Sample records for material production facility

  1. 77 FR 48992 - Tobacco Product Manufacturing Facility Visits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... manufacturing operations--from the receipt of raw materials to the distribution of finished products, and Learn... Manufacturing facilities for materials used for further processing in finished tobacco products (including, but..., parts, accessories, and Manufacturers of materials used for further processing in finished tobacco...

  2. Nonterrestrial utilization of materials: Automated space manufacturing facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility.

  3. 75 FR 30777 - Grant of Authority for Subzone Status; South Florida Materials Corporation (Distribution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Status; South Florida Materials Corporation (Distribution of Petroleum Products); Port Everglades, FL... petroleum product storage and distribution facility of South Florida Materials Corporation (d/b/a Vencenergy..., therefore, the Board hereby grants authority for subzone status for activity related to petroleum product...

  4. Materials and Nondestructive Evaluation Laboratoriers: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Schaschl, Leslie

    2011-01-01

    The Materials and Nondestructive Evaluation Laboratory process, milestones and inputs are unknowns to first-time users. The Materials and Nondestructive Evaluation Laboratory Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware developers. It is intended to assist their project engineering personnel in materials analysis planning and execution. Material covered includes a roadmap of the analysis process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define scope of analysis, cost, and schedule are included as an appendix to the guide.

  5. 49 CFR 33.20 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... warehousing, ports, services, equipment and facilities, such as transportation carrier shop and repair.... Health resources means drugs, biological products, medical devices, materials, facilities, health...

  6. 49 CFR 33.20 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... warehousing, ports, services, equipment and facilities, such as transportation carrier shop and repair.... Health resources means drugs, biological products, medical devices, materials, facilities, health...

  7. 49 CFR 33.20 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... warehousing, ports, services, equipment and facilities, such as transportation carrier shop and repair.... Health resources means drugs, biological products, medical devices, materials, facilities, health...

  8. Competencies for Materials Design and Production Specialists.

    ERIC Educational Resources Information Center

    Instructional Innovator, 1980

    1980-01-01

    Lists proposed competencies to be used in a certification program for material design and production professionals. Six production areas are presented, within which skill must be demonstrated in at least one, as well as activities to be performed in the areas of communication problems, message design, and media production facility administration.…

  9. 76 FR 51879 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... input for processing in some stage of a manufacturing or production process to produce a different end... and sold on the market as a material for input into manufacturing or production processes. The... production of any agricultural, commercial, consumer, or industrial product, provided that material qualified...

  10. Fuels from Biomass: Integration with Food and Materials Systems

    ERIC Educational Resources Information Center

    Lipinsky, E. S.

    1978-01-01

    The development of fuels from biomass can lead naturally to dispersed facilities that incorporate food or materials production (or both) with fuel production. The author analyzes possible systems based on sugarcane, corn, and guayule. (Author/MA)

  11. Material Processing Facility - Skylab Experiment M512

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  12. 40 CFR 60.730 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... facility. For the brick and related clay products industry, only the calcining and drying of raw materials prior to firing of the brick are covered. (b) An affected facility that is subject to the provisions of...

  13. 40 CFR 60.730 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... facility. For the brick and related clay products industry, only the calcining and drying of raw materials prior to firing of the brick are covered. (b) An affected facility that is subject to the provisions of...

  14. 40 CFR 60.730 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... facility. For the brick and related clay products industry, only the calcining and drying of raw materials prior to firing of the brick are covered. (b) An affected facility that is subject to the provisions of...

  15. 40 CFR 60.730 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... facility. For the brick and related clay products industry, only the calcining and drying of raw materials prior to firing of the brick are covered. (b) An affected facility that is subject to the provisions of...

  16. 40 CFR 60.730 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... facility. For the brick and related clay products industry, only the calcining and drying of raw materials prior to firing of the brick are covered. (b) An affected facility that is subject to the provisions of...

