Multi-scale calculation based on dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhakal, Tilak Raj
This dissertation combines the dual domain material point method (DDMP) with molecular dynamics (MD) in an attempt to create a multi-scale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically non-equilibrium state, and conventional constitutive relations are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a MD simulation of a group of atoms surrounding the material point. Rather than restricting the multi-scale simulation in a small spatial region, such as phase interfaces, or crackmore » tips, this multi-scale method can be used to consider non-equilibrium thermodynamic e ects in a macroscopic domain. This method takes advantage that the material points only communicate with mesh nodes, not among themselves; therefore MD simulations for material points can be performed independently in parallel. First, using a one-dimensional shock problem as an example, the numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the DDMP method are investigated. Among these methods, only the DDMP method converges as the number of particles increases, but the large number of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared of particles needed for convergence makes the method very expensive especially in our multi-scale method where we calculate stress in each material point using MD simulation. To improve DDMP, the sub-point method is introduced in this dissertation, which provides high quality numerical solutions with a very small number of particles. The multi-scale method based on DDMP with sub-points is successfully implemented for a one dimensional problem of shock wave propagation in a cerium crystal. The MD simulation to calculate stress in each material point is performed in GPU using CUDA to accelerate the computation. The numerical properties of the multiscale method are investigated as well as the results from this multi-scale calculation are compared with direct MD simulation results to demonstrate the feasibility of the method. Also, the multi-scale method is applied for a two dimensional problem of jet formation around copper notch under a strong impact.« less
Shock waves simulated using the dual domain material point method combined with molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Duan Z.; Dhakal, Tilak Raj
Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less
Shock waves simulated using the dual domain material point method combined with molecular dynamics
Zhang, Duan Z.; Dhakal, Tilak Raj
2017-01-17
Here in this work we combine the dual domain material point method with molecular dynamics in an attempt to create a multiscale numerical method to simulate materials undergoing large deformations with high strain rates. In these types of problems, the material is often in a thermodynamically nonequilibrium state, and conventional constitutive relations or equations of state are often not available. In this method, the closure quantities, such as stress, at each material point are calculated from a molecular dynamics simulation of a group of atoms surrounding the material point. Rather than restricting the multiscale simulation in a small spatial region,more » such as phase interfaces, or crack tips, this multiscale method can be used to consider nonequilibrium thermodynamic effects in a macroscopic domain. This method takes the advantage that the material points only communicate with mesh nodes, not among themselves; therefore molecular dynamics simulations for material points can be performed independently in parallel. The dual domain material point method is chosen for this multiscale method because it can be used in history dependent problems with large deformation without generating numerical noise as material points move across cells, and also because of its convergence and conservation properties. In conclusion, to demonstrate the feasibility and accuracy of this method, we compare the results of a shock wave propagation in a cerium crystal calculated using the direct molecular dynamics simulation with the results from this combined multiscale calculation.« less
A multi points ultrasonic detection method for material flow of belt conveyor
NASA Astrophysics Data System (ADS)
Zhang, Li; He, Rongjun
2018-03-01
For big detection error of single point ultrasonic ranging technology used in material flow detection of belt conveyor when coal distributes unevenly or is large, a material flow detection method of belt conveyor is designed based on multi points ultrasonic counter ranging technology. The method can calculate approximate sectional area of material by locating multi points on surfaces of material and belt, in order to get material flow according to running speed of belt conveyor. The test results show that the method has smaller detection error than single point ultrasonic ranging technology under the condition of big coal with uneven distribution.
Dual domain material point method for multiphase flows
NASA Astrophysics Data System (ADS)
Zhang, Duan
2017-11-01
Although the particle-in-cell method was first invented in the 60's for fluid computations, one of its later versions, the material point method, is mostly used for solid calculations. Recent development of the multi-velocity formulations for multiphase flows and fluid-structure interactions requires the Lagrangian capability of the method be combined with Eulerian calculations for fluids. Because of different numerical representations of the materials, additional numerical schemes are needed to ensure continuity of the materials. New applications of the method to compute fluid motions have revealed numerical difficulties in various versions of the method. To resolve these difficulties, the dual domain material point method is introduced and improved. Unlike other particle based methods, the material point method uses both Lagrangian particles and Eulerian mesh, therefore it avoids direct communication between particles. With this unique property and the Lagrangian capability of the method, it is shown that a multiscale numerical scheme can be efficiently built based on the dual domain material point method. In this talk, the theoretical foundation of the method will be introduced. Numerical examples will be shown. Work sponsored by the next generation code project of LANL.
Incompressible material point method for free surface flow
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan
2017-02-01
To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homel, Michael A.; Herbold, Eric B.
Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less
Homel, Michael A.; Herbold, Eric B.
2016-08-15
Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less
Representing ductile damage with the dual domain material point method
Long, C. C.; Zhang, D. Z.; Bronkhorst, C. A.; ...
2015-12-14
In this study, we incorporate a ductile damage material model into a computational framework based on the Dual Domain Material Point (DDMP) method. As an example, simulations of a flyer plate experiment involving ductile void growth and material failure are performed. The results are compared with experiments performed on high purity tantalum. We also compare the numerical results obtained from the DDMP method with those obtained from the traditional Material Point Method (MPM). Effects of an overstress model, artificial viscosity, and physical viscosity are investigated. Our results show that a physical bulk viscosity and overstress model are important in thismore » impact and failure problem, while physical shear viscosity and artificial shock viscosity have negligible effects. A simple numerical procedure with guaranteed convergence is introduced to solve for the equilibrium plastic state from the ductile damage model.« less
Mi, Jin-Rui; Ma, Xiang; Zhang, Ya-Juan; Wang, Yi; Wen, Ya-Dong; Zhao, Long-Lian; Li, Jun-Hui; Zhang, Lu-Da
2011-04-01
The present paper builds a model based on Monte Carlo method in the projection of the blending tobacco. This model is made up of two parts: the projecting points of tobacco materials, whose coordinates are calculated by means of the PPF (projection based on principal component and Fisher criterion) projection method for the tobacco near-infrared spectrum; and the point of tobacco blend, which is produced by linear additive to the projecting point coordinates of tobacco materials. In order to analyze the projection points deviation from initial state levels, Monte Carlo method is introduced to simulate the differences and changes of raw material projection. The results indicate that there are two major factors affecting the relative deviation: the highest proportion of tobacco materials in the blend, which is too high to make the deviation under control; and the quantity of materials, which is so small to control the deviation. The conclusion is close to the principle of actual formulating designing, particularly, the more in the quantity while the lower in proportion of each. Finally the paper figures out the upper limit of the proportions in the different quantity of materials by theory. It also has important reference value for other agricultural products blend.
Optical control of multi-stage thin film solar cell production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jian; Levi, Dean H.; Contreras, Miguel A.
2016-05-17
Embodiments include methods of depositing and controlling the deposition of a film in multiple stages. The disclosed deposition and deposition control methods include the optical monitoring of a deposition matrix to determine a time when at least one transition point occurs. In certain embodiments, the transition point or transition points are a stoichiometry point. Methods may also include controlling the length of time in which material is deposited during a deposition stage or controlling the amount of the first, second or subsequent materials deposited during any deposition stage in response to a determination of the time when a selected transitionmore » point occurs.« less
New insulation attachment method eliminates compatibility bondline stresses
NASA Technical Reports Server (NTRS)
Schneider, W. C.
1975-01-01
Auger-shaped single-point fastener attaches rigid surface insulation tiles to orbiter shuttle spacecraft. Method can be used to bond wide variety of materials, including insulation, elastomers, and fibrous materials. Since insulation is attached at only one point, insulation and structure are free to form without inducing bond separation.
Method for measuring thermal properties using a long-wavelength infrared thermal image
Walker, Charles L [Albuquerque, NM; Costin, Laurence S [Albuquerque, NM; Smith, Jody L [Albuquerque, NM; Moya, Mary M [Albuquerque, NM; Mercier, Jeffrey A [Albuquerque, NM
2007-01-30
A method for estimating the thermal properties of surface materials using long-wavelength thermal imagery by exploiting the differential heating histories of ground points in the vicinity of shadows. The use of differential heating histories of different ground points of the same surface material allows the use of a single image acquisition step to provide the necessary variation in measured parameters for calculation of the thermal properties of surface materials.
Hysteretic behavior using the explicit material point method
NASA Astrophysics Data System (ADS)
Sofianos, Christos D.; Koumousis, Vlasis K.
2018-05-01
The material point method (MPM) is an advancement of particle in cell method, in which Lagrangian bodies are discretized by a number of material points that hold all the properties and the state of the material. All internal variables, stress, strain, velocity, etc., which specify the current state, and are required to advance the solution, are stored in the material points. A background grid is employed to solve the governing equations by interpolating the material point data to the grid. The derived momentum conservation equations are solved at the grid nodes and information is transferred back to the material points and the background grid is reset, ready to handle the next iteration. In this work, the standard explicit MPM is extended to account for smooth elastoplastic material behavior with mixed isotropic and kinematic hardening and stiffness and strength degradation. The strains are decomposed into an elastic and an inelastic part according to the strain decomposition rule. To account for the different phases during elastic loading or unloading and smoothening the transition from the elastic to inelastic regime, two Heaviside-type functions are introduced. These act as switches and incorporate the yield function and the hardening laws to control the whole cyclic behavior. A single expression is thus established for the plastic multiplier for the whole range of stresses. This overpasses the need for a piecewise approach and a demanding bookkeeping mechanism especially when multilinear models are concerned that account for stiffness and strength degradation. The final form of the constitutive stress rate-strain rate relation incorporates the tangent modulus of elasticity, which now includes the Heaviside functions and gathers all the governing behavior, facilitating considerably the simulation of nonlinear response in the MPM framework. Numerical results are presented that validate the proposed formulation in the context of the MPM in comparison with finite element method and experimental results.
Strong-Gunderson, Janet M.; Palumbo, Anthony V.
1998-01-01
The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.
Strong-Gunderson, J.M.; Palumbo, A.V.
1998-09-15
The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.
40 CFR 63.694 - Testing methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... material stream shall be collected from the container, pipeline, or other device used to deliver the off... off-site material streams at the point-of-delivery for compliance with standards specified § 63.683 of... determine the average VOHAP concentration for treated off-site material streams at the point-of-treatment...
Nanocrystalline ceramic materials
Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.
1994-01-01
A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.
NASA Astrophysics Data System (ADS)
Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.
2018-06-01
k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.
Containerless synthesis of amorphous and nanophase organic materials
Benmore, Chris J.; Weber, Johann R.
2016-05-03
The invention provides a method for producing a mixture of amorphous compounds, the method comprising supplying a solution containing the compounds; and allowing at least a portion of the solvent of the solution to evaporate while preventing the solute of the solution from contacting a nucleation point. Also provided is a method for transforming solids to amorphous material, the method comprising heating the solids in an environment to form a melt, wherein the environment contains no nucleation points; and cooling the melt in the environment.
Evaluation of the Material Point Method within CTH to Model 2-Dimensional Plate Impact Problems
2014-09-01
Howard University . 14. ABSTRACT The material point method (MPM) is a mixed Eulerian and Lagrangian computational method that allows for the... University in Washington, DC, as a second-year graduate student within mechanical engineering. I also attended Howard University for my undergraduate...Kevin Rugirello, Dr Andrew Tonge, Dr Jeffrey Lloyd, Dr Mary Jane Graham, and Dr Gbadebo Owolabi. vi Student Bio I am currently attending Howard
Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.
2017-03-01
The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.
Nanocrystalline ceramic materials
Siegel, R.W.; Nieman, G.W.; Weertman, J.R.
1994-06-14
A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.
Validation of material point method for soil fluidisation analysis
NASA Astrophysics Data System (ADS)
Bolognin, Marco; Martinelli, Mario; Bakker, Klaas J.; Jonkman, Sebastiaan N.
2017-06-01
The main aim of this paper is to describe and analyse the modelling of vertical column tests that undergo fluidisation by the application of a hydraulic gradient. A recent advancement of the material point method (MPM), allows studying both stationary and non-stationary fluid flow while interacting with the solid phase. The fluidisation initiation and post-fluidisation processes of the soil will be investigated with an advanced MPM formulation (Double Point) in which the behavior of the solid and the liquid phase is evaluated separately, assigning to each of them a set of material points (MPs). The result of these simulations are compared to analytic solutions and measurements from laboratory experiments. This work is used as a benchmark test for the MPM double point formulation in the Anura3D software and to verify the feasibility of the software for possible future engineering applications.
A flammability study of thin plastic film materials
NASA Technical Reports Server (NTRS)
Skinner, S. Ballou
1990-01-01
The Materials Science Laboratory at the Kennedy Space Center presently conducts flammability tests on thin plastic film materials by using a small needle rake method. Flammability data from twenty-two thin plastic film materials were obtained and cross-checked by using three different testing methods: (1) the presently used small needle rake; (2) the newly developed large needle rake; and (3) the previously used frame. In order to better discern the melting-burning phenomenon of thin plastic film material, five additional specific experiments were performed. These experiments determined the following: (1) the heat sink effect of each testing method; (2) the effect of the burn angle on the burn length or melting/shrinkage length; (3) the temperature profile above the ignition source; (4) the melting point and the fire point of each material; and (5) the melting/burning profile of each material via infrared (IR) imaging. The results of these experimentations are presented.
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa; Raptis, Apostolos C.
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
John C. Brissette; Mark J. Ducey; Jeffrey H. Gove
2003-01-01
We field tested a new method for sampling down coarse woody material (CWM) using an angle gauge and compared it with the more traditional line intersect sampling (LIS) method. Permanent sample locations in stands managed with different silvicultural treatments within the Penobscot Experimental Forest (Maine, USA) were used as the sampling locations. Point relascope...
Experimental determination of material damping using vibration analyzer
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.; Chowdhury, Farida
1990-01-01
Structural damping is an important dynamic characteristic of engineering materials that helps to damp vibrations by reducing their amplitudes. In this investigation, an experimental method is illustrated to determine the damping characteristics of engineering materials using a dual channel Fast Fourier Transform (FFT) analyzer. A portable Compaq III computer which houses the analyzer, is used to collect the dynamic responses of three metal rods. Time-domain information is analyzed to obtain the logarithmic decrement of their damping. The damping coefficients are then compared to determine the variation of damping from material to material. The variations of damping from one point to another of the same material, due to a fixed point excitation, and the variable damping at a fixed point due to excitation at different points, are also demonstrated.
Method of noncontacting ultrasonic process monitoring
Garcia, Gabriel V.; Walter, John B.; Telschow, Kenneth L.
1992-01-01
A method of monitoring a material during processing comprising the steps of (a) shining a detection light on the surface of a material; (b) generating ultrasonic waves at the surface of the material to cause a change in frequency of the detection light; (c) detecting a change in the frequency of the detection light at the surface of the material; (d) detecting said ultrasonic waves at the surface point of detection of the material; (e) measuring a change in the time elapsed from generating the ultrasonic waves at the surface of the material and return to the surface point of detection of the material, to determine the transit time; and (f) comparing the transit time to predetermined values to determine properties such as, density and the elastic quality of the material.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
Concept for a fast analysis method of the energy dissipation at mechanical joints
NASA Astrophysics Data System (ADS)
Wolf, Alexander; Brosius, Alexander
2017-10-01
When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.
Material point method of modelling and simulation of reacting flow of oxygen
NASA Astrophysics Data System (ADS)
Mason, Matthew; Chen, Kuan; Hu, Patrick G.
2014-07-01
Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.
Development of Design Analysis Methods for C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Mital, Subodh K.; Murthy, Pappu L. N.; Palko, Joseph L.; Cueno, Jacques C.; Koenig, John R.
2006-01-01
The stress-strain behavior at room temperature and at 1100 C (2000 F) was measured for two carbon-fiber-reinforced silicon carbide (C/SiC) composite materials: a two-dimensional plain-weave quasi-isotropic laminate and a three-dimensional angle-interlock woven composite. Micromechanics-based material models were developed for predicting the response properties of these two materials. The micromechanics based material models were calibrated by correlating the predicted material property values with the measured values. Four-point beam bending sub-element specimens were fabricated with these two fiber architectures and four-point bending tests were performed at room temperature and at 1100 C. Displacements and strains were measured at various locations along the beam and recorded as a function of load magnitude. The calibrated material models were used in concert with a nonlinear finite element solution to simulate the structural response of these two materials in the four-point beam bending tests. The structural response predicted by the nonlinear analysis method compares favorably with the measured response for both materials and for both test temperatures. Results show that the material models scale up fairly well from coupon to subcomponent level.
Surface corrections for peridynamic models in elasticity and fracture
NASA Astrophysics Data System (ADS)
Le, Q. V.; Bobaru, F.
2018-04-01
Peridynamic models are derived by assuming that a material point is located in the bulk. Near a surface or boundary, material points do not have a full non-local neighborhood. This leads to effective material properties near the surface of a peridynamic model to be slightly different from those in the bulk. A number of methods/algorithms have been proposed recently for correcting this peridynamic surface effect. In this study, we investigate the efficacy and computational cost of peridynamic surface correction methods for elasticity and fracture. We provide practical suggestions for reducing the peridynamic surface effect.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2018-06-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2017-09-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
Application of the matrix exponential kernel
NASA Technical Reports Server (NTRS)
Rohach, A. F.
1972-01-01
A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials.
NASA Technical Reports Server (NTRS)
Gross, Bernard
1996-01-01
Material characterization parameters obtained from naturally flawed specimens are necessary for reliability evaluation of non-deterministic advanced ceramic structural components. The least squares best fit method is applied to the three parameter uniaxial Weibull model to obtain the material parameters from experimental tests on volume or surface flawed specimens subjected to pure tension, pure bending, four point or three point loading. Several illustrative example problems are provided.
Comparison of methods for accurate end-point detection of potentiometric titrations
NASA Astrophysics Data System (ADS)
Villela, R. L. A.; Borges, P. P.; Vyskočil, L.
2015-01-01
Detection of the end point in potentiometric titrations has wide application on experiments that demand very low measurement uncertainties mainly for certifying reference materials. Simulations of experimental coulometric titration data and consequential error analysis of the end-point values were conducted using a programming code. These simulations revealed that the Levenberg-Marquardt method is in general more accurate than the traditional second derivative technique used currently as end-point detection for potentiometric titrations. Performance of the methods will be compared and presented in this paper.
NASA Astrophysics Data System (ADS)
Edler, F.; Huang, K.
2016-12-01
Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.
Material point method modeling in oil and gas reservoirs
Vanderheyden, William Brian; Zhang, Duan
2016-06-28
A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.
Nelson, Stacy; English, Shawn; Briggs, Timothy
2016-05-06
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
A method of monitoring contact (pointed) welding
NASA Astrophysics Data System (ADS)
Bessonov, V. B.; Staroverov, N. E.; Larionov, I. A.; Guk, K. K.; Obodovskiy, A. V.
2018-02-01
The technology of welding parts of different thicknesses from various materials is improved, which is why the range of applied types and methods of welding is constantly expanding. In this regard, the issue of monitoring welded joints is particularly acute. The goal was: to develop a method of non-destructive radiographic inspection of point welds with a high accuracy rating of its quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Sai, E-mail: liangsai09@gmail.com; Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn
Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impactsmore » of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.« less
Endo, Yasushi
2018-01-01
Edible fats and oils are among the basic components of the human diet, along with carbohydrates and proteins, and they are the source of high energy and essential fatty acids such as linoleic and linolenic acids. Edible fats and oils are used in for pan- and deep-frying, and in salad dressing, mayonnaise and processed foods such as chocolates and cream. The physical and chemical properties of edible fats and oils can affect the quality of oil foods and hence must be evaluated in detail. The physical characteristics of edible fats and oils include color, specific gravity, refractive index, melting point, congeal point, smoke point, flash point, fire point, and viscosity, while the chemical characteristics include acid value, saponification value, iodine value, fatty acid composition, trans isomers, triacylglycerol composition, unsaponifiable matters (sterols, tocopherols) and minor components (phospholipids, chlorophyll pigments, glycidyl fatty acid esters). Peroxide value, p-anisidine value, carbonyl value, polar compounds and polymerized triacylglycerols are indexes of the deterioration of edible fats and oils. This review describes the analytical methods to evaluate the quality of edible fats and oils, especially the Standard Methods for Analysis of Fats, Oils and Related Materials edited by Japan Oil Chemists' Society (the JOCS standard methods) and advanced methods.
GPU surface extraction using the closest point embedding
NASA Astrophysics Data System (ADS)
Kim, Mark; Hansen, Charles
2015-01-01
Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes
Controlled drug release on amine functionalized spherical MCM-41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szegedi, Agnes, E-mail: szegedi@chemres.hu; Popova, Margarita; Goshev, Ivan
2012-10-15
MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin methodmore » and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.« less
Computational domain discretization in numerical analysis of flow within granular materials
NASA Astrophysics Data System (ADS)
Sosnowski, Marcin
2018-06-01
The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.
Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study
NASA Astrophysics Data System (ADS)
Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.
Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2011-02-22
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
Method of producing nano-scaled graphene and inorganic platelets and their nanocomposites
Jang, Bor Z [Centerville, OH; Zhamu, Aruna [Centerville, OH
2012-02-14
Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets. Alternatively, rather than heating, step (a) is followed by a step of dispersing the halogen-intercalated compound in a liquid medium which is subjected to ultrasonication for exfoliating the halogen-intercalated compound to produce the platelets, which are dispersed in the liquid medium. The halogen can be readily captured and re-used, thereby significantly reducing the impact of halogen to the environment. The method can further include a step of dispersing the platelets in a polymer or monomer solution or suspension as a precursor step to nanocomposite fabrication.
George, Monica C; Lazer, Zane P; George, David S
2016-05-01
We present a technique that uses a near-point string to demonstrate the anticipated near point of multifocal and accommodating intraocular lenses (IOLs). Beads are placed on the string at distances corresponding to the near points for diffractive and accommodating IOLs. The string is held up to the patient's eye to demonstrate where each of the IOLs is likely to provide the best near vision. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
Method and apparatus for maximizing throughput of indirectly heated rotary kilns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Ralph L; Smoot, Douglas L.; Hatfield, Kent E
An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internallymore » by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.« less
Method and apparatus for maximizing throughput of indirectly heated rotary kilns
Coates, Ralph L; Smoot, L. Douglas; Hatfield, Kent E
2012-10-30
An apparatus and method for achieving improved throughput capacity of indirectly heated rotary kilns used to produce pyrolysis products such as shale oils or coal oils that are susceptible to decomposition by high kiln wall temperatures is disclosed. High throughput is achieved by firing the kiln such that optimum wall temperatures are maintained beginning at the point where the materials enter the heating section of the kiln and extending to the point where the materials leave the heated section. Multiple high velocity burners are arranged such that combustion products directly impact on the area of the kiln wall covered internally by the solid material being heated. Firing rates for the burners are controlled to maintain optimum wall temperatures.
Simulating Ice Shelf Response to Potential Triggers of Collapse Using the Material Point Method
NASA Astrophysics Data System (ADS)
Huth, A.; Smith, B. E.
2017-12-01
Weakening or collapse of an ice shelf can reduce the buttressing effect of the shelf on its upstream tributaries, resulting in sea level rise as the flux of grounded ice into the ocean increases. Here we aim to improve sea level rise projections by developing a prognostic 2D plan-view model that simulates the response of an ice sheet/ice shelf system to potential triggers of ice shelf weakening or collapse, such as calving events, thinning, and meltwater ponding. We present initial results for Larsen C. Changes in local ice shelf stresses can affect flow throughout the entire domain, so we place emphasis on calibrating our model to high-resolution data and precisely evolving fracture-weakening and ice geometry throughout the simulations. We primarily derive our initial ice geometry from CryoSat-2 data, and initialize the model by conducting a dual inversion for the ice viscosity parameter and basal friction coefficient that minimizes mismatch between modeled velocities and velocities derived from Landsat data. During simulations, we implement damage mechanics to represent fracture-weakening, and track ice thickness evolution, grounding line position, and ice front position. Since these processes are poorly represented by the Finite Element Method (FEM) due to mesh resolution issues and numerical diffusion, we instead implement the Material Point Method (MPM) for our simulations. In MPM, the ice domain is discretized into a finite set of Lagrangian material points that carry all variables and are tracked throughout the simulation. Each time step, information from the material points is projected to a Eulerian grid where the momentum balance equation (shallow shelf approximation) is solved similarly to FEM, but essentially treating the material points as integration points. The grid solution is then used to determine the new positions of the material points and update variables such as thickness and damage in a diffusion-free Lagrangian frame. The grid does not store any variables permanently, and can be replaced at any time step. MPM naturally tracks the ice front and grounding line at a subgrid scale. MPM also facilitates the implementation of rift propagation in arbitrary directions, and therefore shows promise for predicting calving events. To our knowledge, this is the first application of MPM to ice flow modeling.
2-Point microstructure archetypes for improved elastic properties
NASA Astrophysics Data System (ADS)
Adams, Brent L.; Gao, Xiang
2004-01-01
Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. In the procedure described here the local state space is described in discrete form; and the focus is on placement of local state within a finite number of cells comprising rectangular models. It is illustrated that effective elastic properties (generalized Hashin Shtrikman bounds) can be obtained that are linear in components of the correlation statistics. Within this framework the concept of an eigen-microstructure within the microstructure hull is useful. Given the practical innumerability of the microstructure hull, however, we introduce a method for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by obtaining an archetype for an imaginary two-phase material where the objective is to maximize the combination C_{xxxx}^{*} + C_{xyxy}^{*}
Borovikov, V. A.; Kalinin, S. V.; Khavin, Yu.; ...
2015-08-19
We derive the Green's functions for a three-dimensional semi-infinite fully anisotropic piezoelectric material using the plane wave theory method. The solution gives the complete set of electromechanical fields due to an arbitrarily oriented point force and a point electric charge applied to the boundary of the half-space. Moreover, the solution constitutes generalization of Boussinesq's and Cerruti's problems of elastic isotropy for the anisotropic piezoelectric materials. On the example of piezoceramics PZT-6B, the present results are compared with the previously obtained solution for the special case of transversely isotropic piezoelectric solid subjected to the same boundary condition.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2017-09-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2018-07-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Determination of point of zero charge of natural organic materials.
Bakatula, Elisee Nsimba; Richard, Dominique; Neculita, Carmen Mihaela; Zagury, Gerald J
2018-03-01
This study evaluates different methods to determine points of zero charge (PZCs) on five organic materials, namely maple sawdust, wood ash, peat moss, compost, and brown algae, used for the passive treatment of contaminated neutral drainage effluents. The PZC provides important information about metal sorption mechanisms. Three methods were used: (1) the salt addition method, measuring the PZC; (2) the zeta potential method, measuring the isoelectric point (IEP); (3) the ion adsorption method, measuring the point of zero net charge (PZNC). Natural kaolinite and synthetic goethite were also tested with both the salt addition and the ion adsorption methods in order to validate experimental protocols. Results obtained from the salt addition method in 0.05 M NaNO 3 were the following: 4.72 ± 0.06 (maple sawdust), 9.50 ± 0.07 (wood ash), 3.42 ± 0.03 (peat moss), 7.68 ± 0.01 (green compost), and 6.06 ± 0.11 (brown algae). Both the ion adsorption and the zeta potential methods failed to give points of zero charge for these substrates. The PZC of kaolinite (3.01 ± 0.03) was similar to the PZNC (2.9-3.4) and fell within the range of values reported in the literature (2.7-4.1). As for the goethite, the PZC (10.9 ± 0.05) was slightly higher than the PZNC (9.0-9.4). The salt addition method has been found appropriate and convenient to determine the PZC of natural organic substrates.
40 CFR 60.74 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... select the sampling site, and the sampling point shall be the centroid of the stack or duct or at a point... the production rate (P) of 100 percent nitric acid for each run. Material balance over the production...
Method for recovering materials from waste
Wicks, G.G.; Clark, D.E.; Schulz, R.L.
1994-01-01
A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.
ERIC Educational Resources Information Center
Sewasew, Daniel; Mengestle, Missaye; Abate, Gebeyehu
2015-01-01
The aim of this study was to compare PPT and traditional lecture method in material understandability, effectiveness and attitude among university students. Comparative descriptive survey research design was employed to answer the research questions raised. Four hundred and twenty nine participants were selected randomly using stratified sampling…
Sensitive and reliable detection of Kit point mutation Asp 816 to Val in pathological material
Kähler, Christian; Didlaukat, Sabine; Feller, Alfred C; Merz, Hartmut
2007-01-01
Background Human mastocytosis is a heterogenous disorder which is linked to a gain-of-function mutation in the kinase domain of the receptor tyrosine kinase Kit. This D816V mutation leads to constitutive activation and phosphorylation of Kit with proliferative disorders of mast cells in the peripheral blood, skin, and spleen. Most PCR applications used so far are labour-intensive and are not adopted to daily routine in pathological laboratories. The method has to be robust and working on such different materials like archival formalin-fixed, paraffin-embedded tissue (FFPE) and blood samples. Such a method is introduced in this publication. Methods The Kit point mutation Asp 816 to Val is heterozygous which means a problem in detection by PCR because the wild-type allele is also amplified and the number of cells which bear the point mutation is in most of the cases low. Most PCR protocols use probes to block the wild-type allele during amplification with more or less satisfying result. This is why point-mutated forward primers were designed and tested for efficiency in amplification of the mutated allele. Results One primer combination (A) fits the most for the introduced PCR assay. It was able just to amplify the mutated allele with high specificity from different patient's materials (FFPE or blood) of varying quality and quantity. Moreover, the sensitivity for this assay was convincing because 10 ng of DNA which bears the point mutation could be detected in a total volume of 200 ng of DNA. Conclusion The PCR assay is able to deal with different materials (blood and FFPE) this means quality and quantity of DNA and can be used for high-througput screening because of its robustness. Moreover, the method is easy-to-use, not labour-intensive, and easy to realise in a standard laboratory. PMID:17900365
Methods for Melting Temperature Calculation
NASA Astrophysics Data System (ADS)
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.
Method and apparatus for determining material structural integrity
Pechersky, Martin
1996-01-01
A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Automated Guided-Wave Scanning Developed to Characterize Materials and Detect Defects
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyeski, Andrew L.; Roth, Don J.
2004-01-01
The Nondestructive Evaluation (NDE) Group of the Optical Instrumentation Technology Branch at the NASA Glenn Research Center has developed a scanning system that uses guided waves to characterize materials and detect defects. The technique uses two ultrasonic transducers to interrogate the condition of a material. The sending transducer introduces an ultrasonic pulse at a point on the surface of the specimen, and the receiving transducer detects the signal after it has passed through the material. The aim of the method is to correlate certain parameters in both the time and frequency domains of the detected waveform to characteristics of the material between the two transducers. The scanning system is shown. The waveform parameters of interest include the attenuation due to internal damping, waveform shape parameters, and frequency shifts due to material changes. For the most part, guided waves are used to gauge the damage state and defect growth of materials subjected to various mechanical or environmental loads. The technique has been applied to polymer matrix composites, ceramic matrix composites, and metal matrix composites as well as metallic alloys. Historically, guided wave analysis has been a point-by-point, manual technique with waveforms collected at discrete locations and postprocessed. Data collection and analysis of this type limits the amount of detail that can be obtained. Also, the manual movement of the sensors is prone to user error and is time consuming. The development of an automated guided-wave scanning system has allowed the method to be applied to a wide variety of materials in a consistent, repeatable manner. Experimental studies have been conducted to determine the repeatability of the system as well as compare the results obtained using more traditional NDE methods. The following screen capture shows guided-wave scan results for a ceramic matrix composite plate, including images for each of nine calculated parameters. The system can display up to 18 different wave parameters. Multiple scans of the test specimen demonstrated excellent repeatability in the measurement of all the guided-wave parameters, far exceeding the traditional point-by-point technique. In addition, the scan was able to detect a subsurface defect that was confirmed using flash thermography This technology is being further refined to provide a more robust and efficient software environment. Future hardware upgrades will allow for multiple receiving transducers and the ability to scan more complex surfaces. This work supports composite materials development and testing under the Ultra-Efficient Engine Technology (UEET) Project, but it also will be applied to other material systems under development for a wide range of applications.
Method and apparatus for determining material structural integrity
Pechersky, M.J.
1994-01-01
Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.
Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest
NASA Astrophysics Data System (ADS)
Zhu, Xi; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Niemann, K. Olaf; Liu, Jing; Shi, Yifang; Wang, Tiejun
2018-02-01
Separation of foliar and woody materials using remotely sensed data is crucial for the accurate estimation of leaf area index (LAI) and woody biomass across forest stands. In this paper, we present a new method to accurately separate foliar and woody materials using terrestrial LiDAR point clouds obtained from ten test sites in a mixed forest in Bavarian Forest National Park, Germany. Firstly, we applied and compared an adaptive radius near-neighbor search algorithm with a fixed radius near-neighbor search method in order to obtain both radiometric and geometric features derived from terrestrial LiDAR point clouds. Secondly, we used a random forest machine learning algorithm to classify foliar and woody materials and examined the impact of understory and slope on the classification accuracy. An average overall accuracy of 84.4% (Kappa = 0.75) was achieved across all experimental plots. The adaptive radius near-neighbor search method outperformed the fixed radius near-neighbor search method. The classification accuracy was significantly higher when the combination of both radiometric and geometric features was utilized. The analysis showed that increasing slope and understory coverage had a significant negative effect on the overall classification accuracy. Our results suggest that the utilization of the adaptive radius near-neighbor search method coupling both radiometric and geometric features has the potential to accurately discriminate foliar and woody materials from terrestrial LiDAR data in a mixed natural forest.
Microwave sintering of nanophase ceramics without concomitant grain growth
Eastman, Jeffrey A.; Sickafus, Kurt E.; Katz, Joel D.
1993-01-01
A method of sintering nanocrystalline material is disclosed wherein the nanocrystalline material is microwaved to heat the material to a temperature less than about 70% of the melting point of the nanocrystalline material expressed in degrees K. This method produces sintered nanocrystalline material having a density greater than about 95% of theoretical and an average grain size not more than about 3 times the average grain size of the nanocrystalline material before sintering. Rutile TiO.sub.2 as well as various other ceramics have been prepared. Grain growth of as little as 1.67 times has resulted with densities of about 90% of theoretical.
Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei
2016-01-21
The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2015-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. Copyright © 2014. Published by Elsevier Inc.
Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI
Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon
2016-01-01
Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446
Reactor and method for hydrocracking carbonaceous material
Duncan, Dennis A.; Beeson, Justin L.; Oberle, R. Donald; Dirksen, Henry A.
1980-01-01
Solid, carbonaceous material is cracked in the presence of hydrogen or other reducing gas to provide aliphatic and aromatic hydrocarbons of lower molecular weight for gaseous and liquid fuels. The carbonaceous material, such as coal, is entrained as finely divided particles in a flow of reducing gas and preheated to near the decomposition temperature of the high molecular weight polymers. Within the reactor, small quantities of oxygen containing gas are injected at a plurality of discrete points to burn corresponding amounts of the hydrogen or other fuel and elevate the mixture to high temperatures sufficient to decompose the high molecular weight, carbonaceous solids. Turbulent mixing at each injection point rapidly quenches the material to a more moderate bulk temperature. Additional quenching after the final injection point can be performed by direct contact with quench gas or oil. The reactions are carried out in the presence of a hydrogen-containing reducing gas at moderate to high pressure which stabilizes the products.
