Out with the Old and in with the New—Is Backward Inhibition a Domain-Specific Process?
Menghini, Deny; Vicari, Stefano; Petrosini, Laura; Ferlazzo, Fabio
2015-01-01
Effective task switching is supported by the inhibition of the just executed task, so that potential interference from previously executed tasks is adaptively counteracted. This inhibitory mechanism, named Backward Inhibition (BI), has been inferred from the finding that switching back to a recently executed task (A-B-A task sequence) is harder than switching back to a less recently executed task (C-B-A task sequence). Despite the fact that BI effects do impact performance on everyday life activities, up to now it is still not clear whether the BI represents an amodal and material-independent process or whether it interacts with the task material. To address this issue, a group of individuals with Williams syndrome (WS) characterized by specific difficulties in maintaining and processing visuo-spatial, but not verbal, information, and a mental age- and gender-matched group of typically developing (TD) children were subjected to three task-switching experiments requiring verbal or visuo-spatial material to be processed. Results showed that individuals with WS exhibited a normal BI effect during verbal task-switching, but a clear deficit during visuo-spatial task-switching. Overall, our findings demonstrating that the BI is a material-specific process have important implications for theoretical models of cognitive control and its architecture. PMID:26565628
Working Memory Capacity and Resistance to Interference
ERIC Educational Resources Information Center
Oberauer, Klaus; Lange, Elke; Engle, Randall W.
2004-01-01
Single-task and dual-task versions of verbal and spatial serial order memory tasks were administered to 120 students tested for working memory capacity with four previously validated measures. In the dual-task versions, similarity between the memory material and the material of the secondary processing task was varied. With verbal material, three…
Materials processing in space programs tasks. [NASA research tasks
NASA Technical Reports Server (NTRS)
Pentecost, E.
1981-01-01
Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Mckannan, E. C. (Editor)
1978-01-01
A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Naumann, R. J. (Editor)
1980-01-01
The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.
Hellige, J B; Bloch, M I; Cowin, E L; Eng, T L; Eviatar, Z; Sergent, V
1994-09-01
Functional hemispheric asymmetries were examined for right- or left-handed men and women. Tasks involved (a) auditory processing of verbal material, (b) processing of emotions shown on faces, (c) processing of visual categorical and coordinate spatial relations, and (d) visual processing of verbal material. Similar performance asymmetries were found for the right-handed and left-handed groups, but the average asymmetries tended to be smaller for the left-handed group. For the most part, measures of performance asymmetry obtained from the different tasks did not correlate with each other, suggesting that individual subjects cannot be simply characterized as strongly or weakly lateralized. However, ear differences obtained in Task 1 did correlate significantly with certain visual field differences obtained in Task 4, suggesting that both tasks are sensitive to hemispheric asymmetry in similar phonetic or language-related processes.
Silicon material task - Low cost solar array project /JPL/DOE/
NASA Technical Reports Server (NTRS)
Lutwack, R.
1979-01-01
The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.
Materials experiment carrier concepts definition study. Volume 2: Technical report, part 2
NASA Technical Reports Server (NTRS)
1981-01-01
A materials experiment carrier (MEC) that provides effective accommodation of the given baseline materials processing in space (MPS) payloads and demonstration of the MPS platform concept for high priority materials processing science, multidiscipline MPS investigations, host carrier for commercial MPS payloads, and system economy of orbital operations is defined. The study flow of task work is shown. Study tasks featured analysis and trades to identify the MEC system concept options.
A review of the silicon material task
NASA Technical Reports Server (NTRS)
Lutwack, R.
1984-01-01
The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.
A review of the silicon material task
NASA Astrophysics Data System (ADS)
Lutwack, R.
1984-02-01
The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.
US/UK Loan Account Project Status PMOD477
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice A.
2012-07-12
The viewgraphs describe the status of PMOD477 for LANL. The meeting will occur at DOE-HQ with NA-11 and Military Applications personnel in attendance. Serves to repatriate material with a balance to zero by December 2012. Phase 1 -- Establish formality of operations for War Reserve (WR): Complete surrogate taskings to A90 through a Materials Channel and perform US/UK lessons learned; Complete the US/UK agreed Quality Acceptance Plan, Materials Plan, Shipping procedure, and establish the formal UK/US point of contacts. Phase 2 -- Metal Manufacture (WR): Process material and store material as electrorefined metal (ER) rings, with initial assay and isotopicmore » analysis, prior to manufacturing. Material is cast into accepted configuration and appropriate acceptance document for each aliquot will be generated. Phase 3 -- Intermediate Material Manufacture, Packaging and Shipping (WR): Continue processing of the material in accepted configuration with appropriate acceptance documentation for each aliquot. Provide an initial tasking of the material owed to UK including appropriate quality acceptance documentation. Phase 4 -- Complete Tasking (WR). Phase 5 -- Residue Processing (Non-WR): Complete processing of residue material and waste into accepted configuration with appropriate acceptance document for disposal.« less
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1983-01-01
The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.
1975-05-01
Waste-to-energy systems Recycling of materials from refuse Desulfurization of flue gases from electric power plants Sattelle Specialists...High-Temperature Gas -Turbine Engines for Automotive Applications Initiation of Task II and Task III (Task II: Description of Technologies and...3 - • Mining and Minerals Processing • Ocean Engineering • Transportation • Waste Treatment and Environmental Control The technologies
Executive working memory load induces inattentional blindness.
Fougnie, Daryl; Marois, René
2007-02-01
When attention is engaged in a task, unexpected events in the visual scene may go undetected, a phenomenon known as inattentional blindness (IB). At what stage of information processing must attention be engaged for IB to occur? Although manipulations that tax visuospatial attention can induce IB, the evidence is more equivocal for tasks that engage attention at late, central stages of information processing. Here, we tested whether IB can be specifically induced by central executive processes. An unexpected visual stimulus was presented during the retention interval of a working memory task that involved either simply maintaining verbal material or rearranging the material into alphabetical order. The unexpected stimulus was more likely to be missed during manipulation than during simple maintenance of the verbal information. Thus, the engagement of executive processes impairs the ability to detect unexpected, task-irrelevant stimuli, suggesting that IB can result from central, amodal stages of processing.
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1982-01-01
Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.
NASA Technical Reports Server (NTRS)
1986-01-01
The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1987-01-01
This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).
Interfering with memory for faces: The cost of doing two things at once.
Wammes, Jeffrey D; Fernandes, Myra A
2016-01-01
We inferred the processes critical for episodic retrieval of faces by measuring susceptibility to memory interference from different distracting tasks. Experiment 1 examined recognition of studied faces under full attention (FA) or each of two divided attention (DA) conditions requiring concurrent decisions to auditorily presented letters. Memory was disrupted in both DA relative to FA conditions, a result contrary to a material-specific account of interference effects. Experiment 2 investigated whether the magnitude of interference depended on competition between concurrent tasks for common processing resources. Studied faces were presented either upright (configurally processed) or inverted (featurally processed). Recognition was completed under FA, or DA with one of two face-based distracting tasks requiring either featural or configural processing. We found an interaction: memory for upright faces was lower under DA when the distracting task required configural than featural processing, while the reverse was true for memory of inverted faces. Across experiments, the magnitude of memory interference was similar (a 19% or 20% decline from FA) regardless of whether the materials in the distracting task overlapped with the to-be-remembered information. Importantly, interference was significantly larger (42%) when the processing demands of the distracting and target retrieval task overlapped, suggesting a processing-specific account of memory interference.
NBS (National Bureau of Standards): Materials measurements
NASA Technical Reports Server (NTRS)
Manning, J. R.
1984-01-01
Work in support of NASA's Microgravity Science and Applications Program is described. The results of the following three tasks are given in detail: (1) surface tensions and their variations with temperature and impurities; (2) convection during unidirectional solidification; and (3) measurement of high temperature thermophysical properties. Tasks 1 and 2 were directed toward determining how the reduced gravity obtained in space flight can affect convection and solidification processes. Emphasis in task 3 was on development of levitation and containerless processing techniques which can be applied in space flight to provide thermodynamic measurements of reactive materials.
Non-contact Measurement of Creep in Ultra-High-Temperature Materials
2009-11-04
Task 1: Process UHTC materials at the relevant temperatures in Electrostatic Levitation for extended periods. 5 3.5 Task 2: Prepare the required high...Electrostatic Levitation ITI Industrial Tectonics, Inc. MSFC NASA George C. Marshall Space Flight Center NASA National Aeronautics and Space...was divided into certain research questions: Can high-precision UHTC spheres be processed in Electrostatic Levitation (ESL) at the relevant
Early differential processing of material images: Evidence from ERP classification.
Wiebel, Christiane B; Valsecchi, Matteo; Gegenfurtner, Karl R
2014-06-24
Investigating the temporal dynamics of natural image processing using event-related potentials (ERPs) has a long tradition in object recognition research. In a classical Go-NoGo task two characteristic effects have been emphasized: an early task independent category effect and a later task-dependent target effect. Here, we set out to use this well-established Go-NoGo paradigm to study the time course of material categorization. Material perception has gained more and more interest over the years as its importance in natural viewing conditions has been ignored for a long time. In addition to analyzing standard ERPs, we conducted a single trial ERP pattern analysis. To validate this procedure, we also measured ERPs in two object categories (people and animals). Our linear classification procedure was able to largely capture the overall pattern of results from the canonical analysis of the ERPs and even extend it. We replicate the known target effect (differential Go-NoGo potential at frontal sites) for the material images. Furthermore, we observe task-independent differential activity between the two material categories as early as 140 ms after stimulus onset. Using our linear classification approach, we show that material categories can be differentiated consistently based on the ERP pattern in single trials around 100 ms after stimulus onset, independent of the target-related status. This strengthens the idea of early differential visual processing of material categories independent of the task, probably due to differences in low-level image properties and suggests pattern classification of ERP topographies as a strong instrument for investigating electrophysiological brain activity. © 2014 ARVO.
Basic and applied research program. Semiannual report, July-December 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, B.L.
1979-12-01
The status of research projects in the Basic and Applied Research Program at SERI is presented for the semiannual period ending December 31, 1978. The five tasks in this program are grouped into Materials Research and Development, Materials Processing and Development, Photoconversion Research, Exploratory Research, and Energy Resource and Assessment and have been carried out by personnel in the Materials, Bio/Chemical Conversion, and Energy Resource and Assessment Branches. Subtask elements in the task areas include coatings and films, polymers, metallurgy and corrosion, optical materials, surfaces and interfaces in materials research and development; photochemistry, photoelectrochemistry, and photobiology in photoconversion; thin glassmore » mirror development, silver degradation of mirrors, hail resistance of thin glass, thin glass manufacturing, cellular glass development, and sorption by desiccants in materials processing and development; and thermoelectric energy conversion, desiccant cooling, photothermal degradation, and amorphous materials in exploratory research. For each task or subtask element, the overview, scope, goals, approach, apparatus and equipment, and supporting subcontracts are presented, as applicable, in addition to the status of the projects in each task or subtask. Listing of publications and reports authored by personnel associated with the Basic and Applied Research Program and prepared or published during 1978 are also included.« less
Can spectro-temporal complexity explain the autistic pattern of performance on auditory tasks?
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material (pure tones) and/or low-level operations (detection, labelling, chord disembedding, detection of pitch changes) show a superior level of performance and shorter ERP latencies. In contrast, tasks involving spectrally- and temporally-dynamic material and/or complex operations (evaluation, attention) are poorly performed by autistics, or generate inferior ERP activity or brain activation. Neural complexity required to perform auditory tasks may therefore explain pattern of performance and activation of autistic individuals during auditory tasks.
Improved silicon nitride for advanced heat engines
NASA Technical Reports Server (NTRS)
Yeh, Hun C.; Fang, Ho T.
1987-01-01
The technology base required to fabricate silicon nitride components with the strength, reliability, and reproducibility necessary for actual heat engine applications is presented. Task 2 was set up to develop test bars with high Weibull slope and greater high temperature strength, and to conduct an initial net shape component fabrication evaluation. Screening experiments were performed in Task 7 on advanced materials and processing for input to Task 2. The technical efforts performed in the second year of a 5-yr program are covered. The first iteration of Task 2 was completed as planned. Two half-replicated, fractional factorial (2 sup 5), statistically designed matrix experiments were conducted. These experiments have identified Denka 9FW Si3N4 as an alternate raw material to GTE SN502 Si3N4 for subsequent process evaluation. A detailed statistical analysis was conducted to correlate processing conditions with as-processed test bar properties. One processing condition produced a material with a 97 ksi average room temperature MOR (100 percent of goal) with 13.2 Weibull slope (83 percent of goal); another condition produced 86 ksi (6 percent over baseline) room temperature strength with a Weibull slope of 20 (125 percent of goal).
Schweizer, Susanne; Hampshire, Adam; Dalgleish, Tim
2011-01-01
So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training) improves cognitive functions beyond the training task (transfer effects), especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making) in our daily emotive environments.
Material-specific difficulties in episodic memory tasks in mild traumatic brain injury.
Tsirka, Vassiliki; Simos, Panagiotis; Vakis, Antonios; Vourkas, Michael; Arzoglou, Vasileios; Syrmos, Nikolaos; Stavropoulos, Stavros; Micheloyannis, Sifis
2010-03-01
The study examines acute, material-specific secondary memory performance in 26 patients with mild traumatic brain injury (MTBI) and 26 healthy controls, matched on demographic variables and indexes of crystallized intelligence. Neuropsychological tests were used to evaluate primary and secondary memory, executive functions, and verbal fluency. Participants were also tested on episodic memory tasks involving words, pseudowords, pictures of common objects, and abstract kaleidoscopic images. Patients showed reduced performance on episodic memory measures, and on tasks associated with visuospatial processing and executive function (Trail Making Test part B, semantic fluency). Significant differences between groups were also noted for correct rejections and response bias on the kaleidoscope task. MTBI patients' reduced performance on memory tasks for complex, abstract stimuli can be attributed to a dysfunction in the strategic component of memory process.
Interfering with free recall of words: Detrimental effects of phonological competition.
Fernandes, Myra A; Wammes, Jeffrey D; Priselac, Sandra; Moscovitch, Morris
2016-09-01
We examined the effect of different distracting tasks, performed concurrently during memory retrieval, on recall of a list of words. By manipulating the type of material and processing (semantic, orthographic, and phonological) required in the distracting task, and comparing the magnitude of memory interference produced, we aimed to infer the kind of representation upon which retrieval of words depends. In Experiment 1, identifying odd digits concurrently during free recall disrupted memory, relative to a full attention condition, when the numbers were presented orthographically (e.g. nineteen), but not numerically (e.g. 19). In Experiment 2, a distracting task that required phonological-based decisions to either word or picture material produced large, but equivalent effects on recall of words. In Experiment 3, phonological-based decisions to pictures in a distracting task disrupted recall more than when the same pictures required semantically-based size estimations. In Experiment 4, a distracting task that required syllable decisions to line drawings interfered significantly with recall, while an equally difficult semantically-based color-decision task about the same line drawings, did not. Together, these experiments demonstrate that the degree of memory interference experienced during recall of words depends primarily on whether the distracting task competes for phonological representations or processes, and less on competition for semantic or orthographic or material-specific representations or processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cellulosic-Derived Biofuels Program in Kentucky - Part 2
2014-04-30
and lignin, are complex raw materials. Selection of robust strains of algae that are able to convert C6 (glucose) and C5 carbohydrates from...13 Task B2.03 Development of Metalloporphyrin-Ionic Liquid Complexes for Degradation of Biomass . 14 Task B2.04 –Biomass Conversion Process Scale...Up ............................................................................. 15 Task B3: Carbohydrate to Oil Conversion Process Development
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.
1981-01-01
Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.
Space Environmental Effects on Materials and Processes
NASA Technical Reports Server (NTRS)
Sabbann, Leslie M.
2009-01-01
The Materials and Processes (M&P) Branch of the Structural Engineering Division at Johnson Space Center (JSC) seeks to uphold the production of dependable space hardware through materials research, which fits into NASA's purpose of advancing human exploration, use, and development of space. The Space Environmental Effects projects fully support these Agency goals. Two tasks were assigned to support M&P. Both assignments were to further the research of material behavior outside of Earth's atmosphere in order to determine which materials are most durable and safe to use in space for mitigating risks. One project, the Materials on International Space Station Experiments (MISSE) task, was to compile data from International Space Station (ISS) experiments to pinpoint beneficial space hardware. The other project was researching the effects on composite materials of exposure to high doses of radiation for a Lunar habitat project.
Materials processing in space program tasks-supplement
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1983-01-01
An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.
Davis, Lynne C; Rane, Shruti; Hiscock, Merrill
2013-01-01
A longstanding question in working memory (WM) research concerns the fractionation of verbal and nonverbal processing. Although some contemporary models include both domain-specific and general-purpose mechanisms, the necessity to postulate differential processing of verbal and nonverbal material remains unclear. In the present two-experiment series we revisit the order reconstruction paradigm that Jones, Farrand, Stuart, and Morris (1995) used to support a unitary model of WM. Goals were to assess (1) whether serial position curves for dot positions differ from curves for letter names; and (2) whether selective interference can be demonstrated. Although we replicated Jones et al.'s finding of similar serial position curves for the two tasks, this similarity could reflect the demands of the order reconstruction paradigm rather than undifferentiated processing of verbal and nonverbal stimuli. Both generalised and material-specific interference was found, which can be attributed to competition between primary and secondary tasks for attentional resources. As performance levels for the combined primary and secondary tasks exceed active WM capacity limits, primary task items apparently are removed from active memory during processing of the secondary list and held temporarily in maintenance storage. We conclude that active WM is multimodal but maintenance stores may be domain specific.
Designing persuasive health materials using processing fluency: a literature review.
Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro
2017-06-08
Health materials to promote health behaviors should be readable and generate favorable evaluations of the message. Processing fluency (the subjective experience of ease with which people process information) has been increasingly studied over the past decade. In this review, we explore effects and instantiations of processing fluency and discuss the implications for designing effective health materials. We searched seven online databases using "processing fluency" as the key word. In addition, we gathered relevant publications using reference snowballing. We included published records that were written in English and applicable to the design of health materials. We found 40 articles that were appropriate for inclusion. Various instantiations of fluency have a uniform effect on human judgment: fluently processed stimuli generate positive judgments (e.g., liking, confidence). Processing fluency is used to predict the effort needed for a given task; accordingly, it has an impact on willingness to undertake the task. Physical perceptual, lexical, syntactic, phonological, retrieval, and imagery fluency were found to be particularly relevant to the design of health materials. Health-care professionals should consider the use of a perceptually fluent design, plain language, numeracy with an appropriate degree of precision, a limited number of key points, and concrete descriptions that make recipients imagine healthy behavior. Such fluently processed materials that are easy to read and understand have enhanced perspicuity and persuasiveness.
ERIC Educational Resources Information Center
Jarrold, Christopher; Tam, Helen; Baddeley, Alan D.; Harvey, Caroline E.
2011-01-01
Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items.…
ERIC Educational Resources Information Center
Moore, Pat; Lorenzo, Francisco
2015-01-01
Content and language integrated learning (CLIL) represents an increasingly popular approach to bilingual education in Europe. In this article, we describe and discuss a project which, in response to teachers' pleas for materials, led to the production of a significant bank of task-based primary and secondary CLIL units for three L2s (English,…
ASRM test report: Autoclave cure process development
NASA Technical Reports Server (NTRS)
Nachbar, D. L.; Mitchell, Suzanne
1992-01-01
ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.
Can Spectro-Temporal Complexity Explain the Autistic Pattern of Performance on Auditory Tasks?
ERIC Educational Resources Information Center
Samson, Fabienne; Mottron, Laurent; Jemel, Boutheina; Belin, Pascal; Ciocca, Valter
2006-01-01
To test the hypothesis that level of neural complexity explain the relative level of performance and brain activity in autistic individuals, available behavioural, ERP and imaging findings related to the perception of increasingly complex auditory material under various processing tasks in autism were reviewed. Tasks involving simple material…
NASA Technical Reports Server (NTRS)
Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.
2003-01-01
The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.
Low-cost solar array project progress and plans
NASA Technical Reports Server (NTRS)
Callaghan, W. T.
1981-01-01
The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.
Patterns of linguistic and numerical performance in aphasia.
Rath, Dajana; Domahs, Frank; Dressel, Katharina; Claros-Salinas, Dolores; Klein, Elise; Willmes, Klaus; Krinzinger, Helga
2015-02-04
Empirical research on the relationship between linguistic and numerical processing revealed inconsistent results for different levels of cognitive processing (e.g., lexical, semantic) as well as different stimulus materials (e.g., Arabic digits, number words, letters, non-number words). Information of dissociation patterns in aphasic patients was used in order to investigate the dissociability of linguistic and numerical processes. The aim of the present prospective study was a comprehensive, specific, and systematic investigation of relationships between linguistic and numerical processing, considering the impact of asemantic vs. semantic processing and the type of material employed (numbers compared to letters vs. words). A sample of aphasic patients (n = 60) was assessed with a battery of linguistic and numerical tasks directly comparable for their cognitive processing levels (e.g., perceptual, morpho-lexical, semantic). Mean performance differences and frequencies of (complementary) dissociations in individual patients revealed the most prominent numerical advantage for asemantic tasks when comparing the processing of numbers vs. letters, whereas the least numerical advantage was found for semantic tasks when comparing the processing of numbers vs. words. Different patient subgroups showing differential dissociation patterns were further analysed and discussed. A comprehensive model of linguistic and numerical processing should take these findings into account.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekiro, Joe; Elander, Richard
2015-12-01
The purpose of this cooperative work agreement between General Mills Inc. (GMI) and NREL is to determine the feasibility of producing a valuable food ingredient (xylo-oligosaccharides or XOS), a highly soluble fiber material, from agricultural waste streams, at an advantaged cost level relative to similar existing ingredients. The scope of the project includes pilot-scale process development (Task 1), compositional analysis (Task 2), and techno-economic analysis (Task 3).
Pilcher, June J; Jennings, Kristen S; Phillips, Ginger E; McCubbin, James A
2016-11-01
The current study investigated performance on a dual auditory task during a simulated night shift. Night shifts and sleep deprivation negatively affect performance on vigilance-based tasks, but less is known about the effects on complex tasks. Because language processing is necessary for successful work performance, it is important to understand how it is affected by night work and sleep deprivation. Sixty-two participants completed a simulated night shift resulting in 28 hr of total sleep deprivation. Performance on a vigilance task and a dual auditory language task was examined across four testing sessions. The results indicate that working at night negatively impacts vigilance, auditory attention, and comprehension. The effects on the auditory task varied based on the content of the auditory material. When the material was interesting and easy, the participants performed better. Night work had a greater negative effect when the auditory material was less interesting and more difficult. These findings support research that vigilance decreases during the night. The results suggest that auditory comprehension suffers when individuals are required to work at night. Maintaining attention and controlling effort especially on passages that are less interesting or more difficult could improve performance during night shifts. The results from the current study apply to many work environments where decision making is necessary in response to complex auditory information. Better predicting the effects of night work on language processing is important for developing improved means of coping with shiftwork. © 2016, Human Factors and Ergonomics Society.
Metal Poisons in Waste Tanks (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, T.G.
1996-10-14
Many of the storage tanks with waste from processing fissile materials contain, along with the fissile material, metals which may serve as nuclear criticality poisons. It would be advantageous to the criticality evaluation of these wastes if it can be demonstrated that the poisons remain with the fissile materials and if an always safe poison-to-fissile ratio can be established. The first task, demonstrating that the materials stay together, is the job of the chemist, the second, demonstrating an always safe ratio, is the job of the physicist. The latter task is the object of this paper
Soldier Cognitive Processes: Supporting Teleoperated Ground Vehicle Operations
2014-12-01
They also examined training materials available to train robotic operators. Materials came from a pilot SUGV Master Trainer Course as well as from the...Allocation of Scarce Mental Resources. It is increasingly difficult to multitask if the similarity of the mental resources used in each task...1984). If separate tasks are not competing as much for the same mental resources, multitasking can be accomplished more effectively. Further, when
ERIC Educational Resources Information Center
Safadi, Rafi'; Yerushalmi, Edit
2014-01-01
We compared the materialization of knowledge integration processes in class discussions that followed troubleshooting (TS) and problem-solving (PS) tasks and examined the impact of these tasks on students' conceptual understanding. The study was conducted in two sixth-grade classes taught by the same teacher, in six lessons that constituted a…
NASA Astrophysics Data System (ADS)
Wendell, Kristen Bethke; Lee, Hee-Sun
2010-12-01
Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.
NASA Technical Reports Server (NTRS)
Hadaway, James B.
1997-01-01
This report details work performed by the Center for Applied Optics (CAO) at the University of Alabama in Huntsville (UAH) on the contract entitled 'Atomic Oxygen Task' for NASA's Marshall Space Flight Center (contract NAS8-38609, Delivery Order 109, modification number 1). Atomic oxygen effects on exposed materials remain a critical concern in designing spacecraft to withstand exposure in the Low Earth Orbit (LEO) environment. The basic objective of atomic oxygen research in NASA's Materials & Processes (M&P) Laboratory is to provide the solutions to material problems facing present and future space missions. The objective of this work was to provide the necessary research for the design of specialized experimental test configurations and development of techniques for evaluating in-situ space environmental effects, including the effects of atomic oxygen and electromagnetic radiation on candidate materials. Specific tasks were performed to address materials issues concerning accelerated environmental testing as well as specifically addressing materials issues of particular concern for LDEF analysis and Space Station materials selection.
Electrophysiological evidence for differential processing of numerical quantity and order in humans.
Turconi, Eva; Jemel, Boutheina; Rossion, Bruno; Seron, Xavier
2004-09-01
It is yet unclear whether the processing of number magnitude and order rely on common or different functional processes and neural substrates. On the one hand, recent neuroimaging studies show that quantity and order coding activate the same areas in the parietal and prefrontal cortices. On the other hand, evidence from developmental and neuropsychological studies suggest dissociated mechanisms for processing quantity and order information. To clarify this issue, the present study investigated the spatio-temporal course of quantity and order coding operations using event-related potentials (ERPs). Twenty-four subjects performed a quantity task (classifying numbers as smaller or larger than 15) and an order task on the same material (classifying numbers as coming before or after 15), as well as a control order task on letters (classifying letters as coming before or after M). Behavioral results showed a classical distance effect (decreasing reaction times [RTs] with increasing distance from the standard) for all tasks. In agreement with previous electrophysiological evidence, this effect was significant on a P2 parietal component for numerical material. However, the difference between processing numbers close or far from the target appeared earlier and was larger on the left hemisphere for quantity processing, while it was delayed and bilateral for order processing. There was also a significant distance effect in all tasks on parietal sites for the following P3 component elicited by numbers, but this effect was larger on prefrontal areas for the order judgment. In conclusion, both quantity and order show similar behavioral effects, but they are associated with different spatio-temporal courses in parietal and prefrontal cortices.
FY-12 INL KR CAPTURE ACTIVITIES SUPPORTING THE OFF-GAS SIGMA TEAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D Law
2012-08-01
Tasks performed this year by INL Kr capture off-gas team members can be segregated into three separate task sub-sections which include: 1) The development and testing of a new engineered form sorbent, 2) An initial NDA gamma scan effort performed on the drum containing the Legacy Kr-85 sample materials, and 3) Collaborative research efforts with PNNL involving the testing of the Ni-DOBDC MOF and an initial attempt to make powdered chalcogel material into an engineered form using our binding process. This document describes the routes to success for the three task sub-sections.
Age of acquisition affects the retrieval of grammatical category information.
Bai, Lili; Ma, Tengfei; Dunlap, Susan; Chen, Baoguo
2013-01-01
This study investigated age of acquisition (AoA) effects on processing grammatical category information of Chinese single-character words. In Experiment 1, nouns and verbs that were acquired at different ages were used as materials in a grammatical category decision task. Results showed that the grammatical category information of earlier acquired nouns and verbs was easier to retrieve. In Experiment 2, AoA and predictability from orthography to grammatical category were manipulated in a grammatical category decision task. Results showed larger AoA effects under lower predictability conditions. In Experiment 3, a semantic category decision task was used with the same materials as those in Experiment 2. Different results were found from Experiment 2, suggesting that the grammatical category decision task is not merely the same as the semantic category decision task, but rather involves additional processing of grammatical category information. Therefore the conclusions of Experiments 1 and 2 were strengthened. In summary, it was found for the first time that AoA affects the retrieval of grammatical category information, thus providing new evidence in support of the arbitrary mapping hypothesis.
Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays
NASA Technical Reports Server (NTRS)
1979-01-01
The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.
Computational characterization of ordered nanostructured surfaces
NASA Astrophysics Data System (ADS)
Mohieddin Abukhdeir, Nasser
2016-08-01
A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.
AFRL Projects to Replace Cadmium
2005-03-01
Protocol does not – Identify/ select a material or process – Impose processing restrictions on candidates – Implement a material or process into production...within proper limits • Use XRF to measure composition and thickness – Strippability • Remove coating within 60 minutes • Replate coating and pass...product information available? Magnetron Sputtering to Replace Cd • Task 2: Coating Deposition and Screening – Selection of qualified vendors and
Poka-yoke process controller: designed for individuals with cognitive impairments.
Erlandson, R F; Sant, D
1998-01-01
Poka-yoke is a Japanese term meaning "error proofing." Poka-yoke techniques were developed to achieve zero defects in manufacturing and assembly processes. The application of these techniques tends to reduce both the physical and cognitive demands of tasks and thereby make them more accessible. Poka-yoke interventions create a dialogue between the worker and the process, and this dialogue provides the feedback necessary for workers to prevent errors. For individuals with cognitive impairments, weighing and counting tasks can be difficult or impossible. Interventions that provide sufficient feedback to workers without disabilities tend to be too subtle for workers with cognitive impairments; hence, the feedback must be enhanced. The Poka-Yoke Controller (PYC) was designed to assist individuals with counting and weighing tasks. The PYC interfaces to an Ohaus CT6000 digital scale for weighing parts and for counting parts by weight. It also interfaces to sensors and switches for object counting tasks. The PYC interfaces to a variety of programmable voice output devices so that voice feedback or prompting can be provided at specific points in the weighing or counting process. The PYC can also be interfaced to conveyor systems, indexed turntables, and other material handling systems for coordinated counting and material handling operations. In all of our applications to date, we have observed improved worker performance, improved process quality, and greater worker independence. These observed benefits have also significantly reduced the need for staff intervention. The process controller is described and three applications are presented: a weighing task and two counting applications.
Comparison of different soft grippers for lunch box packaging.
Wang, Zhongkui; Zhu, Mingzhu; Kawamura, Sadao; Hirai, Shinichi
2017-01-01
Automating the lunch box packaging is a challenging task due to the high deformability and large individual differences in shape and physical property of food materials. Soft robotic grippers showed potentials to perform such tasks. In this paper, we presented four pneumatic soft actuators made of different materials and different fabrication methods and compared their performances through a series of tests. We found that the actuators fabricated by 3D printing showed better linearity and less individual differences, but showed low durability compared to actuators fabricated by traditional casting process. Robotic grippers were assembled using the soft actuators, and grasping tests were performed on soft paper containers filled with food materials. Results suggested that grippers with softer actuators required lower air pressure to lift up the same weight and generated less deformation on the soft container. The actuator made of casting process with Dragon Skin 10 material lifted the most weight among different actuators.
Automating the training development process for mission flight operations
NASA Technical Reports Server (NTRS)
Scott, Carol J.
1994-01-01
Traditional methods of developing training do not effectively support the changing needs of operational users in a multimission environment. The Automated Training Development System (ATDS) provides advantages over conventional methods in quality, quantity, turnaround, database maintenance, and focus on individualized instruction. The Operations System Training Group at the JPL performed a six-month study to assess the potential of ATDS to automate curriculum development and to generate and maintain course materials. To begin the study, the group acquired readily available hardware and participated in a two-week training session to introduce the process. ATDS is a building activity that combines training's traditional information-gathering with a hierarchical method for interleaving the elements. The program can be described fairly simply. A comprehensive list of candidate tasks determines the content of the database; from that database, selected critical tasks dictate which competencies of skill and knowledge to include in course material for the target audience. The training developer adds pertinent planning information about each task to the database, then ATDS generates a tailored set of instructional material, based on the specific set of selection criteria. Course material consistently leads students to a prescribed level of competency.
Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.
2014-01-01
Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304
Better dual-task processing in simultaneous interpreters
Strobach, Tilo; Becker, Maxi; Schubert, Torsten; Kühn, Simone
2015-01-01
Simultaneous interpreting (SI) is a highly complex activity and requires the performance and coordination of multiple, simultaneous tasks: analysis and understanding of the discourse in a first language, reformulating linguistic material, storing of intermediate processing steps, and language production in a second language among others. It is, however, an open issue whether persons with experience in SI possess superior skills in coordination of multiple tasks and whether they are able to transfer these skills to lab-based dual-task situations. Within the present study, we set out to explore whether interpreting experience is associated with related higher-order executive functioning in the context of dual-task situations of the Psychological Refractory Period (PRP) type. In this PRP situation, we found faster reactions times in participants with experience in simultaneous interpretation in contrast to control participants without such experience. Thus, simultaneous interpreters possess superior skills in coordination of multiple tasks in lab-based dual-task situations. PMID:26528232
Robotics in a controlled, ecological life support system
NASA Technical Reports Server (NTRS)
Miles, Gaines E.; Krom, Kimberly J.
1993-01-01
Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.
Using a Didactic Manipulator in Mechatronics and Industrial Engineering Courses
ERIC Educational Resources Information Center
Stankovski, Stevan; Tarjan, Laslo; Skrinjar, Dragana; Ostojic, Gordana; Senk, Ivana
2010-01-01
One of the most difficult and most important engineering tasks is the integration of a robot-manipulator into material handling, assembly, and production processes, offering the possibility of supervision and control. The knowledge and skills required for these kinds of tasks are purely mechatronic and, thus, multidisciplinary. This paper…
Process Feasibility Study in Support of Silicon Material, Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.
Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics
NASA Astrophysics Data System (ADS)
Olson, Meghan
Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Astrophysics Data System (ADS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-03-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Vaccum Gas Tungsten Arc Welding, phase 1
NASA Technical Reports Server (NTRS)
Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.
1995-01-01
This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.
Development of an improved coating for polybenzimidazole foam. [for space shuttle heat shields
NASA Technical Reports Server (NTRS)
Neuner, G. J.; Delano, C. B.
1976-01-01
An improved coating system was developed for Polybenzimidazole (PBI) foam to provide coating stability, ruggedness, moisture resistance, and to satisfy optical property requirements (alpha sub (s/epsilon) or = 0.4 and epsilon 0.8) for the space shuttle. The effort was performed in five tasks: Task 1 to establish material and process specifications for the PBI foam, and material specifications for the coatings; Task 2 to identify and evaluate promising coatings; Task 3 to establish mechanical and thermophysical properties of the tile components; Task 4 to determine by systems analysis the potential weight trade-offs associated with a coated PBI TPS; and Task 5 to establish a preliminary quality assurance program. The coated PBI tile was, through screening tests, determined to satisfy the design objectives with a reduced system weight over the baseline shuttle silica LRSI TPS. The developed tile provides a thermally stable, extremely rugged, low thermal conductivity insulator with a well characterized optical coating.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content…
Comparing Nouns and Verbs in a Lexical Task
ERIC Educational Resources Information Center
Cordier, Francoise; Croizet, Jean-Claude; Rigalleau, Francois
2013-01-01
We analyzed the differential processing of nouns and verbs in a lexical decision task. Moderate and high-frequency nouns and verbs were compared. The characteristics of our material were specified at the formal level (number of letters and syllables, number of homographs, orthographic neighbors, frequency and age of acquisition), and at the…
A Multi-Site Cognitive Task Analysis for Biomedical Query Mediation
Hruby, Gregory W.; Rasmussen, Luke V.; Hanauer, David; Patel, Vimla; Cimino, James J.; Weng, Chunhua
2016-01-01
Objective To apply cognitive task analyses of the Biomedical query mediation (BQM) processes for EHR data retrieval at multiple sites towards the development of a generic BQM process model. Materials and Methods We conducted semi-structured interviews with eleven data analysts from five academic institutions and one government agency, and performed cognitive task analyses on their BQM processes. A coding schema was developed through iterative refinement and used to annotate the interview transcripts. The annotated dataset was used to reconstruct and verify each BQM process and to develop a harmonized BQM process model. A survey was conducted to evaluate the face and content validity of this harmonized model. Results The harmonized process model is hierarchical, encompassing tasks, activities, and steps. The face validity evaluation concluded the model to be representative of the BQM process. In the content validity evaluation, out of the 27 tasks for BQM, 19 meet the threshold for semi-valid, including 3 fully valid: “Identify potential index phenotype,” “If needed, request EHR database access rights,” and “Perform query and present output to medical researcher”, and 8 are invalid. Discussion We aligned the goals of the tasks within the BQM model with the five components of the reference interview. The similarity between the process of BQM and the reference interview is promising and suggests the BQM tasks are powerful for eliciting implicit information needs. Conclusions We contribute a BQM process model based on a multi-site study. This model promises to inform the standardization of the BQM process towards improved communication efficiency and accuracy. PMID:27435950
Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane
2013-07-01
The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were assessed in the dyslexic children. We presented the dyslexic children with a phonological short-term memory task and a phonemic awareness task to quantify their phonological skills. Visual attention spans correlated positively with individual scores obtained on the dichotic listening task while phonological skills did not correlate with either dichotic scores or visual attention span measures. Moreover, all the dyslexic children with a dichotic listening deficit showed a simultaneous visual processing deficit, and a substantial number of dyslexic children exhibited phonological processing deficits whether or not they exhibited low dichotic listening scores. These findings suggest that processing simultaneous auditory stimuli may be impaired in dyslexic children regardless of phonological processing difficulties and be linked to similar problems in the visual modality.
Learning and processing of nonverbal symbolic information in bilinguals and monolinguals
Blumenfeld, Henrike K.; Adams, Ashley M.
2014-01-01
Bilinguals have been shown to outperform monolinguals on word learning and on inhibition tasks that require competition resolution. Yet the scope of such bilingual advantages remains underspecified. We compared bilinguals and monolinguals on nonverbal symbolic learning and on competition resolution while processing newly-learned material. Participants were trained on 12 tone-to-symbol mappings, combining timbre, pitch, and duration of tones. During subsequent processing, participants viewed a display with four symbols, and were instructed to identify the symbol that matched a simultaneously-presented tone. On competition trials, two symbols matched the tone in timbre and pitch, but only one matched the tone on timbre, pitch, and duration. No learning differences emerged between 27 Spanish-English bilinguals and 27 English monolinguals, and more successful learners performed better on the Peabody Picture Vocabulary task. During the processing task, competition trials yielded responses with lower accuracies and longer latencies than control trials. Further, in both groups, more successful learning of tone-to-symbol mappings was associated with more successful retrieval during processing. In monolinguals, English receptive vocabulary scores also influenced retrieval efficiency during processing, with English/Spanish vocabulary less related to the novel processing task in bilinguals. Finally, to examine inhibition of competing stimuli, priming probes were presented after each tone-symbol processing trial. These probes suggested that bilinguals, and to a lesser extent monolinguals, showed residual inhibition of competitors at 200 ms post-target identification. Together, findings suggest that learning of novel symbolic information may depend in part on previous linguistic knowledge (not bilingualism per se), and that, during processing of newly-learned material, subtle differences in retrieval and competition resolution may emerge between bilinguals and monolinguals. PMID:25360125
Lateralized implicit sequence learning in uni- and bi-manual conditions.