  17. Job Grading Standard for Materials Expediter WG-6705.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard is used to grade nonsupervisory jobs involved in routing and expediting the movement of parts, end items, supplies, and materials within production and repair facilities to meet priority needs. The work requires knowledge of material characteristics, uses, condition, industrial production shop procedures, shop layout, and internal…

  18. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    PubMed

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 μm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  19. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  20. Routine inspection effort required for verification of a nuclear material production cutoff convention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dougherty, D.; Fainberg, A.; Sanborn, J.

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less

  1. How to improve the irradiation conditions for the International Fusion Materials Irradiation Facility

    NASA Astrophysics Data System (ADS)

    Daum, Eric

    2000-12-01

    The accelerator-based intense D-Li neutron source International Fusion Materials Irradiation Facility (IFMIF) provides very suitable irradiation conditions for fusion materials development with the attractive option of accelerated irradiations. Investigations show that a neutron moderator made of tungsten and placed in the IFMIF test cell can further improve the irradiation conditions. The moderator softens the IFMIF neutron spectrum by enhancing the fraction of low energy neutrons. For displacement damage, the ratio of point defects to cascades is more DEMO relevant and for tritium production in Li-based breeding ceramic materials it leads to a preferred production via the 6Li(n,t) 4He channel as it occurs in a DEMO breeding blanket.

  2. Site maps and facilities listings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used formore » production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.« less

  3. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  4. Design Process Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halkjaer-Knudsen, Vibeke

    2014-11-01

    For the purposes of this paper, a Biocontainment facility is a laboratory, production facility, or similar building that handles contagious biological materials in a safe and responsible manner. This specialized facility, also called a containment facility or a high containment facility reduces the potential for biological agents to be released into the environment, provides a safe work environment for the employees, and supports good laboratory practices.

  5. Extraction of volatile and metals from extraterrestrial materials

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1990-01-01

    Since March 1, 1989, attention was concentrated on the extraction of ilmenite from extraterrestrial materials and on the planning and development of laboratory facilities for carbonyl extraction of ferrous metal alloys. Work under three subcontracts was administered by this project: (1) electrolytic production of oxygen from molten lunar materials; (2) microwave processing of lunar materials; and (3) production of a resource-oriented space science data base.

  6. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  7. Extraterrestrial processing and manufacturing of large space systems. Volume 3: Executive summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Facilities and equipment are defined for refining processes to commercial grade of lunar material that is delivered to a 'space manufacturing facility' in beneficiated, primary processed quality. The manufacturing facilities and the equipment for producing elements of large space systems from these materials and providing programmatic assessments of the concepts are also defined. In-space production processes of solar cells (by vapor deposition) and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, converters, and others are described.

  8. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-01-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less

  9. 48 CFR 904.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for access to, or control over, special nuclear material. Applicant means an individual who has... facility is eligible to access, produce, use or store classified information, or special nuclear material... of special nuclear material; or use of special nuclear material in the production of energy, but...

  10. The BioDyn facility on ISS: Advancing biomaterial production in microgravity for commercial applications

    NASA Astrophysics Data System (ADS)

    Myers, Niki; Wessling, Francis; Deuser, Mark; Anderson, C. D.; Lewis, Marian

    1999-01-01

    The primary goals of the BioDyn program are to foster use of the microgravity environment for commercial production of bio-materials from cells, and to develop services and processes for obtaining these materials through space processing. The scope of products includes commercial bio-molecules such as cytokines, other cell growth regulatory proteins, hormones, monoclonal antibodies and enzymes; transplantable cells or tissues which can be improved by low-G processes, or which cannot be obtained through standard processes in earth gravity; agriculture biotechnology products from plant cells; microencapsulation for diabetes treatment; and factors regulating cellular aging. To facilitate BioDyn's commercial science driven goals, hardware designed for ISS incorporates the flexibility for interchange between the different ISS facilities including the glovebox, various thermal units and centrifuges. By providing a permanent research facility, ISS is the critical space-based platform required by scientists for carrying out the long-term experiments necessary for developing bio-molecules and tissues using several cell culture modalities including suspension and anchorage-dependent cell types.

  11. Potential for utilizing industrial wastes and by-products in construction of transportation facilities in Virginia : final report.

