Sample records for material optical constants

  1. Effective optical constants of anisotropic materials

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.; Emslie, A. G.

    1980-01-01

    The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.

  2. Space Telescopes

    DTIC Science & Technology

    2010-01-01

    of refraction for a vacuum/matter transition are often called the optical constants of the material . In the optical wavelength range, for instance...thick, can also be applied to GI mirrors, thereby extending the photon energy range out to about 100 keV. The index of refraction or the optical constants...consists of alternating layers of two materials with high contrast in the optical constants δ and β, where 1 − δ is the real part of the index of

  3. Optical constants of concentrated aqueous ammonium sulfate.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    Using experimental data obtained from applying spectroscopy to a 39-wt-% aqueous ammonium sulfate solution, it is shown that, even though specific aerosol optical constants appear quite accurate, spectral variations may exist as functions of material composition or concentration or both. Prudent users of optical constant data must then include liberal data error estimates when performing calculations or in interpreting spectroscopic surveys of collected aerosol material.

  4. The optical constants of several atmospheric aerosol species - Ammonium sulfate, aluminum oxide, and sodium chloride

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Pollack, J. B.; Khare, B. N.

    1976-01-01

    An investigation is conducted of problems which are related to a use of measured optical constants in the simulation of the optical constants of real atmospheric aerosols. The techniques of measuring optical constants are discussed, taking into account transmission measurements through homogeneous and inhomogeneous materials, the immersion of a material in a liquid of a known refractive index, the consideration of the minimum deviation angle of prism measurement, the interference of multiply reflected light, reflectivity measurements, and aspects of mathematical analysis. Graphs show the real and the imaginary part of the refractive index as a function of wavelength for aluminum oxide, NaCl, and ammonium sulfate. Tables are provided for the dispersion parameters and the optical constants.

  5. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    Maximum 200 words) LiTbF4 has the potential to replace traditional magneto-optic (MO) garnet materials as a Faraday rotator in high power laser systems...TERMS LiTbF4; magneto-optic (MO) garnet materials; Faraday rotator; high power laser; Verdet constant; Sellmeier; optical isolator 16. SECURITY... Faraday rotator in high power laser systems due to its high Verdet constant. New measurements are reported of the ordinary and extraor- dinary

  6. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  7. Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun

    2005-07-01

    Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.

  8. Full spectrum optical safeguard

    DOEpatents

    Ackerman, Mark R.

    2008-12-02

    An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

  9. Estimation of Hamaker constants of ceramic materials from optical data using Lifshitz theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergstroem, L.; Meurk, A.; Rowcliffe, D.J.

    1996-02-01

    The Hamaker constants of eight different ceramic materials, 6H-SiC, tetragonal, partially stabilized ZrO{sub 2} (3% Y{sub 2}O{sub 3}), {beta}-Si{sub 3}N{sub 4}, {alpha}-Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, sapphire (single-crystal {alpha}-Al{sub 2}O{sub 3}), MgO, MgAl{sub 2}O{sub 4}, and fused silica, across air, water, and n-dodecane at room temperature and across silica at 2,000 K have been calculated from optical data using the Lifshitz theory. Spectroscopic ellipsometry was used to measure the photon energy dependence of the refractive index, n, and the extinction coefficient, k, in the visible and near-UV range on several important ceramic materials. This relatively simple, nondestructive technique hasmore » proved to yield reliable optical data on sintered, polycrystalline materials such as Si{sub 3}N{sub 4}, SiC, ZrO{sub 2}, Al{sub 2}O{sub 3}, and ZnO. For the other materials, Y{sub 2}O{sub 3}, sapphire, MgO, MgAl{sub 2}O{sub 4}, and fused silica, optical data from the literature were used to calculate the Hamaker constants. The calculated Hamaker constants were estimated to be accurate within {+-} 10%.« less

  10. Modeling Creep Processes in Aging Polymers

    NASA Astrophysics Data System (ADS)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  11. Numerical determination of visible/NIR optical constants from laboratory spectra of HED meteorites

    NASA Astrophysics Data System (ADS)

    Davalos, Jorge A. G.; Carvano, Jorge Márcio; Blanco, Julio

    2017-03-01

    Radiative transfer models in particulate media (Hapke, 1981, 1993, 2012b; Shkuratov et al., 1999) are the most versatile tool that can be used to retrieve both composition and surface physical properties from observation of asteroids and other atmosphereless bodies of the Solar System. One caveat is that these methods require as input a sufficiently comprehensive set of optical constants of suitable template materials. These optical constants are the real and imaginary parts of the refractive indexes of the material as function of wavelength, and have to be derived from laboratory measurements of samples of minerals and meteorites. Optical constants can be calculated from a variety of types of measurements, and each has its problems and limitations. In particular, a problem with the determination of optical constants from measurement of reflectance is that the measurements need to be themselves interpreted using radiative transfer models. This is an issue because the number of parameters used in the most accurate versions of the radiative transfer models is large, and for most of the samples many of these parameters were not measured independently. As a result, attempts in the literature to retrieve optical constants from reflectance measurements tend to assume values for the unknown parameters, which can lead to uncertainties in the retrieved optical constants that can be difficult to quantify. In this work we propose a numerical method that allows the simultaneous inversion of the optical constant and the model parameters. This model is then applied to a set of reflectance spectra of 5 HED meteorites from the RELAB database that were measured with the same setup for samples with several particle size intervals. Our results indicate that our method is able to retrieve optical constants which are able to reproduce the measured reflectance of the samples over a large range (25-500 μm) of particle diameters. It is also found that the solutions obtained in this way are non-unique, in the sense that many combination of the model parameters can yield different sets of optical constants that fit equally well the reflectance spectra. Thus, in the absence of the independent determination of at least some of the model parameter the method is unable to decide which solution correspond to the physical optical constants of the materials. Even so, the dispersion of the model parameters (in particular effective particle diameter and porosity) for acceptable solutions (defined as the ones that reproduce the measured reflectance spectra at all size range with residues smaller than 10%) is within a radius of around 30% of the value of the best fit solution for each parameter. Given the ability of the optical constants derived with this method to reproduce the sample spectra over a large range of particle sizes, they can be used without other restriction to assess if a given meteorite assemblage is contributing to the observed spectra of asteroids. However, quantitative informations that can also be derived using these optical constants, like particle sizes, porosity and volumetric fractions of each end-member in a mixture should be regarded only as rough estimates.

  12. Iron metal optical constants: Assessing the effects of metal composition and oxidation on laboratory reflectance spectra of planetary materials

    NASA Astrophysics Data System (ADS)

    Blewett, D. T.; Cahill, J. T.; Lawrence, S. J.; Denevi, B. W.; Nguyen, N. V.

    2012-12-01

    Many planetary surfaces contain Fe or FeNi metal. These metals are present as macroscopic grains (larger than the wavelength of light) in a variety of meteorites and are inferred to exist on/in their asteroid parent bodies. In addition, much smaller (nano- to micrometer) grains of metallic Fe are produced to varying degrees in the surfaces of airless bodies by exposure to the space environment. Space weathering, which includes solar wind sputtering and micrometeoroid impact melting and vaporization, results in the reduction of ferrous Fe harvested from silicates and oxides to a single-domain metallic state, present as nanophase blebs and coatings on and within regolith particles. Nanophase Fe (npFe0) is optically active and has a strong effect on reflectance spectra. For example, a mature lunar soil that has accumulated npFe0 is darker and has a redder spectral slope compared with an unweathered powder of the same lithology; mineralogical absorption bands are also attenuated in space-weathered material. Here we report progress on a comprehensive program undertaken to measure the optical constants of Fe and Ni. The optical constants (real and imaginary parts of the index of refraction) are fundamental physical parameters that govern how light reflects from and transmits through a material. We use ellipsometry to measure the optical constants of high-purity metal films from 160 to 4000 nm, including bare films exposed to the atmosphere and films protected from the atmosphere via a novel technique involving a metal coating on a fused silica prism. Air-exposed Fe films have optical constants that are markedly different from those of the protected film, despite the fact that the air-exposed films appear bright and mirror-like to the eye. X-ray photoelectron spectroscopy confirms the presence of Fe2O3 on the surface of the air-exposed Fe film. Hence, we conclude that oxidation layers form rapidly (minutes to hours) on air-exposed metal and measurably alter the optical properties. Our findings suggest that meteorites and lunar samples measured in the lab may have experienced changes to their spectral properties because of alteration of metallic Fe by the terrestrial atmosphere, even if "rust" is not visibly present. We have computed model reflectance spectra for meteorite and lunar assemblages using both sets of optical constants. The effects of oxidized vs. pristine Fe optical constants on the reflectance of assemblages containing macroscopic metal are modest. However, because of the strong optical activity of npFe0, differences in the optical constants have a greater influence on space-weathered materials. We are assessing the consequences of oxidation on comparisons between laboratory and remote observations, and for interpretation of spectra [e.g., the degree of space weathering in terms of the optical maturity parameter (OMAT)] and subsequent mineralogical interpretation]. Optical constants of Ni differ appreciably from those of iron. Therefore, we are also studying the changes in model spectra that result when Ni is substituted for Fe as the macroscopic metal in meteorite assemblages.

  13. Tunable surface plasmon devices

    DOEpatents

    Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA

    2011-08-30

    A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.

  14. Determination and interpretation of the optical constants for solar cell materials

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroyuki; Fujimoto, Shohei; Tamakoshi, Masato; Kato, Masato; Kadowaki, Hideyuki; Miyadera, Tetsuhiko; Tampo, Hitoshi; Chikamatsu, Masayuki; Shibata, Hajime

    2017-11-01

    Solar cell materials in thin film form often exhibit quite rough surface, which makes the accurate determination of the optical constants using spectroscopic ellipsometry (SE) quite difficult. In this study, we investigate the effect of the rough surface on the SE analysis and establish an analysis procedure, which is quite helpful for the correction of the underestimated roughness contribution. As examples, the roughness analyses for CuInSe2 and CH3NH3PbI3 hybrid-perovskite thin films are presented. Moreover, to interpret the dielectric functions of emerging solar cell materials, such as CH3NH3PbI3 and Cu2ZnSnSe4, the optical transition analyses are performed based on density functional theory (DFT). The excellent agreement observed between the experimental and DFT results allows the detailed assignment of the transition peaks, confirming the importance of DFT for revealing fundamental optical characteristics.

  15. Optical constants of neat liquid-chemical warfare agents and related materials measured by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Yang, C. S.-C.; Williams, B. R.; Hulet, M. S.; Tiwald, T. E.; Miles, R. W., Jr.; Samuels, A. C.

    2011-05-01

    We studied various liquids using a vertical attenuated total reflection (ATR) liquid sampling assembly in conjunction with Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE), to determine the infrared optical constants of several bulk liquids related to chemical warfare. The index of refraction, n, and the extinction coefficient, k, of isopropyl methylphosphonofluoridate (Sarin or GB), isopropyl alcohol (IPA) (a precursor of GB), and dimethyl methylphosphonate (DMMP)-a commonly employed simulant for GB, measured by our vertical ATR IR-VASE setup are closely matched to those found in other studies. We also report the optical constants of cyclohexyl methylphosphonofluoridate (GF), 2-(diisopropylamino)ethyl methylphosphonothioate (VX), bis-(2-chloroethyl) sulfide (HD), and 2-chlorovinyl dichloroarsine (L, Lewisite). The ATR IR-VASE technique affords an accurate measurement of the optical constants of these hazardous compounds.

  16. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted absorption in the a-Si thin-film using advanced thin-film metrology methods, including spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy. The resulting analysis identifies a fundamental mechanism contributing to this absorption and a method for minimizing and accounting for the unwanted absorption in the thin-film such that the exact optical response function can be achieved.

  17. Optical materials characterization final technical report february 1, 1978-september 30, 1978. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, A.; Horowitz, D.; Waxter, R.M.

    1979-02-01

    Data obtained as part of the Optical Materials Characterization Program are summarized in this report. Room temperature values of refractive index as a function of wavelength are presented for the following materials: commercially grown KCl, reactive atmosphere processed (RAP) KCl, KCl nominally doped with 1.5% KI, hot forged CaF2, fusion cast CaF2, CaF2 doped with Er (0.001% to 3% Er), SrF2, chemical vapor deposited (CVD) ZnSe (2 specimens), and ZnS (CVD, 2 specimens). Data for the thermo-optic constant (dn/dT) and the linear thermal expansion coefficient are given for the following materials over the temperature range -180 degrees C to 200more » degrees C: Al2O3, BaF2, CaF2, CdF2, KBr, KCl, LiF, MgF2, NaCl, NaF, SrF2, ZnS (CVD), and ZnSe (CVD). The piezo-optic constants of the following materials are presented: As2S3 glass, CaF2, BaF2, Ge, KCl, fused SiO2, SrF2, a chalcogenide glass (Ge 33%, As 12%, Se 55%) and ZnSe (CVD).« less

  18. Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.

  19. Large Electro-Optic Kerr Effect in Ionic Liquid Crystals: Connecting Features of Liquid Crystals and Polyelectrolytes.

    PubMed

    Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank

    2018-06-06

    The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11  m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. All-optical 1st- and 2nd-order differential equation solvers with large tuning ranges using Fabry-Pérot semiconductor optical amplifiers.

    PubMed

    Chen, Kaisheng; Hou, Jie; Huang, Zhuyang; Cao, Tong; Zhang, Jihua; Yu, Yuan; Zhang, Xinliang

    2015-02-09

    We experimentally demonstrate an all-optical temporal computation scheme for solving 1st- and 2nd-order linear ordinary differential equations (ODEs) with tunable constant coefficients by using Fabry-Pérot semiconductor optical amplifiers (FP-SOAs). By changing the injection currents of FP-SOAs, the constant coefficients of the differential equations are practically tuned. A quite large constant coefficient tunable range from 0.0026/ps to 0.085/ps is achieved for the 1st-order differential equation. Moreover, the constant coefficient p of the 2nd-order ODE solver can be continuously tuned from 0.0216/ps to 0.158/ps, correspondingly with the constant coefficient q varying from 0.0000494/ps(2) to 0.006205/ps(2). Additionally, a theoretical model that combining the carrier density rate equation of the semiconductor optical amplifier (SOA) with the transfer function of the Fabry-Pérot (FP) cavity is exploited to analyze the solving processes. For both 1st- and 2nd-order solvers, excellent agreements between the numerical simulations and the experimental results are obtained. The FP-SOAs based all-optical differential-equation solvers can be easily integrated with other optical components based on InP/InGaAsP materials, such as laser, modulator, photodetector and waveguide, which can motivate the realization of the complicated optical computing on a single integrated chip.

  1. Handbook of the Properties of Optical Materials

    DTIC Science & Technology

    1984-01-01

    EFFECTIVE MASS - - MOBILITY - - A-2 ARSEWIC SELENIOE (As2 Se3 ) OPTICAL PROPERTIES TRANSMISSION RANGE: 9 - 11n Optical Absorption Coefficient = 0.079...of 55 KRS-5 as a function of wavelength. A-2120 ZINC SELENIOE ZnSe 0 STRUCTURE CRYSTALLINE SYMMETRY = Cubic, 43m LATTICE CONSTANTS (A) = a = 5.667

  2. Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching.

    PubMed

    Guo, Peijun; Weimer, Matthew S; Emery, Jonathan D; Diroll, Benjamin T; Chen, Xinqi; Hock, Adam S; Chang, Robert P H; Martinson, Alex B F; Schaller, Richard D

    2017-01-24

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO 2 ), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO 2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.

  3. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

  4. Optical and structural properties of amorphous Se x Te100- x aligned nanorods

    NASA Astrophysics Data System (ADS)

    Al-Agel, Faisal A.

    2013-12-01

    In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.

  5. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    PubMed

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  6. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.

    1983-07-12

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.

  7. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  8. WWW database of optical constants for astronomy

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Il'In, V. B.; Krivova, N. A.; Michel, B.; Voshchinnikov, N. V.

    1999-04-01

    The database we announce contains references to the papers, data files and links to the Internet resources related to measurements and calculations of the optical constants of the materials of astronomical interest: different silicates, ices, oxides, sulfides, carbides, carbonaceous species from amorphous carbon to graphite and diamonds, etc. We describe the general structure and content of the database which has now free access via Internet: http://www.astro.spbu.ru/JPDOC/entry.html\\ or \\ http:// www. astro.uni-jena.de/Users/database/entry.html

  9. Non-linear optical measurement of the twist elastic constant in thermotropic and DNA lyotropic chiral nematics.

    PubMed

    Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso

    2017-07-10

    Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.

  10. Study on optical properties of L-valine doped ADP crystal

    NASA Astrophysics Data System (ADS)

    Shaikh, R. N.; Anis, Mohd.; Shirsat, M. D.; Hussaini, S. S.

    2015-02-01

    Single crystal of L-valine doped ammonium dihydrogen phosphate has been grown by slow evaporation method at room temperature. The crystalline nature of the grown crystal was confirmed using powder X-ray diffraction technique. The different functional groups of the grown crystal were identified using Fourier transform infrared analysis. The UV-visible studies were employed to examine the high optical transparency and influential optical constants for tailoring materials suitability for optoelectronics applications. The cutoff wavelength of the title crystal was found to be 280 nm with wide optical band gap of 4.7 eV. The dielectric measurements were carried to determine the dielectric constant and dielectric loss at room temperature. The grown crystal has been characterized by thermogravimetric analysis. The second harmonic generation efficiency of the grown crystal was determined by the classical Kurtz powder technique and it is found to be 1.92 times that of potassium dihydrogen phosphate. The grown crystal was identified as third order nonlinear optical material employing Z-scan technique using He-Ne laser operating at 632.8 nm.

  11. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    NASA Astrophysics Data System (ADS)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-08-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

  12. Growth and characterization of Bis(L-threonine) copper (II) monohydrate single crystals: A semiorganic second order nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.

    2016-12-01

    Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.

  13. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  14. Optically pumped lasing and electroluminescence of formamidinium perovskite semiconductors prepared by the cast-capping method

    NASA Astrophysics Data System (ADS)

    Sasaki, Fumio; Nguyen, Van-Cao; Yanagi, Hisao

    2018-03-01

    Optically pumped lasing and electroluminescence (EL) have been observed in solution-processed perovskite semiconducting materials of formamidinium lead bromide, CH(NH2)2PbBr3. Microcavities with flat surfaces and sharp edges have been easily obtained by the simple solution process called the “cast-capping method”. The crystals show clear multimode lasing of Fabry-Pérot cavities. The mode intervals are well explained by the optical constants with large dispersions of the materials. We have also fabricated EL devices and obtained clear EL in a single layer of the materials, but the EL intensity has been quenched rapidly.

  15. High durability antireflection coatings for silicon and multispectral ZnS

    NASA Astrophysics Data System (ADS)

    Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva

    2007-04-01

    In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed no rain drop impact damage at all.

  16. Adhesion of Particulate Materials to Mesostructured Polypyrrole

    NASA Astrophysics Data System (ADS)

    Hoss, Darby; Knepper, Robert; Hotchkiss, Peter; Tappan, Alexander; Boudouris, Bryan; Beaudoin, Stephen

    Interactions based on van der Waals (vdW) forces will influence the performance and reliability of mesostructured polypyrrole swabs used for the collection and detection of trace particles. The vdW adhesion force between materials is described by the Hamaker constant, and these constants are measured via optical and dielectric properties (i.e., according to Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. Here, contact angle measurements were performed on films of several common materials and used to estimate Hamaker constants. This, in turn, will allow for the tuning of the design properties associated with the polypyrrole swabs. A comparison of these results to Hamaker constants estimated using Lifshitz Theory and IGC reveals the fundamental behavior of the materials. The Hamaker constants were then used in a new computational vdW adhesion model. The idealized model describes particle adhesion to an array of mesostrucures. This model elucidates the importance of where the particle makes contact with the mesostructure and the independence of vdW forces generated by each mesostructure. These results will facilitate the rational design of polypyrrole swabs optimized for harvesting microscale particles of trace materials.

  17. Time-domain separation of optical properties from structural transitions in resonantly bonded materials.

    PubMed

    Waldecker, Lutz; Miller, Timothy A; Rudé, Miquel; Bertoni, Roman; Osmond, Johann; Pruneri, Valerio; Simpson, Robert E; Ernstorfer, Ralph; Wall, Simon

    2015-10-01

    The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage and future applications include universal memories, flexible displays, reconfigurable optical circuits, and logic devices. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge2Sb2Te5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.

  18. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Peijun; Weimer, Matthew S.; Emery, Jonathan D.

    Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium tin-oxide nanorodmore » arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.« less

  20. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  1. Method of fabricating reflection-mode EUV diffusers

    DOEpatents

    Anderson, Erik; Naulleau, Patrick P.

    2005-03-01

    Techniques for fabricating well-controlled, random relief, engineered surfaces that serve as substrates for EUV optical devices are accomplished with grayscale exposure. The method of fabricating a multilevel EUV optical element includes: (a) providing a substrate; (b) depositing a layer of curable material on a surface of the substrate; (c) creating a relief profile in a layer of cured material from the layer of curable material wherein the relief profile comprises multiple levels of cured material that has a defined contour; and (d) depositing a multilayer reflection film over the relief profile wherein the film has an outer contour that substantially matches that of the relief profile. The curable material can comprise photoresist or a low dielectric constant material.

  2. Film Thickness Allowance and Waveguide Length in 3-Layer Unidirectional Magneto-Optical TE-TM Mode Converter

    NASA Astrophysics Data System (ADS)

    Abe, Masanori; Nakagawa, Hidenobu; Gomi, Manabu; Nomura, Shoichiro

    1982-01-01

    The film thickness allowance and the waveguide length in a 3-layer (substrate/film/air) magneto-optical unidirectional TE-TM mode converter which utilizes the intrinsic birefringence in an anisotropic material are calculated at λ0{=}1.55 μm. The film material should be gyrotropic in order to make the waveguide length short, and the film thickness allowance is relaxed by reducing the ratio of the dielectric constant of the film to that of the substrate. When the waveguide is made of an isotropic gyrotropic film of YIG deposited on an anisotropic substrate (which may be gyrotropic or not), the restriction on the film thickness can in practice be removed, but this requires precise control of the dielectric constant of the film and the substrate instead.

  3. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  5. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  6. An evaluation of complementary approaches to elucidate fundamental interfacial phenomena driving adhesion of energetic materials

    DOE PAGES

    Hoss, Darby J.; Knepper, Robert; Hotchkiss, Peter J.; ...

    2016-03-23

    In this study, cohesive Hamaker constants of solid materials are measured via optical and dielectric properties (i.e., Lifshitz theory), inverse gas chromatography (IGC), and contact angle measurements. To date, however, a comparison across these measurement techniques for common energetic materials has not been reported. This has been due to the inability of the community to produce samples of energetic materials that are readily compatible with contact angle measurements. Here we overcome this limitation by using physical vapor deposition to produce thin films of five common energetic materials, and the contact angle measurement approach is applied to estimate the cohesive Hamakermore » constants and surface energy components of the materials. The cohesive Hamaker constants range from 85 zJ to 135 zJ across the different films. When these Hamaker constants are compared to prior work using Lifshitz theory and nonpolar probe IGC, the relative magnitudes can be ordered as follows: contact angle > Lifshitz > IGC. Furthermore, the dispersive surface energy components estimated here are in good agreement with those estimated by IGC. Due to these results, researchers and technologists will now have access to a comprehensive database of adhesion constants which describe the behavior of these energetic materials over a range of settings.« less

  7. The phonon-polariton spectrum of one-dimensional Rudin-Shapiro photonic superlattices with uniaxial polar materials

    NASA Astrophysics Data System (ADS)

    Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.

    2015-11-01

    The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.

  8. Faraday effect in Sn2P2S6 crystals.

    PubMed

    Krupych, Oleh; Adamenko, Dmytro; Mys, Oksana; Grabar, Aleksandr; Vlokh, Rostyslav

    2008-11-10

    We have revealed a large Faraday rotation in tin thiohypodiphosphate (Sn(2)P(2)S(6)) crystals, which makes this material promising for magneto-optics. The effective Faraday tensor component and the Verdet constant for the direction of the optic axis have been determined by measuring the pure Faraday rotation in Sn(2)P(2)S(6) crystals with both the single-ray and small-angular polarimetric methods at the normal conditions and a wavelength of 632.8 nm. The effective Verdet constant is found to be equal to 115 rad/T x m.

  9. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  10. Nonreciprocal optical properties based on magneto-optical materials: n-InAs, GaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wu, Hao; Zhou, Jian-qiu

    2018-02-01

    Compared with reciprocal optical materials, nonreciprocal materials can break the time reversal and detailed balance due to special nonreciprocal effect, while how its characteristics performing on infrared wavelength have not been paid enough attention. In this paper, the optical properties of three magneto-optical materials was investigated in infrared band, that are n-InAs, GaAs, HgCdTe, based on Finite Difference Time Domain (FDTD) method. The equations of dielectric constant tensor are present and the effect of magnetic field intensity and frequency has been studied in detail. Additionally, the effect of incidence angle at positive and negative directions to the nonreciprocal absorptivity is also investigated. It is found that the nonreciprocal effect is obvious in infrared wavelength, and the nonreciprocal effect could adjust the absorption characteristic, thus be able to tune the absorption for the specific frequency of incident light. In addition to modeling the directional radiative properties at various angles of incidence, the absorption peaks of three materials under different incident angles are also calculated to understand the light absorption and to facilitate the optimal design of high-performance photovoltaic and optical instrument.

  11. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    NASA Astrophysics Data System (ADS)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  12. Optical trapping and optical force positioning of two-dimensional materials.

    PubMed

    Donato, M G; Messina, E; Foti, A; Smart, T J; Jones, P H; Iatì, M A; Saija, R; Gucciardi, P G; Maragò, O M

    2018-01-18

    In recent years, considerable effort has been devoted to the synthesis and characterization of two-dimensional materials. Liquid phase exfoliation (LPE) represents a simple, large-scale method to exfoliate layered materials down to mono- and few-layer flakes. In this context, the contactless trapping, characterization, and manipulation of individual nanosheets hold perspectives for increased accuracy in flake metrology and the assembly of novel functional materials. Here, we use optical forces for high-resolution structural characterization and precise mechanical positioning of nanosheets of hexagonal boron nitride, molybdenum disulfide, and tungsten disulfide obtained by LPE. Weakly optically absorbing nanosheets of boron nitride are trapped in optical tweezers. The analysis of the thermal fluctuations allows a direct measurement of optical forces and the mean flake size in a liquid environment. Measured optical trapping constants are compared with T-matrix light scattering calculations to show a quadratic size scaling for small size, as expected for a bidimensional system. In contrast, strongly absorbing nanosheets of molybdenum disulfide and tungsten disulfide are not stably trapped due to the dominance of radiation pressure over the optical trapping force. Thus, optical forces are used to pattern a substrate by selectively depositing nanosheets in short times (minutes) and without any preparation of the surface. This study will be useful for improving ink-jet printing and for a better engineering of optoelectronic devices based on two-dimensional materials.

  13. Multilayer Coatings for UV Spectral Range

    NASA Astrophysics Data System (ADS)

    Miloushev, Ilko; Tenev, Tihomir; Peyeva, Rumiana; Panajotov, Krassimir

    2010-01-01

    Optical coatings for the UV spectral range play currently a significant role in the modern optical devices. For reducing of manufacturing cost the reliable design is essential. Therefore, better understanding of the optical properties of the used materials is indispensable for the proper design and manufacturing of the multilayer UV coatings. In this work we present some results on the preparation of reflective UV coatings. The implemented materials are magnesium fluoride and lanthanum fluoride. Their optical constants are determined from spectral characteristics of single layers in the 200-800 nm spectral range, obtained by thermal boat evaporation in high vacuum conditions. These results are subsequently used for the analysis of high reflection (HR) stack made of 40 layers deposited by the same deposition process.

  14. Predictive methods of some optoelectronic properties for blends based on quaternized polysulfones

    NASA Astrophysics Data System (ADS)

    Dobos, Adina Maria; Filimon, Anca

    2017-11-01

    Blends based on quaternized polysulfones were investigated in terms of optical and electronic properties. By applying the Bicerano formalism the refractive index and dielectric constant were evaluated. Also, the dielectric constant of these blends was studied as a function of temperature and frequency. As the result of the main chain structure and charged groups, an increase in theoretical values of the refractive index and dielectric constant with increasing of the ionic quaternized units content in the polymer blend occurs. Additionally, decrease in the dielectric constant with the increase of frequency and decrease of temperature was observed. Refractive index and dielectric constant values indicate that the analyzed samples are transparent and can be used in obtaining of materials with applications involving a small polarizability. Thus, the results are important in prediction of the special optoelectronic features of new polymers blends to obtain high-performance materials with applications in electronic and biomedical fields.

  15. Properties of Ferrite Garnet (Bi, Lu, Y)3(Fe, Ga)5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    PubMed Central

    Nur-E-Alam, Mohammad; Belotelov, Vladimir; Alameh, Kamal

    2018-01-01

    This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO) applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films. PMID:29789463

  16. Investigation of ion-beam machining methods for replicated x-ray optics

    NASA Technical Reports Server (NTRS)

    Drueding, Thomas W.

    1996-01-01

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and accelerate ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.

  17. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    PubMed

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  18. Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.

  19. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.

    PubMed

    Yoshida, Hidetsugu; Tsubakimoto, Koji; Fujimoto, Yasushi; Mikami, Katsuhiro; Fujita, Hisanori; Miyanaga, Noriaki; Nozawa, Hoshiteru; Yagi, Hideki; Yanagitani, Takagimi; Nagata, Yutaka; Kinoshita, Hiroo

    2011-08-01

    The optical properties, Faraday effect and Verdet constant of ceramic terbium gallium garnet (TGG) have been measured at 1064 nm, and were found to be similar to those of single crystal TGG at room temperature. Observed optical characteristics, laser induced bulk-damage threshold and optical scattering properties of ceramic TGG were compared with those of single crystal TGG. Ceramic TGG is a promising Faraday material for high-average-power YAG lasers, Yb fiber lasers and high-peak power glass lasers for inertial fusion energy drivers.

  20. Optical anisotropy of the human cornea determined with a polarizing microscope.

    PubMed

    Bone, Richard A; Draper, Grenville

    2007-12-01

    We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12 degrees to 40 degrees (mean+/-SD=31 degrees +/-8 degrees ). The optic axial plane always inclined downward in the nasal direction at 1 degrees -45 degrees below the horizontal (mean+/-SD=22+/-13 degrees ). The retardance produced by the corneas was estimated to be less than 200 nm. In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.

  1. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  2. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  3. Programming Nanoparticles in Multiscale: Optically Modulated Assembly and Phase Switching of Silicon Nanoparticle Array.

    PubMed

    Wang, Letian; Rho, Yoonsoo; Shou, Wan; Hong, Sukjoon; Kato, Kimihiko; Eliceiri, Matthew; Shi, Meng; Grigoropoulos, Costas P; Pan, Heng; Carraro, Carlo; Qi, Dongfeng

    2018-03-27

    Manipulating and tuning nanoparticles by means of optical field interactions is of key interest for nanoscience and applications in electronics and photonics. We report scalable, direct, and optically modulated writing of nanoparticle patterns (size, number, and location) of high precision using a pulsed nanosecond laser. The complex nanoparticle arrangement is modulated by the laser pulse energy and polarization with the particle size ranging from 60 to 330 nm. Furthermore, we report fast cooling-rate induced phase switching of crystalline Si nanoparticles to the amorphous state. Such phase switching has usually been observed in compound phase change materials like GeSbTe. The ensuing modification of atomic structure leads to dielectric constant switching. Based on these effects, a multiscale laser-assisted method of fabricating Mie resonator arrays is proposed. The number of Mie resonators, as well as the resonance peaks and dielectric constants of selected resonators, can be programmed. The programmable light-matter interaction serves as a mechanism to fabricate optical metasurfaces, structural color, and multidimensional optical storage devices.

  4. Photoconductivity of Low-Bandgap Polymer and Polymer: Fullerene Bulk Heterojunction Studied by Constant Photocurrent Method

    NASA Astrophysics Data System (ADS)

    Malov, V. V.; Tameev, A. R.; Novikov, S. V.; Khenkin, M. V.; Kazanskii, A. G.; Vannikov, A. V.

    2015-08-01

    Optical and photoelectric properties of modern photosensitive polymers are of great interest due to their prospects for photovoltaic applications. In particular, an investigation of absorption and photoconductivity edge of these materials could provide valuable information. For these purpose we applied the constant photocurrent method which has proved its efficiency for inorganic materials. PCDTBT and PTB7 polymers were used as objects for the study as well as their blends with a fullerene derivative PC71BM. The measurements by constant photocurrent method (CPM) show that formation of bulk heterojunction (BHJ) in the blends increases photoconductivity and results in a redshift of the photocurrent edge in the doped polymers compared with that in the neat polymers. Obtained from CPM data, spectral dependences of absorption coefficient were approximated using Gaussian distribution of density-of-states within HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) bands. The approximation procedure allowed us to evaluate rather optical than electrical bandgaps for the studied materials. Moreover, spectra of polymer:PC71BM blends were fitted well by the sum of two Gaussian peaks which reveal both the transitions within the polymer and the transitions involving charge transfer states at the donor-acceptor interface in the BHJ.

  5. Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys. Ph.D Thesis

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.

    1986-01-01

    The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.

  6. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    NASA Astrophysics Data System (ADS)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  7. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  8. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  9. Hafnium—an optical hydrogen sensor spanning six orders in pressure

    PubMed Central

    Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959

  10. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less

  11. Diffractive optical element in materials testing

    NASA Astrophysics Data System (ADS)

    Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik

    1998-09-01

    The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.

  12. An investigation of the optical constants and band gap of chromium disilicide

    NASA Technical Reports Server (NTRS)

    Bost, M. C.; Mahan, John E.

    1988-01-01

    Optical properties of polycrystalline thin films of CrSi2 grown by the diffusion couple method on silicon substrates were investigated. An analysis of the energy dependence of the absorption coefficient indicates that the material is an indirect forbidden gap semiconductor with a band-gap value of slightly less than 0.35 eV. This result was confirmed by measurements of the temperature dependence of the intrinsic conductivity. The value of the bandgap corresponds well to an important window of transparency in the earth's atmosphere (3-5 microns), which makes the material of potential interest for IR detector applications.

  13. Controllable optical rogue waves via nonlinearity management.

    PubMed

    Yang, Zhengping; Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2018-03-19

    Using a similarity transformation, we obtain analytical solutions to a class of nonlinear Schrödinger (NLS) equations with variable coefficients in inhomogeneous Kerr media, which are related to the optical rogue waves of the standard NLS equation. We discuss the dynamics of such optical rogue waves via nonlinearity management, i.e., by selecting the appropriate nonlinearity coefficients and integration constants, and presenting the solutions. In addition, we investigate higher-order rogue waves by suitably adjusting the nonlinearity coefficient and the rogue wave parameters, which could help in realizing complex but controllable optical rogue waves in properly engineered fibers and other photonic materials.

  14. In-Fiber Magneto-Optic Devices Based on Ultrahigh Verdet Constant Organic Materials and Holey Fibers

    DTIC Science & Technology

    2009-02-02

    protocols and a noise equivalent magnetic field sensitivity of ~ 100 pT/ VHz has been demonstrated. • Magneto-optic properties of magnetite - PMMA composite...nanoparticle - PMMA nanocomposite. We have used both transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) to...we expect to enhance it in our devices by their proper symmetrization as described above. Passive Poking core ^^ direction Magnetic AA

  15. Method for making surfactant-templated, high-porosity thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2001-01-01

    An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  16. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  17. The influence of dynamical change of optical properties on the thermomechanical response and damage threshold of noble metals under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-02-01

    We present a theoretical investigation of the dynamics of the dielectric constant of noble metals following heating with ultrashort pulsed laser beams and the influence of the temporal variation of the associated optical properties on the thermomechanical response of the material. The effect of the electron relaxation time on the optical properties based on the use of a critical point model is thoroughly explored for various pulse duration values (i.e., from 110 fs to 8 ps). The proposed theoretical framework correlates the dynamical change in optical parameters, relaxation processes and induced strains-stresses. Simulations are presented by choosing gold as a test material, and we demonstrate that the consideration of the aforementioned factors leads to significant thermal effect changes compared to results when static parameters are assumed. The proposed model predicts a substantially smaller damage threshold and a large increase of the stress which firstly underlines the significant role of the temporal variation of the optical properties and secondly enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  18. Solitons induced by alternating electric fields in surface-stabilized ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeżewski, W.; Kuczyński, W.; Hoffmann, J.

    2011-04-01

    Propagation of solitary waves activated in thin ferroelectric liquid crystal cells under external, sinusoidally alternating electric fields is investigated using the electro-optic technique. It is shown that solitons give contributions only to the loss component of the response spectrum, within rather narrow ranges of frequencies and in sufficiently strong fields. The limit frequency, at which the amplitude of the velocity of the solitary waves is greatest, is found to be related to material constants of liquid crystals. Measuring this threshold frequency provides the capability to determine the elastic constant of surface stabilized liquid crystalline materials in the bookshelf or chevron layer geometries.

  19. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.

    PubMed

    Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  20. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  1. Near-Infrared (0.67-4.7 microns) Optical Constants Estimated for Montmorillonite

    NASA Technical Reports Server (NTRS)

    Roush, T. L.

    2005-01-01

    Various models of the reflectance from particulate surfaces are used for interpretation of remote sensing data of solar system objects. These models rely upon the real (n) and imaginary (k) refractive indices of the materials. Such values are limited for commonly encountered silicates at visual and near-infrared wavelengths (lambda, 0.4-5 microns). Availability of optical constants for candidate materials allows more thorough modeling of the observations obtained by Earth-based telescopes and spacecraft. Two approaches for determining the absorption coefficient (alpha=2pik/lambda) from reflectance measurements of particulates have been described; one relies upon Kubelka-Munk theory and the other Hapke theory. Both have been applied to estimate alpha and k for various materials. Neither enables determination of the wavelength dependence of n, n=f(lambda). Thus, a mechanism providing this ability is desirable. Using Hapke-theory to estimate k from reflectance measurements requires two additional quantities be known or assumed: 1) n=f(lambda) and 2) d, the sample particle diameter. Typically n is assumed constant (c) or modestly varying with lambda; referred to here as n(sub 0). Assuming n(sub 0), at each lambda an estimate of k is used to calculate the reflectance and is iteratively adjusted until the difference between the model and measured reflectance is minimized. The estimated k's (k(sub 1)) are the final results, and this concludes the typical analysis.

  2. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.

    Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.

  3. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  4. Testing and Improving Theories of Radiative Transfer for Determining the Mineralogy of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Gudmundsson, E.; Ehlmann, B. L.; Mustard, J. F.; Hiroi, T.; Poulet, F.