Goeddel, W.V.
1962-06-26
An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)
Pulse-Echo Ultrasonic Imaging Method for Eliminating Sample Thickness Variation Effects
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1997-01-01
A pulse-echo, immersion method for ultrasonic evaluation of a material which accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer and automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjustments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.
Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin
2017-01-01
PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (P<.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. CONCLUSION The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials. PMID:29279763
NASA Astrophysics Data System (ADS)
Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech
2017-04-01
The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy; English, Shawn; Briggs, Timothy
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
NASA Astrophysics Data System (ADS)
Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka
2017-06-01
The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.
Determination of elastic stresses in gas-turbine disks
NASA Technical Reports Server (NTRS)
Manson, S S
1947-01-01
A method is presented for the calculation of elastic stresses in symmetrical disks typical of those of a high-temperature gas turbine. The method is essentially a finite-difference solution of the equilibrium and compatibility equations for elastic stresses in a symmetrical disk. Account can be taken of point-to-point variations in disk thickness, in temperature, in elastic modulus, in coefficient of thermal expansion, in material density, and in Poisson's ratio. No numerical integration or trial-and-error procedures are involved and the computations can be performed in rapid and routine fashion by nontechnical computers with little engineering supervision. Checks on problems for which exact mathematical solutions are known indicate that the method yields results of high accuracy. Illustrative examples are presented to show the manner of treating solid disks, disks with central holes, and disks constructed either of a single material or two or more welded materials. The effect of shrink fitting is taken into account by a very simple device.
NASA Astrophysics Data System (ADS)
Vimmrová, Alena; Kočí, Václav; Krejsová, Jitka; Černý, Robert
2016-06-01
A method for lightweight-gypsum material design using waste stone dust as the foaming agent is described. The main objective is to reach several physical properties which are inversely related in a certain way. Therefore, a linear optimization method is applied to handle this task systematically. The optimization process is based on sequential measurement of physical properties. The results are subsequently point-awarded according to a complex point criterion and new composition is proposed. After 17 trials the final mixture is obtained, having the bulk density equal to (586 ± 19) kg/m3 and compressive strength (1.10 ± 0.07) MPa. According to a detailed comparative analysis with reference gypsum, the newly developed material can be used as excellent thermally insulating interior plaster with the thermal conductivity of (0.082 ± 0.005) W/(m·K). In addition, its practical application can bring substantial economic and environmental benefits as the material contains 25 % of waste stone dust.
DUCTILE-PHASE TOUGHENED TUNGSTEN FOR PLASMA-FACING MATERIALS IN FUSION REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Setyawan, Wahyu; Roosendaal, Timothy J.
2017-05-01
Tungsten (W) and W-alloys are the leading candidates for plasma-facing components in nuclear fusion reactor designs because of their high melting point, strength retention at high temperatures, high thermal conductivity, and low sputtering yield. However, tungsten is brittle and does not exhibit the required fracture toughness for licensing in nuclear applications. A promising approach to increasing fracture toughness of W-alloys is by ductile-phase toughening (DPT). In this method, a ductile phase is included in a brittle matrix to prevent on inhibit crack propagation by crack blunting, crack bridging, crack deflection, and crack branching. Model examples of DPT tungsten are exploredmore » in this study, including W-Cu and W-Ni-Fe powder product composites. Three-point and four-point notched and/or pre-cracked bend samples were tested at several strain rates and temperatures to help understand deformation, cracking, and toughening in these materials. Data from these tests are used for developing and calibrating crack-bridging models. Finite element damage mechanics models are introduced as a modeling method that appears to capture the complexity of crack growth in these materials.« less
NASA Astrophysics Data System (ADS)
Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi
2016-02-01
Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.
Making data matter: Voxel printing for the digital fabrication of data across scales and domains.
Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri
2018-05-01
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slattery, Stuart R
ExaMPM is a mini-application for the Material Point Method (MPM) for studying the application of MPM to future exascale computing systems. MPM is a general method for computational mechanics and fluids and is used in a wide variety of science and engineering disciplines to study problems with large deformations, phase change, fracture, and other phenomena. ExaMPM provides a reference implementation of MPM as described in the 1994 work of Sulsky et.al. (Sulsky, Deborah, Zhen Chen, and Howard L. Schreyer. "A particle method for history-dependent materials." Computer methods in applied mechanics and engineering 118.1-2 (1994): 179-196.). The software can solve basicmore » MPM problems in solid mechanics using the original algorithm of Sulsky with explicit time integration, basic geometries, and free-slip and no-slip boundary conditions as described in the reference. ExaMPM is intended to be used as a starting point to design new parallel algorithms for the next generation of DOE supercomputers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonda, Kohsuke, E-mail: gonda@med.tohoku.ac.jp; Miyashita, Minoru; Watanabe, Mika
2012-09-28
Highlights: Black-Right-Pointing-Pointer Organic fluorescent material-assembled nanoparticles for IHC were prepared. Black-Right-Pointing-Pointer New nanoparticle fluorescent intensity was 10.2-fold greater than Qdot655. Black-Right-Pointing-Pointer Nanoparticle staining analyzed a wide range of ER expression levels in tissue. Black-Right-Pointing-Pointer Nanoparticle staining enhanced the quantitative sensitivity for ER diagnosis. -- Abstract: The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3 Prime -diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature andmore » substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues sections to quantitatively examine the two methods. The results demonstrated that our nanoparticle staining analyzed a wide range of ER expression levels with higher accuracy and quantitative sensitivity than DAB staining. This enhancement in the diagnostic accuracy and sensitivity for ERs using our immunostaining method will improve the prediction of responses to therapies that target ERs and progesterone receptors that are induced by a downstream ER signal.« less
Predicting shrinkage and warpage in injection molding: Towards automatized mold design
NASA Astrophysics Data System (ADS)
Zwicke, Florian; Behr, Marek; Elgeti, Stefanie
2017-10-01
It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Siheng; Graduate University of Chinese Academy of Sciences, Beijing 100039; Qi Li, E-mail: qil@ciac.jl.cn
Mesoporous MnO{sub 2} microstructures with large specific surface area have been successfully synthesized by an in-situ redox precipitation method in the presence of colloidal carbon spheres. The samples of them had much higher specific surface area, pore size and pore volume than those obtained via routes without carbon spheres. The morphology, chemical compositions and porous nature of products were fully characterized. Electrochemical measurements showed that these mesoporous MnO{sub 2} could function well when used as positive electrode materials for supercapacitor. Ideal electrochemical capacitive performances and cyclic stability after 2000 galvanostatic charge-discharge cycles could be observed in 1 M neutral Na{submore » 2}SO{sub 4} aqueous electrolyte with a working voltage of 1.7 V. - Graphical Abstract: Mesoporous MnO{sub 2} microstructures with large S{sub BET} were successfully synthesized by in-situ redox precipitation method in the presence of colloidal carbon spheres. Electrochemical measurements showed that these mesoporous MnO{sub 2} could be well used as electrode materials for supercapacitor. Highlights: Black-Right-Pointing-Pointer Mesoporous MnO{sub 2} was prepared by in-situ redox method assisted by carbon spheres. Black-Right-Pointing-Pointer S{sub BET}, pore size and volume were higher than MnO{sub 2} obtained without carbon spheres. Black-Right-Pointing-Pointer They could function well when used as electrode materials for supercapacitor. Black-Right-Pointing-Pointer Ideal capacitive behaviors and long cycling life showed after 2000 charge-discharge.« less
NASA Astrophysics Data System (ADS)
Sellers, Michael; Lisal, Martin; Brennan, John
2015-06-01
Investigating the ability of a molecular model to accurately represent a real material is crucial to model development and use. When the model simulates materials in extreme conditions, one such property worth evaluating is the phase transition point. However, phase transitions are often overlooked or approximated because of difficulty or inaccuracy when simulating them. Techniques such as super-heating or super-squeezing a material to induce a phase change suffer from inherent timescale limitations leading to ``over-driving,'' and dual-phase simulations require many long-time runs to seek out what frequently results in an inexact location of phase-coexistence. We present a compilation of methods for the determination of solid-solid and solid-liquid phase transition points through the accurate calculation of the chemical potential. The methods are applied to the Smith-Bharadwaj atomistic potential's representation of cyclotrimethylene trinitramine (RDX) to accurately determine its melting point (Tm) and the alpha to gamma solid phase transition pressure. We also determine Tm for a coarse-grain model of RDX, and compare its value to experiment and atomistic counterpart. All methods are employed via the LAMMPS simulator, resulting in 60-70 simulations that total 30-50 ns. Approved for public release. Distribution is unlimited.
NASA Astrophysics Data System (ADS)
Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko
2015-11-01
To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.
NASA Astrophysics Data System (ADS)
Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.
2017-09-01
The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.
Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis
2006-08-22
A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.
Pulse-echo ultrasonic imaging method for eliminating sample thickness variation effects
NASA Technical Reports Server (NTRS)
Roth, Don J. (Inventor)
1995-01-01
A pulse-echo, immersion method for ultrasonic evaluation of a material is discussed. It accounts for and eliminates nonlevelness in the equipment set-up and sample thickness variation effects employs a single transducer, automatic scanning and digital imaging to obtain an image of a property of the material, such as pore fraction. The nonlevelness and thickness variation effects are accounted for by pre-scan adjusments of the time window to insure that the echoes received at each scan point are gated in the center of the window. This information is input into the scan file so that, during the automatic scanning for the material evaluation, each received echo is centered in its time window. A cross-correlation function calculates the velocity at each scan point, which is then proportionalized to a color or grey scale and displayed on a video screen.
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, X. J.; Kong, J. X.
2018-03-01
In this paper, the focused ion beam was used to study the subsurface deformed layer of single crystal copper caused by the nanoscale single-point diamond fly cutting, and the possibility of using nanometer ultra-precision cutting to remove the larger deformation layer caused by traditional rough cutting process was explored. The maximum cutting thickness of single-point diamond cutting was about 146 nm, and the surface of the single-crystal copper after cutting was etched and observed by using the focused ion beam method. It was found that the morphology of the near-surface layer and the intermediate layer of the copper material were larger differences: the near-surface of the material was smaller and more compact, and the intermediate material layer of the material was more coarse sparse. The results showed that the traditional precision cutting would residual significant subsurface deformed layer and the thickness was on micron level. Even more, the subsurface deformed layer was obviously removed from about 12μm to 5μm after single-point diamond fly cutting in this paper. This paper proved that the large-scale subsurface deformed layer caused by traditional cutting process could be removed by nanometer ultra-precision cutting. It was of great significance to further establish the method that control of the deformation of weak rigid components by reducing the depth of the subsurface deformed layers.
Method and apparatus for reducing coherence of high-power laser beams
Moncur, Norman K.; Mayer, Frederick J.
1978-01-01
Method and apparatus for reducing the coherence and for smoothing the power density profile of a collimated high-power laser beam in which the beam is focused at a point on the surface of a target fabricated of material having a low atomic number. The initial portion of the focused beam heats the material to form a hot reflective plasma at the material surface. The remaining, major portion of the focused beam is reflected by the plasma and recollected to form a collimated beam having reduced beam coherence.
40 CFR 60.424 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weigh scales, or the result of computations using a material balance, shall be used to determine the rate (P) of the ammonium sulfate production. If production rate is determined by material balance, the... combined feed stream flow rate to the ammonium crystallizer before the point where any recycle streams...
Kazmerski, Lawrence L.
1989-01-01
A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.
Kazmerski, L.L.
1985-04-30
A method and apparatus is disclosed for obtaining and mapping chemical compositional data for solid devices. It includes a SIMS mass analyzer or similar system capable of being rastered over a surface of the solid to sample the material at a pattern of selected points, as the surface is being eroded away by sputtering or a similar process. The data for each point sampled in a volume of the solid is digitally processed and indexed by element or molecule type, exact spacial location within the volume, and the concentration levels of the detected element or molecule types. This data can then be recalled and displayed for any desired planar view in the volume.
NASA Astrophysics Data System (ADS)
Rohe, Alexander; Liang, Dongfang
2017-06-01
The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil-Water-Structure Interaction" (MPM2017) was held in Delft, The Netherlands on 10-13 January 2017. This is the first conference organised by the Anura3D MPM Research Community, following a series of international workshops and symposia previously held in The Netherlands, UK, Spain and Italy, as part of the European Commission FP7 Marie-Curie project MPM-DREDGE. We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics, and take this opportunity to announce that the 2nd conference, MPM2019, will be held in Cambridge, UK in January 2019.
NASA Astrophysics Data System (ADS)
Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.
2016-12-01
The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.
1993-01-01
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, J.M.; Simandl, R.F.; Thompson, L.M.
1993-05-04
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Web-conference supervision for advanced psychotherapy training: a practical guide.
Abbass, Allan; Arthey, Stephen; Elliott, Jason; Fedak, Tim; Nowoweiski, Dion; Markovski, Jasmina; Nowoweiski, Sarah
2011-06-01
The advent of readily accessible, inexpensive Web-conferencing applications has opened the door for distance psychotherapy supervision, using video recordings of treated clients. Although relatively new, this method of supervision is advantageous given the ease of use and low cost of various Internet applications. This method allows periodic supervision from point to point around the world, with no travel costs and no long gaps between direct training contacts. Web-conferencing permits face-to-face training so that the learner and supervisor can read each other's emotional responses while reviewing case material. It allows group learning from direct supervision to complement local peer-to-peer learning methods. In this article, we describe the relevant literature on this type of learning method, the practical points in its utilization, its limitations, and its benefits.
NASA Astrophysics Data System (ADS)
Chan, C. H.; Brown, G.; Rikvold, P. A.
2017-11-01
We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.
NASA Astrophysics Data System (ADS)
Kurniawan, B.; Laksmi, W.; Sahara, N. A.
2018-04-01
Microwave absorption properties of La0.8Ca0.2-xAgxMnO3 (x= 0.05; 0.15) is reported in this paper. Lanthanum manganite materials was reported as a potential absorber material [1][2][3]. In this paper, the material was synthesized by sol-gel method, calcined at 550°C, and sintered at 900°C. The material was characterized by X-Ray Diffractometer (XRD), and we found that the materials were single phased. Through SEM-EDS characterization it is found that the materials have compositional purity. The resistivity of the materials is obtained by four point probe method, and it is shown that Ag doped decreases the resistivity of the materials. Reflection loss of La0.8Ca0.15Ag0.05MnO3 reaches -4.470 dB and La0.8Ca0.05Ag0.15MnO3 reaches - 7.953 dB.
Point defects in Cd(Zn)Te and TlBr: Theory
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-09-01
The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.
NASA Astrophysics Data System (ADS)
Raymond, Samuel J.; Jones, Bruce; Williams, John R.
2018-01-01
A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Acoustical levitation for space processing. [weightless molten material manipulation
NASA Technical Reports Server (NTRS)
Wang, T. G.; Saffren, M. M.; Elleman, D. D.
1974-01-01
It is pointed out that many space-manufacturing processes will require the manipulation of weightless molten material within a container in such a way that the material does not touch the container wall. A description is given of an acoustical method which can be used for the positioning and shaping of any molten material including nonconductors such as glasses. The new approach makes use of an acoustical standing wave which is excited within an enclosure or resonator.
Optimization of sensor introduction into laminated composite materials
NASA Astrophysics Data System (ADS)
Schaaf, Kristin; Nemat-Nasser, Sia
2008-03-01
This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
ofthe Damaged Sample 78 Figure 69: Fracture Surface of Damage Area Near the Point of Penetration 79 Figure 70. Closer View ofthe Damaged Area...LIST OF TABLES Table 1. Basic Mechanical Properties of the Materials 6 Table 2. Initial DMA Test Results 23 Table 3. Flexural Three Point Bend... point bend testing was conducted using an Instron 1127 Universal Tester to verify the DMA test method and specimen clamping configuration. Interfacial
Analysis of titanium content in titanium tetrachloride solution
NASA Astrophysics Data System (ADS)
Bi, Xiaoguo; Dong, Yingnan; Li, Shanshan; Guan, Duojiao; Wang, Jianyu; Tang, Meiling
2018-03-01
Strontium titanate, barium titan and lead titanate are new type of functional ceramic materials with good prospect, and titanium tetrachloride is a commonly in the production such products. Which excellent electrochemical performance of ferroelectric tempreature coefficient effect.In this article, three methods are used to calibrate the samples of titanium tetrachloride solution by back titration method, replacement titration method and gravimetric analysis method. The results show that the back titration method has many good points, for example, relatively simple operation, easy to judgment the titration end point, better accuracy and precision of analytical results, the relative standard deviation not less than 0.2%. So, it is the ideal of conventional analysis methods in the mass production.
Art Experiences for Young Children.
ERIC Educational Resources Information Center
Pile, Naomi F.
This book points out methods and materials that can be used by teachers helping preschoolers express their ideas and emotions through art. Hints on how to create atmosphere conducive to artwork and how to increase children's awareness of the visual world are given, along with hints on buying, using, and storing materials. Specific instructions are…
Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E
2010-01-01
Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.
Method for recovering metals from waste
Wicks, George G.; Clark, David E.; Schulz, Rebecca L.
2000-01-01
A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.
Method for recovering metals from waste
Wicks, George G.; Clark, David E.; Schulz, Rebecca L.
1998-01-01
A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.
Method for recovering metals from waste
Wicks, G.G.; Clark, D.E.; Schulz, R.L.
1998-12-01
A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.
X-ray mask and method for making
Morales, Alfredo M.
2004-10-26
The present invention describes a method for fabricating an x-ray mask tool which is a contact lithographic mask which can provide an x-ray exposure dose which is adjustable from point-to-point. The tool is useful in the preparation of LIGA plating molds made from PMMA, or similar materials. In particular the tool is useful for providing an ability to apply a graded, or "stepped" x-ray exposure dose across a photosensitive substrate. By controlling the x-ray radiation dose from point-to-point, it is possible to control the development process for removing exposed portions of the substrate; adjusting it such that each of these portions develops at a more or less uniformly rate regardless of feature size or feature density distribution.
Process compensated resonance testing modeling for damage evolution and uncertainty quantification
NASA Astrophysics Data System (ADS)
Biedermann, Eric; Heffernan, Julieanne; Mayes, Alexander; Gatewood, Garrett; Jauriqui, Leanne; Goodlet, Brent; Pollock, Tresa; Torbet, Chris; Aldrin, John C.; Mazdiyasni, Siamack
2017-02-01
Process Compensated Resonance Testing (PCRT) is a nondestructive evaluation (NDE) method based on the fundamentals of Resonant Ultrasound Spectroscopy (RUS). PCRT is used for material characterization, defect detection, process control and life monitoring of critical gas turbine engine and aircraft components. Forward modeling and model inversion for PCRT have the potential to greatly increase the method's material characterization capability while reducing its dependence on compiling a large population of physical resonance measurements. This paper presents progress on forward modeling studies for damage mechanisms and defects in common to structural materials for gas turbine engines. Finite element method (FEM) models of single crystal (SX) Ni-based superalloy Mar-M247 dog bones and Ti-6Al-4V cylindrical bars were created, and FEM modal analyses calculated the resonance frequencies for the samples in their baseline condition. Then the frequency effects of superalloy creep (high-temperature plastic deformation) and macroscopic texture (preferred crystallographic orientation of grains detrimental to fatigue properties) were evaluated. A PCRT sorting module for creep damage in Mar-M247 was trained with a virtual database made entirely of modeled design points. The sorting module demonstrated successful discrimination of design points with as little as 1% creep strain in the gauge section from a population of acceptable design points with a range of material and geometric variation. The resonance frequency effects of macro-scale texture in Ti-6Al-4V were quantified with forward models of cylinder samples. FEM-based model inversion was demonstrated for Mar-M247 bulk material properties and variations in crystallographic orientation. PCRT uncertainty quantification (UQ) was performed using Monte Carlo studies for Mar-M247 that quantified the overall uncertainty in resonance frequencies resulting from coupled variation in geometry, material properties, crystallographic orientation and creep damage. A model calibration process was also developed that evaluates inversion fitting to differences from a designated reference sample rather than absolute property values, yielding a reduction in fit error.
NASA Astrophysics Data System (ADS)
Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin
The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
NASA Technical Reports Server (NTRS)
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
MO-FG-204-01: Improved Noise Suppression for Dual-Energy CT Through Entropy Minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
2015-06-15
Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise for DECT based on image entropy minimization. An adaptive weighting scheme is employed during noise suppression to improve decomposition accuracy with limited effect on spatial resolution and image texture preservation. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a highly asymmetric cluster. We orient an axis bymore » minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimal axis. To limit errors due to cluster overlap, we weight each data point’s contribution based on its high and low energy CT values and location within the image. The proposed method’s performance is assessed on physical phantom studies. Electron density is used as the quality metric for decomposition accuracy. Our results are compared to those without noise suppression and with a recently developed iterative method. Results: The proposed method reduces noise standard deviations of the decomposed images by at least one order of magnitude. On the Catphan phantom, this method greatly preserves the spatial resolution and texture of the CT images and limits induced error in measured electron density to below 1.2%. In the head phantom study, the proposed method performs the best in retaining fine, intricate structures. Conclusion: The entropy minimization based algorithm with adaptive weighting substantially reduces DECT noise while preserving image spatial resolution and texture. Future investigations will include extensive investigations on material decomposition accuracy that go beyond the current electron density calculations. This work was supported in part by the National Institutes of Health (NIH) under Grant Number R21 EB012700.« less
Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost
NASA Astrophysics Data System (ADS)
Shen, A. W.; Guo, J. L.; Wang, Z. J.
2015-12-01
In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; ...
2018-02-13
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
NASA Astrophysics Data System (ADS)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy
2018-05-01
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory DFT), have found widespread use in the calculation of point defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT)more » to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.
Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) tomore » expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. As a result, we anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.« less
The Material Point Method and Simulation of Wave Propagation in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bardenhagen, S. G.; Greening, D. R.; Roessig, K. M.
2004-07-01
The mechanical response of polycrystalline materials, particularly under shock loading, is of significant interest in a variety of munitions and industrial applications. Homogeneous continuum models have been developed to describe material response, including Equation of State, strength, and reactive burn models. These models provide good estimates of bulk material response. However, there is little connection to underlying physics and, consequently, they cannot be applied far from their calibrated regime with confidence. Both explosives and metals have important structure at the (energetic or single crystal) grain scale. The anisotropic properties of the individual grains and the presence of interfaces result in the localization of energy during deformation. In explosives energy localization can lead to initiation under weak shock loading, and in metals to material ejecta under strong shock loading. To develop accurate, quantitative and predictive models it is imperative to develop a sound physical understanding of the grain-scale material response. Numerical simulations are performed to gain insight into grain-scale material response. The Generalized Interpolation Material Point Method family of numerical algorithms, selected for their robust treatment of large deformation problems and convenient framework for implementing material interface models, are reviewed. A three-dimensional simulation of wave propagation through a granular material indicates the scale and complexity of a representative grain-scale computation. Verification and validation calculations on model bimaterial systems indicate the minimum numerical algorithm complexity required for accurate simulation of wave propagation across material interfaces and demonstrate the importance of interfacial decohesion. Preliminary results are presented which predict energy localization at the grain boundary in a metallic bicrystal.
van der Pauw's Theorem on Sheet Resistance
ERIC Educational Resources Information Center
Bolt, Michael
2017-01-01
The sheet resistance of a conducting material of uniform thickness is analogous to the resistivity of a solid material and provides a measure of electrical resistance. In 1958, L. J. van der Pauw found an effective method for computing sheet resistance that requires taking two electrical measurements from four points on the edge of a simply…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saputra, Hens; Othman, Raihan, E-mail: raihan@iium.edu.my; Sutjipto, A.G.E.
2012-03-15
Highlights: Black-Right-Pointing-Pointer MCM-41 material transforms gradually into MCM-50 lamellar gel upon controlled exposure to 6 M KOH. Black-Right-Pointing-Pointer The formation of MCM-50 ordered gel structure occurs at KOH weight content of 40-70 wt. %. Black-Right-Pointing-Pointer MCM gel phase shows pseudoplastic behavior and possesses homogeneous matrix texture. -- Abstract: MCM-41 material, prepared by sol-gel method, reveals gel-like properties in a caustic alkaline environment, i.e., 6 M potassium hydroxide (KOH) electrolyte. The gellation of MCM-41 starts at a KOH weight ratio of 40 wt.%. The structural change of the material is verified with X-Ray diffractograms and supported by observation using Scanning Electronmore » Microscope (SEM). As the KOH weight ratio increases, the MCM-41 hexagonal arrays structure gradually transforms into MCM-50 lamellar structure before disappearing completely at 80 wt.% KOH. The MCM gel phase is further characterized by rotational viscometry and texture analysis. The gel phase shows shear thinning or pseudoplastic behavior and possesses homogeneous matrix structure.« less
Simulations of Sea-Ice Dynamics Using the Material-Point Method
NASA Technical Reports Server (NTRS)
Sulsky, D.; Schreyer, H.; Peterson, K.; Nguyen, G.; Coon, G.; Kwok, R.
2006-01-01
In recent years, the availability of large volumes of recorded ice motion derived from high-resolution SAR data has provided an amazingly detailed look at the deformation of the ice cover. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. These remarkable data put us in a position to begin detailed evaluation of current coupled mechanical and thermodynamic models of sea ice. This presentation will describe the material point method (MPM) for solving these model equations. MPM is a numerical method for continuum mechanics that combines the best aspects of Lagrangian and Eulerian discretizations. The material points provide a Lagrangian description of the ice that models convection naturally. Thus, properties such as ice thickness and compactness are computed in a Lagrangian frame and do not suffer from errors associated with Eulerian advection schemes, such as artificial diffusion, dispersion, or oscillations near discontinuities. This desirable property is illustrated by solving transport of ice in uniform, rotational and convergent velocity fields. Moreover, the ice geometry is represented by unconnected material points rather than a grid. This representation facilitates modeling the large deformations observed in the Arctic, as well as localized deformation along leads, and admits a sharp representation of the ice edge. MPM also easily allows the use of any ice constitutive model. The versatility of MPM is demonstrated by using two constitutive models for simulations of wind-driven ice. The first model is a standard viscous-plastic model with two thickness categories. The MPM solution to the viscous-plastic model agrees with previously published results using finite elements. The second model is a new elastic-decohesive model that explicitly represents leads. The model includes a mechanism to initiate leads, and to predict their orientation and width. The elastic-decohesion model can provide similar overall deformation as the viscous-plastic model; however, explicit regions of opening and shear are predicted. Furthermore, the efficiency of MPM with the elastic-decohesive model is competitive with the current best methods for sea ice dynamics. Simulations will also be presented for an area of the Beaufort Sea, where predictions can be validated against satellite observations of the Arctic.
Barr, Ronald G.; Barr, Marilyn; Fujiwara, Takeo; Conway, Jocelyn; Catherine, Nicole; Brant, Rollin
2009-01-01
Background Shaken baby syndrome often occurs after shaking in response to crying bouts. We questioned whether the use of the educational materials from the Period of PURPLE Crying program would change maternal knowledge and behaviour related to shaking. Methods We performed a randomized controlled trial in which 1279 mothers received materials from the Period of PURPLE Crying program or control materials during a home visit by a nurse by 2 weeks after the birth of their child. At 5 weeks, the mothers completed a diary to record their behaviour and their infants' behaviour. Two months after giving birth, the mothers completed a telephone survey to assess their knowledge and behaviour. Results The mean score (range 0–100 points) for knowledge about infant crying was greater among mothers who received the PURPLE materials (63.8 points) than among mothers who received the control materials (58.4 points) (difference 5.4 points, 95% confidence interval [CI] 4.1 to 6.5 points). The mean scores were similar for both groups for shaking knowledge and reported maternal responses to crying, inconsolable crying and self-talk responses. Compared with mothers who received control materials, mothers who received the PURPLE materials reported sharing information about walking away if frustrated more often (51.5% v. 38.5%, difference 13.0%, 95% CI 6.9% to 19.2%), the dangers of shaking (49.3% v. 36.4%, difference 12.9%, 95% CI 6.8% to 19.0%), and infant crying (67.6% v. 60.0%, difference 7.6%, 95% CI 1.7% to 13.5%). Walking away during inconsolable crying was significantly higher among mothers who received the PURPLE materials than among those who received control materials (0.067 v. 0.039 events per day, rate ratio 1.7, 95% CI 1.1 to 2.6). Interpretation The receipt of the Period of PURPLE Crying materials led to higher maternal scores for knowledge about infant crying and for some behaviours considered to be important for the prevention of shaking. (ClinicalTrials.gov trial register no. NCT00175422.) PMID:19255065
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422
Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring
NASA Astrophysics Data System (ADS)
Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.
2010-01-01
The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.
ERIC Educational Resources Information Center
Nordenstreng, Kaarle; Varis, Tapio
An international inventory was made to determine the composition of television programs, particularly from the point of view of program material exported to a country outside. A survey was also made of the international networks for sales and exchanges of program material for broadcast. A report of these studies includes the scope and methods of…
Compaction of granular materials composed of deformable particles
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.
Materials Compatibility Testing in Concentrated Hydrogen Peroxide
NASA Technical Reports Server (NTRS)
Boxwell, R.; Bromley, G.; Mason, D.; Crockett, D.; Martinez, L.; McNeal, C.; Lyles, G. (Technical Monitor)
2000-01-01
Materials test methods from the 1960's have been used as a starting point in evaluating materials for today's space launch vehicles. These established test methods have been modified to incorporate today's analytical laboratory equipment. The Orbital test objective was to test a wide range of materials to incorporate the revolution in polymer and composite materials that has occurred since the 1960's. Testing is accomplished in 3 stages from rough screening to detailed analytical tests. Several interesting test observations have been made during this testing and are included in the paper. A summary of the set-up, test and evaluation of long-term storage sub-scale tanks is also included. This sub-scale tank test lasted for a 7-month duration prior to being stopped due to a polar boss material breakdown. Chemical evaluations of the hydrogen peroxide and residue left on the polar boss surface identify the material breakdown quite clearly. The paper concludes with recommendations for future testing and a specific effort underway within the industry to standardize the test methods used in evaluating materials.
Fatigue properties of JIS H3300 C1220 copper for strain life prediction
NASA Astrophysics Data System (ADS)
Harun, Muhammad Faiz; Mohammad, Roslina
2018-05-01
The existing methods for estimating strain life parameters are dependent on the material's monotonic tensile properties. However, a few of these methods yield quite complicated expressions for calculating fatigue parameters, and are specific to certain groups of materials only. The Universal Slopes method, Modified Universal Slopes method, Uniform Material Law, the Hardness method, and Medians method are a few existing methods for predicting strain-life fatigue based on monotonic tensile material properties and hardness of material. In the present study, nine methods for estimating fatigue life and properties are applied on JIS H3300 C1220 copper to determine the best methods for strain life estimation of this ductile material. Experimental strain-life curves are compared to estimations obtained using each method. Muralidharan-Manson's Modified Universal Slopes method and Bäumel-Seeger's method for unalloyed and low-alloy steels are found to yield batter accuracy in estimating fatigue life with a deviation of less than 25%. However, the prediction of both methods only yield much better accuracy for a cycle of less than 1000 or for strain amplitudes of more than 1% and less than 6%. Manson's Original Universal Slopes method and Ong's Modified Four-Point Correlation method are found to predict the strain-life fatigue of copper with better accuracy for a high number of cycles of strain amplitudes of less than 1%. The differences between mechanical behavior during monotonic and cyclic loading and the complexity in deciding the coefficient in an equation are probably the reason for the lack of a reliable method for estimating fatigue behavior using the monotonic properties of a group of materials. It is therefore suggested that a differential approach and new expressions be developed to estimate the strain-life fatigue parameters for ductile materials such as copper.
A Computational Framework for Automation of Point Defect Calculations
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration
A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.
Method for gas bubble and void control and removal from metals
Van Siclen, Clinton D.; Wright, Richard N.
1996-01-01
A method for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy.
Artificial testing targets with controllable blur for adaptive optics microscopes
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Tamada, Yosuke; Murata, Takashi; Oya, Shin; Hasebe, Mitsuyasu; Hayano, Yutaka; Kamei, Yasuhiro
2017-08-01
This letter proposes a method of configuring a testing target to evaluate the performance of adaptive optics microscopes. In this method, a testing slide with fluorescent beads is used to simultaneously determine the point spread function and the field of view. The point spread function is reproduced to simulate actual biological samples by etching a microstructure on the cover glass. The fabrication process is simplified to facilitate an onsite preparation. The artificial tissue consists of solid materials and silicone oil and is stable for use in repetitive experiments.
The gallium melting-point standard: its role in our temperature measurement system.
Mangum, B W
1977-01-01
The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.
A useful and non-invasive microanalysis method for dental restoration materials
NASA Astrophysics Data System (ADS)
Hosoki, M.; Satsuma, T.; Nishigawa, K.; Takeuchi, H.; Asaoka, K.
2012-12-01
The elemental analysis of intraoral dental restorations provides considerable information for the treatment of dental metal allergy. Elemental analyses require specific instruments and complicated procedures, so this examination is not commonly carried out in private dental clinics. We describe a novel, simple and useful micro-analytical method for dental metal restorations. Micro metal dust was obtained by polishing the surface of restorative metal material with an unused silicone point (SUPER-SNAP). The metal dust on the silicone point was then rubbed onto adhesive tape, and this tape was covered with polyethylene film. The amount of metal dust material was <20 μg. An energy dispersive X-ray fluorescence spectrometer was used to carry out the elementary analysis of the metal dust on the polyethylene film. Three types of dental metal alloy materials of known components were examined. The results of elementary analyses were compared with the specifications provided by the manufacturer. The same procedure was carried out for three dental metal restorations of an adult female volunteer in vivo. The results of elemental analyses for five alloy materials exactly matched the product specification. Three metal samples obtained from intraoral restoration were also available for elemental analyses. The distinct advantage of this method is that it enables sample extraction without an invasive effect for the restoration. The metal sample is in a polyethylene film, so it is easy to mail it for inspection at specialist institutes yet it can be also be used in general dental clinics.
Method for the preparation of high surface area high permeability carbons
Lagasse, Robert R.; Schroeder, John L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO.sub.2 at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere.
Maxwell, James L; Rose, Chris R; Black, Marcie R; Springer, Robert W
2014-03-11
Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures whereby a second portion of said three-dimensional microelectronic structure formation is enhanced; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said second portion of a selected three-dimensional microelectronic structure is formed from said second precursor material; and, positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs.
Determination of piezo-optic coefficients of crystals by means of four-point bending.
Krupych, Oleg; Savaryn, Viktoriya; Krupych, Andriy; Klymiv, Ivan; Vlokh, Rostyslav
2013-06-10
A technique developed recently for determining piezo-optic coefficients (POCs) of isotropic optical media, which represents a combination of digital imaging laser interferometry and a classical four-point bending method, is generalized and applied to a single-crystalline anisotropic material. The peculiarities of measuring procedures and data processing for the case of optically uniaxial crystals are described in detail. The capabilities of the technique are tested on the example of canonical nonlinear optical crystal LiNbO3. The high precision achieved in determination of the POCs for isotropic and anisotropic materials testifies that the technique should be both versatile and reliable.