    DOT National Transportation Integrated Search

    1979-01-01

    This report constitutes: (a) a survey to determine the availability in Virginia of waste materials or by-products that may have a potential for use in highway construction, (b) a summary of published literature concerning the use of waste materials i...

  12. NRL Review - 2009

    DTIC Science & Technology

    2009-01-01

    for a fundamental physical understanding of electronic properties . The Materials Processing Facility includes appa- ratuses for powder production by...situ. Facilities to process powder into bulk specimens by hot and cold isostatic pressing permit a variety of consolidation possibilities. The iso...Synthesis/ Property Measurement Facility has special emphasis on polymers, surface-film processing , and directed self-assembly. The Chemical Vapor

  13. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stablemore » state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.« less

  14. Initial utilization of the CVIRB video production facility

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.

    1987-01-01

    Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.

  15. Design Producibility Assessment System

    DTIC Science & Technology

    1989-06-30

    Data Base Material Code 17 - 4PH Manufactu Description Precipitation-Handling, corrosion-resist steel Strategic? No Strip Sheet Bar Wire Tube Yes Yes Yes...planned production quantity: 10000 PRODUCTION FACILITIES 5 Select the design material: 17 - 4PH <PgUp> Page Up, <PgDn> Page Down, <Fl> Help, <Esc> Exit DPAS...vl.00 Saturday June 17 , 1989 11:06 am Design Producibility Assessment System Select the design material: 17 - 4PH Select the design material’s form

  16. Consortium for Materials Development in Space. Technical section

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Several topics related to materials development in space are discussed. Physical vapor transport crystal growth, the mass spectroscopic facility, surface coatings and catalyst production by electrodeposition, mass transfer by diffusion, electrooptical organic materials, and high temperature superconductors are among the topics covered.

  17. An Overview of INEL Fusion Safety R&D Facilities

    NASA Astrophysics Data System (ADS)

    McCarthy, K. A.; Smolik, G. R.; Anderl, R. A.; Carmack, W. J.; Longhurst, G. R.

    1997-06-01

    The Fusion Safety Program at the Idaho National Engineering Laboratory has the lead for fusion safety work in the United States. Over the years, we have developed several experimental facilities to provide data for fusion reactor safety analyses. We now have four major experimental facilities that provide data for use in safety assessments. The Steam-Reactivity Measurement System measures hydrogen generation rates and tritium mobilization rates in high-temperature (up to 1200°C) fusion relevant materials exposed to steam. The Volatilization of Activation Product Oxides Reactor Facility provides information on mobilization and transport and chemical reactivity of fusion relevant materials at high temperature (up to 1200°C) in an oxidizing environment (air or steam). The Fusion Aerosol Source Test Facility is a scaled-up version of VAPOR. The ion-implanta-tion/thermal-desorption system is dedicated to research into processes and phenomena associated with the interaction of hydrogen isotopes with fusion materials. In this paper we describe the capabilities of these facilities.

  18. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogash, Kevin

    2015-12-15

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less

  19. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogash, Kevin

    Air Products carried out a scope of work under DOE Award No. DE-FE0012065 “Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications” with subcontractors Ceramatec, Penn State, and WorleyParsons. The scope of work under this award was aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration-scale facility known as the Oxygen Development Facility (ODF). Specific activities will help to enable design and construction of the ODF through advancement of a number of challenging technical elements that are required to manage risk in the initial deployment of ITMmore » technology. Major objectives of the work included developing ITM Oxygen ceramic membrane materials with improved performance and reliability, optimizing ceramic module geometry and fabrication methods, testing module performance, trialing the improved fabrication process at commercial scale in the Ceramic Membrane Module Fabrication Facility (CerFab), and advancing engineering development of the ITM oxygen production process, including vessel design and contaminant control measures to prepare for deployment of the ODF. The comprehensive report that follows details the team’s work, which includes several notable accomplishments: 1) compressive creep, a likely limiter of ceramic module lifetime in service, was demonstrated to be retarded by an order of magnitude by changes in material formulation, module joining dimensions, and internal wafer geometry; 2) two promising new materials were shown to be superior to the incumbent ITM material in a key material parameter related to oxygen flux; 3) module degradation mechanisms were identified following operation in large pilot-scale equipment; 4) options for utilizing ITM in a coal-to-liquids (CTL) facility to enable liquids production with carbon capture were identified and studied; and 5) the benefits of potential improvements to the technology were assessed for their cost impact on ITM Oxygen applications to clean power, fuels, and other applications.« less