Schmitz, Rémy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe
2013-02-01
It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT), we tested whether participants trained in a divided visual field condition primarily stimulating the RH would learn the implicit regularities embedded in sequential material faster than participants in a condition favoring LH processing. In the first study, half of participants were presented sequences in the left (vs. right) visual field, and had to respond using their ipsilateral hand (unimanual condition), hence making visuo-motor processing possible within the same hemisphere. Results showed successful implicit sequence learning, as indicated by increased reaction time for a transfer sequence in both hemispheric conditions and lack of conscious knowledge in a generation task. There was, however, no evidence of interhemispheric differences. In the second study, we hypothesized that a bimanual response version of the lateralized SRT, which requires interhemispheric communication and increases computational and cognitive processing loads, would favor RH-dependent visuospatial/attentional processes. In this bimanual condition, our results revealed a much higher transfer effect in the RH than in the LH condition, suggesting higher RH sensitivity to the processing of novel sequential material. This LH/RH difference was interpreted within the framework of the Novelty-Routinization model [Goldberg, E., & Costa, L. D. (1981). Hemisphere differences in the acquisition and use of descriptive systems. Brain and Language, 14(1), 144-173] and interhemispheric interactions in attentional processing [Banich, M. T. (1998). The missing link: the role of interhemispheric interaction in attentional processing. Brain and Cognition, 36(2), 128-157]. Copyright © 2012 Elsevier Inc. All rights reserved.
Processes and process development in Taiwan
NASA Technical Reports Server (NTRS)
Hwang, H. L.
1986-01-01
Silicon material research in the Republic of China (ROC) parallels its development in the electronic industry. A brief outline of the historical development in ROC silicon material research is given. Emphasis is placed on the recent Silane Project managed by the National Science Council, ROC, including project objectives, task forces, and recent accomplishments. An introduction is also given to industrialization of the key technologies developed in this project.
Automation software for a materials testing laboratory
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Bonacuse, Peter J.
1990-01-01
The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.
Cognitive and affective control in a flanker word task: common and dissociable brain mechanisms.
Alguacil, Sonia; Tudela, Pío; Ruz, María
2013-08-01
In the present study we compared the nature of cognitive and affective conflict modulations at different stages of information processing using electroencephalographic recordings. Participants performed a flanker task in which they had to focus on a central word target and indicate its semantic category (cognitive version) or its valence (affective version). Targets were flanked by congruent or incongruent words in both versions. Although tasks were equivalent at the behavioral level, event-related potentials (ERPs) showed common and dissociable cognitive and emotional conflict modulations. At early stages of information processing, both tasks generated parallel sequential conflict effects in the P1 and N170 potentials. Later, the N2 and the first part of the P3 wave were exclusively modulated by cognitive conflict, whereas the last section of the P3 deflection/Late Positive Component (LPC) was only involved in affective current conflict processing. Therefore, the whole data set suggests the existence of early common mechanisms that are equivalent for cognitive and affective materials and later task-specific conflict processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
US-UK Collaboration on Fossil Energy Advanced Materials: Task 1—Steam Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey
This presentation goes over the following from the US-UK collaboration on Fossil Energy Advanced Materials: Task 1, Steam Oxidation: US-led or co-led deliverables, Phase II products (US), 2011-present, Phase III products, Phase III Plan, an explanation of sCO 2 compared with sH 2O, an explanation of Ni-base Alloys, an explanation of 300 Series (18Cr-8Ni)/E-Brite, an explanation of the typical Microchannel HX Fabrication process, and an explanation of diffusion bonded Ni-base superalloys.
Workflow-Based Software Development Environment
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
2013-01-01
The Software Developer's Assistant (SDA) helps software teams more efficiently and accurately conduct or execute software processes associated with NASA mission-critical software. SDA is a process enactment platform that guides software teams through project-specific standards, processes, and procedures. Software projects are decomposed into all of their required process steps or tasks, and each task is assigned to project personnel. SDA orchestrates the performance of work required to complete all process tasks in the correct sequence. The software then notifies team members when they may begin work on their assigned tasks and provides the tools, instructions, reference materials, and supportive artifacts that allow users to compliantly perform the work. A combination of technology components captures and enacts any software process use to support the software lifecycle. It creates an adaptive workflow environment that can be modified as needed. SDA achieves software process automation through a Business Process Management (BPM) approach to managing the software lifecycle for mission-critical projects. It contains five main parts: TieFlow (workflow engine), Business Rules (rules to alter process flow), Common Repository (storage for project artifacts, versions, history, schedules, etc.), SOA (interface to allow internal, GFE, or COTS tools integration), and the Web Portal Interface (collaborative web environment
Kurtz, Tanja; Mogle, Jacqueline; Sliwinski, Martin J.; Hofer, Scott M.
2013-01-01
Background The role of processing speed and working memory was investigated in terms of individual differences in task-specific paired associates learning in a sample of older adults. Task-specific learning, as distinct from content-oriented item-specific learning, refers to gains in performance due to repeated practice on a learning task in which the to-be-learned material changes over trials. Methods Learning trajectories were modeled within an intensive repeated-measures design based on participants obtained from an opt-in internet-based sampling service (Mage = 65.3, SD = 4.81). Participants completed an eight-item paired associates task daily over a seven-day period. Results Results indicated that a three-parameter hyperbolic model (i.e., initial level, learning rate, and asymptotic performance) best described learning trajectory. After controlling for age-related effects, both higher working memory and higher processing speed had a positive effect on all three learning parameters. Conclusion These results emphasize the role of cognitive abilities for individual differences in task-specific learning of older adults. PMID:24151913
Love, Tracy; Haist, Frank; Nicol, Janet; Swinney, David
2009-01-01
Using functional magnetic resonance imaging (fMRI), this study directly examined an issue that bridges the potential language processing and multi-modal views of the role of Broca’s area: the effects of task-demands in language comprehension studies. We presented syntactically simple and complex sentences for auditory comprehension under three different (differentially complex) task-demand conditions: passive listening, probe verification, and theme judgment. Contrary to many language imaging findings, we found that both simple and complex syntactic structures activated left inferior frontal cortex (L-IFC). Critically, we found activation in these frontal regions increased together with increased task-demands. Specifically, tasks that required greater manipulation and comparison of linguistic material recruited L-IFC more strongly; independent of syntactic structure complexity. We argue that much of the presumed syntactic effects previously found in sentence imaging studies of L-IFC may, among other things, reflect the tasks employed in these studies and that L-IFC is a region underlying mnemonic and other integrative functions, on which much language processing may rely. PMID:16881268
Device research task (processing and high-efficiency solar cells)
NASA Technical Reports Server (NTRS)
1986-01-01
This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.
Vannest, Jennifer J.; Karunanayaka, Prasanna R.; Altaye, Mekibib; Schmithorst, Vincent J.; Plante, Elena M.; Eaton, Kenneth J.; Rasmussen, Jerod M.; Holland, Scott K.
2009-01-01
Purpose To use functional MRI methods to visualize a network of auditory and language-processing brain regions associated with processing an aurally-presented story. We compare a passive listening (PL) story paradigm to an active-response (AR) version including on-line performance monitoring and a sparse acquisition technique. Materials/Methods Twenty children (ages 11−13) completed PL and AR story processing tasks. The PL version presented alternating 30-second blocks of stories and tones; the AR version presented story segments, comprehension questions, and 5s tone sequences, with fMRI acquisitions between stimuli. fMRI data was analyzed using a general linear model approach and paired t-test identifying significant group activation. Results Both tasks activated in primary auditory cortex, superior temporal gyrus bilaterally, left inferior frontal gyrus. The AR task demonstrated more extensive activation, including dorsolateral prefrontal cortex and anterior/posterior cingulate cortex. Comparison of effect size in each paradigm showed a larger effect for the AR paradigm in a left inferior frontal ROI. Conclusion Activation patterns for story processing in children are similar in passive listening and active-response tasks. Increases in extent and magnitude of activation in the AR task are likely associated with memory and attention resources engaged across acquisition intervals. PMID:19306445
Cataloguing Standards; The Report of the Canadian Task Group on Cataloguing Standards.
ERIC Educational Resources Information Center
National Library of Canada, Ottawa (Ontario).
Following the recommendations of the National Conference on Cataloguing Standards held at the National Library of Canada in May 1970, a Canadian Task Group on Cataloguing Standards was set up to study and identify present deficiencies in the organizing and processing of Canadian material, and the cataloging problems of Canadian libraries, and to…
Lateralized Implicit Sequence Learning in Uni- and Bi-Manual Conditions
ERIC Educational Resources Information Center
Schmitz, Remy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe
2013-01-01
It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT),…
Engineering New Catalysts for In-Process Elimination of Tars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Larry G.
2012-09-30
The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less
Zeijlmans van Emmichoven, Ingeborg A; van IJzendoorn, Marinus H; de Ruiter, Corine; Brosschot, Jos F
2003-01-01
To investigate the effect of the mental representation of attachment on information processing, 28 anxiety disorder outpatients, as diagnosed by the Anxiety Disorders Interview Schedule-Revised, were administered the Adult Attachment Interview and the State-Trait Anxiety Inventory. They also completed an emotional Stroop task with subliminal and supraliminal exposure conditions, a free recall memory task, and a recognition test. All tasks contained threatening, neutral, and positively valenced stimuli. A nonclinical comparison group of 56 participants completed the same measures. Results on the Stroop task showed color-naming interference for threatening words in the supraliminal condition only. Nonclinical participants with insecure attachment representations showed a global response inhibition to the Stroop task. Clinical participants with secure attachment representations showed the largest Stroop interference of the threatening words compared to the other groups. Results on the free recall task showed superior recall of all types of stimuli by participants with secure attachment representations. In the outpatient group, participants with secure attachment representations showed superior recall of threatening words on the free recall task, compared to insecure participants. Results on the recognition task showed no differences between attachment groups. We conclude that secure attachment representations are characterized by open communication about and processing of threatening information, leading to less defensive exclusion of negative material during the attentional stage of information processing and to better recall of threatening information in a later stage. Attachment insecurity, but not the type of insecurity, seems a decisive factor in attention and memory processes.
Low-cost Solar Array (LSA) project
NASA Technical Reports Server (NTRS)
1978-01-01
Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.
A Cyclical Plan for Using Study Strategies.
ERIC Educational Resources Information Center
Hayes, David A.; Alvermann, Donna E.
1984-01-01
A cyclical plan for studying that takes into account information processing strategies and their effective management by students consists of (1) specifying study purposes, (2) previewing the materials, (3) proceeding through the task incrementally, and (4) connecting the content to be learned to other knowledge about the material studied. Setting…
Low-cost solar array progress and plans
NASA Astrophysics Data System (ADS)
Callaghan, W. T.
It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palo, Daniel R.
2011-04-26
Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The highmore » level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.« less
Research on the use of space resources
NASA Technical Reports Server (NTRS)
Carroll, W. F. (Editor)
1983-01-01
The second year of a multiyear research program on the processing and use of extraterrestrial resources is covered. The research tasks included: (1) silicate processing, (2) magma electrolysis, (3) vapor phase reduction, and (4) metals separation. Concomitant studies included: (1) energy systems, (2) transportation systems, (3) utilization analysis, and (4) resource exploration missions. Emphasis in fiscal year 1982 was placed on the magma electrolysis and vapor phase reduction processes (both analytical and experimental) for separation of oxygen and metals from lunar regolith. The early experimental work on magma electrolysis resulted in gram quantities of iron (mixed metals) and the identification of significant anode, cathode, and container problems. In the vapor phase reduction tasks a detailed analysis of various process concepts led to the selection of two specific processes designated as ""Vapor Separation'' and ""Selective Ionization.'' Experimental work was deferred to fiscal year 1983. In the Silicate Processing task a thermophysical model of the casting process was developed and used to study the effect of variations in material properties on the cooling behavior of lunar basalt.
ERIC Educational Resources Information Center
Hasegawa, Atsushi
2018-01-01
Using the framework of conversation analysis, this study investigated the interactional workings of laughter in task-based interactions. The analysis was drawn from 160 cases of pair work interactions, collected in 2nd-semester Japanese-as-a-foreign-language classrooms. The pair work activities examined in this study are mostly grammar-focused,…
Morey, Rajendra A.; Dolcos, Florin; Petty, Christopher M.; Cooper, Debra A.; Hayes, Jasmeet Pannu; LaBar, Kevin S.; McCarthy, Gregory
2009-01-01
The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n = 22) and a trauma-exposed control group (n = 20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing. PMID:19091328
Stahl, Christoph; Barth, Marius; Haider, Hilde
2015-12-01
We investigated potential biases affecting the validity of the process-dissociation (PD) procedure when applied to sequence learning. Participants were or were not exposed to a serial reaction time task (SRTT) with two types of pseudo-random materials. Afterwards, participants worked on a free or cued generation task under inclusion and exclusion instructions. Results showed that pre-experimental response tendencies, non-associative learning of location frequencies, and the usage of cue locations introduced bias to PD estimates. These biases may lead to erroneous conclusions regarding the presence of implicit and explicit knowledge. Potential remedies for these problems are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Parametric identification of the process of preparing ceramic mixture as an object of control
NASA Astrophysics Data System (ADS)
Galitskov, Stanislav; Nazarov, Maxim; Galitskov, Konstantin
2017-10-01
Manufacture of ceramic materials and products largely depends on the preparation of clay raw materials. The main process here is the process of mixing, which in industrial production is mostly done in cross-compound clay mixers of continuous operation with steam humidification. The authors identified features of dynamics of this technological stage, which in itself is a non-linear control object with distributed parameters. When solving practical tasks for automation of a certain class of ceramic materials production it is important to make parametric identification of moving clay. In this paper the task is solved with the use of computational models, approximated to a particular section of a clay mixer along its length. The research introduces a methodology of computational experiments as applied to the designed computational model. Parametric identification of dynamic links was carried out according to transient characteristics. The experiments showed that the control object in question is to a great extent a non-stationary one. The obtained results are problematically oriented on synthesizing a multidimensional automatic control system for preparation of ceramic mixture with specified values of humidity and temperature exposed to the technological process of major disturbances.
Research on polycrystalline thin film submodules based on CuInSe sub 2 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, A.; Arya, R.; Carr, L.
1992-05-01
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe{sub 2} (CIS) submodules with area greater than 900 cm{sup 2}. To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell. 7 refs.
NASA Technical Reports Server (NTRS)
Rey, Charles A.
1991-01-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
NASA Astrophysics Data System (ADS)
Rey, Charles A.
1991-03-01
The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.
Task effects on BOLD signal correlates of implicit syntactic processing
Caplan, David
2010-01-01
BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed. PMID:20671983
Task effects on BOLD signal correlates of implicit syntactic processing.
Caplan, David
2010-07-01
BOLD signal was measured in sixteen participants who made timed font change detection judgments in visually presented sentences that varied in syntactic structure and the order of animate and inanimate nouns. Behavioral data indicated that sentences were processed to the level of syntactic structure. BOLD signal increased in visual association areas bilaterally and left supramarginal gyrus in the contrast of sentences with object- and subject-extracted relative clauses without font changes in which the animacy order of the nouns biased against the syntactically determined meaning of the sentence. This result differs from the findings in a non-word detection task (Caplan et al, 2008a), in which the same contrast led to increased BOLD signal in the left inferior frontal gyrus. The difference in areas of activation indicates that the sentences were processed differently in the two tasks. These differences were further explored in an eye tracking study using the materials in the two tasks. Issues pertaining to how parsing and interpretive operations are affected by a task that is being performed, and how this might affect BOLD signal correlates of syntactic contrasts, are discussed.
Graphic Arts: Process Camera, Stripping, and Platemaking. Teacher Guide.
ERIC Educational Resources Information Center
Feasley, Sue C., Ed.
This curriculum guide is the second in a three-volume series of instructional materials for competency-based graphic arts instruction. Each publication is designed to include the technical content and tasks necessary for a student to be employed in an entry-level graphic arts occupation. Introductory materials include an instructional/task…
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
Flexible automation of cell culture and tissue engineering tasks.
Knoll, Alois; Scherer, Torsten; Poggendorf, Iris; Lütkemeyer, Dirk; Lehmann, Jürgen
2004-01-01
Until now, the predominant use cases of industrial robots have been routine handling tasks in the automotive industry. In biotechnology and tissue engineering, in contrast, only very few tasks have been automated with robots. New developments in robot platform and robot sensor technology, however, make it possible to automate plants that largely depend on human interaction with the production process, e.g., for material and cell culture fluid handling, transportation, operation of equipment, and maintenance. In this paper we present a robot system that lends itself to automating routine tasks in biotechnology but also has the potential to automate other production facilities that are similar in process structure. After motivating the design goals, we describe the system and its operation, illustrate sample runs, and give an assessment of the advantages. We conclude this paper by giving an outlook on possible further developments.
Microgravity Science and Applications Program tasks, 1986 revision
NASA Technical Reports Server (NTRS)
1987-01-01
The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.
NASA Technical Reports Server (NTRS)
1977-01-01
During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Astrophysics Data System (ADS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-10-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-01-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
1980-12-01
spray process ...... ............... .. 40 9 Etched microstructures of as-received alloys ................ 42 10 Microstructures of as...Figure 8. Schematic sketch of spray process . 40 4.5 Results and Discussion 4.5.1 Alloy Procurement The desired compositions of the deposits (after... deposited samples...................... 44 11 As- Sprayed x-ray patterns obtained on two deposits made with 34 wt % Sm and one with 30 wt % Sm powders
ERIC Educational Resources Information Center
Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane
2013-01-01
The simultaneous auditory processing skills of 17 dyslexic children and 17 skilled readers were measured using a dichotic listening task. Results showed that the dyslexic children exhibited difficulties reporting syllabic material when presented simultaneously. As a measure of simultaneous visual processing, visual attention span skills were…
ERIC Educational Resources Information Center
Maillard, Louis; Barbeau, Emmanuel J.; Baumann, Cedric; Koessler, Laurent; Benar, Christian; Chauvel, Patrick; Liegeois-Chauvel, Catherine
2011-01-01
Through study of clinical cases with brain lesions as well as neuroimaging studies of cognitive processing of words and pictures, it has been established that material-specific hemispheric specialization exists. It remains however unclear whether such specialization holds true for all processes involved in complex tasks, such as recognition…
Using Eye Movements to Model the Sequence of Text-Picture Processing for Multimedia Comprehension
ERIC Educational Resources Information Center
Mason, L.; Scheiter, K.; Tornatora, M. C.
2017-01-01
This study used eye movement modeling examples (EMME) to support students' integrative processing of verbal and graphical information during the reading of an illustrated text. EMME consists of a replay of eye movements of a model superimposed onto the materials that are processed for accomplishing the task. Specifically, the study investigated…
Gaschler, Robert; Marewski, Julian N.; Wenke, Dorit; Frensch, Peter A.
2014-01-01
After incidentally learning about a hidden regularity, participants can either continue to solve the task as instructed or, alternatively, apply a shortcut. Past research suggests that the amount of conflict implied by adopting a shortcut seems to bias the decision for vs. against continuing instruction-coherent task processing. We explored whether this decision might transfer from one incidental learning task to the next. Theories that conceptualize strategy change in incidental learning as a learning-plus-decision phenomenon suggest that high demands to adhere to instruction-coherent task processing in Task 1 will impede shortcut usage in Task 2, whereas low control demands will foster it. We sequentially applied two established incidental learning tasks differing in stimuli, responses and hidden regularity (the alphabet verification task followed by the serial reaction task, SRT). While some participants experienced a complete redundancy in the task material of the alphabet verification task (low demands to adhere to instructions), for others the redundancy was only partial. Thus, shortcut application would have led to errors (high demands to follow instructions). The low control demand condition showed the strongest usage of the fixed and repeating sequence of responses in the SRT. The transfer results are in line with the learning-plus-decision view of strategy change in incidental learning, rather than with resource theories of self-control. PMID:25506336
Community Leadership through Community-Based Programming: The Role of the Community College.
ERIC Educational Resources Information Center
Boone, Edgar J.; And Others
Organized around 15 tasks involved in the community-based programming (CBP) process, this book provides practical, field-tested guidance on successfully implementing CBP in community colleges. Following prefatory materials, the following chapters are provided: (1) "An Introduction to the Community-Based Programming Process" (Edgar J.…
Cassini-Huygens maneuver automation for navigation
NASA Technical Reports Server (NTRS)
Goodson, Troy; Attiyah, Amy; Buffington, Brent; Hahn, Yungsun; Pojman, Joan; Stavert, Bob; Strange, Nathan; Stumpf, Paul; Wagner, Sean; Wolff, Peter;
2006-01-01
Many times during the Cassini-Huygens mission to Saturn, propulsive maneuvers must be spaced so closely together that there isn't enough time or workforce to execute the maneuver-related software manually, one subsystem at a time. Automation is required. Automating the maneuver design process has involved close cooperation between teams. We present the contribution from the Navigation system. In scope, this includes trajectory propagation and search, generation of ephemerides, general tasks such as email notification and file transfer, and presentation materials. The software has been used to help understand maneuver optimization results, Huygens probe delivery statistics, and Saturn ring-plane crossing geometry. The Maneuver Automation Software (MAS), developed for the Cassini-Huygens program enables frequent maneuvers by handling mundane tasks such as creation of deliverable files, file delivery, generation and transmission of email announcements, generation of presentation material and other supporting documentation. By hand, these tasks took up hours, if not days, of work for each maneuver. Automated, these tasks may be completed in under an hour. During the cruise trajectory the spacing of maneuvers was such that development of a maneuver design could span about a month, involving several other processes in addition to that described, above. Often, about the last five days of this process covered the generation of a final design using an updated orbit-determination estimate. To support the tour trajectory, the orbit determination data cut-off of five days before the maneuver needed to be reduced to approximately one day and the whole maneuver development process needed to be reduced to less than a week..
Kim, So-Yeon; Giovanello, Kelly S.
2011-01-01
Healthy aging is often accompanied by episodic memory decline. Prior studies have consistently demonstrated that older adults show disproportionate deficits in relational memory (RM) relative to item memory (IM). Despite rich evidence of an age-related RM deficit, the source of this deficit remains unspecified. One of the most widely investigated factors of age-related RM impairment is a reduction in attentional resources. However, no prior studies have demonstrated that reduced attentional resources are the critical source of age-related RM deficits. Here, we utilized qualitatively different attention tasks, and tested whether reduced attention for relational processing underlies the RM deficit observed in aging. In Experiment 1, we imposed either item-detection or relation-detection attention tasks on young adults during episodic memory encoding, and found that only the concurrent attention task involving relational processing disproportionately impaired RM performance in young adults. Moreover, by ruling out the possible confound of task-difficulty on the disproportionate RM impairment, we further demonstrated that reduced relational attention is a key factor for the age-related RM deficit. In Experiment 2, we replicated the results from Experiment 1 using different materials of stimuli and found that the effect of relational attention on RM is material-general. The results of Experiment 2 also showed that reducing attentional resources for relational processing in young adults strikingly equated their RM performance to that of older adults. Thus, the current study documents the first evidence that reduced attentional resources for relational processing are a critical factor for the relational memory impairment observed in aging. PMID:21707178
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Tucker, D. S.; Patterson, W. J.; Franklin, S. W.; Gordon, G. H.; Hart, L.; Hodge, A. J.; Lance, D. G.; Russel, S. S.
1991-01-01
A test run was performed on IM6/3501-6 carbon-epoxy in which the material was processed, machined into specimens, and tested for damage tolerance capabilities. Nondestructive test data played a major role in this element of composite characterization. A time chart was produced showing the time the composite material spent within each Branch or Division in order to identify those areas which produce a long turnaround time. Instrumented drop weight testing was performed on the specimens with nondestructive evaluation being performed before and after the impacts. Destructive testing in the form of cross-sectional photomicrography and compression-after-impact testing were used. Results show that the processing and machining steps needed to be performed more rapidly if data on composite material is to be collected within a reasonable timeframe. The results of the damage tolerance testing showed that IM6/3501-6 is a brittle material that is very susceptible to impact damage.
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.
1977-01-01
The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.
High Temperature Ultrasonic Transducers : Material Selection and Testing
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Bruno, Alessandro
2012-01-01
The task of my two-months internship was to test different materials to be used to build an high temperature transducer, to develop some prototypes and to test their performance, to assess the reliability of commercial product rated for such a temperature, as well as to collaborate in developing the signal processing code to measure the condensed water levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, A.; Arya, R.; Carr, L.
1992-05-01
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe{sub 2} (CIS) submodules with area greater than 900 cm{sup 2}. To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell. 7 refs.
1981-12-01
POWDER FEED S PRAY STREAM POWER INPUT - COOLING GAS I WATER DEPOSIT SUBSTRATEI 10/77 12404 REV A 1/78 Figure 13. Schematic sketch of spray process .( 14...as-HIPed condition ...... 26 13 Schematic sketch of spray process ........... ........ 3 14 X-ray diffraction patterns on deposits formed from (A) 42.0...Br values to be low. When the alloy powder is magnetically aligned and cold isostatically compacted followed by densificaton by lIPing, there is
Working memory for pitch, timbre, and words
Tillmann, Barbara
2012-01-01
Aiming to further our understanding of fundamental mechanisms of auditory working memory (WM), the present study compared performance for three auditory materials (words, tones, timbres). In a forward recognition task (Experiment 1) participants indicated whether the order of the items in the second sequence was the same as in the first sequence. In a backward recognition task (Experiment 2) participants indicated whether the items of the second sequence were played in the correct backward order. In Experiment 3 participants performed an articulatory suppression task during the retention delay of the backward task. To investigate potential length effects the number of items per sequence was manipulated. Overall findings underline the benefit of a cross-material experimental approach and suggest that human auditory WM is not a unitary system. Whereas WM processes for timbres differed from those for tones and words, similarities and differences were observed for words and tones: Both types of stimuli appear to rely on rehearsal mechanisms, but might differ in the involved sensorimotor codes. PMID:23116413
The role of controlled attention on recall in major depression.
Ellis, Alissa J; Wells, Tony T; Vanderlind, W Michael; Beevers, Christopher G
2014-04-01
Information processing biases are hallmark features of major depressive disorder (MDD). Depressed individuals display biased memory and attention for negative material. Given that memory is highly dependent on attention for initial encoding, understanding the interplay of these processes may provide important insight into mechanisms that produce memory biases in depression. In particular, attentional control-the ability to selectively attend to task-relevant information by both inhibiting the processing of irrelevant information and disengaging attention from irrelevant material-may be one area of impairment in MDD. In the current study, clinically depressed (MDD: n = 15) and never depressed (non-MDD: n = 22) participants' line of visual gaze was assessed while participants viewed positive and negative word pairs. For each word pair, participants were instructed to attend to one word (target) and ignore one word (distracter). Free recall of study stimuli was then assessed. Depressed individuals displayed greater recall of negatively valenced target words following the task. Although there were no group differences in attentional control in the context of negative words, attention to negative targets mediated the relationship between depression status and recall of negative words. Results suggest a stronger link between attention and memory for negative material in MDD.
Matrix model of the grinding process of cement clinker in the ball mill
NASA Astrophysics Data System (ADS)
Sharapov, Rashid R.
2018-02-01
In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.
Prietula, M J; Feltovich, P J; Marchak, F
2000-01-01
We propose that considering four categories of task factors can facilitate knowledge elicitation efforts in the analysis of complex cognitive tasks: materials, strategies, knowledge characteristics, and goals. A study was conducted to examine the effects of altering aspects of two of these task categories on problem-solving behavior across skill levels: materials and goals. Two versions of an applied engineering problem were presented to expert, intermediate, and novice participants. Participants were to minimize the cost of running a steam generation facility by adjusting steam generation levels and flows. One version was cast in the form of a dynamic, computer-based simulation that provided immediate feedback on flows, costs, and constraint violations, thus incorporating key variable dynamics of the problem context. The other version was cast as a static computer-based model, with no dynamic components, cost feedback, or constraint checking. Experts performed better than the other groups across material conditions, and, when required, the presentation of the goal assisted the experts more than the other groups. The static group generated richer protocols than the dynamic group, but the dynamic group solved the problem in significantly less time. Little effect of feedback was found for intermediates, and none for novices. We conclude that demonstrating differences in performance in this task requires different materials than explicating underlying knowledge that leads to performance. We also conclude that substantial knowledge is required to exploit the information yielded by the dynamic form of the task or the explicit solution goal. This simple model can help to identify the contextual factors that influence elicitation and specification of knowledge, which is essential in the engineering of joint cognitive systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
Metal Poisons for Criticality in Waste Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, T.G.; Goslen, A.Q.
1996-06-26
Many of the wastes from processing fissile materials contain metals which may serve as nuclear criticality poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist, the second, calculating an always safe ratio, is an object of this paper.
Robotics for Nuclear Material Handling at LANL:Capabilities and Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Troy A; Lloyd, Jane A; Turner, Cameron J
Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Fang, C. S.; Hansen, K. C.; Miller, J. W., Jr.; Yaws, C. L.
1978-01-01
Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from $19,094,000 to $11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme.
False memories from survival processing make better primes for problem-solving.
Garner, Sarah R; Howe, Mark L
2014-01-01
Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.
Does parental anxiety cause biases in the processing of child-relevant threat material?
Cartwright-Hatton, Sam; Abeles, Paul; Dixon, Clare; Holliday, Christine; Hills, Becky
2014-06-01
Anxiety leads to biases in processing personally relevant information. This study set out to examine whether anxious parents also experience biases in processing child-relevant material. Ninety parents acted as a control condition, or received a social anxiety or child-related anxiety induction. They completed a task examining attentional biases in relation to child-threat words and social-threat words, and a task examining ability to categorize emotion in children's faces and voices. There was a trend indicating group differences in attentional bias towards social-threat words, and this appears to have been only in the social anxiety condition, but not the child anxiety or control conditions. For child-threat words, attentional bias was present in the child anxiety condition, but not the social anxiety or control conditions. In the emotion recognition task, there was no difference between the control and child anxiety conditions, but the social anxiety condition were more likely to erroneously label children's faces and voices as sad. Parents' anxious biases may spill over into their child's world. Parents' anxious biases may spill over into their child's world. Anxious parents may have attentional biases towards threats in their children's environment. Anxious parents may over-attribute negative emotion to children. © 2013 The British Psychological Society.
Measuring listening effort: driving simulator vs. simple dual-task paradigm
Wu, Yu-Hsiang; Aksan, Nazan; Rizzo, Matthew; Stangl, Elizabeth; Zhang, Xuyang; Bentler, Ruth
2014-01-01
Objectives The dual-task paradigm has been widely used to measure listening effort. The primary objectives of the study were to (1) investigate the effect of hearing aid amplification and a hearing aid directional technology on listening effort measured by a complicated, more real world dual-task paradigm, and (2) compare the results obtained with this paradigm to a simpler laboratory-style dual-task paradigm. Design The listening effort of adults with hearing impairment was measured using two dual-task paradigms, wherein participants performed a speech recognition task simultaneously with either a driving task in a simulator or a visual reaction-time task in a sound-treated booth. The speech materials and road noises for the speech recognition task were recorded in a van traveling on the highway in three hearing aid conditions: unaided, aided with omni directional processing (OMNI), and aided with directional processing (DIR). The change in the driving task or the visual reaction-time task performance across the conditions quantified the change in listening effort. Results Compared to the driving-only condition, driving performance declined significantly with the addition of the speech recognition task. Although the speech recognition score was higher in the OMNI and DIR conditions than in the unaided condition, driving performance was similar across these three conditions, suggesting that listening effort was not affected by amplification and directional processing. Results from the simple dual-task paradigm showed a similar trend: hearing aid technologies improved speech recognition performance, but did not affect performance in the visual reaction-time task (i.e., reduce listening effort). The correlation between listening effort measured using the driving paradigm and the visual reaction-time task paradigm was significant. The finding showing that our older (56 to 85 years old) participants’ better speech recognition performance did not result in reduced listening effort was not consistent with literature that evaluated younger (approximately 20 years old), normal hearing adults. Because of this, a follow-up study was conducted. In the follow-up study, the visual reaction-time dual-task experiment using the same speech materials and road noises was repeated on younger adults with normal hearing. Contrary to findings with older participants, the results indicated that the directional technology significantly improved performance in both speech recognition and visual reaction-time tasks. Conclusions Adding a speech listening task to driving undermined driving performance. Hearing aid technologies significantly improved speech recognition while driving, but did not significantly reduce listening effort. Listening effort measured by dual-task experiments using a simulated real-world driving task and a conventional laboratory-style task was generally consistent. For a given listening environment, the benefit of hearing aid technologies on listening effort measured from younger adults with normal hearing may not be fully translated to older listeners with hearing impairment. PMID:25083599
Anxiety and selective attention in obsessive-compulsive disorder.
Cohen, Yoav; Lachenmeyer, Juliana Rasic; Springer, Craig
2003-11-01
Recently, there has been increasing evidence for information-processing deficits in individuals with obsessive-compulsive disorder (OCD). While impairments in selective attention have been identified to be central to the symptomatology of OCD, the role that situational anxiety plays in attentional processes has not been fully explored. Previous research findings were limited to tasks containing anxiety-relevant materials, only permitting for the evaluation of the impact of anxiety on simultaneous cognitive processing. Furthermore, it has not yet been determined whether the impact of anxiety is limited to selective attention or is indicative of a more general cognitive impairment. This study was designed to examine the role that situational anxiety plays in selective attention impairments. OCD participants and controls were presented with an anxiety producing statement and a neutral statement, followed by the Stroop Task. Results indicated that situational anxiety plays a significant role in the performance of tasks that require selective attention in OCD. A significant deterioration was detected in performance on selective attention tasks for the OCD participants after confronting anxiety-provoking scenarios, as compared to neutral scenarios. Anxiety did not impair performance on simple reading tasks. Possible explanations are discussed.
Chondritic Meteorites: Nebular and Parent-Body Formation Processes
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Lindstrom, David (Technical Monitor)
2002-01-01
It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.
1978-01-01
The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
NASA Technical Reports Server (NTRS)
1981-01-01
Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.
Adaptive illumination source for multispectral vision system applied to material discrimination
NASA Astrophysics Data System (ADS)
Conde, Olga M.; Cobo, Adolfo; Cantero, Paulino; Conde, David; Mirapeix, Jesús; Cubillas, Ana M.; López-Higuera, José M.
2008-04-01
A multispectral system based on a monochrome camera and an adaptive illumination source is presented in this paper. Its preliminary application is focused on material discrimination for food and beverage industries, where monochrome, color and infrared imaging have been successfully applied for this task. This work proposes a different approach, in which the relevant wavelengths for the required discrimination task are selected in advance using a Sequential Forward Floating Selection (SFFS) Algorithm. A light source, based on Light Emitting Diodes (LEDs) at these wavelengths is then used to sequentially illuminate the material under analysis, and the resulting images are captured by a CCD camera with spectral response in the entire range of the selected wavelengths. Finally, the several multispectral planes obtained are processed using a Spectral Angle Mapping (SAM) algorithm, whose output is the desired material classification. Among other advantages, this approach of controlled and specific illumination produces multispectral imaging with a simple monochrome camera, and cold illumination restricted to specific relevant wavelengths, which is desirable for the food and beverage industry. The proposed system has been tested with success for the automatic detection of foreign object in the tobacco processing industry.
Habeck, Christian; Rakitin, Brian; Steffener, Jason; Stern, Yaakov
2012-01-01
We performed a delayed-item-recognition task to investigate the neural substrates of non-verbal visual working memory with event-related fMRI (‘Shape task’). 25 young subjects (mean age: 24.0 years; STD=3.8 years) were instructed to study a list of either 1,2 or 3 unnamable nonsense line drawings for 3 seconds (‘stimulus phase’ or STIM). Subsequently, the screen went blank for 7 seconds (‘retention phase’ or RET), and then displayed a probe stimulus for 3 seconds in which subject indicated with a differential button press whether the probe was contained in the studied shape-array or not (‘probe phase’ or PROBE). Ordinal Trend Canonical Variates Analysis (Habeck et al., 2005a) was performed to identify spatial covariance patterns that showed a monotonic increase in expression with memory load during all task phases. Reliable load-related patterns were identified in the stimulus and retention phase (p<0.01), while no significant pattern could be discerned during the probe phase. Spatial covariance patterns that were obtained from an earlier version of this task (Habeck et al., 2005b) using 1, 3, or 6 letters (‘Letter task’) were also prospectively applied to their corresponding task phases in the current non-verbal task version. Interestingly, subject expression of covariance patterns from both verbal and non-verbal retention phases correlated positively in the non-verbal task for all memory loads (p<0.0001). Both patterns also involved similar frontoparietal brain regions that were increasing in activity with memory load, and mediofrontal and temporal regions that were decreasing. Mean subject expression of both patterns across memory load during retention also correlated positively with recognition accuracy (dL) in the Shape task (p<0.005). These findings point to similarities in the neural substrates of verbal and non-verbal rehearsal processes. Encoding processes, on the other hand, are critically dependent on the to-be-remembered material, and seem to necessitate material-specific neural substrates. PMID:22652306
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Hintze, Paul; Miles, John D.
2014-01-01
NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.
NASA Technical Reports Server (NTRS)
Caraccio, Anne; Hintze, Paul E.; Miles, John D.
2014-01-01
NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.
Instructional Materials for Improved Job Performance.
ERIC Educational Resources Information Center
Foley, John P., Jr.
1978-01-01
Instructional materials developed in military research to improve performance of electromechanical maintenance tasks are described, with implications for teacher education. The materials require task analysis, job task relevance, and task-oriented training. Although many industries have implemented these techniques, teacher training institutions…
Johnson, Jeffrey D; Rugg, Michael D
2006-02-03
Retrieval orientation refers to the differential processing of retrieval cues according to the type of information sought from memory (e.g., words vs. pictures). In the present study, event-related potentials (ERPs) were employed to investigate whether the neural correlates of differential retrieval orientations are sensitive to the specificity of the retrieval demands of the test task. In separate study-test phases, subjects encoded lists of intermixed words and pictures, and then undertook one of two retrieval tests, in both of which the retrieval cues were exclusively words. In the recognition test, subjects performed 'old/new' discriminations on the test items, and old items corresponded to only one class of studied material (words or pictures). In the exclusion test, old items corresponded to both classes of study material, and subjects were required to respond 'old' only to test items corresponding to a designated class of material. Thus, demands for retrieval specificity were greater in the exclusion test than during recognition. ERPs elicited by correctly classified new items in the two types of test were contrasted according to whether words or pictures were the sought-for material. Material-dependent ERP effects were evident in both tests, but the effects onset earlier and offset later in the exclusion test. The findings suggest that differential processing of retrieval cues, and hence the adoption of differential retrieval orientations, varies according to the specificity of the retrieval goal.