Method and apparatus for determination of material residual stress
NASA Technical Reports Server (NTRS)
Chern, Engmin J. (Inventor); Flom, Yury (Inventor)
1993-01-01
A device for the determination of residual stress in a material sample consisting of a sensor coil, adjacent to the material sample, whose resistance varies according to the amount of stress within the material sample, a mechanical push-pull machine for imparting a gradually increasing compressional and tensional force on the material sample, and an impedance gain/phase analyzer and personal computer (PC) for sending an input signal to and receiving an input signal from the sensor coil is presented. The PC will measure and record the change in resistance of the sensor coil and the corresponding amount of strain of the sample. The PC will then determine, from the measurements of change of resistance and corresponding strain of the sample, the point at which the resistance of the sensor coil is at a minimum and the corresponding value and type of strain of the sample at that minimum resistance point, thereby, enabling a calculation of the residual stress in the sample.
Purification of organic nonlinear optical materials for bulk crystal growth from melt
NASA Astrophysics Data System (ADS)
Gebre, Tesfaye; Bhat, Kamala N.; Batra, Ashok K.; Lal, Ravindra B.; Aggarwal, Mohan D.; Penn, Benjamin G.; Frazier, Donald O.
2002-10-01
The techniques developed for purification of nonlinear optical organic materials, such as benzil, 2-methyl-4-nitroaniline (MNA), Dicyanovinyl anisole (DIVA) and its derivatives, nitrophenyl prolinol (NPP) and other Schiff's base compounds, include Kugelrohy method, physical vapor transport, zone refining and recrystallization from the solvent are described. Purity of the materials is tested using differential thermal analysis, gas chromatograph/Mass detector, Fourier Transform Infrared spectroscopy and melting point measurements. The purified materials were later used in the growth of single crystal by Bridgman-Stockbarger and Czochralski techniques.
Calculation of 3D Coordinates of a Point on the Basis of a Stereoscopic System
NASA Astrophysics Data System (ADS)
Mussabayev, R. R.; Kalimoldayev, M. N.; Amirgaliyev, Ye. N.; Tairova, A. T.; Mussabayev, T. R.
2018-05-01
The solution of three-dimensional (3D) coordinate calculation task for a material point is considered. Two flat images (a stereopair) which correspond to the left and to the right viewpoints of a 3D scene are used for this purpose. The stereopair is obtained using two cameras with parallel optical axes. The analytical formulas for calculating 3D coordinates of a material point in the scene were obtained on the basis of analysis of the stereoscopic system optical and geometrical schemes. The detailed presentation of the algorithmic and hardware realization of the given method was discussed with the the practical. The practical module was recommended for the determination of the optical system unknown parameters. The series of experimental investigations were conducted for verification of theoretical results. During these experiments the minor inaccuracies were occurred by space distortions in the optical system and by it discrecity. While using the high quality stereoscopic system, the existing calculation inaccuracy enables to apply the given method for the wide range of practical tasks.
NASA Astrophysics Data System (ADS)
Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo
2018-05-01
An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.
NASA Astrophysics Data System (ADS)
Oleksik, Mihaela; Oleksik, Valentin
2013-05-01
The current paper intends to realise a fast method for determining the material characteristics in the case of composite materials used in the airbags manufacturing. For determining the material data needed for other complex numerical simulations at macroscopic level there was used the inverse analysis method. In fact, there were carried out tensile tests for the composite material extracted along two directions - the direction of the weft and the direction of the warp and afterwards there were realised numerical simulations (using the Ls-Dyna software). A second stage consisted in the numerical simulation through the finite element method and the experimental testing for the Bias test. The material characteristics of the composite fabric material were then obtained by applying a multicriterial analysis using the Ls-Opt software, for which there was imposed a decrease of the mismatch between the force-displacement curves obtained numerically and experimentally, respectively, for both directions (weft and warp) as well as the decrease of the mismatch between the strain - extension curves for two points at the Bias test.
Rossi, Patrizia; Pozio, Edoardo
2008-01-01
The European Community Regulation (EC) No. 2075/2005 lays down specific rules on official controls for the detection of Trichinella in fresh meat for human consumption, recommending the pooled-sample digestion method as the reference method. The aim of this document is to provide specific guidance to implement an appropriate Trichinella digestion method by a laboratory accredited according to the ISO/IEC 17025:2005 international standard, and performing microbiological testing following the EA-04/10:2002 international guideline. Technical requirements for the correct implementation of the method, such as the personnel competence, specific equipments and reagents, validation of the method, reference materials, sampling, quality assurance of results and quality control of performance are provided, pointing out the critical control points for the correct implementation of the digestion method.
Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order
Favalli, Andrea; Croft, Stephen; Santi, Peter
2015-06-15
Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less
Moussaoui, Ahmed; Bouziane, Touria
2016-01-01
The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).
Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design
Liu, Jilei; Wang, Jin; Xu, Chaohe; Li, Chunzhong; Lin, Jianyi
2017-01-01
Abstract Tremendous efforts have been dedicated into the development of high‐performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery‐like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery‐like behavior are discussed. Furthermore, guidelines for material selection, the state‐of‐the‐art materials, and the electrode design rules to advanced electrode are proposed. PMID:29375964
Liu, Jilei; Wang, Jin; Xu, Chaohe; Jiang, Hao; Li, Chunzhong; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang
2018-01-01
Tremendous efforts have been dedicated into the development of high-performance energy storage devices with nanoscale design and hybrid approaches. The boundary between the electrochemical capacitors and batteries becomes less distinctive. The same material may display capacitive or battery-like behavior depending on the electrode design and the charge storage guest ions. Therefore, the underlying mechanisms and the electrochemical processes occurring upon charge storage may be confusing for researchers who are new to the field as well as some of the chemists and material scientists already in the field. This review provides fundamentals of the similarities and differences between electrochemical capacitors and batteries from kinetic and material point of view. Basic techniques and analysis methods to distinguish the capacitive and battery-like behavior are discussed. Furthermore, guidelines for material selection, the state-of-the-art materials, and the electrode design rules to advanced electrode are proposed.
NASA Technical Reports Server (NTRS)
Gibson, Frederick W
1956-01-01
Results of an experimental investigation of the structural damping of six full-scale helicopter rotor blades, made to determine the variation of structural damping with materials and methods of construction, are presented. The damping of the blades was determined for the first three flapwise bending modes, first chordwise bending mode, and first torsion mode. The contribution of structural damping to the total damping of the blades is discussed for several aerodynamic conditions in order to point out situations where structural damping is significant.
NASA Astrophysics Data System (ADS)
Hadi Sutrisno, Himawan; Kiswanto, Gandjar; Istiyanto, Jos
2017-06-01
The rough machining is aimed at shaping a workpiece towards to its final form. This process takes up a big proportion of the machining time due to the removal of the bulk material which may affect the total machining time. In certain models, the rough machining has limitations especially on certain surfaces such as turbine blade and impeller. CBV evaluation is one of the concepts which is used to detect of areas admissible in the process of machining. While in the previous research, CBV area detection used a pair of normal vectors, in this research, the writer simplified the process to detect CBV area with a slicing line for each point cloud formed. The simulation resulted in three steps used for this method and they are: 1. Triangulation from CAD design models, 2. Development of CC point from the point cloud, 3. The slicing line method which is used to evaluate each point cloud position (under CBV and outer CBV). The result of this evaluation method can be used as a tool for orientation set-up on each CC point position of feasible areas in rough machining.
Parametric Shape Optimization of Lens-Focused Piezoelectric Ultrasound Transducers.
Thomas, Gilles P L; Chapelon, Jean-Yves; Bera, Jean-Christophe; Lafon, Cyril
2018-05-01
Focused transducers composed of flat piezoelectric ceramic coupled with an acoustic lens present an economical alternative to curved piezoelectric ceramics and are already in use in a variety of fields. Using a displacement/pressure (u/p) mixed finite element formulation combined with parametric level-set functions to implicitly define the boundaries between the materials and the fluid-structure interface, a method to optimize the shape of acoustic lens made of either one or multiple materials is presented. From that method, two 400 kHz focused transducers using acoustic lens were designed and built with different rapid prototyping methods, one of them made with a combination of two materials, and experimental measurements of the pressure field around the focal point are in good agreement with the presented model.
Response of Woodpecker's Head during Pecking Process Simulated by Material Point Method.
Liu, Yuzhe; Qiu, Xinming; Zhang, Xiong; Yu, T X
2015-01-01
Prevention of brain injury in woodpeckers under high deceleration during the pecking process has been an intriguing biomechanical problem for a long time. Several studies have provided different explanations, but the function of the hyoid bone, one of the more interesting skeletal features of a woodpecker, still has not been fully explored. This paper studies the relationship between a woodpecker head's response to impact and the hyoid bone. Based on micro-CT scanning images, the material point method (MPM) is employed to simulate woodpecker's pecking process. The maximum shear stress in the brainstem (SSS) is adopted as an indicator of brain injury. The motion and deformation of the first cervical vertebra is found to be the main reason of the shear stress of the brain. Our study found that the existence of the hyoid bone reduces the SSS level, enhances the rigidity of the head, and suppresses the oscillation of the endoskeleton after impact. The mechanism is explained by a brief mechanical analysis while the influence of the material properties of the muscle is also discussed.
Method of joining ITM materials using a partially or fully-transient liquid phase
Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis
2006-03-14
A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.
Modeling shock responses of plastic bonded explosives using material point method
NASA Astrophysics Data System (ADS)
Shang, Hailin; Zhao, Feng; Fu, Hua
2017-01-01
Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.
Seo, Jeong-Ho; Boedijono, Dimas
2016-01-01
Purpose The aim of this study was to investigate new point-connecting measurements for the hallux valgus angle (HVA) and the first intermetatarsal angle (IMA), which can reflect the degree of subluxation of the first metatarsophalangeal joint (MTPJ). Also, this study attempted to compare the validity of midline measurements and the new point-connecting measurements for the determination of HVA and IMA values. Materials and Methods Sixty feet of hallux valgus patients who underwent surgery between 2007 and 2011 were classified in terms of the severity of HVA, congruency of the first MTPJ, and type of chevron metatarsal osteotomy. On weight-bearing dorsal-plantar radiographs, HVA and IMA values were measured and compared preoperatively and postoperatively using both the conventional and new methods. Results Compared with midline measurements, point-connecting measurements showed higher inter- and intra-observer reliability for preoperative HVA/IMA and similar or higher inter- and intra-observer reliability for postoperative HVA/IMA. Patients who underwent distal chevron metatarsal osteotomy (DCMO) had higher intraclass correlation coefficient for inter- and intra-observer reliability for pre- and post-operative HVA and IMA measured by the point-connecting method compared with the midline method. All differences in the preoperative HVAs and IMAs determined by both the midline method and point-connecting methods were significant between the deviated group and subluxated groups (p=0.001). Conclusion The point-connecting method for measuring HVA and IMA in the subluxated first MTPJ may better reflect the severity of a HV deformity with higher reliability than the midline method, and is more useful in patients with DCMO than in patients with proximal chevron metatarsal osteotomy. PMID:26996576
Itoh, Nobuyasu; Sato, Ayako; Yamazaki, Taichi; Numata, Masahiko; Takatsu, Akiko
2013-01-01
The carbon, hydrogen, and nitrogen (CHN) contents of alanine and their uncertainties were estimated using a CHN analyzer and the certified reference material (CRM) L-alanine. The CHN contents and their uncertainties, as measured using the single-point calibration method, were 40.36 ± 0.20% for C, 7.86 ± 0.13% for H, and 15.66 ± 0.09% for N; the results obtained using the bracket calibration method were also comparable. The method described in this study is reasonable, convenient, and meets the general requirement of having uncertainties ≤ 0.4%.
Time Reversal Methods for Structural Health Monitoring of Metallic Structures Using Guided Waves
2011-09-01
measure elastic properties of thin isotropic materials and laminated composite plates. Two types of waves propagate a symmetric wave and antisymmetric...compare it to the original signal. In this time reversal procedure wave propagation from point-A to point-B and can be modeled as a convolution ...where * is the convolution operator and transducer transmit and receive transfer function are neglected for simplification. In the frequency
NASA Astrophysics Data System (ADS)
Li, Yan-Ming; Liang, Zhen-Zhen; Song, Chun-Lei
2016-05-01
To compare the effect of 3 kinds of different materials on the hemostasis of puncture site after central venous catheterization. Method: A selection of 120 patients with peripheral central venous catheter chemotherapy in the Affiliated Hospital of our university from January 2014 to April 2015, Randomly divided into 3 groups, using the same specification (3.5cm × 2cm) alginate gelatin sponge and gauze dressing, 3 kinds of material compression puncture point, 3 groups of patients after puncture 24 h within the puncture point of local blood and the catheter after the catheter 72 h within the catheter maintenance costs. Result: (1) The local infiltration of the puncture point in the 24 h tube: The use of alginate dressing and gelatin sponge hemostatic effect is better than that of compression gauze. The difference was statistically significant (P <0.05). Compared with gelatin sponge and alginate dressing hemostatic effect, The difference was not statistically significant. (2) Tube maintenance cost: Puncture point using gelatin sponge, The local maintenance costs of the catheter within 72 h after insertion of the tube are lowest, compared with alginate dressing and gauze was significant (P<0.05). Conclusion: The choice of compression hemostasis material for the puncture site after PICC implantation, using gelatin sponge and gauze dressing is more effective and economic.
Methods to Predict Stresses in Cutting Inserts Brazed Using Iron-Carbon Brazing Alloy
NASA Astrophysics Data System (ADS)
Konovodov, V. V.; Valentov, A. V.; Retuynskiy, O. Yu; Esekuev, Sh B.
2016-04-01
This work describes a method for predicting residual and operating stresses in a flat-form tool insert made of tungsten free carbides brazed using iron-carbon alloy. According to the studies’ results it is concluded that the recommendations relating to the limitation of a melting point of tool brazing alloys (950-1100°C according to different data) are connected with a negative impact on tools as a composite made of dissimilar materials rather than on hard alloys as a tool material. Due to the cooling process stresses inevitably occur in the brazed joint of dissimilar materials, and these stresses increase with the higher solidification temperature of the brazing alloy.
Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça
2017-12-01
To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P <.001). For LDC, AS surface treatment showed the highest FPBS results (100.31 ± 10.7 MPa) and the lowest values were obtained in RNC (23.63 ± 9.0 MPa) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.
Method for the preparation of high surface area high permeability carbons
Lagasse, R.R.; Schroeder, J.L.
1999-05-11
A method for preparing carbon materials having high surface area and high macropore volume to provide high permeability. These carbon materials are prepared by dissolving a carbonizable polymer precursor, in a solvent. The solution is cooled to form a gel. The solvent is extracted from the gel by employing a non-solvent for the polymer. The non-solvent is removed by critical point drying in CO{sub 2} at an elevated pressure and temperature or evaporation in a vacuum oven. The dried product is heated in an inert atmosphere in a first heating step to a first temperature and maintained there for a time sufficient to substantially cross-link the polymer material. The cross-linked polymer material is then carbonized in an inert atmosphere. 3 figs.
NASA Astrophysics Data System (ADS)
Zhang, Y. M.; Evans, J. R. G.; Yang, S. F.
2010-11-01
The authors have discovered a systematic, intelligent and potentially automatic method to detect errors in handbooks and stop their transmission using unrecognised relationships between materials properties. The scientific community relies on the veracity of scientific data in handbooks and databases, some of which have a long pedigree covering several decades. Although various outlier-detection procedures are employed to detect and, where appropriate, remove contaminated data, errors, which had not been discovered by established methods, were easily detected by our artificial neural network in tables of properties of the elements. We started using neural networks to discover unrecognised relationships between materials properties and quickly found that they were very good at finding inconsistencies in groups of data. They reveal variations from 10 to 900% in tables of property data for the elements and point out those that are most probably correct. Compared with the statistical method adopted by Ashby and co-workers [Proc. R. Soc. Lond. Ser. A 454 (1998) p. 1301, 1323], this method locates more inconsistencies and could be embedded in database software for automatic self-checking. We anticipate that our suggestion will be a starting point to deal with this basic problem that affects researchers in every field. The authors believe it may eventually moderate the current expectation that data field error rates will persist at between 1 and 5%.
Method for gas bubble and void control and removal from metals
Siclen, C.D. Van; Wright, R.N.
1996-02-06
A method is described for enhancing the diffusion of gas bubbles or voids attached to impurity precipitates, and biasing their direction of migration out of the host metal (or metal alloy) by applying a temperature gradient across the host metal (or metal alloy). In the preferred embodiment of the present invention, the impurity metal is insoluble in the host metal and has a melting point lower than the melting point of the host material. Also, preferably the impurity metal is lead or indium and the host metal is aluminum or a metal alloy. 2 figs.
Surface texturing of superconductors by controlled oxygen pressure
Chen, N.; Goretta, K.C.; Dorris, S.E.
1999-01-05
A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.
Surface texturing of superconductors by controlled oxygen pressure
Chen, Nan; Goretta, Kenneth C.; Dorris, Stephen E.
1999-01-01
A method of manufacture of a textured layer of a high temperature superconductor on a substrate. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO.sub.2 atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO.sub.2 atmosphere to cause solidification of the molten superconductor in a textured surface layer.
Determination of principal stress in birefringent composites by hole-drilling method
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
1981-01-01
The application of transmission photoelasticity to stress analysis of composite materials is discussed.The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are described which verify the theoretical predicitons. The limitations of the method are discussed and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.
NASA Technical Reports Server (NTRS)
Frocht, M M; Guernsey, R , Jr
1953-01-01
The method of strain measurement after annealing is reviewed and found to be satisfactory for the materials available in this country. A new general method is described for the photoelastic determination of the principal stresses at any point of a general body subjected to arbitrary load. The method has been applied to a sphere subjected to diametrical compressive loads. The results show possibilities of high accuracy.
ERIC Educational Resources Information Center
Rimpiläinen, Sanna
2015-01-01
What do different research methods and approaches "do" in practice? The article seeks to discuss this point by drawing upon socio-material research approaches and empirical examples taken from the early stages of an extensive case study on an interdisciplinary project between two multidisciplinary fields of study, education and computer…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jang-Hwan, E-mail: jhchoi21@stanford.edu; Constantin, Dragos; Ganguly, Arundhuti
2015-08-15
Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm{sup 3} ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp)more » and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0.6%] difference) and the 6-point case (0.7% [±0.6%] difference) performed best for method 1 and method 2, respectively. Moreover, method 2 demonstrated high-fidelity surface reconstruction with as few as 5 points, showing pixelwise absolute differences of 3.80 mGy (±0.32 mGy). Although the performance was shown to be sensitive to the phantom displacement from the isocenter, the performance changed by less than 2% for shifts up to 2 cm in the x- and y-axes in the central phantom plane. Conclusions: With as few as five points, method 1 and method 2 were able to compute the mean dose with reasonable accuracy, demonstrating differences of 1.7% (±1.2%) and 1.3% (±1.0%), respectively. A larger number of points do not necessarily guarantee better performance of the methods; optimal choice of point placement is necessary. The performance of the methods is sensitive to the alignment of the center of the body phantom relative to the isocenter. In body applications where dose distributions are important, method 2 is a better choice than method 1, as it reconstructs the dose surface with high fidelity, using as few as five points.« less
The Natural Neighbour Radial Point Interpolation Meshless Method Applied to the Non-Linear Analysis
NASA Astrophysics Data System (ADS)
Dinis, L. M. J. S.; Jorge, R. M. Natal; Belinha, J.
2011-05-01
In this work the Natural Neighbour Radial Point Interpolation Method (NNRPIM), is extended to large deformation analysis of elastic and elasto-plastic structures. The NNPRIM uses the Natural Neighbour concept in order to enforce the nodal connectivity and to create a node-depending background mesh, used in the numerical integration of the NNRPIM interpolation functions. Unlike the FEM, where geometrical restrictions on elements are imposed for the convergence of the method, in the NNRPIM there are no such restrictions, which permits a random node distribution for the discretized problem. The NNRPIM interpolation functions, used in the Galerkin weak form, are constructed using the Radial Point Interpolators, with some differences that modify the method performance. In the construction of the NNRPIM interpolation functions no polynomial base is required and the used Radial Basis Function (RBF) is the Multiquadric RBF. The NNRPIM interpolation functions posses the delta Kronecker property, which simplify the imposition of the natural and essential boundary conditions. One of the scopes of this work is to present the validation the NNRPIM in the large-deformation elasto-plastic analysis, thus the used non-linear solution algorithm is the Newton-Rapson initial stiffness method and the efficient "forward-Euler" procedure is used in order to return the stress state to the yield surface. Several non-linear examples, exhibiting elastic and elasto-plastic material properties, are studied to demonstrate the effectiveness of the method. The numerical results indicated that NNRPIM handles large material distortion effectively and provides an accurate solution under large deformation.
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
Stadium seating--a market analysis.
Jerry A. Sesco; Edwin Kallio
1967-01-01
This report describes the characteristics of stadiums and seating in six North Central States; summarizes the purchasing methods for stadium seats; presents estimates of the present and future market; and points out the increasing competition to wood stadium seating form substitute materials.
Palm-Based Standard Reference Materials for Iodine Value and Slip Melting Point
Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai; Kuntom, Ainie
2008-01-01
This work described study protocols on the production of Palm-Based Standard Reference Materials for iodine value and slip melting point. Thirty-three laboratories collaborated in the inter-laboratory proficiency tests for characterization of iodine value, while thirty-two laboratories for characterization of slip melting point. The iodine value and slip melting point of palm oil, palm olein and palm stearin were determined in accordance to MPOB Test Methods p3.2:2004 and p4.2:2004, respectively. The consensus values and their uncertainties were based on the acceptability of statistical agreement of results obtained from collaborating laboratories. The consensus values and uncertainties for iodine values were 52.63 ± 0.14 Wijs in palm oil, 56.77 ± 0.12 Wijs in palm olein and 33.76 ± 0.18 Wijs in palm stearin. For the slip melting points, the consensus values and uncertainties were 35.6 ± 0.3 °C in palm oil, 22.7 ± 0.4 °C in palm olein and 53.4 ± 0.2 °C in palm stearin. Repeatability and reproducibility relative standard deviations were found to be good and acceptable, with values much lower than that of 10%. Stability of Palm-Based Standard Reference Materials remained stable at temperatures of −20 °C, 0 °C, 6 °C and 24 °C upon storage for one year. PMID:19609396
Practical considerations for volumetric wear analysis of explanted hip arthroplasties
Langton, D. J.; Sidaginamale, R. P.; Holland, J. P.; Deehan, D.; Joyce, T. J.; Nargol, A. V. F.; Meek, R. D.; Lord, J. K.
2014-01-01
Objectives Wear debris released from bearing surfaces has been shown to provoke negative immune responses in the recipient. Excessive wear has been linked to early failure of prostheses. Analysis using coordinate measuring machines (CMMs) can provide estimates of total volumetric material loss of explanted prostheses and can help to understand device failure. The accuracy of volumetric testing has been debated, with some investigators stating that only protocols involving hundreds of thousands of measurement points are sufficient. We looked to examine this assumption and to apply the findings to the clinical arena. Methods We examined the effects on the calculated material loss from a ceramic femoral head when different CMM scanning parameters were used. Calculated wear volumes were compared with gold standard gravimetric tests in a blinded study. Results Various scanning parameters including point pitch, maximum point to point distance, the number of scanning contours or the total number of points had no clinically relevant effect on volumetric wear calculations. Gravimetric testing showed that material loss can be calculated to provide clinically relevant degrees of accuracy. Conclusions Prosthetic surfaces can be analysed accurately and rapidly with currently available technologies. Given these results, we believe that routine analysis of explanted hip components would be a feasible and logical extension to National Joint Registries. Cite this article: Bone Joint Res 2014;3:60–8. PMID:24627327
Energy Materials Center at Cornell: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abruña, Héctor; Mutolo, Paul F
2015-01-02
The mission of the Energy Materials Center at Cornell (emc 2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods formore » structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.« less
NASA Astrophysics Data System (ADS)
Xie, Tian; Grossman, Jeffrey C.
2018-04-01
The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.
2D modeling of direct laser metal deposition process using a finite particle method
NASA Astrophysics Data System (ADS)
Anedaf, T.; Abbès, B.; Abbès, F.; Li, Y. M.
2018-05-01
Direct laser metal deposition is one of the material additive manufacturing processes used to produce complex metallic parts. A thorough understanding of the underlying physical phenomena is required to obtain a high-quality parts. In this work, a mathematical model is presented to simulate the coaxial laser direct deposition process tacking into account of mass addition, heat transfer, and fluid flow with free surface and melting. The fluid flow in the melt pool together with mass and energy balances are solved using the Computational Fluid Dynamics (CFD) software NOGRID-points, based on the meshless Finite Pointset Method (FPM). The basis of the computations is a point cloud, which represents the continuum fluid domain. Each finite point carries all fluid information (density, velocity, pressure and temperature). The dynamic shape of the molten zone is explicitly described by the point cloud. The proposed model is used to simulate a single layer cladding.
Salt flux synthesis of single and bimetallic carbide nanowires
NASA Astrophysics Data System (ADS)
Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng
2016-07-01
Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.
Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P
NASA Astrophysics Data System (ADS)
Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol
2018-05-01
Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.
Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials.
Rocha, C G; Rocha, A R; Venezuela, P; Garcia, J H; Ferreira, M S
2018-06-19
Modern electronic structure calculations are predominantly implemented within the super cell representation in which unit cells are periodically arranged in space. Even in the case of non-crystalline materials, defect-embedded unit cells are commonly used to describe doped structures. However, this type of computation becomes prohibitively demanding when convergence rates are sufficiently slow and may require calculations with very large unit cells. Here we show that a hitherto unexplored feature displayed by several 2D materials may be used to achieve convergence in formation- and adsorption-energy calculations with relatively small unit-cell sizes. The generality of our method is illustrated with Density Functional Theory calculations for different 2D hosts doped with different impurities, all of which providing accuracy levels that would otherwise require enormously large unit cells. This approach provides an efficient route to calculating the physical properties of 2D systems in general but is particularly suitable for Dirac-point materials doped with impurities that break their sublattice symmetry.
PowerPoint presentation summarizing method development research involving the persistent perfluorinated organic compounds. Review of data indicating widespread distribution of these materials and the potential for toxicity.
Regional mapping of soil parent material by machine learning based on point data
NASA Astrophysics Data System (ADS)
Lacoste, Marine; Lemercier, Blandine; Walter, Christian
2011-10-01
A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km 2 study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too costly or lengthy or where soil maps are insufficient for use as training data. In addition, this method allows producing repeatable and interpretable results, whose accuracy can be assessed objectively.
Pixel-based meshfree modelling of skeletal muscles.
Chen, Jiun-Shyan; Basava, Ramya Rao; Zhang, Yantao; Csapo, Robert; Malis, Vadim; Sinha, Usha; Hodgson, John; Sinha, Shantanu
2016-01-01
This paper introduces the meshfree Reproducing Kernel Particle Method (RKPM) for 3D image-based modeling of skeletal muscles. This approach allows for construction of simulation model based on pixel data obtained from medical images. The material properties and muscle fiber direction obtained from Diffusion Tensor Imaging (DTI) are input at each pixel point. The reproducing kernel (RK) approximation allows a representation of material heterogeneity with smooth transition. A multiphase multichannel level set based segmentation framework is adopted for individual muscle segmentation using Magnetic Resonance Images (MRI) and DTI. The application of the proposed methods for modeling the human lower leg is demonstrated.
Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F
2008-02-13
Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.
Hayashi, Kuniki; Hoshino, Tadashi; Yanai, Mitsuru; Tsuchiya, Tatsuyuki; Kumasaka, Kazunari; Kawano, Kinya
2004-06-01
It is well known that serious method-related differences exist in results of serum CA19-9, and the necessity of standardization has been pointed out. In this study, differences of serum tumor marker CA19-9 levels obtained by various immunoassay kits (CLEIA, FEIA, LPIA and RIA) were evaluated in sixty-seven clinical samples and five calibrators and the possibility to improve the inter-methodological differences were observed not only for clinical samples but also for calibrators. We supposed an assumed standard material using by a calibrator. We calculated the serum levels of CA19-9 when using the assumed standard material for three different measurement methods. We approximate the CA19-9 values using by this method. It is suggested that the obtained CA19-9 values could be approximated by recalculation with the assumed standard material would be able to correct between-method and between-laboratory discrepancies in particular systematic errors.
NASA Astrophysics Data System (ADS)
Bateev, A. B.; Filippov, V. P.
2017-01-01
The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.
Two-point method uncertainty during control and measurement of cylindrical element diameters
NASA Astrophysics Data System (ADS)
Glukhov, V. I.; Shalay, V. V.; Radev, H.
2018-04-01
The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.
Lee, Seung-Yong; Lee, Mi-Ri; Park, No-Won; Kim, Gil-Sung; Choi, Heon-Jin; Choi, Tae-Youl; Lee, Sang-Kwon
2013-12-13
We report on a systematic study of the thermal transport characteristics of both as-grown zinc oxide and gallium nitride nanowires (NWs) via the four-point-probe 3-ω method in the temperature range 130-300 K. Both as-grown NWs were synthesized by a vapor-liquid-solid growth mechanism, and show clear n-type semiconducting behavior without any defects, which enables both the NWs to be promising candidates for thermoelectric materials. To measure the thermal conductivities of both NWs with lower heat loss and measurement errors, the suspended structures were formed by a combination of an e-beam lithography process and a random dispersion method. The measured thermal conductivities of both NWs are greatly reduced compared to their bulk materials due to the enhanced phonon scattering via the size effect and dopants (impurities). Furthermore, we observed that the Umklapp peaks of both NWs are shifted to a higher temperature than those of their bulk counterparts, indicating that phonon-boundary scattering dominates over other phonon scattering due to the size effect.
The cleaning of ward floors and the bacteriological study of floor-cleaning machines
Bate, J. G.
1961-01-01
Current trends in ward flooring materials and cleaning methods are considered from the point of view of the hospital bacteriologist. Methods employed in an investigation into the bacteriological safety of a number of floor-cleaning machines are described, and some considerations governing the choice of vacuum cleaners for ward use are discussed. Images PMID:13687726
Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; ...
2016-02-16
Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less
EDITORIAL: Humidity sensors Humidity sensors
NASA Astrophysics Data System (ADS)
Regtien, Paul P. L.
2012-01-01
All matter is more or less hygroscopic. The moisture content varies with vapour concentration of the surrounding air and, as a consequence, most material properties change with humidity. Mechanical and thermal properties of many materials, such as the tensile strength of adhesives, stiffness of plastics, stoutness of building and packaging materials or the thermal resistivity of isolation materials, all decrease with increasing environmental humidity or cyclic humidity changes. The presence of water vapour may have a detrimental influence on many electrical constructions and systems exposed to humid air, from high-power systems to microcircuits. Water vapour penetrates through coatings, cable insulations and integrated-circuit packages, exerting a fatal influence on the performance of the enclosed systems. For these and many other applications, knowledge of the relationship between moisture content or humidity and material properties or system behaviour is indispensable. This requires hygrometers for process control or test and calibration chambers with high accuracy in the appropriate temperature and humidity range. Humidity measurement methods can roughly be categorized into four groups: water vapour removal (the mass before and after removal is measured); saturation (the air is brought to saturation and the `effort' to reach that state is measured); humidity-dependent parameters (measurement of properties of humid air with a known relation between a specific property and the vapour content, for instance the refractive index, electromagnetic spectrum and acoustic velocity); and absorption (based on the known relation between characteristic properties of non-hydrophobic materials and the amount of absorbed water from the gas to which these materials are exposed). The many basic principles to measure air humidity are described in, for instance, the extensive compilations by Wexler [1] and Sonntag [2]. Absorption-type hygrometers have small dimensions and can be produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate, since it uses the accurately known relation between temperature and saturation vapour pressure in air. When an object exposed to humid air is cooled down below the dew-point water vapour condenses as drops on its cold surface. The temperature can be kept exactly at the dew point by controlling the amount of dew (equilibrium between evaporation and condensation). In most dew-point hygrometers dew is detected with optical or capacitive means. In the former the dew drops on a reflective surface (chilled mirror) scatter incident light, and the capacitive method uses the change in capacitance due to the large dielectric constant of liquid water (80) compared to air (1). Kunze et al, in the fourth paper of this special feature, use another property of water to detect dew: the relatively high value of the thermal capacitance of liquid water. In traditional technology this method would not be sensitive enough, but with MEMS technology a sufficient detectivity of dew can be achieved, which is demonstrated in this paper. A control system keeps the temperature of the substrate just at the dew-point temperature, the latter being measured by an on-chip diode. The accuracy achieved is comparable with traditional dew-point hygrometers. These four papers in this issue are nice examples of research leading to significant advances in hygrometry. References [1] Wexler A (ed) 1965 Humidity and Moisture. Vol. I: Principles and Methods of Measuring Humidity in Gases; Vol. II: Applications; Vol. III: Fundamentals and Standards; Vol. IV: Principles and Methods of Measuring Moisture in Liquids and Solids (New York: Reinhold) [2] Sonntag D 1966-1968 Hygrometrie (Berlin: Akademie Verlag)
Effect of processing on Polymer/Composite structure and properties
NASA Technical Reports Server (NTRS)
1982-01-01
Advances in the vitality and economic health of the field of polymer forecasting are discussed. A consistent and rational point of view which considers processing as a participant in the underlying triad of relationships which comprise materials science and engineering is outlined. This triad includes processing as it influences material structure, and ultimately properties. Methods in processing structure properties, polymer science and engineering, polymer chemistry and synthesis, structure and modification and optimization through processing, and methods of melt flow modeling in processing structure property relations of polymer were developed. Mechanical properties of composites are considered, and biomedical materials research to include polymer processing effects are studied. An analysis of the design technology of advances graphite/epoxy composites is also reported.
Apparatus and method for heating a material in a transparent ampoule. [crystal growth
NASA Technical Reports Server (NTRS)
Holland, L. R. (Inventor)
1983-01-01
An improved process for heating a material within a fused silica ampoule by radiation through the wall of the ampoule, while simultaneously passing a cooling gas around the ampoule is described. The radiation passes through a screen of fused silica so as to remove those components capable of directly heating the silica, therby increasing the temperature of the material within the ampoule above the strain point of the ampoule, while maintaining the exterior of the ampoule cool enough to prevent rupturing the amp.
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Billen, R.
2017-08-01
Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.