  20. Skylab

    NASA Image and Video Library

    1972-01-01

    This chart details Skylab's Materials Processing Facility experiment (M512). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  1. Outreach on a National Scale: The Critical Role of Facilities

    NASA Astrophysics Data System (ADS)

    Bartel, B. A.; Charlevoix, D. J.

    2015-12-01

    Facilities provide infrastructure for science that would not be feasible at a single institution. Facilities are also a resource for development of outreach products and activities that reach a national audience of diverse stakeholders. UNAVCO manages the NSF geodetic facility GAGE (Geodesy Advancing Geosciences and Earthscope). Staff at UNAVCO with expertise in education, outreach, and communication translate the science and supporting infrastructure into materials consumable by a wide array of users including teachers, students, museum attendees, emergency managers, park interpreters, and members of the general public. UNAVCO has the ability to distribute materials to a national and international audience, thereby greatly increasing the impact of the science and increasing the value of the investment by the National Science Foundation. In 2014 and 2015, UNAVCO produced multiple print products focused on the Plate Boundary Observatory (PBO), the geodetic component of EarthScope. Products include a deck of playing cards featuring PBO GPS stations, a poster featuring GPS velocities of the Western United States, and another poster focused on GPS velocities in Alaska. We are distributing these products to a broad audience, including teachers, station permit holders, and community members. The Tectonics of the Western United States poster was distributed this year in the American Geosciences Institute Earth Science Week kit for teachers, reaching 16,000 educators around the country. These posters and the PBO playing cards (PBO-52) were distributed to more than 100 teachers through workshops led by UNAVCO, the EarthScope National Office, the Southern California Earthquake Center (SCEC), and more. Additionally, these cards serve as a way to engage landowners who host these scientific stations on their property. This presentation will address the strategies for creating nationally relevant materials and the tools used for dissemination of materials to a broad audience. We will outline the process of our planning strategy as well as share ways in which we evaluate impact of particular outreach products and the overall outreach program.

  2. 40 CFR 437.2 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... any facility that treats (for disposal, recycling or recovery of material) any hazardous or non... a facility. (o) Oily absorbent recycling means the process of recycling oil-soaked or contaminated... stock for lubricants or other petroleum products. (y) Recovery means the recycling or processing of a...

  3. 40 CFR 437.2 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... any facility that treats (for disposal, recycling or recovery of material) any hazardous or non... a facility. (o) Oily absorbent recycling means the process of recycling oil-soaked or contaminated... stock for lubricants or other petroleum products. (y) Recovery means the recycling or processing of a...

  4. Multiyear Procurement (MYP) and Block Buy Contracting in Defense Acquisition: Background and Issues for Congress

    DTIC Science & Technology

    2017-03-16

    principle reduce the cost of the weapons being procured in two primary ways:  Contractor optimization of workforce and production facilities. An...MYP contract gives the contractor (e.g., an airplane manufacturer or shipbuilder) confidence that a multiyear stream of business of a known volume...will very likely materialize. This confidence can permit the contractor to make investments in the firm’s workforce and production facilities that are

  5. GLCF: Library

    Science.gov Websites

    Global Land Cover Facility About GLCF Research Publications Data & Products Gallery Library Services Contact Site Map Go Library Documents Proposal Reports Publications FAQ Display Materials Release News Archive Library * Display Materials * Documents * News Archive * Software e-link 4321

  6. 15 CFR 705.4 - Criteria for determining effect of imports on the national security.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... economic welfare of any domestic industry essential to our national security; (2) The displacement of any..., products, raw materials, production equipment and facilities, and other supplies and services essential to...