Tomblin, J. Bruce
2009-01-01
This study investigated the phonological processing skills of 29 children with prelingual, profound hearing loss with 4 years of cochlear implant experience. Results were group matched with regard to word-reading ability and mother’s educational level with the performance of 29 hearing children. Results revealed that it is possible to obtain a valid measure of phonological processing (PP) skills in children using CIs. They could complete rhyming tasks and were able to complete sound-based tasks using standard test materials provided by a commercial test distributor. The CI children completed tasks measuring PP, but there were performance differences between the CI users and the hearing children. The process of learning phonological awareness (PA) for the children with CIs was characterized by a longer, more protracted learning phase than their counterparts with hearing. Tests of phonological memory skills indicated that when the tasks were controlled for presentation method and response modality, there were no differences between the performance of children with CIs and their counterparts with hearing. Tests of rapid naming revealed that there were no differences between rapid letter and number naming between the two groups. Results yielded a possible PP test battery for children with CI experience. PMID:18424771
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.
1981-01-01
The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.
Perspective: Evolutionary design of granular media and block copolymer patterns
NASA Astrophysics Data System (ADS)
Jaeger, Heinrich M.; de Pablo, Juan J.
2016-05-01
The creation of new materials "by design" is a process that starts from desired materials properties and proceeds to identify requirements for the constituent components. Such process is challenging because it inverts the typical modeling approach, which starts from given micro-level components to predict macro-level properties. We describe how to tackle this inverse problem using concepts from evolutionary computation. These concepts have widespread applicability and open up new opportunities for design as well as discovery. Here we apply them to design tasks involving two very different classes of soft materials, shape-optimized granular media and nanopatterned block copolymer thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, T.; Nakamura, H.; Kawamura, Y.
JAEA (Japan Atomic Energy Agency) manages 2 tritium handling laboratories: Tritium Processing Laboratory (TPL) in Tokai and DEMO-RD building in Rokkasho. TPL has been accumulating a gram level tritium safety handling experiences without any accidental tritium release to the environment for more than 25 years. Recently, our activities have focused on 3 categories, as follows. First, the development of a detritiation system for ITER. This task is the demonstration test of a wet Scrubber Column (SC) as a pilot scale (a few hundreds m{sup 3}/h of processing capacity). Secondly, DEMO-RD tasks are focused on investigating the general issues required formore » DEMO-RD design, such as structural materials like RAFM (Reduced Activity Ferritic/Martensitic steels) and SiC/SiC, functional materials like tritium breeder and neutron multiplier, and tritium. For the last 4 years, we have spent a lot of time and means to the construction of the DEMO-RD facility and to its licensing, so we have just started the actual research program with tritium and other radioisotopes. This tritium task includes tritium accountancy, tritium basic safety research such as tritium interactions with various materials, which will be used for DEMO-RD and durability. The third category is the recovery work from the Great East Japan earthquake (2011 earthquake). It is worth noting that despite the high magnitude of the earthquake, TPL was able to confine tritium properly without any accidental tritium release.« less
Integration mockup and process material management system
NASA Technical Reports Server (NTRS)
Verble, Adas James, Jr.
1992-01-01
Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were designed and built for each module to sufficiently move and rotate each module. Secondary structures such as floors, ceilings, bulkheads, standoffs, racks, etc. were developed and built.
Distributive Distillation Enabled by Microchannel Process Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Ravi
The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation formore » new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla
The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less
Continued evaluation of pothole patching equipment, materials, and processes.
DOT National Transportation Integrated Search
2014-06-14
After the deaths of two Caltrans workers who were patching potholes in 2006-2007, Caltrans tasked the Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center with developing a safer and more efficient means of patching pothol...
Crystal Growth and Other Materials Physical Researches in Space Environment
NASA Astrophysics Data System (ADS)
Pan, Mingxiang
Material science researches in space environment are based on reducing the effects of buoyancy driven transport, the effects of atomic oxygen, radiation, extremes of heat and cold and the ultrahigh vacuum, so as to unveil the underlying fundamental phenomena, lead maybe to new potential materials or new industrial processes and develop space techniques. Currently, research program on materials sciences in Chinese Manned Space Engineering (CMSE) is going on. More than ten projects related to crystal growth and materials processes are selected as candidates to be executed in Shenzhou spacecraft, Tiangong Space Laboratory and Chinese Space Station. In this talk, we will present some examples of the projects, which are being prepared and executed in the near future flight tasks. They are both basic and applied research, from discovery to technology.
How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
Zago, Laure; Petit, Laurent; Turbelin, Marie-Renée; Andersson, Frédéric; Vigneau, Mathieu; Tzourio-Mazoyer, Nathalie
2008-01-01
The manipulation of numbers required during calculation is known to rely on working memory (WM) resources. Here, we investigated the respective contributions of verbal and/or spatial WM manipulation brain networks during the addition of four numbers performed by adults, using functional magnetic resonance imaging (fMRI). Both manipulation and maintenance tasks were proposed with syllables, locations, or two-digit numbers. As compared to their maintenance, numbers manipulation (addition) elicited increased activation within a widespread cortical network including inferior temporal, parietal, and prefrontal regions. Our results demonstrate that mastery of arithmetic calculation requires the cooperation of three WM manipulation systems: an executive manipulation system conjointly recruited by the three manipulation tasks, including the anterior cingulate cortex (ACC), the orbital part of the inferior frontal gyrus, and the caudate nuclei; a left-lateralized, language-related, inferior fronto-temporal system elicited by numbers and syllables manipulation tasks required for retrieval, selection, and association of symbolic information; and a right superior and posterior fronto-parietal system elicited by numbers and locations manipulation tasks for spatial WM and attentional processes. Our results provide new information that the anterior intraparietal sulcus (IPS) is involved in tasks requiring a magnitude processing with symbolic (numbers) and nonsymbolic (locations) stimuli. Furthermore, the specificity of arithmetic processing is mediated by a left-hemispheric specialization of the anterior and posterior parts of the IPS as compared to a spatial task involving magnitude processing with nonsymbolic material.
Materials characterization of propellants using ultrasonics
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Jones, David
1993-01-01
Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.
Design Knowledge and Teacher-Student Interactions in an Inventive Construction Task
ERIC Educational Resources Information Center
Esjeholm, Bjørn-Tore; Bungum, Berit
2013-01-01
The teacher plays an important role in the Technology and Design (T&D) classroom in terms of guiding students in their design process. By using concepts developed within engineering philosophy along with a framework for teacher-student interactions the design process in a T&D classroom is classified. The material shows that four of six…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzin, V.V.; Pshakin, G.M.; Belov, A.P.
1996-12-31
During 1995, collaborative Russian-US nuclear material protection, control, and accounting (MPC and A) tasks at the Institute of Physics and Power Engineering (IPPE) in Obninsk, Russia focused on improving the protection of nuclear materials at the BFS Fast Critical Facility. BFS has tens of thousands of fuel disks containing highly enriched uranium and weapons-grade plutonium that are used to simulate the core configurations of experimental reactors in two critical assemblies. Completed tasks culminated in demonstrations of newly implemented equipment (Russian and US) and methods that enhanced the MPC and A at BFS through computerized accounting, nondestructive inventory verification measurements, personnelmore » identification and access control, physical inventory taking, physical protection, and video surveillance. The collaborative work with US Department of Energy national laboratories is now being extended. In 1996 additional tasks to improve MPC and A have been implemented at BFS, the Technological Laboratory for Fuel Fabrication (TLFF) the Central Storage Facility (CSF), and for the entire site. The TLFF reclads BFS uranium metal fuel disks (process operations and transfers of fissile material). The CSF contains many different types of nuclear material. MPC and A at these additional facilities will be integrated with that at BFS as a prototype site-wide approach. Additional site-wide tasks encompass communications and tamper-indicating devices. Finally, new storage alternatives are being implemented that will consolidate the more attractive nuclear materials in a better-protected nuclear island. The work this year represents not just the addition of new facilities and the site-wide approach, but the systematization of the MPC and A elements that are being implemented as a first step and the more comprehensive ones planned.« less
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).
Space Resources and Space Settlements
NASA Technical Reports Server (NTRS)
Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)
1979-01-01
The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.
2012-01-01
using Avesta Pickling Paste 101 to determine forging flowlines. No anomalous microstructure was noticed during this examination. This 4”(w) x 45”(l...face of this section through the thickness was machined to a 32 RA surface finish and macro-etched using Avesta Pickling Paste 101 to determine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, P.
The purpose of this task was to support ESH-3 in providing Airborne Release Fraction and Respirable Fraction training to safety analysts at LANL who perform accident analysis, hazard analysis, safety analysis, and/or risk assessments at nuclear facilities. The task included preparation of materials for and the conduct of two 3-day training courses covering the following topics: safety analysis process; calculation model; aerosol physic concepts for safety analysis; and overview of empirically derived airborne release fractions and respirable fractions.
NASA Technical Reports Server (NTRS)
Leslie, Thomas M.
1995-01-01
Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.
Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Diwan, Ravinder M.
2003-01-01
The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.
Extraction of volatiles and metals from extraterrestrial ores
NASA Technical Reports Server (NTRS)
Lewis, John S.
1989-01-01
Extraterrestrial materials, processes, and products were identified which are associated with the production of propellants in space, including the most complete possible conversion of the feedstocks for propellant production into useful products with the minimum feasible expenditure of energy. Laboratory research was identified and begun on several processes that promise very large increases in the mass of useful products at the cost of only modest increases in energy consumption. Processes for manufacturing propellants then become processes for making propellants plus metals and refractories. It is the overall yield of useful materials per unit expended energy that matters, not simply the yield of propellants. Three tasks have been undertaken to date: (1) Literature search and compilation of a dBase 3 data base on space materials processing; (2) Gaseous carbonyl extraction and purification of ferrous metals; and (3) Characterization of lunar ilmenite and its simulants.
Kim, Na Young; Wittenberg, Ellen; Nam, Chang S
2017-01-01
This study investigated the interaction between two executive function processes, inhibition and updating, through analyses of behavioral, neurophysiological, and effective connectivity metrics. Although, many studies have focused on behavioral effects of executive function processes individually, few studies have examined the dynamic causal interactions between these two functions. A total of twenty participants from a local university performed a dual task combing flanker and n-back experimental paradigms, and completed the Operation Span Task designed to measure working memory capacity. We found that both behavioral (accuracy and reaction time) and neurophysiological (P300 amplitude and alpha band power) metrics on the inhibition task (i.e., flanker task) were influenced by the updating load (n-back level) and modulated by working memory capacity. Using independent component analysis, source localization (DIPFIT), and Granger Causality analysis of the EEG time-series data, the present study demonstrated that manipulation of cognitive demand in a dual executive function task influenced the causal neural network. We compared connectivity across three updating loads (n-back levels) and found that experimental manipulation of working memory load enhanced causal connectivity of a large-scale neurocognitive network. This network contains the prefrontal and parietal cortices, which are associated with inhibition and updating executive function processes. This study has potential applications in human performance modeling and assessment of mental workload, such as the design of training materials and interfaces for those performing complex multitasking under stress.
The impact of representation format and task instruction on student understanding in science
NASA Astrophysics Data System (ADS)
Stephenson, Susan Raatz
The purpose of this study is to examine how representation format and task instructions impact student learning in a science domain. Learning outcomes were assessed via measures of mental model, declarative knowledge, and knowledge inference. Students were asked to use one of two forms of representation, either drawing or writing, during study of a science text. Further, instructions (summarize vs. explain) were varied to determine if students' intended use of the presentation influenced learning. Thus, this study used a 2 (drawing vs. writing) X 2 (summarize vs. explain) between-subjects design. Drawing was hypothesized to require integration across learning materials regardless of task instructions, because drawings (by definition) require learners to integrate new information into a visual representation. Learning outcomes associated with writing were hypothesized to depend upon task instructions: when asked to summarize, writing should result in reproduction of text; when asked to explain, writing should emphasize integration processes. Because integration processes require connecting and analyzing new and prior information, it also was predicted that drawing (across both conditions of task instructions) and writing (when combined the explain task instructions only) would result in increased metacognitive monitoring. Metacognitive monitoring was assessed indirectly via responses to metacognitive prompts interspersed throughout the study.
Monetary rewards influence retrieval orientations.
Halsband, Teresa M; Ferdinand, Nicola K; Bridger, Emma K; Mecklinger, Axel
2012-09-01
Reward anticipation during learning is known to support memory formation, but its role in retrieval processes is so far unclear. Retrieval orientations, as a reflection of controlled retrieval processing, are one aspect of retrieval that might be modulated by reward. These processes can be measured using the event-related potentials (ERPs) elicited by retrieval cues from tasks with different retrieval requirements, such as via changes in the class of targeted memory information. To determine whether retrieval orientations of this kind are modulated by reward during learning, we investigated the effects of high and low reward expectancy on the ERP correlates of retrieval orientation in two separate experiments. The reward manipulation at study in Experiment 1 was associated with later memory performance, whereas in Experiment 2, reward was directly linked to accuracy in the study task. In both studies, the participants encoded mixed lists of pictures and words preceded by high- or low-reward cues. After 24 h, they performed a recognition memory exclusion task, with words as the test items. In addition to a previously reported material-specific effect of retrieval orientation, a frontally distributed, reward-associated retrieval orientation effect was found in both experiments. These findings suggest that reward motivation during learning leads to the adoption of a reward-associated retrieval orientation to support the retrieval of highly motivational information. Thus, ERP retrieval orientation effects not only reflect retrieval processes related to the sought-for materials, but also relate to the reward conditions with which items were combined during encoding.
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.
2014-01-01
CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.
Selective impairment of auditory selective attention under concurrent cognitive load.
Dittrich, Kerstin; Stahl, Christoph
2012-06-01
Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.
Kowalczyk, Marek
2017-07-01
Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.
Material model validation for laser shock peening process simulation
NASA Astrophysics Data System (ADS)
Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.
2009-01-01
Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.
Jarrold, Christopher; Tam, Helen; Baddeley, Alan D; Harvey, Caroline E
2011-05-01
Two studies that examine whether the forgetting caused by the processing demands of working memory tasks is domain-general or domain-specific are presented. In each, separate groups of adult participants were asked to carry out either verbal or nonverbal operations on exactly the same processing materials while maintaining verbal storage items. The imposition of verbal processing tended to produce greater forgetting even though verbal processing operations took no longer to complete than did nonverbal processing operations. However, nonverbal processing did cause forgetting relative to baseline control conditions, and evidence from the timing of individuals' processing responses suggests that individuals in both processing groups slowed their responses in order to "refresh" the memoranda. Taken together the data suggest that processing has a domain-general effect on working memory performance by impeding refreshment of memoranda but can also cause effects that appear domain-specific and that result from either blocking of rehearsal or interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, C.I.C.; Gillespie, B.L.
One of the most perplexing problems facing the coal industry is how to properly dispose of the waste and/or even recovery a small fraction of the Btu value of the waste, while minimizing the environmental concerns. UCC Research considers this monumental environmental problems as an opportunity to recovery useable organic materials and reduce the environmental problems created by coal waste. Mild gasification is the method used by UCC Research to realize these objectives. Coal feedstocks are fed into the mild gasification system yielding liquids, char, and gases for commercial application. The program consists of seven tasks: Task 1, Characterize Managementmore » of Coal Preparation Wastes; Task 2, Review Design Specifications and Prepare Preliminary Test Plan; Task 3, Select and Characterize Test Feedstocks; Task 4, Acquire/Construct Process Elements; Task 5, Prepare Final Test Plan; Task 6, Implement Final Test Plan; Task 7, Analyze Test Results and Assess System Economics. A schedule of the program is given. The program was initiated on September 30, 1984. Tasks 1, 2, 3, 4, 5, and 6 have been completed. Work is continuing on Task 7.« less
Jefferies-Sewell, K; Chamberlain, SR; Fineberg, NA; Laws, KR
2017-01-01
Background Body dysmorphic disorder (BDD) is a debilitating disorder, characterised by obsessions and compulsions relating specifically to perceived appearance, newly classified within the DSM-5 Obsessive-Compulsive and Related Disorders grouping. Until now, little research has been conducted into the cognitive profile of this disorder. Materials and Methods Participants with BDD (n=12) and healthy controls (n=16) were tested using a computerised neurocognitive battery investigating attentional set-shifting (Intra/Extra Dimensional Set Shift Task), decision-making (Cambridge Gamble Task), motor response-inhibition (Stop-Signal Reaction Time Task) and affective processing (Affective Go-No Go Task). The groups were matched for age, IQ and education. Results In comparison to controls, patients with BDD showed significantly impaired attentional set shifting, abnormal decision-making, impaired response inhibition and greater omission and commission errors on the emotional processing task. Conclusions Despite the modest sample size, our results showed that individuals with BDD performed poorly compared to healthy controls on tests of cognitive flexibility, reward and motor impulsivity and affective processing. Results from separate studies in OCD patients suggest similar cognitive dysfunction. Therefore, these findings are consistent with the re-classification of BDD alongside OCD. These data also hint at additional areas of decision-making abnormalities that might contribute specifically to the psychopathology of BDD. PMID:27899165
Promoting Transfer in Memory Training for Older Adults
Cavallini, Elena; Dunlosky, John; Bottiroli, Sara; Hertzog, Christopher; Vecchi, Tomaso
2011-01-01
Background and aims Many studies have focused on memory training in aging showing older adults can improve their performance. Unfortunately the benefits of training rarely generalize to other tasks that were not specifically trained. We investigated the benefits of instruction-based training in promoting transfer effects in older adults. Methods In Experiment 1, we evaluated transfer effects in a training group who practiced using standard mnemonics to learn paired associates and word lists, and this group was provided instructions about how the mnemonics could be used for two of the four transfer tasks (text learning, name-face learning, grocery list learning, place learning). In Experiment 2, we compared transfer effects for two different training groups: one practiced the strategies with the two trained tasks and did not receive instructions and one had the same practice but also received instructions on all the transfer tasks. Results Transfer in text learning occurred in both experiments. Such transfer is particularly interesting considering that text learning was the most dissimilar task in terms of both the nature of the materials and the underlying processes that support performance. Such transfer was reliably greater when training involved instructions about applicability than when it did not. Conclusions Instructions to use practiced strategies on new materials could be a useful technique in promoting transfer in older adults. It seems that the lack of transfer does not necessarily arise from older adults’ inabilities but instead because they do not realize that trained strategies can (or should) be applied to new materials. PMID:19966535
Promoting transfer in memory training for older adults.
Cavallini, Elena; Dunlosky, John; Bottiroli, Sara; Hertzog, Christopher; Vecchi, Tomaso
2010-08-01
Many studies have focused on memory training in aging, showing that older adults can improve their performance. Unfortunately, the benefits of training can rarely be generalized to other tasks for which adults were not specifically trained. We investigated the benefits of instruction-based training in promoting transfer effects in older adults. In Experiment 1, we evaluated transfer effects in a training group who practiced using standard mnemonics to learn paired associates and word lists, and this group was given instructions about how the mnemonics could be used for two of the four transfer tasks (text learning, name-face learning, grocery list learning, place learning). In Experiment 2, we compared transfer effects for two different training groups: one practiced the strategies with the two trained tasks and did not receive instructions, and the other had the same practice but also received instructions on all the transfer tasks. Transfer in text learning occurred in both experiments. This transfer is particularly interesting, as text learning was the most dissimilar task in terms of both the nature of the materials and the underlying processes that support performance. The transfer was reliably greater when training involved instructions about applicability than when it did not. Instructions to use practiced strategies on new materials may be a useful technique in promoting transfer in older adults. It seems that the lack of transfer does not necessarily arise from older adults' inabilities, but because they do not realize that trained strategies can (or should) be applied to new materials.
Kreitewolf, Jens; Friederici, Angela D; von Kriegstein, Katharina
2014-11-15
Hemispheric specialization for linguistic prosody is a controversial issue. While it is commonly assumed that linguistic prosody and emotional prosody are preferentially processed in the right hemisphere, neuropsychological work directly comparing processes of linguistic prosody and emotional prosody suggests a predominant role of the left hemisphere for linguistic prosody processing. Here, we used two functional magnetic resonance imaging (fMRI) experiments to clarify the role of left and right hemispheres in the neural processing of linguistic prosody. In the first experiment, we sought to confirm previous findings showing that linguistic prosody processing compared to other speech-related processes predominantly involves the right hemisphere. Unlike previous studies, we controlled for stimulus influences by employing a prosody and speech task using the same speech material. The second experiment was designed to investigate whether a left-hemispheric involvement in linguistic prosody processing is specific to contrasts between linguistic prosody and emotional prosody or whether it also occurs when linguistic prosody is contrasted against other non-linguistic processes (i.e., speaker recognition). Prosody and speaker tasks were performed on the same stimulus material. In both experiments, linguistic prosody processing was associated with activity in temporal, frontal, parietal and cerebellar regions. Activation in temporo-frontal regions showed differential lateralization depending on whether the control task required recognition of speech or speaker: recognition of linguistic prosody predominantly involved right temporo-frontal areas when it was contrasted against speech recognition; when contrasted against speaker recognition, recognition of linguistic prosody predominantly involved left temporo-frontal areas. The results show that linguistic prosody processing involves functions of both hemispheres and suggest that recognition of linguistic prosody is based on an inter-hemispheric mechanism which exploits both a right-hemispheric sensitivity to pitch information and a left-hemispheric dominance in speech processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Lozada, Mariana; Carro, Natalia
2016-01-01
Converging evidence highlights the relevance of embodied cognition in learning processes. In this study we evaluate whether embodied action (enaction) improves cognitive understanding in children. Using the Piagetian conservation tasks in 6-7 year olds, we analyzed quantity conservation conceptualization in children who were active participants in the transformation process and compared these results to those of children who were mere observers of an adult's demonstration (as traditionally conducted). The investigation was performed with 105 first-graders. Conservation tasks were demonstrated to half the children, while the other half actively carried out the transformation of matter. Our findings showed that active manipulation of the material helped children recognize quantity invariance in a higher proportion than when the demonstration was only observed. That is, their enactive experience enabled them to comprehend conservation phenomena more easily than if they were merely passive observers. The outcome of this research thus emphasizes how active participation benefits cognitive processes in learning contexts, promoting autonomy, and agency during childhood.
Lozada, Mariana; Carro, Natalia
2016-01-01
Converging evidence highlights the relevance of embodied cognition in learning processes. In this study we evaluate whether embodied action (enaction) improves cognitive understanding in children. Using the Piagetian conservation tasks in 6–7 year olds, we analyzed quantity conservation conceptualization in children who were active participants in the transformation process and compared these results to those of children who were mere observers of an adult's demonstration (as traditionally conducted). The investigation was performed with 105 first-graders. Conservation tasks were demonstrated to half the children, while the other half actively carried out the transformation of matter. Our findings showed that active manipulation of the material helped children recognize quantity invariance in a higher proportion than when the demonstration was only observed. That is, their enactive experience enabled them to comprehend conservation phenomena more easily than if they were merely passive observers. The outcome of this research thus emphasizes how active participation benefits cognitive processes in learning contexts, promoting autonomy, and agency during childhood. PMID:27047420
Baldwin, Carryl L; Struckman-Johnson, David
2002-01-15
Speech displays and verbal response technologies are increasingly being used in complex, high workload environments that require the simultaneous performance of visual and manual tasks. Examples of such environments include the flight decks of modern aircraft, advanced transport telematics systems providing invehicle route guidance and navigational information and mobile communication equipment in emergency and public safety vehicles. Previous research has established an optimum range for speech intelligibility. However, the potential for variations in presentation levels within this range to affect attentional resources and cognitive processing of speech material has not been examined previously. Results of the current experimental investigation demonstrate that as presentation level increases within this 'optimum' range, participants in high workload situations make fewer sentence-processing errors and generally respond faster. Processing errors were more sensitive to changes in presentation level than were measures of reaction time. Implications of these findings are discussed in terms of their application for the design of speech communications displays in complex multi-task environments.
Lemorini, Cristina; Plummer, Thomas W; Braun, David R; Crittenden, Alyssa N; Ditchfield, Peter W; Bishop, Laura C; Hertel, Fritz; Oliver, James S; Marlowe, Frank W; Schoeninger, Margaret J; Potts, Richard
2014-07-01
Evidence of Oldowan tools by ∼2.6 million years ago (Ma) may signal a major adaptive shift in hominin evolution. While tool-dependent butchery of large mammals was important by at least 2.0 Ma, the use of artifacts for tasks other than faunal processing has been difficult to diagnose. Here we report on use-wear analysis of ∼2.0 Ma quartz and quartzite artifacts from Kanjera South, Kenya. A use-wear framework that links processing of specific materials and tool motions to their resultant use-wear patterns was developed. A blind test was then carried out to assess and improve the efficacy of this experimental use-wear framework, which was then applied to the analysis of 62 Oldowan artifacts from Kanjera South. Use-wear on a total of 23 artifact edges was attributed to the processing of specific materials. Use-wear on seven edges (30%) was attributed to animal tissue processing, corroborating zooarchaeological evidence for butchery at the site. Use-wear on 16 edges (70%) was attributed to the processing of plant tissues, including wood, grit-covered plant tissues that we interpret as underground storage organs (USOs), and stems of grass or sedges. These results expand our knowledge of the suite of behaviours carried out in the vicinity of Kanjera South to include the processing of materials that would be 'invisible' using standard archaeological methods. Wood cutting and scraping may represent the production and/or maintenance of wooden tools. Use-wear related to USO processing extends the archaeological evidence for hominin acquisition and consumption of this resource by over 1.5 Ma. Cutting of grasses, sedges or reeds may be related to a subsistence task (e.g., grass seed harvesting, cutting out papyrus culm for consumption) and/or a non-subsistence related task (e.g., production of 'twine,' simple carrying devices, or bedding). These results highlight the adaptive significance of lithic technology for hominins at Kanjera. Copyright © 2014 Elsevier Ltd. All rights reserved.
Le, Huy Q.; Molloi, Sabee
2011-01-01
Purpose: To experimentally investigate whether a computed tomography (CT) system based on CdZnTe (CZT) detectors in conjunction with a least-squares parameter estimation technique can be used to decompose four different materials. Methods: The material decomposition process was divided into a segmentation task and a quantification task. A least-squares minimization algorithm was used to decompose materials with five measurements of the energy dependent linear attenuation coefficients. A small field-of-view energy discriminating CT system was built. The CT system consisted of an x-ray tube, a rotational stage, and an array of CZT detectors. The CZT array was composed of 64 pixels, each of which is 0.8×0.8×3 mm. Images were acquired at 80 kVp in fluoroscopic mode at 50 ms per frame. The detector resolved the x-ray spectrum into energy bins of 22–32, 33–39, 40–46, 47–56, and 57–80 keV. Four phantoms were constructed from polymethylmethacrylate (PMMA), polyethylene, polyoxymethylene, hydroxyapatite, and iodine. Three phantoms were composed of three materials with embedded hydroxyapatite (50, 150, 250, and 350 mg∕ml) and iodine (4, 8, 12, and 16 mg∕ml) contrast elements. One phantom was composed of four materials with embedded hydroxyapatite (150 and 350 mg∕ml) and iodine (8 and 16 mg∕ml). Calibrations consisted of PMMA phantoms with either hydroxyapatite (100, 200, 300, 400, and 500 mg∕ml) or iodine (5, 15, 25, 35, and 45 mg∕ml) embedded. Filtered backprojection and a ramp filter were used to reconstruct images from each energy bin. Material segmentation and quantification were performed and compared between different phantoms. Results: All phantoms were decomposed accurately, but some voxels in the base material regions were incorrectly identified. Average quantification errors of hydroxyapatite∕iodine were 9.26∕7.13%, 7.73∕5.58%, and 12.93∕8.23% for the three-material PMMA, polyethylene, and polyoxymethylene phantoms, respectively. The average errors for the four-material phantom were 15.62% and 2.76% for hydroxyapatite and iodine, respectively. Conclusions: The calibrated least-squares minimization technique of decomposition performed well in breast imaging tasks with an energy resolving detector. This method can provide material basis images containing concentrations of the relevant materials that can potentially be valuable in the diagnostic process. PMID:21361191
In mold laser welding for high precision polymer based optical components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, N., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt; Pontes, A. J., E-mail: id2694@alunos.uminho.pt, E-mail: pontes@dep.uminho.pt
2014-05-15
To assemble a complete subsystem as a rear lamp, is necessary to have different machines and to perform several tasks. This necessity obliges the companies to have large structures to support all the assembling process. These huge structures are very costly and have as a consequence the reduction of the competitiveness of the companies. The process presented in this document has the intention of reducing the number of tasks needed to produce the final subsystem/product. To achieve this goal were combined several technologies, as in-mould assembling, laser welding and LEDs (light-emitting diode). One of the advantages of this process wasmore » the utilization of only one injection molding machine with three injection units to do all the assembling process. To achieve the main objective, firstly, the rear lamp was designed according to with the legislation of UNECE Vehicle Regulations - 1958 Agreements; Regulation No. 50 -Rev.2 - Position lamps, stop lamps, direction indicators for motorcycles. Posterior several polymeric materials were studied at different levels. Initial were studied several concentrations of carbon nanotubes mixed with PC (polycarbonate). This had the objective of determine, if these materials are suitable to conduct the necessary electric current to turn on the different LEDs. One of the main advantages of this process is the use of the laser transmission welded process. Since, with this welding technology is possible reduce the complexity of the final part. To understand the potentialities of this technology a combination of two materials was studied. The studied showed that all materials presented a high transparency to the laser beam. In terms of weld process, the study showed that the best welding conditions are the lowest velocity, diameter and power. With these studies was possible conclude that this new process is suitable to be implemented at the industrial level.« less
Man-Machine Interaction: Operator.
1984-06-01
EASTER OF SCIENCI I COMPUTER SCIENCE Justification from the Distribution/ Availability Codes NAVal POSTGBADUATE SCHOOL Avail and/or June 1984 Dlst...Few pecple, if any, remember everything they see or hear but an anazingly large amount of material can be recalled years after it has been acquired...and skill, learning takes tine. The time required for the learning process will generally vary with the coaplexity of the material cr task he is
NASA Astrophysics Data System (ADS)
Tanaka, Ken-ichi; Ueno, Jun
2017-09-01
Reliable information of radioactivity inventory resulted from the radiological characterization is important in order to plan decommissioning planning and is also crucial in order to promote decommissioning in effectiveness and in safe. The information is referred to by planning of decommissioning strategy and by an application to regulator. Reliable information of radioactivity inventory can be used to optimize the decommissioning processes. In order to perform the radiological characterization reliably, we improved a procedure of an evaluation of neutron-activated materials for a Boiling Water Reactor (BWR). Neutron-activated materials are calculated with calculation codes and their validity should be verified with measurements. The evaluation of neutron-activated materials can be divided into two processes. One is a distribution calculation of neutron-flux. Another is an activation calculation of materials. The distribution calculation of neutron-flux is performed with neutron transport calculation codes with appropriate cross section library to simulate neutron transport phenomena well. Using the distribution of neutron-flux, we perform distribution calculations of radioactivity concentration. We also estimate a time dependent distribution of radioactivity classification and a radioactive-waste classification. The information obtained from the evaluation is utilized by other tasks in the preparatory tasks to make the decommissioning plan and the activity safe and rational.
Density functional theory in materials science.
Neugebauer, Jörg; Hickel, Tilmann
2013-09-01
Materials science is a highly interdisciplinary field. It is devoted to the understanding of the relationship between (a) fundamental physical and chemical properties governing processes at the atomistic scale with (b) typically macroscopic properties required of materials in engineering applications. For many materials, this relationship is not only determined by chemical composition, but strongly governed by microstructure. The latter is a consequence of carefully selected process conditions (e.g., mechanical forming and annealing in metallurgy or epitaxial growth in semiconductor technology). A key task of computational materials science is to unravel the often hidden composition-structure-property relationships using computational techniques. The present paper does not aim to give a complete review of all aspects of materials science. Rather, we will present the key concepts underlying the computation of selected material properties and discuss the major classes of materials to which they are applied. Specifically, our focus will be on methods used to describe single or polycrystalline bulk materials of semiconductor, metal or ceramic form.
The differing roles of the frontal cortex in fluency tests
Shallice, Tim; Bozzali, Marco; Cipolotti, Lisa
2012-01-01
Fluency tasks have been widely used to tap the voluntary generation of responses. The anatomical correlates of fluency tasks and their sensitivity and specificity have been hotly debated. However, investigation of the cognitive processes involved in voluntary generation of responses and whether generation is supported by a common, general process (e.g. fluid intelligence) or specific cognitive processes underpinned by particular frontal regions has rarely been addressed. This study investigates a range of verbal and non-verbal fluency tasks in patients with unselected focal frontal (n = 47) and posterior (n = 20) lesions. Patients and controls (n = 35) matched for education, age and sex were administered fluency tasks including word (phonemic/semantic), design, gesture and ideational fluency as well as background cognitive tests. Lesions were analysed by standard anterior/posterior and left/right frontal subdivisions as well as a finer-grained frontal localization method. Thus, patients with right and left lateral lesions were compared to patients with superior medial lesions. The results show that all eight fluency tasks are sensitive to frontal lobe damage although only the phonemic word and design fluency tasks were specific to the frontal region. Superior medial patients were the only group to be impaired on all eight fluency tasks, relative to controls, consistent with an energization deficit. The most marked fluency deficits for lateral patients were along material specific lines (i.e. left—phonemic and right—design). Phonemic word fluency that requires greater selection was most severely impaired following left inferior frontal damage. Overall, our results support the notion that frontal functions comprise a set of specialized cognitive processes, supported by distinct frontal regions. PMID:22669082
Otten, L J; Henson, R N; Rugg, M D
2001-02-01
Neuroimaging studies have implicated the prefrontal cortex and medial temporal areas in the successful encoding of verbal material into episodic memory. The present study used event-related functional MRI to investigate whether the brain areas associated with successful episodic encoding of words in a semantic study task are a subset of those demonstrating depth of processing effects. In addition, we tested whether the brain areas associated with successful episodic encoding differ depending on the nature of the study task. At study, 15 volunteers were cued to make either animacy or alphabetical decisions about words. A recognition memory test including confidence judgements followed after a delay of 15 min. Prefrontal and medial temporal regions showed greater functional MRI activations for semantically encoded words relative to alphabetically encoded words. Two of these regions (left anterior hippocampus and left ventral inferior frontal gyrus) showed greater activation for semantically encoded words that were subsequently recognized confidently. However, other regions (left posterior hippocampus and right inferior frontal cortex) demonstrated subsequent memory effects, but not effects of depth of processing. Successful memory for alphabetically encoded words was also associated with greater activation in the left anterior hippocampus and left ventral inferior frontal gyrus. The findings suggest that episodic encoding for words in a semantic study task involves a subset of the regions activated by deep relative to shallow processing. The data provide little evidence that successful episodic encoding during a shallow study task depends upon regions different from those that support the encoding of deeply studied words. Instead, the findings suggest that successful episodic encoding during a shallow study task relies on a subset of the regions engaged during successful encoding in a deep task.
Working memory affects false memory production for emotional events.
Mirandola, Chiara; Toffalini, Enrico; Ciriello, Alfonso; Cornoldi, Cesare
2017-01-01
Whereas a link between working memory (WM) and memory distortions has been demonstrated, its influence on emotional false memories is unclear. In two experiments, a verbal WM task and a false memory paradigm for negative, positive or neutral events were employed. In Experiment 1, we investigated individual differences in verbal WM and found that the interaction between valence and WM predicted false recognition, with negative and positive material protecting high WM individuals against false remembering; the beneficial effect of negative material disappeared in low WM participants. In Experiment 2, we lowered the WM capacity of half of the participants with a double task request, which led to an overall increase in false memories; furthermore, consistent with Experiment 1, the increase in negative false memories was larger than that of neutral or positive ones. It is concluded that WM plays a critical role in determining false memory production, specifically influencing the processing of negative material.
A new fun and robust version of an fMRI localizer for the frontotemporal language system.
Scott, Terri L; Gallée, Jeanne; Fedorenko, Evelina
2017-07-01
A set of brain regions in the frontal, temporal, and parietal lobes supports high-level linguistic processing. These regions can be reliably identified in individual subjects using fMRI, by contrasting neural responses to meaningful and structured language stimuli vs. stimuli matched for low-level properties but lacking meaning and/or structure. We here present a novel version of a language 'localizer,' which should be suitable for diverse populations including children and/or clinical populations who may have difficulty with reading or cognitively demanding tasks. In particular, we contrast responses to auditorily presented excerpts from engaging interviews or stories, and acoustically degraded versions of these materials. This language localizer is appealing because it uses (a) naturalistic and engaging linguistic materials, (b) auditory presentation, (c) a passive listening task, and can be easily adapted to new stimulus materials enabling comparisons of language activation in children and speakers of diverse languages.
Mahurin, Shannon M.; Fulvio, Pasquale F.; Hillesheim, Patrick C.; ...
2014-07-31
Postcombustion CO 2 capture has become a key component of greenhouse-gas reduction as anthropogenic emissions continue to impact the environment. In this paper, we report a one-step synthesis of porous carbon materials using a series of task-specific ionic liquids for the adsorption of CO 2. By varying the structure of the ionic liquid precursor, we were able to control pore architecture and surface functional groups of the carbon materials in this one-step synthesis process leading to adsorbents with high CO 2 sorption capacities (up to 4.067 mmol g -1) at 0 °C and 1 bar. Finally, added nitrogen functional groupsmore » led to high CO 2/N 2 adsorption-selectivity values ranging from 20 to 37 whereas simultaneously the interaction energy was enhanced relative to carbon materials with no added nitrogen.« less
[Children with specific language impairment: electrophysiological and pedaudiological findings].
Rinker, T; Hartmann, K; Smith, E; Reiter, R; Alku, P; Kiefer, M; Brosch, S
2014-08-01
Auditory deficits may be at the core of the language delay in children with Specific Language Impairment (SLI). It was therefore hypothesized that children with SLI perform poorly on 4 tests typically used to diagnose central auditory processing disorder (CAPD) as well in the processing of phonetic and tone stimuli in an electrophysiological experiment. 14 children with SLI (mean age 61,7 months) and 16 children without SLI (mean age 64,9 months) were tested with 4 tasks: non-word repetition, language discrimination in noise, directional hearing, and dichotic listening. The electrophysiological recording Mismatch Negativity (MMN) employed sine tones (600 vs. 650 Hz) and phonetic stimuli (/ε/ versus /e/). Control children and children with SLI differed significantly in the non-word repetition as well as in the dichotic listening task but not in the two other tasks. Only the control children recognized the frequency difference in the MMN-experiment. The phonetic difference was discriminated by both groups, however, effects were longer lasting for the control children. Group differences were not significant. Children with SLI show limitations in auditory processing that involve either a complex task repeating unfamiliar or difficult material and show subtle deficits in auditory processing at the neural level. © Georg Thieme Verlag KG Stuttgart · New York.
Integrated aerodynamic-structural design of a forward-swept transport wing
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.
Working memory delay period activity marks a domain-unspecific attention mechanism.