    2012-12-01

    Two radiative transfer theories, the Hapke and Shkuratov models, have been used to estimate the mineralogic composition of laboratory mixtures of anhydrous mafic minerals from reflected near-infrared light, accurately modeling abundances to within 10%. For this project, we tested the efficacy of the Hapke model for determining the composition of mixtures (weight fraction, particle diameter) containing hydrous minerals, including phyllosilicates. Modal mineral abundances for some binary mixtures were modeled to +/-10% of actual values, but other mixtures showed higher inaccuracies (up to 25%). Consequently, a sensitivity analysis of selected input and model parameters was performed. We first examined the shape of the model's error function (RMS error between modeled and measured spectra) over a large range of endmember weight fractions and particle diameters and found that there was a single global minimum for each mixture (rather than local minima). The minimum was sensitive to modeled particle diameter but comparatively insensitive to modeled endmember weight fraction. Derivation of the endmembers' k optical constant spectra using the Hapke model showed differences with the Shkuratov-derived optical constants originally used. Model runs with different sets of optical constants suggest that slight differences in the optical constants used significantly affect the accuracy of model predictions. Even for mixtures where abundance was modeled correctly, particle diameter agreed inconsistently with sieved particle sizes and varied greatly for individual mix within suite. Particle diameter was highly sensitive to the optical constants, possibly indicating that changes in modeled path length (proportional to particle diameter) compensate for changes in the k optical constant. Alternatively, it may not be appropriate to model path length and particle diameter with the same proportionality for all materials. Across mixtures, RMS error increased in proportion to the fraction of the darker endmember. Analyses are ongoing and further studies will investigate the effect of sample hydration, permitted variability in particle size, assumed photometric functions and use of different wavelength ranges on model results. Such studies will advance understanding of how to best apply radiative transfer modeling to geologically complex planetary surfaces. Corresponding authors: eyjolfur88@gmail.com, ehlmann@caltech.edu

  5. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials

    DOE PAGES

    Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; ...

    2017-01-31

    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly availablemore » data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.« less

  6. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials

    PubMed Central

    Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.

    2017-01-01

    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds. PMID:28140408

  7. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials.

    PubMed

    Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D; Persson, Kristin A; Prinz, Fritz B

    2017-01-31

    Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.

  8. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound.

    PubMed

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md

    2016-05-11

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4-9.2 GHz.

  9. Influence of interface layer on optical properties of sub-20 nm-thick TiO2 films

    NASA Astrophysics Data System (ADS)

    Shi, Yue-Jie; Zhang, Rong-Jun; Li, Da-Hai; Zhan, Yi-Qiang; Lu, Hong-Liang; Jiang, An-Quan; Chen, Xin; Liu, Juan; Zheng, Yu-Xiang; Wang, Song-You; Chen, Liang-Yao

    2018-02-01

    The sub-20 nm ultrathin titanium dioxide (TiO2) films with tunable thickness were deposited on Si substrates by atomic layer deposition (ALD). The structural and optical properties were acquired by transmission electron microscopy, atomic force microscopy and spectroscopic ellipsometry. Afterwards, a constructive and effective method of analyzing interfaces by applying two different optical models consisting of air/TiO2/Ti x Si y O2/Si and air/effective TiO2 layer/Si, respectively, was proposed to investigate the influence of interface layer (IL) on the analysis of optical constants and the determination of band gap of TiO2 ultrathin films. It was found that two factors including optical constants and changing components of the nonstoichiometric IL could contribute to the extent of the influence. Furthermore, the investigated TiO2 ultrathin films of 600 ALD cycles were selected and then annealed at the temperature range of 400-900 °C by rapid thermal annealing. Thicker IL and phase transition cause the variation of optical properties of TiO2 films after annealing and a shorter electron relaxation time reveals the strengthened electron-electron and electron-phonon interactions in the TiO2 ultrathin films at high temperature. The as-obtained results in this paper will play a role in other studies of high dielectric constants materials grown on Si substrates and in the applications of next generation metal-oxide-semiconductor devices.

  10. Review on optical constants of Titan aerosols: Experimental results and modeling/observational data

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Muñoz, Olga; Coll, Patrice; Raulin, François

    2014-05-01

    During the last years many studies have been performed to improve the experimental database of optical constants of Titan aerosols. Indeed, the determination of the optical constants of these particles is essential to quantify their capacity to absorb and to scatter solar radiation, and thus to evaluate their role on Titan's radiative balance and climate. The study of optical properties is also crucial to analyze and to better interpret many of Titan's observational data, in particular those acquired during the Cassini-Huygens mission. One way to determine Titan aerosols optical constant is to measure the optical constants of analogues of Titan complex organic material synthesized in the laboratory, usually named Titan's tholins (Sagan and Khare, 1979). But the optical constants depend on the chemical composition, the size and the shape of particles (Raulin et al., 2012). Those three parameters result from the experimental conditions such as energy source, gas mixing ratio, gas pressure, flow rate and irradiation time (Cable et al., 2012). Besides the determination of the refractive index in the laboratory, there are others methods using theoretical models or observational data. Nevertheless, theoretical models are based on laboratory data or/and observational data. The visible - near infrared spectral region of optical constants has been widely studied with laboratory analogues. Comparison of the obtained results suggest that tholins synthesized by Tran et al. (2003) and Majhoub et al. (2012) are the best representative of Titan aerosols with regards to their refractive indexes in this spectral region. The mid-infrared spectral range has been studied only by Imanaka et al. (2012) and slightly by Tran et al. (2003). In that spectral range, Titan tholins do not exhibit the features displayed by Kim and Courtin (2013) from Titan's observations. For spectral region of wavelengths smaller than 0.20µm or higher than 25µm, only the data from Khare et al. (1984) are available. Therefore it would be very useful to get more laboratory data and especially from Tran et al (2013), Mahjoub et al. (2012) and Imanaka et al. (2012) samples in these spectral regions since their refractive indexes match observational and theoretical data in other spectral ranges. This presentation will critically summarize these recent results and present detailled constraints on the optical constants Titan's aerosols. In addition, specific lacks of data will be highlighted as well as some possible investigations to be carried out to fill these gaps. References: Cable, M. L., et al., 2012. Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chemical Reviews. 112, 1882-1909. Imanaka, H., et al., 2012. Optical constants of Titan tholins at mid-infrared wavelengths (2.5-25 µm) and the possible chemical nature of Titan's haze particles. Icarus. 218, 247-261. Khare, B. N., et al., 1984. Optical-Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere - from Soft-X-Ray to Microwave-Frequencies. Icarus. 60, 127-137. Kim, S. J., Courtin, R., 2013. Spectral characteristics of the Titanian haze at 1-5 micron from Cassini/VIMS solar occultation data. Astronomy & Astrophysics. 557, L6. Mahjoub, A., et al., 2012. Influence of methane concentration on the optical indices of Titan's aerosols analogues. Icarus. 221, 670-677. Raulin, F., et al., 2012. Prebiotic-like chemistry on Titan. Chemical Society Reviews. 41, 5380-5393. Sagan, C., Khare, B. N., 1979. Tholins - Organic-Chemistry of Inter-Stellar Grains and Gas. Nature. 277, 102-107. Tran, B. N., et al., 2003. Simulation of Titan haze formation using a photochemical flow reactor - The optical constants of the polymer. Icarus. 165, 379-390. Acknowledgements: We acknowledge support from the French Space Agency (CNES) and the European Space Agency (ESA).

  11. In situ calibration of position detection in an optical trap for active microrheology in viscous materials

    PubMed Central

    Staunton, Jack R.; Blehm, Ben; Devine, Alexus; Tanner, Kandice

    2017-01-01

    In optical trapping, accurate determination of forces requires calibration of the position sensitivity relating displacements to the detector readout via the V-nm conversion factor (β). Inaccuracies in measured trap stiffness (k) and dependent calculations of forces and material properties occur if β is assumed to be constant in optically heterogeneous materials such as tissue, necessitating calibration at each probe. For solid-like samples in which probes are securely positioned, calibration can be achieved by moving the sample with a nanopositioning stage and stepping the probe through the detection beam. However, this method may be applied to samples only under select circumstances. Here, we introduce a simple method to find β in any material by steering the detection laser beam while the probe is trapped. We demonstrate the approach in the yolk of living Danio rerio (zebrafish) embryos and measure the viscoelastic properties over an order of magnitude of stress-strain amplitude. PMID:29519028

  12. Ultrafast optical technique for the characterization of altered materials

    DOEpatents

    Maris, H.J.

    1998-01-06

    Disclosed herein is a method and a system for non-destructively examining a semiconductor sample having at least one localized region underlying a surface through into which a selected chemical species has been implanted or diffused. A first step induces at least one transient time-varying change in optical constants of the sample at a location at or near to a surface of the sample. A second step measures a response of the sample to an optical probe beam, either pulsed or continuous wave, at least during a time that the optical constants are varying. A third step associates the measured response with at least one of chemical species concentration, chemical species type, implant energy, a presence or absence of an introduced chemical species region at the location, and a presence or absence of implant-related damage. The method and apparatus in accordance with this invention can be employed in conjunction with a measurement of one or more of the following effects arising from a time-dependent change in the optical constants of the sample due to the application of at least one pump pulse: (a) a change in reflected intensity; (b) a change in transmitted intensity; (c) a change in a polarization state of the reflected and/or transmitted light; (d) a change in the optical phase of the reflected and/or transmitted light; (e) a change in direction of the reflected and/or transmitted light; and (f) a change in optical path length between the sample`s surface and a detector. 22 figs.

  13. Ultrafast optical technique for the characterization of altered materials

    DOEpatents

    Maris, Humphrey J.

    1998-01-01

    Disclosed herein is a method and a system for non-destructively examining a semiconductor sample (30) having at least one localized region underlying a surface (30a) through into which a selected chemical species has been implanted or diffused. A first step induces at least one transient time-varying change in optical constants of the sample at a location at or near to a surface of the sample. A second step measures a response of the sample to an optical probe beam, either pulsed or continuous wave, at least during a time that the optical constants are varying. A third step associates the measured response with at least one of chemical species concentration, chemical species type, implant energy, a presence or absence of an introduced chemical species region at the location, and a presence or absence of implant-related damage. The method and apparatus in accordance with this invention can be employed in conjunction with a measurement of one or more of the following effects arising from a time-dependent change in the optical constants of the sample due to the application of at least one pump pulse: (a) a change in reflected intensity; (b) a change in transmitted intensity; (c) a change in a polarization state of the reflected and/or transmitted light; (d) a change in the optical phase of the reflected and/or transmitted light; (e) a change in direction of the reflected and/or transmitted light; and (f) a change in optical path length between the sample's surface and a detector.

  14. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  15. A novel optical fibre doped with the nano-material as InP

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lee, Ly Guat; Zhang, Ru

    2007-11-01

    As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.

  16. Holmium hafnate: An emerging electronic device material

    NASA Astrophysics Data System (ADS)

    Pavunny, Shojan P.; Sharma, Yogesh; Kooriyattil, Sudheendran; Dugu, Sita; Katiyar, Rajesh K.; Scott, James F.; Katiyar, Ram S.

    2015-03-01

    We report structural, optical, charge transport, and temperature properties as well as the frequency dependence of the dielectric constant of Ho2Hf2O7 (HHO) which make this material desirable as an alternative high-k dielectric for future silicon technology devices. A high dielectric constant of ˜20 and very low dielectric loss of ˜0.1% are temperature and voltage independent at 100 kHz near ambient conditions. The Pt/HHO/Pt capacitor exhibits exceptionally low Schottky emission-based leakage currents. In combination with the large observed bandgap Eg of 5.6 eV, determined by diffuse reflectance spectroscopy, our results reveal fundamental physics and materials science of the HHO metal oxide and its potential application as a high-k dielectric for the next generation of complementary metal-oxide-semiconductor devices.

  17. Quadratic Electro-Optic Effect and Electroabsorption in a Novel Nano-Optical Material based on the Nonconjugated Conductive Polymer, Poly(ethylenepyrrolediyl) Derivative

    NASA Astrophysics Data System (ADS)

    Swamy, R.; Vippa, P.; Rajagopalan, H.; Titus, J.; Thakur, M.; Sen, A.

    2005-03-01

    We report quadratic electro-optic effect and electroabsorption measurements in a novel nano-optical material based on the nonconjugated conductive polymer, iodine-doped poly(ethylenepyrrolediyl) derivative. Such effect has been recently reported in doped polyisoprene [1]. The measurement was made at 633 nm using field-induced birefringence. A modulation of 0.1% was observed for a field of 0.66 V/micron (film thickness 0.3 micron). The change in refractive index, δn, is 3.35x10-4 and the Kerr constant is 1.2x10-9 m/V^2 which is about 125 times that of nitrobenzene. Modulation due to electroabsorption was 0.05%. The exceptionally large electro-optic effect is most likely due to the specific structure and quantum confinement within a nanometer volume. In contrast, nonlinearity in a conjugated polymer is known to decrease upon iodine doping. [1] Thakur, Swamy and Titus, Macromolecules, Vol.37, 2677, (2004).

  18. Materials, structures, and devices for high-speed electronics

    NASA Technical Reports Server (NTRS)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  19. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  20. Mathematical Modeling of Ultraporous Nonmetallic Reticulated Materials

    NASA Astrophysics Data System (ADS)

    Alifanov, O. M.; Cherepanov, V. V.; Morzhukhina, A. V.

    2015-01-01

    We have developed an imitation statistical mathematical model reflecting the structure and the thermal, electrophysical, and optical properties of nonmetallic ultraporous reticulated materials. This model, in combination with a nonstationary thermal experiment and methods of the theory of inverse heat transfer problems, permits determining the little-studied characteristics of the above materials such as the radiative and conductive heat conductivities, the spectral scattering and absorption coefficients, the scattering indicatrix, and the dielectric constants, which are of great practical interest but are difficult to investigate.

  1. An Al₂O₃ Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials.

    PubMed

    Yang, Hang; Qin, Shiqiao; Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Peng, Gang; Zhang, Xueao

    2017-09-22

    We fabricated 70 nm Al₂O₃ gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al₂O₃/Si substrate is superior to that on a traditional 300 nm SiO₂/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al₂O₃/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS₂, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices.

  2. Measurement of the infrared optical constants for spectral modeling: n and k values for (NH4)2SO4 via single-angle reflectance and ellipsometric methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, Thomas A.; Brauer, Carolyn S.; Kelly-Gorham, Molly Rose K.

    The optical constants n and k can be used to model infrared spectra, including refraction, absorption, reflectance, and emissivity, but obtaining reliable values for solid materials (pure or otherwise) presents a challenge: In the past, the best results for n and k have been obtained from bulk, homogeneous materials, free of defects. That is, materials where the Fresnel equations are operant since there is no light scattering. Since it is often not possible to obtain a pure macroscopic (crystalline) material, it may be possible to press the material into a (uniform, void-free) disk. We have recently been able to domore » this with ammonium sulfate powder and then measured the n & k values via two independent methods: 1) Ellipsometry - which measures the changes in amplitude and phase of light reflected from the material of interest as a function of wavelength and angle of incidence, and 2) Single angle specular reflectance with an FT spectrometer using a specular reflectance device within an FT instrument which measures the change in amplitude of light reflected from the material of interest as a function of wavelength and angle of incidence over a wide wavelength range. The quality of the derived n & k values was tested by generating the reflectance spectra of the pellet and comparing to the calculated to measured reflectance spectra of the pure material which has been previously published. The comparison to literature values showed good accuracy and good agreement, indicating promise to measure other materials by such methods.« less

  3. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials.

    PubMed

    Bruder, Friedrich-Karl; Hagen, Rainer; Rölle, Thomas; Weiser, Marc-Stephan; Fäcke, Thomas

    2011-05-09

    Optical data storage has had a major impact on daily life since its introduction to the market in 1982. Compact discs (CDs), digital versatile discs (DVDs), and Blu-ray discs (BDs) are universal data-storage formats with the advantage that the reading and writing of the digital data does not require contact and is therefore wear-free. These formats allow convenient and fast data access, high transfer rates, and electricity-free data storage with low overall archiving costs. The driving force for development in this area is the constant need for increased data-storage capacity and transfer rate. The use of holographic principles for optical data storage is an elegant way to increase the storage capacity and the transfer rate, because by this technique the data can be stored in the volume of the storage material and, moreover, it can be optically processed in parallel. This Review describes the fundamental requirements for holographic data-storage materials and compares the general concepts for the materials used. An overview of the performance of current read-write devices shows how far holographic data storage has already been developed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  5. Molecular studies on di-sodium tartrate molecule

    NASA Astrophysics Data System (ADS)

    Divya, P.; Jayakumar, S.; George, Preethamary; Shubashree, N. S.; Ahmed. M, Anees

    2015-06-01

    Structural characterization is important for the development of new material. The acoustical parameters such as Free Length, Internal Pressure have been measured from ultrasonic velocity, density for di sodium tartrate an optically active molecule at different temperatures using ultrasonic interferometer of frequency (2MHZ). The ultrasonic velocity increases with increase in concentration there is an increase in solute-solvent interaction. The stability constant had been calculated. SEM with EDAX studies has been done for Di-sodium tartrate an optically active molecule.

  6. Gigahertz acoustic vibrations of elastically anisotropic Indium–tin-oxide nanorod arrays [Gigahertz modulation of the full visible spectrum via acoustic vibrations of elastically anisotropic Indium-tin-oxide nanorod arrays

    DOE PAGES

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.; ...

    2016-08-15

    Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less

  7. Gigahertz acoustic vibrations of elastically anisotropic Indium–tin-oxide nanorod arrays [Gigahertz modulation of the full visible spectrum via acoustic vibrations of elastically anisotropic Indium-tin-oxide nanorod arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Peijun; Schaller, Richard D.; Ocola, Leonidas E.

    Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10%more » is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase. Furthermore, this technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials.« less

  8. Determination of the radial profile of the photoelastic coefficient of polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Acheroy, Sophie; Merken, Patrick; Geernaert, Thomas; Ottevaere, Heidi; Thienpont, Hugo; Berghmans, Francis

    2016-04-01

    We determine the radial profile of the photoelastic constant C(r) in two single mode and one multimode polymer optical fibers (POFs), all fabricated from polymethylmethacrylate (PMMA). To determine C(r) we first determine the retardance of the laterally illuminated fiber submitted to a known tensile stress uniformly distributed over the fiber cross-section. Then we determine the inverse Abel transform of the measured retardance to finally obtain C(r). We compare two algorithms based on the Fourier theory to perform the inverse transform. We obtain disparate distributions of C(r) in the three fibers. The mean value of C(r) varies from -7.6×10-14 to 5.4×10-12 Pa-1. This indicates that, in contrast to glass fibers, the radial profile of the photoelastic constant can considerable vary depending on the type and treatment of POFs, even when made from similar materials, and hence the photoelastic constant should be measured for each type of POF.

  9. First-principles prediction of solar radiation shielding performance for transparent windows of GdB{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003

    2016-04-28

    The structural, electronic, magnetic, and optical properties of GdB{sub 6} are studied using the first-principles calculations. Calculated values for magnetic and optical properties and lattice constant are found to be consistent with previously reported experimental results. The calculated results show that GdB{sub 6} is a perfect near-infrared absorption/reflectance material that could serve as a solar radiation shielding material for windows with high visible light transmittance, similar to LaB{sub 6}, which is assigned to its plasma oscillation and a collective oscillation (volume plasmon) of carrier electrons. It was found that the magnetic 4f electrons of Gd are not relevant to themore » important optical properties of GdB{sub 6}. These theoretical studies serve as a reference for future studies.« less

  10. Surface plasmon resonances in liquid metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Gerasimov, V. S.; Gavrilyuk, A. P.; Karpov, S. V.

    2017-06-01

    We have shown significant suppression of resonant properties of metallic nanoparticles at the surface plasmon frequency during the phase transition "solid-liquid" in the basic materials of nanoplasmonics (Ag, Au). Using experimental values of the optical constants of liquid and solid metals, we have calculated nanoparticle plasmonic absorption spectra. The effect was demonstrated for single particles, dimers and trimers, as well as for the large multiparticle colloidal aggregates. Experimental verification was performed for single Au nanoparticles heated to the melting temperature and above up to full suppression of the surface plasmon resonance. It is emphasized that this effect may underlie the nonlinear optical response of composite materials containing plasmonic nanoparticles and their aggregates.

  11. Radiative transfer model for contaminated rough slabs.

    PubMed

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis.

  12. Method to adjust multilayer film stress induced deformation of optics

    DOEpatents

    Spiller, Eberhard A.; Mirkarimi, Paul B.; Montcalm, Claude; Bajt, Sasa; Folta, James A.

    2000-01-01

    Stress compensating systems that reduces/compensates stress in a multilayer without loss in reflectivity, while reducing total film thickness compared to the earlier buffer-layer approach. The stress free multilayer systems contain multilayer systems with two different material combinations of opposite stress, where both systems give good reflectivity at the design wavelengths. The main advantage of the multilayer system design is that stress reduction does not require the deposition of any additional layers, as in the buffer layer approach. If the optical performance of the two systems at the design wavelength differ, the system with the poorer performance is deposited first, and then the system with better performance last, thus forming the top of the multilayer system. The components for the stress reducing layer are chosen among materials that have opposite stress to that of the preferred multilayer reflecting stack and simultaneously have optical constants that allow one to get good reflectivity at the design wavelength. For a wavelength of 13.4 nm, the wavelength presently used for extreme ultraviolet (EUV) lithography, Si and Be have practically the same optical constants, but the Mo/Si multilayer has opposite stress than the Mo/Be multilayer. Multilayer systems of these materials have practically identical reflectivity curves. For example, stress free multilayers can be formed on a substrate using Mo/Be multilayers in the bottom of the stack and Mo/Si multilayers at the top of the stack, with the switch-over point selected to obtain zero stress. In this multilayer system, the switch-over point is at about the half point of the total thickness of the stack, and for the Mo/Be--Mo/Si system, there may be 25 deposition periods Mo/Be to 20 deposition periods Mo/Si.

  13. DC electrical conductivity measurements for pure and titanium oxide doped KDP Crystals grown by gel medium

    NASA Astrophysics Data System (ADS)

    Mareeswaran, S.; Asaithambi, T.

    2016-10-01

    Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.

  14. Preparation and Characterization of Flexible Substrate Material from Phenyl-Thiophene-2-Carbaldehyde Compound

    PubMed Central

    Rahman, Ashiqur; Islam, Mohammad Tariqul; Samsuzzaman, Md; Singh, Mandeep Jit; Akhtaruzzaman, Md.

    2016-01-01

    In this paper, a novel phenyl-thiophene-2-carbaldehyde compound-based flexible substrate material has been presented. Optical and microwave characterization of the proposed material are done to confirm the applicability of the proposed material as a substrate. The results obtained in this work show that the phenyl-thiophene-2-carbaldehyde consists of a dielectric constant of 3.03, loss tangent of 0.003, and an optical bandgap of 3.24 eV. The proposed material is analyzed using commercially available EM simulation software and validated by the experimental analysis of the flexible substrate. The fabricated substrate also shows significant mechanical flexibility and light weight. The radiating copper patch deposited on the proposed material substrate incorporated with partial ground plane and microstrip feeding technique shows an effective impedance bandwidth of 3.8 GHz. It also confirms an averaged radiation efficiency of 81% throughout the frequency band of 5.4–9.2 GHz. PMID:28773479

  15. An Al2O3 Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional Materials

    PubMed Central

    Zheng, Xiaoming; Wang, Guang; Tan, Yuan; Zhang, Xueao

    2017-01-01

    We fabricated 70 nm Al2O3 gated field effect transistors based on two-dimensional (2D) materials and characterized their optical and electrical properties. Studies show that the optical contrast of monolayer graphene on an Al2O3/Si substrate is superior to that on a traditional 300 nm SiO2/Si substrate (2.4 times). Significantly, the transconductance of monolayer graphene transistors on the Al2O3/Si substrate shows an approximately 10-fold increase, due to a smaller dielectric thickness and a higher dielectric constant. Furthermore, this substrate is also suitable for other 2D materials, such as WS2, and can enhance the transconductance remarkably by 61.3 times. These results demonstrate a new and ideal substrate for the fabrication of 2D materials-based electronic logic devices. PMID:28937619

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drueding, T.W.

    The final figuring step in the fabrication of an optical component involves imparting a specified contour onto the surface. This can be expensive and time consuming step. The recent development of ion beam figuring provides a method for performing the figuring process with advantages over standard mechanical methods. Ion figuring has proven effective in figuring large optical components. The process of ion beam figuring removes material by transferring kinetic energy from impinging neutral particles. The process utilizes a Kaufman type ion source, where a plasma is generated in a discharge chamber by controlled electric potentials. Charged grids extract and acceleratemore » ions from the chamber. The accelerated ions form a directional beam. A neutralizer outside the accelerator grids supplies electrons to the positive ion beam. It is necessary to neutralize the beam to prevent charging workpieces and to avoid bending the beam with extraneous electro-magnetic fields. When the directed beam strikes the workpiece, material sputters in a predicable manner. The amount and distribution of material sputtered is a function of the energy of the beam, material of the component, distance from the workpiece, and angle of incidence of the beam. The figuring method described here assumes a constant beam removal, so that the process can be represented by a convolution operation. A fixed beam energy maintains a constant sputtering rate. This temporally and spatially stable beam is held perpendicular to the workpiece at a fixed distance. For non-constant removal, corrections would be required to model the process as a convolution operation. Specific figures (contours) are achieved by rastering the beam over the workpiece at varying velocities. A unique deconvolution is performed, using series-derivative solution developed for the system, to determine these velocities.« less

  17. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  18. Laboratory Reference Spectroscopy of Icy Satellite Candidate Surface Materials (Invited)

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Jamieson, C. S.; Shirley, J. H.; Pitman, K. M.; Kariya, M.; Crandall, P.

    2013-12-01

    The bulk of our knowledge of icy satellite composition continues to be derived from ultraviolet, visible and infrared remote sensing observations. Interpretation of remote sensing observations relies on availability of laboratory reference spectra of candidate surface materials. These are compared directly to observations, or incorporated into models to generate synthetic spectra representing mixtures of the candidate materials. Spectral measurements for the study of icy satellites must be taken under appropriate conditions (cf. Dalton, 2010; also http://mos.seti.org/icyworldspectra.html for a database of compounds) of temperature (typically 50 to 150 K), pressure (from 10-9 to 10-3 Torr), viewing geometry, (i.e., reflectance), and optical depth (must manifest near infrared bands but avoid saturation in the mid-infrared fundamentals). The Planetary Ice Characterization Laboratory (PICL) is being developed at JPL to provide robust reference spectra for icy satellite surface materials. These include sulfate hydrates, hydrated and hydroxylated minerals, and both organic and inorganic volatile ices. Spectral measurements are performed using an Analytical Spectral Devices FR3 portable grating spectrometer from .35 to 2.5 microns, and a Thermo-Nicolet 6500 Fourier-Transform InfraRed (FTIR) spectrometer from 1.25 to 20 microns. These are interfaced with the Basic Extraterrestrial Environment Simulation Testbed (BEEST), a vacuum chamber capable of pressures below 10-9 Torr with a closed loop liquid helium cryostat with custom heating element capable of temperatures from 30-800 Kelvins. To generate optical constants (real and imaginary index of refraction) for use in nonlinear mixing models (i.e., Hapke, 1981 and Shkuratov, 1999), samples are ground and sieved to six different size fractions or deposited at varying rates to provide a range of grain sizes for optical constants calculations based on subtractive Kramers-Kronig combined with Hapke forward modeling (Dalton and Pitman, 2012). We will report on recent results, including spectra of sulfate hydrates, simple organic molecules, and volatile ices measured at PICL in support of past, present and planned missions. We gratefully acknowledge the support of JPL's Research and Technology Development and Strategic Hire Programs, and of the NASA Outer Planets Research and Planetary Geology and Geophysics programs. Dalton, III, J.B., Spectroscopy of icy moon surface materials, Space Sci. Rev. 153:219-247, 2010. Dalton, III, J.B., and Pitman, K.M., Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces, J. Geophys. Res. 117:E09001, doi:10.1029/2011JE004036, 2012. Hapke, B.W., Bidirectional reflectance spectroscopy I. Theory, J. Geophys. Res. 86, 3039-3054, 1981. Shkuratov, Y., L. Starukhina, H. Hoffmann, and G. Arnold, A model of spectral albedo of particulate surfaces: Implications for optical properties of the Moon, Icarus 137, 235-246, 1999.

  19. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet

    DTIC Science & Technology

    1987-11-01

    refractive index N, and extinction coefficient K for pottasium choie................................................ 31Schloride... pottasium chloride. 31 POTASSIUM CHLORIDE S6C _ _ u5 ’U .. 4 31 0 1000 2000 WAVELENGTH (NM) 1.80 1.70 -- _ N 1.60 1.50 - -"- 1.40- 0 1000 2000 WAVELENGTH

  20. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    PubMed Central

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  1. Effect of γ-irradiation on the optical and electrical properties of fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Anwar, Ahmad; Elfiky, Dalia; Ramadan, Ahmed M.; Hassan, G. M.

    2017-05-01

    The effect of gamma irradiation on the optical and electrical properties of the reinforced fiber polymeric based materials became an important issue. Fiberglass/epoxy and Kevlar fiber/epoxy were selected as investigated samples manufactured with hand lay-up without autoclave curing technique. The selected technique is simple and low cost while being rarely used in space materials production. The electric conductivity and dielectric constant for those samples were measured with increasing the gamma radiation dose. Moreover, the absorptivity, band gap and color change were determined. Fourier transform infrared (FTIR) was performed to each of the material's constituent to evaluate the change in the investigated materials due to radiation exposure dose. In this study, the change of electrical properties for both investigated materials showed a slight variation of the test parameters with respect to the gamma dose increase; this variation is placed in the insulators rang. The tested samples showed an insulator stable behavior during the test period. The change of optical properties for both composite specimens showed the maximum absorptivity at the gamma dose 750 kGy. These materials are suitable for structure materials and thermal control for orbital life less than 7 years. In addition, the transparency of epoxy matrix was degraded. However, there is no color change for either Kevlar fiber or fiberglass.

  2. Measurement of infrared refractive indices of organic and organophosphorous compounds for optical modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.

    The complex optical refractive index contains the optical constants, n(more » $$\\tilde{u}$$)and k($$\\tilde{u}$$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.« less

  3. Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium

    NASA Astrophysics Data System (ADS)

    Kalaivani, M. S.; Asaithambi, T.

    2016-10-01

    Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP crystals were slightly decreased compared to pure KDP crystals.

  4. Optical instabilities and spontaneous light emission in moving media

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mario

    2015-03-01

    We show that when an uncharged plasmonic material is set in relative motion with respect to another uncharged polarizable body the system may be electromagnetically unstable. Particularly, when the relative velocity of the two bodies is enforced to remain constant the system may support natural oscillations that grow exponentially with time, even in presence of realistic material loss and dispersion. It is proven that a friction-type force acts on the moving bodies to oppose their relative motion. Hence, the optical instabilities result from the conversion of kinetic energy into electromagnetic energy. This new purely classical phenomenon is analogous to the Cherenkov and Smith-Purcell effects but for uncharged polarizable matter. We link the optical instabilities to a spontaneous parity-time symmetry breaking of the system, and demonstrate the possibility of optical amplification of a light pulse in the broken parity-time symmetry regime. This work is supported in part by Fundação para a Ciência e a Tecnologia Grant Number PTDC/EEI-TEL/2764/2012.

  5. Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.

    2018-05-01

    The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.

  6. Determination of magneto-optical constant of Fe films with weak measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Xiaodong; Hu, Dejiao; Du, Jinglei

    2014-09-29

    In this letter, a detecting method for the magneto-optical constant is presented by using weak measurements. The photonic spin Hall effect (PSHE), which manifests itself as spin-dependent splitting, is introduced to characterize the magneto-optical constant, and a propagation model to describe the quantitative relation between the magneto-optical constant and the PSHE is established. According to the amplified shift of the PSHE detected by weak measurements, we determinate the magneto-optical constant of the Fe film sample. The Kerr rotation is measured via the standard polarimetry method to verify the rationality and feasibility of our method. These findings may provide possible applicationsmore » in magnetic physics research.« less

  7. Photonic crystal light source

    DOEpatents

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  8. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE PAGES

    Sutherland, J. C.

    2016-07-20

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  9. Calibration of photoelastic modulator based dichrometers: maintaining constant phase across the spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, J. C.

    Photoelastic modulators can alter the polarization state of a beam of ultraviolet, visible or infrared photons by means of periodic stress-induced differences in the refractive index of a transparent material that forms the optical element of the device and is isotropic in the absence of stress. Furthermore, they have found widespread application in instruments that characterize or alter the polarization state of a beam in fields as diverse as astronomy, structural biology, materials science and ultraviolet lithography for the manufacture of nano-scale integrated circuits. Measurement of circular dichroism, the differential absorption of left- and right circularly polarized light, and ofmore » strain-induced birefringence of optical components are major applications. Instruments using synchrotron radiation and photoelastic modulators with CaF 2 optical elements have extended circular dichroism measurements down to wavelengths of about 130 nm in the vacuum ultraviolet. Maintaining a constant phase shift between two orthogonal polarization states across a spectrum requires that the amplitude of the modulated stress be changed as a function of wavelength. For commercially available photoelastic modulators, the voltage that controls the amplitude of modulation required to produce a specified phase shift, which is a surrogate for the stress modulation amplitude, has been shown to be an approximately linear function of wavelength in the spectral region where the optical element is transparent. But, extrapolations of such straight lines cross zero voltage at a non-zero wavelength, not at zero-wavelength. For modulators with calcium fluoride and fused silica optical elements, the zero-crossing wavelength is always in the spectral region where the optical element of the modulator strongly absorbs the incident radiation, and at a wavelength less than the longest-wavelength apparent resonance deduced from experimental values of the refractive index fit to the Sellmeier equation. Using a model that relates the refractive indices of a stressed optical element to the refractive index of its unstressed state, an expression for the modulator control voltage was derived that closely fits the experimental data. Our result provides a theoretical rational for the apparently linear constant-phase programming voltage, and thus provides theoretical backing for the calibration procedure frequently used for these modulators. Lastly there are other factors that can influence the calibration of a photoelastic modulator, including temperature and atmospheric pressure, are discussed briefly.« less

  10. A noncontact force sensor based on a fiber Bragg grating and its application for corrosion measurement.

    PubMed

    Pacheco, Clara J; Bruno, Antonio C

    2013-08-29

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range.

  11. A Noncontact Force Sensor Based on a Fiber Bragg Grating and Its Application for Corrosion Measurement

    PubMed Central

    Pacheco, Clara J.; Bruno, Antonio C.

    2013-01-01

    A simple noncontact force sensor based on an optical fiber Bragg grating attached to a small magnet has been proposed and built. The sensor measures the force between the magnet and any ferromagnetic material placed within a few millimeters of the sensor. Maintaining the sensor at a constant standoff distance, material loss due to corrosion increases the distance between the magnet and the corroded surface, which decreases the magnetic force. This will decrease the strain in the optical fiber shifting the reflected Bragg wavelength. The measured shift for the optical fiber used was 1.36 nm per Newton. Models were developed to optimize the magnet geometry for a specific sensor standoff distance and for particular corrosion pit depths. The sensor was able to detect corrosion pits on a fuel storage tank bottom with depths in the sub-millimeter range. PMID:23995095

  12. Spectral parameters and Hamaker constants of silicon hydride compounds and organic solvents.

    PubMed

    Masuda, Takashi; Matsuki, Yasuo; Shimoda, Tatsuya

    2009-12-15

    Cyclopentasilane (CPS) and polydihydrosilane, which consist of hydrogen and silicon only, are unique materials that can be used to produce intrinsic silicon film in a liquid process, such as spin coating or an ink-jet method. Wettability and solubility of general organic solvents including the above can be estimated by Hamaker constants, which are calculated according to the Lifshitz theory. In order to calculate a Hamaker constant by the simple spectral method (SSM), it is necessary to obtain absorption frequency and function of oscillator strength in the ultraviolet region. In this report, these physical quantities were obtained by means of an optical method. As a result of examination of the relation between molecular structures and ultraviolet absorption frequencies, which were obtained from various liquid materials, it was concluded that ultraviolet absorption frequencies became smaller as electrons were delocalized. In particular, the absorption frequencies were found to be very small for CPS and polydihydrosilane due to sigma-conjugate of their electrons. The Hamaker constants of CPS and polydihydrosilane were successfully calculated based on the obtained absorption frequency and function of oscillator strength.

  13. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chao; Bobela, David C.; Yang, Ye

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  14. Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics

    DOE PAGES

    Chen, Chao; Bobela, David C.; Yang, Ye; ...

    2017-03-17

    Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less

  15. Photo-induced changes in nano-copper oxide for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Hendi, A. A.; Rashad, M.

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) have been prepared using microwave irradiation. A mother material was copper nitrate in distilled water. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterizing the NPs powders. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were measured for as-prepared CuO NPs. The obtained oxides NPs were confirmed produced during chemical precipitation by these characterizions. These NPs were dropped on top of glass substrate for measuring the optical characterizions. Both linear and nonlinear optical properties of the as-prepared CuO NP films were studied. The optical energy gap of the as-prepared CuO NP films is equal to 3.98 eV, which is higher than that of the bulk material. The effect of ultraviolet (UV) light irradiation on the CuO NP films was investigated at 2 and 5 h for study the photo-induced effect. The optical properties of CuO NP films were measured as a function of these UV irradiation time. The optical constants for as-prepared and irradiated CuO NP films were calculated which reflect the affect of UV irradiation time. As observed from these optical results, a highly forced for optoelectronic applications.

  16. Optically Immersed Bolometer IR Detectors Based on V2O5 Thin Films with Polyimide Thermal Impedance Control Layer for Space Applications

    NASA Astrophysics Data System (ADS)

    Sumesh, M. A.; Thomas, Beno; Vijesh, T. V.; Mohan Rao, G.; Viswanathan, M.; Karanth, S. P.

    2018-01-01

    Optically immersed bolometer IR detectors were fabricated using electron beam evaporated vanadium oxide as the sensing material. Spin-coated polyimide was used as medium to optically immerse the sensing element to the flat surface of a hemispherical germanium lens. This optical immersion layer also serves as the thermal impedance control layer and decides the performance of the devices in terms of responsivity and noise parameters. The devices were packaged in suitable electro-optical packages and the detector parameters were studied in detail. Thermal time constant varies from 0.57 to 6.0 ms and responsivity from 75 to 757 V W-1 corresponding to polyimide thickness in the range 2 to 70 μm for a detector bias of 9 V in the wavelength region of 14-16 μm. Highest D* obtained was 1.2×108 cmHz1/2 W-1. Noise equivalent temperature difference (NETD) of 20 mK was achieved for devices with polyimide thickness more than 32 μm. The figure of merit, NETD × τ product which describes trade-off between thermal time constant and sensitivity is also extensively studied for devices having different thickness of thermal impedance layers.

