipment, and transportation of radioactive materials given in Title 10, Part 71, of the Code of Federal Regulations (CFR) [10 CFR 71] as well as U.S. Department of Transportation (DOT) regulations for packaging and shipment of hazardous materials given in Title 49 CFR. To protect the health and safety of the public, shipments of adioactive materials are made in packaging that is designed, fabricated, assembled, tested, procured, used, maintained, and repaired in accordance with the provisions cited above. Safety requirements addressed by the regulations that must be met when transporting radioactive materials are containment of radioactive materials, radiation shielding, and assurance of nuclear subcriticality.« less

  16. Nutrition. Learning Activity Package.

    ERIC Educational Resources Information Center

    Lee, Carolyn

    This learning activity package on nutrition is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  17. Shock & Anaphylactic Shock. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on shock and anaphylactic shock is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  18. Evaluation of select blends of cotton byproducts in the manufacture of biodegradable packaging material

    USDA-ARS?s Scientific Manuscript database

    Polystyrene is one of the most widely used plastics in the manufacture of packaging materials. Extruded polystyrene foam is commonly sold under the trademark name of StyrofoamTM. Polystyrene packaging is a multibillion dollar a year industry. Since polystyrene is non-biodegradable, a biodegradable m...

  19. Oral Hygiene. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on oral hygiene is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics…

  20. Grooming. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pamela

    This learning activity package on grooming for health workers is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  1. 49 CFR 173.154 - Exceptions for Class 8 (corrosive materials).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solids, packed in a strong outer packaging. (2) For corrosive materials in Packing Group III, inner... capacity each for solids, packed in a strong outer packaging. (c) Consumer commodities. Until December 31... other requirements of this subchapter when transported by motor vehicle or rail car in a packaging...

  2. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... article or material carried in the vehicle; and (ii) The assembled gun packed on the vehicle may not... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... kg in small packages as specified by the Associate Administrator for Hazardous Materials Safety 110(a...

  3. 49 CFR 173.62 - Specific packaging requirements for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... article or material carried in the vehicle; and (ii) The assembled gun packed on the vehicle may not... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS... packages as specified by the Associate Administrator for Hazardous Materials Safety 110(a) Bags Bags Drums...

  4. 49 CFR 173.424 - Excepted packages for radioactive instruments and articles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.424....1 mSv/hour (10 mrem/hour); (e) The active material is completely enclosed by non-active components...

  5. 49 CFR 173.424 - Excepted packages for radioactive instruments and articles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.424....1 mSv/hour (10 mrem/hour); (e) The active material is completely enclosed by non-active components...

  6. Measurements of True Leak Rates of MEMS Packages

    PubMed Central

    Han, Bongtae

    2012-01-01

    Gas transport mechanisms that characterize the hermetic behavior of MEMS packages are fundamentally different depending upon which sealing materials are used in the packages. In metallic seals, gas transport occurs through a few nanoscale leak channels (gas conduction) that are produced randomly during the solder reflow process, while gas transport in polymeric seals occurs through the bulk material (gas diffusion). In this review article, the techniques to measure true leak rates of MEMS packages with the two sealing materials are described and discussed: a Helium mass spectrometer based technique for metallic sealing and a gas diffusion based model for polymeric sealing. PMID:22736994

  7. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    PubMed

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Decontamination of food packaging using electron beam—status and prospects

    NASA Astrophysics Data System (ADS)

    Mittendorfer, J.; Bierbaumer, H. P.; Gratzl, F.; Kellauer, E.

    2002-03-01

    In this paper the status of food packaging disinfection decontamination using electron beam at Mediscan GmbH is presented. The first section of the paper describes the activities at the service center, where food packaging materials, e.g. yoghurt cups are decontaminated in their final shipment containers. As important step in the hazard analysis and critical control point of food processing, microbiological uncontaminated food packaging material is of public interest and attracts a lot of attention from packaging material producers and food processors. The dose ranges for different sterility assurance levels are discussed and results from microbiological test are presented. Studies at Mediscan have demonstrated, that an electron beam treatment at a dose of 5-7 kGy is most effective against yeast and mold, which are mainly responsible for spoilage and short shelf-life of a variety of products. The second section is devoted to the field of inline decontamination of food packaging and sterilization of pharmaceutical packaging material and the research currently conducted at Mediscan. The requirements for industrial inline electron beam systems are summarized and design concepts discussed in terms of beam energy, beam current, irradiation topology, product handling and shielding.

  9. Flexible Foam Protection Materials for Portable Life Support System Packaging Study

    NASA Technical Reports Server (NTRS)

    Tang,Henry H.; Dillon, Paul A.; Thomas, Gretchen A.

    2009-01-01

    This paper discusses the phase I effort in evaluating and selecting a light weight impact protection material for the Constellation Space Suit Element (CSSE) Portable Life Support System (PLSS) conceptual packaging study. A light weight material capable of holding and protecting the components inside the PLSS is required to demonstrate the viability of the flexible PLSS packaging concept. The material needs to distribute, dissipate, and absorb the impact energy of the PLSS falling on the lunar surface. It must also be robust to consistently perform over several Extravehicular Activity (EVA) missions in the extreme lunar thermal vacuum environment. This paper documents the performance requirements for selecting a foam protection material, and the methodologies for evaluating some commercial off-the-shelf (COTS) foam material candidates. It also presents the mechanical properties and impact drop tests results of the foam material candidates. The results of this study suggest that a foam based flexible protection system is a viable solution for PLSS packaging. However, additional works are needed to optimize COTS foam or to develop a composite foam system that will meet all the performance requirements for the CSSE PLSS flexible packaging.

  10. Response of CO2 laser written long period fiber gratings packaged by polymer materials

    NASA Astrophysics Data System (ADS)

    Wu, Zhaodi; Liu, Yunqi; Zou, Jian; Chen, Na; Pang, Fufei; Wang, Tingyun

    2011-12-01

    We demonstrate the packaging of CO2 laser written long-period fiber gratings (LPFGs) using different polymer materials. We use three different silicone rubber polymers to package the LPFGs by simply coating it outside the grating. After the polymer coating, the resonance wavelength of LPFG was found to shift towards shorter wavelength by about 6 nm, and the temperature sensitivity of the packaged gratings was studied experimentally. Experiments showed that the gratings packaged by different polymers have different temperature characteristics and all of them have good thermal stability.

  11. Identification of suspected hazardous chemical contaminants in recycled pastry packaging.

    PubMed

    Ahmadkhaniha, Reza; Rastkari, Noushin

    2017-01-01

    The safe use of recycled paper and cardboard material for food packaging applications is     an important area of investigation. Therefore, the aim of this study was to determine which hazardous chemi- cal pollutants were found in paper and cardboard samples used for pastry packaging, and to measure the migration of pollutants over time into the pastries. In this study, the presence of some organic pollutants in common confectionery packaging, and the effects of storage time and type of pastry on pollutant migration, were investigated. The results of the study indicate that harmful compounds such as benzophenone, pentachlorophenol, bis(2-ethylhexyl) phthalate and dibutyl phthalate are present at high concentrations in most recycled boxes used for pastry packaging. Since the migration of some of the hazardous compounds from the packaging materials into the pastries under normal conditions was indicated, it is recommended that the procedure for preparing pastry packaging materials should be reconsidered and improved.

  12. Safety analysis report -- Packages LP-50 tritium package (Packaging of fissile and other radioactive materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gates, A.A.; McCarthy, P.G.; Edl, J.W.

    1975-05-01

    Elemental tritium is shipped at low pressure in a stainless steel container (LP-50) surrounded by an aluminum vessel and Celotex insulation at least 4 in. thick in a steel drum. Each package contains a large quantity (greater than a Type A quantity) of nonfissile material, as defined in AECM 0529. This report provides the details of the safety analysis performed for this type container.

  13. Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review

    PubMed Central

    Nurul Fazita, M.R.; Jayaraman, Krishnan; Bhattacharyya, Debes; Mohamad Haafiz, M.K.; Saurabh, Chaturbhuj K.; Hussin, M. Hazwan; H.P.S., Abdul Khalil

    2016-01-01

    Petroleum based thermoplastics are widely used in a range of applications, particularly in packaging. However, their usage has resulted in soaring pollutant emissions. Thus, researchers have been driven to seek environmentally friendly alternative packaging materials which are recyclable as well as biodegradable. Due to the excellent mechanical properties of natural fibres, they have been extensively used to reinforce biopolymers to produce biodegradable composites. A detailed understanding of the properties of such composite materials is vital for assessing their applicability to various products. The present review discusses several functional properties related to packaging applications in order to explore the potential of bamboo fibre fabric-poly (lactic) acid composites for packaging applications. Physical properties, heat deflection temperature, impact resistance, recyclability and biodegradability are important functional properties of packaging materials. In this review, we will also comprehensively discuss the chronological events and applications of natural fibre biopolymer composites. PMID:28773558

  14. The LARSYS Educational Package: Instructor's Notes for Use with the Data 100

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Russell, J. D.

    1977-01-01

    The LARSYS Educational Package is a set of instructional materials developed to train people to analyze remotely sensed multispectral data using LARSYS, a computer software system. The materials included in this volume have been designed to assist LARSYS instructors as they guide students through the LARSYS Educational Package. All of the materials have been updated from the previous version to reflect the use of a Data 100 Remote Terminal.

  15. SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramczyk, G.; Bellamy, S.; Loftin, B.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability tomore » meet the Code of Federal Regulations for the transport of these materials are presented.« less

  16. 49 CFR 178.350 - Specification 7A; general packaging, Type A.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 7A; general packaging, Type A. 178... FOR PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.350 Specification 7A; general packaging, Type A. (a) Each packaging must meet all applicable requirements of subpart...

  17. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.; Oziomek, Thomas V.

    2009-01-01

    Future long duration manned space flights beyond low earth orbit will require the food system to remain safe, acceptable and nutritious. Development of high barrier food packaging will enable this requirement by preventing the ingress and egress of gases and moisture. New high barrier food packaging materials have been identified through a trade study. Practical application of this packaging material within a shelf life test will allow for better determination of whether this material will allow the food system to meet given requirements after the package has undergone processing. The reason to conduct shelf life testing, using a variety of packaging materials, stems from the need to preserve food used for mission durations of several years. Chemical reactions that take place during longer durations may decrease food quality to a point where crew physical or psychological well-being is compromised. This can result in a reduction or loss of mission success. The rate of chemical reactions, including oxidative rancidity and staling, can be controlled by limiting the reactants, reducing the amount of energy available to drive the reaction, and minimizing the amount of water available. Water not only acts as a media for microbial growth, but also as a reactant and means by which two reactants may come into contact with each other. The objective of this study is to evaluate three packaging materials for potential use in long duration space exploration missions.

  18. Optimization of biomass blends in the manufacture of molded packaging materials produced using fungal mycelium

    USDA-ARS?s Scientific Manuscript database

    Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...

  19. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  20. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  1. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  2. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  3. 10 CFR 835.405 - Receipt of packages containing radioactive material.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Receipt of packages containing radioactive material. 835.405 Section 835.405 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of...) Measurements of the radiation levels, if the package contains a Type B quantity (as defined at 10 CFR 71.4) of...

  4. The Surgical Scrub. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This learning activity package on the surgical scrub is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, a list of definitions, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These…

  5. Low-dielectric constant insulators for future integrated circuits and packages.

    PubMed

    Kohl, Paul A

    2011-01-01

    Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.

  6. 77 FR 60334 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... substances, certain patient specimens and certain radioactive materials as noted in section 135 of Mailing... due to its form, quantity, and packaging. Not all hazardous materials permitted to be shipped as a... mailable limited quantity materials that meet USPS quantity limitations and packaging requirements. All...

  7. 78 FR 60745 - Hazardous Materials: Minor Editorial Corrections and Clarifications (RRR)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... 173.62 This section provides packaging instructions for Class 1 explosive materials. Paragraph (b) of... requirements for approval of special form Class 7 (radioactive) materials. Paragraph (d) of this section notes... activity of special form Class 7 (radioactive) material permitted in a Type A package equals the maximum...

  8. Effects of self-carbon dioxide-generation material for active packaging on pH, water-holding capacity, meat color, lipid oxidation and microbial growth in beef during cold storage.