Müller, Christine; Lüders, Anne; Hoth-Hannig, Wiebke; Hannig, Matthias; Ziegler, Christiane
2010-03-16
The adsorption of bovine serum albumin (BSA) on surfaces of dental enamel and of dental materials was investigated by scanning force spectroscopy. This method provides adhesion forces which can be measured as a function of contact time between protein and surface, pH, wettability, and isoelectric point of the surface. Whereas the chosen ceramic and composite materials resemble very well the adhesion on natural enamel, a much stronger adhesion was found for the more hydrophobic surfaces, that is, gold, titanium, poly(methyl methacrylate) (PMMA), and poly(tetrafluoroethylene) (PTFE). On hydrophilic surfaces, adhesion is mainly influenced by the electrostatic forces between protein and surface. However, the conformational change of BSA at pH values above pH 8 has to be taken into account. On the very hydrophobic PTFE surface, the special interface structure between PTFE and water plays an important role which governs BSA adhesion.
Grégoire, David; Verdon, Laura; Lefort, Vincent; Grassl, Peter; Saliba, Jacqueline; Regoin, Jean-Pierre; Loukili, Ahmed; Pijaudier-Cabot, Gilles
2015-10-25
The purpose of this paper is to analyse the development and the evolution of the fracture process zone during fracture and damage in quasi-brittle materials. A model taking into account the material details at the mesoscale is used to describe the failure process at the scale of the heterogeneities. This model is used to compute histograms of the relative distances between damaged points. These numerical results are compared with experimental data, where the damage evolution is monitored using acoustic emissions. Histograms of the relative distances between damage events in the numerical calculations and acoustic events in the experiments exhibit good agreement. It is shown that the mesoscale model provides relevant information from the point of view of both global responses and the local failure process. © 2015 The Authors. International Journal for Numerical and Analytical Methods in Geomechanics published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
El Bouami, Souhail; Habak, Malek; Franz, Gérald; Velasco, Raphaël; Vantomme, Pascal
2016-10-01
Composite materials are increasingly used for structural parts in the aeronautic industries. Carbon Fiber-Reinforced Plastics (CFRP) are often used in combination with metallic materials, mostly aluminium alloys. This raises new problems in aircraft assembly. Delamination is one of these problems. In this study, CFRP/Al-Li stacks is used as experimental material for investigation effect of interaction of cutting parameters (cutting speed and feed rate) and tool geometry on delamination and thrust forces in drilling operation. A plan of experiments, based on Taguchi design method, was employed to investigate the influence of tool geometry and in particular the point angle and cutting parameters on delamination and axial effort. The experimental results demonstrate that the feed rate is the major parameter and the importance of tool point angle in delamination and thrust forces in the stacks were shown.
Adams, Jean; Halligan, Joel; Burges Watson, Duika; Ryan, Vicky; Penn, Linda; Adamson, Ashley J.; White, Martin
2012-01-01
Background Consumption of fruit and vegetables is important for health, but is often lower than recommended and tends to be socio-economically patterned with lower consumption in more deprived groups. In 2008, the English Department of Health introduced the Change4Life convenience store programme. This aimed to increase retail access to fresh fruit and vegetables in deprived, urban areas by providing existing convenience stores with a range of support and branded point-of-sale materials and equipment. Methods We undertook a mixed-methods study of the Change4Life convenience store programme in the North East of England around two years after initial implementation. Store mapping (n = 87; 100% stores) and systematic in-store observations (n = 74; 85% stores) provided information on intervention fidelity; the variety, purchase price and quality of fresh fruit and vegetables on sale; and purchase price compared to a major supermarket. Ten qualitative interviews with a purposive sample of retailers and other professionals explored experiences of the intervention and provided further insight on quantitative results. Results Intervention stores were primarily located in socio-economically disadvantaged areas. Fidelity, in terms of presence of branded materials and equipment, was low and much was not being used as intended. Fresh fruit and vegetables on sale were of high quality and had a purchase price around 10% more than comparable products at a major supermarket. Interviewees were supportive of the health improvement aim of the intervention. Retailers were appreciative of part-funding for chill cabinets and free point-of-sale materials. The intervention suffered from: poor initial and on-going communication between the intervention delivery team and retailers; poor availability of replacement point-of-sale materials; and failure to cement intended links with health workers and community organisations. Conclusions Overall, intervention fidelity was low and the intervention is unlikely to have had a substantial or long-term effect on customers’ consumption of fruit and vegetables. PMID:22761795
Chemical equilibrium of ablation materials including condensed species
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.
The Modulus of Rupture from a Mathematical Point of View
NASA Astrophysics Data System (ADS)
Quintela, P.; Sánchez, M. T.
2007-04-01
The goal of this work is to present a complete mathematical study about the three-point bending experiments and the modulus of rupture of brittle materials. We will present the mathematical model associated to three-point bending experiments and we will use the asymptotic expansion method to obtain a new formula to calculate the modulus of rupture. We will compare the modulus of rupture of porcelain obtained with the previous formula with that obtained by using the classic theoretical formula. Finally, we will also present one and three-dimensional numerical simulations to compute the modulus of rupture.
Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity
NASA Astrophysics Data System (ADS)
Pacchioni, Gianfranco
2000-05-01
Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.
Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques
NASA Astrophysics Data System (ADS)
Hassan, Jamal
2012-09-01
The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.
USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 45
1977-05-11
constants VQ and q. The values of the critical stress intensity factor produced by the authors by their indirect method are compared with...and TEREKHOV, A. N., Moscow Institute of Steel and Alloys [Russian abstract provided by the source] [Text] The method of high-temperature...their melting point. References 9; all Russian. USSR ’ UDC 539 IMPROVING THE PRECISION OF THE ACOUSTIC METHOD OF STRESS DETERMINATION Kiev
NASA Astrophysics Data System (ADS)
Konks, V. Ia.
1981-05-01
Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.
Saller, deceased, Henry A.; Hodge, Edwin S.; Paprocki, Stanley J.; Dayton, Russell W.
1987-12-01
1. A method of making a fuel-containing structure for nuclear reactors, comprising providing an assembly comprising a plurality of fuel units; each fuel unit consisting of a core plate containing thermal-neutron-fissionable material, sheets of cladding metal on its bottom and top surfaces, said cladding sheets being of greater width and length than said core plates whereby recesses are formed at the ends and sides of said core plate, and end pieces and first side pieces of cladding metal of the same thickness as the core plate positioned in said recesses, the assembly further comprising a plurality of second side pieces of cladding metal engaging the cladding sheets so as to space the fuel units from one another, and a plurality of filler plates of an acid-dissolvable nonresilient material whose melting point is above 2000.degree. F., each filler plate being arranged between a pair of said second side pieces and the cladding plates of two adjacent fuel units, the filler plates having the same thickness as the second side pieces; the method further comprising enclosing the entire assembly in an envelope; evacuating the interior of the entire assembly through said envelope; applying inert gas under a pressure of about 10,000 psi to the outside of said envelope while at the same time heating the assembly to a temperature above the flow point of the cladding metal but below the melting point of any material of the assembly, whereby the envelope is pressed against the assembly and integral bonds are formed between plates, sheets, first side pieces, and end pieces and between the sheets and the second side pieces; slowly cooling the assembly to room temperature; removing the envelope; and dissolving the filler plates without attacking the cladding metal.
ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)
NASA Astrophysics Data System (ADS)
Spearing, Dane R.
1994-05-01
ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.
Interfacial modulus mapping of layered dental ceramics using nanoindentation
Bushby, Andrew J; P'ng, Ken MY; Wilson, Rory M
2016-01-01
PURPOSE The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load – partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X – ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces. PMID:28018566
Road traffic sign detection and classification from mobile LiDAR point clouds
NASA Astrophysics Data System (ADS)
Weng, Shengxia; Li, Jonathan; Chen, Yiping; Wang, Cheng
2016-03-01
Traffic signs are important roadway assets that provide valuable information of the road for drivers to make safer and easier driving behaviors. Due to the development of mobile mapping systems that can efficiently acquire dense point clouds along the road, automated detection and recognition of road assets has been an important research issue. This paper deals with the detection and classification of traffic signs in outdoor environments using mobile light detection and ranging (Li- DAR) and inertial navigation technologies. The proposed method contains two main steps. It starts with an initial detection of traffic signs based on the intensity attributes of point clouds, as the traffic signs are always painted with highly reflective materials. Then, the classification of traffic signs is achieved based on the geometric shape and the pairwise 3D shape context. Some results and performance analyses are provided to show the effectiveness and limits of the proposed method. The experimental results demonstrate the feasibility and effectiveness of the proposed method in detecting and classifying traffic signs from mobile LiDAR point clouds.
Meija, Juris; Chartrand, Michelle M G
2018-01-01
Isotope delta measurements are normalized against international reference standards. Although multi-point normalization is becoming a standard practice, the existing uncertainty evaluation practices are either undocumented or are incomplete. For multi-point normalization, we present errors-in-variables regression models for explicit accounting of the measurement uncertainty of the international standards along with the uncertainty that is attributed to their assigned values. This manuscript presents framework to account for the uncertainty that arises due to a small number of replicate measurements and discusses multi-laboratory data reduction while accounting for inevitable correlations between the laboratories due to the use of identical reference materials for calibration. Both frequentist and Bayesian methods of uncertainty analysis are discussed.
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
NASA Astrophysics Data System (ADS)
Budiarsa, I. N.; Gde Antara, I. N.; Dharma, Agus; Karnata, I. N.
2018-04-01
Under an indentation, the material undergoes a complex deformation. One of the most effective ways to analyse indentation has been the representative method. The concept coupled with finite element (FE) modelling has been used successfully in analysing sharp indenters. It is of great importance to extend this method to spherical indentation and associated hardness system. One particular case is the Rockwell B test, where the hardness is determined by two points on the P-h curve of a spherical indenter. In this case, an established link between materials parameters and P-h curves can naturally lead to direct hardness estimation from the materials parameters (e.g. yield stress (y) and work hardening coefficients (n)). This could provide a useful tool for both research and industrial applications. Two method to predict p-h curve in spherical indentation has been established. One is use method using C1-C2 polynomial equation approach and another one by depth approach. Both approach has been successfully. An effective method in representing the P-h curves using a normalized representative stress concept was established. The concept and methodology developed is used to predict hardness (HRB) values of materials through direct analysis and validated with experimental data on selected samples of steel.
Özcan, E; Eldeniz, A U; Arı, H
2011-12-01
To evaluate the ability of two root canal sealers (Epoxy resin-based AH Plus or polydimethylsiloxane-based GuttaFlow) and five root filling techniques (continuous wave of condensation, Thermafil, lateral condensation, matched taper single gutta-percha point, laterally condensed-matched taper gutta-percha point) to kill bacteria in experimentally infected dentinal tubules. An infected dentine block model was used. One hundred and twenty extracted, single-rooted human teeth were randomly divided into 10 test (n = 10) and 2 control (n = 10) groups. The roots, except negative controls, were infected with Enterococcus faecalis for 21 days. The root canals were then filled using the test materials and methods. Positive controls were not filled. Sterile roots were used as negative controls. Dentine powder was obtained from all root canals using gates glidden drills using a standard method. The dentine powder was diluted and inoculated into bacterial growth media. Total colony-forming units (CFU) were calculated for each sample. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U test. The epoxy resin-based sealer was effective in killing E. faecalis except when using Thermafil (P < 0.05), but the polydimethylsiloxane-based sealer was not effective in killing this microorganism except in the continuous wave group (P < 0.05). In the test model, AH Plus killed bacteria in infected dentine more effectively than GuttaFlow. The filling method was less important than the sealer material. © 2011 International Endodontic Journal.
NASA Technical Reports Server (NTRS)
Dingell, Charles W. (Inventor); Quintana, Clemente E. (Inventor); Le, Suy (Inventor); Clark, Michael R. (Inventor); Cloutier, Robert E. (Inventor); Hafermalz, David Scott (Inventor)
2009-01-01
A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time. A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point restricts a flow rate of feed water from the feed water channel to the large pore substrate independent of time.
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
A PROBABILISTIC METHOD FOR ESTIMATING MONITORING POINT DENSITY FOR CONTAINMENT SYSTEM LEAK DETECTION
The use of physical and hydraulic containment systems for the isolation of contaminated ground water and aquifer materials ssociated with hazardous waste sites has increased during the last decade. The existing methodologies for monitoring and evaluating leakage from hazardous w...
Webster, Gregory K; Marsden, Ian; Pommerening, Cynthia A; Tyrakowski, Christina M
2010-05-01
With the changing development paradigms in the pharmaceutical industry, laboratories are challenged to release materials for clinical studies with rapid turnaround times. To minimize cost demands, many businesses are looking to develop ways of using early Good Manufacturing Practice (GMP) materials of active pharmaceutical ingredients (API) for Good Laboratory Practice (GLP) toxicology studies. To make this happen, the analytical laboratory releases the material by one of three scenarios: (1) holding the GLP release until full GMP testing is ready, (2) issuing a separate lot number for a portion of the GMP material and releasing the material for GLP use, or (3) releasing the lot of material for GLP using alternate (equivalent) method(s) not specified for GMP release testing. Many companies are finding the third scenario to be advantageous in terms of cost and efficiency through the use of quantitative nuclear magnetic resonance (q-NMR). The use of q-NMR has proved to be a single-point replacement for routine early development testing that previously combined elements of identity testing, chromatographic assay, moisture analysis, residual solvent analysis, and elemental analysis. This study highlights that q-NMR can be validated to meet current regulatory analytical method guidelines for routine pharmaceutical analysis.
Understanding water uptake in bioaerosols using laboratory measurements, field tests, and modeling
NASA Astrophysics Data System (ADS)
Chaudhry, Zahra; Ratnesar-Shumate, Shanna A.; Buckley, Thomas J.; Kalter, Jeffrey M.; Gilberry, Jerome U.; Eshbaugh, Jonathan P.; Corson, Elizabeth C.; Santarpia, Joshua L.; Carter, Christopher C.
2013-05-01
Uptake of water by biological aerosols can impact their physical and chemical characteristics. The water content in a bioaerosol can affect the backscatter cross-section as measured by LIDAR systems. Better understanding of the water content in controlled-release clouds of bioaerosols can aid in the development of improved standoff detection systems. This study includes three methods to improve understanding of how bioaerosols take up water. The laboratory method measures hygroscopic growth of biological material after it is aerosolized and dried. Hygroscopicity curves are created as the humidity is increased in small increments to observe the deliquescence point, then the humidity is decreased to observe the efflorescence point. The field component of the study measures particle size distributions of biological material disseminated into a large humidified chamber. Measurements are made with a Twin-Aerodynamic Particle Sizer (APS, TSI, Inc), -Relative Humidity apparatus where two APS units measure the same aerosol cloud side-by-side. The first operated under dry conditions by sampling downstream of desiccant dryers, the second operated under ambient conditions. Relative humidity was measured within the sampling systems to determine the difference in the aerosol water content between the two sampling trains. The water content of the bioaerosols was calculated from the twin APS units following Khlystov et al. 2005 [1]. Biological material is measured dried and wet and compared to laboratory curves of the same material. Lastly, theoretical curves are constructed from literature values for components of the bioaerosol material.
Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors
NASA Astrophysics Data System (ADS)
Lordi, Vincenzo
2013-03-01
The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.
A novel method for vaginal cylinder treatment planning: a seamless transition to 3D brachytherapy
Wu, Vincent; Wang, Zhou; Patil, Sachin
2012-01-01
Purpose Standard treatment plan libraries are often used to ensure a quick turn-around time for vaginal cylinder treatments. Recently there is increasing interest in transitioning from conventional 2D radiograph based brachytherapy to 3D image based brachytherapy, which has resulted in a substantial increase in treatment planning time and decrease in patient through-put. We describe a novel technique that significantly reduces the treatment planning time for CT-based vaginal cylinder brachytherapy. Material and methods Oncentra MasterPlan TPS allows multiple sets of data points to be classified as applicator points which has been harnessed in this method. The method relies on two hard anchor points: the first dwell position in a catheter and an applicator configuration specific dwell position as the plan origin and a soft anchor point beyond the last active dwell position to define the axis of the catheter. The spatial location of various data points on the applicator's surface and at 5 mm depth are stored in an Excel file that can easily be transferred into a patient CT data set using window operations and then used for treatment planning. The remainder of the treatment planning process remains unaffected. Results The treatment plans generated on the Oncentra MasterPlan TPS using this novel method yielded results comparable to those generated on the Plato TPS using a standard treatment plan library in terms of treatment times, dwell weights and dwell times for a given optimization method and normalization points. Less than 2% difference was noticed between the treatment times generated between both systems. Using the above method, the entire planning process, including CT importing, catheter reconstruction, multiple data point definition, optimization and dose prescription, can be completed in ~5–10 minutes. Conclusion The proposed method allows a smooth and efficient transition to 3D CT based vaginal cylinder brachytherapy planning. PMID:23349650
Xie, Wei-Qi; Chai, Xin-Sheng
2016-04-22
This paper describes a new method for the rapid determination of the moisture content in paper materials. The method is based on multiple headspace extraction gas chromatography (MHE-GC) at a temperature above the boiling point of water, from which an integrated water loss from the tested sample due to evaporation can be measured and from which the moisture content in the sample can be determined. The results show that the new method has a good precision (with the relative standard deviation <0.96%), high sensitivity (the limit of quantitation=0.005%) and good accuracy (the relative differences <1.4%). Therefore, the method is quite suitable for many uses in research and industrial applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Asaine, Keita; Asaine, Wataru; Shiratsuchi, Ryoma; Yoshida, Takaichi; Hashimoto, Masaaki
This paper highlights the issues of procurement management in construction projects, such as late delivery of purchased equipments/materials and missing instructions from customers, which cause delays of construction schedule and over-budget cost. We point that most of these problems are caused by lack of synchronization between procurement activities and process control. Therefore, we propose a managerial method which enables better synchronization between the two by applying this method to a construction company. We discuss the necessary conditions and validity of incorporating it and show the way how to establish the mechanics through the case study. Furthermore, we analyze that the feature of this method is not only addressing procurement issues but also bringing additional benefits, such as shortening project lead time and reducing project cost.
Preparation and characterization of phase transition/graphite foam composite materials.
Yu, Jia; Tang, ChenLong; Yu, ZhiChao
2016-07-04
Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).
Method and apparatus for determining minority carrier diffusion length in semiconductors
Goldstein, Bernard; Dresner, Joseph; Szostak, Daniel J.
1983-07-12
Method and apparatus are provided for determining the diffusion length of minority carriers in semiconductor material, particularly amorphous silicon which has a significantly small minority carrier diffusion length using the constant-magnitude surface-photovoltage (SPV) method. An unmodulated illumination provides the light excitation on the surface of the material to generate the SPV. A manually controlled or automatic servo system maintains a constant predetermined value of the SPV. A vibrating Kelvin method-type probe electrode couples the SPV to a measurement system. The operating optical wavelength of an adjustable monochromator to compensate for the wavelength dependent sensitivity of a photodetector is selected to measure the illumination intensity (photon flux) on the silicon. Measurements of the relative photon flux for a plurality of wavelengths are plotted against the reciprocal of the optical absorption coefficient of the material. A linear plot of the data points is extrapolated to zero intensity. The negative intercept value on the reciprocal optical coefficient axis of the extrapolated linear plot is the diffusion length of the minority carriers.
Accessing the exceptional points of parity-time symmetric acoustics
Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang
2016-01-01
Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443
NASA Astrophysics Data System (ADS)
Laubie, Hadrien; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef
2017-08-01
Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith's approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.
Glass composition and process for sealing void spaces in electrochemical devices
Meinhardt, Kerry D [Richland, WA; Kirby, Brent W [Kennewick, WA
2012-05-01
A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.
NASA Astrophysics Data System (ADS)
Aoun, Bachir; Yu, Cun; Fan, Longlong; Chen, Zonghai; Amine, Khalil; Ren, Yang
2015-04-01
A generalized method is introduced to extract critical information from series of ranked correlated data. The method is generally applicable to all types of spectra evolving as a function of any arbitrary parameter. This approach is based on correlation functions and statistical scedasticity formalism. Numerous challenges in analyzing high throughput experimental data can be tackled using the herein proposed method. We applied this method to understand the reactivity pathway and formation mechanism of a Li-ion battery cathode material during high temperature synthesis using in-situ high-energy X-ray diffraction. We demonstrate that Pearson's correlation function can easily unravel all major phase transition and, more importantly, the minor structural changes which cannot be revealed by conventionally inspecting the series of diffraction patterns. Furthermore, a two-dimensional (2D) reactivity pattern calculated as the scedasticity along all measured reciprocal space of all successive diffraction pattern pairs unveils clearly the structural evolution path and the active areas of interest during the synthesis. The methods described here can be readily used for on-the-fly data analysis during various in-situ operando experiments in order to quickly evaluate and optimize experimental conditions, as well as for post data analysis and large data mining where considerable amount of data hinders the feasibility of the investigation through point-by-point inspection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoun, Bachir; Yu, Cun; Fan, Longlong
A generalized method is introduced to extract critical information from series of ranked correlated data. The method is generally applicable to all types of spectra evolving as a function of any arbitrary parameter. This approach is based on correlation functions and statistical scedasticity formalism. Numerous challenges in analyzing high throughput experimental data can be tackled using the herein proposed method. We applied this method to understand the reactivity pathway and formation mechanism of a Li-ion battery cathode material during high temperature synthesis using in-situ highenergy X-ray diffraction. We demonstrate that Pearson's correlation function can easily unravel all major phase transitionmore » and, more importantly, the minor structural changes which cannot be revealed by conventionally inspecting the series of diffraction patterns. Furthermore, a two-dimensional (2D) reactivity pattern calculated as the scedasticity along all measured reciprocal space of all successive diffraction pattern pairs unveils clearly the structural evolution path and the active areas of interest during the synthesis. The methods described here can be readily used for on-the-fly data analysis during various in-situ operando experiments in order to quickly evaluate and optimize experimental conditions, as well as for post data analysis and large data mining where considerable amount of data hinders the feasibility of the investigation through point-by-point inspection.« less
2007-11-29
films, (3) low field effective linewidth in polycrystalline ferrites, (4) Fermi-Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet...Fermi- Pasta-Ulam recurrence for spin wave solitons in yttrium iron garnet (YIG) film strips in a feedback ring system, (5) the Hamiltonian...XRD data. point in field was so small that field modulation and lock -in The FMR field is taken at the peak loss point in the (b) detection methods
2016-02-28
centered at a point, x, where the field is to be evaluated , and the far field region Ωfar. A single unit cell located at x′ in the far field region is...successive shell adds less total error as expected because of the increased distance from evaluation point. . . . . . . . . . . . . . . . . . 108...of freedom in the system to more manageable levels. Energies or forces in the system are then evaluated through numerical quadrature rules and allow
Plastic phase change material and articles made therefrom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhari, Ramin
The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds aremore » provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.« less
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Method for producing high surface area chromia materials for catalysis
Gash, Alexander E [Brentwood, CA; Satcher, Joe [Patterson, CA; Tillotson, Thomas [Tracy, CA; Hrubesh, Lawrence [Pleasanton, CA; Simpson, Randall [Livermore, CA
2007-05-01
Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.
Directory of Design Support Methods
2005-08-01
16 ATB3I 18 Auditory Hazard Assessment Algorithm (AHAAH) 20 Authoring Instructional Materials (AIM) 22 Automated Neuropsychological Assessment...How To Acquire: Point of Contact listed above. 23 Title: Automated Neuropsychological Assessment Metrics (ANAM) Overall Category: Tool...General Overview: The Automated Neuropsychological Assessment Metrics (ANAM) is designed with emphasis on
Study of surface phenomena in biomaterials: The influence of physical factors
NASA Astrophysics Data System (ADS)
Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina
2015-10-01
This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.
A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Kiernan, Michael T.; Duke, John C., Jr.
1990-01-01
A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.
Xie, Yaoqin; Chao, Ming; Xing, Lei
2009-01-01
Purpose To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform (SIFT) method. The control point pairs were then sorted into different “colors” according to the organs they reside and used to model the involved organs individually. A thin-plate spline (TPS) method was used to register a structure characterized by the control points with a given “color”. The proposed technique was applied to study a digital phantom case, three lung and three liver cancer patients. Results For the phantom case, a comparison with the conventional TPS method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and the standard deviation (SD) of the 15 points against the known ground truth are reduced from 3.0 mm to 0.5 mm and from 1.5 mm to 0.2 mm, respectively, when the new method was used. Similar level of improvement was achieved for the clinical cases. Conclusions The segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration. PMID:19545792
Estimation of the laser cutting operating cost by support vector regression methodology
NASA Astrophysics Data System (ADS)
Jović, Srđan; Radović, Aleksandar; Šarkoćević, Živče; Petković, Dalibor; Alizamir, Meysam
2016-09-01
Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The operating cost is affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the workpiece material. In this article, the process factors investigated were: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the operating cost to the process parameters mentioned above. CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. The main goal was to analyze the operating cost through the laser power, cutting speed, air pressure, focal point position and material thickness. Since the laser operating cost is a complex, non-linear task, soft computing optimization algorithms can be used. Intelligent soft computing scheme support vector regression (SVR) was implemented. The performance of the proposed estimator was confirmed with the simulation results. The SVR results are then compared with artificial neural network and genetic programing. According to the results, a greater improvement in estimation accuracy can be achieved through the SVR compared to other soft computing methodologies. The new optimization methods benefit from the soft computing capabilities of global optimization and multiobjective optimization rather than choosing a starting point by trial and error and combining multiple criteria into a single criterion.
Point process statistics in atom probe tomography.
Philippe, T; Duguay, S; Grancher, G; Blavette, D
2013-09-01
We present a review of spatial point processes as statistical models that we have designed for the analysis and treatment of atom probe tomography (APT) data. As a major advantage, these methods do not require sampling. The mean distance to nearest neighbour is an attractive approach to exhibit a non-random atomic distribution. A χ(2) test based on distance distributions to nearest neighbour has been developed to detect deviation from randomness. Best-fit methods based on first nearest neighbour distance (1 NN method) and pair correlation function are presented and compared to assess the chemical composition of tiny clusters. Delaunay tessellation for cluster selection has been also illustrated. These statistical tools have been applied to APT experiments on microelectronics materials. Copyright © 2012 Elsevier B.V. All rights reserved.
Modelling and structural analysis of skull/cranial implant: beyond mid-line deformities.
Bogu, V Phanindra; Kumar, Y Ravi; Kumar Khanara, Asit
2017-01-01
This computational study explores modelling and finite element study of the implant under Intracranial pressure (ICP) conditions with normal ICP range (7 mm Hg to 15 mm Hg) or increased ICP (>I5 mm Hg). The implant fixation points allow implant behaviour with respect to intracranial pressure conditions. However, increased fixation points lead to variation in deformation and equivalent stress. Finite element analysis is providing a valuable insight to know the deformation and equivalent stress. The patient CT data (Computed Tomography) is processed in Mimics software to get the mesh model. The implant is modelled by using modified reverse engineering technique with the help of Rhinoceros software. This modelling method is applicable for all types of defects including those beyond the middle line and multiple ones. It is designed with eight fixation points and ten fixation points to fix an implant. Consequently, the mechanical deformation and equivalent stress (von Mises) are calculated in ANSYS 15 software with distinctive material properties such as Titanium alloy (Ti6Al4V), Polymethyl methacrylate (PMMA) and polyether-ether-ketone (PEEK). The deformation and equivalent stress results are obtained through ANSYS 15 software. It is observed that Ti6Al4V material shows low deformation and PEEK material shows less equivalent stress. Among all materials PEEK shows noticeably good result. Hence, a concept was established and more clinically relevant results can be expected with implementation of realistic 3D printed model in the future. This will allow physicians to gain knowledge and decrease surgery time with proper planning.
Gul, R.; Roy, U. N.; Bolotnikov, A. E.; ...
2015-04-15
We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.
NASA Astrophysics Data System (ADS)
Schmid, F.; Khattak, C. P.
1980-03-01
Conditions for the growth of large, uniformly doped laser crystals by the heat exchanger method are explored. Determination of the melt point, selection of crucible material and establishment of furnace operating parameters are discussed. The melt point of ruby was found to be 2040 plus or minus 10 C. Molybdenum crucibles can be used to contain ruby in vacuum as well as under argon atmospheres at desired superheat temperatures over extended periods required for crystal growth. Thermodynamic analysis was conducted and vapor pressures of volatile species calculated. Experimentally, volatilization of chromium oxides was suppressed by using welded covers on crucibles and operating under an argon pressure in the furnace.
Computational predictions of energy materials using density functional theory
NASA Astrophysics Data System (ADS)
Jain, Anubhav; Shin, Yongwoo; Persson, Kristin A.
2016-01-01
In the search for new functional materials, quantum mechanics is an exciting starting point. The fundamental laws that govern the behaviour of electrons have the possibility, at the other end of the scale, to predict the performance of a material for a targeted application. In some cases, this is achievable using density functional theory (DFT). In this Review, we highlight DFT studies predicting energy-related materials that were subsequently confirmed experimentally. The attributes and limitations of DFT for the computational design of materials for lithium-ion batteries, hydrogen production and storage materials, superconductors, photovoltaics and thermoelectric materials are discussed. In the future, we expect that the accuracy of DFT-based methods will continue to improve and that growth in computing power will enable millions of materials to be virtually screened for specific applications. Thus, these examples represent a first glimpse of what may become a routine and integral step in materials discovery.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.
NASA Technical Reports Server (NTRS)
Parse, Joseph B.; Wert, J. A.
1991-01-01
Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.
NASA Astrophysics Data System (ADS)
Calixto, M.; Romera, E.
2015-02-01
We propose a new method to identify transitions from a topological insulator to a band insulator in silicene (the silicon equivalent of graphene) in the presence of perpendicular magnetic and electric fields, by using the Rényi-Wehrl entropy of the quantum state in phase space. Electron-hole entropies display an inversion/crossing behavior at the charge neutrality point for any Landau level, and the combined entropy of particles plus holes turns out to be maximum at this critical point. The result is interpreted in terms of delocalization of the quantum state in phase space. The entropic description presented in this work will be valid in general 2D gapped Dirac materials, with a strong intrinsic spin-orbit interaction, isostructural with silicene.
Liu, Zhenbang; Ng, Junxiang; Yuwono, Arianto; Lu, Yadong; Tan, Yung Khan
2017-01-01
ABSTRACT Purpose: To compare the staining intensity of the upper urinary tract (UUT) urothelium among three UUT delivery methods in an in vivo porcine model. Materials and methods: A fluorescent dye solution (indigo carmine) was delivered to the UUT via three different methods: antegrade perfusion, vesico-ureteral reflux via in-dwelling ureteric stent and retrograde perfusion via a 5F open-ended ureteral catheter. Twelve renal units were tested with 4 in each method. After a 2-hour delivery time, the renal-ureter units were harvested en bloc. Time from harvesting to analysis was also standardised to be 2 hours in each arm. Three urothelium samples of the same weight and size were taken from each of the 6 pre-defined points (upper pole, mid pole, lower pole, renal pelvis, mid ureter and distal ureter) and the amount of fluorescence was measured with a spectrometer. Results: The mean fluorescence detected at all 6 predefined points of the UUT urothelium was the highest for the retrograde method. This was statistically significant with p-value less than <0.05 at all 6 points. Conclusions: Retrograde infusion of UUT by an open ended ureteral catheter resulted in highest mean fluorescence detected at all 6 pre-defined points of the UUT urothelium compared to antegrade infusion and vesico-ureteral reflux via indwelling ureteric stents indicating retrograde method ideal for topical therapy throughout the UUT urothelium. More clinical studies are needed to demonstrate if retrograde method could lead to better clinical outcomes compared to the other two methods. PMID:29039888
Critical viewpoints on the methods of realizing the metal freezing points of the ITS-90
NASA Astrophysics Data System (ADS)
Ma, C. K.
1995-08-01
The time-honored method for realizing the freezing point tf of a metal (in practice necessarily a dilute alloy) is that of continuous, slow freezing where the plateau temperature (which is the result of solidifying material's being so pure that its phase-transition temperature is observably constant) is measured. The freezing point being an equilibrium temperature, Ancsin considers this method to be inappropriate in principle: equilibrium between the solid and liquid phases cannot be achieved while the solid is being cooled to dispose of the releasing latent heat and while it is accreting at the expense of the liquid. In place of the continuous freezing method he has employed the pulse-heating method (in which the sample is allowed to approach equilibrium after each heat pulse) in his study of Ag; his measurements suggest that freezing can produce non-negligible errors. Here we examine both methods and conclude that the freezing method, employing an inside solid-liquid interface thermally isolated by an outside interface, can provide realizations of the highest accuracy; in either method, perturbation, by inducing solid-liquid phase transition continuously or intermittently, is essential for detecting equilibrium thermally. The respective merits and disadvantages of these two methods and also of the inner-melt method are discussed. We conclude that in a freezing-point measurement what is being measured is in effect the however minutely varying phase transition, and nonconstitutional equilibrium, temperature ti at the solid-liquid interface. The objective is then to measure the ti that is the best measure of tf, which is, normally, the plateau temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn
2012-03-15
Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less
The Electronic Biology Classroom: Implementation and Student Opinion.
ERIC Educational Resources Information Center
Davis, Mark S.
This paper describes a method for teaching introductory biology using a multimedia approach. This methodology aimed to increase student participation, promote independent learning, and enhance computer literacy. Five multimedia tools were used to teach the course. PowerPoint slide shows were used to present lecture material; videodiscs displayed…
NASA Astrophysics Data System (ADS)
Citraresmi, A. D. P.; Wahyuni, E. E.
2018-03-01
The aim of this study was to inspect the implementation of Hazard Analysis and Critical Control Point (HACCP) for identification and prevention of potential hazards in the production process of dried anchovy at PT. Kelola Mina Laut (KML), Lobuk unit, Sumenep. Cold storage process is needed in each anchovy processing step in order to maintain its physical and chemical condition. In addition, the implementation of quality assurance system should be undertaken to maintain product quality. The research was conducted using a survey method, by following the whole process of making anchovy from the receiving raw materials to the packaging of final product. The method of data analysis used was descriptive analysis method. Implementation of HACCP at PT. KML, Lobuk unit, Sumenep was conducted by applying Pre Requisite Programs (PRP) and preparation stage consisting of 5 initial stages and 7 principles of HACCP. The results showed that CCP was found in boiling process flow with significant hazard of Listeria monocytogenesis bacteria and final sorting process with significant hazard of foreign material contamination in the product. Actions taken were controlling boiling temperature of 100 – 105°C for 3 - 5 minutes and training for sorting process employees.
Joining dissimilar materials using Friction Stir scribe technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep
2016-10-03
The ability to effectively join materials with vastly different melting points like Aluminum-Steel, Polymer composites - metals has been one of the road blocks in realizing multi-material components for light weighting efforts. Friction stir scribe (FSS) technique is a promising method that produces continuous overlap joint between materials with vastly different melting regimes and high temperature flow characteristics. FSS uses an offset cutting tool at the tip of the FSW pin to create an insitu mechanical interlock between material interfaces. With investments from Vehicle Technology office, US DOE and several automotive manufacturers and suppliers PNNL is developing the FSS processmore » and has demonstrated viability of joining several material combinations. Details of welding trails, unique challenges and mitigation strategies in different material combinations will be discussed. Joint characterization including mechanical tests and joint performances will also be presented.« less
NASA Astrophysics Data System (ADS)
Sadowski, T.; Kneć, M.