  17. Designs and Materials for Better Coronagraph Occulting Masks

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Kunjithapatham

    2010-01-01

    New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile

  18. Diameter-dependent optical constants of gold mesoparticles electrodeposited on aluminum films containing copper.

    PubMed

    Brevnov, Dmitri A; Bungay, Corey

    2005-08-04

    Electrodeposition of gold mesoparticles on anodized and chemically etched aluminum/copper films deposited on silicon wafers proceeds by instantaneous nucleation and with no diffusion limitations. Both of these phenomena favor the formation of relatively monodispersed gold particles. Under the reported electrodeposition conditions, the relative standard deviation of the particle diameter is 25%. The particle coverage is 7 x 10(8) particles cm(-2). The mean particle diameter varies as a function of electrodeposition time in the range of 40-80 nm. Optical constants of gold mesoparticles are resolved by spectroscopic ellipsometry. A two-layer optical model is constructed to determine both extinction coefficients and refractive indexes of gold mesoparticles as a function of the mean particle diameter. The absorption peak, associated with surface plasmons, is modeled with two Lorentz oscillators. Absorption peak maximums shift from 610 to 675 nm as the mean particle diameter increases from 42 to 74 nm. Electrodeposition of gold particles on technologically relevant substrates, such as aluminum/copper films, is expected to increase the utility of gold particles and facilitate their incorporation in nanostructured materials and a variety of electronic and optical devices.

  19. Porous and Phase Change Nanomaterials For Photonic Applications

    DTIC Science & Technology

    2014-08-28

    two phase composite material can be considered as a single effective medium with a characteristic dielectric constant that is a weighted average of...reported that a phase transition could be trig- gered by electrical stimuli using a short current pulse to heat the material past the critical 12 29...in effective index, or phase ∆φ . When placed inside an optical cavity, such as an ultra-compact micro -ring resonator (R = 1.5 µm, Fig. 5.1.b), a short

  20. Highly condensed fluorinated methacrylate hybrid material for transparent low-kappa passivation layer in LCD-TFT.

    PubMed

    Oh, Ji-Hoon; Kwak, Seung-Yeon; Yang, Seung-Cheol; Bae, Byeong-Soo

    2010-03-01

    Photocurable and highly condensed fluorinated methacrylate oligosiloxane, with a low dielectric constant (kappa = 2.54), was prepared by a nonhydrolytic sol-gel condensation reaction. The oligosiloxane resin was then spin-coated, photocured, and thermally baked in order to fabricate a fluorinated methacrylate hybrid material (FM hybrimer) thin film. This study investigated the application of this FM hybrimer film as a low-kappa passivation layer in LCD-based thin film transistors (TFT). It was found that a dielectric constant as low as kappa = 2.54 could be obtained, without introducing pores in the dense FM hybrimer films. This study compares FM hybrimer film characteristics with those required for passivation layers in LCD-TFTs, including thermal stability, optical transmittance, hydrophobicity, gap fill, and planarization effects as well as electrical insulation.

  1. Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection.

    PubMed

    Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J

    2018-04-01

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.

  2. Dispersion and thermal properties of lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel-Baki, Manal; Abdel Wahab, Fathy A.; Darwish, Hussein

    2006-10-01

    A series of new lithium aluminum silicate (LAS) glass systems doped with chromium ion is prepared. The reflectance and transmittance of the glass slabs are recorded. By means of an iteration procedure, the glass refractive index n and the extinction coefficient k and their dispersions are obtained. Across a wide spectral range of 0.2-1.6 μm, the dispersion curves are used to determine the atomic and quantum constants of the prepared glasses. These findings provide the average oscillator wavelength, the average oscillator strength, oscillator energy, dispersion energy, lattice energy, and material dispersion of the glass materials to be calculated. For optical waveguide applications, the wavelength for zero material dispersion is obtained. Dilatometric measurements are performed and the thermal expansion coefficient is calculated to throw some light on the thermo-optical properties of the present glasses correlating them with their structure and the presence of nonbridging oxygen ions.

  3. Amorphous silicon carbide coatings for extreme ultraviolet optics

    NASA Technical Reports Server (NTRS)

    Kortright, J. B.; Windt, David L.

    1988-01-01

    Amorphous silicon carbide films formed by sputtering techniques are shown to have high reflectance in the extreme ultraviolet spectral region. X-ray scattering verifies that the atomic arrangements in these films are amorphous, while Auger electron spectroscopy and Rutherford backscattering spectroscopy show that the films have composition close to stoichiometric SiC, although slightly C-rich, with low impurity levels. Reflectance vs incidence angle measurements from 24 to 1216 A were used to derive optical constants of this material, which are presented here. Additionally, the measured extreme ultraviolet efficiency of a diffraction grating overcoated with sputtered amorphous silicon carbide is presented, demonstrating the feasibility of using these films as coatings for EUV optics.

  4. Synthesis of carbon-based quantum dots from starch extracts: Optical investigations.

    PubMed

    Al-Douri, Y; Badi, N; Voon, C H

    2018-03-01

    Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Reflection and Refraction of Light in Absorbing Media

    NASA Astrophysics Data System (ADS)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  6. Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals

    NASA Astrophysics Data System (ADS)

    Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe

    2018-05-01

    Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).

  7. Drawing inspiration from biological optical systems

    NASA Astrophysics Data System (ADS)

    Wolpert, H. D.

    2009-08-01

    Bio-Mimicking/Bio-Inspiration: How can we not be inspired by Nature? Life has evolved on earth over the last 3.5 to 4 billion years. Materials formed during this time were not toxic; they were created at low temperatures and low pressures unlike many of the materials developed today. The natural materials formed are self-assembled, multifunctional, nonlinear, complex, adaptive, self-repairing and biodegradable. The designs that failed are fossils. Those that survived are the success stories. Natural materials are mostly formed from organics, inorganic crystals and amorphous phases. The materials make economic sense by optimizing the design of the structures or systems to meet multiple needs. We constantly "see" many similar strategies in approaches, between man and nature, but we seldom look at the details of natures approaches. The power of image processing, in many of natures creatures, is a detail that is often overlooked. Seldon does the engineer interact with the biologist and learn what nature has to teach us. The variety and complexity of biological materials and the optical systems formed should inspire us.

  8. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  9. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  10. Direct electro-optic effect in langasites and α-quartz

    NASA Astrophysics Data System (ADS)

    Ivanov, Vadim

    2018-05-01

    Strain-constant (clamped) electro-optic coefficients r11S of langasite La3Ga5SiO14 (LGS), langatate La3Ga5.5Ta0.5O14 (LGT), catangasite Ca3TaGa3Si2O14 (CTGS) and α-quartz are measured at 1540 nm in the frequency range of 3-25 MHz. Experimental ratio of clamped and unclamped electro-optic coefficients r11S/r11T is 0.97 for LGS, 0.91 for LGT, 0.31 for CTGS, and 0.49 for quartz. Most of direct electro-optic effect in LGS and LGT is associated with lanthanum ions: clamped electro-optic coefficient r11S in lanthanum-free CTGS is 14 times less than in LGS. Low piezoelectric contribution to unclamped electro-optic coefficient r11T makes LGS and LGT promising materials for electro-optic devices, whose performance can be deteriorated by piezoelectric effect, especially, for high-voltage optical voltage sensors.

  11. Optical properties of nanowire metamaterials with gain

    NASA Astrophysics Data System (ADS)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  12. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  13. Synthesis, growth, spectral, electrical, mechanical and thermal characterization of a potential optical material: γ-glycine single crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Jayavel, R.; Anbalagan, G.; Yadav, R. R.

    2018-06-01

    Gamma glycine, an organic material was grown by slow solvent evaporation method. Conventional polythermal method was employed in the temperature range, 30-50 °C to obtain the solubility and the metastable zonewidth. The crystal and molecular structures were analyzed by X-ray powder diffraction, FT-IR and FT-Raman spectral studies. Optical refractive index was determined by prism coupling technique and was found to be 1.4488. Electrical properties such as ac conductivity and activation energy were studied for different temperatures in the frequency range from 40 Hz to 6 MHz. The dc electrical conductivity was estimated from the Cole-Cole plot and the values were found to be 2.19 × 10-6 Sm-1 at 353K and 1.46 × 10-6 Sm-1 at 373K respectively. Mechanical studies on the grown crystal revealed that the material belongs to soft materials category. Thermal conductivity and specific heat capacities were estimated by Hot Disk Thermal Constants Analyzer.

  14. Observations and Laboratory Data of Planetary Organics

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2002-01-01

    Many efforts are underway to search for evidence of prebiotic materials in the outer solar system. Current and planned Mars missions obtain remote sensing observations that can be used to address the potential presence of prebiotic materials. Additional missions to, and continuing earth-based observations of, more distant solar system objects will also provide remote sensing observations that can be used to address the potential presence of prebiotic materials. I will present an overview of on-going observations, associated laboratory investigations of candidate materials, and theoretical modeling of observational data. In the past the room temperature reflectance spectra of many residues created from HC-bearing gases and solids have been reported. The results of an investigation of what effect temperatures more representative of outer solar system surfaces (50-140K) have on the reflectance spectra of these residues, and the associated interpretations, will be presented. The relatively organic-rich Tagish Lake Meteorite has been suggested as a spectral analog for Dtype asteroids. Using a new approach that relies upon iterative use of Hapke theory and Kraniers-Kronig analysis the optical constants of TLM were estimated. The approach and results of the analysis will be presented. Use of optical constants in scattering theories, such as the Hapke theory, provide the ability to determine quantitative estimates of the relative abundances and grain sizes of candidate surface components. This approach has been applied to interpret the reflectance spectra of several outer solar system surfaces. A summary will be provided describing the results of such modeling efforts.

  15. Ultrasonics and Optics Would Control Shot Size

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    Feedback system assures production of silicon shot of uniform size. Breakup of silicon stream into drops is controlled, in part, by varying frequency of vibrations imparted to stream by ultrasonic transducer. Drop size monitored by photodetector. Control method particularly advantageous in that constant size is maintained even while other process variables are changed deliberately or inadvertently. Applicable to materials other than silicon.

  16. Electronic structure and linear optical properties of ZnSe and ZnSe:Mn.

    PubMed

    Su, Kang; Wang, Yuhua

    2010-03-01

    As an important wide band-gap II-VI semiconductor, ZnSe has attracted much attention for its various applications in photo-electronic devices such as blue light-emitting diodes and blue-green diode lasers. Mn-doped ZnSe is an excellent quantum dot material. The electronic structures of the sphalerite ZnSe and ZnSe:Mn were calculated using the Vienna ab initio Simulation Package with ultra-soft pseudo potentials and Material Studio. The calculated equilibrium lattice constants agree well with the experimental values. Using the optimized equilibrium lattice constants, the densities of states and energy band structures were further calculated. By analyzing the partial densities of states, the contributions of different electron states in different atoms were estimated. The p states of Zn mostly contribute to the top of the valence band, and the s states of Zn and the s states of Se have major effects on the bottom of the conduction band. The calculated results of ZnSe:Mn show the band gap was changed from 2.48 to 1.1 eV. The calculated linear optical properties, such as refractive index and absorption spectrum, are in good agreement with experimental values.

  17. EXPRESS: Accurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less

  18. Optical maturity variation in lunar spectra as measured by Moon Mineralogy Mapper data

    USGS Publications Warehouse

    Nettles, J.W.; Staid, M.; Besse, S.; Boardman, J.; Clark, R.N.; Dhingra, D.; Isaacson, P.; Klima, R.; Kramer, G.; Pieters, C.M.; Taylor, L.A.

    2011-01-01

    High spectral and spatial resolution data from the Moon Mineralogy Mapper (M3) instrument on Chandrayaan-1 are used to investigate in detail changes in the optical properties of lunar materials accompanying space weathering. Three spectral parameters were developed and used to quantify spectral effects commonly thought to be associated with increasing optical maturity: an increase in spectral slope ("reddening"), a decrease in albedo ("darkening"), and loss of spectral contrast (decrease in absorption band depth). Small regions of study were defined that sample the ejecta deposits of small fresh craters that contain relatively crystalline (immature) material that grade into local background (mature) soils. Selected craters are small enough that they can be assumed to be of constant composition and thus are useful for evaluating trends in optical maturity. Color composites were also used to identify the most immature material in a region and show that maturity trends can also be identified using regional soil trends. The high resolution M3 data are well suited to quantifying the spectral changes that accompany space weathering and are able to capture subtle spectral variations in maturity trends. However, the spectral changes that occur as a function of maturity were observed to be dependent on local composition. Given the complexity of space weathering processes, this was not unexpected but poses challenges for absolute measures of optical maturity across diverse lunar terrains. Copyright 2011 by the American Geophysical Union.

  19. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  20. Functionality of bismuth sulfide quantum dots/wires-glass nanocomposite as an optical current sensor with enhanced Verdet constant

    NASA Astrophysics Data System (ADS)

    Panmand, Rajendra P.; Kumar, Ganapathy; Mahajan, Satish M.; Kulkarni, Milind V.; Amalnerkar, D. P.; Kale, Bharat B.; Gosavi, Suresh. W.

    2011-02-01

    We report optical studies with magneto-optic properties of Bi2S3 quantum dot/wires-glass nanocomposite. The size of the Q-dot was observed to be in the range 3-15 nm along with 11 nm Q-wires. Optical study clearly demonstrated the size quantization effect with drastic band gap variation with size. Faraday rotation tests on the glass nanocomposites show variation in Verdet constant with Q-dot size. Bi2S3 Q-dot/wires glass nanocomposite demonstrated 190 times enhanced Verdet constant compared to the host glass. Prima facie observations exemplify the significant enhancement in Verdet constant of Q-dot glass nanocomposites and will have potential application in magneto-optical devices.

  1. Fiber optics in composite materials: materials with nerves of glass

    NASA Astrophysics Data System (ADS)

    Measures, Raymond M.

    1990-08-01

    A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.

  2. Effect of 60Co γ-irradiation on structural and optical properties of thin films of Ga10Se80Hg10

    NASA Astrophysics Data System (ADS)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-08-01

    Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50-150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel's method. The optical band gap (Eg) was also estimated using Tauc's extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.

  3. Rationalizing the photophysical properties of BODIPY laser dyes via aromaticity and electron-donor-based structural perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waddell, Paul G.; Liu, Xiaogang; Zhao, Teng

    2015-05-01

    The absorption and fluorescence properties of six boron dipyrromethene (BODIPY) laser dyes with simple non-aromatic substituents are rationalized by relating them to observable structural perturbations within the molecules of the dyes. An empirical relationship involving the structure and the optical properties is derived using a combination of single-crystal X-ray diffraction data, quantum chemical calculations and electronic constants: i.e. the tendency of the pyrrole bond lengths towards aromaticity and the UV-vis absorption and fluorescence wavelengths correlating with the electron-donor properties of the substituents. The effect of molecular conformation on the solid-state optical properties of the dyes is also discussed. The findingsmore » in this study also demonstrate the usefulness and limitations of using crystal structure data to develop structure-property relationships in this class of optical materials, contributing to the growing effort to design optoelectronic materials with tunable properties via molecular engineering.« less

  4. FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4

    NASA Astrophysics Data System (ADS)

    Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.

    2012-12-01

    First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.

  5. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si platemore » was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.« less

  6. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.

    PubMed

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2013-05-14

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.

  7. Near-infrared radiation absorption properties of covellite (CuS) using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; College of Physics and Information Science, Hunan Normal University, Changsha 410081; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003

    2016-08-15

    First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR) absorption of covellite (CuS). The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS) as a NIR absorbing material. Our results show that covellite (CuS) exhibits NIR absorption due to its metal-like plasma oscillation inmore » the NIR range.« less

  8. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  9. A LATTICE THEORY OF THE ELECTRO-OPTIC EFFECTS IN SEMICONDUCTORS.

    DTIC Science & Technology

    A unified lattice theory of the electro - optic effect in semiconductor crystals, which encompasses the piezo-electric and elasto-optic effects, is...presented. Expressions are derived for the constant stress and constant strain electro - optic coefficients and the results are specialized to crystals of the zincblende structure. (Author)

  10. Optical and electrical characterization of high resistivity semiconductors for constant-bias microbolometer devices

    NASA Astrophysics Data System (ADS)

    Saint John, David B.

    The commercial market for uncooled infrared imaging devices has expanded in the last several decades, following the declassification of pulse-biased microbolometer-based focal plane arrays (FPAs) using vanadium oxide as the sensing material. In addition to uncooled imaging platforms based on vanadium oxide, several constant-bias microbolometer FPAs have been developed using doped hydrogenated amorphous silicon (a-Si:H) as the active sensing material. While a-Si:H and the broader Si1-xGex:H system have been studied within the context of photovoltaic (PV) devices, only recently have these materials been studied with the purpose of qualifying and optimizing them for potential use in microbolometer applications, which demand thinner films deposited onto substrates different than those used in PV. The behavior of Ge:H is of particular interest for microbolometers due to its intrinsically low resistivity without the introduction of dopants, which alter the growth behavior and frustrate any attempt to address the merits of protocrystalline a-Ge:H. This work reports the optical, microstructural, and electrical characterization and qualification of a variety of Si:H, Si1-xGex:H, and Ge:H films deposited using a plasma enhanced chemical vapor deposition (PECVD) process, including a-Ge:H films which exhibit high TCR (4-6 -%/K) and low 1/f noise at resistivities of interest for microbolometers (4000 -- 6000 O cm). Thin film deposition has been performed simultaneously with real-time optical characterization of the growth evolution dynamics, providing measurement of optical properties and surface roughness evolutions relevant to controlling the growth process for deliberate variations in film microstructure. Infrared spectroscopic ellipsometry has been used to characterize the Si-H and Ge-H absorption modes allowing assessment of the hydrogen content and local bonding behavior in thinner films than measured traditionally. This method allows IR absorption analysis of hydrogen bonding and other IR modes to be extended to arbitrary substrates, including absorbing and/or device-like substrate configurations not amenable to traditional methods of assessing hydrogen related absorption using infrared transmission measurements. In addition to novel optical assessments of hydrogen in Si1-xGe x:H films, the role of carrier type in a-Si:H has been studied, with n-type material providing a consistently higher TCR and 1/f noise character than p-type material for films of similar resistivity. As the introduction of dopant gas complicates microstructural growth, assessment of undoped material was performed, finding that only Ge-rich films possess suitable resitivities for electrical measurement. The inclusion of nanocrystalline material into otherwise amorphous films has been explored in both Si:H and Ge:H, finding that decreases in resistivity and TCR were not accompanied by a decrease in the 1/f noise character. This suggests that mixed (a+nc) Si1-xGex:H material may be less suitable for microbolometer applications than optimized amorphous material.

  11. Assessing the performance of the Tran-Blaha modified Becke-Johnson exchange potential for optical constants of semiconductors in the ultraviolet-visible light region

    NASA Astrophysics Data System (ADS)

    Nakano, Kousuke; Sakai, Tomohiro

    2018-01-01

    We report on the performance of density functional theory (DFT) with the Tran-Blaha modified Becke-Johnson exchange potential and the random phase approximation dielectric function for optical constants of semiconductors in the ultraviolet-visible (UV-Vis) light region. We calculate optical bandgaps Eg, refractive indices n, and extinction coefficients k of 70 semiconductors listed in the Handbook of Optical Constants of Solids [(Academic Press, 1985), Vol. 1; (Academic Press, 1991), Vol. 2; and (Academic Press, 1998), Vol. 3] and compare the results with experimental values. The results show that the calculated bandgaps and optical constants agree well with the experimental values to within 0.440 eV for Eg, 0.246-0.299 for n, and 0.207-0.598 for k in root mean squared error (RMSE). The small values of the RMSEs indicate that the optical constants of semiconductors in the UV-Vis region can be quantitatively predicted even by a low-cost DFT calculation of this type.

  12. Fabrication and Atomic Force Microscopy Characterization of Molecular Composites of Fullerenes in Aerogel Matrix for Optical Limiting

    NASA Technical Reports Server (NTRS)

    Lu, W. J .; Sunkara, H. B.; Shi, D.; Morgan, S. H.; Penn, B.; Frazier, D.; Collins, W. E.

    1998-01-01

    An optical limiter is a device which exhibits a decrease in the transmittance in a material with an increase in intensity of light. Sol-gel techniques offer many advantages in the fabrication of materials. These materials possess many desirable properties for nonlinear optical (NLO) device applications which include transparency, high thermal and chemical stabilities, very low refractive index and dielectric constants. C60 shows a higher excited state absorption cross section than the ground state absorption cross section over the complete visible spectrum, and the spectrum of the excited state absorption of C60 has the same general shape as the ground state absorption. This fact suggests that fullerenes are ideal optical limiting materials. Aerogels are fabricated by sol-gel processing. One of the key issues is the dispersion of fullerenes into small and uniform pores of silica aerogel host matrices. The aerogel network was characterized by Raman spectroscopy. Atomic force microscopy is a technique with many advantages to characterize the aerogel materials. The morphology of the cleaved surface for a C60/aerogel sample shows that there are long paralleled shaped stripes with 20-30 nm in width and about 500 nm in length on the cleaved surface. The cleaved surface also was etched by 5% HF solution for one minutes, and it became smoother after HF etching. The main feature in on the surface is the spherical particles with the size of few nanometers, and no aggregated fullerenes appear. The fullerenes are well dispersed in the aerogel matrices.

  13. Reflectance and optical constants for Cer-Vit from 250 to 1050 A

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.

    1974-01-01

    The reflectance for a bowl-feed polished Cer-Vit sample was measured at nine wavelengths and five angles of incidence from 15 to 85 deg. Optical constants were derived by the reflectance-vs-angle-of-incidence method and compared to previously reported values for ultralow-expansion fused silica and several other glasses. Surface-roughness corrections of the reflectance data and optical constants are discussed.

  14. Optical properties of thin gold films applied to Schottky barrier solar cells

    NASA Technical Reports Server (NTRS)

    YEH Y. M.

    1974-01-01

    The Schottky barrier solar cell is considered a possible candidate for converting solar to electrical energy both for space and terrestrial applications. Knowledge of the optical constants of the ultrathin metal film used in the cell is essential for analyzing and designing higher efficiency Schottky barrier cells. The optical constants of 7.5 -nm (75-A) gold films on gallium arsenide have been obtained. In addition, the absolute collection efficiency of Schottky barrier solar cells has been determined from measured spectral response and optical constants of the gold film.

  15. A facile growth mechanism, structural, optical, dielectric and electrical properties of ZnSe nanosphere via hydrothermal process

    NASA Astrophysics Data System (ADS)

    Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam

    2017-02-01

    Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.

  16. Holographic sol-gel monoliths: optical properties and application for humidity sensing

    NASA Astrophysics Data System (ADS)

    Ilatovskii, Daniil A.; Milichko, Valentin; Vinogradov, Alexander V.; Vinogradov, Vladimir V.

    2018-05-01

    Sol-gel monoliths based on SiO2, TiO2 and ZrO2 with holographic colourful diffraction on their surfaces were obtained via a sol-gel synthesis and soft lithography combined method. The production was carried out without any additional equipment at near room temperature and atmospheric pressure. The accurately replicated wavy structure with nanoscale size of material particles yields holographic effect and its visibility strongly depends on refractive index (RI) of materials. Addition of multi-walled carbon nanotubes (MWCNTs) in systems increases their RI and lends absorbing properties due to extremely high light absorption constant. Further prospective and intriguing applications based on the most successful samples, MWCNTs-doped titania, were investigated as reversible optical humidity sensor. Owing to such property as reversible resuspension of TiO2 nanoparticles while interacting with water, it was proved that holographic xerogels can repeatedly act as humidity sensors. Materials which can be applied as humidity sensors in dependence on holographic response were discovered for the first time.

  17. Structural, morphological and optical properties of ZnSe quantum dot thin films.

    PubMed

    Zedan, I T; Azab, A A; El-Menyawy, E M

    2016-02-05

    ZnSe powder was prepared via hydrothermal technique using zinc acetate and sodium selenite as source materials. The prepared ZnSe powder was used for preparing film with different thickness values (95, 135 and 230 nm) via thermal evaporation technique. X-ray diffraction showed that the prepared powder has cubic zinc-blende structure with a space group, F43m. The high resolution transmittance electron microscope results show that the films are composed of spherical-shaped nanoparticles with a diameter in the range of 2-8 nm. The optical properties of ZnSe films with differing thicknesses are investigated by means of spectrophotometric measurements of the photoluminescence, transmittance and reflectance. The absorption coefficient of the films is calculated and the optical band gap is estimated. The refractive index of the films is determined and its normal dispersion behavior is analyzed on the basis of a single oscillator model, in which oscillator energy, dispersion energy and dielectric constant at high frequency are evaluated. Drude model is also applied to determine the lattice dielectric constant and the ratio of the carriers' concentration to their effective mass. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis of Zn-In-S Quantum Dots with Tunable Composition and Optical Properties.

    PubMed

    Wang, Xianliang; Damasco, Jossana; Shao, Wei; Ke, Yujie; Swihart, Mark T

    2016-03-03

    II-III-VI semiconductors are of interest due to their chemical stability and composition-tunable optical properties. Here, we report a methodology for the synthesis of monodisperse zinc-indium-sulfide (ZIS) alloy quantum dots (QDs, mean diameter from ∼2 to 3.5 nm) with an In content substantially below that of the stoichiometric ZnIn2 S4 compound. The effects of indium incorporation on the size, lattice constant, and optical properties of ZIS QDs are elucidated. In contrast to previous reports, we employ sulfur dissolved in oleic acid as the sulfur donor rather than thioacetamide (TAA). The size of the ZIS QDs and their crystal lattice constant increased with increasing In incorporation, but they maintained the cubic sphalerite phase of ZnS, rather than the hexagonal phase typical of ZnIn2 S4 . The QDs' absorbance onset at UV wavelengths red-shifts with increasing In content and the accompanying increase in NC size. The ZIS NCs and related materials, whose synthesis is enabled by the approach presented here, provide new opportunities to apply II-III-VI semiconductors in solution-processed UV optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films

    NASA Astrophysics Data System (ADS)

    Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.

    2018-01-01

    Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.

  20. Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: L-Methionine-Succinic acid (2/1)

    NASA Astrophysics Data System (ADS)

    Nageshwari, M.; Kumari, C. Rathika Thaya; Vinitha, G.; Mohamed, M. Peer; Sudha, S.; Caroline, M. Lydia

    2018-03-01

    L-Methionine-Succinic acid (2/1) (LMSA), 2C5H11NO2S·C4H6O4, a novel nonlinear optical material which belongs to the class of organic category was grown-up for the first time by the technique of slow evaporation. Purity of LMSA was improved using repetitive recrystallization. LMSA was analyzed by single crystal and powder X-ray diffraction investigation to affirm the crystal structure and crystalline character. The single crystal XRD revealed that LMSA corresponds to the crystal system of triclinic with P1 as space group showing the asymmetric unit consists of a neutral succinic acid molecule and two methionine residues which are crystallographically independent existing in zwitterionic form. The functional groups existing in LMSA was accomplished using Fourier transform infrared spectroscopy. The optical transparency and the band gap energy were identified utilizing UV-Visible spectrum. The optical constants specifically reflectance and extinction coefficient clearly indicate the elevated transparency of LMSA. The thermal analyses affirmed its thermal stability. The luminescence behavior of LMSA has been analyzed by Photoluminescence (PL) spectral study. The mechanical, laser damage threshold and dielectric investigation of LMSA was done to suggest the material for practical applications. The second and third harmonic generation efficacy was confirmed by means of Kurtz-Perry and Z-scan procedure which attest its potentiality in the domain of nonlinear optics.

  1. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  2. Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system

    NASA Astrophysics Data System (ADS)

    Röhrig, C.; Scheffer, T.; Diebels, S.

    2017-09-01

    Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.

  3. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  4. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  5. Constraints on cosmic silicates

    NASA Astrophysics Data System (ADS)

    Ossenkopf, V.; Henning, Th.; Mathis, J. S.

    1992-08-01

    Observational determinations of opacities of circumstellar silicates, relative to the peak value near 10 microns, are used to estimate the optical constants n and k, the real and imaginary parts of the index of refraction. Circumstellar dust is modified by processing within the interstellar medium. This leads to higher band strengths and a somewhat larger ratio of the opacities at the 18 and 10-micron peaks, compared with circumstellar silicates. By using an effective-medium theory, we calculate the effects of small spherical inclusions of various materials (various oxides, sulfides, carbides, amorphous carbon, and metallic iron) upon silicate opacities. Some of these can increase the absorption coefficient k in the 2-8 micron region appreciably, as is needed to reconcile laboratory silicate opacities with observations of both the interstellar medium and envelopes around late-type stars. We give tables of two sets of optical constants for warm oxygen-deficient and cool oxygen-rich silicates, representative for circumstellar and interstellar silicates. The required opacity in the 2-8 micron region is provided by iron and magnetite.

  6. Development of Dielectric Material with Ceramic Matrix Composite (CMC) Produced from Kaolinite and CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Wong Swee; Hassan, Jumiah; Hashim, Mansor

    Ceramic matrix composites (CMC) combine reinforcing ceramic phases, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) with a ceramic matrix, kaolinite to create materials with new and superior properties. 10% and 20% CCTO were prepared by using a conventional solid state reaction method. CMC samples were pre-sintered at 800 deg. C and sintered at 1000 deg. C. The dielectric properties of samples were measured using HP 4192A LF Impedance Analyzer. Microstructures of the samples were observed using an optical microscope. XRD was used to determine the crystalline structure of the samples. The AFM showed the morphology of the samples. The results showed thatmore » the dielectric constant and dielectric loss factor of both samples are frequency dependent. At 10 Hz, the dielectric constant is 10{sup 11} for both samples. The CMC samples were independent with temperature with low dielectric constant in the frequency range of 10{sup 4}-10{sup 6} Hz. Since the CMC samples consist of different amount of kaolinite, so each sample exhibit different defect mechanism. Different reaction may occur for different composition of material. The effects of processing conditions on the microstructure and electrical properties of CMC are also discussed.« less

  7. Stress Tuning of Laser Crystals

    NASA Technical Reports Server (NTRS)

    Carty, Atherton A.

    1995-01-01

    The topic of stress tunable laser crystals is addressed in this study with the purpose of determining the piezo-optic coefficients of a new laser material. This data was collected using a quadruple pass birefringence technique because of its high degree of sensitivity relative to the other methods examined including fringe shift analysis using a Mach-Zender interferometer. A green He-Ne laser was passed through a light chopper and Glan-Thompson prism before entering a crystal of Erbium doped Yttrium Aluminum Garnet (Er:YAG) (used in order to validate the experimental technique). The Er:YAG crystal is mounted in a press mechanism and the laser is quadruple passed through test specimen before being returned through the prism and the orthogonally polarized portion of the beam measured with a optical sensor. At a later stage, the Er:YAG crystal was replaced with a new crystal in order to determine the piezo-optic coefficients of this uncharacterized material. The applied load was monitored with the use of a 50 lb. load cell placed in line with the press. Light transmission readings were taken using a lock-in amplifier while load cell measurements were taken with a voltmeter from a 5 volt, 0.5 amp power supply. Despite the fact that an effective crystal press damping system was developed, size limitations precluded the use of the complete system. For this reason, data points were taken only once per full turn so as to minimize the effect of non uniform load application on the collected data. Good correlation was found in the transmission data between the experimentally determined Er:YAG and the previously known peizo-optic constants of non-doped crystal with which it was compared. The variation which was found between the two could be accounted for by the aforementioned presence of Erbium in the experimental sample (for which exact empirical data was not known). The same test procedure was then carried out on a Yttrium Gallium Aluminum garnet (YGAG) for the purpose of establishing values of its unknown piezo-optic constant tensor using experimentally collected transmission data. Significant variation between the piezo-optic constants of YAG and YGAG crystals was found however, the excellent data correlation of separate experimental runs carried out on the YGAG sample demonstrates the validity of these results. The data collected during the stressing of the YGAG was of high quality, however the amount of data collected was somewhat limited by a fracture of YGAG specimen which undoubted altered the crystalline lattice structure and hence precluded any further testing.

  8. Tuning the Electronic, Optical, and Magnetic Properties of Monolayer GaSe with a Vertical Electric Field

    NASA Astrophysics Data System (ADS)

    Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong

    2018-04-01

    Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.

  9. 11th International Conference "Correlation Optics": Propolis films for hybrid biomaterial-inorganic electronics and optoelectronics.

    PubMed

    Brus, Viktor V; Pidkamin, Leonid J; Ilashchuk, Maria I; Maryanchuk, Pavlo D

    2014-04-01

    We report on the analysis of optical, polarimetric, and electrical properties of propolis films and hybrid biomaterial-inorganic heterojunctions based on them. It was shown that the material of the propolis films belongs to wide-bandgap optically active substances with the light-scattering centers, which possess complex optical properties. The values of the specific resistance ρ(P)=1.9·10⁷ Ω·cm and dielectric constant ε(P)=19.5 of the propolis film were determined from the spectral distribution of the real and imaginary components of its impedance at room temperature, respectively. The dominating current transport mechanisms through the hybrid bioinorganic heterojunction propolis/p-CdTe were established to be the interface-states-assisted generation-recombination within the depletion region via deep energy levels at forward bias as well as the leakage current through the shunt resistance at reverse bias.

  10. Elastic and photo-elastic characteristics of laser crystals potassium rare-earth tungstates KRE(WO₄)₂, where RE=Y, Yb, Gd and Lu.

    PubMed

    Mazur, M M; Velikovskiy, D Yu; Mazur, L I; Pavluk, A A; Pozhar, V E; Pustovoit, V I

    2014-07-01

    The elastic and photo-elastic characteristics of four laser crystals KY(WO₄)₂, KGd(WO₄)₂, KYb(WO₄)₂, and KLu(WO₄)₂ are presented. The first pair was reported early, and the last two materials have been investigated for the first time. The full matrix of elastic constants of these monoclinic crystals has been determined. Also, acousto-optical figure of merit for all the basic geometries of isotropic diffraction has been measured. It is proved that potassium rare-earth tungstates has rather good acousto-optical properties and particularly can take place of fused silica in technical applications required high power laser radiation. All the results demonstrate good prospect of these optically bi-axial laser crystals for development of new effective acousto-optical devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Substantial optical dielectric enhancement by volume compression in LiAsSe 2

    DOE PAGES

    Zheng, Fan; Brehm, John A.; Young, Steve M.; ...

    2016-05-15

    Based on first-principles calculations, we predict a substantial increase in the optical dielectric function of LiAsSemore » $$_2$$ under pressure. We find that the optical dielectric constant is enhanced threefold under volume compression. This enhancement is mainly due to the dimerization strength reduction of the one-dimensional (1D) As--Se chains in LiAsSe$$_2$$, which significantly alters the wavefunction phase mismatch between two neighboring chains and changes the transition intensity. By developing a tight-binding model of the interacting 1D chains, the essential features of the low-energy electronic structure of LiAsSe$$_2$$ are captured. In conclusion, our findings are important for understanding the fundamental physics of LiAsSe$$_2$$ and provide a feasible way to enhance the material optical response that can be applied to light harvesting for energy applications.« less

  12. R6G molecule induced modulation of the optical properties of reduced graphene oxide nanosheets for use in ultrasensitive SPR sensing

    PubMed Central

    Xue, Tianyu; Yu, Shansheng; Zhang, Xiaoming; Zhang, Xinzheng; Wang, Lei; Bao, Qiaoliang; Chen, Caiyun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-01

    A proper understanding of the role that molecular doping plays is essential to research on the modulation of the optical and electronic properties of graphene. The adsorption of R6G molecules onto defect-rich reduced graphene oxide nanosheets results in a shift of the Fermi energy and, consequently, a variation in the optical constants. This optical variation in the graphene nanosheets is used to develop an ultrasensitive surface plasmon resonance biosensor with a detection limit of 10−17 M (0.01 fM) at the molecular level. A density functional theory calculation shows that covalent bonds were formed between the R6G molecules and the defect sites on the graphene nanosheets. Our study reveals the important role that defects play in tailoring the properties and sensor device applications of graphene materials. PMID:26887525

  13. Optically thin hybrid cavity for terahertz photo-conductive detectors

    DOE PAGES

    Thompson, Robert J.; Siday, T.; Glass, S.; ...

    2017-01-23

    Here, the efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that themore » nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.« less

  14. Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals

    NASA Astrophysics Data System (ADS)

    Bokotey, O. V.

    2016-05-01

    This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.

  15. Radiation effects on beta /10.6/ of pure and europium doped KCl

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Maisel, J. E.; Hartford, R. H.

    1975-01-01

    Changes in the optical absorption coefficient as the result of X-ray and electron bombardment of pure monocrystalline and polycrystalline KCl and of divalent europium doped polycrystalline KCl were determined. A constant heat flow calorimetric method was used to measure the optical absorption coefficients. Both 300 kV X-ray irradiation and 2 MeV electron irradiation produced increases in the optical absorption coefficient at room temperature. X-ray irradiation produced more significant changes in pure monocrystalline KCl than equivalent amounts of electron irradiation. Electron irradiation of pure and Eu-doped polycrystalline KCl produced increases in the absorption by as much as a factor of 20 over untreated material. Bleaching of the electron-irradiated doped KCl with 649 millimicron light produced a further increase.

  16. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  17. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Ripin, D. J.; Ochoa, J. R.; Fan, T. Y.

    2005-11-01

    Thermo-optic materials properties of laser host materials have been measured to enable solid-state laser performance modeling. The thermo-optic properties include thermal diffusivity (β), specific heat at constant pressure (Cp), thermal conductivity (κ), coefficient of thermal expansion (α), thermal coefficient of the optical path length (γ) equal to (dO/dT)/L, and thermal coefficient of refractive index (dn/dT) at 1064nm; O denotes the optical path length, which is equal to the product of the refractive index (n) and sample length (L). Thermal diffusivity and specific heat were measured using laser-flash method. Thermal conductivity was deduced using measured values of β, Cp, and the density (ρ ). Thermal expansion was measured using a Michelson laser interferometer. Thermal coefficient of the optical path length was measured at 1064nm, using interference between light reflected from the front and rear facets of the sample. Thermal coefficient of the refractive index was determined, using the measured values of γ, α, and n. β and κ of Y3Al5O12, YAIO3, and LiYF4 were found to decrease, as expected, upon doping with Yb.

  18. In situ calibration of a light source in a sensor device

    DOEpatents

    Okandan, Murat; Serkland, Darwin k.; Merchant, Bion J.

    2015-12-29

    A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.

    For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less

  20. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  1. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    NASA Astrophysics Data System (ADS)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  2. Giant photoluminescence emission in crystalline faceted Si grains

    PubMed Central

    Faraci, Giuseppe; Pennisi, Agata R.; Alberti, Alessandra; Ruggeri, Rosa; Mannino, Giovanni

    2013-01-01

    Empowering an indirect band-gap material like Si with optical functionalities, firstly light emission, represents a huge advancement constantly pursued in the realization of any integrated photonic device. We report the demonstration of giant photoluminescence (PL) emission by a newly synthesized material consisting of crystalline faceted Si grains (fg-Si), a hundred nanometer in size, assembled in a porous and columnar configuration, without any post processing. A laser beam with wavelength 632.8 nm locally produce such a high temperature, determined on layers of a given thickness by Raman spectra, to induce giant PL radiation emission. The optical gain reaches the highest value ever, 0.14 cm/W, representing an increase of 3 orders of magnitude with respect to comparable data recently obtained in nanocrystals. Giant emission has been obtained from fg-Si deposited either on glass or on flexible, low cost, polymeric substrate opening the possibility to fabricate new devices. PMID:24056300

  3. Advanced FTIR technology for the chemical characterization of product wafers

    NASA Astrophysics Data System (ADS)

    Rosenthal, P. A.; Bosch-Charpenay, S.; Xu, J.; Yakovlev, V.; Solomon, P. R.