    PubMed

    Lee, Seung-Jae; Lee, Seung Yun; Kim, Gap-Don; Kim, Geun-Bae; Jin, Sang Keun; Hur, Sun Jin

    2017-08-01

    Active packaging refers to the mixing of additive agents into packaging materials with the purpose of maintaining or extending food product quality and shelf life. The aim of this study was to develop an easy and cheap active packaging for beef. Beef loin samples were divided into three packaging groups (C, ziplock bag packaging; T1, vacuum packaging; T2, active packaging) and stored at 4 °C for 21 days. The water-holding capacity was significantly (P < 0.05) higher in C and T2 than in T1 for up to 7 days of storage. The TBARS value was significantly (P < 0.05) lower in T1 and T2 after 7 days of storage. The counts of some microorganism were significantly (P < 0.05) lower in T1 and T2 after 7 days of storage; the total bacterial count and Escherichia coli count were lowest in T2 at the end of storage. These results indicate that active packaging using self-CO 2 -generation materials can extend the shelf life similarly to that observed with vacuum packaging, and that the active packaging method can improve the quality characteristics of beef during cold storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Bi-level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  10. 49 CFR 173.23 - Previously authorized packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Previously authorized packaging. 173.23 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.23 Previously authorized packaging. (a) When the regulations specify a packaging with a specification marking...

  11. Packaging and transportation of radioactive materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-01

    The presentations made at the Symposium on Packaging and Transportation of Radioactive Materials are included. The purpose of the meeting was for the interchange of information on the technology and politics of radioactive material transportation. Separate abstracts were prepared for individual items. (DC)

  12. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  13. 77 FR 4522 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... Manufacturing, Industrial Organic Chemical Manufacturing, Inorganic Pigments Manufacturing, Miscellaneous Organic Chemical Manufacturing, Plastic Materials and Resins Manufacturing, Pharmaceutical Production and... Intermediate Production, Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical Manufacturing...

  14. Second virial coefficient of starch

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  15. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced...) The Large Packaging is free from corrosion, contamination, cracks, cuts, or other damage which would...

  16. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an inner packaging is constructed of paper or flexible plastic, the inner packaging must be replaced...) The Large Packaging is free from corrosion, contamination, cracks, cuts, or other damage which would...

  17. Comparison of Traditional and Innovative Techniques to Solve Technical Challenges

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2010-01-01

    Although NASA has an adequate food system for current missions, research is required to accommodate new requirements for future NASA exploration missions. The Inadequate Food System risk reflects the need to develop requirements and technologies that will enable NASA to provide the crew with a safe, nutritious and acceptable food system while effectively balancing appropriate resources such as mass, volume, and crew time in exploratory missions. As we go deeper into space or spend more time on the International Space Station (ISS), there will be requirements for packaged food to be stored for 3 5 years. New food packaging technologies are needed that have adequate oxygen and water barrier properties to maintain the foods' quality over this extended shelf life. NASA has been unsuccessful in identify packaging materials that meet the necessary requirements when using several traditional routes including literature reviews, workshops, and internal shelf life studies on foods packaged in various packaging materials. Small Business Innovative Research grants were used for accelerating food packaging materials research with limited success. In order to accelerate the process, a theoretical challenge was submitted to InnoCentive resulting in a partial award. A similar food packaging challenge was submitted to Yet2.com and several potential commercial packaging material suppliers were identified that, at least partially, met the requirements. Comparisons and results of these challenges will be discussed.

  18. Performance of Nonmigratory Iron Chelating Active Packaging Materials in Viscous Model Food Systems.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-09-01

    Many packaged food products undergo quality deterioration due to iron promoted oxidative reactions. Recently, we have developed a nonmigratory iron chelating active packaging material that represents a novel approach to inhibit oxidation of foods while addressing consumer demands for "cleanˮ labels. A challenge to the field of nonmigratory active packaging is ensuring that surface-immobilized active agents retain activity in a true food system despite diffusional limitations. Yet, the relationship between food viscosity and nonmigratory active packaging activity retention has never been characterized. The objective of this study was to investigate the influence of food viscosity on iron chelation by a nonmigratory iron chelating active packaging material. Methyl cellulose was added to aqueous buffered iron solutions to yield model systems with viscosities ranging from ∼1 to ∼10(5)  mPa·s, representing viscosities ranging from beverage to mayonnaise. Iron chelation was quantified by material-bound iron content using colorimetry and inductively coupled plasma-optical emission spectrometry (ICP-OES).  Maximum iron chelation was reached in solutions up to viscosity ∼10(2)  mPa·s. In more viscous solutions (up to ∼10(4)  mPa·s), there was a significant decrease in iron chelating capacity (P < 0.05). However, materials still retained at least 76% iron chelating capacity. Additionally, the influence of different food hydrocolloids on the performance of nonmigratory iron chelating active packaging was characterized. Methyl cellulose and carrageenan did not compete with the material for specific iron chelation (P > 0.05). Materials retained 32% to 45% chelating capacity when in contact with competitively chelating hydrocolloids guar gum, locust bean gum, and xanthan gum. This work demonstrates the potential application of nonmigratory iron chelating active packaging in liquid and semi-liquid foods to allow for the removal of synthetic chelators, while maintaining food quality. © 2015 Institute of Food Technologists®

  19. Legislation, control and research in the Nordic countries on plastics for packaging food.

    PubMed

    Svensson, K

    1994-01-01

    The present legislation in the Nordic countries for food contact materials is expressed in general terms and contains few detailed requirements. At present Finland is implementing the EEC legislation, Sweden and Norway will probably do so shortly and Denmark has been a member of the EEC since 1973. Current food legislation in Sweden only covers materials or articles intended to come into contact with foodstuffs during processing or packaging in the food industry or by retailers. It does not apply to food packaging materials purchased for use at home or to household utensils. Upon request, the Toxicology Division at the Swedish National Food Administration (NFA) carries out evaluations of materials intended to come into contact with food. In addition, a voluntary organization--Normpack--is currently operating in Sweden. Normpack consists of manufacturers, dealers and users of food packaging materials, who have agreed to abide by certain common standards. In Norway, the Packaging Convention (Emballasjekonvensjonen--on safety of food packaging material from the health point view) serves a similar purpose. Research in this field is conducted at the National Food Agency of Denmark, The Danish Packaging and Transportation Research Institute (ETi) of the Danish Technological Institute (DTI), the Food Research Laboratory at the Technical Research Centre of Finland, MATFORSK, Norconserv and Statoil in Norway and the NFA, PackForsk and the Swedish Institute for Food Research (SIK) in Sweden. Previous studies have concerned plasticizers in PVC (polyvinyl chloride) cling film, overall migration studies on cling film, specific migration of vinyl chloride, styrene and acrylonitrile and off-flavours.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Bionanocomposites materials for food packaging applications: Concepts and future outlook.

    PubMed

    Youssef, Ahmed M; El-Sayed, Samah M

    2018-08-01

    Bionanocomposites materials open a chance for the usage of novel, high performance, lightweight, and ecofriendly composite materials making them take place the traditional non-biodegradable plastic packaging materials. Biopolymers like polysaccharides such as chitosan (CS), carboxymethyl cellulose (CMC), starch and cellophane could be used to resolve environmental hazards owing to their biodegradability and non-toxicity. In addition these advantages, polysaccharides have some disadvantages for example poor mechanical properties and low resistance to water. Therefore, nanomaterials are used to improve the thermal, mechanical and gas barrier properties without hindering their biodegradable and non-toxic characters. Furthermore, the most favorable nanomaterials are layered silicate nanoclays for example montmorillonite (MMT) and kaolinite, zinc oxide (ZnO-NPs), titanium dioxide (TiO 2 -NPs), and silver nanoparticles (Ag-NPs). In packaging application, the improvement of barrier properties of prepared films against oxygen, carbon dioxide, flavor compounds diffusion through the packaging films. Wide varieties of nanomaterials are suitable to offer smart and/or intelligent properties for food packaging materials, as demonstrated by oxygen scavenging capability, antimicrobial activity, and sign of the level of exposure to various harmful features for instance oxygen levels or insufficient temperatures. The compatibility between nanomaterials and polymers matrix consider the most challenge for the preparation of bionanocomposites as well as getting whole distribution of nanoparticles into the polymer matrix. We keen in this review the development of packaging materials performance and their mechanical, degradability and thermal stability as well as antibacterial activity for utilization of bionanocomposites in different packaging application is considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Packaging Technologies for 500 C SiC Electronics and Sensors: Challenges in Material Science and Technology

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Behelm, Glenn M.; Spry, David J.; Meredith, Roger D.; Hunter, Gary W.

    2015-01-01

    This paper presents ceramic substrates and thick-film metallization based packaging technologies in development for 500C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550C. The 96 alumina packaging system composed of chip-level packages and PCBs has been successfully tested with high temperature SiC discrete transistor devices at 500C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC junction field-effect-transistor (JFET) with a packaging system composed of a 96 alumina chip-level package and an alumina printed circuit board was tested on low earth orbit for eighteen months via a NASA International Space Station experiment. In addition to packaging systems for electronics, a spark-plug type sensor package based on this high temperature interconnection system for high temperature SiC capacitive pressure sensors was also developed and tested. In order to further significantly improve the performance of packaging system for higher packaging density, higher operation frequency, power rating, and even higher temperatures, some fundamental material challenges must be addressed. This presentation will discuss previous development and some of the challenges in material science (technology) to improve high temperature dielectrics for packaging applications.

  2. 76 FR 11288 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Guide, DG-7008, ``Leakage Tests on Packages for Shipment of Radioactive Materials.'' FOR FURTHER... regulatory guide (DG), entitled, ``Leakage Tests on Packages for Shipment of Radioactive Materials'' is... Radioactive and Nonnuclear Hazardous Materials, N14, Subcommittee of the American National Standards Institute...

  3. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Indirect food additives resulting from packaging..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and...

  4. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Indirect food additives resulting from packaging..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and...

  5. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Indirect food additives resulting from packaging..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and...

  6. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Indirect food additives resulting from packaging..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and...

  7. 21 CFR 570.14 - Indirect food additives resulting from packaging materials for animal feed and pet food.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Indirect food additives resulting from packaging..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES General Provisions § 570.14 Indirect food additives resulting from packaging materials for animal feed and...

  8. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fissile material package shall derive a number “N” based on all the following conditions being satisfied.... The value of the CSI may be zero provided that an unlimited number of packages are subcritical, such...) of this section. Any CSI greater than zero must be rounded up to the first decimal place. (c) For a...

  9. 10 CFR 71.59 - Standards for arrays of fissile material packages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fissile material package shall derive a number “N” based on all the following conditions being satisfied.... The value of the CSI may be zero provided that an unlimited number of packages are subcritical, such...) of this section. Any CSI greater than zero must be rounded up to the first decimal place. (c) For a...

  10. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, S.; Loftin, B.; Abramczyk, G.

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels withinmore » the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.« less

  11. Functions of Nano-Materials in Food Packaging

    NASA Astrophysics Data System (ADS)

    Yap, Ray Chin Chong; Kwablah, Amegadze Paul Seyram; He, Jiating; Li, Xu

    Food packaging has been changing from bulky and rigid form in the past to different variation of lights and plastic packagings. Regardless of the changes, the packaging must be able to uphold its original function which is to serve as food containment as well as to protect the food from the external environment. Coupled with the increasing consumer’s awareness on food waste, higher standard of living, technological developments are underway to enhance the shelf-life of packed food as well as methods to provide indications of food packaging environment. There are many different indicators for food spoilage, but two commonly found gases in food packaging are oxygen and carbon dioxide. Oxygen is the main mechanism for food spoilage, while carbon dioxide is often used in modified-atmosphere-packaging. There are also different methods of gas scavenging and/or sensing techniques based on different concepts in the literature. In this review, the focus will be on nano-materials, namely titanium dioxide, silica, zeolites and metal organic frameworks. This review is structured in a manner to highlight how each material can be used in both gas scavenging and/or indicators applications. The last part of the review focuses on the approach and some key considerations when integrating nano-materials into the plastic film.

  12. Hyperspectral imaging for differentiation of foreign materials from pinto beans

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Zemlan, Michael; Henry, Sam

    2015-09-01

    Food safety and quality in packaged products are paramount in the food processing industry. To ensure that packaged products are free of foreign materials, such as debris and pests, unwanted materials mixed with the targeted products must be detected before packaging. A portable hyperspectral imaging system in the visible-to-NIR range has been used to acquire hyperspectral data cubes from pinto beans that have been mixed with foreign matter. Bands and band ratios have been identified as effective features to develop a classification scheme for detection of foreign materials in pinto beans. A support vector machine has been implemented with a quadratic kernel to separate pinto beans and background (Class 1) from all other materials (Class 2) in each scene. After creating a binary classification map for the scene, further analysis of these binary images allows separation of false positives from true positives for proper removal action during packaging.