Katus, Tobias; Müller, Matthias M
2016-03-01
Working memory (WM) recruits neural circuits that also perform perception- and action-related functions. Among the functions that are shared between the domains of WM and perception is selective attention, which supports the maintenance of task-relevant information during the retention delay of WM tasks. The tactile contralateral delay activity (tCDA) component of the event-related potential (ERP) marks the attention-based rehearsal of tactile information in somatosensory brain regions. We tested whether the tCDA reflects the competition for shared attention resources between a WM task and a perceptual task under dual-task conditions. The two tasks were always performed on opposite hands. In different blocks, the WM task had higher or lower priority than the perceptual task. The tCDA's polarity consistently reflected the hand where the currently prioritized task was performed. This suggests that the process indexed by the tCDA is not specific to the domain of WM, but mediated by a domain-unspecific attention mechanism. The analysis of transient ERP components evoked by stimuli in the two tasks further supports the interpretation that the tCDA marks a goal-directed bias in the allocation of selective attention. Larger spatially selective modulations were obtained for stimulus material related to the high-, as compared to low-priority, task. While our results generally indicate functional overlap between the domains of WM and perception, we also found evidence suggesting that selection in internal (mnemonic) and external (perceptual) stimulus representations involves processes that are not active during shifts of preparatory attention. Copyright © 2016 Elsevier Inc. All rights reserved.
2016-03-31
fiber distributions. Task 2.1 is concerned with damage evolution in a peridynamic model of poroelastic materials. Initial results for both tasks are...distributions. Task 2.1 is concerned with damage evolution in a peridynamic model of poroelastic materials. Initial results for both tasks are reported and...Task 2.1: Damage evolution in a peridynamic model of poroelastic materials. Background and Motivation In order to model the presence of pores and
Low cost solar array project. Task 1: Silicon material, gaseous melt replenishment system
NASA Technical Reports Server (NTRS)
Jewett, D. N.; Bates, H. E.; Hill, D. M.
1979-01-01
A system to combine silicon formation, by hydrogen reduction of trichlorosilane, with the capability to replenish a crystal growth system is described. A variety of process parameters to allow sizing and specification of gas handling system components was estimated.
Process Research On Polycrystalline Silicon Material (PROPSM)
NASA Technical Reports Server (NTRS)
Wohlgemuth, J. H.; Culik, J. S.
1982-01-01
The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.
Intrinsic motivation and learning in a schizophrenia spectrum sample.
Choi, Jimmy; Medalia, Alice
2010-05-01
A motivation is a telling hallmark of negative symptomatology in schizophrenia, and it impacts nearly every facet of behavior, including inclination to attempt the difficult cognitive tasks involved in cognitive remediation therapy. Experiences of external reward, reinforcement, and hedonic anticipatory enjoyment are diminished in psychosis, so therapeutics which instead target intrinsic motivation for cognitive tasks may enhance task engagement, and subsequently, remediation outcome. We examined whether outpatients could attain benefits from an intrinsically motivating instructional approach which (a) presents learning materials in a meaningful game-like context, (b) personalizes elements of the learning materials into themes of high interest value, and (c) offers choices so patients can increase their control over the learning process. We directly compared one learning method that incorporated the motivational paradigm into an arithmetic learning program against another method that carefully manipulated out the motivational variables in the same learning program. Fifty-seven subjects with schizophrenia or schizoaffective disorder were randomly assigned to one of the two learning programs for 10 thirty-minute sessions while an intent-to-treat convenience subsample (n=15) was used to account for practice effect. Outcome measures were arithmetic learning, attention, motivation, self competency, and symptom severity. Results showed the motivational group (a) acquired more arithmetic skill, (b) possessed greater intrinsic motivation for the task, (c) reported greater feelings of self competency post-treatment, and (d) demonstrated better post-test attention. Interestingly, baseline perception of self competency was a significant predictor of post-test arithmetic scores. Results demonstrated that incorporating intrinsically motivating instructional techniques into a difficult cognitive task promoted greater learning of the material, higher levels of intrinsic motivation to attempt the demanding task, and greater feelings of self efficacy and achievement to learn. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Musical and verbal semantic memory: two distinct neural networks?
Groussard, M; Viader, F; Hubert, V; Landeau, B; Abbas, A; Desgranges, B; Eustache, F; Platel, H
2010-02-01
Semantic memory has been investigated in numerous neuroimaging and clinical studies, most of which have used verbal or visual, but only very seldom, musical material. Clinical studies have suggested that there is a relative neural independence between verbal and musical semantic memory. In the present study, "musical semantic memory" is defined as memory for "well-known" melodies without any knowledge of the spatial or temporal circumstances of learning, while "verbal semantic memory" corresponds to general knowledge about concepts, again without any knowledge of the spatial or temporal circumstances of learning. Our aim was to compare the neural substrates of musical and verbal semantic memory by administering the same type of task in each modality. We used high-resolution PET H(2)O(15) to observe 11 young subjects performing two main tasks: (1) a musical semantic memory task, where the subjects heard the first part of familiar melodies and had to decide whether the second part they heard matched the first, and (2) a verbal semantic memory task with the same design, but where the material consisted of well-known expressions or proverbs. The musical semantic memory condition activated the superior temporal area and inferior and middle frontal areas in the left hemisphere and the inferior frontal area in the right hemisphere. The verbal semantic memory condition activated the middle temporal region in the left hemisphere and the cerebellum in the right hemisphere. We found that the verbal and musical semantic processes activated a common network extending throughout the left temporal neocortex. In addition, there was a material-dependent topographical preference within this network, with predominantly anterior activation during musical tasks and predominantly posterior activation during semantic verbal tasks. Copyright (c) 2009 Elsevier Inc. All rights reserved.
P/M Processing of Rare Earth Modified High Strength Steels.
1980-12-01
AA094 165 TRW INC CLEVELAND OH MATERIALS TECHNOLOGY F 6 P/N PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS DEC So A A SHEXM(ER NOOŕT76-C...LEVEL’ (7 PIM PROCESSING OF RARE EARTH MODIFIED HIGH STRENGTH STEELS By A. A. SHEINKER 00 TECHNICAL REPORT Prepared for Office of Naval Research...Processing of Rare Earth Modified High 1 Technical -’ 3t eC"Strength Steels * 1dc4,093Se~ 9PEFRIGOGNZTONAEADADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Cordonnier, Aline; Barnier, Amanda J; Sutton, John
2016-01-01
Research on future thinking has emphasized how episodic details from memories are combined to create future thoughts, but has not yet examined the role of semantic scripts. In this study, participants recalled how they planned a past camping trip in Australia (past planning task) and imagined how they would plan a future camping trip (future planning task), set either in a familiar (Australia) or an unfamiliar (Antarctica) context. Transcripts were segmented into information units that were coded according to semantic category (e.g., where, when, transport, material, actions). Results revealed a strong interaction between tasks and their presentation order. Starting with the past planning task constrained the future planning task when the context was familiar. Participants generated no new information when the future camping trip was set in Australia and completed second (after the past planning task). Conversely, starting with the future planning task facilitated the past planning task. Participants recalled more information units of their past plan when the past planning task was completed second (after the future planning task). These results shed new light on the role of scripts in past and future thinking and on how past and future thinking processes interact.
A Compilation of MATLAB Scripts and Functions for MACGMC Analyses
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Bednarcyk, Brett A.; Mital, Subodh K.
2017-01-01
The primary aim of the current effort is to provide scripts that automate many of the repetitive pre- and post-processing tasks associated with composite materials analyses using the Micromechanics Analysis Code with the Generalized Method of Cells. This document consists of a compilation of hundreds of scripts that were developed in MATLAB (The Mathworks, Inc., Natick, MA) programming language and consolidated into 16 MATLAB functions. (MACGMC). MACGMC is a composite material and laminate analysis software code developed at NASA Glenn Research Center. The software package has been built around the generalized method of cells (GMC) family of micromechanics theories. The computer code is developed with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated to increase the user friendliness, as well as to make it more robust in terms of input preparation and code execution. Finally, classical lamination theory has been implemented within the software, wherein GMC is used to model the composite material response of each ply. Thus, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. The pre-processing tasks include generation of a multitude of different repeating unit cells (RUCs) for CMCs and PMCs, visualization of RUCs from MACGMC input and output files and generation of the RUC section of a MACGMC input file. The post-processing tasks include visualization of the predicted composite response, such as local stress and strain contours, damage initiation and progression, stress-strain behavior, and fatigue response. In addition to the above, several miscellaneous scripts have been developed that can be used to perform repeated Monte-Carlo simulations to enable probabilistic simulations with minimal manual intervention. This document is formatted to provide MATLAB source files and descriptions of how to utilize them. It is assumed that the user has a basic understanding of how MATLAB scripts work and some MATLAB programming experience.
Kim, Min-Hee; Yoo, Won-Gyu
2015-06-05
According to a recent research, manual working with high levels of static contraction, repetitive loads, or extreme working postures involving the neck and shoulder muscles causes an increased risk of neck and shoulder musculoskeletal disorders. We investigated the effects of the forwardly worktable position on head and shoulder angles and shoulder muscle activity in manual material handling tasks. The forward head and shoulder angles and the activity of upper trapezius, levator scapulae, and middle deltoid muscle activities of 15 workers were measured during performing of manual material handling in two tasks that required different forward head and shoulder angles. The second manual material task required a significantly increased forward head and shoulder angle. The upper trapezius and levator scapulae muscle activity in second manual material task was increased significantly compared with first manual material task. The middle deltoid muscle activity in second manual material task was not significantly different compared with first manual material task. Based on this result, the forward head and shoulder angles while performing manual work need to be considered in selection of the forward distance of a worktable form the body. The high level contractions of the neck and shoulder muscles correlated with neck and shoulder pain. Therefore, the forward distance of a worktable can be an important factor in preventing neck and shoulder pain in manual material handling workers.
Functional anatomy of listening and reading comprehension during development.
Berl, Madison M; Duke, Elizabeth S; Mayo, Jessica; Rosenberger, Lisa R; Moore, Erin N; VanMeter, John; Ratner, Nan Bernstein; Vaidya, Chandan J; Gaillard, William Davis
2010-08-01
Listening and reading comprehension of paragraph-length material are considered higher-order language skills fundamental to social and academic functioning. Using ecologically relevant language stimuli that were matched for difficulty according to developmental level, we analyze the effects of task, age, neuropsychological skills, and post-task performance on fMRI activation and hemispheric laterality. Areas of supramodal language processing are identified, with the most robust region being left-lateralized activation along the superior temporal sulcus. Functionally, this conjunction has a role in semantic and syntactic processing, leading us to refer to this conjunction as "comprehension cortex." Different from adults, supramodal areas for children include less extensive inferior frontal gyrus but more extensive right cerebellum and right temporal pole. Broader neuroanatomical pathways are recruited for reading, reflecting the more active processing and larger set of cognitive demands needed for reading compared to listening to stories. ROI analyses reveal that reading is a less lateralized language task than listening in inferior frontal and superior temporal areas, which likely reflects the difficulty of the task as children in this study are still developing their reading skills. For listening to stories, temporal activation is stable by age four with no correlations with age, neuropsychological skills or post-task performance. In contrast, frontal activation during listening to stories occurs more often in older children, and frontal activation is positively correlated with better performance on comprehension questions, suggesting that the activation of frontal networks may reflect greater integration and depth of story processing. 2010 Elsevier Inc. All rights reserved.
Development of expert system for biobased polymer material selection: food packaging application.
Sanyang, M L; Sapuan, S M
2015-10-01
Biobased food packaging materials are gaining more attention owing to their intrinsic biodegradable nature and renewability. Selection of suitable biobased polymers for food packaging applications could be a tedious task with potential mistakes in choosing the best materials. In this paper, an expert system was developed using Exsys Corvid software to select suitable biobased polymer materials for packaging fruits, dry food and dairy products. If - Then rule based system was utilized to accomplish the material selection process whereas a score system was formulated to facilitate the ranking of selected materials. The expert system selected materials that satisfied all constraints and selection results were presented in suitability sequence depending on their scores. The expert system selected polylactic acid (PLA) as the most suitable material.
Is lorazepam-induced amnesia specific to the type of memory or to the task used to assess it?
File, S E; Sharma, R; Shaffer, J
1992-01-01
Retrieval tasks can be classified along a continuum from conceptually driven (relying on the encoded meaning of the material) to data driven (relying on the perceptual record and surface features of the material). Since most explicit memory tests are conceptually driven and most implicit memory tests are data driven there has been considerable confounding of the memory system being assessed and the processing required by the retrieval task. The purpose of the present experiment was to investigate the effects of lorazepam on explicit memory, using both types of retrieval task. Lorazepam (2.5 mg) or matched placebo was administered to healthy volunteers and changes in subjective mood ratings and in performance in tests of memory were measured. Lorazepam made subjects significantly more drowsy, feeble, clumsy, muzzy, lethargic and mentally slow. Lorazepam significantly impaired recognition memory for slides, impaired the number of words remembered when the retrieval was cued by the first two letters and reduced the number of pictures remembered when retention was cued with picture fragments. Thus episodic memory was impaired whether the task used was conceptually driven (as in slide recognition) or data driven, as in the other two tasks. Analyses of covariance indicated that the memory impairments were independent of increased sedation, as assessed by self-ratings. In contrast to the deficits in episodic memory, there were no lorazepam-induced impairments in tests of semantic memory, whether this was measured in the conceptually driven task of category generation or in the data-driven task of wordstem completion.
Machinability of nickel based alloys using electrical discharge machining process
NASA Astrophysics Data System (ADS)
Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.
2018-04-01
The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.
Flat-plate solar array project. Volume 2: Silicon material
NASA Technical Reports Server (NTRS)
Lutwack, R.
1986-01-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
Flat-plate solar array project. Volume 2: Silicon material
NASA Astrophysics Data System (ADS)
Lutwack, R.
1986-10-01
The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
E.T.; James P. Meagher; Prasad Apte
2002-12-31
This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less
Proposal of Constraints Analysis Method Based on Network Model for Task Planning
NASA Astrophysics Data System (ADS)
Tomiyama, Tomoe; Sato, Tatsuhiro; Morita, Toyohisa; Sasaki, Toshiro
Deregulation has been accelerating several activities toward reengineering business processes, such as railway through service and modal shift in logistics. Making those activities successful, business entities have to regulate new business rules or know-how (we call them ‘constraints’). According to the new constraints, they need to manage business resources such as instruments, materials, workers and so on. In this paper, we propose a constraint analysis method to define constraints for task planning of the new business processes. To visualize each constraint's influence on planning, we propose a network model which represents allocation relations between tasks and resources. The network can also represent task ordering relations and resource grouping relations. The proposed method formalizes the way of defining constraints manually as repeatedly checking the network structure and finding conflicts between constraints. Being applied to crew scheduling problems shows that the method can adequately represent and define constraints of some task planning problems with the following fundamental features, (1) specifying work pattern to some resources, (2) restricting the number of resources for some works, (3) requiring multiple resources for some works, (4) prior allocation of some resources to some works and (5) considering the workload balance between resources.
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
Memory and Processing Limits in Decision-Making.
ERIC Educational Resources Information Center
Klapp, Stuart T.
According to the classical working memory perspective, tasks such as command and control decision-making should be performed less effectively if extraneous material must be retained in short-term memory. Only marginal support for this prediction was obtained for a simulation involving scheduling trucking and transportation missions, although…
The Logistics Planning Process of the Far East Air Material Command during the Korean War
1988-09-01
Figures . . ........... ........ vii Abstract ........... ........................ viii I. Introduction to the Research ............. 1 Overview ...31 Particular Method . . . ........... 32 II. The National Defense Planning Structure. . . ... 34 Overview ...Air Materiel Command’s Logistics Plans and Policy Making Response to Korean Tasking . . . . ........ 83 Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, W Jr
1981-07-01
This report describes results of a parametric study of quantities of radioactive materials that might be discharged by a tornado-generated depressurization on contaminated process cells within the presently inoperative Nuclear Fuel Services' (NFS) fuel reprocessing facility near West Valley, New York. The study involved the following tasks: determining approximate quantities of radioactive materials in the cells and characterizing particle-size distribution; estimating the degree of mass reentrainment from particle-size distribution and from air speed data presented in Part 1; and estimating the quantities of radioactive material (source term) released from the cells to the atmosphere. The study has shown that improperlymore » sealed manipulator ports in the Process Mechanical Cell (PMC) present the most likely pathway for release of substantial quantities of radioactive material in the atmosphere under tornado accident conditions at the facility.« less
Application of materials database (MAT.DB.) to materials education
NASA Technical Reports Server (NTRS)
Liu, Ping; Waskom, Tommy L.
1994-01-01
Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.
The growth of materials processing in space - A history of government support for new technology
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.
1978-01-01
An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.
Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca
2011-01-01
We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (a) a sequential learning task involving complex structured sequences, and (b) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic processing, was found for structural incongruencies in both sequential learning as well as natural language, and with similar topographical distributions. Additionally, a left anterior negativity (LAN) was observed for language but not for sequential learning. These results are interpreted as an indication that the P600 provides an index of violations and the cost of integration of expectations for upcoming material when processing complex sequential structure. We conclude that the same neural mechanisms may be recruited for both syntactic processing of linguistic stimuli and sequential learning of structured sequence patterns more generally. PMID:23678205
Didactical design based on sharing and jumping tasks for senior high school chemistry learning
NASA Astrophysics Data System (ADS)
Fatimah, I.; Hendayana, S.; Supriatna, A.
2018-05-01
The purpose of this research is to develop the didactical design of senior high school chemistry learning based on sharing and jumping tasks in shift equilibrium chemistry. Sharing tasks used to facilitate students slow learners with help by other students of fast learners so they engage in learning. While jumping tasks used to challenge fast learners students so they didn’t feel bored in learning. In developing the didactic design, teacher activity is not only to focus on students and learning materials but also on the relationship between students and learning materials. The results of the analysis teaching plan of shift equilibrium chemistry in attached Senior High School to Indonesia University of Education showed that the learning activities more focus on how the teacher teaches instead of how the process of students’ learning. The use of research method is didactical design research (DDR). Didactical design consisted of three steps i.e. (a) analysing didactical condition before learning, (b) analyzing metapedadidactical, and (c) analyzing retrospective. Data were collected by test, observations, interviews, documentation and recordings (audio and video).The result showed that the didactical design on shift equilibrium chemistry was valid.
Impact damage in filament wound composite bottles
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.
1993-01-01
Increasingly, composite materials are being used in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. While experimental studies of the post-impact performance of filament wound composite motor cases haven been proven performed (2,3), scaling impact data from small specimens to full scale structures has proven difficult. If such a scaling methodology is to be achieved, an increased understanding of the damage processes which influence residual strength is required. The study described herein was part of an ongoing investigation of damage development and reduction of tensile strength in filament wound composites subjected to low velocity impacts. The present study, which focused on documenting the damage that develops in filament wound composites as a result of such impacts, included two distinct tasks. The first task was to experimentally assess impact damage in small, filament wound pressure bottles using x-ray radiography. The second task was to study the feasibility of using digital image processing techniques to assist in determining the 3-D distribution of damage from stereo x-ray pairs.
2016-02-29
A-E) Ring Resonators (RR); (F) Optically Pumped Laser in RR; G) Coupled RR; H) Ultra-High Q-factor [942...tendency of particulates suspended in coffee to move towards the edges of a coffee spill, causing a ring -like stain after the solvent has evaporated...variety of functions, including to make the surface non-sticky (anti-blocking), to allow the surfaces to slide over one another ( slip aid), to cause the
A Computational Model of Spatial Visualization Capacity
ERIC Educational Resources Information Center
Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.
2008-01-01
Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…
Infant Statistical-Learning Ability Is Related to Real-Time Language Processing
ERIC Educational Resources Information Center
Lany, Jill; Shoaib, Amber; Thompson, Abbie; Estes, Katharine Graf
2018-01-01
Infants are adept at learning statistical regularities in artificial language materials, suggesting that the ability to learn statistical structure may support language development. Indeed, infants who perform better on statistical learning tasks tend to be more advanced in parental reports of infants' language skills. Work with adults suggests…
Working Memory and Binding in Sentence Recall
ERIC Educational Resources Information Center
Baddeley, A. D.; Hitch, G. J.; Allen, R. J.
2009-01-01
A series of experiments explored whether chunking in short-term memory for verbal materials depends on attentionally limited executive processes. Secondary tasks were used to disrupt components of working memory and chunking was indexed by the sentence superiority effect, whereby immediate recall is better for sentences than word lists. To…
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1982-01-01
The failure-analysis process was organized into a more specific set of long-term degradation steps so that material property change can be differentiated from module damage and module failure. Increasing module performance and life are discussed. A polymeric aging computer model is discussed. Early detection of polymer surface reactions due to aging is reported.
Phonics Instruction for Disabled Learners: Applying Theory to Method. Technical Report # 7.
ERIC Educational Resources Information Center
Fayne, Harriet R.
To design effective remedial phonics instruction, it is necessary to examine both learner characteristics and task requirements. The paper integrates research related to information processing and psycholinguistics to formulate questions which can be used to evaluate techniques and materials used with a learning disabled population. Information…
A computational study of whole-brain connectivity in resting state and task fMRI
Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria
2014-01-01
Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491
Lavigne, Katie M.; Rapin, Lucile A.; Metzak, Paul D.; Whitman, Jennifer C.; Jung, Kwanghee; Dohen, Marion; Lœvenbruck, Hélène; Woodward, Todd S.
2015-01-01
Background: Task-based functional neuroimaging studies of schizophrenia have not yet replicated the increased coordinated hyperactivity in speech-related brain regions that is reported with symptom-capture and resting-state studies of hallucinations. This may be due to suboptimal selection of cognitive tasks. Methods: In the current study, we used a task that allowed experimental manipulation of control over verbal material and compared brain activity between 23 schizophrenia patients (10 hallucinators, 13 nonhallucinators), 22 psychiatric (bipolar), and 27 healthy controls. Two conditions were presented, one involving inner verbal thought (in which control over verbal material was required) and another involving speech perception (SP; in which control verbal material was not required). Results: A functional connectivity analysis resulted in a left-dominant temporal-frontal network that included speech-related auditory and motor regions and showed hypercoupling in past-week hallucinating schizophrenia patients (relative to nonhallucinating patients) during SP only. Conclusions: These findings replicate our previous work showing generalized speech-related functional network hypercoupling in schizophrenia during inner verbal thought and SP, but extend them by suggesting that hypercoupling is related to past-week hallucination severity scores during SP only, when control over verbal material is not required. This result opens the possibility that practicing control over inner verbal thought processes may decrease the likelihood or severity of hallucinations. PMID:24553150
The search for CFC alternatives is over?
NASA Technical Reports Server (NTRS)
Crawford, Tim
1995-01-01
The Electronics Manufacturing Productivity Facility (EMPF) is a U.S. Navy Center of Excellence tasked to do research in electronics manufacturing. For the past seven years, the EMPF has performed extensive research in various cleaning materials and processes that have recently been made available to printed circuit board assemblers. This paper outlines our research and points out the positive and negative aspects that need to be considered when choosing an alternative process.
The role of controlled attention on recall in major depression
Ellis, Alissa J.; Wells, Tony T.; Vanderlind, W. Michael; Beevers, Christopher G.
2013-01-01
Information processing biases are hallmark features of major depressive disorder (MDD). Depressed individuals display biased memory and attention for negative material. Given that memory is highly dependent on attention for initial encoding, understanding the interplay of these processes may provide important insight into mechanisms that produce memory biases in depression. In particular, attentional control—the ability to selectively attend to task-relevant information by both inhibiting the processing of irrelevant information and disengaging attention from irrelevant material—may be one area of impairment in MDD. In the current study, clinically depressed (MDD: n = 15) and never depressed (non- MDD: n = 22) participants’ line of visual gaze was assessed while participants viewed positive and negative word pairs. For each word pair, participants were instructed to attend to one word (target) and ignore one word (distracter). Free recall of study stimuli was then assessed. Depressed individuals displayed greater recall of negatively valenced target words following the task. Although there were no group differences in attentional control in the context of negative words, attention to negative targets mediated the relationship between depression status and recall of negative words. Results suggest a stronger link between attention and memory for negative material in MDD. PMID:24006889
Measurement of the Electron Density and the Attachment Rate Coefficient in Silane/Helium Discharges.
1986-09-01
materials -- in this case hydrogenated amorphous silicon . One of the biggest problems in such a task is the fact that the discharge creates complex radicals...electron density is enhanced -- even on a time-averaged basis, and the silicon deposition rate is also increased. The physical process for the density...etching and deposition of semiconductor materials. Plasma etching (also known as dry etching) Of silicon using flourine bearing gases has made it possible
New evidence of a rhythmic priming effect that enhances grammaticality judgments in children.
Chern, Alexander; Tillmann, Barbara; Vaughan, Chloe; Gordon, Reyna L
2018-09-01
Musical rhythm and the grammatical structure of language share a surprising number of characteristics that may be intrinsically related in child development. The current study aimed to understand the potential influence of musical rhythmic priming on subsequent spoken grammar task performance in children with typical development who were native speakers of English. Participants (ages 5-8 years) listened to rhythmically regular and irregular musical sequences (within-participants design) followed by blocks of grammatically correct and incorrect sentences upon which they were asked to perform a grammaticality judgment task. Rhythmically regular musical sequences improved performance in grammaticality judgment compared with rhythmically irregular musical sequences. No such effect of rhythmic priming was found in two nonlinguistic control tasks, suggesting a neural overlap between rhythm processing and mechanisms recruited during grammar processing. These findings build on previous research investigating the effect of rhythmic priming by extending the paradigm to a different language, testing a younger population, and employing nonlanguage control tasks. These findings of an immediate influence of rhythm on grammar states (temporarily augmented grammaticality judgment performance) also converge with previous findings of associations between rhythm and grammar traits (stable generalized grammar abilities) in children. Taken together, the results of this study provide additional evidence for shared neural processing for language and music and warrant future investigations of potentially beneficial effects of innovative musical material on language processing. Copyright © 2018 Elsevier Inc. All rights reserved.
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
Standard Isotherm Fit Information for Dry CO2 on Sorbents for 4-Bed Molecular Sieve
NASA Technical Reports Server (NTRS)
Cmarik, G. E.; Son, K. N.; Knox, J. C.
2017-01-01
Onboard the ISS, one of the systems tasked with removal of metabolic carbon dioxide (CO2) is a 4-bed molecular sieve (4BMS) system. In order to enable a 4-person mission to succeed, systems for removal of metabolic CO2 must reliably operate for several years while minimizing power, mass, and volume requirements. This minimization can be achieved through system redesign and/or changes to the separation material(s). A material screening process has identified the most reliable sorbent materials for the next 4BMS. Sorbent characterization will provide the information necessary to guide system design by providing inputs for computer simulations.
Microgravity Manufacturing Via Fused Deposition
NASA Technical Reports Server (NTRS)
Cooper, K. G.; Griffin, M. R.
2003-01-01
Manufacturing polymer hardware during space flight is currently outside the state of the art. A process called fused deposition modeling (FDM) can make this approach a reality by producing net-shaped components of polymer materials directly from a CAE model. FDM is a rapid prototyping process developed by Stratasys, Inc.. which deposits a fine line of semi-molten polymer onto a substrate while moving via computer control to form the cross-sectional shape of the part it is building. The build platen is then lowered and the process is repeated, building a component directly layer by layer. This method enables direct net-shaped production of polymer components directly from a computer file. The layered manufacturing process allows for the manufacture of complex shapes and internal cavities otherwise impossible to machine. This task demonstrated the benefits of the FDM technique to quickly and inexpensively produce replacement components or repair broken hardware in a Space Shuttle or Space Station environment. The intent of the task was to develop and fabricate an FDM system that was lightweight, compact, and required minimum power consumption to fabricate ABS plastic hardware in microgravity. The final product of the shortened task turned out to be a ground-based breadboard device, demonstrating miniaturization capability of the system.
Controlling conflict from interfering long-term memory representations.
Jost, Kerstin; Khader, Patrick H; Düsel, Peter; Richter, Franziska R; Rohde, Kristina B; Bien, Siegfried; Rösler, Frank
2012-05-01
Remembering is more than an activation of a memory trace. As retrieval cues are often not uniquely related to one specific memory, cognitive control should come into play to guide selective memory retrieval by focusing on relevant while ignoring irrelevant information. Here, we investigated, by means of EEG and fMRI, how the memory system deals with retrieval interference arising when retrieval cues are associated with two material types (faces and spatial positions), but only one is task-relevant. The topography of slow EEG potentials and the fMRI BOLD signal in posterior storage areas indicated that in such situations not only the relevant but also the irrelevant material becomes activated. This results in retrieval interference that triggers control processes mediated by the medial and lateral PFC, which are presumably involved in biasing target representations by boosting the task-relevant material. Moreover, memory-based conflict was found to be dissociable from response conflict that arises when the relevant and irrelevant materials imply different responses. The two types of conflict show different activations in the medial frontal cortex, supporting the claim of domain-specific prefrontal control systems.
Software For Design Of Life-Support Systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1991-01-01
Design Assistant Workstation (DAWN) computer program is prototype of expert software system for analysis and design of regenerative, physical/chemical life-support systems that revitalize air, reclaim water, produce food, and treat waste. Incorporates both conventional software for quantitative mathematical modeling of physical, chemical, and biological processes and expert system offering user stored knowledge about materials and processes. Constructs task tree as it leads user through simulated process, offers alternatives, and indicates where alternative not feasible. Also enables user to jump from one design level to another.
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1983-01-01
Development of a given technology for national defense and large systems developments when the task is too large or risky for entrepreneurs, yet is clearly in the best interest of the nation are discussed. Advanced research to identify areas of interest was completed. Examples of commercial opportunities are the McDonnell-Douglas Corporation purification process for pharmaceutical products and the Microgravity Research Associates process for growing gallium arsenide crystals in space.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.
1982-01-01
The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, P. B.; Baum, B.; Schnitzer, H. S.
1979-12-01
Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. This report presents the results of a cost analysis of candidate potting compounds for long life solar module encapsulation. Additionally, the two major encapsulation processes, sheet lamination and liquid casting, are costed on the basis of a large scale production facility. Potting compounds studied include EVA, sheet, clear; EVA,more » sheet, pigmented; EPDM, sheet, clear; Aliphatic urethane, syrup; PVC Plastisol; Butyl acrylate, syrup; and Butyl acrylate, sheet.« less
Process research of non-CZ silicon material
NASA Technical Reports Server (NTRS)
1983-01-01
High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.
K basins sludge removal sludge pretreatment system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, H.L.
1997-06-12
The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task formore » this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08.« less
Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
Kochergin, Vadim; Miller, Keith
2011-01-01
Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lordi, Vincenzo
The aims of this project are to enable rational materials design for select high-payoff challenges in radiation detection materials by using state-of-the-art predictive atomistic modeling techniques. Three specific high-impact challenges are addressed: (i) design and optimization of electrical contact stacks for TlBr detectors to stabilize temporal response at room-temperature; (ii) identification of chemical design principles of host glass materials for large-volume, low-cost, highperformance glass scintillators; and (iii) determination of the electrical impacts of dislocation networks in Cd 1-xZn xTe (CZT) that limit its performance and usable single-crystal volume. The specific goals are to establish design and process strategies to achievemore » improved materials for high performance detectors. Each of the major tasks is discussed below in three sections, which include the goals for the task and a summary of the major results, followed by a listing of publications that contain the full details, including details of the methodologies used. The appendix lists 12 conference presentations given for this project, including 1 invited talk and 1 invited poster.« less
Fuel conditioning facility zone-to-zone transfer administrative controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, C. L.
2000-06-21
The administrative controls associated with transferring containers from one criticality hazard control zone to another in the Argonne National Laboratory (ANL) Fuel Conditioning Facility (FCF) are described. FCF, located at the ANL-West site near Idaho Falls, Idaho, is used to remotely process spent sodium bonded metallic fuel for disposition. The process involves nearly forty widely varying material forms and types, over fifty specific use container types, and over thirty distinct zones where work activities occur. During 1999, over five thousand transfers from one zone to another were conducted. Limits are placed on mass, material form and type, and container typesmore » for each zone. Ml material and containers are tracked using the Mass Tracking System (MTG). The MTG uses an Oracle database and numerous applications to manage the database. The database stores information specific to the process, including material composition and mass, container identification number and mass, transfer history, and the operators involved in each transfer. The process is controlled using written procedures which specify the zone, containers, and material involved in a task. Transferring a container from one zone to another is called a zone-to-zone transfer (ZZT). ZZTs consist of four distinct phases, select, request, identify, and completion.« less
Process Feasibility Study in Support of Silicon Material Task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, L.M.
Presently some methods of HTS-conductors processing are under study in the authors laboratory. ``Powder-in-tube`` (PIT), ``Jelly-roll``, electrophorethis are among them. PIT process has developed predominantly both in a view of the achieved J{sub c} values Bi-2223 phase was used as a core material for these tapes. Since the main purpose of the task order was to enhance the development of long length high temperature superconductor tapes, the authors have considered reasonable to lay the perfection idea of the PIT process step by step or tape by tape. To realize it they have assumed, keeping stable the basic scheme of PITmore » process, to vary some technological parameters which are as follows: (1) type of initial powder; (2) sheath material; (3) tape construction (filaments number, cross section e.a.); and (4) processing regimes. This report covers the fabrication process and characteristics of the produced conductors.« less
Koster, Ernst H W; De Raedt, Rudi; Leyman, Lemke; De Lissnyder, Evi
2010-03-01
Recent studies indicate that depression is characterized by mood-congruent attention bias at later stages of information-processing. Moreover, depression has been associated with enhanced recall of negative information. The present study tested the coherence between attention and memory bias in dysphoria. Stable dysphoric (n = 41) and non-dysphoric (n = 41) undergraduates first performed a spatial cueing task that included negative, positive, and neutral words. Words were presented for 250 ms under conditions that allowed or prevented elaborate processing. Memory for the words presented in the cueing task was tested using incidental free recall. Dysphoric individuals exhibited an attention bias for negative words in the condition that allowed elaborate processing, with the attention bias for negative words predicting free recall of negative words. Results demonstrate the coherence of attention and memory bias in dysphoric individuals and provide suggestions on the influence of attention bias on further processing of negative material. 2009 Elsevier Ltd. All rights reserved.
Bracco, Laura; Bessi, Valentina; Alari, Fabiana; Sforza, Angela; Barilaro, Alessandro; Marinoni, Marinella
2011-06-01
Previous neuropsychological, lesional and functional imaging studies deal with the lateralization of memory processes, suggesting that they could be determined by the stage of processing (encoding vs retrieval) or by content (verbal vs non-verbal stimuli). The aims of the present study were: 1) to investigate if tasks that can be carried out using different strategies depending on the verbalizability of the material induce a lateralization of the mean cerebral blood flow velocity (mCBFV) in the middle cerebral arteries (MCAs), as monitored by a functional transcranial Doppler (fTCD); 2) to evaluate if these patterns of cerebral activation differ in relation to age, gender and task performance. Using TCD bilateral monitoring, we recorded mCBFV variations in 35 male and 35 female healthy, right-handed volunteers, classified as "young" (age range 21-40 years, n=35) or "old"(age range 41-60 years, n=35), performing four different cognitive tasks: encoding and recognition of Geometric Figures (GF), encoding and recall of Object Localization (OL) on a picture, encoding of a verbal Room Description (RD) and Arithmetic Skill (AS). We found a significant right lateralization for the OL recall phase, and a significant left lateralization for RD and AS. When we took into consideration gender, age and performance, there was a strong effect of age on both OL encoding and recall phase, with significant right lateralization in young volunteers not seen in the older ones. No difference in gender was detected. We found a gender×performance interaction for RD, with poor performance females showing significant left lateralization. According to our findings, hemispheric lateralization during memory encoding is material specific in both men and women, depending on the verbalizability of the material. mCBFV right lateralization during scene encoding and recall appears lost in older people, suggesting that healthy elderly could take advantage of mixed verbal and non-verbal strategies. Copyright © 2010 Elsevier Srl. All rights reserved.
Hamilton, A Cris; Martin, Randi C
2007-01-01
Previous research has indicated that patients with semantic short-term memory (STM) deficits demonstrate unusual intrusions of previously presented material during serial recall tasks (Martin and Lesch, 1996). These intrusions suggest excessive proactive interference (PI) from previous lists. Here, we explore one such patient's susceptibility to PI. Experiment 1 demonstrated patient M.L.'s extreme susceptibility to PI using a probe recognition task that manipulates the recency of negative probes (the recent negatives task). When stimuli consisted of letters, M.L. showed greatly exaggerated effects of PI, well outside of the range of healthy control participants. Experiment 2 used a variation of the recent negatives task to examine the relative contribution of semantic and phonological relatedness in PI. This task manipulated semantic and phonological relatedness of probes and recently presented list items. Relative to healthy control participants, patient M.L. showed exaggerated interference effects for both phonological and semantically related probes, both for probes related to the current list and for probes related to the previous list. These data have important implications for theories of semantic STM deficits. Specifically, these data suggest that it is not the rapid decay of semantic representations that is responsible for difficulties in short-term recall, but rather the abnormal persistence of previously presented material. We propose that this susceptibility to PI is the result of a deficit in control processes acting on STM.
Theory of sampling: four critical success factors before analysis.
Wagner, Claas; Esbensen, Kim H
2015-01-01
Food and feed materials characterization, risk assessment, and safety evaluations can only be ensured if QC measures are based on valid analytical data, stemming from representative samples. The Theory of Sampling (TOS) is the only comprehensive theoretical framework that fully defines all requirements to ensure sampling correctness and representativity, and to provide the guiding principles for sampling in practice. TOS also defines the concept of material heterogeneity and its impact on the sampling process, including the effects from all potential sampling errors. TOS's primary task is to eliminate bias-generating errors and to minimize sampling variability. Quantitative measures are provided to characterize material heterogeneity, on which an optimal sampling strategy should be based. Four critical success factors preceding analysis to ensure a representative sampling process are presented here.
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Marshall Sanderson
2006-06-01
This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more significant percentage of the mercury detected was in the oxidized form, particularly from the stack near the product discharge end of the kiln. However, this represented a very small percentage of the overall mercury loss.« less
Szardenings, Carsten; Kuhn, Jörg-Tobias; Ranger, Jochen; Holling, Heinz
2017-01-01
The respective roles of the approximate number system (ANS) and an access deficit (AD) in developmental dyscalculia (DD) are not well-known. Most studies rely on response times (RTs) or accuracy (error rates) separately. We analyzed the results of two samples of elementary school children in symbolic magnitude comparison (MC) and non-symbolic MC using a diffusion model. This approach uses the joint distribution of both RTs and accuracy in order to synthesize measures closer to ability and response caution or response conservatism. The latter can be understood in the context of the speed-accuracy tradeoff: It expresses how much a subject trades in speed for improved accuracy. We found significant effects of DD on both ability (negative) and response caution (positive) in MC tasks and a negative interaction of DD with symbolic task material on ability. These results support that DD subjects suffer from both an impaired ANS and an AD and in particular support that slower RTs of children with DD are indeed related to impaired processing of numerical information. An interaction effect of symbolic task material and DD (low mathematical ability) on response caution could not be refuted. However, in a sample more representative of the general population we found a negative association of mathematical ability and response caution in symbolic but not in non-symbolic task material. The observed differences in response behavior highlight the importance of accounting for response caution in the analysis of MC tasks. The results as a whole present a good example of the benefits of a diffusion model analysis.