    2001-01-01

    Advances in chemically sensitive diagnostic techniques are needed for the characterization of compositionally variable materials such as chemically amplified resists, low-k dielectrics and BPSG films on product wafers. In this context, Fourier Transform Infrared (FTIR) reflectance spectroscopy is emerging as a preferred technique to characterize film chemistry and composition, due to its non-destructive nature and excellent sensitivity to molecular bonds and free carriers. While FTIR has been widely used in R&D environments, its application to mainstream production metrology and process monitoring on product wafers has historically been limited. These limitations have been eliminated in a series of recent FTIR technology advances, which include the use of 1) new sampling optics, which suppress artifact backside reflections and 2) comprehensive model-based analysis. With these recent improvements, it is now possible to characterize films on standard single-side polished product wafers with much simpler training wafer sets and machine-independent calibrations. In this new approach, the chemistry of the films is tracked via the measured infrared optical constants as opposed to conventional absorbance measurements. The extracted spectral optical constants can then be reduced to a limited set of parameters for process control. This paper describes the application of this new FTIR methodology to the characterization of 1) DUV photoresists after various processing steps, 2) low-k materials of different types and after various curing conditions, and 3) doped glass BPSG films of various concentration and, for the first time, widely different thicknesses. Such measurements can be used for improved process control on actual product wafers.

  4. Visible and Mid-Infrared Gypsum Optical Constants for Modeling of Martian Deposits

    NASA Astrophysics Data System (ADS)

    Roush, Ted L.; Esposito, Francesca; Rossmann, George R.; Colangeli, Luigi

    2007-08-01

    Introduction: Recent and on-going remote and in situ observations indicate that sulfates are present in significant abundances at various locations on Mars [1-7]. The Mars Reconnaissance Orbiter (MRO) imaging spectrometer (CRISM) is returning hyperspectral data at higher spatial resolution [8] than the OMEGA instrument on the Mars Express Mission [3]. Data from both OMEGA and CRISM have provided spectral evidence for the presence of gypsum and various hydrated sulfates on the Martian surface [e.g. 3-7] Thus, the optical properties of sulfates, in general, are of interest to quantitative interpretation of this increasing volume of remotely sensed data. This is because optical constants describe how a material interacts with electromagnetic radiation and represent the fundamental values used in radiative transfer calculations describing a variety of physical environments. Such environments include atmospheres where aerosols are present, planetary and satellite regoliths, and circumstellar dust clouds. Here we focus upon gypsum because of its applicability due to its identification on Mars. Also, gypsum is a mineral that is readily available in samples sizes that are suitable for study using a variety of spectral measurements. In the infrared (>5 μm) several studies reporting the optical constants of gypsum can be used in evaluating the approach used here. Most importantly, there is a general lack of data regarding the optical constants for gypsum at visible and mid-infrared wavelengths (0.4-5 μm) that are being observed by OMEGA and CRISM. Background: In the infrared, there have been several studies focused at determining the optical constants of gypsum using classical dispersion models [9-11]. These have used a variety of samples including; crystals, compressed pellets of pure materials, and grains suspended in a KBr matrix. Spectral measurements of gypsum, and other sulfates, have existed for about 100 years at visible and mid-infrared wavelengths (0.4-5 μm) [e.g. 12-16]. All the mid-infrared spectra exhibit distinct spectral features near 4.5 μm that are attributed to the sulfate anion [12,16]. Yet no sign of this feature is present in the infrared data used to determine the optical constants. This discrepancy, and lack of optical constants in the visible and mid-infrared prompted us to undertake an effort to estimate k-values at these wavelengths. Data Used: On-line spectral libraries are available at RELAB (http://lf314- rlds.geo.brown.edu/) and ASTER (http://speclib.jpl.nasa.gov/). Both contain spectral data and information regarding sample acquisition, characterization, preparation, and spectral measurements. The RELAB gypsum samples used here are <45 μm (SF-EAC-041-A/LASF41A) and 25-75 μm (CC-JFM-016-B/F1CC16B). The ASTER gypsum sample included in this study (SO-02B) is separated into three sieve size fractions of <45 μm, 45-125 μm, and 125-500 μm. For the RELAB data, two spectrometers (0.3-2.6 and 0.8-26 μm) were used to acquire the reflectance spectra. The first measures bidirectional reflectance while the second measures biconical reflectance. We used data from the RELAB site that was already combined. Similarly, for the ASTER data two spectrometers (0.4-2.5 and 2.0-15 μm) were used to acquire the directional-hemispherical reflectance. These individual data sets were combined in the region of overlap. The bidirectional reflectance was calculated from equation 4 of [17]. Specifically, log Rb(30°) = 1.088 log Rh, where Rb is the bidirectional reflectance with incidence and emission angles of 30° and 0°, respectively, and Rh is the hemispherical reflectance. Examination of the ASTER data revealed that the reflectance of the coarse grained sample is greater than the medium grained sample at wavelengths <1 μm. This spectral behavior is suspicious since as the grain size increases, the pathlength of photons through the material should increase and the effect should be increasing absorption resulting in a decrease in reflectance. As a result, we do not use the coarse grained data in any further analyses. As another check of our results we use the measured transmission of a gypsum crystal that includes the 0.3-2.5 μm, and in some cases to 3.5 μm, wavelength domain. Analytical Approach: [18] and [19] describe an approach to determination of the absorption coefficient, ?s from the measured reflectance spectra that relies upon Hapke's description of radiative transfer within particulate surfaces [20-22, and references therein]. Since ? is related to k via the dispersion relation, ?=4?k/?, this approach provides a mechanism of determining k. More recently, [23] describe an approach for deriving k using [24]'s description of radiative transfer within particulate surfaces. We use both of these approaches and compare the results with each other. During our analyses, we assume the average optical constants of Long et al. are accurate at wavelengths in the infrared; with the notable exception of the 4.5 μm region A treatment of light being transmitted by a slab of material is discussed in detail in [25] and [26]. Representations of the transmission of a slab is given by equations 2.74, 2.75, and 2.76 of [25], in order of decreasing complexity. We used each of these equations and compared the results with each other, and also to the results of the particulate scattering theories. Results: We identify a discrepancy between the reported available infrared optical constants of gypsum and reflectance measurements of gypsum that clearly indicates an absorption near 4.5 m.We conclude this discrepancy arises due to the relative weak nature of the 4.5 μm feature that implies previous techniques were insensitive to it's presence. We apply two different scattering theories to estimate the optical constants of gypsum in the visible and mid-infrared wavelengths. We conclude both of these theories are capable of addressing the weak features, but suffer from fundamental insensitivities where materials exhibit their highest k-values. Fortunately, this is exactly the opposite situation for optical constants determined via Fresnel reflectance measurements where they are sensitive when k is high, but insensitive when k is low.We recommend taking advantage of both techniques by applying them in the appropriate regions. This is especially true for samples where relatively thick and optically clear crystals are not readily available. We combine the results of the scattering theories with previous infrared results and calculate average n- and k-values and their associated standard deviations. We compare these with k-values estimated from transmission measurements at visible and short infrared wavelengths. We find the two derivations are in remarkable agreement. This supports the suggestion of [27] for combining the results of scattering theories with Fresnel reflectance measurements provide more accurate estimates of the optical constants of materials. Acknowledgements: TLR recognizes the important support from NASA's Planetary Geology and Geophysics and Mars Fundamental Research Programs that enabled this research. FE and LC gratefully acknowledge funding from the Italian Space Agency (ASI) under contract I/010/05/0. GRR acknowledges support from NASA's Mars Fundamental Research program. References: [1] Bandfield, J. 2002 JGR, 107, 9-1 [2] Klingerhofer et al. 2004 Science, 306, 1740 [3] Bibring, J-P. et al. 2005 Science, 307, 1576 [4] Langevin, Y. et al. 2005 Science, 307, 1584 [5] Gendrin, A. et al. 2005 Science, 307, 1587 [6] Arvidson, R. et al. (2005) Science, 307, 1591 [7] Murchie, S. et al. (2007) Lunar Planetary Sci. Conf, abstract 1472 [8] Murchie, S. et al. 2003 6th Intl. Mars. Conf. 3062 [9] Aronson, J. et al. 1983 Appl. Opt., 22, 4093 [10] Long, L. et al. 1993 IR Phys., 34, 191 [11] Marzo, G. et al. 2004 Adv. Sp. Res., 33, 2246 [12] Coblentz, W 1906 Carnegie Inst. Wash., Publ. 65 [13 Hovis, W. 1966 Appl. Opt., 5, 245 [14] Fink, U. and S. Burk 1971 Comm. Lunar. Planet. Lab., 185, 8 [15] Salisbury, J. et al. 1991 Infrared (2.1-25 mm) spectra of Minerals, John Hopkins U. Press [16] Blaney, D. and T. McCord 1995 JGR., 100, 14433 [17] Shkuratov, Y. and Y. Grynko 2005 Icarus, 173, 16 [18] Hapke, B. and E. Wells 1981 JGR., 96, 3055 [19] Clark, R. and T. Roush 1984 JGR., 89, 6329 [20] Hapke, B. 1981 JGR, 96, 3039 [21] Hapke, B. 1986 Icarus, 67, 264 [22] Hapke, B. 1993 Theory of Reflectance and Emittance Spectroscopy, Cambridge Press [23] Poulet, F. and S. Erard JGR, 109, E02009 [24] Shkuratov, Y et al. 1999 Icarus, 137, 235 [25] Bohren, C. and D. Huffman 1983 Absorption and Scattering of Light by Small Particles, Wiley [26] Heavens, O. 1970 Thin Film Physics, Methuen [27] Roush, T. 2005 Icarus 179, 259.

  5. Optical properties of γ-irradiated Bombyx mori silk fibroin films

    NASA Astrophysics Data System (ADS)

    Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.

    2015-11-01

    In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.

  6. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics.

    PubMed

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V

    2016-12-09

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q  < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  7. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    PubMed Central

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-01-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916

  8. First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong

    2018-01-01

    It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.

  9. Plant-derived cis-β-ocimene as a precursor for biocompatible, transparent, thermally-stable dielectric and encapsulating layers for organic electronics

    NASA Astrophysics Data System (ADS)

    Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.

    2016-12-01

    This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.

  10. Structural, thermal and optical characterization of an organic NLO material--benzaldehyde thiosemicarbazone monohydrate single crystals.

    PubMed

    Santhakumari, R; Ramamurthi, K

    2011-02-01

    Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ∼5.3 times that of potassium dihydrogen orthophosphate. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-01-01

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A drop of a transparent electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The drop of redox couple solution functions to create a liquid Schottky barrier at the surface of the material. Illumination light is passed through a transparent rod supported over the surface and through the drop of transparent electrolyte. The drop is held in the gap between the rod and the surface. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  12. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.

    PubMed

    Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank

    2016-02-25

    Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.

  13. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2%more » ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.« less

  14. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.

    PubMed

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-10-08

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.

  15. A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger

    PubMed Central

    Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Yang, Yang; Liu, Changjun; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects. PMID:28991195

  16. Designing optimal nanofocusing with a gradient hyperlens

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  17. Optical constants of electroplated gold from spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Synowicki, R. A.; Herzinger, Craig M.; Hall, James T.; Malingowski, Andrew

    2017-11-01

    The optical constants of an opaque electroplated gold film (Laser Gold from Epner Technology Inc.), were determined by spectroscopic ellipsometry at room temperature over the spectral range from 0.142 μm in the vacuum ultraviolet to 36 μm in the infrared (photon energy range 0.034-8.75 eV). Data from two separate ellipsometer instruments covering different spectral ranges were analyzed simultaneously. The optical constants n&k or ε1&ε2 were determined by fitting an oscillator dispersion model combining Drude, Gaussian, and Sellmeier dispersion functions to the experimental Ψ and Δ data. The data were analyzed using both an ideal bulk substrate model and a simple overlayer model to account for surface roughness. Including the optical surface roughness layer improved ellipsometric data fits in the UV, and using a separate Drude function for the surface layer improved fits in the infrared. The surface roughness was also characterized using an Atomic Force Microscope. Using an oscillator dispersion model for the optical constants determined in this work allows for more realistic extrapolation to longer infrared wavelengths. Extending optical constants out to 50 μm and beyond is important for calibrating far-infrared reflectance measurements. Applications include understanding the thermal performance of cryogenic space-based instruments, such as the James Webb Space Telescope (JWST).

  18. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  19. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    NASA Astrophysics Data System (ADS)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in <500W and kW output power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  20. Harmonic Bloch and dipole oscillations and their transition in elliptical optical waveguide arrays

    NASA Astrophysics Data System (ADS)

    Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah

    2011-03-01

    We have studied harmonic oscillations in an elliptical optical waveguide array in which the couplings between neighboring waveguides are varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, the long-living optical Bloch oscillation (BO) and dipole oscillation (DO) are obtained. Moreover, when a linear gradient in the propagation constant is applied, we achieve a switching from DO to BO and vice versa by ramping up or down the gradient profile]. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals. Work supported by the General Research Fund of the Hong Kong SAR Government.

  1. Real-time association rate constant measurement using combination tapered fiber-optic biosensor (CTFOB) dip-probes

    NASA Astrophysics Data System (ADS)

    Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh

    2010-02-01

    This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.

  2. The proton dissociation constant of additive effect on self-assembly of poly(3-hexyl-thiophene) for organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Lee, Hsu-Feng; Huang, Yi-Chiang; Jung, Yi-Jiun; Gong, Fang-Lin; Huang, Wen-Yao

    2014-07-01

    In the decision on the pros and cons of the optical and electrical properties of organic solar cells, the morphology has proven to be very important. Easy to change the morphology via adding a small amount of additive, because proton dissociation constant is the main reason for their application. In this study, the use of poly(3-hexylthiophene) and [6,6]-phenyl C 61-butyric acid methyl ester as the donor and acceptor materials, and were subsequently doped with different quantity of 4,4'-sulfonyldiphenol, 4,4'-dihydroxybiphenyl, biphenyl-4,4'-dithiol. When the proton dissociation constant is higher and lower respectively, the morphology reveals earthworms-like and fiber-like. For the reason that when the additive is biphenyl-4,4'-dithiol, it can improve the power conversion efficiency of about 27% and the incident photon-to-current conversion efficiency of about 12%.

  3. Studies on the structural, optical and dielectric properties of samarium coordinated with salicylic acid single crystal

    NASA Astrophysics Data System (ADS)

    Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.

    2018-04-01

    Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.

  4. Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Gündüz, Bayram

    2016-09-01

    N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.

  5. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  6. Fabrication of locally micro-structured fiber Bragg gratings by fs-laser machining

    NASA Astrophysics Data System (ADS)

    Dutz, Franz J.; Stephan, Valentin; Marchi, Gabriele; Koch, Alexander W.; Roths, Johannes; Huber, Heinz P.

    2018-06-01

    Here, we describe a method for producing locally micro-structured fiber Bragg gratings (LMFGB) by fs-laser machining. This technique enables the precise and reproducible ablation of cladding material to create circumferential grooves inside the claddings of optical fibers. From initial ablation experiments we acquired optimized process parameters. The fabricated grooves were located in the middle of uniform type I fiber Bragg gratings. LMFBGs with four different groove widths of 48, 85, 135 and 205 μ { {m}} were produced. The grooves exhibited constant depths of about 30 μ {m} and steep sidewall angles. With the combination of micro-structures and fiber Bragg gratings, fiber optic sensor elements with enhanced functionalities can be achieved.

  7. Enhanced Graphene Photodetector with Fractal Metasurface.

    PubMed

    Fang, Jieran; Wang, Di; DeVault, Clayton T; Chung, Ting-Fung; Chen, Yong P; Boltasseva, Alexandra; Shalaev, Vladimir M; Kildishev, Alexander V

    2017-01-11

    Graphene has been demonstrated to be a promising photodetection material because of its ultrabroadband optical absorption, compatibility with CMOS technology, and dynamic tunability in optical and electrical properties. However, being a single atomic layer thick, graphene has intrinsically small optical absorption, which hinders its incorporation with modern photodetecting systems. In this work, we propose a gold snowflake-like fractal metasurface design to realize broadband and polarization-insensitive plasmonic enhancement in graphene photodetector. We experimentally obtain an enhanced photovoltage from the fractal metasurface that is an order of magnitude greater than that generated at a plain gold-graphene edge and such an enhancement in the photovoltage sustains over the entire visible spectrum. We also observed a relatively constant photoresponse with respect to polarization angles of incident light, as a result of the combination of two orthogonally oriented concentric hexagonal fractal geometries in one metasurface.

  8. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A.R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPB for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 voltsmore » couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.« less

  9. Method and apparatus for determining minority carrier diffusion length in semiconductors

    DOEpatents

    Moore, Arnold R.

    1984-02-21

    Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon, which has a significantly small minority carrier diffusion length using the constant magnitude surface-photovoltage (SPV) method. Steady or modulated illumination at several wavelengths provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV for each wavelength. A probe electrode immersed in an electrolyte solution containing redox couples (preferably quinhydrone) having an oxidation-reduction potential (E) in the order of +0.6 to -1.65 volts couples the SPV to a measurement system. The redox couple solution functions to create a liquid Schottky barrier at the surface of the material. The Schottky barrier is contacted by merely placing the probe in the solution. The redox solution is placed over and in contact with the material to be tested and light is passed through the solution to generate the SPV. To compensate for colored redox solutions a portion of the redox solution not over the material is also illuminated for determining the color compensated light intensity. Steady red light is also used as an optical bias to reduce deleterious space-charge effects that occur in amorphous silicon.

  10. Anomalously large bend elastic constant and faster electro-optic response in anisotropic gels formed by a dipeptide

    NASA Astrophysics Data System (ADS)

    Bhargavi, R.; Nair, Geetha G.; Prasad, S. Krishna; Prabhu, Rashmi; Yelamaggad, C. V.

    2011-04-01

    We report rheological, static, and dynamic Freedericksz transformation measurements on an anisotropic thermoreversible gel formed by gelation of a nematic liquid crystal (NLC) with a monodisperse dipeptide. The storage and loss modulii obtained from a low strain oscillatory shear experiment display that the material forms a weak anisotropic gel, and undergoes a sharp thermal transition to an anisotropic sol state. Freedericksz transformation studies employing an electric field for the reorientation of the molecules present a surprising result: the gel possesses a very large Frank bend elastic constant value, which is orders of magnitude higher than that for the high temperature sol state as well as that for the neat NLC used. On the other hand, the splay elastic constant shows relatively a small increase. Further, these elastic constants show systematic but nonlinear variation with the concentration of the gelator. Attractive features of the electro-optic switching when the sol transforms to the gel state are the vanishing of the undesirable backflow effect, and nearly an order of magnitude decrease in the switching speed. In both the gel and sol states the extracted rotational viscosities are comparable to the values of the neat NLC at corresponding temperatures. In contrast, the bulk dynamic viscosity is more than three orders of magnitude higher in the gel. The studies also demonstrate that the anisotropic gel to anisotropic sol transition seen in this weak gel can be tracked by simply monitoring the static or the dynamic Freedericksz transformation.

  11. Synthesis, nucleation, growth, structural, spectral, thermal, linear and nonlinear optical studies of novel organic NLO crystal: 4-fluoro 4-nitrostilbene (FONS).

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-03-15

    A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  13. Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters

    DTIC Science & Technology

    2012-06-27

    of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE

  14. Luminescence of III-IV-V thin film alloys grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jia, Roger; Zhu, Tony; Bulović, Vladimir; Fitzgerald, Eugene A.

    2018-05-01

    III-IV-V heterovalent alloys have the potential to satisfy the need for infrared bandgap materials that also have lattice constants near GaAs. In this work, significant room temperature photoluminescence is reported for the first time in high quality III-IV-V alloys grown by metalorganic chemical vapor deposition. Pronounced phase separation, a characteristic suspected to quench luminescence in the alloys in the past, was successfully inhibited by a modified growth process. Small scale composition fluctuations were observed in the alloys; higher growth temperatures resulted in fluctuations with a striated morphology, while lower growth temperatures resulted in fluctuations with a speckled morphology. The composition fluctuations cause bandgap narrowing in the alloys—measurements of various compositions of (GaAs)1-x(Ge2)x alloys reveal a maximum energy transition of 0.8 eV under 20% Ge composition rather than a continuously increasing transition with the decreasing Ge composition. Additionally, luminescence intensity decreased with the decreasing Ge composition. The alloys appear to act as a Ge-like solid penetrating a GaAs lattice, resulting in optical properties similar to those of Ge but with a direct-bandgap nature; a decrease in the Ge composition corresponds to a reduction in the light-emitting Ge-like material within the lattice. An energy transition larger than 0.8 eV was obtained through the addition of silicon to the (GaAs)1-x(Ge2)x alloy. The results indicate significant promise for III-IV-V alloys as potential materials for small bandgap optical devices with previously unachievable lattice constants.

  15. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  16. Structural and Optical Properties of Cd 1- x Se x Thin Films Deposited by Electron Beam Evaporation Technique

    NASA Astrophysics Data System (ADS)

    Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.

    2011-10-01

    Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.

  17. Using Depletion Force to synthesize PBG crystals

    NASA Astrophysics Data System (ADS)

    Sanyal, Subrata; Zhang, Jian; Lin, Keng-Hui; Work, William J.; Yodh, A. G.

    2000-03-01

    Using the pathway of depletion-mediated crystallization, we have undertaken an exhaustive set of experiments in order to synthesize materials with novel optical and rheological properties, e.g., photonic bandgap (PBG) crystals. With the primary use of miceller depletion, we grow crystals of submicron-sized model colloidal (e.g., aqueous suspensions of polyballs or silica) particles from the walls of our sample microchambers, used for optical microscopy. Furthermore, the order of such crystals can be controlled by patterning one of the cell walls(K. H. Lin et al.), Manuscript under preparation (1999)., and after the formation of crystals the particles can be ``locked'' in their positions using chemical techniques(G. Pan et al.), Phys. Rev. Lett., 78, 3860 (1997); P. V. Braun (private communication).. The locked arrangements of particles serve as templates to fabricate(B. T. Holland et al.), Science, 281, 538 (1998); J. E. G. J. Wijnhoven et al., Science, 281, 802 (1998). microporous PBG materials. Experiments are underway to synthesize solid microspheres of high dielectric constant materials, and hollow microspheres, that can be arranged on patterned surfaces.

  18. Germanium-doped optical fiber for real-time radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mizanur Rahman, A. K. M.; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Ung, N. M.; Mat-Sharif, K. A.; Wan Abdullah, W. S.; Amouzad Mahdiraji, Ghafour; Amin, Y. M.; Maah, M. J.; Bradley, D. A.

    2015-11-01

    Over the past three decades growing demand for individualized in vivo dosimetry and subsequent dose verification has led to the pursuit of newer, novel and economically feasible materials for dosimeters. These materials are to facilitate features such as real-time sensing and fast readouts. In this paper, purposely composed SiO2:Ge optical fiber is presented as a suitable candidate for dosimetry. The optical fiber is meant to take advantage of the RL/OSL technique, providing both online remote monitoring of dose rate, and fast readouts for absorbed dose. A laboratory-assembled OSL reader has been used to acquire the RL/OSL response to LINAC irradiations (6 MV photons). The notable RL characteristics observed include constant level of luminescence for the same dose rate (providing better consistency compared to TLD-500), and linearity of response in the radiotherapy range (1 Gy/min to 6 Gy/min). The OSL curve was found to conform to an exponential decay characteristic (illumination with low LED source). The Ge doping resulted in an effective atomic number, Zeff, of 13.5 (within the bone equivalent range). The SiO2:Ge optical fiber sensor, with efficient coupling, can be a viable solution for in vivo dosimetry, besides a broad range of applications.

  19. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sajid-ur-Rehman; Butt, Faheem K.; Li, Chuanbo; Ul Haq, Bakhtiar; Tariq, Zeeshan; Aleem, F.

    2018-06-01

    This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ɛ1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.

  20. Evaluation of a single cell and candidate materials with high water content hydrogen in a generic solid oxide fuel cell stack test fixture, Part II: materials and interface characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Y. S.; Stevenson, Jeffry W.; Choi, Jung-Pyung

    2013-01-01

    A generic solid oxide fuel cell (SOFC) test fixture was developed to evaluate candidate materials under realistic conditions. A commerical 50 mm x 50 mm NiO-YSZ anode supported thin YSZ electrolyte cell with lanthanum strontium manganite (LSM) cathode was tested to evaluate the stability of candidate materials. The cell was tested in two stages at 800oC: stage I of low (~3% H2O) humidity and stage II of high (~30% H2O) humidity hydrogen fuel at constant voltage or constant current mode. Part I of the work was published earlier with information of the generic test fixture design, materials, cell performance, andmore » optical post-mortem analysis. In part II, detailed microstructure and interfacial characterizations are reported regarding the SOFC candidate materials: (Mn,Co)-spinel conductive coating, alumina coating for sealing area, ferritic stainless steel interconnect, refractory sealing glass, and their interactions with each other. Overall, the (Mn,Co)-spinel coating was very effective in minimizing Cr migration. No Cr was identified in the cathode after 1720h at 800oC. Aluminization of metallic interconnect also proved to be chemically compatible with alkaline-earth silicate sealing glass. The details of interfacial reaction and microstructure development are discussed.« less

  1. Dispersion, mode-mixing and the electron-phonon interaction in nanostructures

    NASA Astrophysics Data System (ADS)

    Dyson, A.; Ridley, B. K.

    2018-03-01

    The electron-phonon interaction with polar optical modes in nanostructures is re-examined in the light of phonon dispersion relations and the role of the Fuchs-Kliewer (FK) mode. At an interface between adjacent polar materials the frequencies of the FK mode are drawn from the dielectric constants of the adjacent materials and are significantly smaller than the corresponding frequencies of the longitudinal optic (LO) modes at the zone centre. The requirement that all polar modes satisfy mechanical and electrical boundary conditions forces the modes to become hybrids. For a hybrid to have both FK and LO components the LO mode must have the FK frequency, which can only come about through the reduction associated with phonon dispersion relations. We illustrate the effect of phonon dispersion relations on the Fröhlich interaction by considering a simple linear-chain model of the zincblende lattice. Optical and acoustic modes become mixed towards short wavelengths in both optical and acoustic branches. A study of GaAs, InP and cubic GaN and AlN shows that the polarity of the optical branch and the acousticity of the acoustic branch are reduced by dispersion in equal measures, but the effect is relatively weak. Coupling coefficients quantifying the strengths of the interaction with electrons for optical and acoustic components of mixed modes in the optical branch show that, in most cases, the polar interaction dominates the acoustic interaction, and it is reduced from the long-wavelength result towards the zone boundary by only a few percent. The effect on the lower-frequency FK mode can be large.

  2. Fast Responding Oxygen Sensor For Respiratorial Analysis

    NASA Astrophysics Data System (ADS)

    Karpf, Hellfried H.; Kroneis, H. W.; Marsoner, Hermann J.; Metzler, H.; Gravenstein, N.

    1990-02-01

    Breath-by-breath monitoring of the partial pressure of oxygen is the main interest for the development of a fast responding optical oxygen sensor. Monitoring the P02 finds its main interest in critical care, in artificial respiration, in breath by breath determination of respiratorial coefficients and in pulmonarial examinations. The requirements arising from these and similar applications are high precision, high long term stability, and time constants in the range of less than 0.1 sec. In order to cope with these requirements, we investigated different possibilities of fast P02-measurements by means of optical sensors based on fluorescence quenching. The experimental set up is simple: a rigid transparent layer is coated with a thin layer of an hydrophobic polymer which has a high permeability for oxygen. The oxygen sensitive indicator material is embedded into this polymer. An experimental set up showed time constants of 30 milliseconds. The lifetime is in the range of several months. Testing of our test equipment by an independent working group resulted in surprisingly good correlation with data obtained by mass spectroscopy.

  3. Microstructure and composition analysis of low-Z/low-Z multilayers by combining hard and resonant soft X-ray reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.

    2016-06-28

    Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less

  4. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Das, N. S.; Chattopadhyay, K. K.

    2014-07-01

    BiVO4 thin films have been prepared through radio frequency (rf) magnetron sputtering of a pre-fabricated BiVO4 target on ITO coated glass (ITO-glass) substrate and bare glass substrates. BiVO4 target material was prepared through solid-state reaction method by heating Bi2O3 and V2O5 mixture at 800 °C for 8 h. The films were characterized by X-ray diffraction, UV-Vis spectroscopy, LCR meter, field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. BiVO4 thin films deposited on the ITO-glass substrate are much smoother compared to the thin films prepared on bare glass substrate. The rms surface roughness calculated from the AFM images comes out to be 0.74 nm and 4.2 nm for the films deposited on the ITO-glass substrate and bare glass substrate for the deposition time 150 min respectively. Optical constants and energy dispersion parameters of these extra-smooth BiVO4 thin films have been investigated in detail. Dielectric properties of the BiVO4 thin films on ITO-glass substrate were also investigated. The frequency dependence of dielectric constant of the BiVO4 thin films has been measured in the frequency range from 20 Hz to 2 MHz. It was found that the dielectric constant increased from 145 to 343 at 20 Hz as the film thickness increased from 90 nm to 145 nm (deposition time increased from 60 min to 150 min). It shows higher dielectric constant compared to the literature value of BiVO4.

  5. Growth, structural, optical, thermal and mechanical properties of cytosinium hydrogen selenite: A novel nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaikumar, P.; Sathiskumar, S.; Balakrishnan, T., E-mail: balacrystalgrowth@gmail.com

    Highlights: • Growth of bulk single crystals of cytosinium hydrogen selenite (CHS) is reported. • Dielectric constant of CHS is measured as a function of Frequency and temperature. • Lower cut off value of UV–vis-NIR spectrum of CHS crystal is observed at 210 nm. • Meyer’s index value of CHS crystal calculated identifies it as a soft material. • Powder SHG efficiency of CHS is about 1.5 times that of KDP crystal. - Abstract: A novel nonlinear optical single crystal of cytosinium hydrogen selenite was grown from aqueous solution of cytosinium hydrogen selenite by slow solvent evaporation method at roommore » temperature. The structural properties of grown crystal have been studied by single crystal and powder X-ray diffraction analysis. Presence of various functional groups was identified from Fourier transform infrared spectroscopy. The optical transmittance and absorbance spectra were recorded by UV–vis-NIR spectrometer and the grown crystal possesses good transparency in the entire visible region. The dielectric constant and dielectric loss of the crystal were calculated as a function of frequency at different temperatures. The mechanical strength of the cytosinium hydrogen selenite crystal was estimated using Vicker’s microhardness tester. Etch patterns of the cytosinium hydrogen selenite crystal were obtained using distilled water as etchant for different etching time. Second harmonic generation efficiency tested using Nd:YAG laser is about 1.5 times that of KDP.« less

  6. Contamination of grazing incidence EUV mirrors - An assessment

    NASA Technical Reports Server (NTRS)

    Osantowski, John F.; Fleetwood, C. F.

    1988-01-01

    Contamination assessment for space optical systems requires an understanding of the sensitivity of component performance, e.g. mirror reflectance, to materials deposited on the mirror surface. In a previous study, the sensitivity of typical normal incidence mirror coatings to surface deposits of generic hydrocarbons was reported. Recent activity in the development of grazing incidence telescopes for extreme ultraviolet space astronomy has stimulated the need for a similar assessment in the spectral region extending from approximately 100 A to 1000 A. The model used for analysis treats the contamination layer as a continuous thin film deposited on the mirror surface. The mirror surfaces selected for this study are opaque vacuum deposited gold and the uncoated and polished Zerodur. Scatter caused by film irregularities or particulates are not included in this assessment. Parametric evaluations at 100, 500, and 1000 A determine the sensitivity of mirror reflectance to a range of optical constants selected for the generic contaminants. This sensitivity analysis combined with the limited amount of optical data in the EUV for hydrocarbons, is used to select representative optical constants for the three wavelength regions. Reflectance versus contamination layer thickness curves are then calculated and used to determine critical thickness limits based on allowable reflectance change. Initial observations indicate that thickness limits will be highly dependent on the real part of the complex index of refraction of the contaminant film being less than 1.0. Preliminary laboratory measurements of samples contaminated with some commonly encountered hydrocarbons confirm trends indicated in the analytical studies.

  7. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2009-03-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors. .

  8. Optical Properties and Aging of Gasochromic WO3

    NASA Astrophysics Data System (ADS)

    Ghosh, Rudresh; Baker, Matthew B.; Lopez, Rene

    2008-10-01

    WO3 as a possible optical gas sensor has gained increasing importance with H2 becoming a major fuel of the future. This has led to efforts to understand the theoretical and practical aspects of the gasochromic behavior of WO3. WO3 films were fabricated using pulsed laser deposition (PLD). Morphological and stoichiometric ratios of films obtained were observed as functions of deposition parameters. We present the optical constants induced by 2% H2:Ar in WO3 films. This allows us to obtain the limits of the gasochromic change in comparison to ion injection. It was found using Langmuir's adsorption equation that at low H2 concentrations a high sensitivity is predicted but the coloration could saturate at 57.9 % of the material's maximum ion adsorption. Poisoning of the films was also addressed by coating with a permeable polydimethylsiloxane layer. It is shown that gasochromic degradation is prevented thus eliminating common atmospheric gases as possible contaminants. Our studies suggest WO3 thin films as highly sensitive and stable optical hydrogen sensors.

  9. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  10. A novel magneto-optical crystal Yb:TbVO4

    NASA Astrophysics Data System (ADS)

    Zhu, Xianchao; Tu, Heng; Hu, Zhanggui

    2018-04-01

    Highly transparent Yb:TbVO4 single crystal with dimensions of Ø27 × 41 mm3 alomost without scattering defects has been successfully grown by Czochralski technique. The spectra, thermal properties and laser-induced damage threshold were investigated in detailed. The Faraday rotation (FR) measurement was carried out by means of extinction method. The Verdet constant comes up to 80 rad m-1 T-1 at 1064 nm, significantly larger than TbVO4 (58 rad m-1 T-1) and TGG (40 rad m-1 T-1) reported. Meanwhile, the as-grown crystal presents lower absorption coefficient and higher magneto-optical figure of merit at measured wavelength in comparison with TGG. Moreover, the crystal exhibits a substantially improved extinction ratio (42 dB) in contrast with TbVO4 (29 dB), and exceeds the highest value of TGG (40 dB). These advantages make Yb:TbVO4 a highly promising magneto-optical material candidate for optical isolators in the visible-near infrared region.

  11. First principles calculations of optical properties of the armchair SiC nanoribbons with O, F and H termination

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling

    2018-03-01

    Based on density functional theory, we perform first-principles investigations to study the optical properties of the O-, F- and H-terminated SiC nanoribbons with armchair edges (ASiCNRs). By irradiating with an external electromagnetic field, we calculate the dielectric function, reflection spectra, energy loss coefficient and the real part of the conductance. It is demonstrated that the optical constants are sensitive to the low-energy range, different terminal atoms do not make much difference in the shape of the curves of the optical constants for the same-width ASiCNR, and the optical constants of wider nanoribbons usually have higher peaks than that of the narrower ones in low energy range. We hope that our study helps in experimental technology of fabricating high-quality SiC-based nanoscale photoelectric device.

  12. Piezo-optic tensor of crystals from quantum-mechanical calculations.

    PubMed

    Erba, A; Ruggiero, M T; Korter, T M; Dovesi, R

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of the full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO4, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π61 constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.

  13. Piezo-optic tensor of crystals from quantum-mechanical calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erba, A., E-mail: alessandro.erba@unito.it; Dovesi, R.; Ruggiero, M. T.

    2015-10-14

    An automated computational strategy is devised for the ab initio determination of the full fourth-rank piezo-optic tensor of crystals belonging to any space group of symmetry. Elastic stiffness and compliance constants are obtained as numerical first derivatives of analytical energy gradients with respect to the strain and photo-elastic constants as numerical derivatives of analytical dielectric tensor components, which are in turn computed through a Coupled-Perturbed-Hartree-Fock/Kohn-Sham approach, with respect to the strain. Both point and translation symmetries are exploited at all steps of the calculation, within the framework of periodic boundary conditions. The scheme is applied to the determination of themore » full set of ten symmetry-independent piezo-optic constants of calcium tungstate CaWO{sub 4}, which have recently been experimentally reconstructed. Present calculations unambiguously determine the absolute sign (positive) of the π{sub 61} constant, confirm the reliability of 6 out of 10 experimentally determined constants and provide new, more accurate values for the remaining 4 constants.« less

  14. Derivation of optical constants for nanophase hematite and application to modeled abundances from in-situ Martian reflectance spectra

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.

    2018-01-01

    Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.

  15. Optical constants, single-oscillator modal and refractive index dispersion analysis of lithium zinc bismuth borate glasses doped with Eu{sup 3+} ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boda, Ramesh; Srinivas, G.; Komaraiah, D.

    2016-05-06

    The glasses of composition xLi{sub 2}O-15ZnO- 20Bi{sub 2}O{sub 3}- (64 - x) B{sub 2}O{sub 3}- 1EuO (ZLB) (where x=0, 5, 10, 15, 20 mole %) prepared by melt-quenching technique. The amorphous nature of the prepared glasses was confirmed by XRD spectra. The UV-Vis optical absorption spectrum was recorded in the wave length range of 200-1000 nm. It is observed that the optical band gap is inversely changing with Urbach energy. The optical constants such as G (a constant proportional to the second-order deformation potential) and E{sub f} (a constant that depends on local coordination and is called as free energy ofmore » the glass system). The most significant result of the present work is the refractive index dispersion curves of the ZLB glasses obey the single-oscillator model and oscillator parameters (E{sub o}, E{sub d}) changed with the Li{sub 2}O content. the absorption edge, band gap and Urbach energy is changing nonlinearly with increasing content of Li{sub 2}O, which can be used to calculate the optical, physical, and other constants.« less

  16. Current measurement by Faraday effect on GEPOPU

    NASA Astrophysics Data System (ADS)

    N, Correa; H, Chuaqui; E, Wyndham; F, Veloso; J, Valenzuela; M, Favre; H, Bhuyan

    2014-05-01

    The design and calibration of an optical current sensor using BK7 glass is presented. The current sensor is based on the polarization rotation by Faraday effect. GEPOPU is a pulsed power generator, double transit time 120ns, 1.5 Ohm impedance, coaxial geometry, where Z pinch experiment are performed. The measurements were performed at the Optics and Plasma Physics Laboratory of Pontificia Universidad Catolica de Chile. The verdet constant for two different optical materials was obtained using He-Ne laser. The values obtained are within the experimental error bars of measurements published in the literature (less than 15% difference). Two different sensor geometries were tried. We present the preliminary results for one of the geometries. The values obtained for the current agree within the measurement error with those obtained by means of a Spice simulation of the generator. Signal traces obtained are completely noise free.