  13. Case study of the effectiveness of passive grease trap for management on domestic kitchen waste water

    NASA Astrophysics Data System (ADS)

    Nidzamuddin, M. Y.; Juffrizal, K.; Mustapha, F.; Zulfattah, Z. M.; Tan, C. F.; Taha, M. M.; Hidayah, I.; Hilwa, M. Z.

    2015-05-01

    Household waste, generally known as trash or garbage is mostly includes food wastes, product packaging, and other miscellaneous inorganic wastes that are coming from domestic household. Grease waste such as oil and fats can contaminate water and also clot on pipes provoking blockages. Thus, waste water from kitchen sink need a proper way of filtration. Grease trap developed in this paper is viable in trapping the grease residue. The experiments have been conducted in controlled environment and the objectives are to investigate the effectiveness of grease trap by proving the existence of retention time and the expected ratio of collected water and oil during experiment process using a prototype model.

  14. Materials in Manufacturing and Packaging Systems as Sources of Elemental Impurities in Packaged Drug Products: A Literature Review.

    PubMed

    Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M

    Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO 2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, while sources of certain elemental impurities may be ubiquitous in the natural environment, they are not ubiquitous in materials used in pharmaceutical packaging and manufacturing systems and when they are present, they are not extensively leached under relevant conditions. The information summarized here can be utilized to aid the elemental impurity risk assessment process by providing the identities of commonly reported elements and data to support probability estimates of those becoming elemental impurities in the drug product. Furthermore, recommendations are made related to establishing elements of potential product impact for individual materials. Extraneous impurities in drug products provide no therapeutic benefit and thus should be known and controlled. Elemental impurities can arise from a number of sources and by a number of means, including the leaching of elemental entities from drug product packaging and manufacturing systems. To understand the extent to which materials used in packaging systems contain elemental entities and the extent to which those entities leach into drug products to become elemental impurities, the Extractables and Leachables Safety Information Exchange (ELSIE) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) Consortia have jointly performed a literature review on this subject. Using the compiled information, it was concluded that while packaging materials may contain elemental entities, unless those entities are intentional parts of the materials, the amounts of those elemental entities are generally low. Furthermore, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, risk assessment of sources of elemental impurities in drug products that may be related to materials used in pharmaceutical packaging and manufacturing systems can utilize the information and recommendations presented here. © PDA, Inc. 2015.

  15. Dredging Operations Technical Support Program. General Decisionmaking Framework for Management of Dredged Material: Example Application to Commencement Bay, Washington.

    DTIC Science & Technology

    1991-06-01

    Figure 4) and was used to predict surface runoff water quality from dredged material as part of the CE/EPA FVP ( Westerdahl and Skogerboe 1981; Lee and...Sedimrnts," Miscellaneous Paper D-83-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Westerdahl , H. E., and Skogerboe, J. G. 1981

  16. 49 CFR 173.29 - Empty packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Empty packagings. 173.29 Section 173.29... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.29 Empty packagings. (a) General. Except as otherwise provided in this section, an empty packaging containing only the residue of a...

  17. Effectiveness of antimicrobial food packaging materials.

    PubMed

    Cooksey, K

    2005-10-01

    Antimicrobial additives have been used successfully for many years as direct food additives. The literature provides evidence that some of these additives may be effective as indirect food additives incorporated into food packaging materials. Antimicrobial food packaging is directed toward the reduction of surface contamination of processed, prepared foods such as sliced meats and Frankfurter sausages (hot dogs). The use of such packaging materials is not meant to be a substitute for good sanitation practices, but it should enhance the safety of food as an additional hurdle for the growth of pathogenic and/or spoilage microorganisms. Studies have focused on establishing methods for coating low-density polyethylene film or barrier films with methyl cellulose as a carrier for nisin. These films have significantly reduced the presence of Listeria monocytogenes in solutions and in vacuum packaged hot dogs. Other research has focused on the use of chitosan to inhibit L. monocytogenes and chlorine dioxide sachets for the reduction of Salmonella on modified atmosphere-packaged fresh chicken breasts. Overall, antimicrobial packaging shows promise as an effective method for the inhibition of certain bacteria in foods, but barriers to their commercial implementation continue to exist.

  18. The LARSYS educational package: Instructor's notes. [instructional materials for training people to analyze remotely sensed data

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Davis, S. M.

    1974-01-01

    Materials are presented for assisting instructors in teaching the LARSYS Educational Package, which is a set of instructional materials to train people to analyze remotely sensed multispectral data. The seven units of the package are described. These units are: quantitative remote sensing, overview of the LARSYS software system, the 2780 remote terminal, demonstration of LARSYS on the 2780 remote terminal, exercises, guide to multispectral data analysis, and a case study using LARSYS for analysis of LANDSAT data.

  19. 75 FR 54496 - Medical; Nonsubstantive Miscellaneous Changes; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... and organizational titles were changed, and material previously deleted was restored. The document...), Veterans Health Administration, Department of Veterans Affairs, 810 Vermont Avenue, NW., Washington, DC..., Claims, Day care, Dental health, Drug abuse, Foreign relations, Government contracts, Grant programs...

  20. Second virial coefficient of hydroxypropyl starch

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Ch.

    This document is part of Subvolume D2 'Polymer Solutions - Physical Properties and their Relations I (Thermodynamic Properties: PVT -Data and miscellaneous Properties of polymer Solutions) of Volume 6 `Polymers' of Landolt-Börnstein - Group VIII `Advanced Materials and Technologies'.

  1. Effect of γ-irradiation on commercial polypropylene based mono and multi-layered retortable food packaging materials

    NASA Astrophysics Data System (ADS)

    George, Johnsy; Kumar, R.; Sajeevkumar, V. A.; Sabapathy, S. N.; Vaijapurkar, S. G.; Kumar, D.; Kchawahha, A.; Bawa, A. S.

    2007-07-01

    Irradiation processing of food in the prepackaged form may affect chemical and physical properties of the plastic packaging materials. The effect of γ-irradiation doses (2.5-10.0 kGy) on polypropylene (PP)-based retortable food packaging materials, were investigated using Fourier transform infrared (FTIR) spectroscopic analysis, which revealed the changes happening to these materials after irradiation. The mechanical properties decreased with irradiation while oxygen transmission rate (OTR) was not affected significantly. Colour measurement indicated that Nylon 6 containing multilayer films became yellowish after irradiation. Thermal characterization revealed the changes in percentage crystallinity.

  2. Novel food packaging systems with natural antimicrobial agents.

    PubMed

    Irkin, Reyhan; Esmer, Ozlem Kizilirmak

    2015-10-01

    A new type of packaging that combines food packaging materials with antimicrobial substances to control microbial surface contamination of foods to enhance product microbial safety and to extend shelf-life is attracting interest in the packaging industry. Several antimicrobial compounds can be combined with different types of packaging materials. But in recent years, since consumer demand for natural food ingredients has increased because of safety and availability, these natural compounds are beginning to replace the chemical additives in foods and are perceived to be safer and claimed to alleviate safety concerns. Recent research studies are mainly focused on the application of natural antimicrobials in food packaging system. Biologically derived compounds like bacteriocins, phytochemicals, enzymes can be used in antimicrobial food packaging. The aim of this review is to give an overview of most important knowledge about application of natural antimicrobial packagings with model food systems and their antimicrobial effects on food products.

  3. Single level microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  4. Computational modelling of a thermoforming process for thermoplastic starch

    NASA Astrophysics Data System (ADS)

    Szegda, D.; Song, J.; Warby, M. K.; Whiteman, J. R.

    2007-05-01

    Plastic packaging waste currently forms a significant part of municipal solid waste and as such is causing increasing environmental concerns. Such packaging is largely non-biodegradable and is particularly difficult to recycle or to reuse due to its complex composition. Apart from limited recycling of some easily identifiable packaging wastes, such as bottles, most packaging waste ends up in landfill sites. In recent years, in an attempt to address this problem in the case of plastic packaging, the development of packaging materials from renewable plant resources has received increasing attention and a wide range of bioplastic materials based on starch are now available. Environmentally these bioplastic materials also reduce reliance on oil resources and have the advantage that they are biodegradable and can be composted upon disposal to reduce the environmental impact. Many food packaging containers are produced by thermoforming processes in which thin sheets are inflated under pressure into moulds to produce the required thin wall structures. Hitherto these thin sheets have almost exclusively been made of oil-based polymers and it is for these that computational models of thermoforming processes have been developed. Recently, in the context of bioplastics, commercial thermoplastic starch sheet materials have been developed. The behaviour of such materials is influenced both by temperature and, because of the inherent hydrophilic characteristics of the materials, by moisture content. Both of these aspects affect the behaviour of bioplastic sheets during the thermoforming process. This paper describes experimental work and work on the computational modelling of thermoforming processes for thermoplastic starch sheets in an attempt to address the combined effects of temperature and moisture content. After a discussion of the background of packaging and biomaterials, a mathematical model for the deformation of a membrane into a mould is presented, together with its finite element discretisation. This model depends on material parameters of the thermoplastic and details of tests undertaken to determine these and the results produced are given. Finally the computational model is applied for a thin sheet of commercially available thermoplastic starch material which is thermoformed into a specific mould. Numerical results of thickness and shape for this problem are given.

  5. Effect of nano packaging on preservation quality of Nanjing 9108 rice variety at high temperature and humidity.

    PubMed

    Wang, Fan; Hu, Qiuhui; Mugambi Mariga, Alfred; Cao, Chongjiang; Yang, Wenjian

    2018-01-15

    A nano packaging material containing nano Ag, nano TiO 2 , nano attapulgite and SiO 2 was prepared, and its impact on quality of Nanjing 9108 rice at 37°C and 85% relative humidity was studied. Effects of the packaging on ambient gases and chromatic aberration of rice were determined. Moreover, oxidation level, molds growth and flavor of rice were also analyzed. Results showed that nano packaging material had antimicrobial effects and maintained low O 2 and high CO 2 content in the packages. The packages thereby inhibited the growth of molds and the production of fatty acids, restrained the increase of lipase activity, and reduced the oxidation of fats and proteins. As a result, the production of yellow and white-belly rice were inhibited. Furthermore, the color and flavor of rice were maintained. Therefore, the nano-packing material could be applied for preservation of rice to improve preservation quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  7. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  8. 49 CFR 173.162 - Gallium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Gallium. 173.162 Section 173.162 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.162 Gallium. (a) Except when packaged in cylinders or steel flasks, gallium must be packaged in packagings which meet the...

  9. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Packagings (e.g., 51H) are only authorized for use with flexible inner packagings. (3) Friction. The nature and thickness of the outer packaging must be such that friction during transportation is not likely to... transportation in inner packagings appropriately resistant to an increase of internal pressure likely to develop...

  10. 49 CFR 173.415 - Authorized Type A packages.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Authorized Type A packages. 173.415 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.415 Authorized Type A packages. The following packages are authorized for shipment if they do not contain quantities exceeding A1 or...

  11. 49 CFR 173.415 - Authorized Type A packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Authorized Type A packages. 173.415 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.415 Authorized Type A packages. The following packages are authorized for shipment if they do not contain quantities exceeding A1 or...

  12. 49 CFR 173.415 - Authorized Type A packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Authorized Type A packages. 173.415 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.415 Authorized Type A packages. The following packages are authorized for shipment if they do not contain quantities exceeding A1 or...

  13. 49 CFR 173.415 - Authorized Type A packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Authorized Type A packages. 173.415 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.415 Authorized Type A packages. The following packages are authorized for shipment if they do not contain quantities exceeding A1 or...

  14. 49 CFR 173.206 - Packaging requirements for chlorosilanes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Packaging requirements for chlorosilanes. 173.206...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.206 Packaging requirements for chlorosilanes. (a) When § 172.101 of this...

  15. Testing of candidate waste-package backfill and canister materials for basalt

    NASA Astrophysics Data System (ADS)

    Wood, M. I.; Anderson, W. J.; Aden, G. D.

    1982-09-01

    The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.