Szardenings, Carsten; Kuhn, Jörg-Tobias; Ranger, Jochen; Holling, Heinz
2018-01-01
The respective roles of the approximate number system (ANS) and an access deficit (AD) in developmental dyscalculia (DD) are not well-known. Most studies rely on response times (RTs) or accuracy (error rates) separately. We analyzed the results of two samples of elementary school children in symbolic magnitude comparison (MC) and non-symbolic MC using a diffusion model. This approach uses the joint distribution of both RTs and accuracy in order to synthesize measures closer to ability and response caution or response conservatism. The latter can be understood in the context of the speed-accuracy tradeoff: It expresses how much a subject trades in speed for improved accuracy. We found significant effects of DD on both ability (negative) and response caution (positive) in MC tasks and a negative interaction of DD with symbolic task material on ability. These results support that DD subjects suffer from both an impaired ANS and an AD and in particular support that slower RTs of children with DD are indeed related to impaired processing of numerical information. An interaction effect of symbolic task material and DD (low mathematical ability) on response caution could not be refuted. However, in a sample more representative of the general population we found a negative association of mathematical ability and response caution in symbolic but not in non-symbolic task material. The observed differences in response behavior highlight the importance of accounting for response caution in the analysis of MC tasks. The results as a whole present a good example of the benefits of a diffusion model analysis. PMID:29379450
Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1973-01-01
A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.
NASA Astrophysics Data System (ADS)
Kaleva Oikarinen, Juho; Järvelä, Sanna; Kaasila, Raimo
2014-04-01
This design-based research project focuses on documenting statistical learning among 16-17-year-old Finnish upper secondary school students (N = 78) in a computer-supported collaborative learning (CSCL) environment. One novel value of this study is in reporting the shift from teacher-led mathematical teaching to autonomous small-group learning in statistics. The main aim of this study is to examine how student collaboration occurs in learning statistics in a CSCL environment. The data include material from videotaped classroom observations and the researcher's notes. In this paper, the inter-subjective phenomena of students' interactions in a CSCL environment are analysed by using a contact summary sheet (CSS). The development of the multi-dimensional coding procedure of the CSS instrument is presented. Aptly selected video episodes were transcribed and coded in terms of conversational acts, which were divided into non-task-related and task-related categories to depict students' levels of collaboration. The results show that collaborative learning (CL) can facilitate cohesion and responsibility and reduce students' feelings of detachment in our classless, periodic school system. The interactive .pdf material and collaboration in small groups enable statistical learning. It is concluded that CSCL is one possible method of promoting statistical teaching. CL using interactive materials seems to foster and facilitate statistical learning processes.
2015-10-01
journal articles and papers, and is referenced in the text. 15. SUBJECT TERMS high entropy alloys, titanium, inertia welding 16. SECURITY...Backscatter electron image and (b) inverse pole figure map of the IFW region showing transition from a flat (right) to wavy (left) weld interface...appearance. The weld interface is outlined by a white line in figure (b). The LSHR alloy is below the IFW interface and it is darker than the Mar-M247
ERIC Educational Resources Information Center
Klopping, Paul H.
This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…
NASA Astrophysics Data System (ADS)
Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk
2017-05-01
Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.
Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition.
Díaz, Begoña; Blank, Helen; von Kriegstein, Katharina
2018-05-14
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Rodrigo, Ma. Mercedes T.; Baker, Ryan S. J. D.; Rossi, Lisa
2013-01-01
Background: Off-task behavior can be defined as any behavior that does not involve the learning task or material, or where learning from the material is not the primary goal. One suggested path for understanding how to address off-task behavior is to study classrooms where off-task behavior is less common, particularly in Asia, in order to…
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1988-01-01
This is the third annual technical report for the program entitled, Improved Silicon Carbide for Advanced Heat Engines, for the period February 16, 1987 to February 15, 1988. The objective of the original program was the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. Injection molding is the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals of the revised program are to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in 4-point loading. Two tasks are discussed: Task 1 which involves materials and process improvements, and Task 2 which is a MOR bar matrix to improve strength and reliability. Many statistically designed experiments were completed under task 1 which improved the composition of the batches, the mixing of the powders, the sinter and anneal cycles. The best results were obtained by an attritor mixing process which yielded strengths in excess of 550 MPa (80 ksi) and an individual Weibull modulus of 16.8 for a 9-sample group. Strengths measured at 1200 and 1400 C were equal to the room temperature strength. Annealing of machined test bars significantly improved the strength. Molding yields were measured and flaw distributions were observed to follow a Poisson process. The second iteration of the Task 2 matrix experiment is described.
Foti, Francesca; Sdoia, Stefano; Menghini, Deny; Mandolesi, Laura; Vicari, Stefano; Ferlazzo, Fabio; Petrosini, Laura
2015-01-01
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities. PMID:25852605
Creep-fatigue life prediction for engine hot section materials (isotropic)
NASA Technical Reports Server (NTRS)
Moreno, V.
1982-01-01
The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.
Encoding-related brain activity during deep processing of verbal materials: a PET study.
Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi
2002-12-01
The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.
NASA Astrophysics Data System (ADS)
Wang, Haixia; Suo, Tongchuan; Wu, Xiaolin; Zhang, Yue; Wang, Chunhua; Yu, Heshui; Li, Zheng
2018-03-01
The control of batch-to-batch quality variations remains a challenging task for pharmaceutical industries, e.g., traditional Chinese medicine (TCM) manufacturing. One difficult problem is to produce pharmaceutical products with consistent quality from raw material of large quality variations. In this paper, an integrated methodology combining the near infrared spectroscopy (NIRS) and dynamic predictive modeling is developed for the monitoring and control of the batch extraction process of licorice. With the spectra data in hand, the initial state of the process is firstly estimated with a state-space model to construct a process monitoring strategy for the early detection of variations induced by the initial process inputs such as raw materials. Secondly, the quality property of the end product is predicted at the mid-course during the extraction process with a partial least squares (PLS) model. The batch-end-time (BET) is then adjusted accordingly to minimize the quality variations. In conclusion, our study shows that with the help of the dynamic predictive modeling, NIRS can offer the past and future information of the process, which enables more accurate monitoring and control of process performance and product quality.
Process modelling for materials preparation experiments
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Alexander, J. Iwan D.
1993-01-01
The main goals of the research consist of the development of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). Of the tasks described in detail in the original proposal, two remain to be worked on: development of a spectral code for moving boundary problems, and diffusivity measurements on concentrated and supersaturated TGS solutions. During this eighth half-year period, good progress was made on these tasks.
Process modelling for materials preparation experiments
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Alexander, J. Iwan D.
1992-01-01
The development is examined of mathematical tools and measurement of transport properties necessary for high fidelity modeling of crystal growth from the melt and solution, in particular for the Bridgman-Stockbarger growth of mercury cadmium telluride (MCT) and the solution growth of triglycine sulphate (TGS). The tasks include development of a spectral code for moving boundary problems, kinematic viscosity measurements on liquid MCT at temperatures close to the melting point, and diffusivity measurements on concentrated and supersaturated TGS solutions. A detailed description is given of the work performed for these tasks, together with a summary of the resulting publications and presentations.
Reconfigurable manufacturing execution system for pipe cutting
NASA Astrophysics Data System (ADS)
Yin, Y. H.; Xie, J. Y.
2011-08-01
This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubin, R.T.
The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.
Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1972-01-01
Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.
New scheme for image edge detection using the switching mechanism of nonlinear optical material
NASA Astrophysics Data System (ADS)
Pahari, Nirmalya; Mukhopadhyay, Sourangshu
2006-03-01
The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.
Conversion of Questionnaire Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H
During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relativemore » risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.« less
Prehn, Kristin; Heekeren, Hauke R; van der Meer, Elke
2011-02-01
The present study investigates the interaction of cognition and emotion in decision making, using an analogical reasoning task. In this task, two word pairs were presented simultaneously. Each word pair could be characterized by an associative conceptual relation (object, actor, or location relation) as well as an emotional relation (negative, neutral, or positive valence). Both types of relations were equally task-relevant: Participants had to identify both types of relations, to compare them, and to decide whether or not the word pairs were analogous, i.e., corresponding in both conceptual and emotional relations. Behavioral data showed that emotional relations were identified preferentially and faster than conceptual relations. Pupil dilations reflected the descending difficulty of the conditions and were greatest in amplitude when both conceptual and emotional correspondence was shown, intermediate when only one type of relation (either the emotional or the conceptual) corresponded, and least when neither correspondence existed. Additionally, a negative valence of the word material slowed down response times and increased pupil dilation relative to positive and neutral items. In summary, pupil and response time data together support recent (neurobiological) models concerning the interaction of emotion and cognition by showing that affective significance leads to a processing advantage at a cognitively lower level of information processing (here, identification or retrieval of relations from long-term memory) but can also distract people from higher level cognitive processes (here, from the controlled comparison of retrieved relations). Copyright © 2010 Elsevier B.V. All rights reserved.
The mere exposure effect in patients with schizophrenia.
Marie, A; Gabrieli, J D; Vaidya, C; Brown, B; Pratto, F; Zajonc, R B; Shaw, R J
2001-01-01
The mere exposure effect refers to the development of an emotional preference for previously unfamiliar material because of frequent exposure to that material. This study compared schizophrenia subjects (n = 20) to normal controls (n = 21) to determine whether implicit memory, as demonstrated by the mere exposure effect, was intact. Patients with schizophrenia demonstrated a normal preference for both verbal and visual materials seen earlier relative to novel materials, despite impaired performance on a recognition task for explicit memory using similar materials. Previous studies of schizophrenia subjects have shown a dissociation between implicit and explicit memory on verbal tasks. We found a similar dissociation demonstrated by normal functioning on an implicit memory task and impaired functioning on an explicit memory task. Potential implications of these findings are discussed with regard to treatment and rehabilitation.
NASA Technical Reports Server (NTRS)
Trottier, C. Michael
1996-01-01
Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).
SHC Project 3.63, Task 2, Beneficial Use of Waste Materials ...
SHC Project 3.63, Task 2, “Beneficial Use of Waste Materials”, is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. There are 6 primary research areas in Task 2 that cover a broad spectrum of topics germane to the beneficial use of waste materials and address Agency, Office, Region and other client needs. The 6 research areas include: 1) Materials Recovery Technology, 2) Beneficial Use of Materials Optimization, 3) Novel Products from Waste Materials, 4) Land Application of Biosolids, 5) Soil Remediation Amendments and 6) Improved Leaching Methods for More Accurate Prediction of Environmental Release of Metals. The objectives of each research area, their intended products and progress to date will be presented. The products of this Task will enable communities and the Agency to better protect and enhance human health, well-being and the environment for current and future generations, through the reduction in material consumption, reuse, and recycling of materials. This presentation is designed to convey the rational, purpose and planned research in EPAs Safe and Healthy Communities (SHC) National Research Program Project 3.63 (Sustainable Materials Management) Task 2, “Beneficial Use of Waste Materials”, which is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. . This presentation has bee
DOE R&D Accomplishments Database
Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.
1990-04-19
In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
Dedicated tool to assess the impact of a rhetorical task on human body temperature.
Koprowski, Robert; Wilczyński, Sławomir; Martowska, Katarzyna; Gołuch, Dominik; Wrocławska-Warchala, Emilia
2017-10-01
Functional infrared thermal imaging is a method widely used in medicine, including analysis of the mechanisms related to the effect of emotions on physiological processes. The article shows how the body temperature may change during stress associated with performing a rhetorical task and proposes new parameters useful for dynamic thermal imaging measurements MATERIALS AND METHODS: 29 healthy male subjects were examined. They were given a rhetorical task that induced stress. Analysis and processing of collected body temperature data in a spatial resolution of 256×512pixels and a temperature resolution of 0.1°C enabled to show the dynamics of temperature changes. This analysis was preceded by dedicated image analysis and processing methods RESULTS: The presented dedicated algorithm for image analysis and processing allows for fully automated, reproducible and quantitative assessment of temperature changes and time constants in a sequence of thermal images of the patient. When performing the rhetorical task, the temperature rose by 0.47±0.19°C in 72.41% of the subjects, including 20.69% in whom the temperature decreased by 0.49±0.14°C after 237±141s. For 20.69% of the subjects only a drop in temperature was registered. For the remaining 6.89% of the cases, no temperature changes were registered CONCLUSIONS: The performance of the rhetorical task by the subjects causes body temperature changes. The ambiguous temperature response to the given stress factor indicates the complex mechanisms responsible for regulating stressful situations. Stress associated with the examination itself induces body temperature changes. These changes should always be taken into account in the analysis of infrared data. Copyright © 2017 Elsevier B.V. All rights reserved.
Emulating Real-Life Situations with a Play Task to Observe Parenting Skills and Child Behaviors
Rusby, Julie C.; Metzler, Carol W.; Sanders, Matthew R.; Crowley, Ryann
2015-01-01
Play tasks that use standardized procedures and materials are a practical way to assess parenting skills, child behaviors, and the ways in which parents and children interact. We describe a systematic process for developing the Parent–Child Play Task (PCPT) to assess mother–child interactions for a randomized controlled trial on a video-based parenting program. Participants are 307 mothers and their 3-through 6-year-old children who present oppositional and disruptive behavior challenges. The validity of the PCPT was investigated by testing (a) the extent to which the tasks elicit the specific parent and child behaviors of interest, (b) the consistency of individuals’ behavior across the play tasks, and (c) the concurrent associations of the PCPT observed child behaviors and mother reports of child behavior. The different tasks elicited the mother and child behaviors that they were designed to elicit. Behavior consistency across tasks for individual mothers and children was fair to good, with the exception of two task-specific behaviors. Mothers’ guidance (provision of instructions to foster a skill) during the teaching task and children’s interruptions while mother was busy during the questionnaire task were highly task specific. Modest associations were found between observed children’s noncompliance and inappropriate behaviors, and mother-reported conduct problems and oppositional behaviors. Implications for clinical and research assessments are discussed. PMID:25689090
Group interaction and flight crew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton; Helmreich, Robert L.
1988-01-01
The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.
Working memory updating and binding training: Bayesian evidence supporting the absence of transfer.
De Simoni, Carla; von Bastian, Claudia C
2018-06-01
As working memory (WM) predicts a wide range of other abilities, it has become a popular target for training interventions. However, its effectiveness to elicit generalized cognitive benefits is still under debate. Previous research yielded inconsistent findings and focused only little on the mechanisms underlying transfer effects. To disentangle training effects on WM capacity and efficiency, we evaluated near transfer to untrained, structurally different WM tasks and far transfer to closely related abilities (i.e., reasoning, processing speed, task switching, and inhibitory control) in addition to process-specific effects on 3 WM mechanisms (i.e., focus switching, removal of WM contents, and interference resolution). We randomly assigned 197 young adults to 1 of 2 experimental groups (updating or item-to-context binding) or to an active control group practicing visual search tasks. Before and after 5 weeks of adaptive training, performance was assessed measuring each of the cognitive processes and abilities of interest with 4 tasks covering verbal-numerical and visual-spatial materials. Despite the relatively large sample size, large practice effects in the trained tasks, and at least moderate correlations between WM training tasks and transfer measures, we found consistent evidence for the absence of any training-induced improvements across all ranges of transfer and mechanisms. Instead, additional analyses of error patterns and self-reported strategy use indicated that WM training encouraged the development of stimulus-specific expertise and use of paradigm-specific strategies. Thus, the results suggest that the WM training interventions examined here enhanced neither WM capacity nor the WM mechanisms assumed to underlie transfer. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The phonological short-term store-rehearsal system: patterns of impairment and neural correlates.
Vallar, G; Di Betta, A M; Silveri, M C
1997-06-01
Two left brain-damaged patients (L.A. and T.O.) with a selective impairment of auditory-verbal span are reported. Patient L.A. was unable to hold auditory-verbal material in the phonological store component of short-term memory. His performance was however normal on tasks requiring phonological judgements, which specifically involve the phonological output buffer component of the rehearsal process. He also showed some evidence that rehearsal contributed to the immediate retention of auditory-verbal material. Patient T.O. never made use of the rehearsal process in tasks assessing both immediate retention and the ability to make phonological judgements, but the memory capacity of the phonological short-term store was comparatively preserved. These contrasting patterns of impairment suggest that the phonological store component of verbal short-term memory was severely impaired in patient L.A., and spared, at least in part, in patient T.O. The rehearsal process was preserved in L.A., and primarily defective in T.O. The localisation of the lesions in the left hemisphere (L.A.: inferior parietal lobule, superior and middle temporal gyri; T.O.: sub-cortical premotor and rolandic regions, anterior insula) suggests that these two sub-components of phonological short-term memory have discrete anatomical correlates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni
This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacialmore » tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.« less
Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.;
1996-01-01
Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.
MHSS: a material handling system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomernacki, L.; Hollstien, R.B.
1976-04-07
A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can bemore » adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)« less
ERIC Educational Resources Information Center
Rizzo, Margaret; Brown, Joyce
2006-01-01
Developing a community service project for middle school students can be a daunting task. The sheer number of contacts necessary for the project to be successful can be overwhelming. This manual will provide materials and guidance to simplify this process and ensure its success. Included in this workbook are sample letters, worksheets, lesson…
Dip Process Thermal Barrier Coating for Superalloys.
1982-02-02
Washington DC 20332 Attention: Captain Steven G. Wax Program Manager ’. ~ Electronic and Material Sciences Contract F49630-81 - K -0009 SRI Project...81- K -0009 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK SRI International AREA WORK UNIT NUMBERS 333 Ravenswood...A. Background ........ 0...................0................... B . Objectives ............ . ................ .............. 2 C. Sumry of Work: Year
Students' Perceptions of a Self-Diagnosis Task
NASA Astrophysics Data System (ADS)
Safadi, Rafi'; Yerushalmi, Edit
2009-11-01
What happens when students are required to engage in a self-diagnosis task; in other words get time and credit for identifying mistakes they made assisted by a sample solution? We examine this question using data collected on 180 high school students in the Arab sector in Israel. Students were able to find significant differences between their solutions and the sample solution. Yet many did not provide self-explanations indicating that they acknowledged a conflict between their mental models and the scientific model. Further, students also addressed non-significant differences. They apparently referred to the sample solution as an ultimate template and identified external deviations from it as flaws or weaknesses. Students reflected on their personal solution process, and the materials used in the task. The findings suggest allocating time for scaffolding "self-diagnosis."
Antimnemonic effects of schemas in young and older adults
Badham, Stephen P.; Maylor, Elizabeth A.
2016-01-01
Schema-consistent material that is aligned with an individual’s knowledge and experience is typically more memorable than abstract material. This effect is often more extreme in older adults and schema use can alleviate age deficits in memory. In three experiments, young and older adults completed memory tasks where the availability of schematic information was manipulated. Specifying nonobvious relations between to-be-remembered word pairs paradoxically hindered memory (Experiment 1). Highlighting relations within mixed lists of related and unrelated word pairs had no effect on memory for those pairs (Experiment 2). This occurred even though related word pairs were recalled better than unrelated word pairs, particularly for older adults. Revealing a schematic context in a memory task with abstract image segments also hindered memory performance, particularly for older adults (Experiment 3). The data show that processing schematic information can come with costs that offset mnemonic benefits associated with schema-consistent stimuli. PMID:25980799
Refractory materials from lunar resources
NASA Technical Reports Server (NTRS)
Fabes, B. D.; Poisl, W. H.
1991-01-01
Refractories - materials which are able to withstand extremely high temperatures - are sure to be an important part of any processing facility or human outpost which is built on Mars. Containers for processing lunar oxygen will need high temperature components. Fabrication of structural material from lunar resources need both containment vessels to hold high temperature melts and molds in which to form the final shapes. Certainly, it would be desirable to fabricate such vessels and molds on the Moon, rather than carrying them up from the Earth. At first glance, this might appear to be a trivial task, since the Moon's surface consists of a variety of refractory compositions. To turn the regolith into a useful fire brick or mold, however, will require water or other binders and additives which are likely to be in extremely short supply on the Moon. The steps needed to make fire bricks and molds for lunar-derived structural materials are examined, pointing out the critical steps and resources which will be needed. While these processes and applications may seem somewhat mundane, it is emphasized that it is precisely these rudimentary processes which must be mastered before discussing making aerobrakes, and other fancier refractories from lunar resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, K.J.
1999-11-05
The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission areas analyzed for input to the baseline mission model include: (1) commercial materials processing, including representative missions for producing metallurgical, chemical and biological products; (2) commercial Earth observation, represented by a typical carry-on mission amenable to commercialization; (3) solar terrestrial and resource observations including missions in geoscience and scientific land observation; (4) global environment, including representative missions in meteorology, climatology, ocean science, and atmospheric science; (5) materials science, including missions for measuring material properties, studying chemical reactions and utilizing the high vacuum-pumping capacity of space; and (6) life sciences with experiments in biomedicine and animal and plant biology.
An efficient liner cooling scheme for advanced small gas turbine combustors
NASA Technical Reports Server (NTRS)
Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.
1993-01-01
A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.
NBS (National Bureau of Standards): Materials measurements
NASA Technical Reports Server (NTRS)
Manning, J. R.
1985-01-01
NBS work for NASA in support of NASA's Microgravity Science and Applications Program under NASA Government Order H-27954B (Properties of Electronic Materials) covering the period April 1, 1984 to March 31, 1985 is described. The work has been carried out in three independent tasks: Task 1--Surface Tensions and Their Variations with Temperature and Impurities; Task 2--Convention during Unidirectional Solidification; Task 3--Measurement of High Temperature Thermodynamic Properties. The results for each task are given separately in the body of the report.
SHC Project 3.63, Task 2, Beneficial Use of Waste Materials
SHC Project 3.63, Task 2, “Beneficial Use of Waste Materials”, is designed to conduct research and analyses to characterize and quantify the risks and benefits of using or reusing waste materials. There are 6 primary research areas in Task 2 that cover a broad spectr...
Simulative design and process optimization of the two-stage stretch-blow molding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-22
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development timemore » and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.« less
Simulative design and process optimization of the two-stage stretch-blow molding process
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Rasche, S.; Windeck, C.
2015-05-01
The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.
NASA Astrophysics Data System (ADS)
Korchuganova, M.; Syrbakov, A.; Chernysheva, T.; Ivanov, G.; Gnedasch, E.
2016-08-01
Out of all common chip curling methods, a special tool face form has become the most widespread which is developed either by means of grinding or by means of profile pressing in the production process of RMSP. Currently, over 15 large tool manufacturers produce tools using instrument materials of over 500 brands. To this, we must add a large variety of tool face geometries, which purpose includes the control over form and dimensions of the chip. Taking into account all the many processed materials, specific tasks of the process planner, requirements to the quality of manufactured products, all this makes the choice of a proper tool which can perform the processing in the most effective way significantly harder. Over recent years, the nomenclature of RMSP for lathe tools with mechanical mounting has been considerably broadened by means of diversification of their faces
Montgomery, James W; Leonard, Laurence B
2006-12-01
This study reports the findings of an investigation designed to examine the effects of acoustic enhancement on the processing of low-phonetic-substance inflections (e.g., 3rd-person singular -s, possessive -s) versus a high-phonetic-substance inflection (e.g., present progressive -ing) by children with specific language impairment (SLI) in a word recognition, reaction time (RT) processing task. The effects of acoustic enhancement on the processing of the same morphemes as well as an additional morpheme (comparative -er) were examined in an offline grammaticality judgment task. The grammatical function of 1 of the higher-phonetic-substance inflections, -ing, was presumed to be hypothesized relatively early by children; the function of the other, -er, was presumed to be hypothesized relatively late. Sixteen children with SLI (age(M) = 9 years;0 months) and 16 chronological age (CA; age(M) = 8;11) children participated. For both tasks, children listened to sentences containing the target morphemes as they were produced naturally (natural condition) or with acoustic enhancement (enhanced condition). On the RT task, the children with SLI demonstrated RT sensitivity only to the presence of the high-substance inflection, irrespective of whether it was produced naturally or with enhancement. Acoustic enhancement had no effect on these children's processing of low-substance inflections. The CA children, by contrast, showed sensitivity to low-substance inflections when they were produced naturally and with acoustic enhancement. These children also showed sensitivity to the high-substance inflection in the natural condition, but in the enhanced condition they demonstrated significantly slower RT. On the grammaticality judgment task, the children with SLI performed worse than the CA children overall and showed especially poor performance on low-substance inflections. Acoustic enhancement had a beneficial effect on the inflectional processing of the children with SLI, but it had no effect on CA children. The findings are interpreted to suggest that the reduced language processing capacity of children with SLI constrains their ability to process low-substance grammatical material in real time. This factor should be considered along with any difficulty that might be attributable to the grammatical function of the inflection.
Multiphase porous media modelling: A novel approach to predicting food processing performance.
Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A
2018-03-04
The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.
1993-09-24
3]) Gas-cooled reactors were first developed in Europe and have been built since 1956. HTGR , equipped with the core of ceramic coated particle fuels ...demands must also be covered by nuclear energy in not so long future. Programs on developing the process heating HTGR have been promoted mainly in Germany...Material programs for HTGR have been promoted in several countries since late 1960’s which include the tasks of developing and qualifying materials, eg
Modern laser technologies used for cutting textile materials
NASA Astrophysics Data System (ADS)
Isarie, Claudiu; Dragan, Anca; Isarie, Laura; Nastase, Dan
2006-02-01
With modern laser technologies we can cut multiple layers at once, yielding high production levels and short setup times between cutting runs. One example could be the operation of cutting the material named Nylon 66, used to manufacture automobile airbags. With laser, up to seven layers of Nylon 66 can be cut in one pass, that means high production rates on a single machine. Airbags must be precisely crafted piece of critical safety equipment that is built to very high levels of precision in a mass production environment. Of course, synthetic material, used for airbags, can be cut also by a conventional fixed blade system, but for a high production rates and a long term low-maintenance, laser cutting is most suitable. Most systems, are equipped with two material handling systems, which can cut on one half of he table while the finished product is being removed from the other half and the new stock material laid out. The laser system is reliable and adaptable to any flatbed-cutting task. Computer controlled industrial cutting and plotting machines are the latest offerings from a well established and experienced industrial engineering company that is dedicated to reduce cutting costs and boosting productivity in today's competitive industrial machine tool market. In this way, just one machine can carry out a multitude of production tasks. Authors have studied the cutting parameters for different textile materials, to reach the maximum output of the process.
Ergonomics and design: its principles applied in the industry.
Tavares, Ademario Santos; Silva, Francisco Nilson da
2012-01-01
Industrial Design encompasses both product development and optimization of production process. In this sense, Ergonomics plays a fundamental role, because its principles, methods and techniques can help operators to carry out their tasks most successfully. A case study carried out in an industry shows that the interaction among Design, Production Engineering and Materials Engineering departments may improve some aspects concerned security, comfort, efficiency and performance. In this process, Ergonomics had shown to be of essential importance to strategic decision making to the improvement of production section.
Combustion Joining for Composite Fabrication
2009-10-25
Inert preheating Process beginning T e m p e r a t u r e , o C Time, s I = 600 Amps D = 10 mm Joule preheating only up to Tig UNCLASSIFIED • C...Honeywell Corp (South Bend, IN) • Currently build aircraft brake disks from carbon fibers • use a long (~ 100 day) CVD process to densify • Brake wear...oxidation with every landing A380 -rejected take off test C-C brakes UNCLASSIFIED Joining C-Based Materials • Difficult task – Carbon cannot be welded
Horrey, William J; Lesch, Mary F; Garabet, Angela; Simmons, Lucinda; Maikala, Rammohan
2017-01-01
As more devices and services are integrated into vehicles, drivers face new opportunities to perform additional tasks while driving. While many studies have explored the detrimental effects of varying task demands on driving performance, there has been little attention devoted to tasks that vary in terms of personal interest or investment-a quality we liken to the concept of task engagement. The purpose of this study was to explore the impact of task engagement on driving performance, subjective appraisals of performance and workload, and various physiological measurements. In this study, 31 participants (M = 37 yrs) completed three driving conditions in a driving simulator: listening to boring auditory material; listening to interesting material; and driving with no auditory material. Drivers were simultaneously monitored using near-infrared spectroscopy, heart monitoring and eye tracking systems. Drivers exhibited less variability in lane keeping and headway maintenance for both auditory conditions; however, response times to critical braking events were longer in the interesting audio condition. Drivers also perceived the interesting material to be less demanding and less complex, although the material was objectively matched for difficulty. Drivers showed a reduced concentration of cerebral oxygenated hemoglobin when listening to interesting material, compared to baseline and boring conditions, yet they exhibited superior recognition for this material. The practical implications, from a safety standpoint, are discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This Feasibility Analysis covers a wide range of studies and evaluations. The Report is divided into five parts. Section 1 contains all material relating to the Institutional Assessment including consideration of the requirements and position of the Potomac Electric Co. as they relate to cogeneration at Georgetown in parallel with the utility (Task 1). Sections 2 through 7 contain all technical information relating to the Alternative Subsystems Analysis (Task 4). This includes the energy demand profiles upon which the evaluations were based (Task 3). It further includes the results of the Life-Cycle-Cost Analyses (Task 5) which are developed in detailmore » in the Appendix for evaluation in the Technical Report. Also included is the material relating to Incremental Savings and Optimization (Task 6) and the Conceptual Design for candidate alternate subsystems (Task 7). Section 8 contains all material relating to the Environmental Impact Assessment (Task 2). The Appendix contains supplementary material including the budget cost estimates used in the life-cycle-cost analyses, the basic assumptions upon which the life-cycle analyses were developed, and the detailed life-cycle-cost anlysis for each subsystem considered in detail.« less
Optimal Design of Magnetic ComponentsinPlasma Cutting Power Supply
NASA Astrophysics Data System (ADS)
Jiang, J. F.; Zhu, B. R.; Zhao, W. N.; Yang, X. J.; Tang, H. J.
2017-10-01
Phase-shifted transformer and DC reactor are usually needed in chopper plasma cutting power supply. Because of high power rate, the loss of magnetic components may reach to several kilowatts, which seriously affects the conversion efficiency. Therefore, it is necessary to research and design low loss magnetic components by means of efficient magnetic materials and optimal design methods. The main task in this paper is to compare the core loss of different magnetic material, to analyze the influence of transformer structure, winding arrangement and wire structure on the characteristics of magnetic component. Then another task is to select suitable magnetic material, structure and wire in order to reduce the loss and volume of magnetic components. Based on the above outcome, the optimization design process of transformer and dc reactor are proposed in chopper plasma cutting power supply with a lot of solutions. These solutions are analyzed and compared before the determination of the optimal solution in order to reduce the volume and power loss of the two magnetic components and improve the conversion efficiency of plasma cutting power supply.
The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.
Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin
2012-08-30
Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.
Wójcicki, Tomasz; Nowicki, Michał
2016-01-01
The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389
Krause-Utz, Annegret; Winter, Dorina; Schriner, Friederike; Chiu, Chui-De; Lis, Stefanie; Spinhoven, Philip; Bohus, Martin; Schmahl, Christian; Elzinga, Bernet M
2018-06-01
Affective hyper-reactivity and impaired cognitive control of emotional material are core features of borderline personality disorder (BPD). A high percentage of individuals with BPD experience stress-related dissociation, including emotional numbing and memory disruptions. So far little is known about how dissociation influences the neural processing of emotional material in the context of a working memory task in BPD. We aimed to investigate whole-brain activity and amygdala functional connectivity (FC) during an Emotional Working Memory Task (EWMT) after dissociation induction in un-medicated BPD patients compared to healthy controls (HC). Using script-driven imagery, dissociation was induced in 17 patients ('BPD_D'), while 12 patients ('BPD_N') and 18 HC were exposed to neutral scripts during fMRI. Afterwards, participants performed the EWMT with neutral vs. negative IAPS pictures vs. no distractors. Main outcome measures were behavioral performance (reaction times, errors) and whole-brain activity during the EWMT. Psychophysiological interaction analysis was used to examine amygdala connectivity during emotional distraction. BPD patients after dissociation induction showed overall WM impairments, a deactivation in bilateral amygdala, and lower activity in left cuneus, lingual gyrus, and posterior cingulate than BPD_N, along with stronger left inferior frontal gyrus activity than HC. Furthermore, reduced amygdala FC with fusiform gyrus and stronger amygdala FC with right middle/superior temporal gyrus and left inferior parietal lobule was observed in BPD_D. Findings suggest that dissociation affects reactivity to emotionally salient material and WM. Altered activity in areas associated with emotion processing, memory, and self-referential processes may contribute to dissociative states in BPD.
NASA Astrophysics Data System (ADS)
Kotlan, Václav; Hamar, Roman; Pánek, David; Doležel, Ivo
2017-12-01
A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.
ERIC Educational Resources Information Center
Manavathu, Marian; Zhou, George
2012-01-01
Through a qualitative research design, this article investigates the impacts of differentiated laboratory instructional materials on English language learners' (ELLs) laboratory task comprehension. The factors affecting ELLs' science learning experiences are further explored. Data analysis reveals a greater degree of laboratory task comprehension…
NASA Technical Reports Server (NTRS)
Otte, Neil
1997-01-01
The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.
Renewable Energy Testing Center for US Army Contract W15QKN-05-D-0030 Task 5 RETC, WBS #4.6.0
2010-02-01
system to produce syngas and a glass or glassy- ceramic matrix, depending on the feedstock. Figure 1.2-2 The PEAT System Installed at the RETC The...miscellaneous gases that can be processed to provide electricity or liquid fuel. All inorganic materials are converted into a glass slag . Generated syngas
NASA Technical Reports Server (NTRS)
1983-01-01
The benefits for each of the following commercial areas was investigated: communications, remote sensing, materials processing in space, low Earth orbit (LEO) satellite assembly, testing, and servicing, and space tourism. In each case, where economic benefits are derived, the costs for accomplishing tasks with the Space Station are compared with the cost with the Space Transportation System only.
Testing of Selective Laser Melting Turbomachinery Applicable to Exploration Upper Stage
NASA Technical Reports Server (NTRS)
Calvert, Marty; Turpin, Jason; Nettles, Mindy
2015-01-01
This task is to design, fabricate, and spin test to failure a Ti6-4 hydrogen turbopump impeller that was built using the selective laser melting (SLM) fabrication process (fig. 1). The impeller is sized around upper stage engine requirements. In addition to the spin burst test, material testing will be performed on coupons that are built with the impeller.
Novel Magnetic Fluids for Breast Cancer Therapy
2005-04-01
synthesis and characterization efforts concerning nickel-based alloys have been reported previously [5]. Nano-material has been obtained using an inverse...gar gel d ork his task regularly accompanies the synthesis work. Characterization analysis includes size, composition, magnetic pro perties. The...currently available magnetic fluids used in hyperthermia. The specific goals are: 1. Develop a synthesis process to fabricate magnetic nano
Sure, They Can Build It But...Manufacturing Students Need Process Planning Skills
ERIC Educational Resources Information Center
Obi, Samuel C.
2007-01-01
Manufacturing systems students usually complete lab projects for class requirements. However, they often do not have an idea how many resources such as time, tools, and materials they will need to complete a project until they get into constructing it. Yet one of the first tasks of real-world manufacturing personnel when they receive new product…
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Sanderson; Gary M. Blythe; Mandi Richardson
2006-12-01
This report presents and discusses results from Task 6 of the study 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capturemore » of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope now includes six discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The project was originally composed of five tasks, which were to include (1) a baseline test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to include testing with an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to Task 3, although with gypsum from an alternate FGD system. Subsequent to conducting Task 5 under these revised conditions, an opportunity arose to test gypsum produced at the same FGD system, but with an additive (Degussa Corporation's TMT-15) being used in the FGD system. TMT-15 was expected to impact the stability of mercury in synthetic gypsum used to produce wallboard, so Task 6 was added to the project to test this theory. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. For every task, the stack locations sampled have included a dryer for the wet gypsum as it enters the plant and a gypsum calciner. For Tasks 1, 4, 5 and 6, the stack of the dryer for the wet wallboard product was also tested. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 6 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant has a single-loop, open spray tower limestone forced oxidation FGD system, with the forced oxidation conducted in the reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, and the SCR was in service during the time period the gypsum tested was produced. Also, as mentioned above, Degussa additive TMT-15 was being added to the FGD system when this gypsum was produced. The results of the Task 6 stack testing, as measured by the Ontario Hydro method, detected that an average of 55% of the incoming mercury was emitted during wallboard production. These losses were distributed as about 4% across the dryer mill, 6% across the board dryer kiln, and 45% across the kettle calciner. Emissions were similar to what Task 5 results showed on a percentage basis, but about 30% lower on a mass basis. The same power plant FGD system produced the synthetic gypsum used in Task 5 (with no use of TMT-15) and in Task 6 (with TMT-15 added to the FGD system). The lower emissions on a mass basis appeared to be due to lower average mercury content in the gypsum being processed. It is not certain whether the lower average mercury content in the gypsum was an effect of TMT-15 addition to the FGD system. As was seen in the Task 1 through 5 results, most of the mercury detected in the Ontario Hydro method stack testing was in the form of elemental mercury.« less
Negative emotional experiences arouse rumination and affect working memory capacity.
Curci, Antonietta; Lanciano, Tiziana; Soleti, Emanuela; Rimé, Bernard
2013-10-01
Following an emotional experience, individuals are confronted with the persistence of ruminative thoughts that disturb the undertaking of other activities. In the present study, we experimentally tested the idea that experiencing a negative emotion triggers a ruminative process that drains working memory (WM) resources normally devoted to other tasks. Undergraduate participants of high versus low WM capacity were administered the operation-word memory span test (OSPAN) as a measure of availability of WM resources preceding and following the presentation of negative emotional versus neutral material. Rumination was assessed immediately after the second OSPAN session and at a 24-hr delay. Results showed that both the individual's WM capacity and the emotional valence of the material influenced WM performance and the persistence of ruminative thoughts. Following the experimental induction, rumination mediated the relationship between the negative emotional state and the concomitant WM performance. Based on these results, we argue that ruminative processes deplete WM resources, making them less available for concurrent tasks; in addition, rumination tends to persist over time. These findings have implications for the theoretical modeling of the long-term effects of emotions in both daily life and clinical contexts.
Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen
2017-05-15
Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Afrahamiryano, A.; Ariani, D.
2018-04-01
The student task analysis is one part of the define stage in development research using the 4-D development model. Analysis of this task is useful to determine the level of understanding of students on lecture materials that have been given. The results of this task analysis serve as a measuring tool to determine the level of success of learning and as a basis in the development of lecture system. Analysis of this task is done by the method of observation and documentation study of the tasks undertaken by students. The results of this analysis are then described and after that triangulation are done to draw conclusions. The results of the analysis indicate that the students' level of understanding is high for theoretical and low material for counting material. Based on the results of this task analysis, it can be concluded that e-learning lecture system developed should be able to increase students' understanding on basic chemicals that are calculated.