  17. Synthesis, growth and characterization of 3-nitroacetanilide—A new organic nonlinear optical crystal by Bridgman technique

    NASA Astrophysics Data System (ADS)

    Lenin, M.; Ramasamy, P.

    2008-10-01

    Single crystals of 3-nitroacetanilide, an organic nonlinear optical material has been grown by the Bridgman-Stockbarger method. The single crystal X-ray diffraction (XRD) data revealed the noncentrosymmetric crystal structure, which is an essential criterion for second harmonic generation. The crystalline nature of the grown crystals was confirmed using powder XRD techniques. The functional group of the compound is identified by FTIR spectrum. The thermal stability and its tendency to grow as single crystal in solution and in melt have been identified for the new title compound. The UV-vis spectrum of mNAA shows the lower optical cut off at 400 nm and was transparent in the visible region. The second harmonic generation efficiency was found using Kurtz powder technique. The dielectric constant and dielectric loss of the crystal were measured as a function of frequency and temperature, and the results are discussed.

  18. Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx

    NASA Astrophysics Data System (ADS)

    Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.

    2018-04-01

    The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.

  19. Non-intrusive high voltage measurement using slab coupled optical sensors

    NASA Astrophysics Data System (ADS)

    Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard H.; Schultz, Stephen M.

    2014-03-01

    We present an optical fiber non-intrusive sensor for measuring high voltage transients. The sensor converts the unknown voltage to electric field, which is then measured using slab-coupled optical fiber sensor (SCOS). Since everything in the sensor except the electrodes is made of dielectric materials and due to the small field sensor size, the sensor is minimally perturbing to the measured voltage. We present the details of the sensor design, which eliminates arcing and minimizes local dielectric breakdown using Teflon blocks and insulation of the whole structure with transformer oil. The structure has a capacitance of less than 3pF and resistance greater than 10 GΩ. We show the measurement of 66.5 kV pulse with a 32.6μs time constant. The measurement matches the expected value of 67.8 kV with less than 2% error.

  20. Thermal, optical, mechanical and electrical properties of a novel NLO active L-phenylalanine L-phenylalaninium perchlorate single crystals

    NASA Astrophysics Data System (ADS)

    Cyrac Peter, A.; Vimalan, M.; Sagayaraj, P.; Madhavan, J.

    2010-01-01

    Single crystals of L-phenylalanine L-phenylalaninium perchlorate (LPAPCl), a semiorganic nonlinear (NLO) material have been successfully grown up to a size of 14 mm×5 mm×3 mm. The lattice parameters of the grown crystals are determined by single crystal XRD. The UV-Vis-NIR spectrum of LPAPCl show less optical absorption in the entire visible region. Nonlinear optical study reveals that the SHG efficiency of LPAPCl is nearly 1.4 times that of KDP. The laser damage density is found to be 7.4 GW/cm 2. The crystals are subjected to microhardness studies and the variation of the microhardness with the applied load is studied. The response of dielectric constant in the frequency region of 50 Hz to 5 MHz has been investigated. AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  1. Accurate calibration and uncertainty estimation of the normal spring constant of various AFM cantilevers.

    PubMed

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-03-10

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke's law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%.

  2. Laser-induced periodic surface structures formation: investigation of the effect of nonlinear absorption of laser energy in different materials

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš

    2017-05-01

    To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.

  3. Effects of site disorder, off-stoichiometry and epitaxial strain on the optical properties of magnetoelectric gallium ferrite.

    PubMed

    Roy, Amritendu; Mukherjee, Somdutta; Sarkar, Surajit; Auluck, Sushil; Prasad, Rajendra; Gupta, Rajeev; Garg, Ashish

    2012-10-31

    We present a combined experimental-theoretical study demonstrating the role of site disorder, off-stoichiometry and strain on the optical properties of magnetoelectric gallium ferrite. Optical properties (bandgap, refractive indices and dielectric constants) were experimentally obtained by performing ellipsometric studies over the energy range 0.8-4.2 eV on pulsed laser deposited epitaxial thin films of stoichiometric gallium ferrite with b-axis orientation and the data were compared with theoretical results. Calculations on the ground state structure show that the optical activity in GaFeO(3) arises primarily from O 2p-Fe 3d transitions. Further, inclusion of site disorder and epitaxial strain in the ground state structure significantly improves the agreement between the theory and the room temperature experimental data substantiating the presence of site disorder in the experimentally derived strained GaFeO(3) films at room temperature. We attribute the modification of the ground state optical behavior upon inclusion of site disorder to the corresponding changes in the electronic band structure, especially in Fe 3d states leading to a lowered bandgap of the material.

  4. Investigation on optical properties of Bi2.85La0.15TiNbO9 thin films by prism coupling technique

    NASA Astrophysics Data System (ADS)

    Zhang, Mingfu; Chen, Hengzhi; Yang, Bin; Cao, Wenwu

    2009-12-01

    Layered-perovskite ferroelectric Bi2.85La0.15TiNbO9 (LBTN) optical waveguiding thin films were grown on fused silica substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) revealed that the film is highly (00 l) textured. We observed sharp and distinct transverse electric (TE) and transverse magnetic (TM) multimodes and measured the refractive indices of LBTN thin films at 632.8 nm. The ordinary and extraordinary refractive indices were calculated to be n TE=2.358 and n TM=2.464, respectively. The film homogeneity and the film-substrate interface were analyzed using an improved version of the inverse Wentzel-Kramer-Brillouin (iWKB) method. The refractive index of the film remains constant at n 0 within the waveguiding layer. The average transmittance of the film is 70% in the wavelength range of 400-1400 nm and the optical waveguiding properties were evaluated by the optical prism coupling method. Our results showed that the LBTN films are very good electro-optical active material.

  5. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    NASA Astrophysics Data System (ADS)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  6. Model Stirrer Based on a Multi-Material Turntable for Microwave Processing Materials

    PubMed Central

    Ye, Jinghua; Hong, Tao; Wu, Yuanyuan; Wu, Li; Liao, Yinhong; Zhu, Huacheng; Yang, Yang; Huang, Kama

    2017-01-01

    Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%–47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials. PMID:28772457

  7. Chalcogenide Materials Fabrication and Initial Characterization for Reconfigurable Interconnect Technology

    DTIC Science & Technology

    2006-10-01

    The oxide has lower values of (n, k) than Ge2Sb2Te5, and can be etched by hydrofluoric acid or water. No change in the optical constants of the...system. Spin densities were estimated by comparison with a standard sample ( weak pitch). Details are available elsewhere [15]. Both x-ray and x...121Sb and 123Sb are 588A = G, G and G, G, respectively [17]. The simulation yields broad features near 2300 and 4400 G, which are too weak in

  8. Integrated Optical Transmitter and Receiver

    DTIC Science & Technology

    1983-02-01

    pulses appear. Only one propagating domain is present at any given time, and when one domain is extracted the next one forms at the cathode. The...formation of a propagating domain results in a reduction in current through T the device, while the current increases after a domain is extracted . As a...net * Vb2 i (3.15) where c is the dielectric constant of the material. The transconductance gm is given by g id _ 1 + + 1 2 gm 5= _ 7 isat[(Vgs Vbi)( v

  9. Wavelength dependence of Verdet constant of Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snetkov, I. L., E-mail: snetkov@appl.sci-nnov.ru; Palashov, O. V.; Permin, D. A.

    2016-04-18

    Samples of the magneto-active material—Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics with Tb{sup 3+} ion concentrations of 10%, 20%, 30%, and 100% (Tb{sub 2}O{sub 3})—were prepared and studied. The wavelength dependence of Verdet constant in the 380 nm–1750 nm range was approximated for all investigated ceramic samples and was predicted for a pure Tb{sub 2}O{sub 3} material. Tb{sub 2}O{sub 3} ceramics demonstrates a more than three times higher Verdet constant in comparison with terbium gallium garnet crystal or ceramics. The linear dependence of the Verdet constant on Tb{sup 3+} ion concentration in the Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics was demonstrated. The obtained data willmore » be useful for fabricating magneto-optical elements of Faraday devices based on Tb{sup 3+}:Y{sub 2}O{sub 3} with arbitrary Tb{sup 3+} ion concentration operating at room temperature in the wavelength range of 380 nm–1750 nm.« less

  10. Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation.

    PubMed

    Savini, Giorgio; Pisano, Giampaolo; Ade, Peter A R

    2006-12-10

    We adopted an existing formalism and modified it to simulate, with high precision, the transmission, reflection, and absorption of multiple-plate birefringent devices as a function of frequency. To validate the model, we use it to compare the measured properties of an achromatic five-plate device with a broadband antireflection coating to expectations derived from the material optical constants and its geometric configuration. The half-wave plate presented here is observed to perform well with a phase shift variation of < 2 degrees from the ideal 180 degrees over a bandwidth of Deltav/v approximately 1 at millimeter wavelengths. This formalism represents a powerful design tool for birefringent polarization modulators and enables its optical properties to be specified with high accuracy.

  11. Ultrafast Single and Multiexciton Energy Transfer in Semiconductor Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Schaller, Richard

    Photophysical processes such as fluorescence resonance energy transfer (FRET) enable optical antennas, wavelength down-conversion in light-emitting diodes (LEDs), and optical bio-sensing schemes. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells and reduced gain thresholds. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns), do not outpace biexciton Auger recombination (0.01-0.1 ns), which impedes multiexciton-driven applications including electrically-pumped lasers and carrier-multiplication-enhanced photovoltaics. Precisely controlled, few-monolayer thick semiconductor nano-platelets with tens-of-nanometer diameters exhibit intense optical transitions and hundreds-of-picosecond Auger recombination, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357.

  12. Optical transmission radiation damage and recovery stimulation of DSB: Ce3+ inorganic scintillation material

    NASA Astrophysics Data System (ADS)

    Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.

    2015-02-01

    Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.

  13. Steady-State Vacuum Ultraviolet Exposure Facility With Automated Lamp Calibration and Sample Positioning Fabricated

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Steuber, Thomas J.; Banks, Bruce A.; Dever, Joyce A.

    2000-01-01

    The Next Generation Space Telescope (NGST) will be placed in an orbit that will subject it to constant solar radiation during its planned 10-year mission. A sunshield will be necessary to passively cool the telescope, protecting it from the Sun s energy and assuring proper operating temperatures for the telescope s instruments. This sunshield will be composed of metalized polymer multilayer insulation with an outer polymer membrane (12 to 25 mm in thickness) that will be metalized on the back to assure maximum reflectance of sunlight. The sunshield must maintain mechanical integrity and optical properties for the full 10 years. This durability requirement is most challenging for the outermost, constantly solar-facing polymer membrane of the sunshield. One of the potential threats to the membrane material s durability is from vacuum ultraviolet (VUV) radiation in wavelengths below 200 nm. Such radiation can be absorbed in the bulk of these thin polymer membrane materials and degrade the polymer s optical and mechanical properties. So that a suitable membrane material can be selected that demonstrates durability to solar VUV radiation, ground-based testing of candidate materials must be conducted to simulate the total 10- year VUV exposure expected during the Next Generation Space Telescope mission. The Steady State Vacuum Ultraviolet exposure facility was designed and fabricated at the NASA Glenn Research Center at Lewis Field to provide unattended 24-hr exposure of candidate materials to VUV radiation of 3 to 5 times the Sun s intensity in the wavelength range of 115 to 200 nm. The facility s chamber, which maintains a pressure of approximately 5 10(exp -6) torr, is divided into three individual exposure cells, each with a separate VUV source and sample-positioning mechanism. The three test cells are separated by a water-cooled copper shield plate assembly to minimize thermal effects from adjacent test cells. Part of the interior sample positioning mechanism of one test cell is shown in the illustration. Of primary concern in VUV exposure is the maintenance of constant measured radiation intensity so that the sample s total exposure can be determined in equivalent Sun hours. This is complicated by the fact that a VUV lamp s intensity degrades over time, necessitating a decrease in the distance between the test samples and the lamp. The facility overcomes this challenge by periodically measuring the lamp s intensity with a cesium-iodide phototube and adjusting the sample distance as required to maintain constant exposure intensity. Sample positioning and periodic phototube location under the lamp are both achieved by a single lead-screw assembly. The lamps can be isolated from the main vacuum chamber for cleaning or replacement so that samples are not exposed to the atmosphere during a test.

  14. A 5mm catheter for constant resolution probing in Fourier domain optical coherence endoscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Wu, Lei; Xie, Huikai; Ilegbusi, Olusegun; Costa, Marco; Rolland, Jannick P.

    2007-02-01

    A 5mm biophotonic catheter was conceived for optical coherence tomography (OCT) with collimation optics, an axicon lens, and custom design imaging optics, yielding a 360 degree scan aimed at imaging within concave structures such as lung lobes. In OCT a large depth of focus is necessary to image a thick sample with a constant high transverse resolution. There are two approaches to achieving constant lateral resolution in OCT: Dynamic focusing or Bessel beam forming. This paper focuses on imaging with Bessel beams. A Bessel beam can be generated in the sample arm of the OCT interferometer when axicon optics is employed instead of a conventional focusing lens. We present a design for a 5mm catheter that combines an axicon lens with imaging optics and the coupling of a MEMS mirror attached to a micromotor that allow 360 degree scanning with a resolution of about 5 microns across a depth of focus of about 1.2mm.

  15. The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdS(1-x)Se(x) nanostructures.

    PubMed

    Dai, Jun; Zhou, Pengxia; Lu, Junfeng; Zheng, Hongge; Guo, Jiyuan; Wang, Fang; Gu, Ning; Xu, Chunxiang

    2016-01-14

    Bandgap tunable semiconductor materials have wide application in integrated-optoelectronic and communication devices. The CdS1-xSex ternary semiconductor materials covering green-red bands have been reported previously, but their basic band-gap and optical properties crucial to the performance of the CdS1-xSex-based optoelectronic devices have not been deeply understood. In this paper, we theoretically simulated and discussed the feasibility of bandgap-tunable CdS1-xSex nanomaterials for designing wavelength tunable microlasers. Then we fabricated the CdS1-xSex nanobelts with their band gap ranging from 2.4 to 1.74 eV by adjusting the composition ratio x in the vapor-phase-transport growth process. The temperature-dependent photoluminescence and exciton-related optical constants of the CdS1-xSex nanobelts were carefully demonstrated. Finally, the wavelength-tunable Fabry-Perot lasing in CdS1-xSex nanobelts was obtained, and the Fabry-Perot lasing mechanism was numerically simulated by the FDTD method. The systematic results on the mechanism of the tunable band gap, exciton properties and lasing of the CdS1-xSex nanostructure help us deeply understand the intrinsic optical properties of this material, and will build a strong foundation for future application of green-red wavelength-tunable CdS1-xSex microlasers.

  16. Interface plasmonic properties of silver coated by ultrathin metal oxides

    NASA Astrophysics Data System (ADS)

    Sytchkova, A.; Zola, D.; Grilli, M. L.; Piegari, A.; Fang, M.; He, H.; Shao, J.

    2011-09-01

    Many fields of high technology take advantage of conductor-dielectric interface properties. Deeper knowledge of physical processes that determine the optical response of the structures containing metal-dielectric interfaces is important for improving the performance of thin film devices containing such materials. Here we present a study on optical properties of several ultrathin metal oxides deposited over thin silver layers. Some widely used materials (Al2O3, SiO2, Y2O3, HfO2) were selected for deposition by r.f. sputtering, and the created metal-dielectric structures with two of them, alumina and silica, were investigated in this work using attenuated total reflectance (ATR) technique and by variable-angle spectroscopic ellipsometry (VASE). VASE was performed with a help of a commercial ellipsometer at various incident angles and in a wide spectral range. A home-made sample holder manufactured for WVASE ellipsometer and operational in Otto configuration has been implemented for angle-resolved and spectral ATR measurements. Simultaneous analysis of data obtained by these two independent techniques allows elaboration of a representative model for plasmonic-related phenomena at metal-dielectric interface. The optical constants of the interface layers formed between metal and ultrathin oxide layers are investigated. A series of oxides chosen for this study allows a comparative analysis aimed for selection of the most appropriate materials for different applications.

  17. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    NASA Astrophysics Data System (ADS)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-01

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  18. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces.

    PubMed

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian; Cremer, Johannes; Chasovskikh, Egor; Signorell, Ruth

    2015-04-21

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance for the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.

  19. Innovative acoustic technique for studying new materials and new developments in solid state physics

    NASA Astrophysics Data System (ADS)

    Maynard, Julian D.

    1993-10-01

    The goals of this project involve the use of innovative acoustic techniques to study new materials and new developments in solid state physics, such as effects in mesoscopic electronic systems. Major accomplishments include (1) the preparation and publication of a number of major papers and chapters in books, (2) the comparison of the anisotropy of an aluminum alloy quasicrystal with that of its cubic approximant, (3) the measurement of the elastic constants of a diamond substitute material, TiB2, (4) the measurement of an extremely low (possibly the lowest) infrared optical-absorption coefficient, (5) the measurement of the effects of disorder on the propagation of a nonlinear pulse, and (6) the acquisition of initial data in an experiment on the onset of fracture.

  20. Segmented nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2013-03-05

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  1. Measurements of the optical properties of thin films of silver and silver oxide

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, Robert C.; Brown, Yolanda; Gregory, John C.; Nag, Pallob K.; Christl, Ligia

    1995-01-01

    The optical properties of silver films and their oxides are measured to better characterize such films for use as sensors for atomic oxygen. Good agreement between properties of measured pure silver films and reported optical constants is observed. Similar comparisons for silver oxide have not been possible because of a lack of reported constants, but self-consistencies and discrepancies in our measured results are described.

  2. Excitonic instability in optically pumped three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Pertsova, Anna; Balatsky, Alexander V.

    2018-02-01

    Recently it was suggested that transient excitonic instability can be realized in optically pumped two-dimensional (2D) Dirac materials (DMs), such as graphene and topological insulator surface states. Here we discuss the possibility of achieving a transient excitonic condensate in optically pumped three-dimensional (3D) DMs, such as Dirac and Weyl semimetals, described by nonequilibrium chemical potentials for photoexcited electrons and holes. Similar to the equilibrium case with long-range interactions, we find that for pumped 3D DMs with screened Coulomb potential two possible excitonic phases exist, an excitonic insulator phase and the charge density wave phase originating from intranodal and internodal interactions, respectively. In the pumped case, the critical coupling for excitonic instability vanishes; therefore the two phases coexist for arbitrarily weak coupling strengths. The excitonic gap in the charge density wave phase is always the largest one. The competition between screening effects and the increase of the density of states with optical pumping results in a rich phase diagram for the transient excitonic condensate. Based on the static theory of screening, we find that under certain conditions the value of the dimensionless coupling constant screening in 3D DMs can be weaker than in 2D DMs. Furthermore, we identify the signatures of the transient excitonic condensate that could be probed by scanning tunneling spectroscopy, photoemission, and optical conductivity measurements. Finally, we provide estimates of critical temperatures and excitonic gaps for existing and hypothetical 3D DMs.

  3. Gap solitons in PT-symmetric optical lattices with higher-order diffraction.

    PubMed

    Ge, Lijuan; Shen, Ming; Ma, Chunlan; Zang, Taocheng; Dai, Lu

    2014-12-01

    The existence and stability of gap solitons are investigated in the semi-infinite gap of a parity-time (PT)-symmetric periodic potential (optical lattice) with a higher-order diffraction. The Bloch bands and band gaps of this PT-symmetric optical lattice depend crucially on the coupling constant of the fourth-order diffraction, whereas the phase transition point of this PT optical lattice remains unchangeable. The fourth-order diffraction plays a significant role in destabilizing the propagation of dipole solitons. Specifically, when the fourth-order diffraction coupling constant increases, the stable region of the dipole solitons shrinks as new regions of instability appear. However, fundamental solitons are found to be always linearly stable with arbitrary positive value of the coupling constant. We also investigate nonlinear evolution of the PT solitons under perturbation.

  4. Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2018-04-01

    This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.

  5. Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard

    2016-06-01

    The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.

  6. Solar cell array design handbook, volume 1

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1976-01-01

    Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.

  7. The measurement system of birefringence and Verdet constant of optical fiber

    NASA Astrophysics Data System (ADS)

    Huang, Yi; Chen, Li; Guo, Qiang; Pang, Fufei; Wen, Jianxiang; Shang, Yana; Wang, Tingyun

    2013-12-01

    The Faraday magneto-optical effect of optical fiber has many applications in monitoring magnetic field and electric current. When a linearly polarized light propagates in the direction of a magnetic field, the plane of polarization will rotate linearly proportional to the strength of the applied magnetic field, which following the relationship of θF =VBl. θF is the Faraday rotation angle, which is proportional to the magnetic flux density B and the Verdet constant V . However, when the optical fiber contains the effect of linear birefringence, the detection of Faraday rotation angle will depend on the line birefringence. In order to determine the Verdet constant of an optical fiber under a linear birefringence, the fiber birefringence needs to be accurately measured. In this work, a model is applied to analyze the polarization properties of an optical fiber by using the Jones matrix method. A measurement system based on the lock-in amplifier technology is designed to test the Verdet constant and the birefringence of optical fiber. The magnetic field is produced by a solenoid with a DC current. A tunable laser is intensity modulated with a motorized rotating chopper. The actuator supplies a signal as the phase-locked synchronization reference to the signal of the lock-in amplifier. The measurement accuracy is analyzed and the sensitivity of the system is optimized. In this measurement system, the Verdet constant of the SMF-28 fiber was measured to be 0.56±0.02 rad/T·m at 1550nm. This setup is well suitable for measuring the high signal-to-noise ratio (SNR) sensitivity for lock-in amplifier at a low magnetic field strength.

  8. Optically controlled dielectric properties of single-walled carbon nanotubes for terahertz wave applications.

    PubMed

    Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim

    2018-06-21

    Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.

  9. Accurate Measurement of the Optical Constants for Organic and Organophosphorous Liquid Layers and Drops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.

    We present accurate measurements for the determination of the optical constants for a series of organic liquids, including organophosphorous compounds. Bulk liquids are rarely encountered in the environment, but more commonly are present as droplets of liquids or thin layers on various substrates. Providing reference spectra to account for the plethora of morphological conditions that may be encountered under different scenarios is a challenge. An alternative approach is to provide the complex optical constants, n and k, which can be used to model the optical phenomena in media and at interfaces, minimizing the need for a vast number of laboratorymore » measurements. In this work, we present improved protocols for measuring the optical constants for a series of liquids that span the range from 7800 to 400 cm-1. The broad spectral range means that one needs to account for both the strong and weak spectral features that are encountered, all of which can be useful for detection, depending on the scenario. To span this dynamic range, both long and short cells are required for accurate measurements. The protocols are presented along with experimental and modeling results for thin layers of silicone oil on aluminum.« less

  10. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited microscopy and electromagnetic cloaking. We exploit this tunability of complex plasmon mode indices to create a compact metal-oxide-Si (MOS) field effect plasmonic modulator (or plasMOStor). By transforming the MOS gate oxide into an optical channel, amplitude modulation depths of 11.2 dB are achieved in device volumes as small as one one-fifth of a cubic wavelength. Our results indicate the accessibility of tunable refractive indices over a wide frequency band, facilitating design of a new materials class with extraordinary optical properties and applications.

  11. 25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons

    PubMed Central

    Lee, Jae-Hwang; Koh, Cheong Yang; Singer, Jonathan P; Jeon, Seog-Jin; Maldovan, Martin; Stein, Ori; Thomas, Edwin L

    2014-01-01

    The engineering of optical and acoustic material functionalities via construction of ordered local and global architectures on various length scales commensurate with and well below the characteristic length scales of photons and phonons in the material is an indispensable and powerful means to develop novel materials. In the current mature status of photonics, polymers hold a pivotal role in various application areas such as light-emission, sensing, energy, and displays, with exclusive advantages despite their relatively low dielectric constants. Moreover, in the nascent field of phononics, polymers are expected to be a superior material platform due to the ability for readily fabricated complex polymer structures possessing a wide range of mechanical behaviors, complete phononic bandgaps, and resonant architectures. In this review, polymer-centric photonic and phononic crystals and metamaterials are highlighted, and basic concepts, fabrication techniques, selected functional polymers, applications, and emerging ideas are introduced. PMID:24338738

  12. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  13. Optical Properties of Airborne Soil Organic Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veghte, Daniel P.; China, Swarup; Weis, Johannes

    Recently, airborne soil organic particles (ASOP) were reported as a type of solid organic particles emitted after water droplets impacted wet soils. Chemical constituents of ASOP are macromolecules such as polysaccharides, tannins, and lignin (derived from degradation of plants and biological organisms). Optical properties of ASOP were inferred from the quantitative analysis of the electron energy-loss spectra acquired over individual particles in the transmission electron microscope. The optical constants of ASOP are further compared with those measured for laboratory generated particles composed of Suwanee River Fulvic Acid (SRFA) reference material, which was used as a laboratory surrogate of ASOP. Themore » particle chemical compositions were analyzed using energy dispersive x-ray spectroscopy, electron energy-loss spectroscopy, and synchrotron-based scanning transmission x-ray microscopy with near edge x-ray absorption fine structure spectroscopy. ASOP and SRFA exhibit similar carbon composition, but SRFA has minor contributions of S and Na. When ASOP are heated to 350 °C their absorption increases as a result of their pyrolysis and partial volatilization of semi-volatile organic constituents. The retrieved refractive index (RI) at 532 nm of SRFA particles, ASOP, and heated ASOP were 1.22-62 0.07i, 1.29-0.07i, and 1.90-0.38i, respectively. Compared to RISRFA, RIASOP has a higher real part but similar imaginary part. These measurements of ASOP optical constants suggest that they have properties characteristic of atmospheric brown carbon and therefore their potential effects on the radiative forcing of climate need to be assessed in atmospheric models.« less

  14. Optical, dielectric and morphological studies of sol-gel derived nanocrystalline TiO2 films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Narasimha Rao, K; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2009-10-15

    Nanocrystalline TiO(2) films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000 nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO(2) film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.

  15. Optical and magnetic properties of free-standing silicene, germanene and T-graphene system

    NASA Astrophysics Data System (ADS)

    Chowdhury, Suman; Bandyopadhyay, Arka; Dhar, Namrata; Jana, Debnarayan

    2017-05-01

    The physics of two-dimensional (2D) materials is always intriguing in their own right. For all of these elemental 2D materials, a generic characteristic feature is that all the atoms of the materials are exposed on the surface, and thus tuning the structure and physical properties by surface treatments becomes very easy and straightforward. The discovery of graphene have fostered intensive research interest in the field of graphene like 2D materials such as silicene and germanene (hexagonal network of silicon and germanium, respectively). In contrast to the planar graphene lattice, the silicene and germanene honeycomb lattice is slightly buckled and composed of two vertically displaced sublattices.The magnetic properties were studied by introducing mono- and di-vacancy (DV), as well as by doping phosphorus and aluminium into the pristine silicene. It is observed that there is no magnetism in the mono-vacancy system, while there is large significant magnetic moment present for the DV system. The optical anisotropy of four differently shaped silicene nanodisks has revealed that diamond-shaped (DS) silicene nanodisk possesses highest static dielectric constant having no zero-energy states. The study of optical properties in silicene nanosheet network doped by aluminium (Al), phosphorus (P) and aluminium-phosphorus (Al-P) atoms has revealed that unlike graphene, no new electron energy loss spectra (EELS) peak occurs irrespective of doping type for parallel polarization. Tetragonal graphene (T-graphene) having non-equivalent (two kinds) bonds and non-honeycomb structure shows Dirac-like fermions and high Fermi velocity. The higher stability, large dipole moment along with high-intensity Raman active modes are observed in N-doped T-graphene. All these theoretical results may shed light on device fabrication in nano-optoelectronic technology and material characterization techniques in T-graphene, doped silicene, and germanene.

  16. Use of pre-pulse in laser spot welding of materials with high optical reflection

    NASA Astrophysics Data System (ADS)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  17. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  18. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  19. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  20. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  1. Constant volume gas cell optical phase-shifter

    DOEpatents

    Phillion, Donald W.

    2002-01-01

    A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.

  2. Stability of aerosol droplets in Bessel beam optical traps under constant and pulsed external forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Grégory; Esat, Kıvanç; Hartweg, Sebastian

    We report on the dynamics of aerosol droplets in optical traps under the influence of additional constant and pulsed external forces. Experimental results are compared with simulations of the three-dimensional droplet dynamics for two types of optical traps, the counter-propagating Bessel beam (CPBB) trap and the quadruple Bessel beam (QBB) trap. Under the influence of a constant gas flow (constant external force), the QBB trap is found to be more stable compared with the CPBB trap. By contrast, under pulsed laser excitation with laser pulse durations of nanoseconds (pulsed external force), the type of trap is of minor importance formore » the droplet stability. It typically needs pulsed laser forces that are several orders of magnitude higher than the optical forces to induce escape of the droplet from the trap. If the droplet strongly absorbs the pulsed laser light, these escape forces can be strongly reduced. The lower stability of absorbing droplets is a result of secondary thermal processes that cause droplet escape.« less

  3. Accurate Calibration and Uncertainty Estimation of the Normal Spring Constant of Various AFM Cantilevers

    PubMed Central

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-01-01

    Measurement of force on a micro- or nano-Newton scale is important when exploring the mechanical properties of materials in the biophysics and nanomechanical fields. The atomic force microscope (AFM) is widely used in microforce measurement. The cantilever probe works as an AFM force sensor, and the spring constant of the cantilever is of great significance to the accuracy of the measurement results. This paper presents a normal spring constant calibration method with the combined use of an electromagnetic balance and a homemade AFM head. When the cantilever presses the balance, its deflection is detected through an optical lever integrated in the AFM head. Meanwhile, the corresponding bending force is recorded by the balance. Then the spring constant can be simply calculated using Hooke’s law. During the calibration, a feedback loop is applied to control the deflection of the cantilever. Errors that may affect the stability of the cantilever could be compensated rapidly. Five types of commercial cantilevers with different shapes, stiffness, and operating modes were chosen to evaluate the performance of our system. Based on the uncertainty analysis, the expanded relative standard uncertainties of the normal spring constant of most measured cantilevers are believed to be better than 2%. PMID:25763650

  4. Optical characterization and bandgap engineering of flat and wrinkle-textured FA0.83Cs0.17Pb(I1-xBrx)3 perovskite thin films

    NASA Astrophysics Data System (ADS)

    Tejada, A.; Braunger, S.; Korte, L.; Albrecht, S.; Rech, B.; Guerra, J. A.

    2018-05-01

    The complex refractive indices of formamidinium cesium lead mixed-halide [FA0.83Cs0.17Pb(I1- xBrx)3] perovskite thin films of compositions ranging from x = 0 to 0.4, with both flat and wrinkle-textured surface topographies, are reported. The films are characterized using a combination of variable angle spectroscopic ellipsometry and spectral transmittance in the wavelength range of 190 nm to 850 nm. Optical constants, film thicknesses and roughness layers are obtained point-by-point by minimizing a global error function, without using optical dispersion models, and including topographical information supplied by a laser confocal microscope. To evaluate the bandgap engineering potential of the material, the optical bandgaps and Urbach energies are then accurately determined by applying a band fluctuation model for direct semiconductors, which considers both the Urbach tail and the fundamental band-to-band absorption region in a single equation. With this information, the composition yielding the optimum bandgap of 1.75 eV for a Si-perovskite tandem solar cell is determined.

  5. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter

    NASA Astrophysics Data System (ADS)

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-01

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.

  6. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal

    NASA Astrophysics Data System (ADS)

    Bharath, D.; Kalainathan, S.

    2014-11-01

    2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (OH1) phenolic locked polyene organic material has been synthesized by the Knoevenagel condensation method. OH1 single crystals were grown in methanol by a slow evaporation method. In order to avoid the multinucleation and reduce the metastable zone width, phosphoric acid is added in different concentrations. The linear optical property of OH1 crystal has been studied using UV-vis-NIR spectroscopy in the wavelength range 190-1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10-12 m2/W), nonlinear absorption (10-6 m/W) and third order nonlinear susceptibility (10-6 esu) has been studied using a Z-scan technique. Dielectric property of OH1 crystal has been studied in frequency range 50 Hz-5 MHz. Photoluminescence spectrum was recorded using a xenon lamp in the range of 450-700 nm. Laser optical damage threshold of OH1 crystal was obtained (0.62 GW/cm2) using a pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns.

  7. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  8. Optical and Electrical Characterization of Melt-Grown Bulk Indium Gallium Arsenide and Indium Arsenic Phosphide Alloys

    DTIC Science & Technology

    2011-03-01

    order to find Eg/dT, we like to start with taking second derivatives of the absorption coefficient 53 g E EE t EEe E C dE d t g , 22 2...lower band, Nh) is closely related to the Fermi-Dirac distribution, Tk EE Ef B Fexp1 1 )( . (2.1) Here f(E) is the probability of occupying...47 ., , /)( gg g EEE EEEEA EECe tg (4.3) Here the C and A parameters are constants for a given material, for instance, A is

  9. [Spectral emissivity of thin films].

    PubMed

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  10. Preparation of AgInSe2 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Yoshino, K.; Ikari, T.

    2006-09-01

    Polycrystalline AgInSe2 thin films were successfully grown on glass substrates by an evaporation method. The starting materials were stoichiometrically mixed Ag2Se and In2Se3 powders. X-ray diffraction revealed that the sample annealed at 600 °C consisted of AgInSe2 single phase, with (112) orientation and a large grain size. The lattice constant (a axis) was close to JCPDS values. From optical transmittance and reflectance measurements, the bandgap energy was estimated to be 1.17 eV.

  11. Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.

    PubMed

    Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian

    2018-05-22

    Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

  12. Stable and metastable nanowires displaying locally controllable properties

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2014-11-18

    Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.

  13. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesim, Yunus E., E-mail: yunus.kesim@bilkent.edu.tr; Battal, Enes; UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800

    2014-07-15

    Noble metals such as gold and silver have been extensively used for plasmonic applications due to their ability to support plasmons, yet they suffer from high intrinsic losses. Alternative plasmonic materials that offer low loss and tunability are desired for a new generation of efficient and agile devices. In this paper, atomic layer deposition (ALD) grown ZnO is investigated as a candidate material for plasmonic applications. Optical constants of ZnO are investigated along with figures of merit pertaining to plasmonic waveguides. We show that ZnO can alleviate the trade-off between propagation length and mode confinement width owing to tunable dielectricmore » properties. In order to demonstrate plasmonic resonances, we simulate a grating structure and computationally demonstrate an ultra-wide-band (4–15 μm) infrared absorber.« less

  14. Ultrafast carrier dynamics in the large-magnetoresistance material WTe 2

    DOE PAGES

    Dai, Y. M.; Bowlan, J.; Li, H.; ...

    2015-10-07

    In this study, ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large-magnetoresistance material WTe 2. Our experiments reveal a fast relaxation process occurring on a subpicosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of ~5–15 ps, is attributed to phonon-assisted electron-hole recombination. As the temperature decreases from 300 K, the time scale governing this process increases due to the reduction of the phonon population. However, below ~50 K, an unusual decrease of the recombination time sets in,more » most likely due to a change in the electronic structure that has been linked to the large magnetoresistance observed in this material.« less

  15. Estimated Mid-Infrared (200-2000 cm-1) Optical Constants of Some Silica Polymorphs

    NASA Astrophysics Data System (ADS)

    Glotch, Timothy; Rossman, G. R.; Michalski, J. R.

    2006-09-01

    We use Lorentz-Lorenz dispersion analysis to model the mid-infrared (200-2000 cm-1) optical constants, of opal-A, opal-CT, and tridymite. These minerals, which are all polymorphs of silica (SiO2), are potentially important in the analysis of thermal emission spectra acquired by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) and Mars Exploration Rover Mini-TES instruments in orbit and on the surface of Mars as well as emission spectra acquired by telescopes of planetary disks and dust and debris clouds in young solar systems. Mineral samples were crushed, washed, and sieved and emissivity spectra of the >100; μm size fraction were acquired at Arizona State University's emissivity spectroscopy laboratory. Therefore, the spectra and optical constants are representative of all crystal orientations. Ideally, emissivity or reflectance measurements of single polished crystals or fine powders pressed to compact disks are used for the determination of mid-infrared optical constants. Measurements of these types of surfaces eliminate or minimize multiple reflections, providing a specular surface. Our measurements, however, likely produce a reasonable approximation of specular emissivity or reflectance, as the minimum particle size is greater than the maximum wavelength of light measured. Future work will include measurement of pressed disks of powdered samples in emission and reflection, and when possible, small single crystals under an IR reflectance microscope, which will allow us to assess the variability of spectra and optical constants under different sample preparation and measurement conditions.

  16. Optical properties of pure and PbSe doped TiS2 nanodiscs

    NASA Astrophysics Data System (ADS)

    Parvaz, M.; Islamuddin; Khan, Zishan H.

    2018-06-01

    Titanium disulfide, being one of the popular transition-metal dichalcogenide (TMD) materials, shows wonderful properties owing to tunable optical band gap. Pure and PbSe doped titanium disulfide nanodiscs have been synthesized by solid-state reaction method. FESEM, TEM and Raman images confirm the synthesis of nanodiscs. XRD spectra suggest the polycrystalline structure of as-prepared as well as PbSe doped TiS2 nanodiscs. PL spectra of the as-synthesized nanodiscs has been studied in the wavelength range of (300–550 nm), at room temperature. The position of the peak shifts towards the lower wavelength (blue shift) and intensity of the PL increases after the doping of PbSe, which may be due to a broadening of the optical band gap. UV–vis spectra has been used to calculate optical band gap of pure and PbSe doped titanium disulfide nanodiscs. The calculated value are found to be 1.93 eV and 2.03 eV respectively. Various optical constants such as n and k have been calculated. The value of extinction coefficient (k) of pure and doped titanium disulfide increases while the value of the refractive index (n) decreases with increase in photon energy.

  17. All-Optical Switching and Two-States Light-Controlled Coherent-Incoherent Random Lasing in a Thiophene-Based Donor-Acceptor System.

    PubMed

    Szukalski, Adam; Ayadi, Awatef; Haupa, Karolina; El-Ghayoury, Abdelkrim; Sahraoui, Bouchta; Mysliwiec, Jaroslaw

    2018-03-30

    We describe herein the synthesis and characterization of a thiophene-based donor-acceptor system, namely (E)-2-(4-nitrostyryl)-5-phenylthiophene (Th-pNO 2 ), which was prepared under Horner-Wadsworth-Emmons conditions. The UV/Vis absorption bands, including the intramolecular charge transfer (ICT) band, were fully assigned using DFT and TD-DFT computations. The results of both efficient third-order nonlinear optical properties and light-amplification phenomena are presented. Investigations of photoinduced birefringence (PIB) in optical Kerr effect (OKE) experiments showed a great potential for this particular compound as an efficient, fully reversible, and fast optical switch. Time constants for the observed trans-cis-trans molecular transitions are in the range of microseconds and give a competitive experimental result for the well-known and exploited azobenzene derivatives. Random lasing (RL) investigations confirmed that this organic system is potentially useful to achieve strong light enhancement, observed as a multimode lasing action. Both RL and OKE measurements indicate that this material is a representative of thiophene derivatives, which can be utilized to fabricate fast all-optical switches or random lasers (light amplifiers). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.