  16. Physics of Failure Analysis of Xilinx Flip Chip CCGA Packages: Effects of Mission Environments on Properties of LP2 Underfill and ATI Lid Adhesive Materials

    NASA Technical Reports Server (NTRS)

    Suh, Jong-ook

    2013-01-01

    The Xilinx Virtex 4QV and 5QV (V4 and V5) are next-generation field-programmable gate arrays (FPGAs) for space applications. However, there have been concerns within the space community regarding the non-hermeticity of V4/V5 packages; polymeric materials such as the underfill and lid adhesive will be directly exposed to the space environment. In this study, reliability concerns associated with the non-hermeticity of V4/V5 packages were investigated by studying properties and behavior of the underfill and the lid adhesvie materials used in V4/V5 packages.

  17. Nanotechnology: An Untapped Resource for Food Packaging.

    PubMed

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  18. Nanotechnology: An Untapped Resource for Food Packaging

    PubMed Central

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector. PMID:28955314

  19. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (infectious substances) materials. (a) A package required to bear a POISON, POISON INHALATION HAZARD, or... person may operate an aircraft that has been used to transport any package required to bear a POISON or POISON INHALATION HAZARD label unless, upon removal of such package, the area in the aircraft in which it...

  20. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (infectious substances) materials. (a) A package required to bear a POISON, POISON INHALATION HAZARD, or... person may operate an aircraft that has been used to transport any package required to bear a POISON or POISON INHALATION HAZARD label unless, upon removal of such package, the area in the aircraft in which it...

  1. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (infectious substances) materials. (a) A package required to bear a POISON, POISON INHALATION HAZARD, or... person may operate an aircraft that has been used to transport any package required to bear a POISON or POISON INHALATION HAZARD label unless, upon removal of such package, the area in the aircraft in which it...

  2. 49 CFR 175.630 - Special requirements for Division 6.1 (poisonous) material and Division 6.2 (infectious...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (infectious substances) materials. (a) A package required to bear a POISON, POISON INHALATION HAZARD, or... person may operate an aircraft that has been used to transport any package required to bear a POISON or POISON INHALATION HAZARD label unless, upon removal of such package, the area in the aircraft in which it...

  3. Modification of cellulose nanocrystals (CNCs) for use in poly(lactic acid) (PLA)-CNC composite packaging products

    Treesearch

    Liqing Wei; Nicole M. Stark; Ronald C. Sabo; Laurent Matuana

    2016-01-01

    There is growing interest in developing bio-based materials for packaging. Bio-derived materials such as cellulose nanocrystals (CNCs) and poly(lactic acid) (PLA) can be used to develop sustainable packaging applications. Incorporating CNCs into PLA can increase the crystallinity and barrier properties of PLA. The challenge lies in both increasing the flexibility of...

  4. 77 FR 76602 - Office of Hazardous Materials Safety; Actions on Special Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ...), transportation in 173.465(c), commerce of certain 173.465(d). Radioactive material in alternative packaging by... material in alternative packaging. (modes 1, 3) 15626-N......... EC Source 49 CFR 49 CFR To authorize the...); radioactive 175.702(b). material on cargo only aircraft when the combined transport index exceeds 50.0 and/or...

  5. Predictive factors of life quality among packaging workers in Taiwan.

    PubMed

    Yang, Shang-Yu; Hsu, Der-Jen; Yen, Chun-Ming; Chang, Jer-Hao

    2018-05-16

    The semiconductor plants on the top of high-tech industrial chain hire many packaging workers to carry out miscellaneous packing tasks for various product orders from different companies and countries. Under tremendous workload the quality of life (QoL) of such packaging workers need to be concerned. The aim of this study was to explore factors influencing their QoL. This study recruited 247 packing workers (162 male and 85 female; mean age: 35.6 years old) in 2015 and 2016 from a semiconductor plant in Taiwan by convenience sampling. The questionnaire comprised four parts: demographics, the World Health Organization Quality of Life (WHOQOL-BREF), an occupational burnout inventory and the Nordic Musculoskeletal Questionnaire. The four domains of the WHOQOL-BREF were defined as outcome variables. Predictive factors included gender (reference: male), age (reference: ≤ 35), BMI (reference: ≤ 25), educational level (reference: below university), marital/partner status (reference: married/cohabiting), years of work (reference: ≤ 5), work shift (reference: day shift), personal burnout, work-related burnout, over-commitment to work and the number of body parts with discomfort (0-9). The findings showed that physical QoL was negatively correlated with night -shift work, personal burnout, and number of body parts with discomfort. Psychological QoL was negatively correlated with night shift work and personal burnout. Environment QoL was negatively correlated with being male, night shift work and personal burnout. The results showed that the QoL among the packaging workers could be improved by reducing musculoskeletal discomfort, personal burnout and by improving work schedules.

  6. The Importance of Take-Out Food Packaging Attributes: Conjoint Analysis and Quality Function Deployment Approach

    NASA Astrophysics Data System (ADS)

    Lestari Widaningrum, Dyah

    2014-03-01

    This research aims to investigate the importance of take-out food packaging attributes, using conjoint analysis and QFD approach among consumers of take-out food products in Jakarta, Indonesia. The conjoint results indicate that perception about packaging material (such as paper, plastic, and polystyrene foam) plays the most important role overall in consumer perception. The clustering results that there is strong segmentation in which take-out food packaging material consumer consider most important. Some consumers are mostly oriented toward the colour of packaging, while another segment of customers concerns on packaging shape and packaging information. Segmentation variables based on packaging response can provide very useful information to maximize image of products through the package's impact. The results of House of Quality development described that Conjoint Analysis - QFD is a useful combination of the two methodologies in product development, market segmentation, and the trade off between customers' requirements in the early stages of HOQ process

  7. 21 CFR 211.122 - Materials examination and usage criteria.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... differentiated by size, shape, or color. (g) If cut labeling is used, packaging and labeling operations shall.... (e) Obsolete and outdated labels, labeling, and other packaging materials shall be destroyed. (f) Use...

  8. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials

    PubMed Central

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Chiavari, Cristiana; Benevelli, Marzia; Grazia, Luigi; Lanciotti, Rosalba

    2017-01-01

    The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM). The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on packaging. PMID:29312271

  9. 47 CFR 27.1203 - EBS programming requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Broadband Radio Service and Educational Broadband Service § 27... Broadband Service stations are intended primarily through video, data, or voice transmissions to further the... endeavors; (2) Transmission of material directly related to the administrative activities of the licensee...

  10. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vaccines. 344.Processing medicinal chemicals (including alkaloids). 430.Sterilizing and preserving solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride.... 575.Drugs and medicinal chemicals. 579.Other chemicals. 580.Synthetic rubber. (3) Miscellaneous uses...

  11. A Theatre Movement Bibliography, 1978 Edition.

    ERIC Educational Resources Information Center

    Norris, Lynne

    Reference materials that deal with various aspects of theater movement are grouped in this partially annotated bibliography under the following headings: anatomy, kinesiology, and physiology; combat and martial arts; integrated approaches to movement; mime; miscellaneous acting and movement approaches; movement notations systems; movement…

  12. 36 CFR 1192.4 - Miscellaneous instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 1192.4 Section 1192.4 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS... engineering tolerances for material properties and field conditions, including normal anticipated wear not exceeding accepted industry-wide standards and practices. (c) Notes. The text of these guidelines does not...

  13. 16 CFR 260.16 - Renewable materials claims.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... substantiating all remaining express and reasonably implied claims. Example 2: A marketer's packaging states that “Our packaging is made from 50% plant-based renewable materials. Because we turn fast-growing plants into bio-plastics, only half of our product is made from petroleum-based materials.” By identifying the...

  14. 16 CFR 260.16 - Renewable materials claims.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... substantiating all remaining express and reasonably implied claims. Example 2: A marketer's packaging states that “Our packaging is made from 50% plant-based renewable materials. Because we turn fast-growing plants into bio-plastics, only half of our product is made from petroleum-based materials.” By identifying the...

  15. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  16. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  17. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  18. 49 CFR Appendix E to Part 178 - Flame Penetration Resistance Test

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR PACKAGINGS Pt...) At least three specimens of the outer packaging materials must be tested; (2) Each test must be... of cargo compartment lining materials to resist flame penetration with a 2 gallon per hour (GPH) #2...

  19. Recent advances in photonics packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2006-02-01

    There are now over a dozen low-CTE materials with thermal conductivities between that of copper (400 w/m-K) and over 4X copper (1700 W/m-K). Most have low densities. For comparison, traditional low-CTE packaging materials like copper/tungsten have thermal conductivities that are little or no better than that of aluminum (200 W/m-K) and high densities. There are also low-density thermal insulators with low CTEs. Some advanced materials are low cost. Most do not outgas. They have a wide range of electrical properties that can be used to minimize electromagnetic emissions or provide EMI shielding. Several are now in commercial and aerospace applications, including laser diode packages; light-emitting diode (LED) packages; thermoelectric cooler bases, plasma displays; power modules; servers; laptops; heat sinks; thermally conductive, low-CTE printed circuit boards; and printed circuit board cold plates. Advanced material payoffs include: improved thermal performance, reliability, alignment and manufacturing yield; reduced thermal stresses and heating power requirements; simplified thermal design; enablement of hard solder direct attach; weight savings up to 85%; size reductions up to 65%; and lower cost. This paper discusses the large and increasing number of advanced packaging materials, including properties, development status, applications, increasing manufacturing yield, cost, lessons learned and future directions, including nanocomposites.

  20. Programme on the recyclability of food-packaging materials with respect to food safety considerations: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers.

    PubMed

    Franz, R

    2002-01-01

    Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.

  1. 49 CFR 173.474 - Quality control for construction of packaging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Quality control for construction of packaging. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.474 Quality control for construction of packaging. Prior to the first use of any packaging for the shipment of Class 7...

  2. 49 CFR 173.474 - Quality control for construction of packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Quality control for construction of packaging. 173...-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Class 7 (Radioactive) Materials § 173.474 Quality control for construction of packaging. Prior to the first use of any packaging for the shipment of Class 7...

  3. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, S.

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits.more » 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.« less

  4. Surface modification of food contact materials for processing and packaging applications

    NASA Astrophysics Data System (ADS)

    Barish, Jeffrey A.

    This body of work investigates various techniques for the surface modification of food contact materials for use in food packaging and processing applications. Nanoscale changes to the surface of polymeric food packaging materials enables changes in adhesion, wettability, printability, chemical functionality, and bioactivity, while maintaining desirable bulk properties. Polymer surface modification is used in applications such as antimicrobial or non-fouling materials, biosensors, and active packaging. Non-migratory active packagings, in which bioactive components are tethered to the package, offer the potential to reduce the need for additives in food products while maintaining safety and quality. A challenge in developing non-migratory active packaging materials is the loss of biomolecular activity that can occur when biomolecules are immobilized. Polyethylene glycol (PEG), a biocompatible polymer, is grafted from the surface of ozone treated low-density polyethylene (LDPE) resulting in a surface functionalized polyethylene to which a range of amine-terminated bioactive molecules can be immobilized. The grafting of PEG onto the surface of polymer packaging films is accomplished by free radical graft polymerization, and to covalently link an amine-terminated molecule to the PEG tether, demonstrating that amine-terminated bioactive compounds (such as peptides, enzymes, and some antimicrobials) can be immobilized onto PEG-grafted LDPE in the development of non-migratory active packaging. Fouling on food contact surfaces during food processing has a significant impact on operating efficiency and can promote biofilm development. Processing raw milk on plate heat exchangers results in significant fouling of proteins as well as minerals, and is exacerbated by the wall heating effect. An electroless nickel coating is co-deposited with polytetrafluoroethylene onto stainless steel to test its ability to resist fouling on a pilot plant scale plate heat exchanger. Further work was performed to test the stability of non-fouling material after extended exposure to an alkali detergent or acid sanitizer formulated for clean-in-place procedures in dairy processing facilities. Additionally, the anti-corrosive property of the surface coating was tested on carbon steel against chlorine ions, a common corrosive agent found in the food industry. Accelerated corrosion and long-term chemical exposure studies were conducted to measure the coating stability against the harsh corrosive agents.

  5. Extractables characterization for five materials of construction representative of packaging systems used for parenteral and ophthalmic drug products.

    PubMed

    Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank

    2013-01-01

    Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.

  6. 78 FR 14269 - Folding Gift Boxes From the People's Republic of China: Final Results of the Second Sunset Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... generally packaged in shrink-wrap, cellophane, or other packaging materials, in single or multi-box packs... packaged in shrink-wrap, cellophane, other resin- based packaging films, or paperboard. Imports of the...