2016-04-01
Fatigue tests were conducted since more than two hundred years ago. Despite this long period, as fatigue phenomena are very complex, assessment of fatigue response of standard materials or composites still requires a long time. Quite precise way to estimate fatigue parameters is to test at least 30 standardized specimens for the analysed material and further statistical post processing is required. In case of structural elements analysis like hybrid joints (Figure 1), the situation is much more complex as more factors influence the fatigue load capacity due to much more complicated structure of the joint in comparison to standard materials specimen, i.e. occurrence of: welded hot spots or rivets, adhesive layers, local notches creating the stress concentrations, etc. In order to shorten testing time some rapid methods are known: Locati's method [1] - step by step load increments up to failure, Prot's method [2] - constant increase of the load amplitude up to failure; Lehr's method [2] - seeking for the point during regular fatigue loading when an increase of temperature or strains become non-linear. The present article proposes new method of the fatigue response assessment - combination of the Locati's and Lehr's method.
The first principle calculation of two-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Lu, Jin
2017-12-01
As the size of integrated device becoming increasingly small, from the last century, semiconductor industry is facing the enormous challenge to break the Moore’s law. The development of calculation, communication and automatic control have emergent expectation of new materials at the aspect of semiconductor industrial technology and science. In spite of silicon device, searching the alternative material with outstanding electronic properties has always been a research point. As the discovery of graphene, the research of two-dimensional Dirac material starts to express new vitality. This essay studied the development calculation of 2D material’s mobility and introduce some detailed information of some approximation method of the first principle calculation.
Testing for characterization of the materials from radiological point of view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercea, Sorin; Iliescu, Elena; Dudu, Dorin
2013-12-16
The nuclear techniques and materials are now used in a large number of applications, both in medicine and industry. Due to this fact, new materials are needed in order to assure the radiological protection of the personnel involved in these activities. But, finally, all these materials have to be tested for some specific parameters, in order to prove that they are adequate for the purposed for which they were created. One of the important parameters of the materials used for the radiological protection is the attenuation coefficient. The attenuation coefficient of the ionizing radiation composed by particles without electrical chargemore » (X,γ-ray and neutron) is the most important parameter for the materials used for the shielding of these ionizing radiation. This paper deals with the experimental methods developed for the determination of the attenuation of fast and thermal neutrons. These experimental methods, involved the use of Am-Be source and U-120 Cyclotron of IFIN-HH. For the tests which were done at the U-120 Cyclotron, a number of experiments had to be performed, in order to establish the irradiation geometry and the dose equivalent rates in front of and behind the material samples. The experimental results obtained for samples of several materials, confirmed the methods as adequate for the aim of the test.« less
Apparatus and method for detecting flaws in conductive material
Hockey, Ronald L.; Riechers, Douglas M.
1999-01-01
The present invention is an improved sensing unit for detecting flaws in conductive material wherein the sensing coil is positioned away from a datum of either the datum point, the datum orientation, or a combination thereof. Position of the sensing coil away from a datum increases sensitivity for detecting flaws having a characteristic volume less than about 1 mm.sup.3, and further permits detection of subsurface flaws. Use of multiple sensing coils permits quantification of flaw area or volume.
The biospeckle method for the investigation of agricultural crops: A review
NASA Astrophysics Data System (ADS)
Zdunek, Artur; Adamiak, Anna; Pieczywek, Piotr M.; Kurenda, Andrzej
2014-01-01
Biospeckle is a nondestructive method for the evaluation of living objects. It has been applied to medicine, agriculture and microbiology for monitoring processes related to the movement of material particles. Recently, this method is extensively used for evaluation of quality of agricultural crops. In the case of botanical materials, the sources of apparent biospeckle activity are the Brownian motions and biological processes such as cyclosis, growth, transport, etc. Several different applications have been shown to monitor aging and maturation of samples, organ development and the detection and development of defects and diseases. This review will focus on three aspects: on the image analysis and mathematical methods for biospeckle activity evaluation, on published applications to botanical samples, with special attention to agricultural crops, and on interpretation of the phenomena from a biological point of view.
Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub
2017-01-01
A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.
Total Ambient Dose Equivalent Buildup Factor Determination for Nbs04 Concrete.
Duckic, Paulina; Hayes, Robert B
2018-06-01
Buildup factors are dimensionless multiplicative factors required by the point kernel method to account for scattered radiation through a shielding material. The accuracy of the point kernel method is strongly affected by the correspondence of analyzed parameters to experimental configurations, which is attempted to be simplified here. The point kernel method has not been found to have widespread practical use for neutron shielding calculations due to the complex neutron transport behavior through shielding materials (i.e. the variety of interaction mechanisms that neutrons may undergo while traversing the shield) as well as non-linear neutron total cross section energy dependence. In this work, total ambient dose buildup factors for NBS04 concrete are calculated in terms of neutron and secondary gamma ray transmission factors. The neutron and secondary gamma ray transmission factors are calculated using MCNP6™ code with updated cross sections. Both transmission factors and buildup factors are given in a tabulated form. Practical use of neutron transmission and buildup factors warrants rigorously calculated results with all associated uncertainties. In this work, sensitivity analysis of neutron transmission factors and total buildup factors with varying water content has been conducted. The analysis showed significant impact of varying water content in concrete on both neutron transmission factors and total buildup factors. Finally, support vector regression, a machine learning technique, has been engaged to make a model based on the calculated data for calculation of the buildup factors. The developed model can predict most of the data with 20% relative error.
Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc
NASA Astrophysics Data System (ADS)
Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.
2017-01-01
Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.
Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems
NASA Technical Reports Server (NTRS)
Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray
2012-01-01
Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.
Tacker, M; Hametner, C; Wepner, B
2002-01-01
Packaging materials are often considered a critical control point in HACCP systems of food companies. Methods for the determination of the microbial contamination rate of plastic cups, especially for dairy products, must reliably detect single moulds, yeasts or coliforms. In this study, a comparison of a specially adapted coating method, impedance method, direct inoculation and membrane filter technique was carried out to determine contamination with yeasts, moulds, coliforms and total bacterial counts using the appropriate agar in each case. The coating method is recommended for determining yeasts, moulds and coliforms as it allows the localization of the microorganisms as well as the determination of single microorganisms. For total bacterial count, a direct inoculation technique is proposed. The employing of simple measures in the production and during transport of packaging materials, such as dust-prevention or tight sealing in polyethylene bags, heavily reduces microbial contamination rates of packaging material. To reduce contamination rates further, electron beam irradiation was applied: plastic cups sealed in polyethylene bags were treated with 4-5 kGy, a dose that already leads to sterile polystyrene and polypropylene cups without influencing mechanical characteristics of the packaging material.
Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications
NASA Astrophysics Data System (ADS)
Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara
2018-04-01
Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.
Numerical-graphical method for describing the creep of damaged highly filled polymer materials
NASA Astrophysics Data System (ADS)
Bykov, D. L.; Martynova, E. D.; Mel'nikov, V. P.
2015-09-01
A method for describing the creep behavior until fracture of a highly filled polymer material previously damaged in preliminary tests is proposed. The constitutive relations are the relations of nonlinear endochronic theory of aging viscoelastic materials (NETAVEM) [1]. The numerical-graphical method for identifying the functions occurring in NETAVEM, which was proposed in [2] for describing loading processes at a constant strain rate, is used here for the first time in creep theory. We use the results of experiments with undamaged and preliminary damaged specimens under the action of the same constant tensile loads. The creep kernel is determined in experiments with an undamaged specimen. The reduced time function contained in NETAVEM is determined from the position of points corresponding to the same values of strain on the creep curves of the damaged and undamaged specimens. An integral equation is solved to obtain the aging function, and then the viscosity function is determined. The knowledge of all functions contained in the constitutive relations permits solving the creep problem for products manufactured from a highly filled polymer material.
Lee, Yung-Chun; Kuo, Shi Hoa
2004-01-01
A new acoustic transducer and measurement method have been developed for precise measurement of surface wave velocity. This measurement method is used to investigate the acoustoelastic effects for waves propagating on the surface of a polymethylmethacrylate (PMMA) sample. The transducer uses two miniature conical PZT elements for acoustic wave transmitter and receiver on the sample surface; hence, it can be viewed as a point-source/point-receiver transducer. Acoustic waves are excited and detected with the PZT elements, and the wave velocity can be accurately determined with a cross-correlation waveform comparison method. The transducer and its measurement method are particularly sensitive and accurate in determining small changes in wave velocity; therefore, they are applied to the measurement of acoustoelastic effects in PMMA materials. Both the surface skimming longitudinal wave and Rayleigh surface wave can be simultaneously excited and measured. With a uniaxial-loaded PMMA sample, both acoustoelastic effects for surface skimming longitudinal wave and Rayleigh waves of PMMA are measured. The acoustoelastic coefficients for both types of surface wave motions are simultaneously determined. The transducer and its measurement method provide a practical way for measuring surface stresses nondestructively.
NASA Astrophysics Data System (ADS)
Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu
2018-03-01
During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.
Accurate determination of complex materials coefficients of piezoelectric resonators.
Du, Xiao-Hong; Wang, Qing-Ming; Uchino, Kenji
2003-03-01
This paper presents a method of accurately determining the complex piezoelectric and elastic coefficients of piezoelectric ceramic resonators from the measurement of the normalized electric admittance, Y, which is electric admittance Y of piezoelectric resonator normalized by the angular frequency omega. The coefficients are derived from the measurements near three special frequency points that correspond to the maximum and the minimum normalized susceptance (B) and the maximum normalized conductance (G). The complex elastic coefficient is determined from the frequencies at these points, and the real and imaginary parts of the piezoelectric coefficient are related to the derivative of the susceptance with respect to the frequency and the asymmetry of the conductance, respectively, near the maximum conductance point. The measurements for some lead zirconate titanate (PZT) based ceramics are used as examples to demonstrate the calculation and experimental procedures and the comparisons with the standard methods.
System and method for confining an object to a region of fluid flow having a stagnation point
NASA Technical Reports Server (NTRS)
Schroeder, Charles M. (Inventor); Babcock, Hazen P. (Inventor); Shaqfeh, Eric S. G. (Inventor); Chu, Steven (Inventor)
2006-01-01
A device for confining an object to a region proximate to a fluid flow stagnation point includes one or more inlets for carrying the fluid into the region, one or more outlets for carrying the fluid out of the region, and a controller, in fluidic communication with the inlets and outlets, for adjusting the motion of the fluid to produce a stagnation point in the region, thereby confining the object to the region. Applications include, for example, prolonged observation of the object, manipulation of the object, etc. The device optionally may employ a feedback control mechanism, a sensing apparatus (e.g., for imaging), and a storage medium for storing, and a computer for analyzing and manipulating, data acquired from observing the object. The invention further provides methods of using such a device and system in a number of fields, including biology, chemistry, physics, material science, and medical science.
Neutron-diffraction measurement of residual stresses in Al-Cu cold-cut welding
NASA Astrophysics Data System (ADS)
Fiori, F.; Marcantoni, M.
Usually, when it is necessary to join different materials with a large difference in their melting points, welding should be avoided. To overcome this problem we designed and built a device to obtain cold-cut welding, which is able to strongly decrease oxidation problems of the surfaces to be welded. Thanks to this device it is possible to achieve good joining between different pairs of materials (Al-Ti, Cu-Al, Cu-Al alloys) without reaching the material melting point. The mechanical and microstructural characterisation of the joining and the validation of its quality were obtained using several experimental methods. In particular, in this work neutron-diffraction experiments for the evaluation of residual stresses in Cu-Al junctions are described, carried out at the G5.2 diffractometer of LLB, Saclay. Neutron-diffraction results are presented and related to other experimental tests such as microstructural characterisation (through optical and scanning electron microscopy) and mechanical characterisation (tensile-strength tests) of the welded interface.
Strong Correlation and Topological States in Orbital-Active Dirac Materials
NASA Astrophysics Data System (ADS)
Xu, Shenglong; Wu, Congjun
Two dimensional Dirac materials, starting with graphene, have drawn tremendous research interests in the past decade. Instead of focusing on the pz orbital as in graphene, we go a step further and study its two orbitals counterpart, namely the px and py orbitals on a honeycomb lattice. The model applies to both optical lattices and several solid state systems including organic material, fluoridated tin film, BiX/SBX (X=H.F.CI.Br). In the band structure, besides the well known Dirac points in the graphene band structure, the orbital degrees of freedom give rise to flat bands as well as quadratic band touching points. These new features provide an even wider playground for searching exotic states of matter. With help of mean field theory and functional renormalization group (FRG) method, we explore the effects of interaction on the system and investigate the consequential interesting states such as ferromagnetism, Wigner crystallization, quantum anomalous Hall states and f-wave superconductivity.
[Study on commercial specification of atractylodes based on Delphi method].
Wang, Hao; Chen, Li-Xiao; Huang, Lu-Qi; Zhang, Tian-Tian; Li, Ying; Zheng, Yu-Guang
2016-03-01
This research adopts "Delphi method" to evaluate atractylodes traditional traits and rank correlation. By using methods of mathematical statistics the relationship of the traditional identification indicators and atractylodes goods rank correlation was analyzed, It is found that the main characteristics affectingatractylodes commodity specifications and grades of main characters wereoil points of transaction,color of transaction,color of surface,grain of transaction,texture of transaction andspoilage. The study points out that the original "seventy-six kinds of medicinal materials commodity specification standards of atractylodes differentiate commodity specification" is not in conformity with the actual market situation, we need to formulate corresponding atractylodes medicinal products specifications and grades.This study combined with experimental results "Delphi method" and the market actual situation, proposed the new draft atractylodes commodity specifications and grades, as the new atractylodes commodity specifications and grades standards. It provides a reference and theoretical basis. Copyright© by the Chinese Pharmaceutical Association.
Method for quick thermal tolerancing of optical systems
NASA Astrophysics Data System (ADS)
Werschnik, J.; Uhlendorf, K.
2016-09-01
Optical systems for lithography (projection lens), inspection (micro-objectives) or laser material processing usually have tight specifications regarding focus and wave-front stability. The same is true regarding the field dependent properties. Especially projection lenses have tight specifications on field curvature, magnification and distortion. Unwanted heating either from internal or external sources lead to undesired changes of the above properties. In this work we show an elegant and fast method to analyze the thermal sensitivity using ZEMAX. The key point of this method is using the thermal changes of the lens data from the multi-configuration editor as starting point for a (standard) tolerance analysis. Knowing the sensitivity we can either define requirements on the environment or use it to systematically improve the thermal behavior of the lens. We demonstrate this method for a typical projection lens for which we optimized the thermal field curvature to a minimum.
Characterizing Sorghum Panicles using 3D Point Clouds
NASA Astrophysics Data System (ADS)
Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.
2017-12-01
To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.
Designing Radiation Resistance in Materials for Fusion Energy
NASA Astrophysics Data System (ADS)
Zinkle, S. J.; Snead, L. L.
2014-07-01
Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
NASA Astrophysics Data System (ADS)
da Silva, Rodrigo; Pearce, Jonathan V.; Machin, Graham
2017-06-01
The fixed points of the International Temperature Scale of 1990 (ITS-90) are the basis of the calibration of standard platinum resistance thermometers (SPRTs). Impurities in the fixed point material at the level of parts per million can give rise to an elevation or depression of the fixed point temperature of order of millikelvins, which often represents the most significant contribution to the uncertainty of SPRT calibrations. A number of methods for correcting for the effect of impurities have been advocated, but it is becoming increasingly evident that no single method can be used in isolation. In this investigation, a suite of five aluminium fixed point cells (defined ITS-90 freezing temperature 660.323 °C) have been constructed, each cell using metal sourced from a different supplier. The five cells have very different levels and types of impurities. For each cell, chemical assays based on the glow discharge mass spectroscopy (GDMS) technique have been obtained from three separate laboratories. In addition a series of high quality, long duration freezing curves have been obtained for each cell, using three different high quality SPRTs, all measured under nominally identical conditions. The set of GDMS analyses and freezing curves were then used to compare the different proposed impurity correction methods. It was found that the most consistent corrections were obtained with a hybrid correction method based on the sum of individual estimates (SIE) and overall maximum estimate (OME), namely the SIE/Modified-OME method. Also highly consistent was the correction technique based on fitting a Scheil solidification model to the measured freezing curves, provided certain well defined constraints are applied. Importantly, the most consistent methods are those which do not depend significantly on the chemical assay.
Extension of the hole-drilling method to birefringent composites
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
1982-01-01
A complete stress analysis and reliable failure criteria are essential for important structural applications of composites in order to fully utilize their unique properties. The inhomogeneity, anisotropy and inelasticity of many composites make the use of experimental methods indispensable. Among the experimental techniques, transmission photoelasticity has been extended to birefringent composites in recent years. The extension is not straight-forward, in view of the complex nature of the photoelastic response of such model materials. This paper very briefly reviews the important developments in the subject and then describes the theoretical basis for a new method of determining the individual values of principal stresses in composite models. The method consists in drilling very small holes at points where the state of stress has to be determined. Experiments are then described which verify the theoretical predictions. The limitations of the method are pointed out and it is concluded that valuable information concerning the state of stress in a composite model can be obtained through the suggested method.
How To Prepare Materials With a Desired Refraction Coefficient?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramm, A. G.
2010-05-21
In this talk a method is described for preparing materials with a desired refraction coefficient. The method consists of embedding into a material with known refraction coefficient many small particles of size a. The number of particles per unit volume around any point is prescribed, the distance between neighboring particles is O(a{sup (2-kappa/3)}) as a->0, 0
Functionalization of graphene by size and doping control and its optoelectronic applications
NASA Astrophysics Data System (ADS)
Tang, Libin; Ji, Rongbin; Tian, Pin; Kong, Jincheng; Xiang, Jinzhong
2017-02-01
Graphene has received intensive attention in recent years because of the special physical and chemical properties. However, up to now graphene has not been widely used in optoelectronic fields yet, which is mainly caused by its semimetal properties. Therefore, changing its properties from semimetal to semiconductor is becoming a focal point. Recently, aiming at tuning the energy band of graphene, we have carried out systematic studies on the preparations of graphene based materials and devices, the CVD growth techniques of monolayer and double layer graphenes have been developed, the large-area doped graphene films have been fabricated to tune the structure-related optical and electrical properties. A novel graphene oxide (GO) preparation method namely "Tang-Lau method" has been invented, the graphene quantum dots growths by microwave assisted hydrothermal method and "Soft-Template method" have been developed, the Cl, S and K doped graphene quantum dots preparations by hydrothermal methods have also been invented. Systematic investigations have been carried out for the effect of preparation parameters on the properties of graphene based materials, the effects of size, doping elements on the energy level of graphene based materials have been explored and discussed. Based on the semiconducting graphene based materials, some novel room temperature photodetectors covering detection wavebands from UV, Vis and NIR have been designed and fabricated.
Theoretical studies of the electronic properties of ceramic materials
NASA Astrophysics Data System (ADS)
Ching, W. Y.
1990-11-01
The first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method for electronic structure studies has been applied to a variety of complex inorganic crystals. The theory and the practice of the OLCAO method in the local density approximation are discussed in detail. Recent progress in the study of electronic and optical properties of a large list of ceramic systems are summarized. Eight selected topics on different ceramic crystals focusing on specific points of interest are presented as examples. The materials discussed are AlN, Cu2O, beta-Si3N4, Y2O3, LiB3O5, ferroelectric crystals, Fe-B compounds, and the YBa2Cu3O7 superconductor.
NASA Astrophysics Data System (ADS)
Ee, K. C.; Dillon, O. W.; Jawahir, I. S.
2004-06-01
This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.
Sensing mode atomic force microscope
Hough, Paul V. C.; Wang, Chengpu
2006-08-22
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sensing mode atomic force microscope
Hough, Paul V.; Wang, Chengpu
2004-11-16
An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.
Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani
2018-01-01
Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061
New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.
2008-02-01
The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.
Succinonitrile Purification Facility
NASA Technical Reports Server (NTRS)
2003-01-01
The Succinonitrile (SCN) Purification Facility provides succinonitrile and succinonitrile alloys to several NRA selected investigations for flight and ground research at various levels of purity. The purification process employed includes both distillation and zone refining. Once the appropriate purification process is completed, samples are characterized to determine the liquidus and/or solidus temperature, which is then related to sample purity. The lab has various methods for measuring these temperatures with accuracies in the milliKelvin to tenths of milliKelvin range. The ultra-pure SCN produced in our facility is indistinguishable from the standard material provided by NIST to well within the stated +/- 1.5mK of the NIST triple point cells. In addition to delivering material to various investigations, our current activities include process improvement, characterization of impurities and triple point cell design and development. The purification process is being evaluated for each of the four vendors to determine the efficacy of each purification step. We are also collecting samples of the remainder from distillation and zone refining for analysis of the constituent impurities. The large triple point cells developed will contain SCN with a melting point of 58.0642 C +/- 1.5mK for use as a calibration standard for Standard Platinum Resistance Thermometers (SPRTs).
Self regulating formulations for safe hydrogen gettering
Shepodd, Timothy Jon
2002-01-01
A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.
Aerogel materials with periodic structures imprinted with cellulose nanocrystals.
Xu, Yi-Tao; Dai, Yiling; Nguyen, Thanh-Dinh; Hamad, Wadood Y; MacLachlan, Mark J
2018-02-22
Novel aerogel materials with periodic structures derived from chiral nematic liquid crystalline cellulose nanocrystals (CNCs) are reported. The liquid crystalline structure of phase-separated CNCs is locked by a simple solvent exchange method or silica condensation. Both cellulose and silica/cellulose aerogel materials were obtained after critical point drying, and subsequent calcination of the silica/cellulose composite afforded a silica aerogel with periodic order. Gas adsorption and electron microscopy studies revealed that these materials have high surface areas and a unique chiral nematic structure imparted from the helicoidal CNC template. This is a new, scalable approach to aerogel materials with highly anisotropic structures. The high porosity and periodic, chiral features of these new materials may make them suitable for applications that require anisotropic properties or as hard templates for the construction of other ordered aerogels.
Strategic Materials: A Crisis Waiting to Happen.
1984-09-01
of stockpile material for economic or budgetary purposes has been specifically prohibited. At this point , it would be useful to examine 0 the contents...for the period encompassed by the emergency period. Currently, this is three years. At this o point , factors reflecting the willingness to accept...Materials Advisory Board completed a study in 1981 entitled, Considerations in Choice of Form for Materials for the National Stockpile. The report points
Method of constructing a microwave antenna
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method of Constructing a Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for selective thermal ablation
NASA Technical Reports Server (NTRS)
Ngo, Phong (Inventor); Arndt, G. Dickey (Inventor); Raffoul, George W. (Inventor); Carl, James (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Method for Selective Thermal Ablation
NASA Technical Reports Server (NTRS)
Arndt, G. Dickey (Inventor); Carl, James (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2003-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
Multiscale Modeling of UHTC: Thermal Conductivity
NASA Technical Reports Server (NTRS)
Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
Ultra low density biodegradable shape memory polymer foams with tunable physical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth
Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boilingmore » points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.« less
Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS
NASA Astrophysics Data System (ADS)
Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang
2014-02-01
Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.
Photothermal measurements of high Tc superconductors
NASA Astrophysics Data System (ADS)
Fanton, J. T.; Mitzi, D. B.; Kapitulnik, A.; Khuri-Yakub, B. T.; Kino, G. S.; Gazit, D.; Feigelson, R. S.
1989-08-01
We demonstrate a photothermal method for making point measurements of the thermal conductivities of high Tc superconductors. Images made at room temperature on polycrystalline materials show the thermal inhomogeneities. Measurements on single-crystal Bi2Sr2CaCu2Ox compounds reveal a very large anisotropy of about 7:1 in the thermal conductivity.
Censorship: A Threat to Reading, Learning, Thinking.
ERIC Educational Resources Information Center
Simmons, John S., Ed.
Pointing out that censorship is undermining the goals of education and plaguing all areas of the curriculum, this collection of essays considers many areas in which students' right to read is being infringed. The collection offers thought-provoking perspectives on the methods used by protesters to remove books and materials from classrooms and…
UMAP Modules-Units 105, 107-109, 111-112, 158-162.
ERIC Educational Resources Information Center
Keller, Mary K.; And Others
This collection of materials includes six units dealing with applications of matrix methods. These are: 105-Food Service Management; 107-Markov Chains; 108-Electrical Circuits; 109-Food Service and Dietary Requirements; 111-Fixed Point and Absorbing Markov Chains; and 112-Analysis of Linear Circuits. The units contain exercises and model exams,…
27 CFR 6.84 - Point of sale advertising materials and consumer advertising specialties.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Point of sale advertising materials and consumer advertising specialties. 6.84 Section 6.84 Alcohol, Tobacco Products and Firearms....84 Point of sale advertising materials and consumer advertising specialties. (a) General. The act by...
27 CFR 6.84 - Point of sale advertising materials and consumer advertising specialties.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Point of sale advertising materials and consumer advertising specialties. 6.84 Section 6.84 Alcohol, Tobacco Products and Firearms....84 Point of sale advertising materials and consumer advertising specialties. (a) General. The act by...
27 CFR 6.84 - Point of sale advertising materials and consumer advertising specialties.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Point of sale advertising materials and consumer advertising specialties. 6.84 Section 6.84 Alcohol, Tobacco Products and Firearms....84 Point of sale advertising materials and consumer advertising specialties. (a) General. The act by...
NASA Astrophysics Data System (ADS)
Vilbaste, M.; Heinonen, M.; Saks, O.; Leito, I.
2013-08-01
The purpose of this paper is to study the effect of contaminated water in the context of humidity generators. Investigation of different methods to determine the drop in dew-point temperature due to contamination and experiments on actual contamination rates are reported. Different methods for calculating the dew-point temperature effect from electrical conductivity and density measurements are studied with high-purity water and aqueous solutions of NaCl and LiCl. The outcomes of the calculation methods are compared with the results of direct humidity measurements. The results show that the often applied Raoult's law based calculation method is in good agreement with other methods. For studying actual contamination, water samples were kept in glass, plastic, copper and stainless-steel vessels for up to 13 months to investigate natural ionic and organic contamination in vessels with different wall materials. The amount of ionic contamination was found to be higher in copper and glass vessels than in stainless-steel and plastic vessels. The amount of organic contamination was found to be highest in the plastic vessel. In all the cases, however, the corresponding drop in dew-point temperature due to natural contamination was found to be below 0.1 mK. The largest rate of change of dew-point temperature was 26 µK/month. Thus, if proper cleanness is maintained in a humidity generator the effect of contamination of water in the saturator is insignificant compared with the major uncertainty components even in the most accurate generators today.
Le, Huy Q.; Molloi, Sabee
2011-01-01
Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine. PMID:21361193
NASA Astrophysics Data System (ADS)
Zahedifar, Maedeh; Kratzer, Peter
2018-01-01
Various ab initio approaches to the band structure of A NiSn and A CoSb half-Heusler compounds (A = Ti, Zr, Hf) are compared and their consequences for the prediction of thermoelectric properties are explored. Density functional theory with the generalized-gradient approximation (GGA), as well as the hybrid density functional HSE06 and ab initio many-body perturbation theory in the form of the G W0 approach, are employed. The G W0 calculations confirm the trend of a smaller band gap (0.75 to 1.05 eV) in A NiSn compared to the A CoSb compounds (1.13 to 1.44 eV) already expected from the GGA calculations. While in A NiSn materials the G W0 band gap is 20% to 50% larger than in HSE06, the fundamental gap of A CoSb materials is smaller in G W0 compared to HSE06. This is because G W0 , similar to PBE, locates the valence band maximum at the L point of the Brillouin zone, whereas it is at the Γ point in the HSE06 calculations. The differences are attributed to the observation that the relative positions of the d levels of the transition metal atoms vary among the different methods. Using the calculated band structures and scattering rates taking into account the band effective masses at the extrema, the Seebeck coefficients, thermoelectric power factors, and figures of merit Z T are predicted for all six half-Heusler compounds. Comparable performance is predicted for the n -type A NiSn materials, whereas clear differences are found for the p -type A CoSb materials. Using the most reliable G W0 electronic structure, ZrCoSb is predicted to be the most efficient material with a power factor of up to 0.07 W/(K2 m) at a temperature of 600 K. We find strong variations among the different ab initio methods not only in the prediction of the maximum power factor and Z T value of a given material, but also in comparing different materials to each other, in particular in the p -type thermoelectric materials. Thus we conclude that the most elaborate, but also most costly G W0 method is required to perform a reliable computational search for the optimum material.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Barium iodide and strontium iodide crystals and scintillators implementing the same
Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold
2016-09-13
In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.
Hooke's Law and the Stiffness of a Plastic Spoon
NASA Astrophysics Data System (ADS)
Pestka, Kenneth A.; Warren, Cori
2012-11-01
The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.
da Costa César, Isabela; Nogueira, Fernando Henrique Andrade; Pianetti, Gérson Antônio
2008-09-10
This paper describes the development and evaluation of a HPLC, UV spectrophotometry and potentiometric titration methods to quantify lumefantrine in raw materials and tablets. HPLC analyses were carried out using a Symmetry C(18) column and a mobile phase composed of methanol and 0.05% trifluoroacetic acid (80:20), with a flow rate of 1.0ml/min and UV detection at 335nm. For the spectrophotometric analyses, methanol was used as solvent and the wavelength of 335nm was selected for the detection. Non-aqueous titration of lumefantrine was carried out using perchloric acid as titrant and glacial acetic acid/acetic anhydride as solvent. The end point was potentiometrically determined. The three evaluated methods showed to be adequate to quantify lumefantrine in raw materials, while HPLC and UV methods presented the most reliable results for the analyses of tablets.
Tetravalent chromium doped laser materials and NIR tunable lasers
NASA Technical Reports Server (NTRS)
Alfano, Robert R. (Inventor); Petricevic, Vladimir (Inventor); Bykov, Alexey (Inventor)
2008-01-01
A method is described to improve and produce purer Cr.sup.4+-doped laser materials and lasers with reduced co-incorporation of chromium in any other valence states, such as Cr.sup.3+, Cr.sup.2+, Cr.sup.5+, and Cr.sup.6+. The method includes: 1) certain crystals of olivine structure with large cation (Ca) in octahedral sites such as Cr.sup.4+:Ca.sub.2GeO.sub.4, Cr.sup.4+:Ca.sub.2SiO.sub.4, Cr.sup.4+:Ca.sub.2Ge.sub.xSi.sub.1-xO.sub.4 (where 0
Crock, J.G.; Lichte, F.E.
1982-01-01
An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.
Gayle, Andrew J.; Cook, Robert F.
2016-01-01
An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168
Three-dimensional nanoscale characterisation of materials by atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Perea, Daniel E.; Liu, Jia
The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less
Roussis; Fitzgerald
2000-04-01
The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.
NASA Astrophysics Data System (ADS)
Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing
2017-12-01
We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.
Auditing of suppliers as the requirement of quality management systems in construction
NASA Astrophysics Data System (ADS)
Harasymiuk, Jolanta; Barski, Janusz
2017-07-01
The choice of a supplier of construction materials can be important factor of increase or reduction of building works costs. Construction materials present from 40 for 70% of investment task depending on kind of works being provided for realization. There is necessity of estimate of suppliers from the point of view of effectiveness of construction undertaking and necessity from the point of view of conformity of taken operation by executives of construction job and objects within the confines of systems of managements quality being initiated in their organizations. The estimate of suppliers of construction materials and subexecutives of special works is formal requirement in quality management systems, which meets the requirements of the ISO 9001 standard. The aim of this paper is to show possibilities of making use of anaudit for estimate of credibility and reliability of the supplier of construction materials. The article describes kinds of audits, that were carried in quality management systems, with particular taking into consideration audits called as second-site. One characterizes the estimate criterions of qualitative ability and method of choice of the supplier of construction materials. The paper shows also propositions of exemplary questions, that would be estimated in audit process, the way of conducting of this estimate and conditionality of estimate.
NASA Astrophysics Data System (ADS)
Moysan, J.; Gueudré, C.; Ploix, M.-A.; Corneloup, G.; Guy, Ph.; Guerjouma, R. El; Chassignole, B.
In the case of multi-pass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Anisotropy results from the metal solidification and is correlated with the grain orientation. A precise description of the material is one of the key points to obtain reliable results with wave propagation codes. A first advance is the model MINA which predicts the grain orientations in multi-pass 316-L steel welds. For flat position welding, good predictions of the grains orientations were obtained using 2D modelling. In case of welding in position the resulting grain structure may be 3D oriented. We indicate how the MINA model can be improved for 3D description. A second advance is a good quantification of the attenuation. Precise measurements are obtained using plane waves angular spectrum method together with the computation of the transmission coefficients for triclinic material. With these two first advances, the third one is now possible: developing an inverse method to obtain the material description through ultrasonic measurements at different positions.
Effect of manmade pixels on the inherent dimension of natural material distributions
NASA Astrophysics Data System (ADS)
Schlamm, Ariel; Messinger, David; Basener, William
2009-05-01
The inherent dimension of hyperspectral data may be a useful metric for discriminating between the presence of manmade and natural materials in a scene without reliance on spectral signatures take from libraries. Previously, a simple geometric method for approximating the inherent dimension was introduced along with results from application to single material clusters. This method uses an estimate of the slope from a graph based on the point density estimation in the spectral space. Other information can be gathered from the plot which may aid in the discrimination between manmade and natural materials. In order to use these measures to differentiate between the two material types, the effect of the inclusion of manmade pixels on the phenomenology of the background distribution must be evaluated. Here, a procedure for injecting manmade pixels into a natural region of a scene is discussed. The results of dimension estimation on natural scenes with varying amounts of manmade pixels injected are presented here, indicating that these metrics can be sensitive to the presence of manmade phenomenology in an image.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
... panels on their labels at retail or an increase in the availability of point-of-purchase materials that... increase in the availability of point-of-purchase materials that provide nutrition information for such... retail or an increase in the availability of point-of-purchase materials that provide nutrition...
Li, Weiyan; Sun, Jian
2018-05-10
BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.
Li, Weiyan
2018-01-01
Background Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. Material/Methods A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. Results Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. Conclusions PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin. PMID:29746449
Long-term purity assessment in succinonitrile
NASA Astrophysics Data System (ADS)
Rubinstein, E. R.; Tirmizi, S. H.; Glicksman, M. E.
1990-11-01
Container materials for crystal growth chambers must be carefully selected in order to prevent sample contamination. To address the issue of contamination, high purity SCN was exposed to a variety of potential chamber construction materials, e.g., metal alloys, soldering materials, and sealants, at a temperature approximately 25 K above the melting point of SCN (58°C), over periods of up to one year. Acceptability, or lack thereof, of candidate chamber materials was determined by performing periodic melting point checks of the exposed samples. Those materials which did not measurably affect the melting point of SCN over a one-year period were considered to be chemically compatible and therefore eligible for use in constructing the flight chamber. A growth chamber constructed from compatible materials (304 SS and borosilicate glass) was filled with pure SCN. A thermistor probe placed within the chamber permitted in situ measurement of the melting point and, indirectly, of the purity of the SCN. Melting point plateaus were then determined, to assess the actual chamber performance.
Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P.; Hoerr, Verena
Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows themore » measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.« less
Hyperspectral microscopic imaging by multiplex coherent anti-Stokes Raman scattering (CARS)
NASA Astrophysics Data System (ADS)
Khmaladze, Alexander; Jasensky, Joshua; Zhang, Chi; Han, Xiaofeng; Ding, Jun; Seeley, Emily; Liu, Xinran; Smith, Gary D.; Chen, Zhan
2011-10-01
Coherent anti-Stokes Raman scattering (CARS) microscopy is a powerful technique to image the chemical composition of complex samples in biophysics, biology and materials science. CARS is a four-wave mixing process. The application of a spectrally narrow pump beam and a spectrally wide Stokes beam excites multiple Raman transitions, which are probed by a probe beam. This generates a coherent directional CARS signal with several orders of magnitude higher intensity relative to spontaneous Raman scattering. Recent advances in the development of ultrafast lasers, as well as photonic crystal fibers (PCF), enable multiplex CARS. In this study, we employed two scanning imaging methods. In one, the detection is performed by a photo-multiplier tube (PMT) attached to the spectrometer. The acquisition of a series of images, while tuning the wavelengths between images, allows for subsequent reconstruction of spectra at each image point. The second method detects CARS spectrum in each point by a cooled coupled charged detector (CCD) camera. Coupled with point-by-point scanning, it allows for a hyperspectral microscopic imaging. We applied this CARS imaging system to study biological samples such as oocytes.
Fundamental Studies of Strengthening Mechanisms in Metals Using Dislocation Dynamics
2006-03-26
to quantify the elastic fields of inclusion eigenstrain problems in 2D and 3D (Lerma et al. 2003). The inclusions can be of any shape or size and the... eigenstrains can be arbitrarily assigned, i.e. constant or non-constant within the inclusion. The method works well for material or field points...geometry and misfits. Recently, we have developed a new distributed-dislocation method for modeling eigenstrain problems such as gamma prime inclusions
Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor
NASA Astrophysics Data System (ADS)
Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata
2015-09-01
Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.
Method for measuring multiple scattering corrections between liquid scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.
2016-04-11
In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.
Method and apparatus for ultrasonic characterization through the thickness direction of a moving web
Jackson, Theodore; Hall, Maclin S.
2001-01-01
A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.
Dynamics of the Molten Contact Line
NASA Technical Reports Server (NTRS)
Sonin, Ain A.; Schiaffino, Stefano
1996-01-01
In contrast to the ordinary contact line problem, virtually no information is available on the similar problem associated with a molten material spreading on a solid which is below the melt's fusion point. The latter is a more complex problem which heat transfer and solidification take place simultaneously with spreading, and requires answers not only for the hot melt's advance speed over the cold solid as a function of contact angle, but also for how one is to predict the point of the molten contact line's arrest by freezing. This issues are of importance in evolving methods of materials processing. The purpose of our work is to develop, based on both experiments and theory, an understanding of the dynamic processes that occur when a molten droplet touches a subcooled solid, spreads partly over it by capillary action, and freezes. We seek answers to the following basic questions. First, what is the relationship between the melt's contact line speed and the apparent (dynamic) contact angle? Secondly, at what point will the contact line modon be arrested by freezing? The talk will describe three components of our work: (1) deposition experiments with small molten droplets; (2) investigation of the dynamics of the molten contact line by means of a novel forced spreading method; and (3) an attempt to provide a theoretical framework for answering the basic questions posed above.
Band structure and unconventional electronic topology of CoSi
NASA Astrophysics Data System (ADS)
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
2013-09-01
provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB...the satellite. The material constitutive laws of interest are the bidirectional reflectance distribution functions ( BRDF ) for diffuse and specular...solar panel can be related to each other using the BRDF definition. This creates a set of three independent equations and three unknowns, which can be
1983-05-01
SALPE Technical Conference Series, Volume 4. Society for the Advancement of Material and Process Engineering, Azusa, California. 1972. conference held...dispersion of the stress waves, and scattering from "obstacles" encountered in the line of travel of the wave. Geometric spreading is the loss in signal...amplitude due to the fact that, as the wave travels away from the point AE source in a two- I or three-dimensional medium, the total area of material
New material model for simulating large impacts on rocky bodies
NASA Astrophysics Data System (ADS)
Tonge, A.; Barnouin, O.; Ramesh, K.
2014-07-01
Large impact craters on an asteroid can provide insights into its internal structure. These craters can expose material from the interior of the body at the impact site [e.g., 1]; additionally, the impact sends stress waves throughout the body, which interrogate the asteroid's interior. Through a complex interplay of processes, such impacts can result in a variety of motions, the consequence of which may appear as lineaments that are exposed over all or portions of the asteroid's surface [e.g., 2,3]. While analytic, scaling, and heuristic arguments can provide some insight into general phenomena on asteroids, interpreting the results of a specific impact event, or series of events, on a specific asteroid geometry generally necessitates the use of computational approaches that can solve for the stress and displacement history resulting from an impact event. These computational approaches require a constitutive model for the material, which relates the deformation history of a small material volume to the average force on the boundary of that material volume. In this work, we present a new material model that is suitable for simulating the failure of rocky materials during impact events. This material model is similar to the model discussed in [4]. The new material model incorporates dynamic sub-scale crack interactions through a micro-mechanics-based damage model, thermodynamic effects through the use of a Mie-Gruneisen equation of state, and granular flow of the fully damaged material. The granular flow model includes dilatation resulting from the mutual interaction of small fragments of material (grains) as they are forced to slide and roll over each other and includes a P-α type porosity model to account for compaction of the granular material in a subsequent impact event. The micro-mechanics-based damage model provides a direct connection between the flaw (crack) distribution in the material and the rate-dependent strength. By connecting the rate-dependent failure behavior to the sub-scale flaw distribution in the material, we are able to investigate the effect of changing the assumed initial flaw population on an asteroid. Additionally, by simulating the naturally variable local flaw population in a body, we introduce macroscopic variability that is both physical and improves the numerical stability. We have implemented this material model using the Generalized Interpolated Material Point method (GIMP) within the Uintah computational framework [5]. GIMP is an updated Lagrangian formulation, which uses material points to track field quantities in the simulation and a background grid to solve the equations of motion. Since nodal quantities on the grid are mapped from the material points, the grid can be reset at the end of each timestep avoiding mesh entanglement errors associated with Lagrangian finite-element approaches. Since the material points always stay with the same block of material, this method is ideal for history-dependent damage models that are difficult to solve using Eulerian approaches. Finally, using a background grid simplifies the computation of gradients in the material and specifically eliminates the costly neighbor search step in pure particle methods such as SPH. The disadvantage of a background grid is that it must cover the entire simulation domain, not just the location where there is material. This is an acceptable trade-off, because, in our material model, most of the cost of the calculation is confined to the particles and updating the constitutive model. In this work, we demonstrate the strength of our modeling approach by simulating the impact history of Eros. We assume that Eros began as a solid shard of material, consistent with [3], and then simulate the series of impacts that could have formed the three major craters Himeros, Psyche, and Shoemaker. Work presented by Tonge et al. [6] demonstrated that this material model was able to explain the 20 percent porosity of (433) Eros from porosity produced during the formation of Himeros. Additionally, they showed that initial impacts into solid targets are more effective at creating porosity than later impacts into targets that have been significantly damaged. This modeling work suggests that the first large impact on a body like Eros is the most important impact for setting up the observed structure, and the subsequent impacts can make local modifications to the structure, but will not significantly alter the network of cracks developed by the initial impact event. Additional implications of the modeling work for our understanding of the tectonic history of Eros are discussed in the talk by O.S. Barnouin et al., ''The Tectonic Evolution of (433) Eros''.
Effect of Time on Gypsum-Impression Material Compatibility
NASA Astrophysics Data System (ADS)
Won, John Boram
The purpose of this study was to evaluate the compatibility of dental gypsum with three recently introduced irreversible hydrocolloid (alginate) alternatives. The test materials were Alginot® (Kerr™), Position Penta Quick® (3M ESPE™) and Silgimix ® (Sultan Dental™). The irreversible hydrocolloid impression material, Jeltrate Plus antimicrobial® (Dentsply Caulk™) served as the control.
Chegel, Vladimir; Whitcombe, Michael J; Turner, Nicholas W; Piletsky, Sergey A
2009-01-01
Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.
Plasma spraying method for forming diamond and diamond-like coatings
Holcombe, C.E.; Seals, R.D.; Price, R.E.
1997-06-03
A method and composition is disclosed for the deposition of a thick layer of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate. The softened or molten composition crystallizes on the substrate to form a thick deposition layer comprising at least a diamond or diamond-like material. The selected composition includes at least glassy carbon as a primary constituent and may include at least one secondary constituent. Preferably, the secondary constituents are selected from the group consisting of at least diamond powder, boron carbide (B{sub 4}C) powder and mixtures thereof. 9 figs.
NASA Astrophysics Data System (ADS)
Hudoklin, D.; Šetina, J.; Drnovšek, J.
2012-09-01
The measurement of the water-vapor permeation rate (WVPR) through materials is very important in many industrial applications such as the development of new fabrics and construction materials, in the semiconductor industry, packaging, vacuum techniques, etc. The demand for this kind of measurement grows considerably and thus many different methods for measuring the WVPR are developed and standardized within numerous national and international standards. However, comparison of existing methods shows a low level of mutual agreement. The objective of this paper is to demonstrate the necessary uncertainty evaluation for WVPR measurements, so as to provide a basis for development of a corresponding reference measurement standard. This paper presents a specially developed measurement setup, which employs a precision dew-point sensor for WVPR measurements on specimens of different shapes. The paper also presents a physical model, which tries to account for both dynamic and quasi-static methods, the common types of WVPR measurements referred to in standards and scientific publications. An uncertainty evaluation carried out according to the ISO/IEC guide to the expression of uncertainty in measurement (GUM) shows the relative expanded ( k = 2) uncertainty to be 3.0 % for WVPR of 6.71 mg . h-1 (corresponding to permeance of 30.4 mg . m-2. day-1 . hPa-1).
Gao, Weihong; Wang, Zhenyou; Huang, Jin; Liu, Zihang
2018-05-24
Thermoelectric conversion from low-grade heat to electricity is regarded as the highly reliable and environmentally friendly technology in energy-harvesting area. However, how to develop efficient thermoelectric materials using a simple fabrication method is still a critical challenge in thermoelectric community. Here, we first fabricate the high thermoelectric performance of Ca-doped AgSbSe 2 with a hierarchical microstructure using a facile approach, namely, mechanical alloying (for only 30 min) and a quick hot-pressing method. The hierarchical microstructure, including point defects (atomic scale), dislocations, and nanoprecipitates (nanoscale) as well as grain boundaries (microscale), strongly scatters phonons with comparable sizes without deterioration of carrier mobility. Because of the higher carrier concentration of nanostructured AgSbSe 2 than that of coarse-grain AgSbSe 2 , power factor can also be improved slightly after nanostructuring. Ca doping further optimizes the carrier concentration and creates the point-defect scattering of phonons, leading to the ultralow lattice thermal conductivity ∼0.27 W m -1 K -1 at 673 K and thus largely improving the peak ZT up to 1.2. The high thermoelectric performance in combination with a facile fabrication method highlights AgSbSe 2 -based materials as robust thermoelectric candidates for energy harvesting.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2010-01-01
High pressure Hydrogen (H) gas has been known to have a deleterious effect on the mechanical properties of certain metals, particularly, the notched tensile strength, fracture toughness and ductility. The ratio of these properties in Hydrogen as compared to Helium or Air is called the Hydrogen Environment Embrittlement (HEE) Index, which is a useful method to classify the severity of H embrittlement and to aid in the material screening and selection for safety usage H gas environment. A comprehensive world-wide database compilation, in the past 50 years, has shown that the HEE index is mostly collected at two conveniently high H pressure points of 5 ksi and 10 ksi near room temperature. Since H embrittlement is directly related to pressure, the lack of HEE index at other pressure points has posed a technical problem for the designers to select appropriate materials at a specific H pressure for various applications in aerospace, alternate and renewable energy sectors for an emerging hydrogen economy. Based on the Power-Law mathematical relationship, an empirical method to accurately predict the HEE index, as a function of H pressure at constant temperature, is presented with a brief review on Sievert's law for gas-metal absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Froud, Robert; Abel, Gary
2014-01-01
Background Receiver Operator Characteristic (ROC) curves are being used to identify Minimally Important Change (MIC) thresholds on scales that measure a change in health status. In quasi-continuous patient reported outcome measures, such as those that measure changes in chronic diseases with variable clinical trajectories, sensitivity and specificity are often valued equally. Notwithstanding methodologists agreeing that these should be valued equally, different approaches have been taken to estimating MIC thresholds using ROC curves. Aims and objectives We aimed to compare the different approaches used with a new approach, exploring the extent to which the methods choose different thresholds, and considering the effect of differences on conclusions in responder analyses. Methods Using graphical methods, hypothetical data, and data from a large randomised controlled trial of manual therapy for low back pain, we compared two existing approaches with a new approach that is based on the addition of the sums of squares of 1-sensitivity and 1-specificity. Results There can be divergence in the thresholds chosen by different estimators. The cut-point selected by different estimators is dependent on the relationship between the cut-points in ROC space and the different contours described by the estimators. In particular, asymmetry and the number of possible cut-points affects threshold selection. Conclusion Choice of MIC estimator is important. Different methods for choosing cut-points can lead to materially different MIC thresholds and thus affect results of responder analyses and trial conclusions. An estimator based on the smallest sum of squares of 1-sensitivity and 1-specificity is preferable when sensitivity and specificity are valued equally. Unlike other methods currently in use, the cut-point chosen by the sum of squares method always and efficiently chooses the cut-point closest to the top-left corner of ROC space, regardless of the shape of the ROC curve. PMID:25474472
NASA Astrophysics Data System (ADS)
Qi, Hui; Zhang, Xi-meng
2017-10-01
With the aid of the Green function method and image method, the problem of scattering of SH-wave by a semi-cylindrical salient near vertical interface in bi-material half-space is considered to obtain its steady state response. Firstly, by the means of the image method, Green function which is the essential solution of displacement field is constructed to satisfy the stress-free condition on the horizontal boundary in a right-angle space including a semi-cylindrical salient and bearing a harmonic out-of-plane line source force at any point on the vertical boundary. Secondly, the bi-material is separated into two parts along the vertical interface, then unknown anti-plane forces are applied on the vertical interface, and according to the continuity condition, the first kind of Fredholm integral equations is established to determine unknown anti-plane forces by "the conjunction method", then the integral equations are reduced to the linear algebraic equations by effective truncation. Finally, the dynamic stress concentration factor (DSCF) around the edge of semi-cylindrical salient is calculated, and the influences of incident wave number, incident angle, effect of interface and different combination of material parameters, etc. on DSCF are discussed.
Random learning units using WIRIS quizzes in Moodle
NASA Astrophysics Data System (ADS)
Mora, Ángel; Mérida, Enrique; Eixarch, Ramon
2011-09-01
Moodle is an extended learning management system for developing learning units, including mathematically-based subjects. A wide variety of material can be developed in Moodle which contains facilities for forums, questionnaires, lessons, tasks, wikis, glossaries and chats. Therefore, the Moodle platform provides a meeting point for those working in a mathematics course. Mathematics requires special materials and activities: The material must include mathematical objects and the activities included in the virtual course must be able to do mathematical computations. WIRIS is a powerful software for educational environments. It has libraries for calculus, algebra, geometry and much more. In this article, examples showing the use of WIRIS in numerical methods and examples of using a new tool, WIRIS quizzes, are illustrated. By enhancing Moodle with WIRIS, we can add random learning questions to modules. Moodle has a simpler version of this capability, but WIRIS extends the method in which the random material is presented to the students. Random objects can appear in a question, in a variable of a question, in a plot or in the definition of a mathematical object. This article illustrates material prepared for numerical methods using a WIRIS library integrated in WIRIS quizzes. As a result, WIRIS in Moodle can be considered as a global solution for mathematics education.
Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials.
Liu, Ruiheng; Chen, Hongyi; Zhao, Kunpeng; Qin, Yuting; Jiang, Binbin; Zhang, Tiansong; Sha, Gang; Shi, Xun; Uher, Ctirad; Zhang, Wenqing; Chen, Lidong
2017-10-01
High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for loading shape memory polymer gripper mechanisms
Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.
2002-01-01
A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SMP material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2011 CFR
2011-01-01
... exports) or § 75.43(c) (pertaining to imports) at any place where nuclear material may be located; (3... nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
ERIC Educational Resources Information Center
Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita
2014-01-01
The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…
Prediction of Environmental Impact of High-Energy Materials with Atomistic Computer Simulations
2010-11-01
from a training set of compounds. Other methods include Quantitative Struc- ture-Activity Relationship ( QSAR ) and Quantitative Structure-Property...26 28 the development of QSPR/ QSAR models, in contrast to boiling points and critical parameters derived from empirical correlations, to improve...Quadratic Configuration Interaction Singles Doubles QSAR Quantitative Structure-Activity Relationship QSPR Quantitative Structure-Property
Turbine Engine Hot Section Technology (HOST)
NASA Technical Reports Server (NTRS)
1982-01-01
Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.
Henry W. Saunders
1969-01-01
From an industry point-of-view, procurement of raw material and primary manufacture present problems today and challenges for tomorrow. So that you may become more familiar with the white birch industry and more specifically with Saunders Brothers, I will briefly explain some of the products we manufacture and some of the methods we use to make them. In some ways, we...
21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.
Code of Federal Regulations, 2012 CFR
2012-04-01
... titer (solidification point) shall not exceed 13.5 °C and unsaponifiable matter shall not exceed 0.5.... (2) The resin acid content does not exceed 0.01 as determined by ASTM method D1240-82, “Standard Test... the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA...
Method of preparing corrosion resistant composite materials
Kaun, Thomas D.
1993-01-01
Method of manufacture of ceramic materials which require stability in severely-corrosive environment having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These surfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.
On physical property tensors invariant under line groups.
Litvin, Daniel B
2014-03-01
The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.
Reading Materials in Large Type. Reference Circular No. 87-4.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
This circular provides information about reading materials in large type, i.e., materials set in type that is a minimum size of 14-point and, most commonly, 16- to 18-point size. Most of the materials listed are typeset, but a few are photographically enlarged conventionally printed books or typewritten materials prepared using a large-print…
A new Dirac cone material: a graphene-like Be3C2 monolayer.
Wang, Bing; Yuan, Shijun; Li, Yunhai; Shi, Li; Wang, Jinlan
2017-05-04
Two-dimensional (2D) materials with Dirac cones exhibit rich physics and many intriguing properties, but the search for new 2D Dirac materials is still a current hotspot. Using the global particle-swarm optimization method and density functional theory, we predict a new stable graphene-like 2D Dirac material: a Be 3 C 2 monolayer with a hexagonal honeycomb structure. The Dirac point occurs exactly at the Fermi level and arises from the merging of the hybridized p z bands of Be and C atoms. Most interestingly, this monolayer exhibits a high Fermi velocity in the same order of graphene. Moreover, the Dirac cone is very robust and retains even included spin-orbit coupling or external strain. These outstanding properties render the Be 3 C 2 monolayer a promising 2D material for special electronics applications.
NASA Astrophysics Data System (ADS)
Gray, Bonnie L.
2012-04-01
Microfluidics is revolutionizing laboratory methods and biomedical devices, offering new capabilities and instrumentation in multiple areas such as DNA analysis, proteomics, enzymatic analysis, single cell analysis, immunology, point-of-care medicine, personalized medicine, drug delivery, and environmental toxin and pathogen detection. For many applications (e.g., wearable and implantable health monitors, drug delivery devices, and prosthetics) mechanically flexible polymer devices and systems that can conform to the body offer benefits that cannot be achieved using systems based on conventional rigid substrate materials. However, difficulties in implementing active devices and reliable packaging technologies have limited the success of flexible microfluidics. Employing highly compliant materials such as PDMS that are typically employed for prototyping, we review mechanically flexible polymer microfluidic technologies based on free-standing polymer substrates and novel electronic and microfluidic interconnection schemes. Central to these new technologies are hybrid microfabrication methods employing novel nanocomposite polymer materials and devices. We review microfabrication methods using these materials, along with demonstrations of example devices and packaging schemes that employ them. We review these recent developments and place them in the context of the fields of flexible microfluidics and conformable systems, and discuss cross-over applications to conventional rigid-substrate microfluidics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, R.; Ruoff, R.S.; Lorents, D.C.
1995-04-01
Fullerenes are all-carbon cage molecules. The most celebrated fullerene is the soccer-ball shaped C{sub 60}, which is composed of twenty hexagons and twelve pentagons. Because its structure is reminiscent of the geodesic domes of architect R. Buckminster Fuller, C{sub 60} is called buckminsterfullerene, and all the materials in the family are designated fullerenes. Huffman and Kraetschmer`s discovery unleashed activity around the world as scientists explored production methods, properties, and potential uses of fullerenes. Within a short period, methods for their production in electric arcs, plasmas, and flames were discovered, and several companies began selling fullerenes to the research market. Whatmore » is remarkable is that in all these methods, carbon atoms assemble themselves into cage structures. The capability for self-assembly points to some inherent stability of these structures that allows their formation. The unusual structure naturally leads to unusual properties. Among them are ready solubility in solvents and a relatively high vapor pressure for a pure carbon material. The young fullerene field has already produced a surprising array of structures for the development of carbon-base materials having completely new and different properties from any that were previously possible.« less
Guan, Yanpeng; Wang, Enzhi; Liu, Xiaoli; Wang, Sijing; Luan, Hebing
2017-08-03
We have attempted a multiscale and quantified characterization method of the contact in three-dimensional granular material made of spherical particles, particularly in cemented granular material. Particle contact is defined as a type of surface contact with voids in its surroundings, rather than a point contact. Macro contact is a particle contact set satisfying the restrictive condition of a two-dimensional manifold with a boundary. On the basis of graph theory, two dual geometrical systems are abstracted from the granular pack. The face and the face set, which satisfies the two-dimensional manifold with a boundary in the solid cell system, are extracted to characterize the particle contact and the macro contact, respectively. This characterization method is utilized to improve the post-processing in DEM (Discrete Element Method) from a micro perspective to describe the macro effect of the cemented granular material made of spherical particles. Since the crack has the same shape as its corresponding contact, this method is adopted to characterize the crack and realize its visualization. The integral failure route of the sample can be determined by a graph theory algorithm. The contact force is assigned to the weight value of the face characterizing the particle contact. Since the force vectors can be added, the macro contact force can be solved by adding the weight of its corresponding faces.
16 CFR 305.19 - Promotional material displayed or distributed at point of sale.
Code of Federal Regulations, 2010 CFR
2010-01-01
... distributed at point of sale. 305.19 Section 305.19 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS... distributed at point of sale. (a)(1) Any manufacturer, distributor, retailer or private labeler who prepares printed material for display or distribution at point of sale concerning a covered product (except...
Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques
NASA Technical Reports Server (NTRS)
Case, Joseph Tobias
2005-01-01
Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).
Semi-physical parameter identification for an iron-loss formula allowing loss-separation
NASA Astrophysics Data System (ADS)
Steentjes, S.; Leßmann, M.; Hameyer, K.
2013-05-01
This paper presents a semi-physical parameter identification for a recently proposed enhanced iron-loss formula, the IEM-Formula. Measurements are performed on a standardized Epstein frame by the conventional field-metric method under sinusoidal magnetic flux densities up to high magnitudes and frequencies. Quasi-static losses are identified on the one hand by point-by-point dc-measurements using a flux-meter and on the other hand by extrapolating higher frequency measurements to dc magnetization using the statistical loss-separation theory (Jacobs et al., "Magnetic material optimization for hybrid vehicle PMSM drives," in Inductica Conference, CD-Rom, Chicago/USA, 2009). Utilizing this material information, possibilities to identify the parameter of the IEM-Formula are analyzed. Along with this, the importance of excess losses in present-day non-grain oriented Fe-Si laminations is investigated. In conclusion, the calculated losses are compared to the measured losses.
Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites
NASA Astrophysics Data System (ADS)
Sordo, Federica; Michaud, Véronique
2016-08-01
Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...
2016-12-22
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
Anaerobic microbial dissolution of lead and production of organic acids
Francis, A.J.; Dodge, C.; Chendrayan, K.
1986-02-28
The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh
Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less
27 CFR 6.84 - Point of sale advertising materials and consumer advertising specialties.
Code of Federal Regulations, 2012 CFR
2012-04-01
... to attract consumer attention to the products of the industry member. Such materials include, but are... point of sale advertising materials. (2) The industry member may not directly or indirectly pay or...
27 CFR 6.84 - Point of sale advertising materials and consumer advertising specialties.
Code of Federal Regulations, 2013 CFR
2013-04-01
... to attract consumer attention to the products of the industry member. Such materials include, but are... point of sale advertising materials. (2) The industry member may not directly or indirectly pay or...
Wachowiak, Roman; Strach, Bogna
2006-01-01
The study takes advantage of the presently available effective physicochemical methods (isolation, crystallization, determination of melting point, TLC, GLC and UV spectrophotometry) for an objective and reliable qualitative and quantitative analysis of frequently abused drugs. The authors determined the conditions for qualitative and quantitative analysis of active components of the secured evidence materials containing amphetamine sulphate, methylamphetamine hydrochloride, 3,4-me-tylenedioxy-methamphetamine hydrochloride (MDMA, Ecstasy), as well as delta(9)-tetrahydrocannabinol (delta(9)-THC) as an active component of cannabis (marihuana, hashish). The usefulness of physicochemical tests of evidence materials for opinionating purposes is subject to a detailed forensic toxicological interpretation.
High temperature materials characterization
NASA Technical Reports Server (NTRS)
Workman, Gary L.
1990-01-01
A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.
Effect of low-level pulsed laser 890-nm on lumbar spondylolisthesis: a case report
NASA Astrophysics Data System (ADS)
Mortazavi, Seyed M. J.; Afsharpad, Mitra; Djavid, Gholam-reza E.
2002-10-01
Objective: Evaluating the effectiveness of low-level laser therapy (LLLT) in alleviating the symptoms of lumbar spondylolisthesis. Materials and Methods: Laser was irradiated for 2 mm at six symmetric points along the lumbosacral spine and 5 points along the referred point ofpain, six times a week for 2 weeks (890 nm; 8 J/cm2; pulsed at 1500 Hz). Perception of benefit, level of function was assessed by the Oswestry disability index, lumbar mobility range of motion and low back pain intensity. Results and Discussion: Results showed a complete reduction in pain and improvement in function in the patient. This case report suggests that low-level laser therapy (LLLT) could play a role in conservative management of low-grade lumbar spondylolisthesis.
NASA Astrophysics Data System (ADS)
Sukmaji, I. C.; Wijang, W. R.; Andri, S.; Bambang, K.; Teguh, T.
2017-01-01
Nowadays composite is a superior material used in automotive component due to its outstanding mechanical behavior. The sandwich polypropylene honeycomb core with carbon/glass fiber composite skin (SHCG) as based material in a floor component of electric car application is investigated in the present research. In sandwich structure form, it can absorb noise better compare with the conventional material [1]. Also in present paper, Finite Element Analysis (FEA) of SHCG as based material for floor component of the electric car is analyzed. The composite sandwich is contained with a layer uniform carbon fiber and mixing non-uniform carbon-glass fiber in upper and lower skin. Between skins of SHCG are core polypropylene honeycomb that it have good flexibility to form following dies profile. The variables of volume fraction ratio of carbon/glass fiber in SHCG skin are 20/80%, 30/70%, and 50/50%. The specimen of SHCG is tested using the universal testing machine by three points bending method refers to ASTM C393 and ASTM C365. The cross point between tensile strength to the volume fraction the mixing carbon/glass line and ratio cost line are the searched material with good mechanical performance and reasonable cost. The point is 30/70 volume fraction of carbon/glass fiber. The result of the testing experiment is become input properties of model structure sandwich in FEA simulation. FEA simulation approach is conducted to find critical strength and factor of complex safety geometry against varied distributed passenger loads of a floor component the electric car. The passenger loads variable are 80, 100, 150, 200, 250 and 300 kg.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Hussain, Aquila; Katiyar, Vivek
2010-01-01
A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre- and postprocessing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and Abaqus/Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. The Graphical User Interfaces (FEAMAC-Pre and FEAMAC-Post), developed through collaboration between SIMULIA Erie and the NASA Glenn Research Center, enable users to employ a new FEAMAC module within Abaqus/CAE that provides access to the composite microscale. FEA IAC-Pre is used to define and store constituent material properties, set-up and store composite repeating unit cells, and assign composite materials as sections with all data being stored within the CAE database. Likewise FEAMAC-Post enables multiscale field quantity visualization (contour plots, X-Y plots), with point and click access to the microscale i.e., fiber and matrix fields).
NASA Astrophysics Data System (ADS)
Kim, Yongseon
2015-11-01
The structural features related to the defects of LiMO2 (M = Ni, Co, Mn) cathode materials for lithium secondary batteries were investigated by a simulation of phase diagrams based on first-principle calculations. Crystal models with various types of point defects were designed and dealt with as independent phases, which enabled an examination of the thermodynamic stability of the defects. A perfect phase without defects appeared to be the most stable for LiCoO2, whereas the formation of Li vacancies, O vacancies, and antisites between Li and Ni was thermodynamically unavoidable for LiNiO2. The introduction of both Co and Mn in LiNiO2 was effective in reducing the formation of point defects, but increasing the relative amount of Mn was undesirable because the antisite defect remained stable with Mn doping. The simulation showed good agreement with the experimental data and previous reports. Therefore, the method and the results of this study are expected to be useful for examining the synthesis, structure and related properties of layer-structured cathode materials.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; Zheng, Yang; Liu, Yanlin; Destrade, Michel; Cao, Yanping
2016-11-01
A body force concentrated at a point and moving at a high speed can induce shear-wave Mach cones in dusty-plasma crystals or soft materials, as observed experimentally and named the elastic Cherenkov effect (ECE). The ECE in soft materials forms the basis of the supersonic shear imaging (SSI) technique, an ultrasound-based dynamic elastography method applied in clinics in recent years. Previous studies on the ECE in soft materials have focused on isotropic material models. In this paper, we investigate the existence and key features of the ECE in anisotropic soft media, by using both theoretical analysis and finite element (FE) simulations, and we apply the results to the non-invasive and non-destructive characterization of biological soft tissues. We also theoretically study the characteristics of the shear waves induced in a deformed hyperelastic anisotropic soft material by a source moving with high speed, considering that contact between the ultrasound probe and the soft tissue may lead to finite deformation. On the basis of our theoretical analysis and numerical simulations, we propose an inverse approach to infer both the anisotropic and hyperelastic parameters of incompressible transversely isotropic (TI) soft materials. Finally, we investigate the properties of the solutions to the inverse problem by deriving the condition numbers in analytical form and performing numerical experiments. In Part II of the paper, both ex vivo and in vivo experiments are conducted to demonstrate the applicability of the inverse method in practical use.
Moore, David Steven
2015-05-10
This second edition of "Infrared and Raman Spectroscopic Imaging" propels practitioners in that wide-ranging field, as well as other readers, to the current state of the art in a well-produced and full-color, completely revised and updated, volume. This new edition chronicles the expanded application of vibrational spectroscopic imaging from yesterday's time-consuming point-by-point buildup of a hyperspectral image cube, through the improvements afforded by the addition of focal plane arrays and line scan imaging, to methods applicable beyond the diffraction limit, instructs the reader on the improved instrumentation and image and data analysis methods, and expounds on their application to fundamentalmore » biomedical knowledge, food and agricultural surveys, materials science, process and quality control, and many others.« less
Monitoring crack extension in fracture toughness tests by ultrasonics
NASA Technical Reports Server (NTRS)
Klima, S. J.; Fisher, D. M.; Buzzard, R. J.
1975-01-01
An ultrasonic method was used to observe the onset of crack extension and to monitor continued crack growth in fracture toughness specimens during three point bend tests. A 20 MHz transducer was used with commercially available equipment to detect average crack extension less than 0.09 mm. The material tested was a 300-grade maraging steel in the annealed condition. A crack extension resistance curve was developed to demonstrate the usefulness of the ultrasonic method for minimizing the number of tests required to generate such curves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji
Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less
NASA Astrophysics Data System (ADS)
McClurg, Jack Albert
The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).
Investigation into Spectroscopic Techniques for Thermal Barrier Coating Spall Detection
NASA Technical Reports Server (NTRS)
deGroot, Wim; Opila, Beth
2001-01-01
Spectroscopic methods are proposed for detection of thermal barrier coating (TBC) spallation from engine hot zone components. These methods include absorption and emission of airborne marker species originally embedded in the TBC bond coat. In this study, candidate marker materials for this application were evaluated. Thermochemical analysis of candidate marker materials combined with additional constraints such as toxicity and uniqueness to engine environment, provided a short list of four potential species: platinum, copper oxide, zinc oxide. and indium. The melting point of indium was considered to be too low for serious consideration. The other three candidate marker materials, platinum, copper oxide, and zinc oxide were placed in a high temperature furnace and emission and absorption properties were measured over a temperature range from 800-1400 C and a spectral range from 250 to 18000 nm. Platinum did not provide the desired response, likely due to the low vapor Pressure of the metallic species and the low absorption of the oxide species. It was also found, however. that platinum caused a broadening of the carbon dioxide absorption at 4300 nm. The nature of this effect is not known. Absorption and emission caused by sodium and potassium impurities in the platinum were found in the platinum tests. Zinc oxide did not provide the desired response, again, most likely due to the low vapor pressure of the metallic species and the low absorption of the oxide species. Copper oxide generated two strongly temperature dependent absorption peaks at 324.8 and 327.4 nm. The melting point of copper oxide was determined to be too low for serious consideration as marker material.
NASA Technical Reports Server (NTRS)
Kassemi, M.; Naraghi, M. H. N.
1993-01-01
A new numerical method is presented for the analysis of combined natural convection and radiation heat transfer with applications in many engineering situations such as materials processing, combustion and fire research. Because of the recent interest in the low gravity environment of space, attention is devoted to both 1-g and low-g applications. The two-dimensional mathematical model is represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is formulated using the Discrete Exchange Factor method (DEF). This method considers point to point exchange and provides accurate results over a wide range of radiation parameters. Numerical results show that radiation significantly influences the flow and heat transfer in both low-g and 1-g applications. In the low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated enclosure.
Deciphering chemical order/disorder and material properties at the single-atom level.
Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.
NASA Astrophysics Data System (ADS)
Montealegre Rubio, Wilfredo; Paulino, Glaucio H.; Nelli Silva, Emilio Carlos
2011-02-01
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
NDE of hybrid armor structures using acoustography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandhu, Jaswinder S.; Pergantis, Charles G.