Schuchardt, Arnim; Braniste, Tudor; Mishra, Yogendra K.; Deng, Mao; Mecklenburg, Matthias; Stevens-Kalceff, Marion A.; Raevschi, Simion; Schulte, Karl; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion
2015-01-01
Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications. PMID:25744694
NASA Technical Reports Server (NTRS)
Fleming, J. R.; Holden, S. C.; Wolfson, R. G.
1979-01-01
The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated.
Control approaches for intelligent material systems -- What can we learn from nature?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertshaw, H.H.
1994-12-31
Three natural systems (human thermoregulation, enzyme-catalyzed biochemical reactions, and rivers) are examined with the intent of finding commonalties in control among these systems which may offer inspiration or guidance to the task of controlling the behavior of Intelligent Material Systems. It is observed that these natural systems act in ways not seen in technological control systems. The observations of a lack of (feedback) control, the predominance of regulation, the extremely local nature of the apparent goals, the storage of information in form (in structure), and non-numerical processing, produce a strong impression of coupled open-loop processes amidst seeming chaos almost passivelymore » producing what the author calls natural system control.« less
Segmenting overlapping nano-objects in atomic force microscopy image
NASA Astrophysics Data System (ADS)
Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko
2018-01-01
Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.
Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion
NASA Technical Reports Server (NTRS)
Hanley, David; Carella, John
1999-01-01
This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.
Peters, Jan H; Hock, Michael; Krohne, Heinz Walter
2012-01-01
Dispositional styles of coping with threat influence memory for threatening information. In particular, sensitizers excel over repressors in their memory for threatening information after long retention intervals, but not after short ones. We therefore suggested that sensitizers, but not repressors, employ active maintenance processes during the retention interval to selectively retain threatening material. Sensitive maintenance was studied in 2 experiments in which participants were briefly exposed to threatening and nonthreatening pictures (Experiment 1, N = 128) or words (Experiment 2, N = 145). Following, we administered unannounced recognition tests before and after an intervening task that generated either high or low cognitive load, assuming that high cognitive load would impede sensitizers' memory maintenance of threatening material. Supporting our hypotheses, the same pattern of results was obtained in both experiments: Under low cognitive load, sensitizers forgot less threat material than repressors did; no such differences were observed under high cognitive load.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
Effects of distraction on memory and cognition: a commentary.
Craik, Fergus I M
2014-01-01
This commentary is a review of the findings and ideas reported in the preceding nine articles on the effects of distraction on aspects of cognitive performance. The articles themselves deal with the disruptive effects of distraction on recall of words, objects and events, also on visual processing, category formation and other cognitive tasks. The commentary assesses the part played by "domain-general" suppression of distracting information and the "domain-specific" competition arising when tasks and distraction involve very similar material. Some forms of distraction are meaningfully relevant to the ongoing task, and Treisman's (1964) model of selective attention is invoked to provide an account of findings in this area. Finally, individual differences to vulnerability to distraction are discussed; older adults are particularly affected by distracting stimuli although the failure to repress distraction can sometimes prove beneficial to later cognitive performance.
The time course of reading processes in children with and without dyslexia: an ERP study
Hasko, Sandra; Groth, Katarina; Bruder, Jennifer; Bartling, Jürgen; Schulte-Körne, Gerd
2013-01-01
The main diagnostic criterion for developmental dyslexia (DD) in transparent orthographies is a remarkable reading speed deficit, which is often accompanied by spelling difficulties. These deficits have been traced back to both deficits in orthographic and phonological processing. For a better understanding of the reading speed deficit in DD it is necessary to clarify which processing steps are degraded in children with DD during reading. In order to address this question the present study used EEG to investigate three reading related ERPs: the N170, N400 and LPC. Twenty-nine children without DD and 52 children with DD performed a phonological lexical decision (PLD)—task, which tapped both orthographic and phonological processing. Children were presented with words, pseudohomophones, pseudowords and false fonts and had to decide whether the presented stimulus sounded like an existing German word or not. Compared to control children, children with DD showed deficits in all the investigated ERPs. Firstly, a diminished mean area under the curve for the word material-false font contrasts in the time window of the N170 was observed, indicating a reduced degree of print sensitivity; secondly, N400 amplitudes, as suggested to reflect the access to the orthographic lexicon and grapheme-phoneme conversion, were attenuated; and lastly, phonological access as indexed by the LPC was degraded in children with DD. Processing differences dependent on the linguistic material in children without DD were observed only in the LPC, suggesting that similar reading processes were adopted independent of orthographic familiarity. The results of this study suggest that effective treatment should include both orthographic and phonological training. Furthermore, more longitudinal studies utilizing the same task and stimuli are needed to clarify how these processing steps and their time course change during reading development. PMID:24109444
NASA Astrophysics Data System (ADS)
Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech
2017-04-01
The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.
Emotional working memory capacity in posttraumatic stress disorder (PTSD)
Schweizer, Susanne; Dalgleish, Tim
2011-01-01
Participants with a lifetime history of posttraumatic stress disorder (PTSD) and trauma-exposed controls with no PTSD history completed an emotional working memory capacity (eWMC) task. The task required them to remember lists of neutral words over short intervals while simultaneously processing sentences describing dysfunctional trauma-related thoughts (relative to neutral control sentences). The task was designed to operationalise an everyday cognitive challenge for those with mental health problems such as PTSD; namely, the ability to carry out simple, routine tasks with emotionally benign material, while at the same time tackling emotional laden intrusive thoughts and feelings. eWMC performance, indexed as the ability to remember the word lists in the context of trauma sentences, relative to neutral sentences, was poorer overall in the PTSD group compared with controls, suggestive of a particular difficulty employing working memory in emotion-related contexts in those with a history of PTSD. The possible implications for developing affective working memory training as an adjunctive treatment for PTSD are explored. PMID:21684525
Prefrontal cortical response to conflict during semantic and phonological tasks.
Snyder, Hannah R; Feigenson, Keith; Thompson-Schill, Sharon L
2007-05-01
Debates about the function of the prefrontal cortex are as old as the field of neuropsychology--often dated to Paul Broca's seminal work. Theories of the functional organization of the prefrontal cortex can be roughly divided into those that describe organization by process and those that describe organization by material. Recent studies of the function of the posterior, left inferior frontal gyrus (pLIFG) have yielded two quite different interpretations: One hypothesis holds that the pLIFG plays a domain-specific role in phonological processing, whereas another hypothesis describes a more general function of the pLIFG in cognitive control. In the current study, we distinguish effects of increasing cognitive control demands from effects of phonological processing. The results support the hypothesized role for the pLIFG in cognitive control, and more task-specific roles for posterior areas in phonology and semantics. Thus, these results suggest an alternative explanation of previously reported phonology-specific effects in the pLIFG.
Guillery-Girard, Bérengère; Clochon, Patrice; Giffard, Bénédicte; Viard, Armelle; Egler, Pierre-Jean; Baleyte, Jean-Marc; Eustache, Francis; Dayan, Jacques
2013-09-01
"Travelling in time," a central feature of episodic memory is severely affected among individuals with Post Traumatic Stress Disorder (PTSD) with two opposite effects: vivid traumatic memories are unorganized in temporality (bottom-up processes), non-traumatic personal memories tend to lack spatio-temporal details and false recognitions occur more frequently that in the general population (top-down processes). To test the effect of these two types of processes (i.e. bottom-up and top-down) on emotional memory, we conducted two studies in healthy and traumatized adolescents, a period of life in which vulnerability to emotion is particularly high. Using negative and neutral images selected from the international affective picture system (IAPS), stimuli were divided into perceptual images (emotion generated by perceptual details) and conceptual images (emotion generated by the general meaning of the material). Both categories of stimuli were then used, along with neutral pictures, in a memory task with two phases (encoding and recognition). In both populations, we reported a differential effect of the emotional material on encoding and recognition. Negative perceptual scenes induced an attentional capture effect during encoding and enhanced the recollective distinctiveness. Conversely, the encoding of conceptual scenes was similar to neutral ones, but the conceptual relatedness induced false memories at retrieval. However, among individuals with PTSD, two subgroups of patients were identified. The first subgroup processed the scenes faster than controls, except for the perceptual scenes, and obtained similar performances to controls in the recognition task. The second subgroup group desmonstrated an attentional deficit in the encoding task with no benefit from the distinctiveness associated with negative perceptual scenes on memory performances. These findings provide a new perspective on how negative emotional information may have opposite influences on memory in normal and traumatized individuals. It also gives clues to understand how intrusive memories and overgeneralization takes place in PTSD. Copyright © 2013 Elsevier Ltd. All rights reserved.
Paucke, Madlen; Oppermann, Frank; Koch, Iring; Jescheniak, Jörg D
2015-12-01
Previous dual-task picture-naming studies suggest that lexical processes require capacity-limited processes and prevent other tasks to be carried out in parallel. However, studies involving the processing of multiple pictures suggest that parallel lexical processing is possible. The present study investigated the specific costs that may arise when such parallel processing occurs. We used a novel dual-task paradigm by presenting 2 visual objects associated with different tasks and manipulating between-task similarity. With high similarity, a picture-naming task (T1) was combined with a phoneme-decision task (T2), so that lexical processes were shared across tasks. With low similarity, picture-naming was combined with a size-decision T2 (nonshared lexical processes). In Experiment 1, we found that a manipulation of lexical processes (lexical frequency of T1 object name) showed an additive propagation with low between-task similarity and an overadditive propagation with high between-task similarity. Experiment 2 replicated this differential forward propagation of the lexical effect and showed that it disappeared with longer stimulus onset asynchronies. Moreover, both experiments showed backward crosstalk, indexed as worse T1 performance with high between-task similarity compared with low similarity. Together, these findings suggest that conditions of high between-task similarity can lead to parallel lexical processing in both tasks, which, however, does not result in benefits but rather in extra performance costs. These costs can be attributed to crosstalk based on the dual-task binding problem arising from parallel processing. Hence, the present study reveals that capacity-limited lexical processing can run in parallel across dual tasks but only at the expense of extraordinary high costs. (c) 2015 APA, all rights reserved).
Language Guidelines for a Mathematics Task Centre.
ERIC Educational Resources Information Center
Padula, Janice; Nin, Lucy
1999-01-01
Describes some of the thinking associated with the improvement of tasks, suggesting some guidelines for others to consider in producing written mathematics materials for young students. Provides examples of written mathematics materials. (ASK)
Neural mechanism for judging the appropriateness of facial affect.
Kim, Ji-Woong; Kim, Jae-Jin; Jeong, Bum Seok; Ki, Seon Wan; Im, Dong-Mi; Lee, Soo Jung; Lee, Hong Shick
2005-12-01
Questions regarding the appropriateness of facial expressions in particular situations arise ubiquitously in everyday social interactions. To determine the appropriateness of facial affect, first of all, we should represent our own or the other's emotional state as induced by the social situation. Then, based on these representations, we should infer the possible affective response of the other person. In this study, we identified the brain mechanism mediating special types of social evaluative judgments of facial affect in which the internal reference is related to theory of mind (ToM) processing. Many previous ToM studies have used non-emotional stimuli, but, because so much valuable social information is conveyed through nonverbal emotional channels, this investigation used emotionally salient visual materials to tap ToM. Fourteen right-handed healthy subjects volunteered for our study. We used functional magnetic resonance imaging to examine brain activation during the judgmental task for the appropriateness of facial affects as opposed to gender matching tasks. We identified activation of a brain network, which includes both medial frontal cortex, left temporal pole, left inferior frontal gyrus, and left thalamus during the judgmental task for appropriateness of facial affect compared to the gender matching task. The results of this study suggest that the brain system involved in ToM plays a key role in judging the appropriateness of facial affect in an emotionally laden situation. In addition, our result supports that common neural substrates are involved in performing diverse kinds of ToM tasks irrespective of perceptual modalities and the emotional salience of test materials.
Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials
NASA Astrophysics Data System (ADS)
Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana
2017-12-01
Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.
Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.
The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less
Tools for Activating Materials and Tasks in the English Language Classroom
ERIC Educational Resources Information Center
Rosenberg, Rick
2009-01-01
Most teachers have seen the reactions students can have to tasks and activities that they do not find engaging: the glassy or rolling eyes, the unfocused behavior, and the cries of "Not again!" This article provides practical techniques that the author's students have helped him learn over the years to better "activate" materials and tasks in the…
User-friendly program for multitask analysis
NASA Astrophysics Data System (ADS)
Caporali, Sergio A.; Akladios, Magdy; Becker, Paul E.
2000-10-01
Research on lifting activities has led to the design of several useful tools for evaluating tasks that involve lifting and material handling. The National Institute for Occupational Safety and Health (NIOSH) has developed a single task lifting equation. This formula has been frequently used as a guide in the field of ergonomics and material handling. While being much more complicated, the multi-task formula will provide a more realistic analysis for the evaluation of lifting and material handling jobs. A user friendly tool has been developed to assist professionals in the field of ergonomics in analyzing multitask types of material handling jobs. The program allows for up to 10 different tasks to be evaluated. The program requires a basic understanding of the NIOSH lifting guidelines and the six multipliers that are involved in the analysis of each single task. These multipliers are: Horizontal Distance Multiplier (HM), Vertical Distance Multiplier (VM), Vertical Displacement Multiplier (DM), Frequency of lifting Multiplier (FM), Coupling Multiplier (CM), and the Asymmetry Multiplier (AM). Once a given job is analyzed, a researched list of recommendations is provided to the user in an attempt to reduce the potential risk factors that are associated with each task.
Safety and Health Instructional Materials for Vocational Education--A State of the Art Report.
ERIC Educational Resources Information Center
Hull, Daniel M.; Lube, Bruce M.
This report details Task D (of a seventeen-task project), which identified safety and health concepts, knowledge, and skills included in print and non-print materials designed to develop performance outcomes needed by employers and employees. (The project intends to develop performance-based modularized instructional materials for teaching job…
Brain Imaging and rTMS Studies of Individual Differences in Cognitive Processing
2013-08-09
Institution: Address: Phone: Fax: Email : Web Page: Contract: Project Title: Program Officer: Dr. Marcel Adam Just Carnegie Mellon University...and multitasking ) are included in the progress report using well established sets of materials. In the sentence and discourse tasks, participants...compensatory partnerships and the re-emergence of the primary regions. 3. Cortical reorganization induced by rTMS during multitasking (listening to
Advanced CMOS Radiation Effects Testing and Analysis
NASA Technical Reports Server (NTRS)
Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.;
2014-01-01
Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.
1978-01-01
Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.
ERIC Educational Resources Information Center
Sutherland, Sandra; Winn, William
The interactions of three factors that may be involved with the memory for pattern or sequence in visual materials were investigated in this study: (1) arbitrariness of representation; (2) task; and (3) ability of students. The subjects, who were 29 graduate students in education, were pretested for general ability and randomly assigned to four…
Hering, Alexandra; Kliegel, Matthias; Bisiacchi, Patrizia S.; Cona, Giorgia
2018-01-01
Prospective memory is a cognitive process that comprises the encoding and maintenance of an intention until the appropriate moment of its retrieval. It is of highly relevance for an independent everyday life, especially in older adults; however, there is ample evidence that prospective memory declines with increasing age. Because most studies have used neutral stimuli, it is still an open question how emotional factors influence age-related differences in prospective remembering. The aim of the study was to investigate the influence of emotional material on prospective memory encoding, monitoring, maintaining, and retrieval in younger and older adults using behavioral and electrophysiological measures. We tested 24 younger adults (M = 26.4 years) and 20 older adults (M = 68.1 years) using a picture one-back task as ongoing activity with an embedded prospective memory instruction. The experimental task consisted of three sessions. In each session, participants had to encode series of images that represented the prospective memory cues for the consecutive block. The images were either of pleasant, unpleasant, or neutral valence. The pictures used in the ongoing task were likewise of pleasant, unpleasant, or neutral valence. Event-related potentials (ERPs) were recorded to assess the neural correlates of intention encoding, maintenance, and self-initiated retrieval. We did not find age differences between younger and older adults on the behavioral level. However, the ERP results revealed an interesting pattern that suggested for both age groups elevated attentional processing of emotional cues during encoding indicated by an elevated LPP for the emotional cues. Additionally, younger adults showed increased activity for unpleasant cues. During the maintenance phase, both age groups engaged in strategic monitoring especially for pleasant cues, which led to enhanced sustained positivity. During retrieval, older adults showed increased activity of ERP components related to cue detection and retrieval mainly for pleasant cues indicating enhanced relevance for those cues. In conclusion, emotional material may influence prospective remembering in older adults differently than in younger adults by supporting a mixture of top-down and bottom-up controlled processing. The results demonstrated a negativity bias in younger adults and a positivity bias in older adults. PMID:29503622
NASA Technical Reports Server (NTRS)
1985-01-01
The second task in the Space Station Data System (SSDS) Analysis/Architecture Study is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This volume identifies the preferred options in the technology category and characterizes these options with respect to performance attributes, constraints, cost, and risk. The technology category includes advanced materials, processes, and techniques that can be used to enhance the implementation of SSDS design structures. The specific areas discussed are mass storage, including space and round on-line storage and off-line storage; man/machine interface; data processing hardware, including flight computers and advanced/fault tolerant computer architectures; and software, including data compression algorithms, on-board high level languages, and software tools. Also discussed are artificial intelligence applications and hard-wire communications.
Limitless capacity: a dynamic object-oriented approach to short-term memory.
Macken, Bill; Taylor, John; Jones, Dylan
2015-01-01
The notion of capacity-limited processing systems is a core element of cognitive accounts of limited and variable performance, enshrined within the short-term memory construct. We begin with a detailed critical analysis of the conceptual bases of this view and argue that there are fundamental problems - ones that go to the heart of cognitivism more generally - that render it untenable. In place of limited capacity systems, we propose a framework for explaining performance that focuses on the dynamic interplay of three aspects of any given setting: the particular task that must be accomplished, the nature and form of the material upon which the task must be performed, and the repertoire of skills and perceptual-motor functions possessed by the participant. We provide empirical examples of the applications of this framework in areas of performance typically accounted for by reference to capacity-limited short-term memory processes.
A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics
NASA Astrophysics Data System (ADS)
Wallace, Robert M.
2001-03-01
Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.13 um complementary metal oxide semiconductor (CMOS) technology. The prospect of replacing SiO2 is a formidable task because the alternate gate dielectric must provide many properties that are, at a minimum, comparable to those of SiO2 yet with a much higher permittivity. A systematic examination of the required performance of gate dielectrics suggests that the key properties to consider in the selection an alternative gate dielectric candidate are (a) permittivity, band gap and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. We will review the performance requirements for materials associated with CMOS scaling, the challenges associated with these requirements, and the state-of-the-art in current research for alternate gate dielectrics. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.
NASA Technical Reports Server (NTRS)
Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.
1977-01-01
Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.
Mainela-Arnold, Elina; Evans, Julia L.
2016-01-01
Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that verbal memory capacity and long-term linguistic knowledge may not be distinct constructs. It has been suggested that linguistic representations in SLI are weak in ways that result in a breakdown in language processing on tasks that require manipulation of unfamiliar material. In this study, the effects of word frequency, long-term linguistic knowledge, and serial order position on recall performance in the competing language processing task (CLPT) were investigated in 10 children with SLI and 10 age-matched peers (age 8 years 6 months to 12 years 4 months). The children with SLI recalled significantly fewer target words on the CLPT as compared with their age-matched controls. The SLI group did not differ, however, in their ability to recall target words having high word frequency but were significantly poorer in their ability to recall words on the CLPT having low word frequency. Differences in receptive and expressive language abilities also appeared closely related to performance on the CLPT, suggesting that working memory capacity is not distinct from language knowledge and that degraded linguistic representations may have an effect on performance on verbal working memory span tasks in children with SLI. PMID:16378481
Functional evaluation of out-of-the-box text-mining tools for data-mining tasks
Jung, Kenneth; LePendu, Paea; Iyer, Srinivasan; Bauer-Mehren, Anna; Percha, Bethany; Shah, Nigam H
2015-01-01
Objective The trade-off between the speed and simplicity of dictionary-based term recognition and the richer linguistic information provided by more advanced natural language processing (NLP) is an area of active discussion in clinical informatics. In this paper, we quantify this trade-off among text processing systems that make different trade-offs between speed and linguistic understanding. We tested both types of systems in three clinical research tasks: phase IV safety profiling of a drug, learning adverse drug–drug interactions, and learning used-to-treat relationships between drugs and indications. Materials We first benchmarked the accuracy of the NCBO Annotator and REVEAL in a manually annotated, publically available dataset from the 2008 i2b2 Obesity Challenge. We then applied the NCBO Annotator and REVEAL to 9 million clinical notes from the Stanford Translational Research Integrated Database Environment (STRIDE) and used the resulting data for three research tasks. Results There is no significant difference between using the NCBO Annotator and REVEAL in the results of the three research tasks when using large datasets. In one subtask, REVEAL achieved higher sensitivity with smaller datasets. Conclusions For a variety of tasks, employing simple term recognition methods instead of advanced NLP methods results in little or no impact on accuracy when using large datasets. Simpler dictionary-based methods have the advantage of scaling well to very large datasets. Promoting the use of simple, dictionary-based methods for population level analyses can advance adoption of NLP in practice. PMID:25336595
Romero, Nuria; Sanchez, Alvaro; Vazquez, Carmelo
2014-03-01
Cognitive models propose that depression is caused by dysfunctional schemas that endure beyond the depressive episode, representing vulnerability factors for recurrence. However, research testing negative cognitions linked to dysfunctional schemas in formerly depressed individuals is still scarce. Furthermore, negative cognitions are presumed to be linked to biases in recalling negative self-referent information in formerly depressed individuals, but no studies have directly tested this association. In the present study, we evaluated differences between formerly and never-depressed individuals in several experimental indices of negative cognitions and their associations with the recall of emotional self-referent material. Formerly (n = 30) and never depressed individuals (n = 40) completed measures of explicit (i.e., scrambled sentence test) and automatic (i.e., lexical decision task) processing to evaluate negative cognitions. Furthermore participants completed a self-referent incidental recall task to evaluate memory biases. Formerly compared to never depressed individuals showed greater negative cognitions at both explicit and automatic levels of processing. Results also showed greater recall of negative self-referent information in formerly compared to never-depressed individuals. Finally, individual differences in negative cognitions at both explicit and automatic levels of processing predicted greater recall of negative self-referent material in formerly depressed individuals. Analyses of the relationship between explicit and automatic processing indices and memory biases were correlational and the majority of participants in both groups were women. Our findings provide evidence of negative cognitions in formerly depressed individuals at both automatic and explicit levels of processing that may confer a cognitive vulnerability to depression. Copyright © 2013 Elsevier Ltd. All rights reserved.
2017-07-31
processing. Also, the presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...processing. • The presence of cyclo-paraffins and tetralins plus indans do not affect the fundamental correlation with aromatic content at the...random, and shows no correlation with aromatic content. However, all of the test results were well above the minimum technical requirements of 200 psi
NASA Astrophysics Data System (ADS)
1980-07-01
In most of the processes, a portion of the potassium seed material is converted to a compound not containing sulfur. The potassium in this form can, when injected upstream of the MHD channel, capture the sulfur released during the combustion of coal and eliminate the need for flue gas desulfurization equipment. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup.
Source Contaminant Control for the Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Roman, Monsi; Howard, David
2015-01-01
The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.
[Modern aspects of organization of medical support for the Armed Forces].
Stavila, A G; Krasavin, K D; Levchenko, V N; Lemeshko, A L; Roenko, A S
2015-09-01
The challenges that medical service of the Armed Forces of the Russian Federation faces cannot be solved without a new qualitative approach to military and medical support. In order to create a complete organizational system of the medical support, consisting of united process of material flow management and management of accompanying elements, the. structure of the medical support and its equipment must correspond to performed tasks. The article describes a set of activities that are performed in the system of military-medical support and offers some promising approaches, which are supposed to solve assigned tasks imposed upon the center of pharmacy and medical technology and its interaction with superior body control, maintainable and third party organizations.
NASA Technical Reports Server (NTRS)
Fanourakis, Sofia
2015-01-01
My main project was to determine and implement updates to be made to MODEAR (Mission Operations Data Enterprise Architecture Repository) process definitions to be used for CST-100 (Crew Space Transportation-100) related missions. Emphasis was placed on the scheduling aspect of the processes. In addition, I was to complete other tasks as given. Some of the additional tasks were: to create pass-through command look-up tables for the flight controllers, finish one of the MDT (Mission Operations Directorate Display Tool) displays, gather data on what is included in the CST-100 public data, develop a VBA (Visual Basic for Applications) script to create a csv (Comma-Separated Values) file with specific information from spreadsheets containing command data, create a command script for the November MCC-ASIL (Mission Control Center-Avionics System Integration Laboratory) testing, and take notes for one of the TCVB (Terminal Configured Vehicle B-737) meetings. In order to make progress in my main project I scheduled meetings with the appropriate subject matter experts, prepared material for the meetings, and assisted in the discussions in order to understand the process or processes at hand. After such discussions I made updates to various MODEAR processes and process graphics. These meetings have resulted in significant updates to the processes that were discussed. In addition, the discussions have helped the departments responsible for these processes better understand the work ahead and provided material to help document how their products are created. I completed my other tasks utilizing resources available to me and, when necessary, consulting with the subject matter experts. Outputs resulting from my other tasks were: two completed and one partially completed pass through command look-up tables for the fight controllers, significant updates to one of the MDT displays, a spreadsheet containing data on what is included in the CST-100 public data, a tool to create a csv file with specific information from spreadsheets containing command data, a command script for the November MCC-ASIL testing which resulted in a successful test day identifying several potential issues, and notes from one of the TCVB meetings that was used to keep the teams up to date on what was discussed and decided. I have learned a great deal working at NASA these last four months. I was able to meet and work with amazing individuals, further develop my technical knowledge, expand my knowledge base regarding human spaceflight, and contribute to the CST-100 missions. My work at NASA has strengthened my desire to continue my education in order to make further contributions to the field, and has given me the opportunity to see the advantages of a career at NASA.
Image analysis of multiple moving wood pieces in real time
NASA Astrophysics Data System (ADS)
Wang, Weixing
2006-02-01
This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.
When Emotions Matter: Focusing on Emotion Improves Working Memory Updating in Older Adults
Berger, Natalie; Richards, Anne; Davelaar, Eddy J.
2017-01-01
Research indicates that emotion can affect the ability to monitor and replace content in working memory, an executive function that is usually referred to as updating. However, it is less clear if the effects of emotion on updating vary with its relevance for the task and with age. Here, 25 younger (20–34 years of age) and 25 older adults (63–80 years of age) performed a 1-back and a 2-back task, in which they responded to younger, middle-aged, and older faces showing neutral, happy or angry expressions. The relevance of emotion for the task was manipulated through instructions to make match/non-match judgments based on the emotion (i.e., emotion was task-relevant) or the age (i.e., emotion was task-irrelevant) of the face. It was found that only older adults updated emotional faces more readily compared to neutral faces as evidenced by faster RTs on non-match trials. This emotion benefit was observed under low-load conditions (1-back task) but not under high-load conditions (2-back task) and only if emotion was task-relevant. In contrast, task-irrelevant emotion did not impair updating performance in either age group. These findings suggest that older adults can benefit from task-relevant emotional information to a greater extent than younger adults when sufficient cognitive resources are available. They also highlight that emotional processing can buffer age-related decline in WM tasks that require not only maintenance but also manipulation of material. PMID:28966602
Interference effects on commonly used memory tasks.
Brophy, Linda M; Jackson, Martin; Crowe, Simon F
2009-02-01
This paper reports two studies which investigated the effect of interference on delayed recall scores of the WMS-III and other commonly used memory measures. In Study 1, participants completed the immediate and delayed components of the WMS-III, with or without the introduction of conceptually similar memory tasks between the recall trials. In Study 2, this order of administration was reversed, with the WMS-III subtests used as the interference items. The results indicated that the introduction of interference items during the delay negatively affected delayed recall performance on almost all sub-tests. In addition, equal effects of proactive and retroactive interference were demonstrated. These findings raise concerns regarding the standardization process for memory tasks and highlight the need to consider interference effects in clinical practice, and stand as a caution in the use of memory-related materials during the delay interval in memory testing.
Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks.
Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan
2017-06-26
Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H²RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H²RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.
Recent progress in X-ray optics at the ESRF
NASA Astrophysics Data System (ADS)
Freund, A.
2003-03-01
It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.
Emotion effects on implicit and explicit musical memory in normal aging.
Narme, Pauline; Peretz, Isabelle; Strub, Marie-Laure; Ergis, Anne-Marie
2016-12-01
Normal aging affects explicit memory while leaving implicit memory relatively spared. Normal aging also modifies how emotions are processed and experienced, with increasing evidence that older adults (OAs) focus more on positive information than younger adults (YAs). The aim of the present study was to investigate how age-related changes in emotion processing influence explicit and implicit memory. We used emotional melodies that differed in terms of valence (positive or negative) and arousal (high or low). Implicit memory was assessed with a preference task exploiting exposure effects, and explicit memory with a recognition task. Results indicated that effects of valence and arousal interacted to modulate both implicit and explicit memory in YAs. In OAs, recognition was poorer than in YAs; however, recognition of positive and high-arousal (happy) studied melodies was comparable. Insofar as socioemotional selectivity theory (SST) predicts a preservation of the recognition of positive information, our findings are not fully consistent with the extension of this theory to positive melodies since recognition of low-arousal (peaceful) studied melodies was poorer in OAs. In the preference task, YAs showed stronger exposure effects than OAs, suggesting an age-related decline of implicit memory. This impairment is smaller than the one observed for explicit memory (recognition), extending to the musical domain the dissociation between explicit memory decline and implicit memory relative preservation in aging. Finally, the disproportionate preference for positive material seen in OAs did not translate into stronger exposure effects for positive material suggesting no age-related emotional bias in implicit memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Nanoscale analysis of degradation processes of cellulose fibers.
Teodonio, Lorenzo; Missori, Mauro; Pawcenis, Dominika; Łojewska, Joanna; Valle, Francesco
2016-12-01
Mapping the morphological and nano-mechanical properties of cellulose fibers within paper sheets or textile products at the nano-scale level by using atomic force microscopy is a challenging task due to the huge surface level variation of these materials. However this task is fundamental for applications in forensic or cultural heritage sciences and for the industrial characterization of materials. In order to correlate between nano-mechanical properties and local nanometer scale morphology of different layers of cellulose fibers, a new strategy to prepare samples of isolated cellulose fibers was designed. This approach is based on immobilizing isolated fibers onto glass slides chemically pretreated so as to promote cellulose adhesion. The experiments presented here aim at the nano-scale characterization of fibers in paper samples aged under different external agents (relative humidity, temperature) in such a way as to promote hydrolysis and oxidation of polymers. The observed variability of local mechanical properties of paper fibers was related to varying degrees of cellulose polymerization induced by artificial aging. Copyright © 2016 Elsevier Ltd. All rights reserved.
Allendorfer, Jane B.; Kissela, Brett M.; Holland, Scott K.; Szaflarski, Jerzy P.
2012-01-01
Summary Background Post-stroke language functions depend on the relative contributions of the dominant and non-dominant hemispheres. Thus, we aimed to identify the neural correlates of overt and covert verb generation in adult post-stroke aphasia. Material/Methods Sixteen aphasic LMCA stroke patients (SPs) and 32 healthy controls (HCs) underwent language testing followed by fMRI while performing an overt event-related verb generation task (ER-VGT) isolating activations related to noun-verb semantic processing or to articulation and auditory processing, and a covert block design verb generation task (BD-VGT). Results BD-VGT activation patterns were consistent with previous studies, while ER-VGT showed different patterns in SPs relative to HCs including less left-hemispheric involvement during semantic processing and predominantly right-sided activation related to articulation and auditory processing. ER-VGT intra-scanner performance was positively associated with activation during semantic associations in the left middle temporal gyrus for HCs (p=0.031) and left middle frontal gyrus for SPs (p=0.042). Increased activation in superior frontal/cingulate gyri was associated with better intra-scanner performance (p=0.020). Lesion size negatively impacted verbal fluency tested with Controlled Oral Word Association Test (p=0.0092) and the Semantic Fluency Test (p=0.033) and trended towards a negative association with verb generation performance on the event-related verb generation task (p=0.081). Conclusions Greater retention of pre-stroke language skills is associated with greater involvement of the left hemisphere with different cortical recruitment patterns observed in SPs versus HCs. Post-stroke verbal fluency may depend more upon the structural and functional integrity of the dominant left hemisphere language network rather than the shift to contralateral homologues. PMID:22367124
Advanced automation for in-space vehicle processing
NASA Technical Reports Server (NTRS)
Sklar, Michael; Wegerif, D.
1990-01-01
The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.
The Neural Bases of Event Monitoring across Domains: a Simultaneous ERP-fMRI Study
Tarantino, Vincenza; Mazzonetto, Ilaria; Formica, Silvia; Causin, Francesco; Vallesi, Antonino
2017-01-01
The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes. In the current study, the functional activity of brain during an event monitoring task was investigated and compared between two cognitive domains, whose processing is mediated by differently lateralized areas. Namely, participants were asked to monitor sequences of either faces (supported by right-hemisphere regions) or tools (left-hemisphere). In order to disentangle sustained from transient components of monitoring, a simultaneous EEG-fMRI technique was adopted within a block design. When contrasting monitoring versus control blocks, the conventional fMRI analysis revealed the sustained involvement of bilateral fronto-parietal regions, in both task domains. Event-related potentials (ERPs) showed a more positive amplitude over frontal sites in monitoring compared to control blocks, providing evidence of a transient monitoring component. The joint ERP-fMRI analysis showed that, in the case of face monitoring, this transient component relies on right-lateralized areas, including the inferior parietal lobule and the middle frontal gyrus. In the case of tools, no fronto-parietal areas correlated with the transient ERP activity, suggesting that in this domain phasic monitoring processes were masked by tonic ones. Overall, the present findings highlight the role of bilateral fronto-parietal regions in sustained monitoring, independently of the specific task requirements, and suggest that right-lateralized areas subtend transient monitoring processes, at least in some task contexts. PMID:28785212
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
Schuch, Stefanie; Werheid, Katja; Koch, Iring
2012-01-01
The present study investigated whether the processing characteristics of categorizing emotional facial expressions are different from those of categorizing facial age and sex information. Given that emotions change rapidly, it was hypothesized that processing facial expressions involves a more flexible task set that causes less between-task interference than the task sets involved in processing age or sex of a face. Participants switched between three tasks: categorizing a face as looking happy or angry (emotion task), young or old (age task), and male or female (sex task). Interference between tasks was measured by global interference and response interference. Both measures revealed patterns of asymmetric interference. Global between-task interference was reduced when a task was mixed with the emotion task. Response interference, as measured by congruency effects, was larger for the emotion task than for the nonemotional tasks. The results support the idea that processing emotional facial expression constitutes a more flexible task set that causes less interference (i.e., task-set "inertia") than processing the age or sex of a face.
Adaptive Semantic and Social Web-based learning and assessment environment for the STEM
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Atchison, Chris; Sunderraman, Rajshekhar
2014-05-01
We are building a cloud- and Semantic Web-based personalized, adaptive learning environment for the STEM fields that integrates and leverages Social Web technologies to allow instructors and authors of learning material to collaborate in semi-automatic development and update of their common domain and task ontologies and building their learning resources. The semi-automatic ontology learning and development minimize issues related to the design and maintenance of domain ontologies by knowledge engineers who do not have any knowledge of the domain. The social web component of the personal adaptive system will allow individual and group learners to interact with each other and discuss their own learning experience and understanding of course material, and resolve issues related to their class assignments. The adaptive system will be capable of representing key knowledge concepts in different ways and difficulty levels based on learners' differences, and lead to different understanding of the same STEM content by different learners. It will adapt specific pedagogical strategies to individual learners based on their characteristics, cognition, and preferences, allow authors to assemble remotely accessed learning material into courses, and provide facilities for instructors to assess (in real time) the perception of students of course material, monitor their progress in the learning process, and generate timely feedback based on their understanding or misconceptions. The system applies a set of ontologies that structure the learning process, with multiple user friendly Web interfaces. These include the learning ontology (models learning objects, educational resources, and learning goal); context ontology (supports adaptive strategy by detecting student situation), domain ontology (structures concepts and context), learner ontology (models student profile, preferences, and behavior), task ontologies, technological ontology (defines devices and places that surround the student), pedagogy ontology, and learner ontology (defines time constraint, comment, profile).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodgson, Alfred T.; Shendell, Derek G.; Fisk, William J.
Indoor exposures to toxic and odorous volatile organic compounds (VOCs) are of general concern. Recently, VOCs in portable or relocatable classrooms (RCs) have received particular attention. However, very little was known about indoor environmental quality (IEQ) and the sources, composition, and indoor concentrations of VOCs in RCs. This project task focused on developing and demonstrating a process for selecting interior finish materials for RCs that have relatively low impacts with respect to their emissions of toxic and odorous VOCs. This task was part of a larger project to demonstrate the potential for simultaneous improvements in IEQ and energy efficiency inmore » four new RCs equipped both with a continuously ventilating advanced heating, ventilating, and air conditioning system (HVAC) and a standard HVAC system. These HVACs were operated on alternate weeks. One RC per pair was constructed with standard interior finish materials, and the other included alternate interior materials identified in our prior laboratory study to have low VOC emissions. The RCs were sited in side-by-side pairs at two elementary schools in distinct northern California climate zones. Classroom VOC emission rates (mg hr{sup -1}) and concentrations were predicted based on VOC emission factors ({micro}g m{sup -2} hr{sup -1}) measured for individual materials in the laboratory, the quantities of installed materials and design ventilation rates. Predicted emission rates were compared to values derived from classroom measurements of VOC concentrations and ventilation rates made at pre-occupancy, eight weeks, and 27 weeks. Predicted concentrations were compared to measured integrated VOC indoor minus outdoor concentrations during school hours in the fall cooling season with the advanced HVAC operated. These measured concentrations also were compared between standard and material-modified RCs. Our combined laboratory and field process proved effective by correctly predicting that IEQ impacts of material VOC emissions would be minor when RCs were ventilated at or above code-minimum requirements. Assuming code-minimum ventilation rates are maintained, the benefits attributable to the use of alternate interior finish materials in RC's constructed by the manufacturer associated with this study are small, implying that it is not imperative to use such alternative finishing materials. However, it is essential to avoid materials that can degrade IEQ, and the results of this study demonstrate that laboratory-based material testing combined with modeling and field validation can help to achieve that aim.« less
CVD-Enabled Graphene Manufacture and Technology
2015-01-01
Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth. PMID:26240694
Shape Memory Polymer Self-Deploying Membrane Reflectors
2007-01-30
stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and
High-Temperature Metal Matrix Composites
1990-06-01
Graduate Student, PhD Candidate Oct 1986 - August 1989. H. Henein: Principal Investigator of Blending Task. Productivity : Papers - J.O.G. Parent, J. Iyengar...the powder metallurgy route provides a better controlled means of forming the product . An overview of the P/M processing route is shown in Figure 1...This approach has its inherent problems. The requirement of a uniform distrihution of the reinforcement material is not always readily achieved. In P/M
Low-Cost, Net-Shape Ceramic Radial Turbine Program
1985-05-01
PROGRAM ELEMENT. PROJECT. TASK Garrett Turbine Engine Company AE OKUI UBR 111 South 34th Street, P.O. Box 2517 Phoenix, Arizona 85010 %I. CONTROLLING...processing iterations. Program management and materials characterization were conducted at Garrett Turbine Engine Company (GTEC), test bar and rotor...automotive gas turbine engine rotor development efforts at ACC. xvii PREFACE This is the final technical report of the Low-Cost, Net- Shape Ceramic
Design of impact-resistant boron/aluminum large fan blade
NASA Technical Reports Server (NTRS)
Salemme, C. T.; Yokel, S. A.