  7. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polley, G.M.

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged inmore » inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)« less

  8. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  9. Evaluation of trade-offs in costs and environmental impacts for returnable packaging implementation

    NASA Astrophysics Data System (ADS)

    Jarupan, Lerpong; Kamarthi, Sagar V.; Gupta, Surendra M.

    2004-02-01

    The main thrust of returnable packaging these days is to provide logistical services through transportation and distribution of products and be environmentally friendly. Returnable packaging and reverse logistics concepts have converged to mitigate the adverse effect of packaging materials entering the solid waste stream. Returnable packaging must be designed by considering the trade-offs between costs and environmental impact to satisfy manufacturers and environmentalists alike. The cost of returnable packaging entails such items as materials, manufacturing, collection, storage and disposal. Environmental impacts are explicitly linked with solid waste, air pollution, and water pollution. This paper presents a multi-criteria evaluation technique to assist decision-makers for evaluating the trade-offs in costs and environmental impact during the returnable packaging design process. The proposed evaluation technique involves a combination of multiple objective integer linear programming and analytic hierarchy process. A numerical example is used to illustrate the methodology.

  10. Depleted uranium as a backfill for nuclear fuel waste package

    DOEpatents

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  11. Nanocellulose-based composites and bioactive agents for food packaging.

    PubMed

    Khan, Avik; Huq, Tanzina; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2014-01-01

    Global environmental concern, regarding the use of petroleum-based packaging materials, is encouraging researchers and industries in the search for packaging materials from natural biopolymers. Bioactive packaging is gaining more and more interest not only due to its environment friendly nature but also due to its potential to improve food quality and safety during packaging. Some of the shortcomings of biopolymers, such as weak mechanical and barrier properties can be significantly enhanced by the use of nanomaterials such as nanocellulose (NC). The use of NC can extend the food shelf life and can also improve the food quality as they can serve as carriers of some active substances, such as antioxidants and antimicrobials. The NC fiber-based composites have great potential in the preparation of cheap, lightweight, and very strong nanocomposites for food packaging. This review highlights the potential use and application of NC fiber-based nanocomposites and also the incorporation of bioactive agents in food packaging.

  12. 76 FR 43509 - Hazardous Materials; Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-20

    ... 20590-0001. SUPPLEMENTARY INFORMATION: I. Background A. Notice of Proposed Rulemaking (NPRM) On.... Hazard Communication for IBCs G. HMT Revisions H. Hazard Communication I. Exclusive Use Vehicles for.... Cargo Tanks O. Permeation Devices P. Alcoholic Beverage Exception Q. Special Permits R. Lab Packs S...

  13. 46 CFR 98.30-2 - Incorporation by Reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Portable Tanks and Intermediate Bulk Containers § 98.30-2 Incorporation by Reference. (a) Certain material is incorporated by...

  14. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.

  15. Hazardous Materials Packaging and Transportation Safety

    DOT National Transportation Integrated Search

    1995-09-27

    To establish safety requirements for the proper packaging and : transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. (Offsite is any area within or outside a DOE site to w...

  16. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  17. An Investigation Into The Viability Of Nanocrystalline Cellulose As A Packaging Material

    NASA Astrophysics Data System (ADS)

    Glass, John

    The focus of this proposal is to identify unexplored areas of research in the field of packaging science, specifically related to the incorporation of Nanocrystalline Cellulose (NCC) as a functional material in fiber based packaging, as well as to highlight some of potential risks and unknowns in the product lifecycle. This research hypothesizes that incorporating NCC into wood fiber-based c-flute corrugated packaging medium will show a sufficient performance improvement to justify additional research. Nanomaterials, as a whole, are still being understood, including those using naturally occurring bases such as NCC. Further incremental testing with NCC will help provide a performance and safety baseline for the necessary future research prior to mass production. NCC holds great promise for the future: a commonly available, naturally occurring material that's easily recyclable and biodegradable, yet has the strength of steel. Due diligence is required for this material to come to market in a safe and sustainable manner.

  18. Advances in LED packaging and thermal management materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses and cost are key light-emitting diode (LED) packaging issues. Heat dissipation limits power levels. Thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. An OIDA LED workshop cited a need for better thermal materials. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other low-CTE materials with lower thermal conductivities. Some of these materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required LEDs. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  19. The Great War. [Teaching Materials].

    ERIC Educational Resources Information Center

    Public Broadcasting Service, Washington, DC.

    This package of teaching materials is intended to accompany an eight-part film series entitled "The Great War" (i.e., World War I), produced for public television. The package consists of a "teacher's guide,""video segment index,""student resource" materials, and approximately 40 large photographs. The video series is not a war story of battles,…

  20. 49 CFR Appendix B to Part 209 - Federal Railroad Administration Guidelines for Initial Hazardous Materials Assessments

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hazardous materials are only safe for transportation when they are securely sealed in a proper package...) that a container or package for transportation of a hazardous material is safe, certified, or in.... —Listing an unauthorized, incorrect, non-working, or unmonitored (24 hrs. a day) emergency response...

  1. 21 CFR 211.130 - Packaging and labeling operations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Packaging and Labeling Control § 211.130 Packaging and labeling operations. There shall be written procedures designed to... manufacture and control of the batch. (d) Examination of packaging and labeling materials for suitability and...

  2. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...

  3. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...

  4. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...

  5. 49 CFR Appendix B to Part 173 - Procedure for Testing Chemical Compatibility and Rate of Permeation in Plastic Packaging and...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Rate of Permeation in Plastic Packaging and Receptacles B Appendix B to Part 173 Transportation Other... Plastic Packaging and Receptacles 1. The purpose of this procedure is to determine the chemical compatibility and permeability of liquid hazardous materials packaged in plastic packaging and receptacles...

  6. Readability assessment of internet-based patient education materials related to uterine artery embolization.

    PubMed

    Shukla, Pratik; Sanghvi, Saurin P; Lelkes, Valdis M; Kumar, Abhishek; Contractor, Sohail

    2013-04-01

    To determine the readability of Internet-based patient education materials (IPEMs) created by United States hospitals and universities and clinical practices and miscellaneous health care-associated Web sites regarding uterine artery embolization (UAE) as a marker for IPEMs in general. Two hundred unique Web sites were evaluated for patient-related articles on UAE. Web sites produced by US hospitals and universities and clinical practices, as well as miscellaneous health care-associated Web sites meeting the Health on the Net Foundation Code of Conduct criteria were included in the database. By using mathematical regression algorithms based on word and sentence length to quantitatively analyze reading materials for language intricacy, readability of 40 UAE-related IPEMs was assessed with four indices: Flesch-Kincaid Grade Level (FKGL), Flesch Reading Ease Score (FRES), Simple Measure of Gobbledygook (SMOG), and Gunning Frequency of Gobbledygook (GFOG). Scores were evaluated against national recommendations, and intergroup analysis was performed. None of the IPEMs were written at or below the sixth-grade reading level, based on FKGL. The mean readability scores were as follows: FRES, 43.98; FKGL, 10.76; SMOG, 13.63; and GFOG, 14.55. These scores indicate that the readability of UAE IPEMs is written at an advanced level, significantly above the recommended 6th grade reading level (P<.05) determined by the United States Department of Health and Human Services. IPEMs related to UAE generated by hospitals, clinical practices, and miscellaneous health care-associated Web sites are written above the recommended sixth grade level. IPEMs for other disease entities may also reflect similar results. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  7. Characterization of Emissions from Open Burning of Meals ...

    EPA Pesticide Factsheets

    Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that

  8. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).

    PubMed

    Hailu, M; Seyoum Workneh, T; Belew, D

    2014-11-01

    This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf and teff straw.

  9. A packaged, low-cost, robust optical fiber strain sensor based on small cladding fiber sandwiched within periodic polymer grating.

    PubMed

    Chiang, Chia-Chin; Li, Chein-Hsing

    2014-06-02

    In the present study, a novel packaged long-period fiber grating (PLPFG) strain sensor is first presented. The MEMS process was utilized to fabricate the packaged optical fiber strain sensor. The sensor structure consisted of etched optical fiber sandwiched between two layers of thick photoresist SU-8 3050 and then packaged with poly (dimethylsiloxane) (PDMS) polymer material to construct the PLPFG strain sensor. The PDMS packaging material was used to prevent the glue effect, wherein glue flows into the LPFG structure and reduces coupling strength, in the surface bonding process. Because the fiber grating was packaged with PDMS material, it was effectively protected and made robust. The resonance attenuation dip of PLPFG grows when it is loading. This study explored the size effect of the grating period and fiber diameter of PLPFG via tensile testing. The experimental results found that the best strain sensitivity of the PLPFG strain sensor was -0.0342 dB/με, and that an R2 value of 0.963 was reached.

  10. Microwave thawing package and method

    DOEpatents

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  11. Bibliography of Currently Available Vocational Education Curriculum Materials for Use with Students of Limited English Proficiency. Supplement to the Final Report, A Project to Provide Teacher Training and Resources for Vocational Educators of Limited English-Speaking Students: An Assessment of Needs, Programs and Instructional Resources.

    ERIC Educational Resources Information Center

    Adams, Susan B.; Taylor, Stephaine P.

    This bibliography contains curriculum materials for vocational education programs in English and Spanish. In the first section, Monolingual (Language other than English), materials are listed for five vocational areas: (1) occupational areas (accounting, agribusiness, allied health, clothing, etc.); (2) miscellaneous; (3) mathematics; (4)…

  12. Re-design of apple pia packaging using quality function deployment method

    NASA Astrophysics Data System (ADS)

    Pulungan, M. H.; Nadira, N.; Dewi, I. A.

    2018-03-01

    This study was aimed to identify the attributes for premium apple pia packaging, to determine the technical response to be carried out by Permata Agro Mandiri Small and Medium Enterprise (SME) and to design a new apple pie packaging acceptable by the SME. The Quality Function Deployment (QFD) method was employed to improve the apple pia packaging design, which consisted of seven stages in data analysis. The results indicated that whats attribute required by the costumers include graphic design, dimensions, capacity, shape, strength, and resistance of packaging. While, the technical responses to be conducted by the SMEs were as follows: attractive visual packaging designs, attractive colors, clear images and information, packaging size dimensions, a larger capacity packaging (more product content), ergonomic premium packaging, not easily torn, and impact resistant packaging materials. The findings further confirmed that the design of premium apple pia packaging accepted by the SMES was the one with the capacity of ten apple pia or 200 g weight, and with rectangular or beam shape form. The packaging material used was a duplex carton with 400 grammage (g/m2), the outer part of the packaging was coated with plastic and the inside was added with duplex carton. The acceptable packaging dimension was 30 cm x 5 cm x 3 cm (L x W x H) with a mix of black and yellow color in the graphical design.

  13. 49 CFR 172.404 - Labels for mixed and consolidated packaging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Labels for mixed and consolidated packaging. 172..., TRAINING REQUIREMENTS, AND SECURITY PLANS Labeling § 172.404 Labels for mixed and consolidated packaging. (a) Mixed packaging. When compatible hazardous materials having different hazard classes are packed...

  14. 49 CFR 172.404 - Labels for mixed and consolidated packaging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Labels for mixed and consolidated packaging. 172..., TRAINING REQUIREMENTS, AND SECURITY PLANS Labeling § 172.404 Labels for mixed and consolidated packaging. (a) Mixed packaging. When compatible hazardous materials having different hazard classes are packed...

  15. 49 CFR 172.404 - Labels for mixed and consolidated packaging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Labels for mixed and consolidated packaging. 172..., TRAINING REQUIREMENTS, AND SECURITY PLANS Labeling § 172.404 Labels for mixed and consolidated packaging. (a) Mixed packaging. When compatible hazardous materials having different hazard classes are packed...

  16. 49 CFR 172.404 - Labels for mixed and consolidated packaging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Labels for mixed and consolidated packaging. 172..., TRAINING REQUIREMENTS, AND SECURITY PLANS Labeling § 172.404 Labels for mixed and consolidated packaging. (a) Mixed packaging. When compatible hazardous materials having different hazard classes are packed...

  17. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous material...