    PubMed

    Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin

    2018-05-28

    The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7  cm 2 /W and 10 -12  cm/W, 10 -3  m 3  W -1  s -1 and 10 -24  m 6  W -1  s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.

  19. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  20. Growth, optical, luminescence, thermal and mechanical behavior of an organic single crystal: 3-Acetyl-2-methyl-4-phenylquinolin-1-ium chloride.

    PubMed

    Nirosha, M; Kalainathan, S; Sarveswari, S; Vijayakumar, V

    2014-04-05

    A single crystal of 3-acetyl-2-methyl-4-phenylquinolin-1-ium chloride has grown by slow evaporation solution growth technique using ethanol as solvent. The structural, thermal, optical and mechanical property has studied for the grown crystal. Single crystal XRD revealed that the crystal belongs to monoclinic system with space group P21/c. The presences of Functional groups in the crystallized material have confirmed using the FTIR vibrational spectrum. The optical absorbance spectrum recorded from 190 to 1100nm shows the cut-off wavelength occurs at 371nm. The material shows its transparency in the entire region of the visible spectrum. The photoluminescence spectrum shows the ultraviolet and blue emission in the crystal. Thermogravimetric and differential thermal analysis reveal the thermal stability of the grown crystal. Etching study shows the grown mechanism and surface features of the crystal. Vickers microhardness studies have carried out on the (01-1) plane to understand the mechanical properties of the grown crystal. The hardness of the title compound increases on increasing the load. The Meyer's index number (n), and the stiffness constants for different loads has calculated and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of L-Phenylalanine-based Poly(ester urea)s.

    NASA Astrophysics Data System (ADS)

    Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko

    The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.

  2. Revealing the optoelectronic and thermoelectric properties of the Zintl quaternary arsenides ACdGeAs{sub 2} (A = K, Rb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu

    Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less

  3. Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode.

    PubMed

    Gupta, Neelam

    2009-03-01

    A number of spectral imagers using acousto-optic tunable filters (AOTFs) operating from the UV to the longwave infrared (LWIR) using KDP, MgF(2), TeO(2), and Tl(3)AsSe(3) crystals to cover different spectral regions have been developed. In the LWIR there is a lack of high quality acousto-optic (AO) materials. Mercurous halide (Hg(2)Cl(2) and Hg(2)Br(2)) crystals are highly anisotropic with a high AO figure of merit due to slow acoustic velocities and high photoelastic constants and are transparent over a wide spectral region from 0.35 to 20 mum for Hg(2)Cl(2) and from 0.4 to 30 mum for Hg(2)Br(2). AO modulators, deflectors, and AOTFs based on these crystals can operate over a wide spectral range. Single crystals of these materials are being grown and some prototype devices have been fabricated. Results are presented from device characterization for an AO cell fabricated in Hg(2)Cl(2) based on longitudinal acoustic mode propagation. This device was very useful in demonstrating the AO interaction as well as soundness of the transducer bonding technique. Acoustic phase velocity is calculated and measured, diffraction efficiency is obtained from experiments, and the AO figure of merit of the sample is evaluated.

  4. Optical properties of sputtered aluminum on graphite/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Teichman, Louis A.

    1989-01-01

    Solar absorptance, emittance, and coating thickness were measured for a range of coating thicknesses from about 400 A to 2500 A. The coatings were sputtered from an aluminum target onto 1-inch-diameter substrates of T300/5209 graphite/epoxy composite material with two different surface textures. Solar absorptance and emittance values for the specimens with the smooth surface finish were lower than those for the specimens with the rough surface finish. The ratio of solar absorptance to emittance was higher for the smooth specimens, increasing from 2 to 4 over the coating thickness range, than for the rough ones, which had a constant ratio of about 1. The solar absorptance and emittance values were dependent on the thickness of the sputtered coating.

  5. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  6. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  7. Survey of Material for an Infrared-Opaque Coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained for a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising off-the-shelf binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective in reducing far-infrared reflectance; (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TiBr powder.

  8. Survey of material for an infrared-opaque coating

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon M.; Howitt, Richard V.

    1986-01-01

    More than 40 reflectance spectra in the range from 20 to 500 microns have been obtained of a variety of coatings, binders, and additives to identify promising components of an infrared-opaque coating for the Space Infrared Telescope Facility. Certain combinations of materials showed a specular reflectance below 0.1 throughout the spectral range measured. In addition to estimating the optical constants of several combination coatings, this survey also supports three qualitative conclusions: (1) promising 'off-the-shelf' binders of different additives are Chemglaze Z-306, ECP-2200, and De Soto Black; (2) carbon black is very effective reducing far-infrared reflectance; and (3) the far-infrared reflectance from coatings containing 80 SiC grit is consistently lower than that from similar coatings containing TlBr powder.

  9. The optical, vibrational, structural and elasto-optic properties of Zn{sub 0.25}Cd{sub 0.75}S{sub y}Se{sub 1-y} quaternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliwal, U.; Swarkar, C. B., E-mail: chandrabhanuswarnkar@gmail.com; Sharma, M. D.

    2016-05-06

    The optical, vibrational, structural and elasto-optic properties of quaternary II-VI alloys Zn{sub 0.25}Cd{sub 0.75}S{sub 0.25}Se{sub 0.75}, Zn{sub 0.25}Cd{sub 0.75}S{sub 0.50}Se{sub 0.50} and Zn{sub 0.25}Cd{sub 0.75}S{sub 0.75}Se{sub 0.25} are presented. Within the empirical pseudopotential method (EPM) the disorder effects are modeled via modified virtual crystal approximation (MVCA). The computed bandgaps and the refined form factors are utilized to evaluate optical, vibrational, structural and elasto-optic properties. The refractive index (n), static (ε{sub 0}) and high frequency dielectric (ε{sub ∞}) constants are calculated to reveal optical behavior of alloys. The longitudinal ω{sub LO}(0) and transverse ω{sub TO}(0) optical frequencies are obtained to seemore » vibrational characteristics. Moreover, the elastic constants (c{sub ij}) and bulk moduli (B) are computed by combining the EPM with Harrison bond orbital model. The elasto-optic nature of alloys is examined by computing the photo-elastic constants. These values are significant with regard to the opto-electronic applications especially when no experimental data are available on this system.« less

  10. Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam

    2017-09-01

    Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.

  11. Advancements in non-contact metrology of asphere and diffractive optics

    NASA Astrophysics Data System (ADS)

    DeFisher, Scott

    2017-11-01

    Advancements in optical manufacturing technology allow optical designers to implement steep aspheric or high departure surfaces into their systems. Measuring these surfaces with profilometers or CMMs can be difficult due to large surface slopes or sharp steps in the surface. OptiPro has developed UltraSurf to qualify the form and figure of steep aspheric and diffractive optics. UltraSurf is a computer controlled, non-contact coordinate measuring machine. It incorporates five air-bearing axes, linear motors, high-resolution feedback, and a non-contact probe. The measuring probe is scanned over the optical surface while maintaining perpendicularity and a constant focal offset. Multiple probe technologies are available on UltraSurf. Each probe has strengths and weaknesses relative to the material properties, surface finish, and figure error of an optical component. The measuring probes utilize absolute distance to resolve step heights and diffractive surface patterns. The non-contact scanning method avoids common pitfalls with stylus contact instruments. Advancements in measuring speed and precision has enabled fast and accurate non-contact metrology of diffractive and steep aspheric surfaces. The benefits of data sampling with twodimensional profiles and three-dimensional topography maps will be presented. In addition, accuracy, repeatability, and machine qualification will be discussed with regards to aspheres and diffractive surfaces.

  12. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.

    PubMed

    Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A

    2016-06-28

    Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.

  13. Reduction of Focal Shift Effects in Industrial Laser Beam Welding by Means of Innovative Protection Glass Concept

    NASA Astrophysics Data System (ADS)

    Hemmerich, Malte; Thiel, Christiane; Lupp, Friedrich; Hanebuth, Henning; Weber, Rudolf; Graf, Thomas

    High-power laser beam welding in industrial environment often suffers from process induced contamination of laser focusing optics. Especially exposed to this contamination is the plane protection glass which is positioned directly above the process to protect the expensive lenses from contaminations such as spatter and metal vapor. Locally increased absorption due to con-tamination leads to a temperature rise in the protection glass and a corresponding change of its optical characteristics. This results in a reduced beam quality and a shift of the focus position. Both effects lead to a reduced intensity of radiation on the workpiece causing a lower welding penetration depth. In this article we present laser beam measurements using laser processing optics with protection glasses of different materials and different grades of contamination. Welds in mild steel illustrate the extraordinary advantage of sapphire protection glasses, allowing a constant welding depth even when they are strongly contaminated. Welding results, beam caustic measurements and an estimation of economic efficiency will be shown.

  14. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.

    PubMed

    Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S

    2011-12-01

    Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Preparation and Optical Properties of GeBi Films by Using Molecular Beam Epitaxy Method

    NASA Astrophysics Data System (ADS)

    Zhang, Dainan; Liao, Yulong; Jin, Lichuan; Wen, Qi-Ye; Zhong, Zhiyong; Wen, Tianlong; Xiao, John Q.

    2017-12-01

    Ge-based alloys have drawn great interest as promising materials for their superior visible to infrared photoelectric performances. In this study, we report the preparation and optical properties of germanium-bismuth (Ge1-xBix) thin films by using molecular beam epitaxy (MBE). GeBi thin films belong to the n-type conductivity semiconductors, which have been rarely reported. With the increasing Bi-doping content from 2 to 22.2%, a series of Ge1-xBix thin film samples were obtained and characterized by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. With the increase of Bi content, the mismatch of lattice constants increases, and the GeBi film shifts from direct energy band-gaps to indirect band-gaps. The moderate increase of Bi content reduces optical reflectance and promotes the transmittance of extinction coefficient in infrared wavelengths. The absorption and transmittance of GeBi films in THz band increase with the increase of Bi contents.

  16. Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures.

    PubMed

    Wang, Tong; Puchtler, Tim J; Patra, Saroj K; Zhu, Tongtong; Jarman, John C; Oliver, Rachel A; Schulz, Stefan; Taylor, Robert A

    2017-09-21

    We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions.

  17. Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Sun, Huili; Volinsky, Alex A.; Wang, Bingjie; Tian, Baohong; Liu, Yong; Song, Kexing

    2018-02-01

    Hot compressive deformation behavior of the Cu-Zr-Ce alloy has been investigated according to the hot deformation tests in the 550-900 °C temperature range and 0.001-10 s-1 strain rate range. Based on the true stress-true strain curves, the flow stress behavior of the Cu-Zr-Ce alloy was investigated. Microstructure evolution was observed by optical microscopy. Based on the experimental results, a constitutive equation, which reflects the relationships between the stress, strain, strain rate and temperature, has been established. Material constants n, α, Q and ln A were calculated as functions of strain. The equation predicting the flow stress combined with these materials constants has been proposed. The predicted stress is consistent with experimental stress, indicating that developed constitutive equation can adequately predict the flow stress of the Cu-Zr-Ce alloy. Dynamic recrystallization critical strain was determined using the work hardening rate method. According to the dynamic material model, the processing maps for the Cu-Zr and Cu-Zr-Ce alloy were obtained at 0.4 and 0.5 strain. Based on the processing maps and microstructure observations, the optimal processing parameters for the two alloys were determined, and it was found that the addition of Ce can promote the hot workability of the Cu-Zr alloy.

  18. Optical studies of blue phase III, twist-bend and bent-core nematic liquid crystals in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Challa, Pavan Kumar

    This dissertation is mainly divided into three parts. First, the dynamic light scattering measurements on both calamitic and bent-core nematic liquid crystals, carried out in the new split-helix resistive magnet at the National High Magnetic Field Laboratory, Tallahassee is discussed. In a nematic liquid crystal the molecules tend to be aligned along a constant direction, labeled by a unit vector (or "director") n. However, there are fluctuations from this average configuration. These fluctuations are very large for long wavelengths and give rise to a strong scattering of light. The magnetic field reduces the fluctuations of liquid crystal director n. Scattered light was detected at each scattering angle ranging from 0° to 40°. The relaxation rate and inverse scattered intensity of director fluctuations exhibit a linear dependence on field-squared up to 25 Tesla. We also observe evidence of field dependence of certain nematic material parameters. In the second part of the dissertation, magneto-optical measurements on two liquid crystals that exhibit a wide temperature-range amorphous blue phase (BPIII) are discussed. Blue phase III is one of the phases that occur between chiral nematic and isotropic liquid phases. Samples were illuminated with light from blue laser; the incident polarization direction of the light was parallel to the magnetic field. The transmitted light was passed through another polarizer oriented at 90° with respect to the first polarizer and was detected by a photo-detector. Magnetic fields up to 25Tesla are found to suppress the onset of BPIII in both materials by almost 1 degree celcius. This effect appears to increase non-linearly with the field strength. The effect of high fields on established BPIII's is also discussed, in which we find significant hysteresis and very slow dynamics. Possible explanations of these results are discussed. In the third part of the dissertation, magneto-optic measurements on two odd-numbered dimer molecules that form the recently discovered twist-bend nematic (NTB) phase, which represents a new type of 3-dimensional anisotropic fluid with about 10 nm periodicity and accompanied optical stripes are discussed. In twist-bend nematic phase the director follows an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing twist and bend. The pitch of the oblique helocoid is in the nanometer range. Light from a red laser was passed normally through the sample placed between crossed polarizers oriented at 45° with respect to the vertical magnetic field. Optical birefringence was measured from the transmitted light. Magnetic field of B=25T shifts downward the N-NTB phase transitions by almost 1 Celsius. We also show that the optical stripes can be unwound by a temperature and material dependent magnetic induction in the range of B=5-25T. Finally, we propose a Helfrich-Hurault type mechanism for the optical stripe formation. Based on this model we calculate the magnetic field unwinding the optical scale stripes, and find agreement with our experimental results.

  19. Material properties and fractography of an indirect dental resin composite.

    PubMed

    Quinn, Janet B; Quinn, George D

    2010-06-01

    Determination of material and fractographic properties of a dental indirect resin composite material. A resin composite (Paradigm, 3M-ESPE, MN) was characterized by strength, static elastic modulus, Knoop hardness, fracture toughness and edge toughness. Fractographic analyses of the broken bar surfaces was accomplished with a combination of optical and SEM techniques, and included determination of the type and size of the failure origins, and fracture mirror and branching constants. The flexure test mean strength+/-standard deviation was 145+/-17 MPa, and edge toughness, T(e), was 172+/-12N/mm. Knoop hardness was load dependent, with a plateau at 0.99+/-0.02 GPa. Mirrors in the bar specimens were measured with difficulty, resulting in a mirror constant of approximately 2.6 MPa m(1/2). Fracture in the bar specimens initiated at equiaxed material flaws that had different filler concentrations that sometimes were accompanied by partial microcracks. Using the measured flaw sizes, which ranged from 35 to 100 microm in size, and using estimates of the stress intensity shape factors, fracture toughness was estimated to be 1.1+/-0.2 MPa m(1/2). Coupling the flexure tests with fractographic examination enabled identification of the intrinsic strength limiting flaws. The same techniques could be useful in determining if clinical restorations of similar materials fail from the same causes. The existence of a strong load-dependence of the Knoop hardness of the resin composite is not generally mentioned in the literature, and is important for material comparisons and wear evaluation studies. Finally, the edge toughness test was found promising as a quantitative measure of resistance to edge chipping, an important failure mode in this class of materials. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Mini-RF and LROC observations of mare crater layering relationships

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Patterson, G. W.; Cahill, J. T. S.; Bussey, D. B. J.

    2016-07-01

    The lunar maria cover approximately 17% of the Moon's surface. Discerning discrete subsurface layers in the mare provides some constraints on thickness and volume estimates of mare volcanism. Multiple types of data and measurement techniques allow probing the subsurface and provide insights into these layers, including detailed examination of impact craters, mare pits and sinuous rilles, and radar sounders. Unfortunately, radar sounding includes many uncertainties about the material properties of the lunar surface that may influence estimates of layer depth and thickness. Because they distribute material from depth onto the surface, detailed examination of impact ejecta blankets provides a reliable way to examine deeper material using orbital instruments such as cameras, spectrometers, or imaging radars. Here, we utilize Miniature Radio Frequency (Mini-RF) data to investigate the scattering characteristics of ejecta blankets of young lunar craters. We use Circular Polarization Ratio (CPR) information from twenty-two young, fresh lunar craters to examine how the scattering behavior changes as a function of radius from the crater rim. Observations across a range of crater size and relative ages exhibit significant diversity within mare regions. Five of the examined craters exhibit profiles with no shelf of constant CPR near the crater rim. Comparing these CPR profiles with LROC imagery shows that the magnitude of the CPR may be an indication of crater degradation state; this may manifest differently at radar compared to optical wavelengths. Comparisons of radar and optical data also suggest relationships between subsurface stratigraphy and structure in the mare and the block size of the material found within the ejecta blanket. Of the examined craters, twelve have shelves of approximately constant CPR as well as discrete layers outcropping in the subsurface, and nine fall along a trend line when comparing shelf-width with thickness of subsurface layers. These observations suggest that surface CPR measurements may be used to identify near-surface layering. Here, we use ejected material to probe the subsurface, allowing observations of near-surface stratigraphy that may be otherwise hidden by layers higher from remote observations.

  1. Identifying explosives using broadband millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Weatherall, James C.; Yam, Kevin; Barber, Jeffrey; Smith, Barry T.; Smith, Peter R.; Greca, Joseph

    2017-05-01

    Millimeter wave imaging is employed in Advanced Technology Imaging (AIT) systems to screen personnel for concealed explosives and weapons. AIT systems deployed in airports auto-detect potential threats by highlighting their location on a generic outline of a person using imaging data collected over a range of frequency. We show how the spectral information from the imaging data can be used to identify the composition of an anomalous object, in particular if it is an explosive material. The discriminative value of the technique was illustrated on military sheet explosive using millimeter-wave reflection data at frequencies 18 - 40 GHz, and commercial explosives using 2 - 18 GHz, but the free-space measurement was limited to a single horn with a large-area sample. This work extends the method to imaging data collected at high resolution with a 18 - 40 GHz imaging system. The identification of explosives is accomplished by extracting the dielectric constant from the free-space, multifrequency data. The reflection coefficient is a function of frequency because of propagation effects associated with the material's complex dielectric constant, which include interference from multiple reflections and energy loss in the sample. The dielectric constant is obtained by numerically fitting the reflection coefficient as a function of frequency to an optical model. In principal, the implementation of this technique in standoff imaging systems would allow threat assessment to be accomplished within the scope of millimeter-wave screening.

  2. Radiation effects on beta 10.6 of pure and europium doped KCl

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Maisel, J. E.; Hartford, R. H.

    1975-01-01

    Changes in the optical absorption coefficient as a result of X-ray and electron bombardment of pure KCl (monocrystalline and polycrystalline), and divalent europium doped polycrystalline KCl were determined. The optical absorption coefficients were measured by a constant heat flow calorimetric method. Both 300 KV X-irradiation and 2 MeV electron irradiation produced significant increases in beta 10.6, measured at room temperature. The X-irradiation of pure moncrystalline KCl increased beta 10.6 by 0.005/cm for a 113 MR dose. For an equivalent dose, 2 MeV electrons were found less efficient in changing beta 10.6. However, electron irradiation of pure and Eu-doped polycrystalline KCl produced marked increases in adsorption. Beta increased to over 0.25/cm in Eu-doped material for a 30 x 10 to the 14th power electrons/sq cm dose, a factor of 20 increase over unirradiated material. Moreover, bleaching the electron irradiated doped KCl with 649 m light produced and additional factor of 1.5 increase. These findings will be discussed in light of known defect-center properties in KCl.

  3. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wei, Jingsong; Gan, Fuxi

    2012-03-01

    The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.

  4. A Receptor-targeted Fluorescent Radiopharmaceutical for Multireporter Sentinel Lymph Node Imaging

    PubMed Central

    Emerson, Derek K.; Limmer, Karl K.; Hall, David J.; Han, Sung-Ho; Eckelman, William C.; Kane, Christopher J.; Wallace, Anne M.

    2012-01-01

    Purpose: To determine the imaging and receptor-binding properties of a multireporter probe designed for sentinel lymph node (SLN) mapping via nuclear and fluorescence detection. Materials and Methods: The animal experiments were approved by the institutional animal care and use committee. A multireporter probe was synthesized by covalently attaching cyanine 7 (Cy7), a near-infrared cyanine dye, to tilmanocept, a radiopharmaceutical that binds to a receptor specific to recticuloendothelial cells. In vitro binding assays of technetium 99m (99mTc) -labeled Cy7 tilmanocept were conducted at 4°C by using receptor-bearing macrophages. Optical SLN imaging after foot pad administration was performed by using two molar doses of Cy7 tilmanocept. Six mice were injected with 0.11 nmol of 99mTc-labeled Cy7 tilmanocept (low-dose group); an additional six mice were injected with 31 nmol of 99mTc-labeled Cy7 tilmanocept (high-dose group) to saturate the receptor sites within the SLN. After 2.5 hours of imaging, the mice were euthanized, and the sentinel and distal lymph nodes were excised and assayed for radioactivity for calculation of SLN percentage of injected dose and extraction. Four mice were used as controls for autofluorescence. Standard optical imaging software was used to plot integrated fluorescence intensity against time for calculation of the SLN uptake rate constant and scaled peak intensity. Significance was calculated by using the Student t test. Results: In vitro binding assays showed subnanomolar affinity (mean dissociation constant, 0.25 nmol/L ± 0.10 [standard deviation]). Fluorescence imaging showed a detection sensitivity of 1.6 × 103 counts · sec−1 · μW−1 per picomole of Cy7. All four imaging metrics (percentage of injected dose, SLN extraction, SLN uptake rate constant, and expected peak fluorescence intensity) exhibited higher values (P = .005 to P = .042) in the low-dose group than in the high-dose group; this finding was consistent with receptor-mediated image formation. Conclusion: The multireporter probe 99mTc-labeled Cy7 tilmanocept exhibits in vitro and in vivo receptor-binding properties for successful receptor-targeted SLN mapping with nuclear and optical imaging. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120638/-/DC1 PMID:22753678

  5. The simulation and improved design of tunable channel drop filter using hexagonal photonic crystal ring resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com

    2014-10-15

    In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less

  6. Growth and characterization of metal doped and quasi mixed crystals based on ZnCd(SCN)4

    NASA Astrophysics Data System (ADS)

    Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe

    2018-03-01

    In order to understand the effect of forming hybrid crystals by doping with metallic impurities or by quasi mixing on the physicochemical properties of the basic material crystal, we have grown by the free evaporation method at room temperature and characterized (chemically, structurally, optically and electrically) un-doped and K+/Ca2+/Mn2+/Mg2+/Cu2+ doped (with 1 mol% concentration) ZnCd(SCN)4 and ZnxCd(2-x)(SCN)4 (with x = 0.0, 0.4, 0.8, 1.2, 1.6 and 2.0) single crystals. Single crystals could be grown with x = 0.0 (leading to Cd(SCN)2) but not when x = 2.0 (leading to Zn(SCN)2). Results obtained in the present study through X-ray diffraction and EDAX spectral measurements indicate the formation of the above hybrid crystals. The optical (UV-Vis-NIR spectral and SHG efficiency) measurements indicate significant changes in optical transmittance and SHG efficiency due to doping as well as quasi mixing. Dielectric measurements made in the temperature range 40-150 °C with a fixed frequency of 1 kHz indicate a normal dielectric behavior for all the eleven crystals grown. Moreover, the present study indicates an increase of dielectric constant and SHG efficiency when ZnCd(SCN)4 crystal is doped with a metallic impurity whereas a decrease of dielectric constant and SHG efficiency when quasi mixing is done.

  7. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.

  8. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  9. Optical properties of metal-dielectric based epsilon near zero metamaterials

    NASA Astrophysics Data System (ADS)

    Subramania, Ganapathi; Fischer, Arthur; Luk, Ting

    2014-03-01

    Epsilon(ɛ) near zero(ENZ) materials are metamaterials where the effective dielectric constant(ɛ) is close to zero for a range of wavelengths resulting in zero effective displacement field (D = ɛE) and displacement current. ENZ structures are of great interest in many application areas such as optical nanocircuits, supercoupling, cloaking, emission enhancement etc. Effective ENZ behavior has been demonstrated using cut-off frequency region in a metallic waveguide where the modal index vanishes. Here we demonstrate the fabrication of ENZ metamaterials operating at visible wavelengths (λ ~ 640nm) using an effective medium approach based on a metal-dielectric composites(App. Phys. Let.,101,241107(2012)) that can act as ``bulk'' ENZ material. The structure consists of a multilayer stack composite of alternating nanoscale thickness layers of Ag and TiO2. Optical spectroscopy shows transmission and absorption response is consistent with ENZ behavior and matches well with simulations. We will discuss the criteria necessary in the design and practical implementation of the composite that better approximates a homogenous effective medium including techniques to minimize the effect of optical losses to boost transmission. The potential for hosting gain media in the gratings to address losses and emission control will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    PubMed

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  11. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  12. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  13. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  14. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared.

    PubMed

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Zakaria, Azmi; Zamiri, Golnoosh; Shabani, Mehdi; Singh, Budhendra; Ferreira, J M F

    2015-01-01

    In this paper a template-free precipitation method was used as an easy and low cost way to synthesize Ag2S semiconductor nanoparticles. The Kramers-Kronig method (K-K) and classical dispersion theory was applied to calculate the optical constants of the prepared samples, such as the reflective index n(ω) and dielectric constant ε(ω) in Far-infrared regime. Nanocrystalline Ag2S was synthesized by a wet chemical precipitation method. Ag2S nanoparticle was characterized by X-ray diffraction, Scanning Electron Microscopy, UV-visible, and FT-IR spectrometry. The refinement of the monoclinic β-Ag2S phase yielded a structure solution similar to the structure reported by Sadanaga and Sueno. The band gap of Ag2S nanoparticles is around 0.96 eV, which is in good agreement with previous reports for the band gap energy of Ag2S nanoparticles (0.9-1.1 eV). The crystallite size of the synthesized particles was obtained by Hall-Williamson plot for the synthesized Ag2S nanoparticles and it was found to be 217 nm. The Far-infrared optical constants of the prepared Ag2S semiconductor nanoparticles were evaluated by means of FTIR transmittance spectra data and K-K method. Graphical abstractThe Far-infrared optical constants of Ag2S semiconductor nanoparticles.

  15. An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study.

    PubMed

    Al-Fahdan, Najat Saeed; Asiri, Abdullah M; Irfan, Ahmad; Basaif, Salem A; El-Shishtawy, Reda M

    2014-12-01

    Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1-Cis-SQ3 and Trans-SQ1-Trans-SQ3). The effect of electron donating (-OCH3) and electron withdrawing (-COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG (inject)), relative driving force of electron injection (ΔG r (inject)), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG (inject), ΔG r (inject) and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.

  16. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II-VI semiconductor phosphors

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-04-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II-VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II-VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  17. Nuclear-spin optical rotation in xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savukov, Igor Mykhaylovich

    We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less

  18. Nuclear-spin optical rotation in xenon

    DOE PAGES

    Savukov, Igor Mykhaylovich

    2015-10-29

    We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less

  19. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  20. VNIR reflectance spectroscopy of glassy igneous material with variable oxidation states

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Di Genova, Danilo; Roush, Ted L.; Ertel-Ingrisch, Werner; Capaccioni, Fabrizio; Dingwell, Donald B.

    2017-04-01

    Silicate glasses with igneous compositions may represent an abundant component of planetary surface material via effusive volcanism or impact cratering processes. Several planetary surfaces are mapped with hyper-spectrometers in the visible and near-infrared (VNIR). In this spectral range, crystal field (C.F.) absorptions are useful to discriminate iron-bearing silicate components. At the same time, in the VNIR reflectance spectroscopy iron bearing glasses may exhibit a C.F. absorption at ˜1.1 μm. A weak C.F. absorption is also present at ˜1.9 μm. These absorptions can be therefore diagnostic for glassy component and can also affect the C.F. absorptions of mafic minerals when mixed in the regolith. So far, few studies investigated the spectral properties of systematic glasses compositions and at different oxygen fucacity. For these reasons studying glassy materials, and their optical constants, represents an important effort to document and to interpret, spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In previous work Carli et al. (2016) considered the composition of glassy igneous materials produced in Earth-like atmospheric conditions (i.e. oxidized conditions). Here, we expand on that effort by including glasses formed under more reducing condition. In this study, glasses were produced at -9.3 log fO2 and 1400 ˚ C for a duration of 4 h at the Department of Earth and Environmental Sciences at the University of Munich using a gas-mixing furnace. The major element composition, sample homogeneity, and the Fe3+/Fetot. ratio of run products were analytically determined. Moreover, Raman spectra of the same samples were also acquired. Afterwards, powders were produced with nine-grain size from 250-224 μm to 50-20 μm and measured in bidirectional reflectance at Spectroscopy LABoratory (IAPS-INAF, Rome). Reflectance spectra were acquired from 0.35 to 2.5 μm with a Field-Pro Spectrometer mounted on a goniometer. Spectra were obtained with incident and emission angles of 30˚ and 0˚ , respectively. Spectra showed both diagnostic bands, reflectance diminished with increasing iron abundance. The comparison with spectra collected from samples sythetized at "Earth-like" atmospheric conditions showed: 1) Relatively higher reflectance in the visible; 2) less red slope in the IR; 3) deeper 1.1 μm absorption band. Following Carli et al. (2016, Icarus), for all the spectra acquired at each grain size, we apply the radiative transfer model to estimate the optical constant as a wavelength's function. Finally, we will report the retrieved optical constants for our samples and we will compare them with those obtained from the same composition but at "Earth-like" atmospheric conditions. Reference: Carli et al. 2016, Icarus, doi:10.1016/j.icarus.2015.10.032.

  1. Modeling the reflectance spectrum of Callisto 0.25 to 4.1μm

    USGS Publications Warehouse

    Calvin, Wendy M.; Clark, Roger N.

    1991-01-01

    The reflectance spectrum of Callisto from 0.2 to 4.1 μm is modeled using a simultaneous intimate plus areal mixture solution of ice and dark material which satisfies absorption band depths and reflectance levels. The model uses the radiative transfer theory based on Hapke's (1981, J. Geophys. Res. 86, 3039–3054) work, optical constants of materials and includes effects of grain size and abundance of each material. The best-fitting models contain 20–45 wt% ice in the optical surface. The models indicate that the ice component of the surface is fairly large gained and that the ice cannot account for major spectral features beyond approximately 2.5 μm. In this spectral region other hydrated minerals must dominate. A variety of reasonably well-fitting models were found and the amount of ice determined for these best fits was mathematically removed from the original Callisto spectrum. All of the spectra determined for the non-material were quite similar to each other and have absorption features that resemble hydrated silicates bearing both oxidation states of iron. Certain features in the Callisto non-ice spectrum can be duplicated by mixtures of Fe- and Mg-end member serpentines. Discrepancies indicate that other phases, possibly opaque minerals, are also required to match the entire spectrum. The unusual Fe-serpentines are commonly found in the matrices of primitive cabodnaceous chondrites, suggesting that other matrix phases may also be likely candidates for the Callisto non-ice material.

  2. Encapsulation of the heteroepitaxial growth of wide band gap γ-CuCl on silicon substrates

    NASA Astrophysics Data System (ADS)

    Lucas, F. O.; O'Reilly, L.; Natarajan, G.; McNally, P. J.; Daniels, S.; Taylor, D. M.; William, S.; Cameron, D. C.; Bradley, A. L.; Miltra, A.

    2006-01-01

    γ-CuCl semiconductor material has been identified as a candidate material for the fabrication of blue-UV optoelectronic devices on Si substrates due to its outstanding electronic, lattice and optical properties. However, CuCl thin films oxidise completely into oxyhalides of Cu II within a few days of exposure to air. Conventional encapsulation of thin γ-CuCl by sealed glass at a deposition/curing temperature greater than 250 °C cannot be used because CuCl interacts chemically with Si substrates when heated above that temperature. In this study we have investigated the behaviour of three candidate dielectric materials for use as protective layers for the heteroepitaxial growth of γ-CuCl on Si substrates: SiO 2 deposited by plasma-enhanced chemical vapour deposition (PECVD), organic polysilsesquioxane-based spin on glass material (PSSQ) and cyclo olefin copolymer (COC) thermoplastic-based material. The optical properties (UV/Vis and IR) of the capped luminescent CuCl films were studied as a function of time, up to 28 days and compared with bare uncapped films. The results clearly show the efficiency of the protective layers. Both COC and the PSSQ layer prevented CuCl film from oxidising while SiO 2 delayed the effect of oxidation. The dielectric constant of the three protective layers was evaluated at 1 MHz to be 2.3, 3.6 and 6.9 for C0C, SiO 2 and PSSQ, respectively.

  3. DUV or EUV: that is the question

    NASA Astrophysics Data System (ADS)

    Williamson, David M.

    2000-11-01

    Lord Rayleigh's well-known equations for resolution and depth of focus indicate that resolution is better improved by reducing the wavelength of light rather than by increasing the numerical aperture (NA) of the projection optics, particularly when NA is approaching its physical limit of 1.0 in air (or vacuum). Vector aerial image simulations of diffraction-limited Deep Ultraviolet (DUV) and Extreme Ultraviolet (EUV) lithographic systems verify this simple view, even though Rayleigh's constants in Microlithography are not constant because of a variety of image enhancement techniques that attempt to compensate for the shortcomings of the aerial image when it is pushed to the limit. The aerial image is not the whole story, however. The competition between DUV and EUV systems will be decided more by economic and technological factors such as risk, time and cost of development and cost of ownership. These in turn depend on cost, availability and quality of light sources, refracting materials, photoresists and reticles.

  4. First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol

    Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules, a typical approach has been to use a finite, appropriately passivated TiO2 nanocrystal in order to limit the computational demand. In real systems on the other hand, the size of nanocrystalline TiO2 is of the order of several hundreds of nanometers, and hence, they can be considered to be essentially bulk-like. The question is then, whether finite TiO2 nanoparticles can accurately model the optical properties of bulk TiO2. I show in my thesis that the optical absorption absorption spectra of such TiO2 nanocrystals do not have the particular features seen in the imaginary part of the bulk dielectric function of TiO 2 associated with the van Hove singularities in the electronic density of states. Instead, the absorption spectra of bulk-terminated TiO2 nanocrystals can be reproduced quite well by the Mie-Gans theory.

  5. Material properties and fractography of an indirect dental resin composite

    PubMed Central

    Quinn, Janet B.; Quinn, George D.

    2011-01-01

    Objectives Determination of material and fractographic properties of a dental indirect resin composite material. Methods A resin composite (Paradigm, 3M-ESPE, MN) was characterized by strength, static elastic modulus, Knoop hardness, fracture toughness and edge toughness. Fractographic analyses of the broken bar surfaces was accomplished with a combination of optical and SEM techniques, and included determination of the type and size of the failure origins, and fracture mirror and branching constants. Results The flexure test mean strength ± standard deviation was 145 MPA ± 17 MPa, and edge toughness, Te, was 172 N/mm ±12 N/mm. Knoop hardness was load dependent, with a plateau at 0.99 GPa ± .02 GPa. Mirrors in the bar specimens were measured with difficulty, resulting in a mirror constant of approximately 2.6 MPa·m1/2. Fracture in the bar specimens initiated at equiaxed material flaws that had different filler concentrations that sometimes were accompanied by partial microcracks. Using the measured flaw sizes, which ranged from 35 µm to 100 µm in size, and estimates of the stress intensity shape factors, fracture toughness was estimated to be 1.1 MPa·m1/2 ± 0.2 MPa·m1/2. Significance Coupling the flexure tests with fractographic examination enabled identification of the intrinsic strength limiting flaws. The same techniques could be useful in determining if clinical restorations of similar materials fail from the same causes. The existence of a strong load-dependence of the Knoop hardness of the resin composite is not generally mentioned in the literature, and is important for material comparisons and wear evaluation studies. Finally, the edge toughness test was found promising as a quantitative measure of resistance to edge chipping, an important failure mode in this class of materials. PMID:20304478

  6. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  7. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  8. Fabrication and Characterization of N-Type Zinc Oxide/P-Type Boron Doped Diamond Heterojunction

    NASA Astrophysics Data System (ADS)

    Marton, Marián; Mikolášek, Miroslav; Bruncko, Jaroslav; Novotný, Ivan; Ižák, Tibor; Vojs, Marian; Kozak, Halyna; Varga, Marián; Artemenko, Anna; Kromka, Alexander

    2015-09-01

    Diamond and ZnO are very promising wide-bandgap materials for electronic, photovoltaic and sensor applications because of their excellent electrical, optical, physical and electrochemical properties and biocompatibility. In this contribution we show that the combination of these two materials opens up the potential for fabrication of bipolar heterojunctions. Semiconducting boron doped diamond (BDD) thin films were grown on Si and UV grade silica glass substrates by HFCVD method with various boron concentration in the gas mixture. Doped zinc oxide (ZnO:Al, ZnO:Ge) thin layers were deposited by diode sputtering and pulsed lased deposition as the second semiconducting layer on the diamond films. The amount of dopants within the films was varied to obtain optimal semiconducting properties to form a bipolar p-n junction. Finally, different ZnO/BDD heterostructures were prepared and analyzed. Raman spectroscopy, SEM, Hall constant and I-V measurements were used to investigate the quality, structural and electrical properties of deposited heterostructures, respectively. I-V measurements of ZnO/BDD diodes show a rectifying ratio of 55 at ±4 V. We found that only very low dopant concentrations for both semiconducting materials enabled us to fabricate a functional p-n junction. Obtained results are promising for fabrication of optically transparent ZnO/BDD bipolar heterojunction.

  9. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  10. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    PubMed

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  11. FIBER OPTICS: Method of calculation of the propagation constant for guided modes

    NASA Astrophysics Data System (ADS)

    Ardasheva, L. I.; Sadykov, Nail R.; Chernyakov, V. E.

    1992-09-01

    A new method of calculating the propagation constants and wave eigenfunctions of guided modes is proposed for axisymmetric translationally invariant fiber-optic waveguides with arbitrary refractive index profiles. The method is based on solving a parabolic scalar wave equation. A comparison is made between the numerical solution under steady-state conditions and the eigenfunctions of single-mode and multimode waveguides.