  7. Facility design consideration for continuous mix production of class 1.3 propellant

    NASA Technical Reports Server (NTRS)

    Williamson, K. L.; Schirk, P. G.

    1994-01-01

    In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.

  8. Building 211 cyclotron characterization survey report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  9. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  10. Laboratory Animal Housing--Parts I and II.

    ERIC Educational Resources Information Center

    Runkle, Robert S.

    1963-01-01

    In recent years, the use of laboratory animals for bio-medical research has shown marked increase. Economic and efficient housing is a necessity. This two part report established guidelines for design and selection of materials for conventional animal housing. Contents include--(1) production and breeding facilities, (2) quarantine facilities, (3)…

  11. 40 CFR 98.84 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.84 Monitoring and QA/QC requirements..., shale, iron oxide, and alumina). Facilities that opt to use the default total organic carbon factor... quantity of each category of raw materials consumed by the facility (e.g., limestone, sand, shale, iron...

  12. 40 CFR 98.84 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.84 Monitoring and QA/QC requirements..., shale, iron oxide, and alumina). Facilities that opt to use the default total organic carbon factor... quantity of each category of raw materials consumed by the facility (e.g., limestone, sand, shale, iron...

  13. 40 CFR 98.84 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.84 Monitoring and QA/QC requirements..., shale, iron oxide, and alumina). Facilities that opt to use the default total organic carbon factor... quantity of each category of raw materials consumed by the facility (e.g., limestone, sand, shale, iron...

  14. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...

  15. 26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...

  16. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...

  17. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of... engineering services for design and construction inspection for all project facilities. Resident inspection by...

  18. 14 CFR 21.309 - Location of or change to manufacturing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Location of or change to manufacturing facilities. 21.309 Section 21.309 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS Approval of Materials, Parts, Processes...

  19. Lab-scaled model to evaluate odor and gas production from cattle confinement facilities with deep bedded packs

    USDA-ARS?s Scientific Manuscript database

    A lab-scaled simulated bedded pack model was developed to study air quality and nutrient composition of deep-bedded packs found in cattle monoslope facilities. This protocol has been used to effectively evaluate many different bedding materials, environmental variables (temperature, humidity), and ...

  20. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-04-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less

  1. Skylab

    NASA Image and Video Library

    1974-01-01

    This photograph shows the Skylab Materials Processing Facility (M512) and the Multipurpose Furnace System (M518). This facility, located in the Multiple Docking Adapter, was developed for Skylab and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  2. Skylab

    NASA Image and Video Library

    1974-01-01

    This photograph shows the Skylab Materials Processing Facility (M512) and the Multipurpose Furnace System (M518). This facility, located in the Multiple Docking Adapter, was developed for Skylab,and accommodated 14 different experiments that were carried out during the three marned missions. The abilities to melt and mix without the contaminating effects of containers, to suppress thermal convection and buoyancy in fluids, and to take advantage of electrostatic and magnetic forces and otherwise masked by gravitation opened the way to new knowledge of material properties and processes. This beginning would ultimately lead to the production of valuable new materials for use on Earth.

  3. The Wake Shield Facility: A space experiment platform

    NASA Technical Reports Server (NTRS)

    Allen, Joseph P.

    1991-01-01

    Information is given in viewgraph form on Wakeshield, a space experiment platform. The Wake Shield Facility (WSF) flight program objectives, product applications, commercial development approach, and cooperative experiments are listed. The program objectives are to produce new industry-driven electronic, magnetic, and superconducting thin-film materials and devices both in terrestrial laboratories and in space; utilize the ultra-vacuum of space for thin film epitaxial growth and materials processing; and develop commercial space hardware for research and development and enhanced access to space.

  4. 40 CFR 63.11619 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chromium or a material containing manganese and is an area source of emissions of hazardous air pollutants... chromium or a material containing manganese is added, to the point where the finished animal feed product leaves the facility. This includes, but is not limited to, areas where materials containing chromium and...