  18. Technological challenges of addressing new and more complex migrating products from novel food packaging materials.

    PubMed

    Munro, Ian C; Haighton, Lois A; Lynch, Barry S; Tafazoli, Shahrzad

    2009-12-01

    The risk assessment of migration products resulting from packaging material has and continues to pose a difficult challenge. In most jurisdictions, there are regulatory requirements for the approval or notification of food contact substances that will be used in packaging. These processes generally require risk assessment to ensure safety concerns are addressed. The science of assessing food contact materials was instrumental in the development of the concept of Threshold of Regulation and the Threshold of Toxicological Concern procedures. While the risk assessment process is in place, the technology of food packaging continues to evolve to include new initiatives, such as the inclusion of antimicrobial substances or enzyme systems to prevent spoilage, use of plastic packaging intended to remain on foods as they are being cooked, to the introduction of more rigid, stable and reusable materials, and active packaging to extend the shelf-life of food. Each new technology brings with it the potential for exposure to new and possibly novel substances as a result of migration, interaction with other chemical packaging components, or, in the case of plastics now used in direct cooking of products, degradation products formed during heating. Furthermore, the presence of trace levels of certain chemicals from packaging that were once accepted as being of low risk based on traditional toxicology studies are being challenged on the basis of reports of adverse effects, particularly with respect to endocrine disruption, alleged to occur at very low doses. A recent example is the case of bisphenol A. The way forward to assess new packaging technologies and reports of very low dose effects in non-standard studies of food contact substances is likely to remain controversial. However, the risk assessment paradigm is sufficiently robust and flexible to be adapted to meet these challenges. The use of the Threshold of Regulation and the Threshold of Toxicological Concern concepts may play a critical role in the risk assessment of new food packaging technologies in the future.

  19. Current status of circularity for aluminum from household waste in Austria.

    PubMed

    Warrings, R; Fellner, J

    2018-02-20

    Aluminum (Al) represents the metal with the highest consumption growth in the last few decades. Beside its increasing usage in the transport (lightweight construction of vehicles) and building sector, Al is used ever more frequently for household goods like packaging material, which represents a readily available source for secondary aluminum due to its short lifetime. The present paper investigates the extent to which this potential source for recycling of Al is already utilized in Austria and highlights areas for future improvements. Thereto a detailed material flow analysis for Al used in packaging & household non-packaging in 2013 was conducted. In practice, all Al flows starting from market entrance through waste collection and processing until its final recycling or disposal have been investigated. The results indicate that about 25,100 t/a (2.96 kg/cap/a) of Al packaging & household non-packaging arose as waste. At present about 9800 t/a, or 39%, are recycled as secondary Al, of which 26% is regained from separate collection and sorting, 8% from bottom ash and 5% from mechanical treatment. The type of Al packaging & household non-packaging affects the recycling rate: 82% of the total recycled quantities come from rigid packaging & household non-packaging, while only 3% of the total recycled Al derives from flexible materials. A significant amount of Al was lost during thermal waste treatment due to oxidation (10%) and insufficient recovery of Al from both waste incineration bottom ash and municipal solid waste treated in mechanical biological treatment plants (49%). Overall it can be concluded that once Al ends up in commingled waste the recovery of Al becomes less likely and its material quality is reduced. Although Austria can refer to a highly developed recycling system, the Austrian packaging industry, collection and recovery systems and waste management need to increase their efforts to comply with future recycling targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Standard Specification for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    This specification covers the components of electronic and electromechanical equipment, nonelectronic materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete and workable language laboratory facility. Language laboratory facilities covered by this specification are of two types: (1)…

  1. Standard Specifications for Language Laboratory.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Administration, Raleigh.

    Specifications are presented covering the components of electronic and electro-mechanical equipment, non-electrical materials for the teacher-student positions, and other items of a miscellaneous nature to provide for a complete, workable language laboratory facility. Instructions for the use of specifications are included for the purchaser,…

  2. 30 CFR 75.1702 - Smoking; prohibition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking; prohibition. 75.1702 Section 75.1702... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702 Smoking; prohibition. [Statutory Provisions] No person shall smoke, carry smoking materials, matches, or lighters underground, or smoke in or...

  3. 30 CFR 75.1702 - Smoking; prohibition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking; prohibition. 75.1702 Section 75.1702... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702 Smoking; prohibition. [Statutory Provisions] No person shall smoke, carry smoking materials, matches, or lighters underground, or smoke in or...

  4. 30 CFR 75.1702 - Smoking; prohibition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking; prohibition. 75.1702 Section 75.1702... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702 Smoking; prohibition. [Statutory Provisions] No person shall smoke, carry smoking materials, matches, or lighters underground, or smoke in or...

  5. 30 CFR 75.1702 - Smoking; prohibition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking; prohibition. 75.1702 Section 75.1702... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702 Smoking; prohibition. [Statutory Provisions] No person shall smoke, carry smoking materials, matches, or lighters underground, or smoke in or...

  6. 30 CFR 75.1702 - Smoking; prohibition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking; prohibition. 75.1702 Section 75.1702... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1702 Smoking; prohibition. [Statutory Provisions] No person shall smoke, carry smoking materials, matches, or lighters underground, or smoke in or...

  7. Effect of different new packaging materials on biscuit quality during accelerated storage.

    PubMed

    Romani, Santina; Tappi, Silvia; Balestra, Federica; Rodriguez Estrada, Maria Teresa; Siracusa, Valentina; Rocculi, Pietro; Dalla Rosa, Marco

    2015-06-01

    The effect of innovative multilayer packaging materials versus a standard one on biscuit quality was studied during accelerated storage at 25, 35, 45 °C and 50% relative humidity for 92 days. Three different packaging materials were used: metalized orientated polypropylene (OPP)/paper (control); metalized poly-lactic acid (PLA)/paper; metalized OPP with ethylene vinyl acetate pro-oxidant additive (EVA-POA)/paper. EVA-POA additive is used to make the plastic layer biodegradable. Various quality sample parameters (moisture, water activity (aw ), texture, peroxide value (PV), hexanal) were analysed during storage. Rate constants (k) and activation energies (Ea ) of hydration reactions and hexanal formation were calculated. No remarkable differences in the evolution of primary and secondary lipid oxidation were observed among differently packed biscuits during storage. All samples maintained PV levels between 4 and 14 meq O2 kg(-1) oil. The product in flexible packaging with PLA reached the highest moisture and aw levels, but they did not significantly and adversely affect the other quality characteristics. The obtained results demonstrate that the new tested packaging materials were suitable for commercial biscuit storage, having similar performance and preservation effects on the overall product quality to those of the standard one. Furthermore, these results could make a contribution to the food industry, encouraging the use of packaging materials with a negligible environmental impact as an alternative to petroleum-based ones. © 2014 Society of Chemical Industry.

  8. Equivalent Safety Basis for Evaluation of On-Site Packages for US DOE Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.C.

    Packages for transport of radioactive material within the boundaries of a Department of Energy facility (on-site) must conform to the requirements for packages shipped in normal commerce, or must provide equivalent safety. Equivalence is achieved if the frequency of severe on-site accidents, which could result in a release of radioactive material, is less than or equal to the frequency of Beyond-HAC accidents for packages in commerce. This is shown to be achieved it the rate of on-site accident is 22 per 100 MVM or lower. For equivalence to Normal Conditions of Transport, for on-site packages, appropriate, defensible Design Basis Conditionsmore » can be established and the ability of the package to meet the reduced requirements shown in the On-site Safety Assessment.« less

  9. Quartz/fused silica chip carriers

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary objective of this research and development effort was to develop monolithic microwave integrated circuit (MMIC) packaging which will operate efficiently at millimeter-wave frequencies. The packages incorporated fused silica as the substrate material which was selected due to its favorable electrical properties and potential performance improvement over more conventional materials for Ka-band operation. The first step towards meeting this objective is to develop a package that meets standard mechanical and thermal requirements using fused silica and to be compatible with semiconductor devices operating up to at least 44 GHz. The second step is to modify the package design and add multilayer and multicavity capacity to allow for application specific integrated circuits (ASIC's) to control multiple phase shifters. The final step is to adapt the package design to a phased array module with integral radiating elements. The first task was a continuation of the SBIR Phase 1 work. Phase 1 identified fused silica as a viable substrate material by demonstrating various plating, machining, and adhesion properties. In Phase 2 Task 1, a package was designed and fabricated to validate these findings. Task 2 was to take the next step in packaging and fabricate a multilayer, multichip module (MCM). This package is the predecessor to the phased array module and demonstrates the ability to via fill, circuit print, laminate, and to form vertical interconnects. The final task was to build a phased array module. The radiating elements were to be incorporated into the package instead of connecting to it with wire or ribbon bonds.

  10. Morphological and antibacterial properties of modified paper by PS nanocomposites for packaging applications.

    PubMed

    Youssef, Ahmed M; Kamel, S; El-Samahy, M A

    2013-10-15

    With the increasing sustainability trend with packaging materials, paper and polymer nanocomposites represent a novel class of packaging materials. This study evaluates the potential achievement of alternative sustainable materials as antibacterial packaging application. Paper sheet from rice straw coated with 5 or 10% polystyrene (PS) nanocomposites using titanium dioxide nanoparticles (TiO2-NPs) doped or undoped with sliver nanoparticles (Ag-NPs) were prepared. The morphology of the uncoated and coated paper sheets was studied by SEM. The treated paper sheets were analyzed for their elemental composition using EDAX. The Barrier, air permeability, cob test, as well as mechanical properties and tensile strength were also evaluated. The inhibitory effect of modified paper sheets against Pseudomonas, Staphylococcus aureus, Candida, and Staphylococcus were investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 49 CFR 173.467 - Tests for demonstrating the ability of Type B and fissile materials packagings to withstand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Tests for demonstrating the ability of Type B and fissile materials packagings to withstand accident conditions in transportation. 173.467 Section 173.467 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  12. 49 CFR 173.467 - Tests for demonstrating the ability of Type B and fissile materials packagings to withstand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Tests for demonstrating the ability of Type B and fissile materials packagings to withstand accident conditions in transportation. 173.467 Section 173.467 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  13. DEMONSTRATION OF PACKAGING MATERIALS ALTERNATIVES TO EXPANDED POLYSTYRENE

    EPA Science Inventory

    This report represents the second demonstration of cleaner technologies to support the goals of the 33/50 Program under the EPA Cooperative Agreement No. CR-821848. The report presents assessment results of alternative packaging materials which could potentially replace expanded...

  14. Evaluating penetration ability of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larvae into multilayer polypropylene packages

    USDA-ARS?s Scientific Manuscript database

    Larvae of the Indian meal moth, Plodia interpunctella (Hübner), can invade or penetrate packaging materials and infest food products. Energy bars with three polypropylene packaging types were challenged with eggs (first instars), third, and fifth instars of P. interpunctella to determine package res...

  15. 10 CFR 71.91 - Records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licensed material in each package, and the total quantity of each shipment; (5) For each item of irradiated... the shipment; (7) For fissile packages and for Type B packages, any special controls exercised; (8... determinations required by § 71.87 and by the conditions of the package approval. (b) Each certificate holder...

  16. 10 CFR 71.91 - Records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... licensed material in each package, and the total quantity of each shipment; (5) For each item of irradiated... the shipment; (7) For fissile packages and for Type B packages, any special controls exercised; (8... determinations required by § 71.87 and by the conditions of the package approval. (b) Each certificate holder...

  17. 10 CFR 71.91 - Records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... licensed material in each package, and the total quantity of each shipment; (5) For each item of irradiated... the shipment; (7) For fissile packages and for Type B packages, any special controls exercised; (8... determinations required by § 71.87 and by the conditions of the package approval. (b) Each certificate holder...

  18. 10 CFR 71.91 - Records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licensed material in each package, and the total quantity of each shipment; (5) For each item of irradiated... the shipment; (7) For fissile packages and for Type B packages, any special controls exercised; (8... determinations required by § 71.87 and by the conditions of the package approval. (b) Each certificate holder...

  19. 49 CFR 172.404 - Labels for mixed and consolidated packaging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Labels for mixed and consolidated packaging. 172..., TRAINING REQUIREMENTS, AND SECURITY PLANS Labeling § 172.404 Labels for mixed and consolidated packaging. (a) Mixed packaging. When hazardous materials having different hazard classes are packed within the...

  20. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging

    USDA-ARS?s Scientific Manuscript database

    The red flour beetle, Tribolium castaneum (Herbst), and the confused flour beetle, Tribolium confusum Jacquelin du Val, are packaging invaders and will exploit any rip, tear, or defect in packaged food and infest the contents. Impregnating packaging materials with insecticides is a novel technologic...