  12. Quantitative determination of band distortions in diamond attenuated total reflectance infrared spectra.

    PubMed

    Boulet-Audet, Maxime; Buffeteau, Thierry; Boudreault, Simon; Daugey, Nicolas; Pézolet, Michel

    2010-06-24

    Due to its unmatched hardness and chemical inertia, diamond offers many advantages over other materials for extreme conditions and routine analysis by attenuated total reflection (ATR) infrared spectroscopy. Its low refractive index can offer up to a 6-fold absorbance increase compared to germanium. Unfortunately, it also results for strong bands in spectral distortions compared to transmission experiments. The aim of this paper is to present a methodological approach to determine quantitatively the degree of the spectral distortions in ATR spectra. This approach requires the determination of the optical constants (refractive index and extinction coefficient) of the investigated sample. As a typical example, the optical constants of the fibroin protein of the silk worm Bombyx mori have been determined from the polarized ATR spectra obtained using both diamond and germanium internal reflection elements. The positions found for the amide I band by germanium and diamond ATR are respectively 6 and 17 cm(-1) lower than the true value dtermined from the k(nu) spectrum, which is calculated to be 1659 cm(-1). To determine quantitatively the effect of relevant parameters such as the film thickness and the protein concentration, various spectral simulations have also been performed. The use of a thinner film probed by light polarized in the plane of incidence and diluting the protein sample can help in obtaining ATR spectra that are closer to their transmittance counterparts. To extend this study to any system, the ATR distortion amplitude has been evaluated using spectral simulations performed for bands of various intensities and widths. From these simulations, a simple empirical relationship has been found to estimate the band shift from the experimental band height and width that could be of practical use for ATR users. This paper shows that the determination of optical constants provides an efficient way to recover the true spectrum shape and band frequencies of distorted ATR spectra.

  13. Development of New Electro-Optic and Acousto-Optic Materials.

    DTIC Science & Technology

    1983-11-01

    Improved materials are required for active optical devices, including electro - optic and acousto-optic modulators, switches and tunable filters, as...many microwave applications. In addition, electro - optic and acousto-optic devices are materials limited because the materials currently available are...these materials for applications involving the electro - optic effect, degenerate four-wave mixing and surface acoustic wave technology.

  14. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  15. Solvent dependent triphenylamine based D-(pi-A)n type dye molecules and optical properties.

    PubMed

    Li, Xiaochuan; Son, Young-A; Kim, Young-Sung; Kim, Sung-Hoon; Kun, Jun; Shin, Jong-Il

    2012-02-01

    D-(pi-A)n type dyes of triphenylamine derivatives were synthesized and their absorption and luminescence in different solvents were examined to investigate solvent dependent properties observed for their emissions in solvents with different dielectric constants. The emission wavelengths showed a dramatic blue shift with increasing solvent polarity. The results of molecular orbital calculations by computer simulation, based on Material Studio suite of programs, were found to reasonably account for the spectral properties. Relative levels of HOMO and LUMO were measured and calculated and all derivatives exhibited strong solid fluorescence with distinctively different FWHMs.

  16. Textile fibers coated with carbon nanotubes for smart clothing applications

    NASA Astrophysics Data System (ADS)

    Lepak, Sandra; Lalek, Bartłomiej; Janczak, Daniel; Dybowska-Sarapuk, Łucja; Krzemiński, Jakub; Jakubowska, Małgorzata; Łekawa-Raus, Agnieszka

    2017-08-01

    Carbon nanomaterials: graphene, fullerenes and in particular carbon nanotubes (CNTs) are extremely interesting and extraordinary materials. It is mostly thanks to theirs unusual electrical and mechanical properties. Carbon nanotubes are increasingly examined to enable its usage in many fields of science and technology. It has been reported that there is a high possibility to use CNTs in electronics, optics, material engineering, biology or medicine. However, this material still interests and inspire scientists around the world and the list of different CNTs applications is constantly expanding. In this paper we are presenting a study on the possibility of application carbon nanotubes as a textile fiber coating for smart clothing applications. Various suspensions and pastes containing CNTs have been prepared as a possible coating onto textile fibers. Different application techniques have also been tested. Those techniques included painting with nanotube suspension, spray coating of suspensions and immersion. Following textile fibers were subject to tests: cotton, silk, polyester, polyamide and wool. Obtained composites materials were then characterized electrically by measuring the electrical resistance.

  17. Spectrophotometry and organic matter on Iapetus. 1: Composition models

    NASA Technical Reports Server (NTRS)

    Wilson, Peter D.; Sagan, Carl

    1995-01-01

    Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.

  18. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  19. Linear, non-linear and thermal properties of single crystal of LHMHCl

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  20. Noncontact three-dimensional quantitative profiling of fast aspheric lenses by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore

    2016-12-01

    The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.

  1. Highly strained InAlP/InGaAs-based coupled double quantum wells on InP substrates

    NASA Astrophysics Data System (ADS)

    Gozu, Shin-ichiro; Mozume, Teruo

    2018-05-01

    InAlP/InGaAs based coupled double quantum wells (CDQWs) are proposed for optelectronic devices utilizing intersubband transitions. The aim of the proposed CDQW structure was to reduce the Al volume as compared with that in InGaAs/AlAsSb(AlAs/InAlAs) based CDQWs. By careful consideration of the band gap energy as well as conduction band offset and lattice constants for III–V materials, highly strained InAlP was chosen as the barrier material. With the appropriate CDQW structure and under the optimized growth conditions, proposed CDQWs exhibited clear X-ray diffraction satellite peaks, and almost identical optical absorption spectrum as compared with the InGaAs/AlAs/InAlAs CDQWs.

  2. Weak-guidance-theory review of dispersion and birefringence management by laser inscription

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Reid, D. T.

    2008-01-01

    A brief review of laser inscription of micro- and nanophotonic structures in transparent materials is provided in terms of a compact and convenient formalism based on the theory of weak optical waveguides. We derive physically instructive approximate expressions allowing propagation constants of laser-inscribed micro- and nanowaveguides to be calculated as functions of the transverse waveguide size, refractive index step, and dielectric properties of the host material. Based on this analysis, we demonstrate that dispersion engineering capabilities of laser micromachining techniques are limited by the smallness of the refractive index step typical of laser-inscribed structures. However, a laser inscription of waveguides in pre-formed micro- and nanostructures suggests a variety of interesting options for a fine dispersion and birefringence tuning of small-size waveguides and photonic wires.

  3. Optical constants of SrF 2 thin films in the 25-780-eV spectral range

    DOE PAGES

    Rodriguez-de Marcos, Luis; Larraguert, Juan I.; Aznarez, Jose A.; ...

    2013-04-08

    The transmittance and the optical constants of SrF 2 thin films, a candidate material for multilayer coatings operating in the extreme ultraviolet and soft x-rays, have been determined in the spectral range of 25–780 eV, in most of which no experimental data were previously available. SrF 2 films of various thicknesses were deposited by evaporation onto room-temperature, thin Al support films, and their transmittance was measured with synchrotron radiation. The transmittance as a function of film thickness was used to calculate the extinction coefficient k at each photon energy. A decrease in density with increasing SrF 2 film thickness wasmore » observed. In the calculation of k, this effect was circumvented by fitting the transmittance versus the product of thickness and density. The real part of the refractive index of SrF 2 films was calculated from k with Kramers-Krönig analysis, for which the measured spectral range was extended both to lower and to higher photon energies with data in the literature combined with interpolations and extrapolations. In conclusion, with the application of f- and inertial sum rules, the consistency of the compiled data was found to be excellent.« less

  4. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    NASA Astrophysics Data System (ADS)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2018-06-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  5. 1998 Conference on Precision Electromagnetic Measurements Digest. Proceedings.

    NASA Astrophysics Data System (ADS)

    Nelson, T. L.

    The following topics were dealt with: fundamental constants; caesium standards; AC-DC transfer; impedance measurement; length measurement; units; statistics; cryogenic resonators; time transfer; QED; resistance scaling and bridges; mass measurement; atomic fountains and clocks; single electron transport; Newtonian constant of gravitation; stabilised lasers and frequency measurements; cryogenic current comparators; optical frequency standards; high voltage devices and systems; international compatibility; magnetic measurement; precision power measurement; high resolution spectroscopy; DC transport standards; waveform acquisition and analysis; ion trap standards; optical metrology; quantised Hall effect; Josephson array comparisons; signal generation and measurement; Avogadro constant; microwave networks; wideband power standards; antennas, fields and EMC; quantum-based standards.

  6. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  7. Acoustic and Acousto-Optic Characteristics of Silicon Nanofoam

    NASA Astrophysics Data System (ADS)

    Iino, Takeshi; Nakamura, Kentaro

    2009-07-01

    Silicon nanofoam is a porous material with a nanometer structure produced through a sol-gel process, and is used as a heat insulator. It is expected that the nanofoam may work as a good acoustic matching layer of an airborne ultrasonic transducer for highly sensitive and wideband ultrasound transmission/detection since the nanofoam has an extremely low acoustic impedance. The nanofoam may also have a possibility as an acousto-optic device because of its very low sound speed and optical transparency. In this study, we have estimated the fundamental acoustic characteristics of the nanofoam through acousto-optic measurements. Sound speed and acoustic attenuation were measured in the frequency range from 130 to 444 kHz using rectangular samples attached to a piezoelectric transducer. The sound speed and acoustic attenuation constant were approximately in the 140-150 m/s range and 4.3 ×10-11f1.9 dB/(mm·Hz1.9), respectively. It was observed that the change rate in the optical refractive index of the nanofoam owing to sound pressure was approximately in the range of (1.2-1.6) ×10-8 1/Pa. Raman-Nath diffraction occurred at a relatively low frequency since the sound speed is low. We also observed modulation in the polarization of the transmitted light owing to ultrasonic waves.

  8. Synthesis, Characterization and Optical Constants of Silicon Oxycarbide

    NASA Astrophysics Data System (ADS)

    Memon, Faisal Ahmed; Morichetti, Francesco; Abro, Muhammad Ishaque; Iseni, Giosue; Somaschini, Claudio; Aftab, Umair; Melloni, Andrea

    2017-03-01

    High refractive index glasses are preferred in integrated photonics applications to realize higher integration scale of passive devices. With a refractive index that can be tuned between SiO2 (1.45) and a-SiC (3.2), silicon oxycarbide SiOC offers this flexibility. In the present work, silicon oxycarbide thin films from 0.1 - 2.0 μm thickness are synthesized by reactive radio frequency magnetron sputtering a silicon carbide SiC target in a controlled argon and oxygen environment. The refractive index n and material extinction coefficient k of the silicon oxycarbide films are acquired with variable angle spectroscopic ellipsometry over the UV-Vis-NIR wavelength range. Keeping argon and oxygen gases in the constant ratio, the refractive index n is found in the range from 1.41 to 1.93 at 600 nm which is almost linearly dependent on RF power of sputtering. The material extinction coefficient k has been estimated to be less than 10-4 for the deposited silicon oxycarbide films in the visible and near-infrared wavelength regions. Morphological and structural characterizations with SEM and XRD confirms the amorphous phase of the SiOC films.

  9. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter.

    PubMed

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-05

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band

    PubMed Central

    Firstov, Sergei V.; Alyshev, Sergey V.; Riumkin, Konstantin E.; Khopin, Vladimir F.; Guryanov, Alexey N.; Melkumov, Mikhail A.; Dianov, Evgeny M.

    2016-01-01

    It is now almost twenty-five years since the first Erbium-Doped Fiber Amplifier (EDFA) was demonstrated. Currently, the EDFA is one of the most important elements widely used in different kinds of fiber-optic communication systems. However, driven by a constantly increasing demand, the network traffic, growing exponentially over decades, will lead to the overload of these systems (“capacity crunch”) because the operation of the EDFA is limited to a spectral region of 1530–1610 nm. It will require a search for new technologies and, in this respect, the development of optical amplifiers for new spectral regions can be a promising approach. Most of fiber-optic amplifiers are created using rare-earth-doped materials. As a result, wide bands in shorter (1150–1530 nm) and longer wavelength (1600–1750 nm) regions with respect to the gain band of Er-doped fibers are still uncovered. Here we report on the development of a novel fiber amplifier operating in a spectral region of 1640–1770 nm pumped by commercially available laser diodes at 1550 nm. This amplifier was realized using bismuth-doped high-germania silicate fibers fabricated by MCVD technique. PMID:27357592

  11. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    PubMed

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  12. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    PubMed Central

    Díez, Jorge A.; Catalán, José M.; Blanco, Andrea; García-Perez, José V.; Badesa, Francisco J.

    2018-01-01

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range. PMID:29414861

  13. Effect of the addition of MgF2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Shuangbao; Deng, Saifu; Liu, Jianting; Zhang, Jiahui

    2017-10-01

    Optical glass was very important for the development of optical fiber sensor. In this paper, a new type fluoride glass of ZrF4-BaF2-AlF3-NaF-MgF2(ZBANM) was synthesized for sensing application which has low loss and high magneto-optical coefficient, and it was found that the glass system had at least 60% transmittance from 3.5 μm to 7 μm and smallest verdet constant of 4.628E-5/(rad A-1) at 632.8 nm. The relationship among the compositions of sample glass with its thermal property, optical absorptivity and magnetic-optical coefficients was respectively studied with Thermal Gravimetric-Differential Thermal Analyzer, Fourier Transform infrared spectroscopy and a home-made magneto optical bench. The study indicated that transmittance of fluoride glass structure had been obviously improved after moderate content of Mg2+ and Na+ was doped. Simultaneously, with the molar ratio of alkaline-earth ions Mg increased, the Verdet constant of fluoride glass was increased. And the glass structure with composition of 48%ZrF4-24%BaF2-6%AlF3-8%NaF-14%MgF2 exhibited a small molar absorptivity and the largest Verdet constant of 2.853E-4/(rad A-1).

  14. Optical biosensors for cell adhesion.

    PubMed

    Ramsden, Jeremy J; Horvath, Robert

    2009-01-01

    Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes.

  15. BariumCopperChFluorine (Ch = Sulfur, Selenium, Tellurium) p-type transparent conductors

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy

    BaCuChF (Ch = S, Se, Te) materials are chalcogen-based transparent conductors with wide optical band gaps (2.9 -- 3.5 eV) and a high concentration of free holes (1018 -- 1020 cm-3 ) caused by the presence of copper vacancies. Chalcogen vacancies compensate copper vacancies in these materials, setting the Fermi level close to the valence band maximum. BaCuChF thin film solid solutions prepared by pulsed laser deposition (PLD) have tunable properties, such as lattice constants, conductivity and optical band gaps. BaCuSF and BaCuSeF materials also feature room-temperature stable 3D excitons with spin-orbit-split levels. BaCuTeF has forbidden lowest-energy optical transitions which extends its transparency range. BaCuChF surfaces oxidize when exposed to air, but can be protected using Ch capping layers. Polycrystalline BaCuSeF thin films have a 4.85 eV work function, a 0.11 eV hole injection barrier into ZnPc, and 0.00 eV valence band offset with ZnTe. BaCuSeF should have s similar band offset and similar interfacial properties with CdTe and Cu(InGa)Se2, and BaCuSF should have no valence band offset with Cu2ZnSnS4, according to the transitivity rule. Therefore, BaCuSeF is suitable for applications as a p-layer in organic light-emitting diodes, p-i-n double-heterojunction and tandem chalcogenide solar cells.

  16. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang Kejin

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materialsmore » obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.« less

  17. Double-layer optical fiber coating analysis in MHD flow of an elastico-viscous fluid using wet-on-wet coating process

    NASA Astrophysics Data System (ADS)

    Khan, Zeeshan; Islam, Saeed; Shah, Rehan Ali; Khan, Muhammad Altaf; Bonyah, Ebenezer; Jan, Bilal; Khan, Aurangzeb

    Modern optical fibers require a double-layer coating on the glass fiber in order to provide protection from signal attenuation and mechanical damage. The most important plastic resins used in wires and optical fibers are plastic polyvinyl chloride (PVC) and low and high density polyethylene (LDPE/HDPE), nylon and Polysulfone. One of the most important things which affect the final product after processing is the design of the coating die. In the present study, double-layer optical fiber coating is performed using melt polymer satisfying Oldroyd 8-constant fluid model in a pressure type die with the effect of magneto-hydrodynamic (MHD). Wet-on-wet coating process is applied for double-layer optical fiber coating. The coating process in the coating die is modeled as a simple two-layer Couette flow of two immiscible fluids in an annulus with an assigned pressure gradient. Based on the assumptions of fully developed laminar and MHD flow, the Oldroyd 8-constant model of non-Newtonian fluid of two immiscible resin layers is modeled. The governing nonlinear equations are solved analytically by the new technique of Optimal Homotopy Asymptotic Method (OHAM). The convergence of the series solution is established. The results are also verified by the Adomian Decomposition Method (ADM). The effect of important parameters such as magnetic parameter Mi , the dilatant constant α , the Pseodoplastic constant β , the radii ratio δ , the pressure gradient Ω , the speed of fiber optics V , and the viscosity ratio κ on the velocity profiles, thickness of coated fiber optics, volume flow rate, and shear stress on the fiber optics are investigated. At the end the result of the present work is also compared with the experimental results already available in the literature by taking non-Newtonian parameters tends to zero.

  18. Hydrogen storage in lithium hydride: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  19. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    NASA Astrophysics Data System (ADS)

    Rofouie, P.; Pasini, D.; Rey, A. D.

    2015-09-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  20. Optical properties of voltage sensitive hemicyanine dyes of variable hydrophobicity confined within surfactant micelles

    NASA Astrophysics Data System (ADS)

    Naeem, Kashif; Naseem, Bushra; Shah, S. S.; Shah, Syed W. H.

    2017-11-01

    The optical properties of amphiphilic hemicyanine dyes with variable hydrophobicity, confined within anionic micelles of sodium dodecylbenzenesulfonate (NaDDBS) have been studied by UV-visible absorption spectroscopy. The confinement constant, K conf has been determined for each entrapped dye. The ion-pair formation between dye and surfactant causes a decline in electronic transition energy (ΔE T) when dye alkyl chains are smaller due to stabilization of both the ground and excited state. ΔE T values gradually increase with increase in dye hydrophobicity that hampers the electrostatic interaction with dialkylammonium moiety and consequently excited state stabilization is compromised. The average number of dye molecules trapped in a single micelle was also determined. The negative values of Gibbs free energy indicate that the dye entrapment within micelles is energetically favored. These findings have significance for developing functional materials with peculiar luminescent properties, especially for more effective probing of complex biological systems.

  1. Influence of multi-depositions on the final properties of thermally evaporated TlBr films

    NASA Astrophysics Data System (ADS)

    Destefano, N.; Mulato, M.

    2010-12-01

    Thallium bromide is a promising candidate material for photodetectors in medical imaging systems. This work investigates the structural, optical and electrical properties of thermally evaporated TlBr films. The main fabrication parameter is the number of depositions. The use of sequential runs is aimed to increase the thickness of the films, as necessary, for technological applications. We deposited films using one-four runs, that led to maximum thickness of about 50 μm. Crystallographic and morphological changes were observed with varying deposition runs. Nevertheless, the optical gap and electrical resistivity in the dark remained constant at about 2.85 eV and 10 9 Ω cm, respectively. Thicker samples have a larger ratio of photo-to-dark signal under medical X-ray exposure, with a larger linear region as a function of applied voltage. The results are discussed aiming at future technological applications in medical imaging.

  2. THEORETICAL RESEARCH OF THE OPTICAL SPECTRA AND EPR PARAMETERS FOR Cs2NaYCl6:Dy3+ CRYSTAL

    NASA Astrophysics Data System (ADS)

    Dong, Hui-Ning; Dong, Meng-Ran; Li, Jin-Jin; Li, Deng-Feng; Zhang, Yi

    2013-09-01

    The calculated EPR parameters are in reasonable agreement with the observed values. The important material Cs2NaYCl6 doped with rare earth ions have received much attention because of its excellent optical and magnetic properties. Based on the superposition model, in this paper the crystal field energy levels, the electron paramagnetic resonance parameters g factors of Dy3+ and hyperfine structure constants of 161Dy3+ and 163Dy3+ isotopes in Cs2NaYCl6 crystal are studied by diagonalizing the 42 × 42 energy matrix. In the calculations, the contributions of various admixtures and interactions such as the J-mixing, the mixtures among the states with the same J-value, and the covalence are all considered. The calculated results are in reasonable agreement with the observed values. The results are discussed.

  3. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE PAGES

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.; ...

    2017-03-30

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  4. Computational investigations of the band structure, and thermodynamic and optical features of thorium-based oxide ThGeO4 using the full-potential linearized augmented plane-wave plus local orbital approach

    NASA Astrophysics Data System (ADS)

    Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.

    2018-05-01

    In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.

  5. Review Article: Overview of lanthanide pnictide films and nanoparticles epitaxially incorporated into III-V semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bomberger, Cory C.; Lewis, Matthew R.; Vanderhoef, Laura R.

    The incorporation of lanthanide pnictide nanoparticles and films into III-V matrices allows for semiconductor composites with a wide range of potential optical, electrical, and thermal properties, making them useful for applications in thermoelectrics, tunnel junctions, phototconductive switches, and as contact layers. The similarities in crystal structures and lattice constants allow them to be epitaxially incorporated into III-V semiconductors with low defect densities and high overall film quality. A variety of growth techniques for these composites with be discussed, along with their growth mechanisms and current applications, with a focus on more recent developments. Results obtained from molecular beam epitaxy filmmore » growth will be highlighted, although other growth techniques will be mentioned. Optical and electronic characterization along with the microscopy analysis of these composites is presented to demonstrate influence of nanoinclusion composition and morphology on the resulting properties of the composite material.« less

  6. The total energy-momentum tensor for electromagnetic fields in a dielectric

    NASA Astrophysics Data System (ADS)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.

  7. Methods for estimating the optical constants of atmospheric hazes based on complex optical measurements

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Kostin, B. S.; Naats, I. E.

    1986-01-01

    The methods of multifrequency laser sounding (MLS) are the most effective remote methods for investigating the atmospheric aerosols, since it is possible to obtain complete information on aerosol microstructure and the effective methods for estimating the aerosol optical constants can be developed. The MLS data interpretation consists in the solution of the set of equations containing those of laser sounding and equations for polydispersed optical characteristics. As a rule, the laser sounding equation is written in the approximation of single scattering and the equations for optical characteristics are written assuming that the atmospheric aerosol is formed by spherical and homogeneous particles. To remove the indeterminacy of equations, the method of optical sounding of atmospheric aerosol, consisting in a joint use of a mutifrequency lidar and a spectral photometer in common geometrical scheme of the optical experiment was suggested. The method is used for investigating aerosols in the cases when absorption by particles is small and indicates the minimum necessary for interpretation of a series of measurements.

  8. Four-amplitude shift keying-single sideband millimeter-wave signal generation with frequency sextupling based on optical phase modulation

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Ma, Jianxin

    2017-03-01

    We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.

  9. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  10. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  11. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  12. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  13. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  14. Reflectance modeling of electrochemically P-type porosified silicon by Drude-Lorentz model

    NASA Astrophysics Data System (ADS)

    Kadi, M.; Media, E. M.; Gueddaoui, H.; Outemzabet, R.

    2014-09-01

    Porous silicon remains a promising material for optoelectronic application; in this field monitoring of the refractive index profile of the porous layer is required. We present in this work a procedure based on Drude-Lorentz model for calculating the optical parameters such as the high- and low-frequency dielectric constants, the plasma frequency by fitting the reflectance spectra. The experimental data of different porous silicon layer created above the bulk silicon material by electrochemical etching are extracted from reflectance measurements. The reflectance spectra are recorded in the spectral range 350-2500 nm. First, our computational procedure has been validated by its application on mono-crystalline silicon for the determination of its optical parameters. A good agreement between our results and those found in other works has been achieved in the visible-NIR range. In the second step, the model was applied to porous silicon (PS) layers. Useful optical parameters like the refractive index and the extinction coefficient, respectively, n (λ) and κ(λ), the band gap Eg, of different fabricated porous silicon layer are determined from simulated reflectance spectra. The correlation between the optical properties and the conditions of the electrochemical treatment was observed and analyzed. The main conclusion is that the reflected light from the porous silicon surface, although non-homogeneous and thus possessing the light scattering, is essentially smaller than the reflected light from the bulk crystalline silicon. These results show that the porous surface layer can act as an antireflection coating for silicon and could be used, in particular, in solar cells.

  15. Relation between bandgap and resistance drift in amorphous phase change materials

    PubMed Central

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-01-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533

  16. Relation between bandgap and resistance drift in amorphous phase change materials.

    PubMed

    Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin

    2015-12-01

    Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.

  17. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    NASA Astrophysics Data System (ADS)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  18. [The development of a finger joint phantom for the optical simulation of early inflammatory rheumatic changes].

    PubMed

    Prapavat, V; Runge, W; Mans, J; Krause, A; Beuthan, J; Müller, G

    1997-11-01

    In the field of rheumatology, conventional diagnostic methods permit the detection only of advanced stages of the disease, which is at odds with the current clinical demand for the early diagnosis of inflammatory rheumatic diseases. Prompted by current needs, we developed a finger joint phantom that enables the optical and geometrical simulation of an early stage of rheumatoid arthritis (RA). The results presented here form the experimental basis for an evaluation of new RA diagnostic systems based on near infrared light. The early stage of RA is characterised mainly by a vigorous proliferation of the synovial membrane and clouding of the synovial fluid. Using a double-integrating-sphere technique, the absorption and scattering coefficients (mua, mus') are experimentally determined for healthy and pathologically altered synovial fluid and capsule tissue. Using a variable mixture of Intralipid Indian ink and water as a scattering/absorption medium, the optical properties of skin, synovial fluid or capsule can be selected individually. Since the optical and geometrical properties of bone tissue remain constant in early-stage RA, a solid material is used for its simulation. Using the finger joint phantom described herein, the optical properties of joint regions can be adjusted specifically, enabling an evaluation of their effects on an optical signal--for example, during fluorography--and the investigation of these effects for diagnostically useful information. The experimental foundation for the development of a new optical system for the early diagnosis of RA has now been laid.

  19. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    NASA Astrophysics Data System (ADS)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin

    Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less

  1. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    NASA Astrophysics Data System (ADS)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  2. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2017-11-01

    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  3. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiaming; Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202; Luo, Le, E-mail: leluo@iupui.edu

    2014-03-14

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absencemore » of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.« less

  4. Melt growth of organic 4-(2-Phenylisopropyl) phenol single crystal and its structural, thermal, dielectric permittivity and optical properties

    NASA Astrophysics Data System (ADS)

    Sadhasivam, S.; Rajesh, N. P.

    2017-12-01

    A nonlinear optical (NLO) organic crystal 4-(2-Phenylisopropyl) phenol has been grown by a top seeded melt growth technique. The melt growth kinetics of solid-liquid (molten) interface and facets formation in melt growth were studied. The melt grown crystal has the (001), (00 1 bar),(110)(1 bar 1 bar 0) ,(1 bar 20),(1 2 bar 0),(2 bar 10) and(2 1 bar 0) different morphological face. The morphological characteristics of melt grown crystal helps to better infer the kinetic influence of melt and hone growth of organic material. The rhombohedral lattice cell parameters were measured by single crystal X-ray diffraction. 4-(2-Phenylisopropyl) phenol crystallizes in space group of R 3 bar . Thermal study shows that solid to liquid transition occurring at 350 K and decomposes at 597 K. The grown crystal was optically transparent in the wavelength range of 300-1100 nm. The low dielectric constant (9-11) was measured in the [001] of 4-(2-Phenylisopropyl) phenol crystal.

  5. Influence of Sn doping on structural, optical and electrical properties of ZnO thin films prepared by cost effective sol-gel process.

    PubMed

    Vishwas, M; Narasimha Rao, K; Arjuna Gowda, K V; Chakradhar, R P S

    2012-09-01

    Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Exploration work function and optical properties of monolayer SnSe allotropes

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Wang, Xia; Ding, Yingchun; Li, Meiqin

    2018-02-01

    The work function and optical properties are investigated with density functional theory for three monolayer SnSe allotropes. The calculated results indicate that the α-SnSe, δ-SnSe, ε-SnSe are semiconductor with the band gaps of 0.90, 1.25, and 1.50 eV, respectively. Meanwhile, the work function of δ-SnSe is lower than α-SnSe and ε-SnSe, which indicates that the δ-SnSe can be prepared of photoemission and field emission nanodevices. More importantly, the α-SnSe, δ-SnSe, ε-SnSe with the large static dielectric constants are 4.22, 5.48, and 3.61, which demonstrate that the three monolayer SnSe allotropes can be fabricated the capacitor. In addition, the static refractive index of δ-SnSe is larger than α-SnSe and ε-SnSe. The different optical properties with three monolayer SnSe allotropes reveal that the allotropes can regulate the properties of the materials. Moreover, our researched results show that the three monolayer SnSe allotropes are sufficient for fabrication of optoelectronic nanodevices.

  7. Specular reflectance of optical-black coatings in the far infrared

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1984-01-01

    Far-infrared specular reflectance spectra of seven optically black coatings near normal incidence are presented. Seven photometric spectra were obtained using eleven bandpass transmission filters in the wavelength range between 12 and 500 microns, and three interferometric spectra were obtained for corroboration. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of three coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns, which can be largely attributed to amorphous silicate material. At 100 microns, the most and least reflective coatings differ by nearly 3 orders of magnitude. Inverse relationships observed between the spectra and the roughness and thickness of the coatings led to development of a reflecting-layer model for the measured reflectance. The model successfully describes the spectra at wavelengths outside the silicate absorption, and optical constants are deduced from a nonlinear least squares fit to the data. Parametric errors are estimated by chi-square analysis, and sensitivity tests are performed to determine which parameters control reflectance in different spectral regions.

  8. Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.

    PubMed

    Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C

    2010-12-01

    Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.

  9. Triboluminescent Materials for Smart Optical Damage Sensors for Space Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, Mohan D.; Penn, Benjamin G.; Miller, Jim

    2007-01-01

    Triboluminescence is light that is produced by pressure, friction or mechanical shock. New composite materials are constantly being reengi neered in an effort to make lightweight spacecrafts for various NASA missions. For these materials there is interest in monitoring the con dition of the composite in real time to detect any delamination or cr acking due to damage, fatigue or external forces. Methods of periodic inspection of composite structures for mechanical damage such as ult rasonic testing are rather mature. However, there is a need to develop a new technique of damage detection for composites, which could dete ct cracking or delamination from any desired location within a materi al structure in real time. This could provide a valuable tool in the confident use of composite materials for various space applications. Recently, triboluminnescent materials have been proposed as smart sen sors of structural damage. To sense the damage, these materials can b e epoxy bonded or coated in a polymer matrix or embedded in a composi te host structure. When the damage or fracture takes place in the hos t structure, it will lead to the fracture of triboluminescent crystal s resulting in a light emission. This will warn, in real time, that a structural damage has occurred. The triboluminescent emission of the candidate phosphor has to be sufficiently bright, so that the light signal reaching from the point of fracture to the detector through a fiber optic cable is sufficiently strong to be detected. There are a large number of triboluminescent materials, but few satisfy the above criterion. Authors have synthesized a Eu based organic material know n as Europium tetrakis (dibenzoylmethide) triethylammonium .(EuD(sub 4)TEA), one of the bright triboluminescent materials, which is a pote ntial candidate for application as a damage sensor and could be made into a wireless sensor with the addition of microchip, antenna and el ectronics. Preliminary results on the synthesis and characterization of this material shall be presented.

  10. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  11. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  12. Scanning Tunneling Optical Resonance Microscopy

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Wilt, Dave; Raffaelle, Ryne; Gennett, Tom; Tin, Padetha; Lau, Janice; Castro, Stephanie; Jenkins, Philip; Scheiman, Dave

    2003-01-01

    Scanning tunneling optical resonance microscopy (STORM) is a method, now undergoing development, for measuring optoelectronic properties of materials and devices on the nanoscale by means of a combination of (1) traditional scanning tunneling microscopy (STM) with (2) tunable laser spectroscopy. In STORM, an STM tip probing a semiconductor is illuminated with modulated light at a wavelength in the visible-to-near-infrared range and the resulting photoenhancement of the tunneling current is measured as a function of the illuminating wavelength. The photoenhancement of tunneling current occurs when the laser photon energy is sufficient to excite charge carriers into the conduction band of the semiconductor. Figure 1 schematically depicts a proposed STORM apparatus. The light for illuminating the semiconductor specimen at the STM would be generated by a ring laser that would be tunable across the wavelength range of interest. The laser beam would be chopped by an achromatic liquid-crystal modulator. A polarization-maintaining optical fiber would couple the light to the tip/sample junction of a commercial STM. An STM can be operated in one of two modes: constant height or constant current. A STORM apparatus would be operated in the constant-current mode, in which the height of the tip relative to the specimen would be varied in order to keep the tunneling current constant. In this mode, a feedback control circuit adjusts the voltage applied to a piezoelectric actuator in the STM that adjusts the height of the STM tip to keep the tunneling current constant. The exponential relationship between the tunneling current and tip-to-sample distance makes it relatively easy to implement this mode of operation. The choice of method by which the photoenhanced portion of the tunneling current would be measured depends on choice of the frequency at which the input illumination would be modulated (chopped). If the frequency of modulation were low enough (typically < 10 Hz) that the feedback circuit could respond, then the voltage applied to the piezoelectric tip-height actuator could be measured by use of a lock-in amplifier locked to the modulation (chopping) signal. However, at a high modulation frequency (typically in the kilohertz range or higher), the feedback circuit would be unable to respond. In this case, the photoenhanced portion of the tunneling current could be measured directly. For this purpose, the tunneling current would be passed through a precise resistor and the voltage drop would be measured by use of the lock-in amplifier.

  13. YAG glass-ceramic phosphor for white LED (II): luminescence characteristics

    NASA Astrophysics Data System (ADS)

    Tanabe, Setsuhisa; Fujita, Shunsuke; Yoshihara, Satoru; Sakamoto, Akihiko; Yamamoto, Shigeru

    2005-09-01

    Optical properties of the Ce:YAG glass-ceramic (GC) phosphor for the white LED were investigated. Concentration dependence of fluorescence intensity of Ce3+:5d→4f transition in the GC showed a maximum at 0.5mol%Ce2O3. Quantum efficiency (QE) of Ce3+ fluorescence in the GC materials, the color coordinate and luminous flux of electroluminescence of LED composite were evaluated with an integrating sphere. QE increased with increasing ceramming temperature of the as-made glass. The color coordinates (x,y) of the composite were increased with increasing thickness of the GC mounted on a blue LED chip. The effect of Gd2O3 substitution on the optical properties of the GC materials was also investigated. The excitation and emission wavelength shifted to longer side up to Gd/(Y+Gd)=0.40 in molar composition. As a result, the color coordinate locus of the LED with various thickness of the GdYAG-GC shifted to closer to the Planckian locus for the blackbody radiation. These results were explained by partial substitution of Gd3+ ions in the precipitated YAG micro-crystals, leading to the increase of lattice constant of unit cell, which was confirmed by X-ray diffraction.

  14. IR spectroscopic determination of the refractive index of Ag1-xTlxBr1-0.54xI0.54x (0 ⩽ x ⩽ 0.05) crystals

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexandr; Salimgareev, Dmitrii; Lvov, Alexandr; Zhukova, Liya

    2017-08-01

    In this paper we examined materials relevant for manufacturing various near- and mid-infrared fiber optical elements: AgBr and - presumably for the first time - AgBr - (TlBr0.46I0.54) up to 5% of TlBr0.46I0.54, produced by hot embossing. Both real and imaginary parts of refractive indices were determined within the wavelength of 3.0-14.0 μm for samples of these materials. An increase of the substituent in AgBr caused a monotonous rise of the refractive index, while for every certain composition, a shift towards longer wavelengths led to its decrease. This dependence was depicted on dispersion curves, which clearly demonstrate that optical fibers, drawn from AgBr - (TlBr0.46I0.54) crystals, can be used within the wide mid-infrared range, since the dispersion coefficient here is minimal and constant. To determine the refractive index at the absorption edge (from 0.465 to 0.484 μm), we scrutinized eleven calculation models, with preferable Moss relation.

  15. Enamel Thickness before and after Orthodontic Treatment Analysed in Optical Coherence Tomography

    PubMed Central

    Koprowski, Robert; Safranow, Krzysztof; Woźniak, Krzysztof

    2017-01-01

    Despite the continuous development of materials and techniques of adhesive bonding, the basic procedure remains relatively constant. The technique is based on three components: etching substance, adhesive system, and composite material. The use of etchants during bonding orthodontic brackets carries the risk of damage to the enamel. Therefore, the article examines the effect of the manner of enamel etching on its thickness before and after orthodontic treatment. The study was carried out in vitro on a group of 80 teeth. It was divided into two subgroups of 40 teeth each. The procedure of enamel etching was performed under laboratory conditions. In the first subgroup, the classic method of enamel etching and the fifth-generation bonding system were used. In the second subgroup, the seventh-generation (self-etching) bonding system was used. In both groups, metal orthodontic brackets were fixed and the enamel was cleaned with a cutter fixed on the micromotor after their removal. Before and after the treatment, two-dimensional optical coherence tomography scans were performed. The enamel thickness was assessed on the two-dimensional scans. The average enamel thickness in both subgroups was not statistically significant. PMID:28243604

  16. Development of a cryogenic all-silicon telescope (CAIT)

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.; McCarter, Eloise; Paquin, Roger

    2012-09-01

    Mankind loves space and is drawn to explore its vastness. Existing space telescopes routinely encounter data losses and delayed data collections during the constantly changing temperature and load disruptions of space missions. The harsh environment of space thermal cycles and spacecraft motion loads create unwanted activity such as spacecraft slew, acquisition slew, and temperature induced blur. In order to compensate for the low performance of the materials currently used for telescope optics, engineers and designers are using costly on-board coolers, mechanical actuators, and deformed mirrors, for example, with limited success. However, Zero-defect Single Crystal Silicon (SCSi) can perform in space environments without coolers, actuators, and other such devices because SCSi is not ductile and is homogeneous and therefore is not subject to creep, and will not jitter, or blur during operations. To take advantage of the unique advantages of Zero-defect SCSi, we are developing and fabricating a Cryostable All-Silicon Imaging Telescope (CAIT). In this paper, we will discuss the basis for selecting SCSi for our space telescope design, the status of the CAIT design and fabrication progress, and compare SCSi thermal and strength properties with other typical space optical materials.

  17. Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations

    NASA Astrophysics Data System (ADS)

    Divya, S.; Nampoori, V. P. N.; Radhakrishnan, P.; Mujeeb, A.

    2014-08-01

    TiN nanoparticles of average size 55 nm were investigated for their optical non-linear properties. During the experiment the irradiated laser wavelength coincided with the surface plasmon resonance (SPR) peak of the nanoparticle. The large non-linearity of the nanoparticle was attributed to the plasmon resonance, which largely enhanced the local field within the nanoparticle. Both open and closed aperture Z-scan experiments were performed and the corresponding optical constants were explored. The post-excitation absorption spectra revealed the interesting phenomenon of photo fragmentation leading to the blue shift in band gap and red shift in the SPR. The results are discussed in terms of enhanced interparticle interaction simultaneous with size reduction. Here, the optical constants being intrinsic constants for a particular sample change unusually with laser power intensity. The dependence of χ(3) is discussed in terms of the size variation caused by photo fragmentation. The studies proved that the TiN nanoparticles are potential candidates in photonics technology offering huge scope to study unexplored research for various expedient applications.