2011-06-23
The US Army is investigating the use of composite materials to deliver lightweight and more effective armor protection systems to soldiers and other army assets. However, widespread use of such hybrid armor will require a reliable but fast NDE methodology to ensure integrity of these components during manufacturing and while in service. Traditional ultrasonic inspection of such hybrid armor structures may prove to be very effective, but point-by-point ultrasonic scanning is inherently time-consuming and manufacturing slowdowns could develop in high-volume production of such armor systems. In this paper, we report on the application of acoustography for the NDE of hybridmore » armor structures. Acoustography differs from conventional ultrasonic testing in that test objects are inspected in full field, analogously to real time x-ray imaging. The approach uses a novel, super high resolution large area acousto-optic (AO) sensor, which allows image formation through simple ultrasound shadow casting, analogous to x-ray image formation. This NDE approach offers significant inspection speed advantage over conventional point-by-point ultrasonic scanning procedures and is well-suited for high volume production. We will report initial results on a number of hybrid armor plate specimens employing composite materials that are being investigated by the US Army. Acoustography NDE results will also be verified using other complimentary NDE methods.« less
Kosmulski, Marek; Maczka, Edward; Jartych, Elzbieta; Rosenholm, Jarl B
2003-03-19
Aging of synthetic goethite at 140 degrees C overnight leads to a composite material in which hematite is detectable by Mössbauer spectroscopy, but X-ray diffraction does not reveal any hematite peaks. The pristine point of zero charge (PZC) of synthetic goethite was found at pH 9.4 as the common intersection point of potentiometric titration curves at different ionic strengths and the isoelectric point (IEP). For the goethite-hematite composite, the common intersection point (pH 9.4), and the IEP (pH 8.8) do not match. The electrokinetic potential of goethite at ionic strengths up to 1 mol dm(-3) was determined. Unlike metal oxides, for which the electrokinetic potential is reversed to positive over the entire pH range at sufficiently high ionic strength, the IEP of goethite is rather insensitive to the ionic strength. A literature survey of published PZC/IEP values of iron oxides and hydroxides indicated that the average PZC/IEP does not depend on the degree of hydration (oxide or hydroxide). Our material showed a higher PZC and IEP than most published results. The present results confirm the allegation that electroacoustic measurements produce a higher IEP than the average IEP obtained by means of classical electrokinetic methods.
Design of adaptive load mitigating materials usingnonlinear stress wave tailoring
2016-02-24
for granular material use). 3 • Prof. Trudy Kriven (UIUC, Materials Science) is an expert in ceramic and geopolymer fabrication. • Prof. John...Figure A5.1: Schematic diagram showing the 1D chain of spherical elements in contact with (a) a uniform linear medium and (b) a composite linear...each material point to consisting of one of the given material constituents, we allow each material point to be assigned a composite material that is
A new method named as Segment-Compound method of baffle design
NASA Astrophysics Data System (ADS)
Qin, Xing; Yang, Xiaoxu; Gao, Xin; Liu, Xishuang
2017-02-01
As the observation demand increased, the demand of the lens imaging quality rising. Segment- Compound baffle design method was proposed in this paper. Three traditional methods of baffle design they are characterized as Inside to Outside, Outside to Inside, and Mirror Symmetry. Through a transmission type of optical system, the four methods were used to design stray light suppression structure for it, respectively. Then, structures modeling simulation with Solidworks, CAXA, Tracepro, At last, point source transmittance (PST) curve lines were got to describe their performance. The result shows that the Segment- Compound method can inhibit stay light more effectively. Moreover, it is easy to active and without use special material.
Germanium and Tin Based Anode Materials for Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Ji, Dongsheng
The discovery of safe anode materials with high energy density for lithium-ion batteries has always been a significant topic. Group IV elements have been under intensive study for their high capability of alloying with lithium. Batteries with graphite and tin based anode material have already been applied in cell phones and vehicles. In order to apply group IV elements, their dramatic volume change during lithiation and delithiation processes is the key point to work on. Reducing the particle size is the most common method to buffer the volume expansion. This strategy has been applied on both germanium and tin based materials. Germanium based anode material has been made by two different synthesis methods. The amorphous Ge-C-Ti composite material was made by ball milling method and performed much better than other germanium alloy including Ge-Mg, Ge-Fe and Ge-Fe.Germanium sphere nano particles with diameter of around 50 nm have been made by solution method. After ball milled with graphite, the resulted product performed stable capacity over 500 mAh˙g-1 for more than 20 cycles. Ball milled graphite in the composite plays an important role of buffering volume change and stabilizing germanium. Sn-Fe alloy is one of the feasible solutions to stabilize tin. Sn 2Fe-C composite has been made by ball milling method. After optimizations of the ratio of precursors, reaction time, milling balls and electrolyte additives, the electrochemistry performance was improved. The anode performed 420 mAh˙ -1 at 1.0 mA/cm2 and maintained its structure after cycling at 2.0 mA/cm2. At 0.3 mA/cm2 cycling rate, the anode performed 978 mAh/cm3 after 500 cycles, which still exceeds the theoretical capacity of graphite.
Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.
Arikan, Murat; Preiner, Reinhold; Wimmer, Michael
2016-02-01
With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
2000-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous materials, and the uncertainty of the technique was United by the uncertainty in the melting points of the materials, i.e., +/-15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 microns to 400 microns in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen-oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used: (a) for assessing the uncertainty in inferring gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
A Precise Calibration Technique for Measuring High Gas Temperatures
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Schultz, Donald F.
1999-01-01
A technique was developed for direct measurement of gas temperatures in the range of 2050 K - 2700 K with improved accuracy and reproducibility. The technique utilized the low-emittance of certain fibrous Materials, and the uncertainty of the technique was limited by the uncertainty in the melting points of the materials, i.e., +/- 15 K. The materials were pure, thin, metal-oxide fibers whose diameters varied from 60 mm to 400 mm in the experiments. The sharp increase in the emittance of the fibers upon melting was utilized as indication of reaching a known gas temperature. The accuracy of the technique was confirmed by both calculated low emittance values of transparent fibers, of order 0.01, up to a few degrees below their melting point and by the fiber-diameter independence of the results. This melting-point temperature was approached by increments not larger than 4 K, which was accomplished by controlled increases of reactant flow rates in hydrogen-air and/or hydrogen- oxygen flames. As examples of the applications of the technique, the gas-temperature measurements were used (a) for assessing the uncertainty in infering gas temperatures from thermocouple measurements, and (b) for calibrating an IR camera to measure gas temperatures. The technique offers an excellent calibration reference for other gas-temperature measurement methods to improve their accuracy and reliably extending their temperature range of applicability.
Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material
NASA Astrophysics Data System (ADS)
Kong, Lirong; Chen, Wei
2015-12-01
Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials.
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints
Avgoulas, Evangelos I.; Sutcliffe, Michael P. F.
2016-01-01
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints. PMID:28773688
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.
2012-01-01
We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints.
Avgoulas, Evangelos I; Sutcliffe, Michael P F
2016-07-12
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Ab Initio Studies of Metal Hexaboride Materials
NASA Astrophysics Data System (ADS)
Schmidt, Kevin M.
Metal hexaborides are refractory ceramics with several qualities relevant to materials design, such as low work functions, high hardness, low thermal expansion coefficients, and high melting points, among many other properties of interest for industrial applications. Thermal and mechanical stability is a common feature provided by the covalently-bonded network boron atoms, and electronic properties can vary significantly with the resident metal. While these materials are currently employed as electron emitters and abrasives, promising uses of these materials also include catalytic applications for chemical dissociation reactions of various molecules such as hydrogen, water and carbon monoxide, for example. However, these extensions require a thorough understanding of particular mechanical and electronic properties. This dissertation is a collection of studies focused on understanding the behavior of metal hexaboride materials using computational modeling methods to investigate materials properties of these from both classical and quantum mechanical points of view. Classical modeling is performed using molecular dynamics methods with interatomic potentials obtained from density functional theory (DFT) calculations. Atomic mean-square displacements from the quasi-harmonic approximation and lattice energetic data are produced with DFT for developing the potentials. A generalized method was also developed for the inversion of cohesive energy curves of crystalline materials; pairwise interatomic potentials are extracted using detailed geometrical descriptions of the atomic interactions and a list of atomic displacements and degeneracies. The surface structure of metal hexaborides is studied with DFT using several model geometries to describe the terminal cation layouts, and these provide a basis for further studies on metal hexaboride interactions with hydrogen. The surface electronic structure calculations show that segregated regions of metal and boron-terminations produce the lowest energies for di-cations of CaB6, SrB6 and BaB6, while tri-valent LaB6 minimizes its surface energy by arranging the metal ions in parallel rows on the surface. Studies involving hydrogen suggest that a single molecule per surface unit-cell is possible, and evidence is given for a dissociative adsorption pathway. Ternary mixtures of metal hexaborides containing two alkaline-earth cations in each crystal are also investigated with electronic structure methods. Multiple geometries are used to understand how spatial arrangements of cations within the mixture can affect properties related to stability. Bond-lengths within the boron framework are found to be heavily dependent upon the local cation environment, and energies taken at absolute zero suggest certain stoichiometries naturally lead to phase splitting.
Room temperature impact deposition of ceramic by laser shock wave
NASA Astrophysics Data System (ADS)
Jinno, Kengo; Tsumori, Fujio
2018-06-01
In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.
Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence
NASA Astrophysics Data System (ADS)
Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen
2016-05-01
Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.
Plasma spraying method for forming diamond and diamond-like coatings
Holcombe, Cressie E.; Seals, Roland D.; Price, R. Eugene
1997-01-01
A method and composition for the deposition of a thick layer (10) of diamond or diamond-like material. The method includes high temperature processing wherein a selected composition (12) including at least glassy carbon is heated in a direct current plasma arc device to a selected temperature above the softening point, in an inert atmosphere, and is propelled to quickly quenched on a selected substrate (20). The softened or molten composition (18) crystallizes on the substrate (20) to form a thick deposition layer (10) comprising at least a diamond or diamond-like material. The selected composition (12) includes at least glassy carbon as a primary constituent (14) and may include at least one secondary constituent (16). Preferably, the secondary constituents (16) are selected from the group consisting of at least diamond powder, boron carbide (B.sub.4 C) powder and mixtures thereof.
NASA Technical Reports Server (NTRS)
Murri, Gretchen B.
2011-01-01
Reliable delamination characterization data for laminated composites are needed for input in analytical models of structures to predict delamination onset and growth. The double-cantilevered beam (DCB) specimen is used to measure fracture toughness, GIc, and strain energy release rate, GImax, for delamination onset and growth in laminated composites under mode I loading. The current study was conducted as part of an ASTM Round Robin activity to evaluate a proposed testing standard for Mode I fatigue delamination propagation. Static and fatigue tests were conducted on specimens of IM7/977-3 and G40-800/5276-1 graphite/epoxies, and S2/5216 glass/epoxy DCB specimens to evaluate the draft standard "Standard Test Method for Mode I Fatigue Delamination Propagation of Unidirectional Fiber-Reinforced Polymer Matrix Composites." Static results were used to generate a delamination resistance curve, GIR, for each material, which was used to determine the effects of fiber-bridging on the delamination growth data. All three materials were tested in fatigue at a cyclic GImax level equal to 90% of the fracture toughness, GIc, to determine the delamination growth rate. Two different data reduction methods, a 2-point and a 7-point fit, were used and the resulting Paris Law equations were compared. Growth rate results were normalized by the delamination resistance curve for each material and compared to the nonnormalized results. Paris Law exponents were found to decrease by 5.4% to 46.2% due to normalizing the growth data. Additional specimens of the IM7/977-3 material were tested at 3 lower cyclic GImax levels to compare the effect of loading level on delamination growth rates. The IM7/977-3 tests were also used to determine the delamination threshold curve for that material. The results show that tests at a range of loading levels are necessary to describe the complete delamination behavior of this material.
Comparing performance of standard and iterative linear unmixing methods for hyperspectral signatures
NASA Astrophysics Data System (ADS)
Gault, Travis R.; Jansen, Melissa E.; DeCoster, Mallory E.; Jansing, E. David; Rodriguez, Benjamin M.
2016-05-01
Linear unmixing is a method of decomposing a mixed signature to determine the component materials that are present in sensor's field of view, along with the abundances at which they occur. Linear unmixing assumes that energy from the materials in the field of view is mixed in a linear fashion across the spectrum of interest. Traditional unmixing methods can take advantage of adjacent pixels in the decomposition algorithm, but is not the case for point sensors. This paper explores several iterative and non-iterative methods for linear unmixing, and examines their effectiveness at identifying the individual signatures that make up simulated single pixel mixed signatures, along with their corresponding abundances. The major hurdle addressed in the proposed method is that no neighboring pixel information is available for the spectral signature of interest. Testing is performed using two collections of spectral signatures from the Johns Hopkins University Applied Physics Laboratory's Signatures Database software (SigDB): a hand-selected small dataset of 25 distinct signatures from a larger dataset of approximately 1600 pure visible/near-infrared/short-wave-infrared (VIS/NIR/SWIR) spectra. Simulated spectra are created with three and four material mixtures randomly drawn from a dataset originating from SigDB, where the abundance of one material is swept in 10% increments from 10% to 90%with the abundances of the other materials equally divided amongst the remainder. For the smaller dataset of 25 signatures, all combinations of three or four materials are used to create simulated spectra, from which the accuracy of materials returned, as well as the correctness of the abundances, is compared to the inputs. The experiment is expanded to include the signatures from the larger dataset of almost 1600 signatures evaluated using a Monte Carlo scheme with 5000 draws of three or four materials to create the simulated mixed signatures. The spectral similarity of the inputs to the output component signatures is calculated using the spectral angle mapper. Results show that iterative methods significantly outperform the traditional methods under the given test conditions.
Fault current limiter with shield and adjacent cores
Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick
2013-10-22
In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.
Alternative of raw material’s suppliers using TOPSIS method in chicken slaughterhouse industry
NASA Astrophysics Data System (ADS)
Sari, R. M.; Rizkya, I.; Syahputri, K.; Anizar; Siregar, I.
2018-02-01
Chicken slaughterhouse industry is one of the fastest growing industries that depends on the freshness of raw materials. The raw materials quality arrive at the company depends heavily on the suppliers. Fresh chicken and frozen chicken meat are the main raw materials for this industry. Problems occurred by the suppliers are catering the amount of raw material needs that are not appropriate and also delay during delivery process. This condition causes disruption of the production process in the company. Therefore, it is necessary to determine the best suppliers to supply the main raw materials of fresh and frozen chicken meat on the slaughterhouse chicken industry. This study analyze the supplier’s capability by using TOPSIS method. This method use to find out the best supplier. The TOPSIS method is performed using the principle that chosen alternative must have the shortest distance from the positive solution and furthest from the ideal solution of the geometric point by using the Euclidean distance to determine the relative proximity of the optimum solution alternative. TOPSIS method found the rank of best supplier’s order is supplier A followed by supplier D, supplier B, supplier C, supplier E, supplier F, and supplier G. Based on the rank order obtained from each company, it will assist the company in prioritizing the order to the supplier with the best rank. Total supply from All suppliers are 885,994 kg per month. Based on the results of research, the top five suppliers have been sufficient to meet the needs of the company.
Imaging Young Stellar Objects with VLTi/PIONIER
NASA Astrophysics Data System (ADS)
Kluska, J.; Malbet, F.; Berger, J.-P.; Benisty, M.; Lazareff, B.; Le Bouquin, J.-B.; Baron, F.; Dominik, C.; Isella, A.; Juhasz, A.; Kraus, S.; Lachaume, R.; Ménard, F.; Millan-Gabet, R.; Monnier, J.; Pinte, C.; Soulez, F.; Tallon, M.; Thi, W.-F.; Thiébaut, É.; Zins, G.
2014-04-01
Optical interferometry imaging is designed to help us to reveal complex astronomical sources without a prior model. Among these complex objects are the young stars and their environments, which have a typical morphology with a point-like source, surrounded by circumstellar material with unknown morphology. To image them, we have developed a numerical method that removes completely the stellar point source and reconstructs the rest of the image, using the differences in the spectral behavior between the star and its circumstellar material. We aim to reveal the first Astronomical Units of these objects where many physical phenomena could interplay: the dust sublimation causing a puffed-up inner rim, a dusty halo, a dusty wind or an inner gaseous component. To investigate more deeply these regions, we carried out the first Large Program survey of HAeBe stars with two main goals: statistics on the geometry of these objects at the first astronomical unit scale and imaging their very close environment. The images reveal the environment, which is not polluted by the star and allows us to derive the best fit for the flux ratio and the spectral slope. We present the first images from this survey and the application of the imaging method on other astronomical objects.
Computational materials chemistry for carbon capture using porous materials
NASA Astrophysics Data System (ADS)
Sharma, Abhishek; Huang, Runhong; Malani, Ateeque; Babarao, Ravichandar
2017-11-01
Control over carbon dioxide (CO2) release is extremely important to decrease its hazardous effects on the environment such as global warming, ocean acidification, etc. For CO2 capture and storage at industrial point sources, nanoporous materials offer an energetically viable and economically feasible approach compared to chemisorption in amines. There is a growing need to design and synthesize new nanoporous materials with enhanced capability for carbon capture. Computational materials chemistry offers tools to screen and design cost-effective materials for CO2 separation and storage, and it is less time consuming compared to trial and error experimental synthesis. It also provides a guide to synthesize new materials with better properties for real world applications. In this review, we briefly highlight the various carbon capture technologies and the need of computational materials design for carbon capture. This review discusses the commonly used computational chemistry-based simulation methods for structural characterization and prediction of thermodynamic properties of adsorbed gases in porous materials. Finally, simulation studies reported on various potential porous materials, such as zeolites, porous carbon, metal organic frameworks (MOFs) and covalent organic frameworks (COFs), for CO2 capture are discussed.
Final Report: Design of adaptive load mitigating materials using nonlinear stress wave tailoring
2016-02-26
for granular material use). 3 • Prof. Trudy Kriven (UIUC, Materials Science) is an expert in ceramic and geopolymer fabrication. • Prof. John...Figure A5.1: Schematic diagram showing the 1D chain of spherical elements in contact with (a) a uniform linear medium and (b) a composite linear...each material point to consisting of one of the given material constituents, we allow each material point to be assigned a composite material that is
Optically-controlled long-term storage and release of thermal energy in phase-change materials.
Han, Grace G D; Li, Huashan; Grossman, Jeffrey C
2017-11-13
Thermal energy storage offers enormous potential for a wide range of energy technologies. Phase-change materials offer state-of-the-art thermal storage due to high latent heat. However, spontaneous heat loss from thermally charged phase-change materials to cooler surroundings occurs due to the absence of a significant energy barrier for the liquid-solid transition. This prevents control over the thermal storage, and developing effective methods to address this problem has remained an elusive goal. Herein, we report a combination of photo-switching dopants and organic phase-change materials as a way to introduce an activation energy barrier for phase-change materials solidification and to conserve thermal energy in the materials, allowing them to be triggered optically to release their stored latent heat. This approach enables the retention of thermal energy (about 200 J g -1 ) in the materials for at least 10 h at temperatures lower than the original crystallization point, unlocking opportunities for portable thermal energy storage systems.
[Costs and consumption of material resources in pediatric intensive and semi-intensive care units].
Zuliani, Larissa Lenotti; Jericó, Marli de Carvalho; de Castro, Liliana Cristina; Soler, Zaida Aurora Sperli Geraldes
2012-01-01
Cost management of hospital material resources is a trendy research topic, especially in specialized health units. Nurses are pointed out as the main managers for costs and consumption of hospital materials resources. This study aimed to characterize Pediatric Intensive and Semi-Intensive Care Units of a teaching hospital and investigate costs and consumption of material resources used to treat patients admitted to these units. This is a descriptive exploratory study with retrospective data and quantitative approach. Data were obtained from a Hospital Information System and analyzed according to the ABC classification. The average expenditures were similar in both the neonatal and cardiac units, and lower in Pediatric Intensive and Semi-Intensive care units. There was a significant variation in the monthly consumption of materials. Higher cost materials had a greater impact on the budget of the studied units. The data revealed the importance of using a systematic method for the analysis of materials consumption and expenditure in pediatric units. They subsidize administrative and economic actions.
D Modeling of Components of a Garden by Using Point Cloud Data
NASA Astrophysics Data System (ADS)
Kumazakia, R.; Kunii, Y.
2016-06-01
Laser measurement is currently applied to several tasks such as plumbing management, road investigation through mobile mapping systems, and elevation model utilization through airborne LiDAR. Effective laser measurement methods have been well-documented in civil engineering, but few attempts have been made to establish equally effective methods in landscape engineering. By using point cloud data acquired through laser measurement, the aesthetic landscaping of Japanese gardens can be enhanced. This study focuses on simple landscape simulations for pruning and rearranging trees as well as rearranging rocks, lanterns, and other garden features by using point cloud data. However, such simulations lack concreteness. Therefore, this study considers the construction of a library of garden features extracted from point cloud data. The library would serve as a resource for creating new gardens and simulating gardens prior to conducting repairs. Extracted garden features are imported as 3ds Max objects, and realistic 3D models are generated by using a material editor system. As further work toward the publication of a 3D model library, file formats for tree crowns and trunks should be adjusted. Moreover, reducing the size of created models is necessary. Models created using point cloud data are informative because simply shaped garden features such as trees are often seen in the 3D industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl; Harder, J. Michiel den, E-mail: chiel.den.harder@gmail.com; Meershoek, Philippa, E-mail: P.Meershoek@lumc.nl
PurposeTo determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.Materials and MethodsCT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined bymore » measurement of the residual displacement in phantom lesions by two independent observers.ResultsMean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.ConclusionThe accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.« less
Mechanical properties of experimental composites with different calcium phosphates fillers.
Okulus, Zuzanna; Voelkel, Adam
2017-09-01
Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Nondestructive evaluation of a ceramic matrix composite material
NASA Technical Reports Server (NTRS)
Grosskopf, Paul P.; Duke, John C., Jr.
1992-01-01
Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.
NASA Astrophysics Data System (ADS)
Pinney, Nathan Douglas
Due to their high surface area and reactivity toward a variety of heavy metal and oxyanion species of environmental concern, Fe-(oxyhydr)oxide materials play an important role in the geochemical fate of natural and anthropogenic contaminants in soils, aquifers and surface water environments worldwide. In this research, ab initio simulations describe the bulk structure, magnetic properties, and relative phase stability of major Fe-(oxyhydr)oxide materials, including hematite, goethite, lepidocrocite, and ferrihydrite.These bulk models are employed in further studies of point defect and alloy/dopant thermodynamics in these materials, allowing construction of a phase stability model that better replicates the structure and composition of real materials. Li + adsorption at the predominant goethite (101) surface is simulated using ab initio methods, offering energetic and structural insight into the binding mechanisms of metal cations over a range of surface protonation conditions.
Up-and-coming IMCs. [Intermetallic-Matrix Composites
NASA Technical Reports Server (NTRS)
Bowman, Randy; Noebe, Ronald
1989-01-01
While the good oxidation and environmental resistance, high melting points, and comparatively low densities of such ordered intermetallics as Ti3Al, NiAl, FeAl, and NbAl3 render them good candidates for advanced aerospace structures, their poor toughness at low temperatures and low strength at elevated temperatures have prompted the development of fiber-reinforced intermetallic-matrix composites (IMCs) with more balanced characteristics. Fabrication methods for continuous-fiber IMCs under development include the P/M 'powder cloth' method, the foil/fiber method, and thermal spraying. The ultimate success of IMCs depends on fibers truly compatible with the matrix materials.
Method of Making Large Area Nanostructures
NASA Technical Reports Server (NTRS)
Marks, Alvin M.
1995-01-01
A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.
An inverse method to determine the mechanical properties of the iris in vivo
2014-01-01
Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660
A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets
Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian
2012-01-01
Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339
Manufacturing unique glasses in space
NASA Technical Reports Server (NTRS)
Happe, R. P.
1976-01-01
An air suspension melting technique is described for making glasses from substances which to date have been observed only in the crystalline condition. A laminar flow vertical wind tunnel was constructed for suspending oxide melts that were melted using the energy from a carbon dioxide laser beam. By this method it is possible to melt many high-melting-point materials without interaction between the melt and crucible material. In addition, space melting permits cooling to suppress crystal growth. If a sufficient amount of under cooling is accompanied by a sufficient increase in viscosity, crystallization will be avoided entirely and glass will result.
Wear of dental tissues and materials.
Craig, R G; Powers, J M
1976-06-01
Wear may result from physiological or pathological conditions and may be desirable, as in the reduction of an overcontoured restoration, or undesirable as in the production of cervical abrasion cavities. A variety of methods, including clinical testing, the use of wear machines and the measurement of related properties such as hardness or coefficient of friction have been used to investigate wear of tooth tissue and of dental materials. Because these methods may not reveal the nature of the wear process recent work has been directed to the study of surface failure resulting from a single sliding contact. Many clinical studies have been conducted but they are time consuming and difficult to quantify, nor do they allow of evaluation of different parameters contributing to the wear. Laboratory simulation of wear has been shown to be valuable in comparing materials of the same group but between-group comparisons may give anomalous results. The most rewarding studies have been those using a single or small number of passes of a suitable abrading point over the material since these permit determination of the actual process by which wear is produced.
[Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].
Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng
2013-01-01
An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-11-03
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
NASA Astrophysics Data System (ADS)
Troive, L.
2017-09-01
Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.
Neurient: An Algorithm for Automatic Tracing of Confluent Neuronal Images to Determine Alignment
Mitchel, J.A.; Martin, I.S.
2013-01-01
A goal of neural tissue engineering is the development and evaluation of materials that guide neuronal growth and alignment. However, the methods available to quantitatively evaluate the response of neurons to guidance materials are limited and/or expensive, and may require manual tracing to be performed by the researcher. We have developed an open source, automated Matlab-based algorithm, building on previously published methods, to trace and quantify alignment of fluorescent images of neurons in culture. The algorithm is divided into three phases, including computation of a lookup table which contains directional information for each image, location of a set of seed points which may lie along neurite centerlines, and tracing neurites starting with each seed point and indexing into the lookup table. This method was used to obtain quantitative alignment data for complex images of densely cultured neurons. Complete automation of tracing allows for unsupervised processing of large numbers of images. Following image processing with our algorithm, available metrics to quantify neurite alignment include angular histograms, percent of neurite segments in a given direction, and mean neurite angle. The alignment information obtained from traced images can be used to compare the response of neurons to a range of conditions. This tracing algorithm is freely available to the scientific community under the name Neurient, and its implementation in Matlab allows a wide range of researchers to use a standardized, open source method to quantitatively evaluate the alignment of dense neuronal cultures. PMID:23384629
Electrically isolated, high melting point, metal wire arrays and method of making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, John T.; Cunningham, Joseph P.; D'Urso, Brian R.
2016-01-26
A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rodmore » with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, B.H.
This paper reports on a ceramic joining technique that has been developed that utilizes an exothermic combustion reaction to simultaneously synthesize the joint interlayer material and to bond together the ceramic workpieces. The method has been used to join SiC ceramics using Ti-C-Ni powder mixtures that ignite below 1200{degrees} C to form a TiC-Ni joining material. Thin layers of the powder reactants were prepared by tape casting, and joining was accomplished by heating in a hot-press to ignite the combustion reaction. during this process, localized exothermic heating of the joint region resulted in chemical interaction at the interface between themore » TiC-Ni and the SiC ceramic that contributed to bonding. Room-temperature four-point bending strengths of joints produced by this method have exceeded 100 MPa.« less
NASA Astrophysics Data System (ADS)
Khlevnoy, B. B.; Grigoryeva, I. A.; Ibragimov, N. A.
2011-08-01
A new method of filling of high-temperature fixed-point cells based on metal-carbon eutectics and peritectics is suggested and tested. In this method a metal and carbon powder mixture is introduced not directly into the crucible, but into an additional container located just above the crucible. The mixture melts inside the container, and the already molten eutectic drops through a small hole in the bottom of the container and fills the crucible drop by drop. The method can be used to obtain a uniform ingot without porous or foundry cavities, to minimize the risk of contamination, and to avoid some other disadvantages. The method was applied to fabricate Re-C and WC-C cells using 5N purity materials. The cells demonstrated a good plateau shape with melting ranges of 0.2 K and 80 mK for Re-C and WC-C, respectively. The Re-C cell was compared with a cell built at NMIJ and showed good agreement with a difference of melting temperatures of only 45 mK.
NASA Astrophysics Data System (ADS)
Yakimov, E. B.; Polyakov, A. Y.; Smirnov, N. B.; Shchemerov, I. V.; Yang, Jiancheng; Ren, F.; Yang, Gwangseok; Kim, Jihyun; Pearton, S. J.
2018-05-01
The spatial distribution of electron-hole pair generation in β-Ga2O3 as a function of scanning electron microscope (SEM) beam energy has been calculated by a Monte Carlo method. This spatial distribution is then used to obtain the diffusion length of charge carriers in high-quality epitaxial Ga2O3 films from the dependence of the electron beam induced current (EBIC) collection efficiency on the accelerating voltage of a SEM. The experimental results show, contrary to earlier theory, that holes are mobile in β-Ga2O3 and to a large extent determine the diffusion length of charge carriers. Diffusion lengths in the range 350-400 nm are determined for the as-grown Ga2O3, while processes like exposing the samples to proton irradiation essentially halve this value, showing the role of point defects in controlling minority carrier transport. The pitfalls related to using other popular EBIC-based methods assuming a point-like excitation function are demonstrated. Since the point defect type and the concentration in currently available Ga2O3 are dependent on the growth method and the doping concentration, accurate methods of diffusion length determination are critical to obtain quantitative comparisons of material quality.
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturgeon, Richard W.
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources.more » This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp; Shinomura, Hisashi
Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization.more » Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvijski, E.; Nesvijski, T.
1996-12-31
Concrete as one of the main construction materials, which is used for building of industrial and civil structures, highways, bridges, etc. requires periodical evaluation of its properties by different nondestructive methods. Application of acoustic emission (AE) for these purposes occupies a modest place among other nondestructive methods. But the AE methods proved to be very effective for testing of concrete and reinforced concrete elements and structures under load. This work is devoted to an important, from methodological point of view, problem connected with two opposite effects: of Kaiser and of Felicity, and their application for evaluation of concrete by themore » AE method.« less
Multistate metadynamics for automatic exploration of conical intersections
NASA Astrophysics Data System (ADS)
Lindner, Joachim O.; Röhr, Merle I. S.; Mitrić, Roland
2018-05-01
We introduce multistate metadynamics for automatic exploration of conical intersection seams between adiabatic Born-Oppenheimer potential energy surfaces in molecular systems. By choosing the energy gap between the electronic states as a collective variable the metadynamics drives the system from an arbitrary ground-state configuration toward the intersection seam. Upon reaching the seam, the multistate electronic Hamiltonian is extended by introducing biasing potentials into the off-diagonal elements, and the molecular dynamics is continued on a modified potential energy surface obtained by diagonalization of the latter. The off-diagonal bias serves to locally open the energy gap and push the system to the next intersection point. In this way, the conical intersection energy landscape can be explored, identifying minimum energy crossing points and the barriers separating them. We illustrate the method on the example of furan, a prototype organic molecule exhibiting rich photophysics. The multistate metadynamics reveals plateaus on the conical intersection energy landscape from which the minimum energy crossing points with characteristic geometries can be extracted. The method can be combined with the broad spectrum of electronic structure methods and represents a generally applicable tool for the exploration of photophysics and photochemistry in complex molecules and materials.
Gadd, C S; Baskaran, P; Lobach, D F
1998-01-01
Extensive utilization of point-of-care decision support systems will be largely dependent on the development of user interaction capabilities that make them effective clinical tools in patient care settings. This research identified critical design features of point-of-care decision support systems that are preferred by physicians, through a multi-method formative evaluation of an evolving prototype of an Internet-based clinical decision support system. Clinicians used four versions of the system--each highlighting a different functionality. Surveys and qualitative evaluation methodologies assessed clinicians' perceptions regarding system usability and usefulness. Our analyses identified features that improve perceived usability, such as telegraphic representations of guideline-related information, facile navigation, and a forgiving, flexible interface. Users also preferred features that enhance usefulness and motivate use, such as an encounter documentation tool and the availability of physician instruction and patient education materials. In addition to identifying design features that are relevant to efforts to develop clinical systems for point-of-care decision support, this study demonstrates the value of combining quantitative and qualitative methods of formative evaluation with an iterative system development strategy to implement new information technology in complex clinical settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
Sweeney, Sunya; Smith, Derek K; Messersmith, Marion
2015-08-01
One method of articulating digital models is to use a digitized interocclusal record. However, the accuracy of different interocclusal record materials to articulate digital models has yet to be evaluated. A plastic typodont was modified with reference points for interarch measurements and articulated in maximum intercuspal position on a semiadjustable hinge articulator. Twenty-five interocclusal records of each of the 5 experimental materials (Regisil Rigid, Dentsply, York, Pa; Futar Scan, Kettenbach, Huntington Beach, Calif; Byte Right, Motion View Software, Chattanooga, Tenn; Aluwax, Aluwax Dental Products, Allendale, Mich; and Beauty Pink wax, Miltex, York, Pa) were made on the mounted typodont and digitized using an Ortho Insight 3D laser surface scanner (Motion View Software). Motion View Software was used to articulate the digital models by matching points from the models to the digitized interocclusal records. The distances between corresponding interarch markers were measured and compared with the measurements taken on the physical typodont (gold standard). Polyvinyl siloxane materials were significantly more likely to lead to successful articulation than were the other interocclusal record materials. Statistical analysis showed a significant effect of the bite registration material on the probability of success of the articulation (P <0.005). Polyvinyl siloxane is a more accurate interocclusal recording material when articulating digital models according to the process described in this study. Using a bite registration to articulate digital models should be considered the first step in the articulation process, with a likely residual need to manipulate the models manually. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon
NASA Astrophysics Data System (ADS)
Furukawa, Yoritaka; Matsushita, Yu-ichiro
2018-02-01
A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.
Ground Deployment Demonstration and Material Testing for Solar Sail
NASA Astrophysics Data System (ADS)
Huang, Xiaoqi; Cheng, Zhengai; Liu, Yufei; Wang, Li
2016-07-01
Solar Sail is a kind of spacecraft that can achieve extremely high velocity by light pressure instead of chemical fuel. The great accelerate rely on its high area-to-mass ratio. So solar sail is always designed in huge size and it use ultra thin and light weight materials. For 100-meter class solar sail, two key points must be considered in the design process. They are fold-deployment method, and material property change in space environment. To test and verify the fold-deployment technology, a 8*8m principle prototype was developed. Sail membrane folding in method of IKAROS, Nanosail-D , and new proposed L-shape folding pattern were tested on this prototype. Their deployment properties were investigated in detail, and comparisons were made between them. Also, the space environment suitability of ultra thin polyimide films as candidate solar sail material was analyzed. The preliminary test results showed that membrane by all the folding method could deploy well. Moreover, sail membrane folding by L-shape pattern deployed more rapidly and more organized among the three folding pattern tested. The mechanical properties of the polyimide had no significant change after electron irradiation. As the preliminary research on the key technology of solar sail spacecraft, in this paper, the results of the study would provide important basis on large-scale solar sail membrane select and fold-deploying method design.