  1. 49 CFR 173.24b - Additional general requirements for bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... packagings. 173.24b Section 173.24b Transportation Other Regulations Relating to Transportation PIPELINE AND... SHIPPERS-GENERAL REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.24b Additional general requirements for bulk packagings. (a) Outage and filling limits. (1...

  2. A Portable Presentation Package for Audio-Visual Instruction. Technical Documentary Report.

    ERIC Educational Resources Information Center

    Smith, Edgar A.; And Others

    The Portable Presentation Package is a prototype of an audiovisual equipment package designed to facilitate technical training in remote areas, situations in which written communications are difficult, or in situations requiring rapid presentation of instructional material. The major criteria employed in developing the package were (1) that the…

  3. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  4. The Counselor's Role. Implementing Title IX and Attaining Sex Equity: A Workshop Package for Elementary-Secondary Educators. Outline and Participants' Materials for Application Sessions for Counselors.

    ERIC Educational Resources Information Center

    McCune, Shirley, Ed.; Matthews, Martha, Ed.

    The materials in this workshop package are one component of a multicomponent workshop package. They provide resources and a step-by-step quide for implementing one 3-hour workshop session designed to provide participants with the opportunity to identify the implications of Title IX for their own job functions, to increase their skills for…

  5. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods.

    PubMed

    Mokwena, K Khanah; Tang, Juming

    2012-01-01

    Ethylene vinyl alcohol (EVOH) is one of the best known flexible thermoplastic oxygen barrier materials in use today. It is especially important for refrigerated and shelf-stable foods where oxygen deteriorates the quality of packaged products and reduces their shelf life. EVOH accounts for a majority of thermoplastic barrier materials used for rigid or semi-rigid retortable food containers. However. it is of limited use in flexible packages or lid films for rigid trays used for packaging thermally processed shelf-stable low acid foods due to its moisture sensitivity. Nevertheless, current use of other oxygen barrier materials such as polyvinylidene chloride and aluminum foil creates environmental concerns. Innovations in food processing technologies provide opportunities for increased use of EVOH in food packaging. The aim of this review is to give an overview of research on the oxygen barrier properties of EVOH from the perspective of structure-barrier property relationships and the consequences of food processing conditions.

  6. Technical and Regulatory Considerations in Using Freight Containers as Industrial Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawk, Mark B; Opperman, Erich; Natali, Ronald

    2008-01-01

    The US Department of Energy (DOE), Office of Environmental Management (EM), is actively pursuing activities to reduce the radiological risk and clean up the environmental legacy of the nation's nuclear weapons programmes. The EM has made significant progress in recent years in the clean-up and closure of sites and is also focusing on longer term activities necessary for the completion of the clean-up programme. The packaging and transportation of contaminated demolition debris and low level waste materials in a safe and cost effective manner are essential in completing this mission. Toward this end, the US Department of Transportation's Final Rulemore » on Hazardous Materials Regulation issued on 26 January 2004, included a new provision authorising the use of freight containers (e.g. 20 and 40 ft ISO containers) as industrial packages type 2 or 3. This paper will discuss the technical and regulatory considerations in using these newly authorised and large packages for the packaging and transportation of low level waste materials.« less

  7. Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.

    PubMed

    Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan

    2017-08-30

    The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.

  8. Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design.

    PubMed

    Lavoine, Nathalie; Guillard, Valérie; Desloges, Isabelle; Gontard, Nathalie; Bras, Julien

    2016-09-20

    Cellulose nanofibers (CNFs) were recently investigated for the elaboration of new functional food-packaging materials. Their nanoporous network was especially of interest for controlling the release of active species. Qualitative release studies were conducted, but quantification of the diffusion phenomenon observed when the active species are released from and through CNF coating has not yet been studied. Therefore, this work aims to model CNF-coated paper substrates as controlled release system for food-packaging using release data obtained for two model molecules, namely caffeine and chlorhexidine digluconate. The applied mathematical model - derived from Fickian diffusion - was validated for caffeine only. When the active species chemically interacts with the release device, another model is required as a non-predominantly diffusion-controlled release was observed. From caffeine modeling data, a theoretical active food-packaging material was designed. The use of CNFs as barrier coating was proved to be the ideal material configuration that best meets specifications. Copyright © 2016. Published by Elsevier Ltd.

  9. Comparative Packaging Study

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Antonini, David

    2008-01-01

    This viewgraph presentation describes a comparative packaging study for use on long duration space missions. The topics include: 1) Purpose; 2) Deliverables; 3) Food Sample Selection; 4) Experimental Design Matrix; 5) Permeation Rate Comparison; and 6) Packaging Material Information.

  10. Advances in photonics thermal management and packaging materials

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2008-02-01

    Heat dissipation, thermal stresses, and cost are key packaging design issues for virtually all semiconductors, including photonic applications such as diode lasers, light-emitting diodes (LEDs), solid state lighting, photovoltaics, displays, projectors, detectors, sensors and laser weapons. Heat dissipation and thermal stresses affect performance and reliability. Copper, aluminum and conventional polymeric printed circuit boards (PCBs) have high coefficients of thermal expansion, which can cause high thermal stresses. Most traditional low-coefficient-of-thermal-expansion (CTE) materials like tungsten/copper, which date from the mid 20 th century, have thermal conductivities that are no better than those of aluminum alloys, about 200 W/m-K. There are an increasing number of low-CTE materials with thermal conductivities ranging between that of copper (400 W/m-K) and 1700 W/m-K, and many other new low-CTE materials with lower thermal conductivities. An important benefit of low-CTE materials is that they allow use of hard solders. Some advanced materials are low cost. Others have the potential to be low cost in high-volume production. High-thermal-conductivity materials enable higher power levels, potentially reducing the number of required devices. Advanced thermal materials can constrain PCB CTE and greatly increase thermal conductivity. This paper reviews traditional packaging materials and advanced thermal management materials. The latter provide the packaging engineer with a greater range of options than in the past. Topics include properties, status, applications, cost, using advanced materials to fix manufacturing problems, and future directions, including composites reinforced with carbon nanotubes and other thermally conductive materials.

  11. Comparative assay of antioxidant packages for dimer of estolide esters

    USDA-ARS?s Scientific Manuscript database

    A series of 26 different antioxidants and commercial antioxidant packages, containing both natural and synthetic-based materials, were evaluated with dimeric coconut-oleic estolide 2-ethylhexyl ester. The different antioxidants were broken down into different classes of materials: phenolic, aminic, ...

  12. 26 CFR 52.4682-3 - Imported taxable products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....4682-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS...; references to Tables; special rule for 1990—(1) Overview. This section provides rules relating to the tax... products, determining the weight of the ozone-depleting chemicals (ODCs) used as materials in the...

  13. 76 FR 81396 - Hazardous Materials: Miscellaneous Amendments; Response to Appeals; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... as a wheelchair, containing a lithium ion battery, to be transported in accordance with specific... acceptance of lithium battery powered mobility aids for transportation by aircraft. In particular, the HMR... Permeation Devices Alcoholic beverage exception Special Permits Lab Packs Batteries containing sodium or...

  14. [Simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials by solid phase extraction-high performance liquid chromatography].

    PubMed

    Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu

    2012-02-01

    An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.

  15. Emerging Chitosan-Based Films for Food Packaging Applications.

    PubMed

    Wang, Hongxia; Qian, Jun; Ding, Fuyuan

    2018-01-17

    Recent years have witnessed great developments in biobased polymer packaging films for the serious environmental problems caused by the petroleum-based nonbiodegradable packaging materials. Chitosan is one of the most abundant biopolymers after cellulose. Chitosan-based materials have been widely applied in various fields for their biological and physical properties of biocompatibility, biodegradability, antimicrobial ability, and easy film forming ability. Different chitosan-based films have been fabricated and applied in the field of food packaging. Most of the review papers related to chitosan-based films are focusing on antibacterial food packaging films. Along with the advances in the nanotechnology and polymer science, numerous strategies, for instance direct casting, coating, dipping, layer-by-layer assembly, and extrusion, have been employed to prepare chitosan-based films with multiple functionalities. The emerging food packaging applications of chitosan-based films as antibacterial films, barrier films, and sensing films have achieved great developments. This article comprehensively reviews recent advances in the preparation and application of engineered chitosan-based films in food packaging fields.

  16. Electrospun antimicrobial hybrid mats: Innovative packaging material for meat and meat-products.

    PubMed

    Amna, Touseef; Yang, Jieun; Ryu, Kyeong-Seon; Hwang, I H

    2015-07-01

    To prevent the development and spread of spoilage/pathogenic microorganisms via meat foodstuffs, antimicrobial nanocomposite packaging can serve as a potential alternative. The objective of this study was to develop a new class of antimicrobial hybrid packaging mat composed of biodegradable polyurethane supplemented with virgin olive oil and zinc oxide via electrospinning. Instead of mixing antimicrobial compounds directly with food, incorporation in packaging materials allows the functional effect at food surfaces where microbial activity is localized. The nanofibers were characterized by SEM, EDX, XRD and TEM. The antibacterial activity was tested against two common foodborne pathogens viz., Staphylococcus aureus and Salmonella typhimurium. The present results indicated that incorporation of olive oil in the polymer affected morphology of PU nanofibers and nanocomposite packaging were able to inhibit growth of pathogens. Thus; as-spun mat can be used as prospective antimicrobial packaging, which potentially reduces contamination of meat/meat-products. Moreover, introduced biodegradable packaging for meat products could serve to replace PVC films and simultaneously help to protect natural environment.

  17. Protection of microelectronic devices during packaging

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  18. Temporary coatings for protection of microelectronic devices during packaging

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2005-01-18

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, temporary protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  19. Feasibility of biodegradable based packaging used for red meat storage during shelf-life: A pilot study.

    PubMed

    Panseri, S; Martino, P A; Cagnardi, P; Celano, G; Tedesco, D; Castrica, M; Balzaretti, C; Chiesa, L M

    2018-05-30

    This study was designated to ascertain the effectiveness of polylactic acid (PLA) based packaging solution to store red fresh meat during its refrigerated shelf-life. Recently the attention in the packaging industry regarding the use of bioplastics has been shifting from compostable/biodegradable materials toward biobased materials. Steaks obtained from semimembranous muscle of Piemontese beef were packaged in PLA trays closed with a lid made of PLA film and for comparison purposed in a conventional reference package consisting of a amorphous polyethylene terephthalate/polyethylene (APET/PET) trays and wrapped in plastic film of polyvinyl chloride (PVC). The packaging under modified atmosphere MAP was carried out by using a gas mixture of 66% O 2 , 25% CO 2 and 9%N 2 . By using PLA packaging combination it was possible to maintain an optimum red colour together with a reduced content of volatile compounds associated to off-flavours of meat samples particularly related to the oxidation phenomena. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessing contamination of smoked sprats (Sprattus sprattus) with polycyclic aromatic hydrocarbons (PAHs) and changes in its level during storage in various types of packaging.

    PubMed

    Kuźmicz, Kamila; Ciemniak, Artur

    2018-01-02

    The analysis of material used in this study demonstrated that the amount of polycyclic aromatic hydrocarbons (PAHs) in smoked sprats varies from the level below the lowest detection limit in muscles up to 9.99 µg kg -1 of benzo[a]pyrene (BaP) in fish skin. Such a high level of PAHs in skin was reported only in one of six batches of sprats, while mean BaP level was at 1.69 µg kg -1 . Regardless such a high BaP level in skin, its concentration in muscles did not exceed the maximum acceptable level. The study objective was to assess to what extent packaging materials adsorb PAH compounds from food. Changes in the PAH levels were monitored in fish during their storage in packages made of various materials. The storage time was from 0 to 168 hours. The obtained results varied considerably, therefore their scatter did not allow to confirm unequivocally the preliminary hypothesis about the reduction of PAHs due to their migration to packaging material. However, analysis of the packaging used in this study demonstrated a significant increase in the level of total 16 PAHs. When high-density polyethylene (HDPE) packaging was analysed, a six-fold increase in the total 16 PAHs was observed comparing to the blank sample.

  1. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.006 inches... section or in single packagings authorized for the acid in Column (8B) of the § 172.101 Hazardous... packagings authorized for the material in Column (8B) of the § 172.101 Hazardous Materials Table of this...

  2. 49 CFR 173.12 - Exceptions for shipment of waste materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (IBC) or a UN 11HH2 composite IBC, fitted with a polyethylene liner at least 6 mils (0.006 inches... section or in single packagings authorized for the acid in Column (8B) of the § 172.101 Hazardous... packagings authorized for the material in Column (8B) of the § 172.101 Hazardous Materials Table of this...