  18. Optical clearing: impact of optical and dielectric properties of clearing solutions on pulmonary tissue mechanics.

    PubMed

    Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef

    2017-07-01

    Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P < 0.00001; and r = 0.69, P = 0.013, respectively). We show that the lower the dielectric constant of the clearing solutions, the larger the effect on tissue stiffness. This suggests that the dielectric constant is an important measure in determining the effect of a clearing solution on lung tissue biomechanics. Optimal tissue transparency requires complete tissue dehydration and a refractive index of 1.55 of the clearing solution. NEW & NOTEWORTHY Investigating optical clearing in porcine lung tissue strips, we found that refractive index and dielectric constant of the clearing solution affected tissue clearing and biomechanics. By documenting the impact of the composition of the clearing solution on clearing potency and preservation of tissue mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.

  19. Deoxyribonucleic acid (DNA)-based optical materials

    NASA Astrophysics Data System (ADS)

    Grote, James G.; Heckman, Emily M.; Hagen, Joshua A.; Yaney, Perry P.; Subramanyam, Guru; Clarson, Stephen J.; Diggs, Darnell E.; Nelson, Robert L.; Zetts, John S.; Hopkins, F. Kenneth; Ogata, Naoya

    2004-12-01

    Optical materials for waveguiding applications must possess the desired optical and electromagnetic properties for optimal device performance. Purified deoxyribonucleic acid (DNA), derived from salmon sperm, has been investigated for use as an optical waveguide material. In this paper we present the materials processing and optical and electromagnetic characterization of this purified DNA to render a high quality, low loss optical waveguide material.

  20. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2017-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  1. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  2. Optical properties of armchair (7, 7) single walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less

  3. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    NASA Astrophysics Data System (ADS)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  4. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with themore » theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)« less

  5. Periodic density modulation for quasi-phase-matching of optical frequency conversion is inefficient under shallow focusing and constant ambient pressure.

    PubMed

    Hadas, Itai; Bahabad, Alon

    2016-09-01

    The two main mechanisms of a periodic density modulation relevant to nonlinear optical conversion in a gas medium are spatial modulations of the index of refraction and of the number of emitters. For a one-dimensional model neglecting focusing and using a constant ambient pressure, it is shown theoretically and demonstrated numerically that the effects of these two mechanisms during frequency conversion cancel each other exactly. Under the considered conditions, this makes density modulation inefficient for quasi-phase-matching an optical frequency conversion process. This result is particularly relevant for high-order harmonic generation.

  6. The optical properties of platinum and gold in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Linton, R. C.

    1972-01-01

    The optical constants of platinum and gold thin films have been determined in the spectral region of 40 to 200 nm by reflection measurements. The highly polarized continuum of synchrotron radiation emitted by the 240-MeV electron storage ring at the Physical Sciences Laboratory of the University of Wisconsin was used as a light source for the spectrum below 120 nm, while a windowless discharge lamp coupled to a normal incidence monochromator provided a source for the longer wavelengths. Optical constants were determined by a computer program based on iterative solutions to the Fresnel equations for reflection as a function of the angle of incidence.

  7. A Quantitative Test of the Applicability of Independent Scattering to High Albedo Planetary Regoliths

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1993-01-01

    To test the hypothesis that the independent scattering calculation widely used to model radiative transfer in atmospheres and clouds will give a useful approximation to the intensity and linear polarization of visible light scattered from an optically thick surface of transparent particles, laboratory measurements are compared to the independent scattering calculation for a surface of spherical particles with known optical constants and size distribution. Because the shape, size distribution, and optical constants of the particles are known, the independent scattering calculation is completely determined and the only remaining unknown is the net effect of the close packing of the particles in the laboratory sample surface...

  8. Degradation of thermal control materials under a simulated radiative space environment

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; Sridhara, N.

    2012-11-01

    A spacecraft with a passive thermal control system utilizes various thermal control materials to maintain temperatures within safe operating limits. Materials used for spacecraft applications are exposed to harsh space environments such as ultraviolet (UV) and particle (electron, proton) irradiation and atomic oxygen (AO), undergo physical damage and thermal degradation, which must be considered for spacecraft thermal design optimization and cost effectiveness. This paper describes the effect of synergistic radiation on some of the important thermal control materials to verify the assumptions of beginning-of-life (BOL) and end-of-life (EOL) properties. Studies on the degradation in the optical properties (solar absorptance and infrared emittance) of some important thermal control materials exposed to simulated radiative geostationary space environment are discussed. The current studies are purely related to the influence of radiation on the degradation of the materials; other environmental aspects (e.g., thermal cycling) are not discussed. The thermal control materials investigated herein include different kind of second-surface mirrors, white anodizing, white paints, black paints, multilayer insulation materials, varnish coated aluminized polyimide, germanium coated polyimide, polyether ether ketone (PEEK) and poly tetra fluoro ethylene (PTFE). For this purpose, a test in the constant vacuum was performed reproducing a three year radiative space environment exposure, including ultraviolet and charged particle effects on North/South panels of a geostationary three-axis stabilized spacecraft. Reflectance spectra were measured in situ in the solar range (250-2500 nm) and the corresponding solar absorptance values were calculated. The test methodology and the degradations of the materials are discussed. The most important degradations among the low solar absorptance materials were found in the white paints whereas the rigid optical solar reflectors remained quite stable. Among the high solar absorptance elements, as such the change in the solar absorptance was very low, in particular the germanium coated polyimide was found highly stable.

  9. Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere

    NASA Astrophysics Data System (ADS)

    Ata, Yalçın; Baykal, Yahya

    2017-10-01

    Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.

  10. Reflectometer for pseudo-Brewster angle spectrometry (BAIRS)

    NASA Astrophysics Data System (ADS)

    Potter, Roy F.

    2000-10-01

    A simple, robust reflectometer, pre-set for several angles of incidence (AOI), has been designed and used for determining the optical parameters of opaque samples having a specular surface. A single, linear polarizing element permits the measurement of perpendicular(s) and parallel (p) reflectence at each AOI. The BAIRS algorithm determines the empirical optical parameters for the subject surface at the pseudo-Brewster AOI, based on the measurement of p/s at two AOI's and, in turn the optical constants n and k (or (epsilon) 1 and (epsilon) 2). Radiation sources in current use, are a stabilized tungsten-halide lamp or a deuterium lamp for the visible and near UV spectral regions. Silica fiber optics and lenses deliver input and output radiation from the source and to a CCD array scanned diffraction spectrometer. Results for a sample of GaAs will be presented along with a discussion of dispersion features in the optical constant spectra.

  11. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Higgins, M. J.; Proksch, R.; Sader, J. E.; Polcik, M.; Mc Endoo, S.; Cleveland, J. P.; Jarvis, S. P.

    2006-01-01

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  12. Optical properties of some terrestrial rocks and glasses.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Khare, B. N.

    1973-01-01

    The optical constants of five naturally occurring rocks have been determined in the spectral range between 0.2 and 50 microns. Between 0.2 and 5 microns, the real and imaginary parts of the index of refraction were found from a combination of reflectivity and transmission measurements by using Beer's law and the Fresnel reflectivity equation. At wavelengths beyond 5 microns, only reflectivity measurements could be made and both constants were found from an application of classical dispersion theory.

  13. Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.

    2012-06-15

    Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less

  14. Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: Influence of thickness

    NASA Astrophysics Data System (ADS)

    Das, M. R.; Mukherjee, A.; Mitra, P.

    2017-09-01

    We have studied the electrical conductivity, dielectric relaxation mechanism and impedance spectroscopy characteristics of nickel oxide (NiO) thin films synthesized by chemical bath deposition (CBD) method. Thickness dependent structural, optical and ac electrical characterization has been carried out and deposition time was varied to control the thickness. The material has been characterized using X-ray diffraction and UV-VIS spectrophotometer. Impedance spectroscopy analysis confirmed enhancement of ac conductivity and dielectric constant for films deposited with higher deposition time. Decrease of grain size in thicker films were confirmed from XRD analysis and activation energy of the material for electrical charge hopping process was increased with thickness of the film. Decrease in band gap in thicker films were observed which could be associated with creation of additional energy levels in the band gap of the material. Cole-Cole plot shows contribution of both grain and grain boundary towards total resistance and capacitance. The overall resistance was found to decrease from 14.6 × 105 Ω for 30 min deposited film ( 120 nm thick) to 2.42 × 105 Ω for 120 min deposited film ( 307 nm thick). Activation energy value to electrical conduction process evaluated from conductivity data was found to decrease with thickness. Identical result was obtained from relaxation time approach suggesting hopping mechanism of charge carriers.

  15. Frontal photopolymerization for microfluidic applications.

    PubMed

    Cabral, João T; Hudson, Steven D; Harrison, Christopher; Douglas, Jack F

    2004-11-09

    Frontal photopolymerization (FPP) offers numerous advantages for the rapid prototyping of microfluidic devices. Quantitative utilization of this method, however, requires a control of the vertical dimensions of the patterned resist material. To address this fundamental problem, we study the ultraviolet (UV) photopolymerization of a series of multifunctional thiolene resists through a combination of experiments and analytical modeling of the polymerization fronts. We describe this nonlinear spatio-temporal growth process in terms of a "minimal" model involving an order parameter phi(x, t) characterizing the extent of monomer-to-polymer conversion, the optical attenuation T(x, t), and the solid front position h(t). The latter exhibits an induction time (or equivalent critical UV dose) characterizing the onset of frontal propagation. We also observe a novel transition between two logarithmic rates of growth, determined by the Beer-Lambert attenuation constants mu(0) and mu(infinity) of the monomer and fully polymerized material, respectively. The measured frontal kinetics and optical transmission of the thiolene resist materials are consistent with our photopolymerization model, exhibiting both "photodarkening" and "photoinvariant" polymerization. This is apparently the first observation of photodarkening reported in FPP. On the basis of these results, multilevel fluidic devices with controlled height are readily fabricated with modulated illumination. A representative two-level microfluidic device, incorporating a chaotic mixer, a T junction, and a series of controlled flow constrictions, illustrates the practical versatility of this fabrication method.

  16. Growth and characterization of an organic single crystal: 2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Kalainathan, S.; Ruban Kumar, A.

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. 1H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker’s hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal.

  17. Growth and characterization of an organic single crystal: 2-[2-(4-diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide.

    PubMed

    Senthil, K; Kalainathan, S; Ruban Kumar, A

    2014-05-05

    Optically transparent crystal of the organic salt DEASI (2-[2-(4-Diethylamino-phenyl)-vinyl]-1-methyl-pyridinium iodide) has been synthesized by using knoevenagel condensation reaction method. The synthesized material has been purified by successfully recrystallization process. Single crystals of DEASI have been grown by slow evaporation technique at room temperature. The solubility of the title material has been determined at different temperature in acetonitrile/methanol mixture. The cell parameters and crystallinity of the title crystal were determined by single crystal XRD. The powder diffraction was carried out to study the reflection plane of the grown crystal and diffraction peaks were indexed. The presence of different functional groups in the crystal was confirmed by Fourier transform infrared (FTIR) analysis. (1)H NMR spectrum was recorded to confirm the presence of hydrogen nuclei in the synthesized material. The optical property of the title crystal was studied by UV-Vis-NIR spectroscopic analysis. The melting point and thermal property of DEASI were studied using TGA/DSC technique. The Vicker's hardness (Hv) was carried out to know the category. The dielectric constant and dielectric loss of the compound decreases with an increase in frequencies. Chemical etching studies showed that the DEASI grows in the two dimensional growth mechanisms. The Kurtz-Perry powder second harmonic generation (SHG) test has done for title crystal. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  19. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  20. Deconvolution Method on OSL Curves from ZrO2 Irradiated by Beta and UV Radiations

    NASA Astrophysics Data System (ADS)

    Rivera, T.; Kitis, G.; Azorín, J.; Furetta, C.

    This paper reports the optically stimulated luminescent (OSL) response of ZrO2 to beta and ultraviolet radiations in order to investigate the potential use of this material as a radiation dosimeter. The experimentally obtained OSL decay curves were analyzed using the computerized curve de-convolution (CCD) method. It was found that the OSL curve structure, for the short (practical) illumination time used, consists of three first order components. The individual OSL dose response behavior of each component was found. The values of the time at the OSL peak maximum and the decay constant of each component were also estimated.

  1. Nano-sized structures for the detection of food components and contaminants.

    PubMed

    Dudak, Fahriye Ceyda; Bas, Deniz; Basaran-Akgul, Nese; Tamer, Ugur; Boyaci, Ismail Hakki

    2011-06-01

    New methods to identify trace amount of food components and/or contaminants (infectious pathogens and chemicals) rapidly, accurately, and with high sensitivity are in constant demand to prevent foodborne illnesses. Multipurpose biofunctionalized engineered nanomaterials are very promising for the detection of food components and contaminants. The unique optical and magnetic properties of the nanoscale materials are very useful in the analysis of food. The objectives of this review paper are to discuss the development of applications of nanoscale structures related to food industries and to provide an overview of available methods of detecting food components and contaminants with particular emphasis on the use of nanoparticles.

  2. The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe 2O 4

    DOE PAGES

    Lee, J.; Trugman, S. A.; Zhang, C. L.; ...

    2015-07-27

    Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe 2O 4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.

  3. Synthesis of a novel polyurethane-based-magnetic imprinted polymer for the selective optical detection of 1-naphthylamine in drinking water.

    PubMed

    Valero-Navarro, Angel; Medina-Castillo, Antonio L; Fernandez-Sanchez, Jorge F; Fernández-Gutiérrez, Alberto

    2011-07-15

    The first polyurethane based magnetic-MIP for the selective detection of 1-naphthylamine (1-NA) in drinking water has been synthesised. The synthesis has been carried out in a two-step process: first,the incorporation of magnetite-coated-oleic acid nanoparticles (-Fe₃O₄-OA) into a lipophilic polymeric matrix (poly-MMA-co-EDMA) and second, the encapsulation of these magnetic seeds into the MIP structure by precipitation polymerisation. The mag-MIP was first RHTEM imaged showing a well-organised material with magnetite within the material and the imprinted polymer coating the magnetic core. Thereafter,it was evaluated by batch rebinding analysis and the derived Freundlich isotherm, calculating the number of binding sites (N(K(min)-K(max))=2.63 and 0.79 mmol g⁻¹, for mag-MIP and mag-NIP, respectively)and apparent average adsorption constant (K(K(min)-K(max))=3.31 and 3.06 mmol⁻¹, for mag-MIP and mag-NIP, respectively) showing a very effective imprinting process.We have also developed a magnetic optical sensor MIP by using an optical fiber coupled with a magnetic separator. An unexpected selectivity for 1-NA was revealed allowing the detection of this molecule in water, even in the presence of 4 structurally related compounds (2-naphthylamine, 1-naphthol, 2-naphthol and 1-naphthalenemethylamine), with a low limit of detection (LOD) = 18 ng mL⁻¹. Finally, we applied this new hybrid material to the analysis of 1-NA in tap and mineral waters, obtaining a 91.6%average recovery rate. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Laser transmission welding of Acrylonitrile-Butadiene-Styrene (ABS) using a tailored high power diode-laser optical fiber coupled system

    NASA Astrophysics Data System (ADS)

    Rodríguez-Vidal, E.; Quintana, I.; Etxarri, J.; Otaduy, D.; González, F.; Moreno, F.

    2012-06-01

    Laser transmission welding (LTW) of polymers is a direct bonding technique which is already used in different industrial applications sectors such as automobile, microfluidic, electronic and biomedicine. This technique offers several advantages over conventional methods, especially when a local deposition of energy and minimum thermal distortions are required. In LTW one of the polymeric materials needs to be transparent to the laser wavelength and the second part needs to be designed to be absorbed in IR spectrum. This report presents a study of laser weldability of ABS (acrylonitrile/butadiene/styrene) filled with two different concentrations of carbon nanotubes (0.01% and 0.05% CNTs). These additives are used as infrared absorbing components in the laser welding process, affecting the thermal and optical properties of the material and, hence, the final quality of the weld seam. A tailored laser system has been designed to obtain high quality weld seams with widths between 0.4 and 1.0mm. It consists of two diode laser bars (50W per bar) coupled into an optical fiber using a non-imaging solution: equalization of the beam quality factor (M2) in the slow and fast axes by a pair of micro step-mirrors. The beam quality factor has been analyzed at different laser powers with the aim to guarantee a coupling efficiency to the multimode optical fiber. The power scaling is carried out by means of multiplexing polarization technique. The analysis of energy balance and beam quality is performed in two linked steps: first by means ray tracing simulations (ZEMAX®) and second, by validation. Quality of the weld seams is analyzed in terms of the process parameters (welding speed, laser power and clamping pressure) by visual and optical microscope inspections. The optimum laser power range for three different welding speeds is determinate meanwhile the clamping pressure is held constant. Additionally, the corresponding mechanical shear tests were carried out to analyze the mechanical properties of the weld seams. This work provides a detailed study concerning the effect of the material microstructure and laser beam quality on the final weld formation and surface integrity.

  5. Lensless magneto-optic speed sensor

    DOEpatents

    Veeser, L.R.; Forman, P.R.; Rodriguez, P.J.

    1998-02-17

    Lensless magneto-optic speed sensor is disclosed. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 {micro}m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation. 5 figs.

  6. Lensless Magneto-optic speed sensor

    DOEpatents

    Veeser, Lynn R.; Forman, Peter R.; Rodriguez, Patrick J.

    1998-01-01

    Lensless magneto-optic speed sensor. The construction of a viable Faraday sensor has been achieved. Multimode fiber bundles are used to collect the light. If coupled directly into a 100 or 200 .mu.m core fiber, light from a light emitting diode (LED) is sufficient to operate the sensor. In addition, LEDs ensure that no birefringence effects in the input fiber are possible, as the output from such light sources have random polarization. No lens is required since the large diameter optical fibers and thin crystals of materials having high Verdet constants (such as iron garnets) employed permit the collection of a substantial quantity of light. No coupler is required. The maximum amount of light which could reach a detector using a coupler is 25%, while the measured throughput of the fiber-optic bundle without a coupler is about 42%. All of the elements employed in the present sensor are planar, and no particular orientation of these elements is required. The present sensor operates over a wide range of distances from magnetic field sources, and observed signals are large. When a tone wheel is utilized, the signals are independent of wheel speed, and the modulation is observed to be about 75%. No sensitivity to bends in the input or output optical fiber leads was observed. Reliable operation was achieved down to zero frequency, or no wheel rotation.

  7. Experimental Effects on IR Reflectance Spectra: Particle Size and Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswenger, Toya N.; Myers, Tanya L.; Brauer, Carolyn S.

    For geologic and extraterrestrial samples it is known that both particle size and morphology can have strong effects on the species’ infrared reflectance spectra. Due to such effects, the reflectance spectra cannot be predicted from the absorption coefficients alone. This is because reflectance is both a surface as well as a bulk phenomenon, incorporating both dispersion as well as absorption effects. The same spectral features can even be observed as either a maximum or minimum. The complex effects depend on particle size and preparation, as well as the relative amplitudes of the optical constants n and k, i.e. the realmore » and imaginary components of the complex refractive index. While somewhat oversimplified, upward-going amplitude in the reflectance spectrum usually result from surface scattering, i.e. rays that have been reflected from the surface without penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. While the effects are well known, we report seminal measurements of reflectance along with quantified particle size of the samples, the sizing obtained from optical microscopy measurements. The size measurements are correlated with the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. We report results for both sodium sulfate Na2SO4 as well as ammonium sulfate (NH4)2SO4; the optical constants have been measured for (NH4)2SO4. To go a step further from the field to the laboratory we explore our understanding of particle size effects on reflectance spectra in the field using standoff detection. This has helped identify weaknesses and strengths in detection using standoff distances of up 160 meters away from the Target. The studies have shown that particle size has an enormous influence on the measured reflectance spectra of such materials; successful identification requires sufficient, representative reflectance data to include the particle sizes of interest.« less

  8. Sulfurization effect on optical properties of Cu2SNS3 thin films grown by two-stage process

    NASA Astrophysics Data System (ADS)

    Reddy, G. Phaneendra; Reddy, K. T. Ramakrishna

    2017-05-01

    A good phase controlled and impurity free two stage process was used to prepare Cu2SnS3 layers on glass substrates. The layers were prepared by sulfurization of sputtered Cu-Sn metallic precursors by varying the sulfurization temperature (Ts) in the range, 150-450°C, keeping the other deposition parameters constant. A complete investigation of the optical properties of the layers with sulfurization temperature was made by using the optical transmittance and reflectance measurements versus wavelength. The absorption coefficient α, was evaluated using the optical data that showed a α > 104 cm-1 for all the as-grown films. The optical bandgap of the as grown layers was determined from the second derivative diffused reflectance spectra that varied from 1.96 eV to 0.99 eV. Consequently, refractive index and extinction coefficient were calculated from Pankov's relations. In addition, the other optical parameters such as the dielectric constants, dissipation factor and also optical conductivity calculated. A detailed analysis of the dependence of all the above parameters on Ts is reported and discussed.

  9. Auger-generated hot carrier current in photo-excited forward biased single quantum well blue light emitting diodes

    NASA Astrophysics Data System (ADS)

    Espenlaub, Andrew C.; Alhassan, Abdullah I.; Nakamura, Shuji; Weisbuch, Claude; Speck, James S.

    2018-04-01

    We report on measurements of the photo-modulated current-voltage and electroluminescence characteristics of forward biased single quantum well, blue InGaN/GaN light emitting diodes with and without electron blocking layers. Low intensity resonant optical excitation of the quantum well was observed to induce an additional forward current at constant forward diode bias, in contrast to the usual sense of the photocurrent in photodiodes and solar cells, as well as an increased electroluminescence intensity. The presence of an electron blocking layer only slightly decreased the magnitude of the photo-induced current at constant forward bias. Photo-modulation at constant forward diode current resulted in a reduced diode bias under optical excitation. We argue that this decrease in diode bias at constant current and the increase in forward diode current at constant applied bias can only be due to additional hot carriers being ejected from the quantum well as a result of an increased Auger recombination rate within the quantum well.

  10. Ab-initio study of C15-type Laves phase superconductor LaRu2

    NASA Astrophysics Data System (ADS)

    Kholil, Md. Ibrahim; Islam, Md. Shahinur; Rahman, Md. Atikur

    2017-01-01

    Structural, elastic, electronic, optical, thermodynamic, and superconducting properties of the Laves phase superconductor LaRu2 with Tc 1.63 K were investigated using the first-principles calculations for the first time. The corresponding evaluated structural parameters are in good agreement with the available theoretical values. The different elastic properties like as, elastic constants, bulk modulus B, shear modulus G, Young's modulus E, and Poisson ratio ν were calculated using the Voigt-Reuss-Hill approximation. The ductility nature appears in both values of Cauchy pressure and Pugh's ratio. The band structure and Cauchy pressure shows that the material behaves metallic nature. The calculated total density of state is 6.80 (electrons/eV) of LaRu2. The optical properties such as reflectivity, absorption spectrum, refractive index, dielectric function, conductivity, and energy loss spectrum are also calculated. The photoconductivity reveals the metallic nature of LaRu2 and absorption coefficient is good in the infrared region. The evaluated density and Debye temperature are 9.55 gm/cm3 and 110.51 K, respectively. In addition, the study of thermodynamic properties like as minimum thermal conductivity, melting temperature, and Dulong-Petit limit are 0.26 (Wm-1 K-1), 1,471.65 K, and 74.80 (J/mole K), respectively. Finally, the investigated electron-phonon coupling constant is 0.66 of LaRu2 superconductor.

  11. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  12. Observations and projections of visibility and aerosol optical thickness (1956-2100) in the Netherlands: impacts of time-varying aerosol composition and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Boers, R.; van Weele, M.; van Meijgaard, E.; Savenije, M.; Siebesma, A. P.; Bosveld, F.; Stammes, P.

    2015-01-01

    Time series of visibility and aerosol optical thickness for the Netherlands have been constructed for 1956-2100 based on observations and aerosol mass scenarios. Aerosol optical thickness from 1956 to 2013 has been reconstructed by converting time series of visibility to visible extinction which in turn are converted to aerosol optical thickness using an appropriate scaling depth. The reconstruction compares closely with remote sensing observations of aerosol optical thickness between 1960 and 2013. It appears that aerosol optical thickness was relatively constant over the Netherlands in the years 1955-1985. After 1985, visibility has improved, while at the same time aerosol optical thickness has decreased. Based on aerosol emission scenarios for the Netherlands three aerosol types have been identified: (1) a constant background consisting of sea salt and mineral dust, (2) a hydrophilic anthropogenic inorganic mixture, and (3) a partly hydrophobic mixture of black carbon (BC) and organic aerosols (OAs). A reduction in overall aerosol concentration turns out to be the most influential factor in the reduction in aerosol optical thickness. But during 1956-1985, an upward trend in hydrophilic aerosols and associated upward trend in optical extinction has partly compensated the overall reduction in optical extinction due to the reduction in less hydrophilic BC and OAs. A constant optical thickness ensues. This feature highlights the influence of aerosol hygroscopicity on time-varying signatures of atmospheric optical properties. Within the hydrophilic inorganic aerosol mixture there is a gradual shift from sulfur-based (1956-1985) to a nitrogen-based water aerosol chemistry (1990 onwards) but always modulated by the continual input of sodium from sea salt. From 2013 to 2100, visibility is expected to continue its increase, while at the same time optical thickness is foreseen to continue to decrease. The contribution of the hydrophilic mixture to the aerosol optical thickness will increase from 30% to 35% in 1956 to more than 70% in 2100. At the same time the contribution of black and organic aerosols will decrease by more than 80%.

  13. Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Chintaparty, Rajababu; Palagiri, Bhavani; Reddy Nagireddy, Ramamanohar; subbha Reddy Imma Reddy, Venkata

    2015-09-01

    Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV-Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6-4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.

  14. Supercritical CO2/Co-solvents Extraction of Porogen and Surfactant to Obtain

    NASA Astrophysics Data System (ADS)

    Lubguban, Jorge

    2005-03-01

    A method of pore generation by supercritical CO2 (SCCO2)/co-solvents extraction for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials is investigated. A nanohybrid film was prepared from poly (propylene glycol) (PPG) and poly(methylsilsesquioxane) (PMSSQ) whereby the PPG porogen are entrapped within the crosslinked PMSSQ matrix. Another set of thin films was produced by liquid crystal templating whereby non-ionic (polyoxyethylene 10 stearyl ether) (Brij76) and ionic (cetyltrimethylammonium bromide) (CTAB) surfactant were used as sacrificial templates in a tetraethoxy silane (TEOS) and methyltrimethoxy silane (MTMS) based matrix. These two types of films were treated with SCCO2/co-solvents to remove porogen and surfactant templates. As a comparison, porous structures generated by thermal decomposition were also evaluated. It is found that SCCO2/co-solvents treatment produced closely comparable results with thermal decomposition. The results were evident from Fourier Transform Infrared (FT- IR) spectroscopy and optical constants data obtained from variable angle spectroscopic ellipsometry (VASE).

  15. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  16. Low dielectric fluorinated poly(phenylene ether ketone) film and coating

    NASA Technical Reports Server (NTRS)

    Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.

  17. Spinning optical resonator sensor for torsional vibrational applications measurements

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  18. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    NASA Astrophysics Data System (ADS)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  19. Generation of spectrally-stable continuous-wave emission and ns pulses at 800 nm and 975 nm with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.

    2015-03-01

    Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.

  20. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    NASA Astrophysics Data System (ADS)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  1. Computerized Scheimpflug densitometry as a measure of corneal optical density after excimer laser refractive surgery in myopic eyes.

    PubMed

    Cennamo, Gilda; Forte, Raimondo; Aufiero, Bernardino; La Rana, Agostino

    2011-08-01

    To evaluate changes in anterior corneal optical density and the refractive index after photorefractive keratectomy (PRK) using a rotating Scheimpflug system. Department of Ophthalmology, University Federico II, Naples, Italy. Comparative case series. Anterior corneal optical density was evaluated with a rotating Scheimpflug system at baseline and 3 months and 12 months after PRK in eyes with a refractive error between -6.00 diopters (D) and -12.00 D (study group). A control group of unoperated eyes with the same refraction range was used to calculate corneal optical density and the Gladstone-Dale constant in unoperated eyes using the Gladstone-Dale formula. In the study group, changes in the anterior corneal optical density were evaluated over time and variations in the anterior corneal refractive index were obtained using the Gladstone-Dale constant. The study group comprised 37 eyes and the control group, 200 eyes. In the study group, the mean anterior corneal optical density and refractive index, respectively, were 27.71 ± 4.39 and 1.360 ± 0.05 at baseline, 37.812 ± 12.31 and 1.491 ± 0.16 after 3 months (P<.001 compared with baseline), and 26.29 ± 4.93 and 1.341 ± 0.06 after 12 months (P=.03 compared with baseline). The mean corneal optical density in the control group was 27.71 ± 4.31 (SD), and the resultant Gladstone-Dale constant was 0.013. An early increase and a subsequent reduction in anterior corneal optical density and the refractive index were present in myopic eyes during 1 year after PRK. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Method for accurate determination of dissociation constants of optical ratiometric systems: chemical probes, genetically encoded sensors, and interacting molecules.

    PubMed

    Pomorski, Adam; Kochańczyk, Tomasz; Miłoch, Anna; Krężel, Artur

    2013-12-03

    Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.

  3. Semiclassical analysis of spectral singularities and their applications in optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, Ali

    2011-08-15

    Motivated by possible applications of spectral singularities in optics, we develop a semiclassical method of computing spectral singularities. We use this method to examine the spectral singularities of a planar slab gain medium whose gain coefficient varies due to the exponential decay of the intensity of the pumping beam inside the medium. For both singly and doublypumped samples, we obtain universal upper bounds on the decay constant beyond which no lasing occurs. Furthermore, we show that the dependence of the wavelength of the spectral singularities on the value of the decay constant is extremely mild. This is an indication ofmore » the stability of optical spectral singularities.« less

  4. Application of velocity filtering to optical-flow passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The performance of the velocity filtering method as applied to optical-flow passive ranging under real-world conditions is evaluated. The theory of the 3-D Fourier transform as applied to constant-speed moving points is reviewed, and the space-domain shift-and-add algorithm is derived from the general 3-D matched filtering formulation. The constant-speed algorithm is then modified to fit the actual speed encountered in the optical flow application, and the passband of that filter is found in terms of depth (sensor/object distance) so as to cover any given range of depths. Two algorithmic solutions for the problems associated with pixel interpolation and object expansion are developed, and experimental results are presented.

  5. Beam shuttering interferometer and method

    DOEpatents

    Deason, V.A.; Lassahn, G.D.

    1993-07-27

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  6. Beam shuttering interferometer and method

    DOEpatents

    Deason, Vance A.; Lassahn, Gordon D.

    1993-01-01

    A method and apparatus resulting in the simplification of phase shifting interferometry by eliminating the requirement to know the phase shift between interferograms or to keep the phase shift between interferograms constant. The present invention provides a simple, inexpensive means to shutter each independent beam of the interferometer in order to facilitate the data acquisition requirements for optical interferometry and phase shifting interferometry. By eliminating the requirement to know the phase shift between interferograms or to keep the phase shift constant, a simple, economical means and apparatus for performing the technique of phase shifting interferometry is provide which, by thermally expanding a fiber optical cable changes the optical path distance of one incident beam relative to another.

  7. Analysis and design of planar waveguide elements for use in filters and sensors

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhou

    In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.

  8. Optical Sensors for Monitoring Gamma and Neutron Radiation

    NASA Technical Reports Server (NTRS)

    Boyd, Clark D.

    2011-01-01

    For safety and efficiency, nuclear reactors must be carefully monitored to provide feedback that enables the fission rate to be held at a constant target level via adjustments in the position of neutron-absorbing rods and moderating coolant flow rates. For automated reactor control, the monitoring system should provide calibrated analog or digital output. The sensors must survive and produce reliable output with minimal drift for at least one to two years, for replacement only during refueling. Small sensor size is preferred to enable more sensors to be placed in the core for more detailed characterization of the local fission rate and fuel consumption, since local deviations from the norm tend to amplify themselves. Currently, reactors are monitored by local power range meters (LPRMs) based on the neutron flux or gamma thermometers based on the gamma flux. LPRMs tend to be bulky, while gamma thermometers are subject to unwanted drift. Both electronic reactor sensors are plagued by electrical noise induced by ionizing radiation near the reactor core. A fiber optic sensor system was developed that is capable of tracking thermal neutron fluence and gamma flux in order to monitor nuclear reactor fission rates. The system provides near-real-time feedback from small- profile probes that are not sensitive to electromagnetic noise. The key novel feature is the practical design of fiber optic radiation sensors. The use of an actinoid element to monitor neutron flux in fiber optic EFPI (extrinsic Fabry-Perot interferometric) sensors is a new use of material. The materials and structure used in the sensor construction can be adjusted to result in a sensor that is sensitive to just thermal, gamma, or neutron stimulus, or any combination of the three. The tested design showed low sensitivity to thermal and gamma stimuli and high sensitivity to neutrons, with a fast response time.

  9. Optical and solid state characterizaion of chemically deposited CuO/PbS double layer thin film

    NASA Astrophysics Data System (ADS)

    Chukwuemeka, Augustine; Nnabuchi Mishark, Nnamdi

    2018-02-01

    Optical and solid state characteristics of novel CuO/PbS double layer thin films were studied. Rutherford backscattering (RBS) technique deciphered the thicknesses of the films as 650 nm, 471 nm and 482 nm for as-deposited, annealed at 473 K and 673 K respectively. The XRD analysis depicts increase in grain size and peak intensity as temperature increases. The results of optical characterization show that thermal annealing has profound effects on all the optical and solid state parameters investigated. The absorbance increased with increase in temperature exhibiting maximum for the film annealed at 673 K. The transmittance of the film samples showed a decreasing trend with increase in temperature exhibiting minimum for the film annealed at 673 K. The absorption coefficient increases from 0.001 × 106 m-1 to 0.006 × 106 m-1 for as-deposited, 0.0025 × 106 m-1 to 0.0175 × 106 m-1 for the annealed at 473 K and 0.003 × 106 m-1 to 0.020 × 106 m-1 for the annealed at 673 K. The extinction coefficient increased with increased in temperature exhibiting a maximum for the film annealed at 673 K. The refractive index, real and imaginary dielectric constant do not have a trend with increase in annealing temperature. Increase in annealing temperature lowers the band gap from 4.13 eV for the as-deposited to 4.05 eV and 3.90 eV for the annealed at 473 K and 673 K respectively. The wide- bandgap materials permits devices to operate at much higher voltages, frequencies and temperatures than convection semiconductor materials. Thus, this film could be used for high power applications, light-emitting diodes, transducers and window layers for solar cell fabrication.

  10. Preface

    NASA Astrophysics Data System (ADS)

    2017-01-01

    This special issue of Optical Materials honors Professor Georges Boulon (Picture 1) for his leadership as the Editor-in-Chief of the Journal of Optical Materials (2003-2014) and his significant and exceptional contributions to the area of optical materials. He and his team, Drs. Malgorzata Guzik, Dariusz Hreniak and Joanna Cybinska (Picture 2), were responsible for establishing Journal of Optical Materials as a leading journal reporting on the science of optical materials.

  11. Spectral emissivities and optical constants of electromagnetically levitated liquid metals as functions of temperature and wavelength

    NASA Technical Reports Server (NTRS)

    Krishnan, S.; Hauge, R. H.; Margrave, J. L.

    1989-01-01

    The development of a noncontact temperature measurement device utilizing rotating analyzer ellipsometry is described. The technique circumvents the necessity of spectral emissivity estimation by direct measurement concomittant with radiance brightness. Using this approach, the optical properties of electromagnetically levitated liquid metals Cu, Ag, Au, Ni, Pd, Pt, and Zr were measured in situ at four wavelengths and up to 600 K superheat in the liquid. The data suggest an increase in the emissivity of the liquid compared with the incandescent solid. The data also show moderate temperature dependence of the spectral emissivity. A few measurements of the optical properties of undercooled liquid metals were also conducted. The data for both solids and liquids show excellent agreement with available values in the literature for the spectral emissivities as well as the optical constants.

  12. Gravitational lensing effects in a time-variable cosmological 'constant' cosmology

    NASA Technical Reports Server (NTRS)

    Ratra, Bharat; Quillen, Alice

    1992-01-01

    A scalar field phi with a potential V(phi) varies as phi exp -alpha(alpha is greater than 0) has an energy density, behaving like that of a time-variable cosmological 'constant', that redshifts less rapidly than the energy densities of radiation and matter, and so might contribute significantly to the present energy density. We compute, in this spatially flat cosmology, the gravitational lensing optical depth, and the expected lens redshift distribution for fixed source redshift. We find, for the values of alpha of about 4 and baryonic density parameter Omega of about 0.2 consistent with the classical cosmological tests, that the optical depth is significantly smaller than that in a constant-Lambda model with the same Omega. We also find that the redshift of the maximum of the lens distribution falls between that in the constant-Lambda model and that in the Einstein-de Sitter model.

  13. Generation of spectrally stable continuous-wave emission and ns pulses with a peak power of 4 W using a distributed Bragg reflector laser and a ridge-waveguide power amplifier.

    PubMed

    Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G

    2014-10-06

    We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.

  14. Numerical analysis and experimental verification of elastomer bending process with different material models

    NASA Astrophysics Data System (ADS)

    Kut, Stanislaw; Ryzinska, Grazyna; Niedzialek, Bernadetta

    2016-01-01

    The article presents the results of tests in order to verifying the effectiveness of the nine selected elastomeric material models (Neo-Hookean, Mooney with two and three constants, Signorini, Yeoh, Ogden, Arruda-Boyce, Gent and Marlow), which the material constants were determined in one material test - the uniaxial tension testing. The convergence assessment of nine analyzed models were made on the basis of their performance from an experimental bending test of the elastomer samples from the results of numerical calculations FEM for each material models. To calculate the material constants for the analyzed materials, a model has been generated by the stressstrain characteristics created as a result of experimental uniaxial tensile test with elastomeric dumbbell samples, taking into account the parameters received in its 18th cycle. Using such a calculated material constants numerical simulation of the bending process of a elastomeric, parallelepipedic sampleswere carried out using MARC / Mentat program.

  15. Optics & Materials Science & Technology (OMST) Organization at LLNL

    ScienceCinema

    Suratwala,; Tayyab,; Nguyen, Hoang; Bude, Jeff; Dylla-Spears, Rebecca

    2018-06-13

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategy today.

  16. Optics & Materials Science & Technology (OMST) Organization at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suratwala,; Tayyab,; Nguyen, Hoang

    The Optics and Materials Science & Technology (OMST) organization at Lawrence Livermore National Laboratory (LLNL) supplies optics, recycles optics, and performs the materials science and technology to advance optics and optical materials for high-power and high-energy lasers for a variety of missions. The organization is a core capability at LLNL. We have a strong partnership with many optical fabricators, universities and national laboratories to accomplish our goals. The organization has a long history of performing fundamental optical materials science, developing them into useful technologies, and transferring them into production both on-site and off-site. We are successfully continuing this same strategymore » today.« less

  17. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    NASA Astrophysics Data System (ADS)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  18. Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.

    1993-07-01

    The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.

  19. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  20. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

    2010-01-01

    Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

Top