1978-01-01
The technical program was comprised of two technical tasks. Task 1 encompassed the preliminary boron/aluminum fan blade design effort. Two preliminary designs were evolved. An initial design consisted of 32 blades per stage and was based on material properties extracted from manufactured blades. A final design of 36 blades per stage was based on rule-of-mixture material properties. In Task 2, the selected preliminary blade design was refined via more sophisticated analytical tools. Detailed finite element stress analysis and aero performance analysis were carried out to determine blade material frequencies and directional stresses.
Boiler materials for ultra supercritical coal power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purgert, Robert; Shingledecker, John; Pschirer, James
2015-12-29
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this projectmore » is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. A major effort involving eight tasks was completed in Phase 1. In a subsequent Phase 2 extension, the earlier defined tasks were extended to finish and enhance the Phase 1 activities. This extension included efforts in improved weld/weldment performance, development of longer-term material property databases, additional field (in-plant) corrosion testing, improved understanding of long-term oxidation kinetics and exfoliation, cyclic operation, and fabrication methods for waterwalls. In addition, preliminary work was undertaken to model an oxyfuel boiler to define local environments expected to occur and to study corrosion behavior of alloys under these conditions. This final technical report provides a comprehensive summary of all the work undertaken by the consortium and the research findings from all eight (8) technical tasks including A-USC boiler design and economics (Task 1), long-term materials properties (Task 2), steam- side oxidation (Task 3), Fireside Corrosion (Task 4), Welding (Task 5), Fabricability (Task 6), Coatings (Task 7), and Design Data and Rules (Task 8).« less
Bavelier, Daphne; Newport, Elissa L.; Hall, Matt; Supalla, Ted; Boutla, Mrim
2008-01-01
Capacity limits in linguistic short-term memory (STM) are typically measured with forward span tasks in which participants are asked to recall lists of words in the order presented. Using such tasks, native signers of American Sign Language (ASL) exhibit smaller spans than native speakers (Boutla, Supalla, Newport, & Bavelier, 2004). Here, we test the hypothesis that this population difference reflects differences in the way speakers and signers maintain temporal order information in short-term memory. We show that native signers differ from speakers on measures of short-term memory that require maintenance of temporal order of the tested materials, but not on those in which temporal order is not required. In addition, we show that, in a recall task with free order, bilingual subjects are more likely to recall in temporal order when using English than ASL. We conclude that speakers and signers do share common short-term memory processes. However, whereas short-term memory for spoken English is predominantly organized in terms of temporal order, we argue that this dimension does not play as great a role in signers’ short-term memory. Other factors that may affect STM processes in signers are discussed. PMID:18083155
Attention, working memory, and grammaticality judgment in typical young adults.
Smith, Pamela A
2011-06-01
To examine resource allocation and sentence processing, this study examined the effects of auditory distraction on grammaticality judgment (GJ) of sentences varied by semantics (reversibility) and short-term memory requirements. Experiment 1: Typical young adult females (N = 60) completed a whole-sentence GJ task in distraction (Quiet, Noise, or Talk). Participants judged grammaticality of Passive sentences varied by sentence (length), grammaticality, and reversibility. Reaction time (RT) data were analyzed using a mixed analysis of variance. Experiment 2: A similar group completed a self-paced reading GJ task using the similar materials. Experiment 1: Participants responded faster to Bad and to Nonreversible sentences, and in the Talk distraction. The slowest RTs were noted for Good-Reversible-Padded sentences in the Quiet condition. Experiment 2: Distraction did not differentially affect RTs for sentence components. Verb RTs were slower for Reversible sentences. Results suggest that narrative distraction affected GJ, but by speeding responses, not slowing them. Sentence variables of memory and reversibility slowed RTs, but narrative distraction resulted in faster processing times regardless of individual sentence variables. More explicit, deliberate tasks (self-paced reading) resulted in less effect from distraction. Results are discussed in terms of recent theories about auditory distraction.
Martin, Maryanne; Alexeeva, Iana
2010-11-01
This study tested whether (1) chronic fatigue syndrome (CFS) individuals have a bias in the initial orientation of attention to illness-related information, which is enhanced by rumination. (2) CFS individuals have an illness interpretation bias (IB) in their early automatic processing of ambiguous information. (3) CFS individuals experience a greater degree of mood fluctuation following rumination and distraction inductions. Thirty-three CFS participants who had received a medical practitioner's diagnosis of CFS were compared to 33 healthy matched controls on an exogenous cueing task and a lexical decision task. All participants underwent either a rumination or distraction induction. They then completed an exogenous cueing task to assess bias to illness and social threat compared with neutral stimuli, as well as a lexical decision task to assess their interpretation of ambiguous words having illness, social threat, or neutral interpretations. Reaction time data revealed that CFS individuals did not have an attentional bias (AB) in the initial orientation of attention to illness-related material. Nor was there an IB towards illness in CFS individual's automatic response to ambiguous information. However, as hypothesized, CFS individuals showed a greater degree of mood fluctuation following the rumination/distraction induction. Rumination and distraction lead to greater mood volatility in CFS individuals than in controls, but not to attentional nor interpretation biases in the early automatic stages of information processing in CFS individuals.
Sharp, Marilyn A; Cohen, Bruce S; Boye, Michael W; Foulis, Stephen A; Redmond, Jan E; Larcom, Kathleen; Hydren, Jay R; Gebhardt, Deborah L; Canino, Maria C; Warr, Bradley J; Zambraski, Edward J
2017-11-01
In 2013, the U.S. Army began developing physical tests to predict a recruit's ability to perform the critical, physically demanding tasks (CPDTs) of combat arms jobs previously not open to women. The purpose of this paper is to describe the methodology and results of analyses of the accuracy and inclusiveness of the critical physically demanding task list. While the job analysis included seven combat arms jobs, only data from the 19D Cavalry Scout occupation are presented as the process was similar for all seven jobs. Job analysis METHODS: As the foundation, senior subject matter experts from each job reviewed materials and reached consensus on the CPDTs and performance standards for each job. The list was reviewed by Army leadership and provided to the researchers. The job analysis consisted of reviewing job and task related documents and field manuals, observing >900 soldiers performing the 32 CPDTs, conducting two focus groups for each job, and analyzing responses to widely distributed job analysis questionnaires. Of the 32 CPDTs identified for seven combat jobs, nine were relevant to 19D soldiers. Focus group discussions and job analysis questionnaire results supported the tasks and standards identified by subject matter experts while also identifying additional tasks. The tasks identified by subject matter experts were representative of the physically demanding aspects of the 19D occupation. Published by Elsevier Ltd.
Mueller, Sven C; Cromheeke, Sofie; Siugzdaite, Roma; Nicolas Boehler, C
2017-08-01
In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Avanzino, Laura; Pelosin, Elisa; Martino, Davide; Abbruzzese, Giovanni
2013-01-01
Timing of sequential movements is altered in Parkinson disease (PD). Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization–continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE) or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE), whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task. PMID:24086534
Backwards Fading to Speed Task Learning
2013-09-01
estimates.) Table 1 Finalized Task List Task Domain Task Name Knot Tying Hand Cuff Rappel First Aid Fracture Bleed Map Reading* Resection...materials used. Hand Cuff . There are 10 steps in this task. To complete this task, the learner must manipulate a short length of rope (e.g...Design for Experiment 1 – Step Fade Experiment 1 (Step Fade) Task Type: Knot Tying Task Type: First Aid Task Complexity: Low (1) Hand Cuff (10
Evidence for modality-independent order coding in working memory.
Depoorter, Ann; Vandierendonck, André
2009-03-01
The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.
Harmer, Catherine J; Shelley, Nicholas C; Cowen, Philip J; Goodwin, Guy M
2004-07-01
Antidepressants that inhibit the reuptake of serotonin (SSRIs) or norepinephrine (SNRIs) are effective in the treatment of disorders such as depression and anxiety. Cognitive psychological theories emphasize the importance of correcting negative biases of information processing in the nonpharmacological treatment of these disorders, but it is not known whether antidepressant drugs can directly modulate the neural processing of affective information. The present study therefore assessed the actions of repeated antidepressant administration on perception and memory for positive and negative emotional information in healthy volunteers. Forty-two male and female volunteers were randomly assigned to 7 days of double-blind intervention with the SSRI citalopram (20 mg/day), the SNRI reboxetine (8 mg/day), or placebo. On the final day, facial expression recognition, emotion-potentiated startle response, and memory for affect-laden words were assessed. Questionnaires monitoring mood, hostility, and anxiety were given before and after treatment. In the facial expression recognition task, citalopram and reboxetine reduced the identification of the negative facial expressions of anger and fear. Citalopram also abolished the increased startle response found in the context of negative affective images. Both antidepressants increased the relative recall of positive (versus negative) emotional material. These changes in emotional processing occurred in the absence of significant differences in ratings of mood and anxiety. However, reboxetine decreased subjective ratings of hostility and elevated energy. Short-term administration of two different antidepressant types had similar effects on emotion-related tasks in healthy volunteers, reducing the processing of negative relative to positive emotional material. Such effects of antidepressants may ameliorate the negative biases in information processing that characterize mood and anxiety disorders. They also suggest a mechanism of action potentially compatible with cognitive theories of anxiety and depression.
The flexural stiffness and tension state of basalt filter
NASA Astrophysics Data System (ADS)
Khalmuradovich, Sattarov Laziz; Ahmedovich, Kurbanov Abdirahim
2017-03-01
In recent years, there is a growing demand in Uzbekistan for new, cheap and competitive products from local raw materials, the demand being directly connected with the expansion and development opportunities of the mining, metallurgical and processing industries. In such conditions, the need for providing a solution of the problems faced by these industries is a very urgent one and requires further comprehensive studies. One of these tasks includes assessment of the force parameters and bending stiffness of basalt fibre filters, aimed at further improving the efficiency of local basalt raw materials and aiding in the manufacture of new, long-lasting, reliable and high-quality products. In this case, we studied the interaction of basalt fibre filter with a gas or liquid medium, the deformed state of the fibres under the action force of the gas or liquid, and the filter recovery process after removal of the load, all of which occur during mechanical filtration. These tasks are of interest because during the mechanical filtration of a gas or liquid (hereinafter, mechanical filtration) from solids, all attention is paid to the quality of the filtering process. The filtering quality, as known, is determined by the degree of contamination in the liquid undergoing treatment, duration of separation of the pulp into solid and liquid phases during the decantation process of the mixture and the amount of gas/ liquid released into the atmosphere along with carbon monoxide and toxic impurities. At the same time, the state and behaviour of the filtering material remain as minor factors, the consideration of which can play a decisive role in the establishment of filter life and work capacity. Solutions to these problems are very urgent and allow one to create new technologies for the production of basalt filters based on force parameters and bending stiffness, wherein the purification occurs without the intervention of chemicals.
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...
2016-01-06
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
The Flynn effect and memory function.
Baxendale, Sallie
2010-08-01
The Flynn effect refers to the steady increase in IQ that appears to date back at least to the inception of modern-day IQ tests. This study examined the possible Flynn effects on clinical memory tests involving the learning and recall of verbal and nonverbal material. Comparisons of the age-related norms on the list learning and design learning tasks from the Adult Memory and Information Processing Battery (AMIPB), published in 1985, and its successor, the BIRT (Brain Injury Rehabilitation Trust) Memory and Information Processing Battery (BMIPB) published in 2007, indicate that there is a significant Flynn effect on tests of memory function. This effect appears to be material specific with statistically significant improvements in all scores on tests involving the learning and recall of visual material in every age range evident over a 22-year period. Verbal memory abilities appear to be relatively stable with no significant differences between the scores in the majority of age ranges. The ramifications for the clinical interpretation of these tests are discussed.
Initial planetary base construction techniques and machine implementation
NASA Technical Reports Server (NTRS)
Crockford, William W.
1987-01-01
Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing.
High Voltage Insulation Technology
NASA Astrophysics Data System (ADS)
Scherb, V.; Rogalla, K.; Gollor, M.
2008-09-01
In preparation of new Electronic Power Conditioners (EPC's) for Travelling Wave Tub Amplifiers (TWTA's) on telecom satellites a study for the development of new high voltage insulation technology is performed. The initiative is mandatory to allow compact designs and to enable higher operating voltages. In a first task a market analysis was performed, comparing different materials with respect to their properties and processes. A hierarchy of selection criteria was established and finally five material candidates (4 Epoxy resins and 1 Polyurethane resin) were selected to be further investigated in the test program. Samples for the test program were designed to represent core elements of an EPC, the high voltage transformer and Printed Circuit Boards of the high voltage section. All five materials were assessed in the practical work flow of the potting process and electrical, mechanical, thermal and lifetime testing was performed. Although the lifetime tests results were overlayed by a larges scatter, finally two candidates have been identified for use in a subsequent qualification program. This activity forms part of element 5 of the ESA ARTES Programme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Deepak
The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European programmore » characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited for smaller forging and valve internals, bolts, smaller blades. Larger Nimonic 105 forgings, would precipitate y’ during the surface cooling during forging, leading to surface cracks. The associate costs in forging Nimonic 105 to larger sizes [hotter dies, press requirements], were beyond the scope of this task and not investigated further. Haynes®282® has 20 - 25% volume fraction y’ was a choice for large components, albeit untested. A larger ingot diameter is pre-requisite for a larger diameter forging and achieves the “typically” accepted working ratio of 2.5-3:1. However, Haynes®282® is manufactured via a double melt process [VIM-ESR] limited by size [<18-16” diameter], which limited the maximum size of the final forging. The report documents the development of a 24” diameter triple melt ingot, surpassing the current available technology. A second triple melt ingot was manufactured and successfully forged into a 44” diameter disk. The successful developments in triple melting process and the large diameter forging of Haynes®282® resolved the scalability issues and involved the first of its kind attempt in the world for this alloy. The complete characterization of Haynes®282® forging was performed and documented in this report. The dataset from the commercially available Haynes®282® [grain size ASTM 3-4] and the finer grain size disk forging [ASTM 8-9] offer an additional design tradeoff to balance creep and fatigue during the future design process.« less
The effect of concurrent semantic categorization on delayed serial recall.
Acheson, Daniel J; MacDonald, Maryellen C; Postle, Bradley R
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line-orientation judgments, engaging in semantic categorization judgments increased the proportion of item-ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture-judgment task manipulations. These results demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance.
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2010-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Subjects engaged in two picture judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content (concrete words in Experiment 1 and 3; nonwords in Experiments 2 and 3). Picture judgments varied in the extent to which they required accessing visual semantic information (i.e., semantic categorization and line orientation judgments). Results showed that, relative to line orientation judgments, engaging in semantic categorization judgments increased the proportion of item ordering errors for concrete lists but did not affect error proportions for nonword lists. Furthermore, although more ordering errors were observed for phonologically similar relative to dissimilar lists, no interactions were observed between the phonological overlap and picture judgment task manipulations. These results thus demonstrate that lexical-semantic representations can affect the serial ordering of items in short-term memory. Furthermore, the dual-task paradigm provides a new method for examining when and how semantic representations affect memory performance. PMID:21058880
Atmaca, Silke; Stadler, Waltraud; Keitel, Anne; Ott, Derek V M; Lepsien, Jöran; Prinz, Wolfgang
2013-01-01
Background The multiple object tracking (MOT) paradigm is a cognitive task that requires parallel tracking of several identical, moving objects following nongoal-directed, arbitrary motion trajectories. Aims The current study aimed to investigate the employment of prediction processes during MOT. As an indicator for the involvement of prediction processes, we targeted the human premotor cortex (PM). The PM has been repeatedly implicated to serve the internal modeling of future actions and action effects, as well as purely perceptual events, by means of predictive feedforward functions. Materials and methods Using functional magnetic resonance imaging (fMRI), BOLD activations recorded during MOT were contrasted with those recorded during the execution of a cognitive control task that used an identical stimulus display and demanded similar attentional load. A particular effort was made to identify and exclude previously found activation in the PM-adjacent frontal eye fields (FEF). Results We replicated prior results, revealing occipitotemporal, parietal, and frontal areas to be engaged in MOT. Discussion The activation in frontal areas is interpreted to originate from dorsal and ventral premotor cortices. The results are discussed in light of our assumption that MOT engages prediction processes. Conclusion We propose that our results provide first clues that MOT does not only involve visuospatial perception and attention processes, but prediction processes as well. PMID:24363971
NASA Astrophysics Data System (ADS)
Ashrafizadeh, H.; McDonald, A.; Mertiny, P.
2016-02-01
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.
McBride, Dawn M; Abney, Drew H
2012-01-01
We examined multi-process (MP) and transfer-appropriate processing descriptions of prospective memory (PM). Three conditions were compared that varied the overlap in processing type (perceptual/conceptual) between the ongoing and PM tasks such that two conditions involved a match of perceptual processing and one condition involved a mismatch in processing (conceptual ongoing task/perceptual PM task). One of the matched processing conditions also created a focal PM task, whereas the other two conditions were considered non-focal (Einstein & McDaniel, 2005). PM task accuracy and ongoing task completion speed in baseline and PM task conditions were measured. Accuracy results indicated a higher PM task completion rate for the focal condition than the non-focal conditions, a finding that is consistent with predictions made by the MP view. However, reaction time (RT) analyses indicated that PM task cost did not differ across conditions when practice effects are considered. Thus, the PM accuracy results are consistent with a MP description of PM, but RT results did not support the MP view predictions regarding PM cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-01
This Comprehensive Work Plan describes the method of accomplishment to replace the shielding protection of the water in the canal with a controlled low strength material (CLSM) 4. The canal was used during the operation of the Oak Ridge Graphite Reactor in the 1940s and 1950s to transport spent fuel slugs and irradiated test materials from the reactor, under water to the hot cell in Building 3019 for further processing, packaging, and handling. After the reactor was shut down, the canal was used until 1990 to store some irradiated materials until they could be transferred to a Solid Waste Storagemore » Area. This task has the following objectives and components: (1) minimize potential future risk to human health and the environment; (2) reduce surveillance and maintenance cost of the canal; (3) perform site preparation activities; (4) replace the water in the canal with a solid CLSM; (5) pump the water to the Process Waste Treatment System (PWTS) for further processing at the same rate that the CLSM is pumped under the water; (6) remove the water using a process that will protect the workers and the public in the visitors area from contamination while the CLSM is being pumped underneath the water; (7) painting a protective coating material over the CLSM after the CLSM has cured.« less
Current Status and Tasks in Development of Cable Recycling Technology
NASA Astrophysics Data System (ADS)
Ezure, Takashi; Goto, Kazuhiko
This paper shows current status and tasks in development of cable recycling technology and it’s items to be solved. Electric cable recycle system has been activated especially for copper conductor recycle in Japan. Previously removed cable coverings materials were mainly land filled. But landfill capacity is decreased and limited in recent years, at the same time, recycle technology was highly developed. A cable recycle technology has 4 tasks. (1) Applying new high efficiency separation system instead of electrostatic and gravity methods to classify mixed various kind of plastics materials including recently developed ecological material (ex PE, PVC, Rubber), (2) Removing heavy metal, especially lead from PVC material, (3) Treatment of optical glass fiber core, which has possibility going to be harmful micro particles, and (4) Establishment of social recycle system for electric wire and cable. Taking action for these tasks shall be proceeded under environmentally sensitive technology together with local government, user, manufacturer, and waste-disposal company on cost performance basis.
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
NASA Technical Reports Server (NTRS)
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
NASA Technical Reports Server (NTRS)
Willis, P. B.; Baum, B.; White, R. A.
1978-01-01
The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.
Differential Effects of Alcohol on Working Memory: Distinguishing Multiple Processes
Saults, J. Scott; Cowan, Nelson; Sher, Kenneth J.; Moreno, Matthew V.
2008-01-01
We assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in two properties of materials to be retained in a two-stimulus comparison procedure. Conditions included (1) spatial arrays of colors, (2) temporal sequences of colors, (3) spatial arrays of spoken digits, and (4) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences, but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research into alcohol’s effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. PMID:18179311
Updating working memory in aircraft noise and speech noise causes different fMRI activations
Sætrevik, Bjørn; Sörqvist, Patrik
2015-01-01
The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319
Differential effects of alcohol on working memory: distinguishing multiple processes.
Saults, J Scott; Cowan, Nelson; Sher, Kenneth J; Moreno, Matthew V
2007-12-01
The authors assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in 2 properties of materials to be retained in a 2-stimulus comparison procedure. Conditions included (a) spatial arrays of colors, (b) temporal sequences of colors, (c) spatial arrays of spoken digits, and (d) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research on alcohol's effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. (c) 2008 APA, all rights reserved.
A Data Envelopment Analysis Model for Selecting Material Handling System Designs
NASA Astrophysics Data System (ADS)
Liu, Fuh-Hwa Franklin; Kuo, Wan-Ting
The material handling system under design is an unmanned job shop with an automated guided vehicle that transport loads within the processing machines. The engineering task is to select the design alternatives that are the combinations of the four design factors: the ratio of production time to transportation time, mean job arrival rate to the system, input/output buffer capacities at each processing machine, and the vehicle control strategies. Each of the design alternatives is simulated to collect the upper and lower bounds of the five performance indices. We develop a Data Envelopment Analysis (DEA) model to assess the 180 designs with imprecise data of the five indices. The three-ways factorial experiment analysis for the assessment results indicates the buffer capacity and the interaction of job arrival rate and buffer capacity affect the performance significantly.
Efficient multitasking: parallel versus serial processing of multiple tasks
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling. PMID:26441742
Efficient multitasking: parallel versus serial processing of multiple tasks.
Fischer, Rico; Plessow, Franziska
2015-01-01
In the context of performance optimizations in multitasking, a central debate has unfolded in multitasking research around whether cognitive processes related to different tasks proceed only sequentially (one at a time), or can operate in parallel (simultaneously). This review features a discussion of theoretical considerations and empirical evidence regarding parallel versus serial task processing in multitasking. In addition, we highlight how methodological differences and theoretical conceptions determine the extent to which parallel processing in multitasking can be detected, to guide their employment in future research. Parallel and serial processing of multiple tasks are not mutually exclusive. Therefore, questions focusing exclusively on either task-processing mode are too simplified. We review empirical evidence and demonstrate that shifting between more parallel and more serial task processing critically depends on the conditions under which multiple tasks are performed. We conclude that efficient multitasking is reflected by the ability of individuals to adjust multitasking performance to environmental demands by flexibly shifting between different processing strategies of multiple task-component scheduling.
Nott, Melissa T; Chapparo, Christine
2008-09-01
Agitation following traumatic brain injury is characterised by a heightened state of activity with disorganised information processing that interferes with learning and achieving functional goals. This study aimed to identify information processing problems during task performance of a severely agitated adult using the Perceive, Recall, Plan and Perform (PRPP) System of Task Analysis. Second, this study aimed to examine the sensitivity of the PRPP System to changes in task performance over a short period of rehabilitation, and third, to evaluate the guidance provided by the PRPP in directing intervention. A case study research design was employed. The PRPP System of Task Analysis was used to assess changes in task embedded information processing capacity during occupational therapy intervention with a severely agitated adult in a rehabilitation context. Performance is assessed on three selected tasks over a one-month period. Information processing difficulties during task performance can be clearly identified when observing a severely agitated adult following a traumatic brain injury. Processing skills involving attention, sensory processing and planning were most affected at this stage of rehabilitation. These processing difficulties are linked to established descriptions of agitated behaviour. Fluctuations in performance across three tasks of differing processing complexity were evident, leading to hypothesised relationships between task complexity, environment and novelty with information processing errors. Changes in specific information processing capacity over time were evident based on repeated measures using the PRPP System of Task Analysis. This lends preliminary support for its utility as an outcome measure, and raises hypotheses about the type of therapy required to enhance information processing in people with severe agitation. The PRPP System is sensitive to information processing changes in severely agitated adults when used to reassess performance over short intervals and can provide direct guidance to occupational therapy intervention to improve task embedded information processing by categorising errors under four stages of an information processing model: Perceive, Recall, Plan and Perform.
Energy efficient engine high pressure turbine ceramic shroud support technology report
NASA Technical Reports Server (NTRS)
Nelson, W. A.; Carlson, R. G.
1982-01-01
This work represents the development and fabrication of ceramic HPT (high pressure turbine) shrouds for the Energy Efficient Engine (E3). Details are presented covering the work performed on the ceramic shroud development task of the NASA/GE Energy Efficient Engine (E3) component development program. The task consists of four phases which led to the selection of a ZrO2-BY2O3 ceramic shroud material system, the development of an automated plasma spray process to produce acceptable shroud structures, the fabrication of select shroud systems for evaluation in laboratory, component, and CF6-50 engine testing, and finally, the successful fabrication of ZrO2-8Y2O3/superpeg, engine quality shrouds for the E3 engine.
Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion
NASA Astrophysics Data System (ADS)
1980-06-01
The feasibility of the nickel zinc battery for electric vehicle propulsion is discussed. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal manufacturing, and thermal management. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge applications. Shape change has been reduced significantly. Progress in the area of thermal management was significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation.
Best practice guidelines on informed consent for weight loss surgery patients.
Sabin, James; Fanelli, Robert; Flaherty, Helen; Istfan, Nawfal; Mariner, Wendy; Barnes, Janet Nally; Pratt, Janey S A; Rossi, Laura; Samour, Patricia
2005-02-01
To provide evidence-based guidelines on informed consent and the education that underlies it for legally competent, severely obese weight loss surgery (WLS) patients. We conducted a systematic review of the scientific literature published on MEDLINE between 1984 and 2004. Three articles focused on informed consent for WLS; none was based on empirical studies. We summarized each paper and assigned evidence categories according to a grading system derived from established evidence-based models. We also relied on informed consent and educational materials from six WLS programs in Massachusetts. All evidence is Category D. Recommendations were based on a review of the available literature, informed consent materials from WLS programs, and expert opinion. This Task Group found that the informed consent process contributes to long-term outcome in multiple ways but is governed by limited legal requirements. We focused our report on the legal and ethical issues related to informed consent, i.e., disclosure vs. comprehension. Recommendations centered on the importance of assessing patient comprehension of informed consent materials, the content of those materials, and the use of active teaching/learning techniques to promote understanding. Although demonstrated comprehension is not a legal requirement for informed consent in Massachusetts or other states, the members of this Task Group found that the best interests of WLS patients, providers, and facilities are served when clinicians engage patients in active learning and collaborative decision making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kg/sq m (3.1 lb/cu ft (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Lort, Richard D., III; Zimmerman, Thomas J.; Sutter, James K.; Pelham, Larry I.; McCorkle, Linda S.; Scheiman, Daniel A.
2012-01-01
Increased application of polymer matrix composite (PMC) materials in large vehicle structures requires consideration of non-autoclave manufacturing technology. The NASA Composites for Exploration project, and its predecessor, Lightweight Spacecraft Structures and Materials project, were tasked with the development of materials and manufacturing processes for structures that will perform in a heavy-lift-launch vehicle environment. Both autoclave and out of autoclave processable materials were considered. Large PMC structures envisioned for such a vehicle included the payload shroud and the interstage connector. In this study, composite sandwich panels representing 1/16th segments of the barrel section of the Ares V rocket fairing were prepared as 1.8 m x 2.4 m sections of the 10 m diameter arc segment. IM7/977-3 was used as the face-sheet prepreg of the autoclave processed panels and T40-800B/5320-1 for the out of autoclave panels. The core was 49.7 kilograms per square meters (3.1 pounds per cubic feet (pcf)) aluminum honeycomb. Face-sheets were fabricated by automated tape laying 153 mm wide unidirectional tape. This work details analysis of the manufactured panels where face-sheet quality was characterized by optical microscopy, cured ply thickness measurements, acid digestion, and thermal analysis.
Langhanns, Christine; Müller, Hermann
2018-01-01
Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening . A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by "higher-order" cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing.
Langhanns, Christine; Müller, Hermann
2018-01-01
Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening. A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by “higher-order” cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing. PMID:29887815
Electrophysiological evidence of automatic early semantic processing.
Hinojosa, José A; Martín-Loeches, Manuel; Muñoz, Francisco; Casado, Pilar; Pozo, Miguel A
2004-01-01
This study investigates the automatic-controlled nature of early semantic processing by means of the Recognition Potential (RP), an event-related potential response that reflects lexical selection processes. For this purpose tasks differing in their processing requirements were used. Half of the participants performed a physical task involving a lower-upper case discrimination judgement (shallow processing requirements), whereas the other half carried out a semantic task, consisting in detecting animal names (deep processing requirements). Stimuli were identical in the two tasks. Reaction time measures revealed that the physical task was easier to perform than the semantic task. However, RP effects elicited by the physical and semantic tasks did not differ in either latency, amplitude, or topographic distribution. Thus, the results from the present study suggest that early semantic processing is automatically triggered whenever a linguistic stimulus enters the language processor.
Novel Elastomeric Closed Cell Foam - Nonwoven Fabric Composite Material (Phase III)
2008-10-01
increasing the polymer content of the foam. From laboratory studies, processing was found to improve by using different types of NBR rubber . The AF07 B...Foam Optimization (Task 1) Prior development of fire retarded closed cell foam yielded attractive candidates for scale-up. Nitrile-butadiene rubber ... NBR ) and polyvinyl chloride (PVC) blends provided the most cost effective solutions. Two types of formulas were chosen for optimization. The first
ERIC Educational Resources Information Center
Instituto Nacional para la Educacion de los Adultos, Mexico City (Mexico).
These workbooks are part of a Mexican series of instructional materials designed for Spanish speaking adults who are in the process of becoming literate or have recently become literate in their native language. The workbooks are designed to teach skills needed to manage ordinary financial transactions and daily tasks requiring a knowledge of…
Army Needs to Improve Processes Over Government-Furnished Material Inventory Actions
2015-05-21
Actions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...model oversight organization in the Federal Government by leading change, speaking truth, and promoting excellence—a diverse organization, working ...Army Working Capital Fund (AWCF) activities expensed about $40.2 million in GFM upon shipment to contractors. This occurred because Assistant
The effects of glucose dose and dual-task performance on memory for emotional material.
Brandt, Karen R; Sünram-Lea, Sandra I; Jenkinson, Paul M; Jones, Emma
2010-07-29
Whilst previous research has shown that glucose administration can boost memory performance, research investigating the effects of glucose on memory for emotional material has produced mixed findings. Whereas some research has shown that glucose impairs memory for emotional material, other research has shown that glucose has no effect on emotional items. The aim of the present research was therefore to provide further investigation of the role of glucose on the recognition of words with emotional valence by exploring effects of dose and dual-task performance, both of which affect glucose facilitation effects. The results replicated past research in showing that glucose administration, regardless of dose or dual-task conditions, did not affect the memorial advantage enjoyed by emotional material. This therefore suggests an independent relationship between blood glucose levels and memory for emotional material. Copyright 2010 Elsevier B.V. All rights reserved.
Natural Resources Management: Task Analyses. Competency-Based Education.
ERIC Educational Resources Information Center
James Madison Univ., Harrisonburg, VA.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education for natural resources management courses in the agricultural resources program. Section 1 contains a validated task inventory for natural resources management. For each task, applicable information…
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Maljaars, J P W; Noens, I L J; Scholte, E M; Verpoorten, R A W; van Berckelaer-Onnes, I A
2011-01-01
The ComFor study has indicated that individuals with intellectual disability (ID) and autism spectrum disorder (ASD) show enhanced visual local processing compared with individuals with ID only. Items of the ComFor with meaningless materials provided the best discrimination between the two samples. These results can be explained by the weak central coherence account. The main focus of the present study is to examine whether enhanced visual perception is also present in low-functioning deaf individuals with and without ASD compared with individuals with ID, and to evaluate the underlying cognitive style in deaf and hearing individuals with ASD. Different sorting tasks (selected from the ComFor) were administered from four subsamples: (1) individuals with ID (n = 68); (2) individuals with ID and ASD (n = 72); (3) individuals with ID and deafness (n = 22); and (4) individuals with ID, ASD and deafness (n = 15). Differences in performance on sorting tasks with meaningful and meaningless materials between the four subgroups were analysed. Age and level of functioning were taken into account. Analyses of covariance revealed that results of deaf individuals with ID and ASD are in line with the results of hearing individuals with ID and ASD. Both groups showed enhanced visual perception, especially on meaningless sorting tasks, when compared with hearing individuals with ID, but not compared with deaf individuals with ID. In ASD either with or without deafness, enhanced visual perception for meaningless information can be understood within the framework of the central coherence theory, whereas in deafness, enhancement in visual perception might be due to a more generally enhanced visual perception as a result of auditory deprivation. © 2010 The Authors. Journal of Intellectual Disability Research © 2010 Blackwell Publishing Ltd.
The influence of levels of processing on recall from working memory and delayed recall tasks.
Loaiza, Vanessa M; McCabe, David P; Youngblood, Jessie L; Rose, Nathan S; Myerson, Joel
2011-09-01
Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading span task (Experiment 1) and an operation span task (Experiment 2) in order to assess the role of retrieval from secondary memory during complex span tasks. Immediate recall from both span tasks was greater for items studied under deep processing instructions compared with items studied under shallow processing instructions regardless of trial length. Recall was better for deep than for shallow levels of processing on delayed recall tests as well. These data are consistent with the primary-secondary memory framework, which suggests that to-be-remembered items are displaced from primary memory (i.e., the focus of attention) during the processing phases of complex span tasks and therefore must be retrieved from secondary memory. (c) 2011 APA, all rights reserved.
The composite complex span: French validation of a short working memory task.
Gonthier, Corentin; Thomassin, Noémylle; Roulin, Jean-Luc
2016-03-01
Most studies in individual differences in the field of working memory research use complex span tasks to measure working memory capacity. Various complex span tasks based on different materials have been developed, and these tasks have proven both reliable and valid; several complex span tasks are often combined to provide a domain-general estimate of working memory capacity with even better psychometric properties. The present work sought to address two issues. Firstly, having participants perform several full-length complex span tasks in succession makes for a long and tedious procedure. Secondly, few complex span tasks have been translated and validated in French. We constructed a French working memory task labeled the Composite Complex Span (CCS). The CCS includes shortened versions of three classic complex span tasks: the reading span, symmetry span, and operation span. We assessed the psychometric properties of the CCS, including test-retest reliability and convergent validity, with Raven's Advanced Progressive Matrices and with an alpha span task; the CCS demonstrated satisfying qualities in a sample of 1,093 participants. This work provides evidence that shorter versions of classic complex span tasks can yield valid working memory estimates. The materials and normative data for the CCS are also included.
Social anhedonia associated with poor evaluative processing but not with poor cognitive control.
Martin, Elizabeth A; Kerns, John G
2010-07-30
Emotion researchers have distinguished between automatic vs. controlled processing of evaluative information. There is suggestive evidence that social anhedonia might be associated with problems in controlled evaluative processing. The current study examined whether college students with elevated social anhedonia would exhibit an increased processing effect on tasks involving either evaluative processing or cognitive control. On an evaluative processing task, affective primes and targets could be either congruent or incongruent and participants judged the valence of targets. On a cognitive control task, participants completed the color-naming Stroop task. Compared to control participants (n=47), people with elevated social anhedonia (n=27) exhibited an increased evaluative processing effect as they were slower and made more errors for incongruent than for congruent trials on the evaluative processing task. In contrast, there were no group differences on the Stroop task or on a semantic priming task. Overall, these results suggest that people with elevated social anhedonia might have problems with some aspects of evaluative processing. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.
2016-08-01
Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.
Task Based Language Teaching: Development of CALL
ERIC Educational Resources Information Center
Anwar, Khoirul; Arifani, Yudhi
2016-01-01
The dominant complexities of English teaching in Indonesia are about limited development of teaching methods and materials which still cannot optimally reflect students' needs (in particular of how to acquire knowledge and select the most effective learning models). This research is to develop materials with complete task-based activities by using…
DOT National Transportation Integrated Search
2015-07-01
The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...
DOT National Transportation Integrated Search
1978-08-01
The design and development of the MATT System was accomplished through task groups' approach. These task groups (one each for soil and base course, concrete, and hot mix) consisted of personnel from the Construction, Materials, Research and Developme...
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
Business Law: Task Analyses. Competency-Based Education.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education for a course in business law. Section 1 contains a validated task inventory for business law. For each task, applicable information pertaining to performance and enabling objectives, criterion-referenced…
Gabriel, Florence C.; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference. PMID:25249995
Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szücs, Dénes
2014-01-01
Recent studies have indicated that people have a strong tendency to compare fractions based on constituent numerators or denominators. This is called componential processing. This study explored whether componential processing was preferred in tasks involving high stimuli variability and high contextual interference, when fractions could be compared based either on the holistic values of fractions or on their denominators. Here, stimuli variability referred to the fact that fractions were not monotonous but diversiform. Contextual interference referred to the fact that the processing of fractions was interfered by other stimuli. To our ends, three tasks were used. In Task 1, participants compared a standard fraction 1/5 to unit fractions. This task was used as a low stimuli variability and low contextual interference task. In Task 2 stimuli variability was increased by mixing unit and non-unit fractions. In Task 3, high contextual interference was created by incorporating decimals into fractions. The RT results showed that the processing patterns of fractions were very similar for adults and children. In task 1 and task 3, only componential processing was utilzied. In contrast, both holistic processing and componential processing were utilized in task 2. These results suggest that, if individuals are presented with the opportunity to perform componential processing, both adults and children will tend to do so, even if they are faced with high variability of fractions or high contextual interference.
Meegan, Daniel V; Honsberger, Michael J M
2005-05-01
Many neuroimaging studies have been designed to differentiate domain-specific processes in the brain. A common design constraint is to use identical stimuli for different domain-specific tasks. For example, an experiment investigating spatial versus identity processing would present compound spatial-identity stimuli in both spatial and identity tasks, and participants would be instructed to attend to, encode, maintain, or retrieve spatial information in the spatial task, and identity information in the identity task. An assumption in such studies is that spatial information will not be processed in the identity task, as it is irrelevant for that task. We report three experiments demonstrating violations of this assumption. Our results suggest that comparisons of spatial and identity tasks in existing neuroimaging studies have underestimated the amount of brain activation that is spatial-specific. For future neuroimaging studies, we recommend unique stimulus displays for each domain-specific task, and event-related measurement of post-stimulus processing.
Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas
2017-01-01
We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.
Colossal Tooling Design: 3D Simulation for Ergonomic Analysis
NASA Technical Reports Server (NTRS)
Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid
2003-01-01
The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.