  3. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Drawback of duties is provided in § 313(q)(1) of the Act, as amended (19 U.S.C. 1313(q)(1)), on imported... United States from imported materials. Drawback of duties is provided in § 313(q)(2) of the Act, as amended (19 U.S.C. 1313(q)(2)), on packaging material that is manufactured or produced in the United...

  4. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Drawback of duties is provided in § 313(q)(1) of the Act, as amended (19 U.S.C. 1313(q)(1)), on imported... United States from imported materials. Drawback of duties is provided in § 313(q)(2) of the Act, as amended (19 U.S.C. 1313(q)(2)), on packaging material that is manufactured or produced in the United...

  5. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Drawback of duties is provided in § 313(q)(1) of the Act, as amended (19 U.S.C. 1313(q)(1)), on imported... United States from imported materials. Drawback of duties is provided in § 313(q)(2) of the Act, as amended (19 U.S.C. 1313(q)(2)), on packaging material that is manufactured or produced in the United...

  6. 19 CFR 191.13 - Packaging materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Drawback of duties is provided in § 313(q)(1) of the Act, as amended (19 U.S.C. 1313(q)(1)), on imported... United States from imported materials. Drawback of duties is provided in § 313(q)(2) of the Act, as amended (19 U.S.C. 1313(q)(2)), on packaging material that is manufactured or produced in the United...

  7. Utilization of biobased polymers in food packaging: Assessment of materials, production and commercialization

    USDA-ARS?s Scientific Manuscript database

    Food packaging contains and protects food, keeps it safe and secure, retains food quality and freshness, and increases shelf-life of food. Packaging should be affordable and biodegradable. Packaging is the core of the businesses of fast-foods, ready meals, on-the-go beverages, snacks and manufacture...

  8. The Role of Packaging in Solid Waste Management 1966 to 1976.

    ERIC Educational Resources Information Center

    Darnay, Arsen; Franklin, William E.

    The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…

  9. CFD modeling to improve safe and efficient distribution of chlorine dioxide gas for packaging fresh produce

    USDA-ARS?s Scientific Manuscript database

    The efficiency of the packaging system in inactivating food borne pathogens and prolonging the shelf life of fresh-cut produce is influenced by the design of the package apart from material and atmospheric conditions. Three different designs were considered to determine a specific package design ens...

  10. HMPT: Basic Radioactive Material Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-29

    Hazardous Materials and Packaging and Transportation (HMPT): Basic Radioactive Material Transportation Live (#30462, suggested one time) and Test (#30463, required initially and every 36 months) address the Department of Transportation’s (DOT’s) function-specific [required for hazardous material (HAZMAT) handlers, packagers, and shippers] training requirements of the HMPT Los Alamos National Laboratory (LANL) Labwide training. This course meets the requirements of 49 CFR 172, Subpart H, Section 172.704(a)(ii), Function-Specific Training.

  11. Accelerator mass spectrometry analysis of aroma compound absorption in plastic packaging materials

    NASA Astrophysics Data System (ADS)

    Stenström, Kristina; Erlandsson, Bengt; Hellborg, Ragnar; Wiebert, Anders; Skog, Göran; Nielsen, Tim

    1994-05-01

    Absorption of aroma compounds in plastic packaging materials may affect the taste of the packaged food and it may also change the quality of the packaging material. A method to determine the aroma compound absorption in polymers by accelerator mass spectrometry (AMS) is being developed at the Lund Pelletron AMS facility. The high sensitivity of the AMS method makes it possible to study these phenomena under realistic conditions. As a first test low density polyethylene exposed to 14C-doped ethyl acetate is examined. After converting the polymer samples with the absorbed aroma compounds to graphite, the {14C }/{13C } ratio of the samples is measured by the AMS system and the degree of aroma compound absorption is established. The results are compared with those obtained by supercritical fluid extraction coupled to gas chromatography (SFE-GC).

  12. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications.

  13. 49 CFR 178.358-6 - Typical assembly detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.358-6 Section 178.358-6 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.358-6 Typical assembly...

  14. 49 CFR 178.356-5 - Typical assembly detail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Typical assembly detail. 178.356-5 Section 178.356-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS... PACKAGINGS Specifications for Packagings for Class 7 (Radioactive) Materials § 178.356-5 Typical assembly...

  15. 49 CFR 178.802 - Preparation of fiberboard IBCs for testing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS... IBCs and composite IBCs with fiberboard outer packagings must be conditioned for at least 24 hours in..., fiberboard IBCs or composite IBCs with fiberboard outer packagings may be at ambient conditions. [Amdt. 178...

  16. Limiting Surface Density Method Adapted to Large Arrays of Heterogeneous Shipping Packages with Nonlinear Responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stover, Tracy E.; Baker, James S.; Ratliff, Michael D.

    The classic Limiting Surface Density (LSD) method is an empirical calculation technique for analyzing and setting mass limits for fissile items in storage arrays. LSD is a desirable method because it can reduce or eliminate the need for lengthy detailed Monte Carlo models of storage arrays. The original (or classic) method was developed based on idealized arrays of bare spherical metal items in air-spaced cubic units in a water-reflected cubic array. In this case, the geometric and material-based surface densities were acceptably correlated by linear functions. Later updates to the method were made to allow for concrete reflection rather thanmore » water, cylindrical masses rather than spheres, different material forms, and noncubic arrays. However, in the intervening four decades since those updates, little work has been done to update the method, especially for use with contemporary highly heterogeneous shipping packages that are noncubic and stored in noncubic arrays. In this work, the LSD method is reevaluated for application to highly heterogeneous shipping packages for fissile material. The package modeled is the 9975 shipping package, currently the primary package used to store fissile material at Savannah River Site’s K-Area Complex. The package is neither cubic nor rectangular but resembles nested cylinders of stainless steel, lead, aluminum, and Celotex. The fissile content is assumed to be a cylinder of plutonium metal. The packages may be arranged in arrays with both an equal number of packages per side (package cubic) and an unequal number of packages per side (noncubic). The cubic arrangements are used to derive the 9975-specific material and geometry constants for the classic linear form LSD method. The linear form of the LSD, with noncubic array adjustment, is applied and evaluated against computational models for these packages to determine the critical unit fissile mass. Sensitivity equations are derived from the classic method, and these are also used to make projections of the critical unit fissile mass. It was discovered that the heterogeneous packages have a nonlinear surface density versus critical mass relationship compared to the acceptably linear response of bare spherical fissile masses. Methodology is developed to address the nonlinear response. In so doing, the solution to the nonlinear LSD method becomes decoupled from the critical mass of a single unit, adding to its flexibility. The ability of the method to predict changes in neutron multiplication due to perturbations in a parameter is examined to provide a basis for analyzing upset conditions. In conclusion, a full rederivation of the classic LSD method from diffusion theory is also included as this was found to be lacking in the available literature.« less

  17. Limiting Surface Density Method Adapted to Large Arrays of Heterogeneous Shipping Packages with Nonlinear Responses

    DOE PAGES

    Stover, Tracy E.; Baker, James S.; Ratliff, Michael D.; ...

    2018-03-02

    The classic Limiting Surface Density (LSD) method is an empirical calculation technique for analyzing and setting mass limits for fissile items in storage arrays. LSD is a desirable method because it can reduce or eliminate the need for lengthy detailed Monte Carlo models of storage arrays. The original (or classic) method was developed based on idealized arrays of bare spherical metal items in air-spaced cubic units in a water-reflected cubic array. In this case, the geometric and material-based surface densities were acceptably correlated by linear functions. Later updates to the method were made to allow for concrete reflection rather thanmore » water, cylindrical masses rather than spheres, different material forms, and noncubic arrays. However, in the intervening four decades since those updates, little work has been done to update the method, especially for use with contemporary highly heterogeneous shipping packages that are noncubic and stored in noncubic arrays. In this work, the LSD method is reevaluated for application to highly heterogeneous shipping packages for fissile material. The package modeled is the 9975 shipping package, currently the primary package used to store fissile material at Savannah River Site’s K-Area Complex. The package is neither cubic nor rectangular but resembles nested cylinders of stainless steel, lead, aluminum, and Celotex. The fissile content is assumed to be a cylinder of plutonium metal. The packages may be arranged in arrays with both an equal number of packages per side (package cubic) and an unequal number of packages per side (noncubic). The cubic arrangements are used to derive the 9975-specific material and geometry constants for the classic linear form LSD method. The linear form of the LSD, with noncubic array adjustment, is applied and evaluated against computational models for these packages to determine the critical unit fissile mass. Sensitivity equations are derived from the classic method, and these are also used to make projections of the critical unit fissile mass. It was discovered that the heterogeneous packages have a nonlinear surface density versus critical mass relationship compared to the acceptably linear response of bare spherical fissile masses. Methodology is developed to address the nonlinear response. In so doing, the solution to the nonlinear LSD method becomes decoupled from the critical mass of a single unit, adding to its flexibility. The ability of the method to predict changes in neutron multiplication due to perturbations in a parameter is examined to provide a basis for analyzing upset conditions. In conclusion, a full rederivation of the classic LSD method from diffusion theory is also included as this was found to be lacking in the available literature.« less

  18. Physiochemical and antioxidant properties of roselle-mango juice blends; effects of packaging material, storage temperature and time

    PubMed Central

    Mgaya-Kilima, Beatrice; Remberg, Siv Fagertun; Chove, Bernard Elias; Wicklund, Trude

    2015-01-01

    A study was conducted to determine the effects of packaging materials, seasonality, storage temperature and time on physiochemical and antioxidant properties of roselle-mango juice blends. Roselle extract (20%, 40%, 60%, and 80%) was mixed with mango juice and stored in glass and plastic bottles at 4°C and 28°C. Total soluble solids, pH, titratable acidity, reducing sugar, color, vitamin C, total monomeric anthocyanins, total phenols, and antioxidant activity (FRAP) were evaluated in freshly prepared juice, and after, 2, 4, and 6 months of storage. The results showed that total soluble solids, reducing sugars, and pH increased with storage times under different storage time, irrespective of packaging materials. The acidity, color, total monomeric anthocyanin, vitamin C, total phenols, and antioxidant activity decreased during storage irrespective of storage temperature and packaging material. Loss of anthocyanins, total phenols, and vitamin C content were higher in blends stored at 28°C than 4°C. PMID:25838888

  19. Tight-binding model for materials at mesoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuan-Yen; Choi, Hongchul; Zhu, Wei

    2016-12-21

    TBM3 is an open source package for computational simulations of quantum materials at multiple scales in length and time. The project originated to investigate the multiferroic behavior in transition-metal oxide heterostructures. The framework has also been designed to study emergent phemona in other quantum materials like 2-dimensional transition-metal dichalcogenides, graphene, topological insulators, and skyrmion in materials, etc. In the long term, we will enable the package for transport and time-resolved phenomena. TBM3 is currently a C++ based numerical tool package and framework for the design and construction of any kind of lattice structures with multi-orbital and spin degrees of freedom.more » The fortran based portion of the package will be added in the near future. The design of TBM3 is in a highly flexible and reusable framework and the tight-binding parameters can be modeled or informed by DFT calculations. It is currently GPU enabled and feature of CPU enabled MPI will be added in the future.« less

  20. Synthesis of Iminodiacetate Functionalized Polypropylene Films and Their Efficacy as Antioxidant Active-Packaging Materials.

    PubMed

    Lin, Zhuangsheng; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-06-08

    The introduction of metal-chelating ligands to the food-contact surface of packaging materials may enable the removal of synthetic chelators (e.g., ethylenediamine tetra-acetic acid (EDTA)) from food products. In this study, the metal-chelating ligand iminodiacetate (IDA) was covalently grafted onto polypropylene surfaces to produce metal-chelating active-packaging films. The resulting films were able to chelate 138.1 ± 26 and 210.0 ± 28 nmol/cm(2) Fe(3+) and Cu(2+) ions, respectively, under acidic conditions (pH 3.0). The films demonstrated potent antioxidant efficacy in two model food systems. In an emulsified-oil system, the chelating materials extended the lag phase of both lipid hydroperoxide and hexanal formation from 5 to 25 days and were as effective as EDTA. The degradation half-life of ascorbic acid in an aqueous solution was extended from 5 to 14 days. This work demonstrates the potential application of surface-grafted chelating IDA ligands as effective antioxidant active food-packaging materials.

Top