NASA Astrophysics Data System (ADS)
Ueno, Tetsuro; Hino, Hideitsu; Hashimoto, Ai; Takeichi, Yasuo; Sawada, Masahiro; Ono, Kanta
2018-01-01
Spectroscopy is a widely used experimental technique, and enhancing its efficiency can have a strong impact on materials research. We propose an adaptive design for spectroscopy experiments that uses a machine learning technique to improve efficiency. We examined X-ray magnetic circular dichroism (XMCD) spectroscopy for the applicability of a machine learning technique to spectroscopy. An XMCD spectrum was predicted by Gaussian process modelling with learning of an experimental spectrum using a limited number of observed data points. Adaptive sampling of data points with maximum variance of the predicted spectrum successfully reduced the total data points for the evaluation of magnetic moments while providing the required accuracy. The present method reduces the time and cost for XMCD spectroscopy and has potential applicability to various spectroscopies.
Wang, Nan; Ma, Jie; Jin, Dan; Yu, Bin
2017-01-01
Aim . The purpose of this study was to investigate the relationship between upper limbs' three functional partitions and the golden curve. Materials and Methods . We measured 30 subjects' right or left upper limb data and investigate the relationship between them and the golden curve by use of SPSS version 20.0 statistical software (SPSS, Inc., Chicago, Illinois), one-sample t -test. Results . There are four points on human's upper limbs which have no difference with the four points on the golden curve. And there is one point of which the difference is obvious. But we still could draw the conclusion that human upper limbs are accordant with the golden curve. Conclusion . Human upper limbs are accordant with the golden curve.
Simulation of thin aluminium-foil in the packaging industry
NASA Astrophysics Data System (ADS)
Eskil, Andreasson; Lindström, Tommy; Käck, Britta; Malmberg, Christoffer; Asp, Ann-Magret
2017-10-01
This work present an approach of how to account for the anisotropic mechanical material behaviour in the simulation models of the thin aluminium foil layer (≈10 µm) used in the Packaging Industry. Furthermore, the experimental results from uniaxial tensile tests are parameterised into an analytical expression and the slope of the hardening subsequently extended way beyond the experimental data points. This in order to accommodate the locally high stresses present in the experiments at the neck formation. An analytical expression, denominated Ramberg-Osgood, is used to describe the non-linear mechanical behaviour. Moreover it is possible with a direct method to translate the experimental uniaxial tensile test results into useful numerical material model parameters in Abaqus™. In addition to this the extended material behaviour including the plastic flow i.e. hardening, valid after onset of localisation, the described procedure can also capture the microscopic events, i.e. geometrical thinning, ongoing in the deformation of the aluminium foil. This method has earlier successfully been applied by Petri Mäkelä for paperboard material [1]. The engineering sound and parameterised description of the mechanical material behaviour facilitates an efficient categorisation of different aluminium foil alloys and aid the identification of the correct anisotropic (RD/TD/45°) mechanical material behaviour derived from the physical testing.
Pareto fronts for multiobjective optimization design on materials data
NASA Astrophysics Data System (ADS)
Gopakumar, Abhijith; Balachandran, Prasanna; Gubernatis, James E.; Lookman, Turab
Optimizing multiple properties simultaneously is vital in materials design. Here we apply infor- mation driven, statistical optimization strategies blended with machine learning methods, to address multi-objective optimization tasks on materials data. These strategies aim to find the Pareto front consisting of non-dominated data points from a set of candidate compounds with known character- istics. The objective is to find the pareto front in as few additional measurements or calculations as possible. We show how exploration of the data space to find the front is achieved by using uncer- tainties in predictions from regression models. We test our proposed design strategies on multiple, independent data sets including those from computations as well as experiments. These include data sets for Max phases, piezoelectrics and multicomponent alloys.
BP network identification technology of infrared polarization based on fuzzy c-means clustering
NASA Astrophysics Data System (ADS)
Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei
2011-08-01
Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.
10 CFR 75.8 - IAEA inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... inspection at a facility, to: (1) Examine records kept under § 75.21; (2) Observe that the measurements of nuclear material at key measurement points for material balance accounting are representative; (3) Verify... samples at key measurement points for material balance accounting are taken in accordance with procedures...
Small Fermi surfaces and strong correlation effects in Dirac materials with holography
NASA Astrophysics Data System (ADS)
Seo, Yunseok; Song, Geunho; Park, Chanyong; Sin, Sang-Jin
2017-10-01
Recent discovery of transport anomaly in graphene demonstrated that a system known to be weakly interacting may become strongly correlated if system parameter (s) can be tuned such that fermi surface is sufficiently small. We study the strong correlation effects in the transport coefficients of Dirac materials doped with magnetic impurity under the magnetic field using holographic method. The experimental data of magneto-conductivity are well fit by our theory, however, not much data are available for other transports of Dirac material in such regime. Therefore, our results on heat transport, thermo-electric power and Nernst coefficients are left as predictions of holographic theory for generic Dirac materials in the vicinity of charge neutral point with possible surface gap. We give detailed look over each magneto-transport observable and 3Dplots to guide future experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huy Q.; Molloi, Sabee
Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar tomore » the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg/ml) and iodine (4, 12, 20, 28, 36, and 44 mg/ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30/70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg/ml) and iodine (5, 15, 25, 35, and 45 mg/ml). The x-ray transport process was simulated where the Beer-Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine.« less
Application of terrestrial laser scanning to the development and updating of the base map
NASA Astrophysics Data System (ADS)
Klapa, Przemysław; Mitka, Bartosz
2017-06-01
The base map provides basic information about land to individuals, companies, developers, design engineers, organizations, and government agencies. Its contents include spatial location data for control network points, buildings, land lots, infrastructure facilities, and topographic features. As the primary map of the country, it must be developed in accordance with specific laws and regulations and be continuously updated. The base map is a data source used for the development and updating of derivative maps and other large scale cartographic materials such as thematic or topographic maps. Thanks to the advancement of science and technology, the quality of land surveys carried out by means of terrestrial laser scanning (TLS) matches that of traditional surveying methods in many respects. This paper discusses the potential application of output data from laser scanners (point clouds) to the development and updating of cartographic materials, taking Poland's base map as an example. A few research sites were chosen to present the method and the process of conducting a TLS land survey: a fragment of a residential area, a street, the surroundings of buildings, and an undeveloped area. The entire map that was drawn as a result of the survey was checked by comparing it to a map obtained from PODGiK (pol. Powiatowy Ośrodek Dokumentacji Geodezyjnej i Kartograficznej - Regional Centre for Geodetic and Cartographic Records) and by conducting a field inspection. An accuracy and quality analysis of the conducted fieldwork and deskwork yielded very good results, which provide solid grounds for predicating that cartographic materials based on a TLS point cloud are a reliable source of information about land. The contents of the map that had been created with the use of the obtained point cloud were very accurately located in space (x, y, z). The conducted accuracy analysis and the inspection of the performed works showed that high quality is characteristic of TLS surveys. The accuracy of determining the location of the various map contents has been estimated at 0.02-0.03 m. The map was developed in conformity with the applicable laws and regulations as well as with best practice requirements.
Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics
Yaghoobi, Amin; Chorzepa, Mi G.; Kim, S. Sonny; Durham, Stephan A.
2017-01-01
Concrete is a complex heterogeneous material, and thus, it is important to develop numerical modeling methods to enhance the prediction accuracy of the fracture mechanism. In this study, a two-dimensional mesoscale model is developed using a non-ordinary state-based peridynamic (NOSBPD) method. Fracture in a concrete cube specimen subjected to pure tension is studied. The presence of heterogeneous materials consisting of coarse aggregates, interfacial transition zones, air voids and cementitious matrix is characterized as particle points in a two-dimensional mesoscale model. Coarse aggregates and voids are generated using uniform probability distributions, while a statistical study is provided to comprise the effect of random distributions of constituent materials. In obtaining the steady-state response, an incremental and iterative solver is adopted for the dynamic relaxation method. Load-displacement curves and damage patterns are compared with available experimental and finite element analysis (FEA) results. Although the proposed model uses much simpler material damage models and discretization schemes, the load-displacement curves show no difference from the FEA results. Furthermore, no mesh refinement is necessary, as fracture is inherently characterized by bond breakages. Finally, a sensitivity study is conducted to understand the effect of aggregate volume fraction and porosity on the load capacity of the proposed mesoscale model. PMID:28772518
Raman spectroscopy method for subsurface detection of food powders through plastic layers
NASA Astrophysics Data System (ADS)
Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Schmidt, Walter F.; Kim, Moon S.; Chan, Diane E.; Bae, Abigail
2017-05-01
Proper chemical analyses of materials in sealed containers are important for quality control purpose. Although it is feasible to detect chemicals at top surface layer, it is relatively challenging to detect objects beneath obscuring surface. This study used spatially offset Raman spectroscopy (SORS) method to detect urea, ibuprofen and acetaminophen powders contained within one or more (up to eight) layers of gelatin capsules to demonstrate subsurface chemical detection and identification. A 785 nm point-scan Raman spectroscopy system was used to acquire spatially offset Raman spectra for an offset range of 0 to 10 mm from the surfaces of 24 encapsulated samples, using a step size of 0.1 mm to obtain 101 spectral measurements per sample. With increasing offset distance, the fraction of information from the deeper subsurface material increased compared to that from the top surface material. The series of measurements was analyzed to differentiate and identify the top surface and subsurface materials. Containing mixed contributions from the powder and capsule, the SORS of each sample was decomposed using self modeling mixture analysis (SMA) to obtain pure component spectra of each component and corresponding components were identified using spectral information divergence values. Results show that SORS technique together with SMA method has a potential for non-invasive detection of chemicals at deep subsurface layer.
Combined Mechanical and Electrical Study of Polymers of Biological Origin
NASA Astrophysics Data System (ADS)
Zsoldos, G.; Szoda, K.; Marossy, K.
2017-02-01
Thermally Simulated Depolarization Current measurement is an excellent but not widely used method for identifying relaxation processes in polymers. The DMA method is used here to analyze the mechanical changes depend on temperature in biopolymers. The two techniques take advantage of the energy changes involved in the various phase transitions of certain polymer molecules. This allows for several properties of the material to be ascertained; melting points, enthalpies of melting, crystallization temperatures, glass transition temperatures and degradation temperatures. The examined biopolymer films are made from biological materials such as proteins and polysaccharides. These materials have gained wide usage in pharmaceutical, medical and food areas. The uses of biopolymer films depend on their structure and mechanical properties. This work is based on pectin and gelatin films. The films were prepared by casting. The casting technique used aqueous solutions in each case of sample preparation. The manufacturing process of the pectin and gelatin films was a single stage solving process.
[The progress in speciation analysis of trace elements by atomic spectrometry].
Wang, Zeng-Huan; Wang, Xu-Nuo; Ke, Chang-Liang; Lin, Qin
2013-12-01
The main purpose of the present work is to review the different non-chromatographic methods for the speciation analysis of trace elements in geological, environmental, biological and medical areas. In this paper, the sample processing methods in speciation analysis were summarized, and the main strategies for non-chromatographic technique were evaluated. The basic principles of the liquid extractions proposed in the published literatures recently and their advantages and disadvantages were discussed, such as conventional solvent extraction, cloud point extraction, single droplet microextraction, and dispersive liquid-liquid microextraction. Solid phase extraction, as a non-chromatographic technique for speciation analysis, can be used in batch or in flow detection, and especially suitable for the online connection to atomic spectrometric detector. The developments and applications of sorbent materials filled in the columns of solid phase extraction were reviewed. The sorbents include chelating resins, nanometer materials, molecular and ion imprinted materials, and bio-sorbents. Other techniques, e. g. hydride generation technique and coprecipitation, were also reviewed together with their main applications.
Transcatheter Microwave Antenna
NASA Technical Reports Server (NTRS)
Arndt, Dickey G. (Inventor); Carl, James R. (Inventor); Ngo, Phong (Inventor); Raffoul, George W. (Inventor)
2001-01-01
A method, simulation, and apparatus are provided that are highly suitable for treatment of benign prostatic hyperplasia (BPH). A catheter is disclosed that includes a small diameter disk loaded monopole antenna surrounded by fusion material having a high heat of fusion and a melting point preferably at or near body temperature. Microwaves from the antenna heat prostatic tissue to promote necrosing of the prostatic tissue that relieves the pressure of the prostatic tissue against the urethra as the body reabsorbs the necrosed or dead tissue. The fusion material keeps the urethra cool by means of the heat of fusion of the fusion material. This prevents damage to the urethra while the prostatic tissue is necrosed. A computer simulation is provided that can be used to predict the resulting temperature profile produced in the prostatic tissue. By changing the various control features of the catheter and method of applying microwave energy a temperature profile can be predicted and produced that is similar to the temperature profile desired for the particular patient.
NASA Astrophysics Data System (ADS)
van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.
2017-10-01
The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some type of self-consistency is necessary.
Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru
2017-01-01
We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.
Testing single point incremental forming molds for thermoforming operations
NASA Astrophysics Data System (ADS)
Afonso, Daniel; de Sousa, Ricardo Alves; Torcato, Ricardo
2016-10-01
Low pressure polymer processing processes as thermoforming or rotational molding use much simpler molds then high pressure processes like injection. However, despite the low forces involved with the process, molds manufacturing for this operations is still a very material, energy and time consuming operation. The goal of the research is to develop and validate a method for manufacturing plastically formed sheets metal molds by single point incremental forming (SPIF) operation for thermoforming operation. Stewart platform based SPIF machines allow the forming of thick metal sheets, granting the required structural stiffness for the mold surface, and keeping the short lead time manufacture and low thermal inertia.
Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui
2014-03-24
We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.
Deciphering chemical order/disorder and material properties at the single-atom level
Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...
2017-02-01
Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less
ERIC Educational Resources Information Center
Lieberman, Marcus
The growing number of value clarification curriculum materials is an indication that moral education is becoming a major focal point of curriculum. This study looks at one social studies course that includes both a moral development component and an inquiry approach. The hypotheses of the study are that students will show significant growth in (1)…
ERIC Educational Resources Information Center
Hutchinson, Joseph C.; Hutchinson, June O.
Focusing on the current status of the language laboratory in instructional use, this report stresses the need to employ a systems approach in the selection and operation of laboratory equipment. The author points out the interrelatedness of the key factors in any system, including: (1) people, (2) method, (3) instructional materials, (4)…
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Taura, Joel John
2014-06-01
This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0< μ< μ c and unstable for , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.
A new method to study he effective shear modulus of shocked material
NASA Astrophysics Data System (ADS)
Xiaojuan, Ma; Fusheng, Liu
2013-06-01
Shear modulus is a crucial material parameter for description of mechanical behavior. However, at strong shock compression, it is generally deduced from the longitudinal and bulk sound velocity evaluated by unloading wave profile measurement. Here, a new method called the disturbed amplitude damping method of shock wave is presented, that can directly measure the shear modulus of material. This method relies on the correlation between the shear modulus of shock compressed state and amplitude damping and oscillation of an initial sinusoidal disturbance on shock front in concerned substance. Two important steps are required to determine the shear modulus of material. The first is to measure the damping and oscillation feature of disturbance by the flyer impacted method. The second is to find the quantitative relationship between the disturbed amplitude damping and shear modulus by the finite difference method which is applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in flyer impacted flow field. When aluminum shocked to 80 GPa is taken as an example, the shape of perturbed shock front and its disturbed amplitude development with propagation distance, are approximately mapped out. The figure shows an oscillatory damping characteristic. At the early stage the perturbation amplitude on the shock front experiences a decaying process until to zero point, then it rises to a maximum but in reverse phase, and then it decays again. Comparing these data with those simulated using the SCG constitutive model, the effective shear modulus for aluminum shocked to 80 GPa is determined to be about 90 GPa, which is higher than the result given by Yu.
1980-09-01
K ( 7 ) D , SOAPSTONE ( 1 3 ) E. lNK (5) F. CRAYON OR PAINT STICK (14) G.DYE (1) H . PE N C I L ( 1 ) 1. ELECTRIC ENGRAVING (1) 2. WHO MANUFACTURES...CHALK ( 2 ) D . DYE (1) H, SOAPSTONE (4) 4. W HAT TYPE OF DISPENSING METHOD IS UTILIZED WITH MARKING MATERIALS? A . BALL POINT TUBE ( 1 3 ) H , STEEL...9 ) L, BAMBOO PEN & INK POT F. SOAPSTONE (12) M . OIL PENCIL ( 1 ) G . L A C S T I C K ( 0 ) N . ELECTRI c ENGRAVER (1) 5, ARE STANDARD COLORS
Systems and methods for processing irradiation targets through a nuclear reactor
Dayal, Yogeshwar; Saito, Earl F.; Berger, John F.; Brittingham, Martin W.; Morales, Stephen K.; Hare, Jeffrey M.
2016-05-03
Apparatuses and methods produce radioisotopes in instrumentation tubes of operating commercial nuclear reactors. Irradiation targets may be inserted and removed from instrumentation tubes during operation and converted to radioisotopes otherwise unavailable during operation of commercial nuclear reactors. Example apparatuses may continuously insert, remove, and store irradiation targets to be converted to useable radioisotopes or other desired materials at several different origin and termination points accessible outside an access barrier such as a containment building, drywell wall, or other access restriction preventing access to instrumentation tubes during operation of the nuclear plant.
Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station
ERIC Educational Resources Information Center
Lu, Yang; Santino, Luciano M.; Acharya, Shinjita; Anandarajah, Hari; D'Arcy, Julio M.
2017-01-01
The design and fabrication of functional scientific instrumentation allows students to forge a link between commonly reported numbers and physical material properties. Here, a two-point and four-point probe station for measuring electrical properties of solid materials is fabricated via 3D printing utilizing an inexpensive benchtop…
Material for Point Design (final summary of DIME material)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Paul A.
2014-02-25
These slides summarize the motivation of the Defect Induced Mix Experiment (DIME) project, the “point design” of the Polar Direct Drive (PDD) version of the NIF separated reactant capsule, the experimental requirements, technical achievements, and some useful backup material. These slides are intended to provide much basic material in one convenient location and will hopefully be of some use for subsequent experimental projects.
Star cell type core configuration for structural sandwich materials
Christensen, Richard M.
1995-01-01
A new pattern for cellular core material used in sandwich type structural materials. The new pattern involves star shaped cells intermixed with hexagonal shaped cells. The new patterned cellular core material includes star shaped cells interconnected at points thereof and having hexagonal shape cells positioned adjacent the star points. The new pattern allows more flexibility and can conform more easily to curved shapes.
The liquid wood heat flow and material properties as a function of temperature
NASA Astrophysics Data System (ADS)
Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru
2018-03-01
There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.
NASA Astrophysics Data System (ADS)
Gul, R.; Roy, U. N.; Camarda, G. S.; Hossain, A.; Yang, G.; Vanier, P.; Lordi, V.; Varley, J.; James, R. B.
2017-03-01
In this paper, the properties of point defects in Cd1-xZnxTe1-ySey (CZTS) radiation detectors are characterized using deep-level transient spectroscopy and compared between materials grown using two different methods, the Bridgman method and the traveling heater method. The nature of the traps was analyzed in terms of their capture cross-sections and trap concentrations, as well as their effects on the measured charge-carrier trapping and de-trapping times, and then compared for the two growth techniques. The results revealed that Se addition to CdZnTe can reduce the VCd- concentration. In Travelling Heater Method (THM) and Bridgman Method (BM) grown CZTS detectors, besides a few similarities in the shallow and medium energy traps, there were major differences in the deep traps. It was observed that the excess-Te and lower growth-temperature conditions in THM-grown CZTS led to a complete compensation of VCd- and two additional traps (attributed to Tei- and TeCd++ appearing at around Ev + 0.26 eV and Ec - 0.78 eV, respectively). The 1.1-eV deep trap related to large Te secondary phases was a dominant trap in the BM-grown CZTS crystals. In addition to i-DLTS data, the effects of point defects induced due to different processing techniques on the detector's resistivity, spectral response to gammas, and μτ product were determined.
On the Support of Solar Prominence Material by the Dips of a Coronal Flux Tube
NASA Astrophysics Data System (ADS)
Hillier, Andrew; van Ballegooijen, Adriaan
2013-04-01
The dense prominence material is believed to be supported against gravity through the magnetic tension of dipped coronal magnetic field. For quiescent prominences, which exhibit many gravity-driven flows, hydrodynamic forces are likely to play an important role in the determination of both the large- and small-scale magnetic field distributions. In this study, we present the first steps toward creating a three-dimensional magneto-hydrostatic prominence model where the prominence is formed in the dips of a coronal flux tube. Here 2.5D equilibria are created by adding mass to an initially force-free magnetic field, then performing a secondary magnetohydrodynamic relaxation. Two inverse polarity magnetic field configurations are studied in detail, a simple o-point configuration with a ratio of the horizontal field (Bx ) to the axial field (By ) of 1:2 and a more complex model that also has an x-point with a ratio of 1:11. The models show that support against gravity is either by total pressure or tension, with only tension support resembling observed quiescent prominences. The o-point of the coronal flux tube was pulled down by the prominence material, leading to compression of the magnetic field at the base of the prominence. Therefore, tension support comes from the small curvature of the compressed magnetic field at the bottom and the larger curvature of the stretched magnetic field at the top of the prominence. It was found that this method does not guarantee convergence to a prominence-like equilibrium in the case where an x-point exists below the prominence flux tube. The results imply that a plasma β of ~0.1 is necessary to support prominences through magnetic tension.
Lost in Virtual Reality: Pathfinding Algorithms Detect Rock Fractures and Contacts in Point Clouds
NASA Astrophysics Data System (ADS)
Thiele, S.; Grose, L.; Micklethwaite, S.
2016-12-01
UAV-based photogrammetric and LiDAR techniques provide high resolution 3D point clouds and ortho-rectified photomontages that can capture surface geology in outstanding detail over wide areas. Automated and semi-automated methods are vital to extract full value from these data in practical time periods, though the nuances of geological structures and materials (natural variability in colour and geometry, soft and hard linkage, shadows and multiscale properties) make this a challenging task. We present a novel method for computer assisted trace detection in dense point clouds, using a lowest cost path solver to "follow" fracture traces and lithological contacts between user defined end points. This is achieved by defining a local neighbourhood network where each point in the cloud is linked to its neighbours, and then using a least-cost path algorithm to search this network and estimate the trace of the fracture or contact. A variety of different algorithms can then be applied to calculate the best fit plane, produce a fracture network, or map properties such as roughness, curvature and fracture intensity. Our prototype of this method (Fig. 1) suggests the technique is feasible and remarkably good at following traces under non-optimal conditions such as variable-shadow, partial occlusion and complex fracturing. Furthermore, if a fracture is initially mapped incorrectly, the user can easily provide further guidance by defining intermediate waypoints. Future development will include optimization of the algorithm to perform well on large point clouds and modifications that permit the detection of features such as step-overs. We also plan on implementing this approach in an interactive graphical user environment.
Perotti, Luigi E; Ponnaluri, Aditya V S; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S
2017-11-01
Quantitative measurement of the material properties (eg, stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness, and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full-field displacement data-ie, we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest-and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, eg, through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. Copyright © 2017 John Wiley & Sons, Ltd.
Kailer, Andreas; Stephan, Marc
2016-10-01
The fracture toughness determination of fine-grained zirconia ceramics using the chevron notched beam method (CNB) was investigated to assess the feasibility of this method for quality assurance and material characterization. CNB tests were performed using four different yttria-stabilized zirconia ceramics under various testing modes and conditions, including displacement-controlled and load-rate-controlled four point bending to assess the influence of slow crack growth and identify most suitable test parameters. For comparison, tests using single-edge V-notch beams (SEVNB) were conducted. It was observed that the CNB method yields well-reproducible results. However, slow crack growth effects significantly affect the measured KIC values, especially when slow loading rates are used. To minimize the effect of slow crack growth, the application of high loading rates is recommended. Despite a certain effort needed for setting up a sample preparation routine, the CNB method is considered to be very useful for measuring and controlling the fracture toughness of zirconia ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums
NASA Astrophysics Data System (ADS)
Gu, Weiguo; Rao, Kaiyuan; Wang, Dezhong; Xiong, Jiemei
2016-12-01
Segmented gamma scanning (SGS) and tomographic gamma scanning (TGS) are two traditional detection techniques for low and intermediate level radioactive waste drum. This paper proposes one detection method named semi-tomographic gamma scanning (STGS) to avoid the poor detection accuracy of SGS and shorten detection time of TGS. This method and its algorithm synthesize the principles of SGS and TGS. In this method, each segment is divided into annual voxels and tomography is used in the radiation reconstruction. The accuracy of STGS is verified by experiments and simulations simultaneously for the 208 liter standard waste drums which contains three types of nuclides. The cases of point source or multi-point sources, uniform or nonuniform materials are employed for comparison. The results show that STGS exhibits a large improvement in the detection performance, and the reconstruction error and statistical bias are reduced by one quarter to one third or less for most cases if compared with SGS.
NASA Astrophysics Data System (ADS)
Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan
2011-10-01
Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).
Low melting high lithia glass compositions and methods
Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.
2003-09-23
The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.
Castillo, Edward; Castillo, Richard; White, Benjamin; Rojo, Javier; Guerrero, Thomas
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. PMID:22797602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Sokolov, Mikhail A; Nanstad, Randy K
Material fracture toughness in the fully ductile region can be described by a J-integral vs. crack growth resistance curve (J-R curve). As a conventional J-R curve measurement method, the elastic unloading compliance (EUC) method becomes impractical for elevated temperature testing due to relaxation of the material and friction induced back-up shape of the J-R curve. One alternative solution of J-R curve testing applies the Direct Current Potential Drop (DCPD) technique for measuring crack extension. However, besides crack growth, potential drop can also be influenced by plastic deformation, crack tip blunting, etc., and uncertainties exist in the current DCPD methodology especiallymore » in differentiating potential drop due to stable crack growth and due to material deformation. Thus, using DCPD for J-R curve determination remains a challenging task. In this study, a new adjustment procedure for applying DCPD to derive the J-R curve has been developed for conventional fracture toughness specimens, including compact tension, three-point bend, and disk-shaped compact specimens. Data analysis has been performed on Oak Ridge National Laboratory (ORNL) and American Society for Testing and Materials (ASTM) interlaboratory results covering different specimen thicknesses, test temperatures, and materials, to evaluate the applicability of the new DCPD adjustment procedure for J-R curve characterization. After applying the newly-developed procedure, direct comparison between the DCPD method and the normalization method on the same specimens indicated close agreement for the overall J-R curves, as well as the provisional values of fracture toughness near the onset of ductile crack extension, Jq, and of tearing modulus.« less
Development of Chemical Process Design and Control for ...
This contribution describes a novel process systems engineering framework that couples advanced control with sustainability evaluation and decision making for the optimization of process operations to minimize environmental impacts associated with products, materials, and energy. The implemented control strategy combines a biologically inspired method with optimal control concepts for finding more sustainable operating trajectories. The sustainability assessment of process operating points is carried out by using the U.S. E.P.A.’s Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator (GREENSCOPE) tool that provides scores for the selected indicators in the economic, material efficiency, environmental and energy areas. The indicator scores describe process performance on a sustainability measurement scale, effectively determining which operating point is more sustainable if there are more than several steady states for one specific product manufacturing. Through comparisons between a representative benchmark and the optimal steady-states obtained through implementation of the proposed controller, a systematic decision can be made in terms of whether the implementation of the controller is moving the process towards a more sustainable operation. The effectiveness of the proposed framework is illustrated through a case study of a continuous fermentation process for fuel production, whose materi
NASA Astrophysics Data System (ADS)
Awrangjeb, M.; Siddiqui, F. U.
2017-11-01
In complex urban and residential areas, there are buildings which are not only connected with and/or close to one another but also partially occluded by their surrounding vegetation. Moreover, there may be buildings whose roofs are made of transparent materials. In transparent buildings, there are point returns from both the ground (or materials inside the buildings) and the rooftop. These issues confuse the previously proposed building masks which are generated from either ground points or non-ground points. The normalised digital surface model (nDSM) is generated from the non-ground points and usually it is hard to find individual buildings and trees using the nDSM. In contrast, the primary building mask is produced using the ground points, thereby it misses the transparent rooftops. This paper proposes a new building mask based on the non-ground points. The dominant directions of non-ground lines extracted from the multispectral imagery are estimated. A dummy grid with the target mask resolution is rotated at each dominant direction to obtain the corresponding height values from the non-ground points. Three sub-masks are then generated from the height grid by estimating the gradient function. Two of these sub-masks capture planar surfaces whose height remain constant in along and across the dominant direction, respectively. The third sub-mask contains only the flat surfaces where the height (ideally) remains constant in all directions. All the sub-masks generated in all estimated dominant directions are combined to produce the candidate building mask. Although the application of the gradient function helps in removal of most of the vegetation, the final building mask is obtained through removal of planar vegetation, if any, and tiny isolated false candidates. Experimental results on three Australian data sets show that the proposed method can successfully remove vegetation, thereby separate buildings from occluding vegetation and detect buildings with transparent roof materials. While compared to existing building detection techniques, the proposed technique offers higher objectbased completeness, correctness and quality, specially in complex scenes with aforementioned issues. It is not only capable of detecting transparent buildings, but also small garden sheds which are sometimes as small as 5 m2 in area.
pH-dependent surface charging and points of zero charge. IV. Update and new approach.
Kosmulski, Marek
2009-09-15
The recently published points of zero charge (PZC) and isoelectric points (IEPs) of various materials are compiled to update the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC Press, Boca Raton, FL, 2009]. Unlike in previous compilations by the same author [Chemical Properties of Material Surfaces, Dekker, New York, 2001; J. Colloid Interface Sci. 253 (2002) 77; J. Colloid Interface Sci. 275 (2004) 214; J. Colloid Interface Sci. 298 (2006) 730], the materials are sorted not only by the chemical formula, but also by specific product, that is, by brand name (commercially available materials), and by recipe (home-synthesized materials). This new approach indicated that the relatively consistent PZC/IEP reported in the literature for materials having the same chemical formula are due to biased choice of specimens to be studied. Specimens which have PZC/IEP close to the "recommended" value are selected more often than other specimens (PZC/IEP not reported before or PZC/IEP reported, but different from the "recommended" value). Thus, the previously published PZC/IEP act as a self-fulfilling prophecy.
New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.
Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian
2016-07-01
Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.
The role of atomic absorption spectrometry in geochemical exploration
Viets, J.G.; O'Leary, R. M.
1992-01-01
In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.
Performance of Mercury Triple-Point Cells Made in Brazil
NASA Astrophysics Data System (ADS)
Petkovic, S. G.; Santiago, J. F. N.; Filho, R. R.; Teixeira, R. N.; Santos, P. R. F.
2003-09-01
Fixed-points cells are primary standards in ITS-90. They contain reference material with a purity of 99.999 % or more. The gallium in a melting-point cell, for example, can reach a purity of 99.99999 %. This level of purity is not easy to obtain. However, substances like water and mercury can be purified by means of distillation and chemical procedures. This paper presents the results of mercury triple-point cells made in Brazil that were directly compared to a mercury triple-point cell of 99.999% purity. This reference cell, made by Isotech (England), was previously compared to cells from CENAM (Mexico) and NRC (Canada) and the maximum deviation found was approximately 0.4 mK. The purification stage started with a sample of mercury 99.3 % pure, and the repeated use of both mechanical and chemical processes led to a purification grade considered good enough for calibration of standard platinum resistance thermometers. The purification procedures, the method of construction of the cell, the laboratory facilities, the comparison results and the budget of uncertainties are described in this paper. All of the cells tested have a triple-point temperature within 0.25 mK of the triple-point temperature of the Inmetro reference cell.
Isoelectric points and points of zero charge of metal (hydr)oxides: 50years after Parks' review.
Kosmulski, Marek
2016-12-01
The pH-dependent surface charging of metal (hydr)oxides is reviewed on the occasion of the 50th anniversary of the publication by G.A. Parks: "Isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems" in Chemical Reviews. The point of zero charge (PZC) and isoelectric point (IEP) became standard parameters to characterize metal oxides in aqueous dispersions, and they define adsorption (surface excess) of ions, stability against coagulation, rheological properties of dispersions, etc. They are commonly used in many branches of science including mineral processing, soil science, materials science, geochemistry, environmental engineering, and corrosion science. Parks established standard procedures and experimental conditions which are required to obtain reliable and reproducible values of PZC and IEP. The field is very active, and the number of related papers exceeds 300 a year, and the standards established by Parks remain still valid. Relevant experimental techniques improved over the years, especially the measurements of electrophoretic mobility became easier and more reliable, are the numerical values of PZC and IEP compiled by Parks were confirmed by contemporary publications with a few exceptions. The present paper is an up-to-date compilation of the values of PZC and IEP of metal oxides. Unlike in former reviews by the same author, which were more comprehensive, only limited number of selected results are presented and discussed here. On top of the results obtained by means of classical methods (titration and electrokinetic methods), new methods and correlations found over the recent 50years are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Testing methods of pressure distribution of bra cups on breasts soft tissue
NASA Astrophysics Data System (ADS)
Musilova, B.; Nemcokova, R.; Svoboda, M.
2017-10-01
Objective of this study is to evaluate testing methods of pressure distribution of bra cups on breasts soft tissue, the system which do not affect the space between the wearer's body surface and bra cups and thus do not influence the geometry of the measured body surface and thus investigate the functional performance of brassieres. Two measuring systems were used for the pressure comfort evaluating: 1) The pressure distribution of a wearing bra during 20 minutes on women's breasts has been directly measured using pressure sensor, a dielectricum which is elastic polyurethane foam bra cups. Twelve points were measured in bra cups. 2) Simultaneously the change of temperature in the same points bra was tested with the help of noncontact system the thermal imager. The results indicate that both of those systems can identify different pressure distribution at different points. The same size of bra designing features bra cups made from the same material and which is define by the help of same standardised body dimensions (bust and underbust) can cause different value of a compression on different shape of a woman´s breast soft tissue.
Fazio, Massimo A; Bruno, Luigi; Reynaud, Juan F; Poggialini, Andrea; Downs, J Crawford
2012-03-01
We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.
NASA Astrophysics Data System (ADS)
Dhanai, Ruchika; Rana, Puneet; Kumar, Lokendra
2016-05-01
The motivation behind the present analysis is to focus on magneto-hydrodynamic flow and heat transfer characteristics of non-Newtonian fluid (Sisko fluid) past a permeable nonlinear shrinking sheet utilizing nanoparticles involving convective boundary condition. The non-homogenous nanofluid transport model considering the effect of Brownian motion, thermophoresis, suction/injection and no nanoparticle flux at the sheet with convective boundary condition has been solved numerically by the RKF45 method with shooting technique. Critical points for various pertinent parameters are evaluated in this study. The dual solutions (both first and second solutions) are captured in certain range of material constant (nc< n < ∞) , mass transfer parameter (sc < s < ∞) and shrinking parameter (χc < χ < 0) . For both the branches (upper and lower branch), the rate of heat transfer is an increasing function of the power-law index, Prandtl number and Biot number, whereas it is a decreasing function of the material constant and thermophoresis parameter.
NASA Astrophysics Data System (ADS)
You, J. H.; Höschen, T.; Lindig, S.
2006-01-01
Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.