Dual-Task Processing in Younger and Older Adults: Similarities and Differences Revealed by fMRI
ERIC Educational Resources Information Center
Hartley, Alan A.; Jonides, John; Sylvester, Ching-Yune C.
2011-01-01
fMRI was used to explore age differences in the neural substrate of dual-task processing. Brain activations when there was a 100 ms SOA between tasks, and task overlap was high, were contrasted with activations when there was a 1000 ms SOA, and first task processing was largely complete before the second task began. Younger adults (M = 21 yrs)…
Olsen, Shira A; Beck, J Gayle
2012-01-01
This study investigated the effects of high and low levels of dissociation on information processing for analogue trauma and neutral stimuli. Fifty-four undergraduate females who reported high and low levels of trait dissociation were presented with two films, one depicting traumatic events, the other containing neutral material. Participants completed a divided attention task (yielding a proxy measure of attention), as well as explicit memory (free-recall) and implicit memory (word-stem completion) tasks for both films. Results indicated that the high DES group showed less attention and had poorer recall for the analogue trauma stimuli, relative to the neutral stimuli and the low DES group. These findings suggest that high levels of trait dissociation are associated with reductions in attention and memory for analogue trauma stimuli, relative to neutral stimuli and relative to low trait dissociation. Implications for the role of cognitive factors in the etiology of negative post-trauma responses are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.
Braver, T S; Barch, D M; Kelley, W M; Buckner, R L; Cohen, N J; Miezin, F M; Snyder, A Z; Ollinger, J M; Akbudak, E; Conturo, T E; Petersen, S E
2001-07-01
Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show selective activation associated with one memory domain. In a within-subjects design, subjects performed the n-back WM task (two-back condition) as well as LTM encoding (intentional memorization) and retrieval (yes-no recognition) tasks. Additionally, each task was performed with two different types of stimulus materials (familiar words, unfamiliar faces) in order to determine the influence of material-type vs task-type. A bilateral region of dorsolateral PFC (DL-PFC; BA 46/9) was found to be selectively activated during the two-back condition, consistent with a hypothesized role for this region in active maintenance and/or manipulation of information in WM. Left frontopolar PFC (FP-PFC) was also found to be selectively engaged during the two-back. Although FP-PFC activity has been previously associated with retrieval from LTM, no frontopolar regions were found to be selectively engaged by retrieval. Finally, lateralized ventrolateral PFC (VL-PFC) regions were found to be selectively engaged by material-type, but uninfluenced by task-type. These results highlight the importance of examining PFC activity across multiple memory domains, both for functionally differentiating PFC regions (e.g., task-selectivity vs material-selectivity in DL-PFC and VL-PFC) and for testing the applicability of memory domain-specific theories (e.g., FP-PFC in LTM retrieval).
Transfer after process-based object-location memory training in healthy older adults.
Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne
2016-11-01
A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-01-09
This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due tomore » its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.« less
Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)
1983-11-30
Use.Condit ions 0 7ý est Item ComoentsTask Categories EPurposes 2 ;c . INDEX TO THE INDEX MAN/ITEM TASK SHEET DETAILED DESIGN CONSIDERATION The purpose of...The use of these materials, in addition to standard Task and Design Checklists and Questionnaires, will enable you to tailor your FIFE subtest to a...specific Con item. The These materials have been prepared especially for you: I. They are intended to support test engineers not design engineers. 2
Hsu, Chun-Wei; Goh, Joshua O. S.
2016-01-01
When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes. PMID:27375466
Hsu, Chun-Wei; Goh, Joshua O S
2016-01-01
When comparing between the values of different choices, human beings can rely on either more cognitive processes, such as using mathematical computation, or more affective processes, such as using emotion. However, the neural correlates of how these two types of processes operate during value-based decision-making remain unclear. In this study, we investigated the extent to which neural regions engaged during value-based decision-making overlap with those engaged during mathematical and emotional processing in a within-subject manner. In a functional magnetic resonance imaging experiment, participants viewed stimuli that always consisted of numbers and emotional faces that depicted two choices. Across tasks, participants decided between the two choices based on the expected value of the numbers, a mathematical result of the numbers, or the emotional face stimuli. We found that all three tasks commonly involved various cortical areas including frontal, parietal, motor, somatosensory, and visual regions. Critically, the mathematical task shared common areas with the value but not emotion task in bilateral striatum. Although the emotion task overlapped with the value task in parietal, motor, and sensory areas, the mathematical task also evoked responses in other areas within these same cortical structures. Minimal areas were uniquely engaged for the value task apart from the other two tasks. The emotion task elicited a more expansive area of neural activity whereas value and mathematical task responses were in more focal regions. Whole-brain spatial correlation analysis showed that valuative processing engaged functional brain responses more similarly to mathematical processing than emotional processing. While decisions on expected value entail both mathematical and emotional processing regions, mathematical processes have a more prominent contribution particularly in subcortical processes.
Progress on Protection of Titanium-Bearing Materials in Chinese Blast Furnace
NASA Astrophysics Data System (ADS)
Cai, Qiuye; Zhang, Jianliang; Jiao, Kexin; Wang, Cui
Prolonging the campaign life of the blast furnace has been an important task for iron makers, and it has been studied for decades. Adding titanium-bearing materials is a generally agreed and effective technique to protect the blast furnace hearth. Titanium from titania additions in the burden or tuyere injection react with carbon and nitrogen and form scaffolds on the hearth surface to protect the hearth from subsequent erosion. In this article, the progress on blast furnace hearth protection of titania additions in Chinese steel companies and research institutions is investigated, and the difficulties in the operation and production, such as little effect after adding titanium- bearing materials and the property deterioration of liquid iron and slags, are analyzed. The future research for protection in Chinese blast furnace is proposed, and a comprehensive process which combines protection of titanium bearing materials with reasonable thermal balance and slag- making regimes should be established.
Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2012-07-15
The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Peschard, Virginie; Philippot, Pierre; Joassin, Frédéric; Rossignol, Mandy
2013-04-01
Social anxiety has been characterized by an attentional bias towards threatening faces. Electrophysiological studies have demonstrated modulations of cognitive processing from 100 ms after stimulus presentation. However, the impact of the stimulus features and task instructions on facial processing remains unclear. Event-related potentials were recorded while high and low socially anxious individuals performed an adapted Stroop paradigm that included a colour-naming task with non-emotional stimuli, an emotion-naming task (the explicit task) and a colour-naming task (the implicit task) on happy, angry and neutral faces. Whereas the impact of task factors was examined by contrasting an explicit and an implicit emotional task, the effects of perceptual changes on facial processing were explored by including upright and inverted faces. The findings showed an enhanced P1 in social anxiety during the three tasks, without a moderating effect of the type of task or stimulus. These results suggest a global modulation of attentional processing in performance situations. Copyright © 2013 Elsevier B.V. All rights reserved.
Electrode/workpiece combinations
NASA Astrophysics Data System (ADS)
Benedict, J. J.
1989-10-01
Of the many machine tool operations available in the shop today, plunge cut Electrical Discharge Machining (EDM) has become an increasingly useful method of materials fabrication. It is a necessary tool for the research and development type of work performed at the Lawrence Livermore National Laboratory (LLNL). With advancing technology, plunge cut EDMs are more efficient, faster, have greater accuracy and are able to produce better surface finishes. They have been in the past and will continue to be an important part of the production of quality parts in both the Precision and NC Shop. It should be kept in mind that as a non-traditional machining process, EDMing is a time consuming process that can be a very expensive method of producing parts. For this reason, it must be used in the most efficient manner in order to make it a cost-effective means of fabrication, although technology has advanced to the point of state-of-the-art equipment, there is currently a void in available technical information needed for use with this process. The type of information sought after concerns the area of electrode/workpiece combinations. This is in reference to the task of choosing the correct electrode material for the specific workpiece material encountered. A brief description of the EDM process will help in understanding the electrode/workpiece relationship.
Agricultural Science and Mechanics I & II. Task Analyses. Competency-Based Education.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the agricultural science and mechanics courses. Section 1 contains a validated task inventory for agricultural science and mechanics I and II. For each task, applicable information pertaining to…
ERIC Educational Resources Information Center
Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.
This task-based curriculum guide for clothing management is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a task list. Each task is…
Horticulture III, IV, and V. Task Analyses. Competency-Based Education.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the horticulture program. Section 1 contains a validated task inventory for horticulture III, IV, and V. For each task, applicable information pertaining to performance and enabling objectives,…
A dual-task investigation of automaticity in visual word processing
NASA Technical Reports Server (NTRS)
McCann, R. S.; Remington, R. W.; Van Selst, M.
2000-01-01
An analysis of activation models of visual word processing suggests that frequency-sensitive forms of lexical processing should proceed normally while unattended. This hypothesis was tested by having participants perform a speeded pitch discrimination task followed by lexical decisions or word naming. As the stimulus onset asynchrony between the tasks was reduced, lexical-decision and naming latencies increased dramatically. Word-frequency effects were additive with the increase, indicating that frequency-sensitive processing was subject to postponement while attention was devoted to the other task. Either (a) the same neural hardware shares responsibility for lexical processing and central stages of choice reaction time task processing and cannot perform both computations simultaneously, or (b) lexical processing is blocked in order to optimize performance on the pitch discrimination task. Either way, word processing is not as automatic as activation models suggest.
Application of Temperature-Controlled Thermal Atomization for Printing Electronics in Space
NASA Technical Reports Server (NTRS)
Wu, Chih-Hao; Thompson, Furman V.
2017-01-01
Additive Manufacturing (AM) is a technology that builds three dimensional objects by adding material layer-upon-layer throughout the fabrication process. The Electrical, Electronic and Electromechanical (EEE) parts packaging group at Marshall Space Flight Center (MSFC) is investigating how various AM and 3D printing processes can be adapted to the microgravity environment of space to enable on demand manufacturing of electronics. The current state-of-the art processes for accomplishing the task of printing electronics through non-contact, direct-write means rely heavily on the process of atomization of liquid inks into fine aerosols to be delivered ultimately to a machine's print head and through its nozzle. As a result of cumulative International Space Station (ISS) research into the behaviors of fluids in zero-gravity, our experience leads us to conclude that the direct adaptation of conventional atomization processes will likely fall short and alternative approaches will need to be explored. In this report, we investigate the development of an alternative approach to atomizing electronic materials by way of thermal atomization, to be used in place of conventional aerosol generation and delivery processes for printing electronics in space.
McBride, Dawn M; Anne Dosher, Barbara
2002-09-01
Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.
Running Memory for Clinical Handoffs: A Look at Active and Passive Processing.
Anderson-Montoya, Brittany L; Scerbo, Mark W; Ramirez, Dana E; Hubbard, Thomas W
2017-05-01
The goal of the present study was to examine the effects of domain-relevant expertise on running memory and the ability to process handoffs of information. In addition, the role of active or passive processing was examined. Currently, there is little research that addresses how individuals with different levels of expertise process information in running memory when the information is needed to perform a real-world task. Three groups of participants differing in their level of clinical expertise (novice, intermediate, and expert) performed an abstract running memory span task and two tasks resembling real-world activities, a clinical handoff task and an air traffic control (ATC) handoff task. For all tasks, list length and the amount of information to be recalled were manipulated. Regarding processing strategy, all participants used passive processing for the running memory span and ATC tasks. The novices also used passive processing for the clinical task. The experts, however, appeared to use more active processing, and the intermediates fell in between. Overall, the results indicated that individuals with clinical expertise and a developed mental model rely more on active processing of incoming information for the clinical task while individuals with little or no knowledge rely on passive processing. The results have implications about how training should be developed to aid less experienced personnel identify what information should be included in a handoff and what should not.
Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks
Micea, Mihai-Victor; Stangaciu, Cristina-Sorina; Stangaciu, Valentin; Curiac, Daniel-Ioan
2017-01-01
Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS), which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU) utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller. PMID:28672856
Development Studies for a Novel Wet Oxidation Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delphi Research
1999-09-30
DETOX is a catalyzed wet oxidation process that destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase III effort for this project is fabrication, assembly, and installation of the DETOX demonstration unit, preparation of documentation and training to meet site requirements formore » operation, followed by system run-in and shakedown testing of the unit prior to demonstration testing. The Title III design was completed and the unit was fabricated according to standards set forth by OSHA, EPA, the American Petroleum Institute (i.e., chemical and petroleum industry standards), and the ASME B-313 Piping Code requirements as agreed to in preliminary design meetings with primary stakeholders. The unit was assembled in three modules and two trailers and then shipped to the TNX facility at the Savannah River Site in September and october of 1996. On-going site integration tasks were address while delays in installation arose due to funding sources and costs. In March of 1997, Delphi was authorized to proceed with the installation of the unit, making electrical and mechanical connections necessary to operate the unit. All installation tasks were completed in August of 1997. Results of an Operational Readiness Review conducted in August 1997 verified that Delphi's procedures and documentation met the necessary requirements to operate the unit at SRS. Completion of the final checklist of WSRC requirements was then addressed including the Owner's Independent Inspection Report, verifying all components of the unit met B-31.3 standards. Final hydraulic and pneumatic tests were completed in November to satisfy the B-31.3 requirement. During the month of December, the control system and heating and cooling systems were then prepared to initiate system startup and conduct the run-in tests. Shakedown tests were combined with the Phase IV tasks due to DOE funding constraints, i.e., tests formerly planned to be conducted with oil and solid materials were deferred to Phase IV and combined with similar testing. Once run-in testing has been completed, the primary objectives of Phase III will have been achieved and the project will be ready to proceed to demonstration testing (Phase IV).« less
Pelegrina, Santiago; Capodieci, Agnese; Carretti, Barbara; Cornoldi, Cesare
2015-01-01
It has been argued that children with learning disabilities (LD) encounter severe problems in working memory (WM) tasks, especially when they need to update information stored in their WM. It is not clear, however, to what extent this is due to a generally poor updating ability or to a difficulty specific to the domain to be processed. To examine this issue, two groups of children with arithmetic or reading comprehension LD and a group of typically developing children (9 to 10 years old) were assessed using two updating tasks requiring to select the smallest numbers or objects presented. The results showed that children with an arithmetic disability failed in a number updating task, but not in the object updating task. The opposite was true for the group with poor reading comprehension, whose performance was worse in the object than in the number updating task. It may be concluded that the problem of WM updating in children with LD is also due to a poor representation of the material to be updated. In addition, our findings suggest that the mental representation of the size of objects relates to the semantic representation of the objects' properties and differs from the quantitative representation of numbers. © Hammill Institute on Disabilities 2014.
Text, Graphics, and Multimedia Materials Employed in Learning a Computer-Based Procedural Task
ERIC Educational Resources Information Center
Coffindaffer, Kari Christine Carlson
2010-01-01
The present research study investigated the interaction of graphic design students with different forms of software training materials. Four versions of the procedural task instructions were developed (A) Traditional Textbook with Still Images, (B) Modified Text with Integrated Still Images, (C) Onscreen Modified Text with Silent Onscreen Video…
Report to the State Department of Education Task Force on Migrant Education.
ERIC Educational Resources Information Center
Rollason, Wendell N.
The report presents Redlands Christian Migrant Association's (RCMA's) position on Florida's Migrant Education Program, the program changes sought by RCMA, and background and back-up materials. The packet of materials includes brief discussions of the background and reactivation of the Task Force on Migrant Education; State Board of Education…
Graphic Arts: Orientation, Composition, and Paste-Up. Teacher Guide.
ERIC Educational Resources Information Center
Feasley, Sue C., Ed.
This curriculum guide is the first in a three-volume series of instructional materials for competency-based graphic arts instruction. Each publication is designed to include the technical content and tasks necessary for a student to be employed in an entry-level graphic arts occupation. Introductory materials include an instructional/task analysis…
Mahé, Gwendoline; Zesiger, Pascal; Laganaro, Marina
2015-11-15
Most of our knowledge on the time-course of the mechanisms involved in reading derived from electrophysiological studies is based on lexical decision tasks. By contrast, very few ERP studies investigated the processes involved in reading aloud. It has been suggested that the lexical decision task provides a good index of the processes occurring during reading aloud, with only late processing differences related to task response modalities. However, some behavioral studies reported different sensitivity to psycholinguistic factors between the two tasks, suggesting that print processing could differ at earlier processing stages. The aim of the present study was thus to carry out an ERP comparison between lexical decision and reading aloud in order to determine when print processing differs between these two tasks. Twenty native French speakers performed a lexical decision task and a reading aloud task with the same written stimuli. Results revealed different electrophysiological patterns on both waveform amplitudes and global topography between lexical decision and reading aloud from about 140 ms after stimulus presentation for both words and pseudowords, i.e., as early as the N170 component. These results suggest that only very early, low-level visual processes are common to the two tasks which differ in core processes. Taken together, our main finding questions the use of the lexical decision task as an appropriate paradigm to investigate reading processes and warns against generalizing its results to word reading. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-05-01
a cost- effective approach for achieving audit readiness. To help minimize the inefficient use of resources when previously identified deficiencies...System (GFEBS) emphasizing the implementation of effective business processes. However, the Army did not fully complete certain tasks in accordance...represent material portions of future SBRs and, if not auditable, will likely affect the Army’s ability to achieve audit readiness goals as planned
1992-09-01
would be relevant to constructing a transactional shell that could be used by a person who is a subject matter expert, but a novice instructional designer...or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or...process of producing effective computer-based instructional materials is complex and time- consuming . Few experts exist to ensure the effectiveness of
Reissland, Jessika; Manzey, Dietrich
2016-07-01
Understanding the mechanisms and performance consequences of multitasking has long been in focus of scientific interest, but has been investigated by three research lines more or less isolated from each other. Studies in the fields of the psychological refractory period, task switching, and interruptions have scored with a high experimental control, but usually do not give participants many degrees of freedom to self-organize the processing of two concurrent tasks. Individual strategies as well as their impact on efficiency have mainly been neglected. Self-organized multitasking has been investigated in the field of human factors, but primarily with respect to overall performance without detailed investigation of how the tasks are processed. The current work attempts to link aspects of these research lines. All of them, explicitly or implicitly, provide hints about an individually preferred type of task organization, either more cautious trying to work strictly serially on only one task at a time or more daring with a focus on task interleaving and, if possible, also partially overlapping (parallel) processing. In two experiments we investigated different strategies of task organization and their impact on efficiency using a new measure of overall multitasking efficiency. Experiment 1 was based on a classical task switching paradigm with two classification tasks, but provided one group of participants with a stimulus preview of the task to switch to next, enabling at least partial overlapping processing. Indeed, this preview led to a reduction of switch costs and to an increase of dual-task efficiency, but only for a subgroup of participants. They obviously exploited the possibility of overlapping processing, while the others worked mainly serially. While task-sequence was externally guided in the first experiment, Experiment 2 extended the approach by giving the participants full freedom of task organization in concurrent performance of the same tasks. Fine-grained analyses of response scheduling again revealed individual differences regarding the preference for strictly serial processing vs. some sort of task interleaving and overlapping processing. However, neither group showed a striking benefit in dual-task efficiency, although the results show that the costs of multitasking can partly be compensated by overlapping processing. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Aleva, D.; McCracken, J.
This paper will overview a Cognitive Task Analysis (CTA) of the tasks accomplished by space operators in the Combat Operations Division (COD) of the Joint Space Operations Center (JSpOC). The methodology used to collect data will be presented. The work was performed in support of the AFRL Space Situation Awareness Fusion Intelligent Research Environment (SAFIRE) effort. SAFIRE is a multi-directorate program led by Air Force Research Laboratory (AFRL), Space Vehicles Directorate (AFRL/RV) and supporting Future Long Term Challenge 2.6.5. It is designed to address research areas identified from completion of a Core Process 3 effort for Joint Space Operations Center (JSpOC). The report is intended to be a resource for those developing capability in support of SAFIRE, the Joint Functional Component Command (JFCC) Space Integrated Prototype (JSIP) User-Defined Operating Picture (UDOP), and other related projects. The report is under distribution restriction; our purpose here is to expose its existence to a wider audience so that qualified individuals may access it. The report contains descriptions of the organization, its most salient products, tools, and cognitive tasks. Tasks reported are derived from the data collected and presented at multiple levels of abstraction. Recommendations for leveraging the findings of the report are presented. The report contains a number of appendices that amplify the methodology, provide background or context support, and includes references in support of cognitive task methodology. In a broad sense, the CTA is intended to be the foundation for relevant, usable capability in support of space warfighters. It presents, at an unclassified level, introductory material to familiarize inquirers with the work of the COD; this is embedded in a description of the broader context of the other divisions of the JSpOC. It does NOT provide guidance for the development of Tactics, Techniques, and Procedures (TT&Ps) in the development of JSpOC processes. However, the TT&Ps are a part of the structure of work, and are, therefore, a factor in developing future capability. The authors gratefully acknowledge the cooperation and assistance from the warfighters at the JSpOC as well as the personnel of the JSpOC Capabilities Integration Office (JCIO). Their input to the process created the value of this effort.
Gray, Marcus A.; Minati, Ludovico; Whale, Richard; Harrison, Neil A.; Critchley, Hugo D.
2010-01-01
Rationale Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception. PMID:20596858
The contribution of encoding and retrieval processes to proactive interference.
Kliegl, Oliver; Pastötter, Bernhard; Bäuml, Karl-Heinz T
2015-11-01
Proactive interference (PI) refers to the finding that memory for recently studied (target) material can be impaired by the prior study of other (nontarget) material. Previous accounts of PI differed in whether they attributed PI to impaired retrieval or impaired encoding. Here, we suggest an integrated encoding-retrieval account, which assigns a role for each of the 2 types of processes in buildup of PI. Employing a typical PI task, we examined (a) the role of encoding processes in PI by recording scalp EEG during study of nontarget and target lists, and (b) the role of retrieval processes in PI by measuring recall totals and response latencies in target list recall. In addition, we measured subjects' working memory capacity (WMC). Behaviorally, the PI effect arose in both recall totals and response latencies, indicating PI at the sampling and the recovery stage of recall. Neurally, we found an increase in electrophysiological activities in the theta frequency band (5-8 Hz) from nontarget to target list encoding, indicating an increase in memory load during target list encoding. The results demonstrate that impaired retrieval and impaired encoding can contribute to PI. They also show that WMC affects PI. For both encoding and retrieval processes, PI was reduced in high-WMC subjects, suggesting that these subjects are able to separate target from nontarget information and create stronger focus on the target material. (c) 2015 APA, all rights reserved).
Mansfield, Karen L; van der Molen, Maurits W; Falkenstein, Michael; van Boxtel, Geert J M
2013-08-01
Behavioral and brain potential measures were employed to compare interference in Eriksen and Simon tasks. Assuming a dual-process model of interference elicited in speeded response tasks, we hypothesized that only lateralized stimuli in the Simon task induce fast S-R priming via direct unconditional processes, while Eriksen interference effects are induced later via indirect conditional processes. Delays to responses for incongruent trials were indeed larger in the Eriksen than in the Simon task. Only lateralized stimuli in the Simon task elicited early S-R priming, maximal at parietal areas. Incongruent flankers in the Eriksen task elicited interference later, visible as a lateralized N2. Eriksen interference also elicited an additional component (N350), which accounted for the larger behavioral interference effects in the Eriksen task. The findings suggest that interference and its resolution involve different processes for Simon and Eriksen tasks. Copyright © 2013 Elsevier Inc. All rights reserved.
[Improvement in the efficiency of a rehabilitation service using Lean Healthcare methodology].
Pineda Dávila, S; Tinoco González, J
2015-01-01
The aim of this study was to evaluate the reduction in costs and the increase in time devoted to the patient, by applying Lean Healthcare methodology. A multidisciplinary team was formed, setting up three potential areas for improvement by performing a diagnostic process, including the storage and standardization of materials, and professional tasks in the therapeutic areas, by implementing three Lean tools: kanban, 5S and 2P. Stored material costs decreased by 43%, the cost of consumables per patient treated by 19%, and time dedicated to patient treatment increased by 7%. The processes were standardized and "muda" (wastefulness) was eliminated, thus reducing costs and increasing the value to the patient. All this demonstrates that it is possible to apply tools of industrial origin to the health sector, with the aim of improving the quality of care and achieve maximum efficiency. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
Tryptophan depletion decreases the recognition of fear in female volunteers.
Harmer, C J; Rogers, R D; Tunbridge, E; Cowen, P J; Goodwin, G M
2003-06-01
Serotonergic processes have been implicated in the modulation of fear conditioning in humans, postulated to occur at the level of the amygdala. The processing of other fear-relevant cues, such as facial expressions, has also been associated with amygdala function, but an effect of serotonin depletion on these processes has not been assessed. The present study investigated the effects of reducing serotonin function, using acute tryptophan depletion, on the recognition of basic facial expressions of emotions in healthy male and female volunteers. A double-blind between-groups design was used, with volunteers being randomly allocated to receive an amino acid drink specifically lacking tryptophan or a control mixture containing a balanced mixture of these amino acids. Participants were given a facial expression recognition task 5 h after drink administration. This task featured examples of six basic emotions (fear, anger, disgust, surprise, sadness and happiness) that had been morphed between each full emotion and neutral in 10% steps. As a control, volunteers were given a famous face classification task matched in terms of response selection and difficulty level. Tryptophan depletion significantly impaired the recognition of fearful facial expressions in female, but not male, volunteers. This was specific since recognition of other basic emotions was comparable in the two groups. There was also no effect of tryptophan depletion on the classification of famous faces or on subjective state ratings of mood or anxiety. These results confirm a role for serotonin in the processing of fear related cues, and in line with previous findings also suggest greater effects of tryptophan depletion in female volunteers. Although acute tryptophan depletion does not typically affect mood in healthy subjects, the present results suggest that subtle changes in the processing of emotional material may occur with this manipulation of serotonin function.
Jauk, Emanuel; Benedek, Mathias; Neubauer, Aljoscha C.
2012-01-01
The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergent) are assessed by means of the same task employing a simple variation of instruction. A sample of 55 participants performed the alternate uses task as well as a more basic word association task while EEG was recorded. On a trial-by-trial basis, participants were either instructed to find a most common solution (convergent condition) or a most uncommon solution (divergent condition). The answers given in the divergent condition were in both tasks significantly more original than those in the convergent condition. Moreover, divergent processing was found to involve higher task-related EEG alpha power than convergent processing in both the alternate uses task and the word association task. EEG alpha synchronization can hence explicitly be associated with divergent cognitive processing rather than with general task characteristics of creative ideation tasks. Further results point to a differential involvement of frontal and parietal cortical areas by individuals of lower versus higher trait creativity. PMID:22390860
Pre-processing Tasks in Indonesian Twitter Messages
NASA Astrophysics Data System (ADS)
Hidayatullah, A. F.; Ma'arif, M. R.
2017-01-01
Twitter text messages are very noisy. Moreover, tweet data are unstructured and complicated enough. The focus of this work is to investigate pre-processing technique for Twitter messages in Bahasa Indonesia. The main goal of this experiment is to clean the tweet data for further analysis. Thus, the objectives of this pre-processing task is simply removing all meaningless character and left valuable words. In this research, we divide our proposed pre-processing experiments into two parts. The first part is common pre-processing task. The second part is a specific pre-processing task for tweet data. From the experimental result we can conclude that by employing a specific pre-processing task related to tweet data characteristic we obtained more valuable result. The result obtained is better in terms of less meaningful word occurrence which is not significant in number comparing to the result obtained by just running common pre-processing tasks.
A Verification Method of Inter-Task Cooperation in Embedded Real-time Systems and its Evaluation
NASA Astrophysics Data System (ADS)
Yoshida, Toshio
In software development process of embedded real-time systems, the design of the task cooperation process is very important. The cooperating process of such tasks is specified by task cooperation patterns. Adoption of unsuitable task cooperation patterns has fatal influence on system performance, quality, and extendibility. In order to prevent repetitive work caused by the shortage of task cooperation performance, it is necessary to verify task cooperation patterns in an early software development stage. However, it is very difficult to verify task cooperation patterns in an early software developing stage where task program codes are not completed yet. Therefore, we propose a verification method using task skeleton program codes and a real-time kernel that has a function of recording all events during software execution such as system calls issued by task program codes, external interrupts, and timer interrupt. In order to evaluate the proposed verification method, we applied it to the software development process of a mechatronics control system.
Dresler, Thomas; Hindi Attar, Catherine; Spitzer, Carsten; Löwe, Bernd; Deckert, Jürgen; Büchel, Christian; Ehlis, Ann-Christine; Fallgatter, Andreas J
2012-12-01
Although being a standard tool to assess interference effects of disorder-specific words in clinical samples, the neural underpinnings of the emotional Stroop task are still not well understood and have hardly been investigated in experimental case-control studies. We therefore used functional magnetic resonance imaging (fMRI) to examine the attentional bias toward panic-related words in panic disorder (PD) patients and healthy controls. Twenty PD patients (with or without agoraphobia) and 23 healthy controls matched for age and gender performed an event-related emotional Stroop task with panic-related and neutral words while undergoing 3 Tesla fMRI. On the behavioral level, PD patients showed a significant emotional Stroop effect, i.e. color-naming of panic-related words was prolonged compared to neutral words. This effect was not observed in the control group. PD patients further differed from controls on the neural level in showing increased BOLD activity in the left inferior frontal gyrus in response to panic-related relative to neutral words. PD patients showed the expected attentional bias, i.e. an altered processing of disorder-specific stimuli. This emotional Stroop effect was paralleled by increased activation in the left prefrontal cortex which may indicate altered processing of emotional stimulus material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Information Processing in Memory Tasks.
ERIC Educational Resources Information Center
Johnston, William A.
The intensity of information processing engendered in different phases of standard memory tasks was examined in six experiments. Processing intensity was conceptualized as system capacity consumed, and was measured via a divided-attention procedure in which subjects performed a memory task and a simple reaction-time (RT) task concurrently. The…
Le, Huy Q.; Molloi, Sabee
2011-01-01
Purpose: Energy resolving detectors provide more than one spectral measurement in one image acquisition. The purpose of this study is to investigate, with simulation, the ability to decompose four materials using energy discriminating detectors and least squares minimization techniques. Methods: Three least squares parameter estimation decomposition techniques were investigated for four-material breast imaging tasks in the image domain. The first technique treats the voxel as if it consisted of fractions of all the materials. The second method assumes that a voxel primarily contains one material and divides the decomposition process into segmentation and quantification tasks. The third is similar to the second method but a calibration was used. The simulated computed tomography (CT) system consisted of an 80 kVp spectrum and a CdZnTe (CZT) detector that could resolve the x-ray spectrum into five energy bins. A postmortem breast specimen was imaged with flat panel CT to provide a model for the digital phantoms. Hydroxyapatite (HA) (50, 150, 250, 350, 450, and 550 mg∕ml) and iodine (4, 12, 20, 28, 36, and 44 mg∕ml) contrast elements were embedded into the glandular region of the phantoms. Calibration phantoms consisted of a 30∕70 glandular-to-adipose tissue ratio with embedded HA (100, 200, 300, 400, and 500 mg∕ml) and iodine (5, 15, 25, 35, and 45 mg∕ml). The x-ray transport process was simulated where the Beer–Lambert law, Poisson process, and CZT absorption efficiency were applied. Qualitative and quantitative evaluations of the decomposition techniques were performed and compared. The effect of breast size was also investigated. Results: The first technique decomposed iodine adequately but failed for other materials. The second method separated the materials but was unable to quantify the materials. With the addition of a calibration, the third technique provided good separation and quantification of hydroxyapatite, iodine, glandular, and adipose tissues. Quantification with this technique was accurate with errors of 9.83% and 6.61% for HA and iodine, respectively. Calibration at one point (one breast size) showed increased errors as the mismatch in breast diameters between calibration and measurement increased. A four-point calibration successfully decomposed breast diameter spanning the entire range from 8 to 20 cm. For a 14 cm breast, errors were reduced from 5.44% to 1.75% and from 6.17% to 3.27% with the multipoint calibration for HA and iodine, respectively. Conclusions: The results of the simulation study showed that a CT system based on CZT detectors in conjunction with least squares minimization technique can be used to decompose four materials. The calibrated least squares parameter estimation decomposition technique performed the best, separating and accurately quantifying the concentrations of hydroxyapatite and iodine. PMID:21361193
NASA Astrophysics Data System (ADS)
Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.
2011-07-01
The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.
Use Zircon-Ilmenite Concentrate in Steelmaking
NASA Astrophysics Data System (ADS)
Fedoseev, S. N.; Volkova, T. N.
2016-08-01
Market requirements cause a constant search for new materials and technologies, for their immediate use in increasing requirements for material and energy efficiency, as well as to the quality of steel. In practice, steel production in the tended recently of more stringent requirements for the chemical composition of the steel and its contamination by nonmetallic inclusions, gas and non-ferrous metals. The main ways of increasing of strength and performance characteristics fabricated metal products related to the profound and effective influence on the crystallizing metal structure by furnace processing of the melt with refining and modifying additives. It can be argued that the furnace processing of steel and iron chemically active metals (alkali-earth metals, rare-earth metals, and others.) is an integral part of modern production of high quality products and competitive technologies. Important condition for development of methods secondary metallurgy of steel is the use of relatively inexpensive materials in a variety of complex alloys and blends, allowing targeted control of physical and chemical state of the molten metal and, therefore, receive steel with improved performance. In this connection the development of modifying natural materials metallurgy technologies presented complex ores containing titanium and zirconium, is a very urgent task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao
In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less
Optimizing sterilization logistics in hospitals.
van de Klundert, Joris; Muls, Philippe; Schadd, Maarten
2008-03-01
This paper deals with the optimization of the flow of sterile instruments in hospitals which takes place between the sterilization department and the operating theatre. This topic is especially of interest in view of the current attempts of hospitals to cut cost by outsourcing sterilization tasks. Oftentimes, outsourcing implies placing the sterilization unit at a larger distance, hence introducing a longer logistic loop, which may result in lower instrument availability, and higher cost. This paper discusses the optimization problems that have to be solved when redesigning processes so as to improve material availability and reduce cost. We consider changing the logistic management principles, use of visibility information, and optimizing the composition of the nets of sterile materials.
ERIC Educational Resources Information Center
Rees, James
2012-01-01
In this article, the author describes a creative way to demystify contemporary art for students. TASK is artist Oliver Herring's creation, where participants actively interpret instructions found on little pieces of paper--what he calls "tasks." An art classroom has all the key ingredients for a TASK event: (1) people; (2) materials; (3) space;…
Agricultural Production: Task Analysis for Livestock Production. Competency-Based Education.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.
This task analysis guide is intended to help teachers and administrators develop instructional materials and implement competency-based education in the agricultural production program. Section 1 contains a validated task inventory for the livestock production portion of agricultural production IV and V. Tasks are divided into six duty areas:…
Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers
ERIC Educational Resources Information Center
Lee, Kyeong-Hwa; Lee, Eun-Jung; Park, Min-Sun
2016-01-01
It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing…
Development of an information retrieval tool for biomedical patents.
Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel
2018-06-01
The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Altemeier, Leah; Jones, Janine; Abbott, Robert D; Berninger, Virginia W
2006-01-01
Results are reported for a study of 2 separate processes of report writing-taking notes while reading source material and composing a report from those notes-and related individual differences in executive functions involved in integrating reading and writing during these writing activities. Third graders (n = 122) and 5th graders (n = 106; overall, 127 girls and 114 boys) completed two reading-writing tasks-read paragraph (mock science text)-write notes and use notes to generate written report, a reading comprehension test, a written expression test, four tests of executive functions (inhibition, verbal fluency, planning, switching attention), and a working memory test. For the read-take notes task, the same combination of variables was best (explained the most variance and each variable added unique variance) for 3rd graders and 5th graders: Wechsler Individual Achievement Test-Second Edition (WIAT-II) Reading Comprehension, Process Assessment of the Learner Test for Reading and Writing (PAL) Copy Task B, WIAT-II Written Expression, and Delis-Kaplan Executive Function System (D-KEFS) Inhibition. For the use notes to write report task, the best combinations of variables depended on grade level: For 3rd graders, WIAT-II Reading Comprehension, WIAT-II Written Expression, D-KEFS Verbal Fluency, and Tower of Hanoi; for 5th graders, WIAT-II Reading Comprehension, D-KEFS Verbal Fluency, WIAT-II Written Expression, and PAL Alphabet Task. These results add to prior research findings that executive functions contribute to the writing development of elementary-grade students and additionally support the hypothesis that executive functions play a role in developing reading-writing connections.
NASA Technical Reports Server (NTRS)
Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James
1997-01-01
Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.
Korpus, Christoph; Friess, Wolfgang
2017-08-01
Freeze-drying process design is a challenging task that necessitates a profound understanding of the complex interrelation among critical process parameters (e.g., shelf temperature and chamber pressure), heat transfer characteristics of the involved materials (e.g., product containers and holder devices), and critical quality attributes of the product (e.g., collapse temperatures). The Dual Chamber Cartridge "(DCC) LyoMate" (from lyophilization and automated) is a manometric temperature measurement-based process control strategy that was developed within this study to streamline this complicated task. It was successfully applied using 5% sucrose formulations with 0.5 and 1 mL fill volumes. The system was further challenged using 2, 20, and 100 mg/mL monoclonal antibody formulations. The DCC LyoMate method did not only produce pharmaceutically acceptable cakes but was also able to maintain the desired product temperature irrespective of formulation and protein content. It enabled successful process design even at high protein concentrations and aided the design and online control of the lyophilization process for drying in DCCs within a single development run. Thus, it helps to reduce development cost and the DCC LyoMate can also be easily installed on every freeze-dryer capable of performing a manometric temperature measurement, without the need for hardware modification. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.
1990-09-01
This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less
Barriers to success: physical separation optimizes event-file retrieval in shared workspaces.
Klempova, Bibiana; Liepelt, Roman
2017-07-08
Sharing tasks with other persons can simplify our work and life, but seeing and hearing other people's actions may also be very distracting. The joint Simon effect (JSE) is a standard measure of referential response coding when two persons share a Simon task. Sequential modulations of the joint Simon effect (smJSE) are interpreted as a measure of event-file processing containing stimulus information, response information and information about the just relevant control-state active in a given social situation. This study tested effects of physical (Experiment 1) and virtual (Experiment 2) separation of shared workspaces on referential coding and event-file processing using a joint Simon task. In Experiment 1, participants performed this task in individual (go-nogo), joint and standard Simon task conditions with and without a transparent curtain (physical separation) placed along the imagined vertical midline of the monitor. In Experiment 2, participants performed the same tasks with and without receiving background music (virtual separation). For response times, physical separation enhanced event-file retrieval indicated by an enlarged smJSE in the joint Simon task with curtain than without curtain (Experiment1), but did not change referential response coding. In line with this, we also found evidence for enhanced event-file processing through physical separation in the joint Simon task for error rates. Virtual separation did neither impact event-file processing, nor referential coding, but generally slowed down response times in the joint Simon task. For errors, virtual separation hampered event-file processing in the joint Simon task. For the cognitively more demanding standard two-choice Simon task, we found music to have a degrading effect on event-file retrieval for response times. Our findings suggest that adding a physical separation optimizes event-file processing in shared workspaces, while music seems to lead to a more relaxed task processing mode under shared task conditions. In addition, music had an interfering impact on joint error processing and more generally when dealing with a more complex task in isolation.