  5. 40 CFR 63.11619 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chromium or a material containing manganese and is an area source of emissions of hazardous air pollutants... chromium or a material containing manganese is added, to the point where the finished animal feed product leaves the facility. This includes, but is not limited to, areas where materials containing chromium and...

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just asmore » the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.« less

  7. Assessment of the potential quality of preservative-treated pilings removed from service : [abstract

    Treesearch

    Xiping Wang; John W. Forsman; John R. Erickson; Robert J. Ross; Douglas J. Gardner; Gary D. McGinnis; Rodney C. DeGroot

    1999-01-01

    Preservative-treated wood products are important construction materials. Preservative-treated wood pilings, after removal from service, constitute a major disposal problem for managers of waterfront facilities. For example, approximately 7,000 to 8,000 tons of mechanically or biologically deteriorated wood pilings are currently removed from U.S. naval facilities...

  8. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  9. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  10. The RaDIATE High-Energy Proton Materials Irradiation Experiment at the Brookhaven Linac Isotope Producer Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammigan, Kavin; et al.

    The RaDIATE collaboration (Radiation Damage In Accelerator Target Environments) was founded in 2012 to bring together the high-energy accelerator target and nuclear materials communities to address the challenging issue of radiation damage effects in beam-intercepting materials. Success of current and future high intensity accelerator target facilities requires a fundamental understanding of these effects including measurement of materials property data. Toward this goal, the RaDIATE collaboration organized and carried out a materials irradiation run at the Brookhaven Linac Isotope Producer facility (BLIP). The experiment utilized a 181 MeV proton beam to irradiate several capsules, each containing many candidate material samples formore » various accelerator components. Materials included various grades/alloys of beryllium, graphite, silicon, iridium, titanium, TZM, CuCrZr, and aluminum. Attainable peak damage from an 8-week irradiation run ranges from 0.03 DPA (Be) to 7 DPA (Ir). Helium production is expected to range from 5 appm/DPA (Ir) to 3,000 appm/DPA (Be). The motivation, experimental parameters, as well as the post-irradiation examination plans of this experiment are described.« less

  11. Risk mitigation strategies for viral contamination of biotechnology products: consideration of best practices.

    PubMed

    Rosenberg, Amy S; Cherney, Barry; Brorson, Kurt; Clouse, Kathleen; Kozlowski, Steven; Hughes, Patricia; Friedman, Rick

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) Viral contamination of biotech product facilities is a potentially devastating manufacturing risk and, unfortunately, is more common than is generally reported or previously appreciated. Although viral contaminants of biotech products are thought to originate principally from biological raw materials, all potential process risks merit evaluation. Limitations to existing methods for virus detection are becoming evident as emerging viruses have contaminated facilities and disrupted supplies of critical products. New technologies, such as broad-based polymerase chain reaction screens for multiple virus types, are increasingly becoming available to detect adventitious viral contamination and thus, mitigate risks to biotech products and processes. Further, the industry embrace of quality risk management that promotes improvements in testing stratagems, enhanced viral inactivation methods for raw materials, implementation and standardization of robust viral clearance procedures, and efforts to learn from both epidemiologic screening of raw material sources and from the experience of other manufacturers with regard to this problem will serve to enhance the safety of biotech products available to patients. Based on this evolving landscape, we propose a set of principles for manufacturers of biotech products: Pillars of Risk Mitigation for Viral Contamination of Biotech Products.

  12. Automation of Space Processing Applications Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Crosmer, W. E.; Neau, O. T.; Poe, J.

    1975-01-01

    The Space Processing Applications Program is examining the effect of weightlessness on key industrial materials processes, such as crystal growth, fine-grain casting of metals, and production of unique and ultra-pure glasses. Because of safety and in order to obtain optimum performance, some of these processes lend themselves to automation. Automation can increase the number of potential Space Shuttle flight opportunities and increase the overall productivity of the program. Five automated facility design concepts and overall payload combinations incorporating these facilities are presented.

  13. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  14. 25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  15. 24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232z, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Plutonium Recovery From Contaminated Materials, Architectural Details, Building 232-z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  16. 26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  17. Calculation of the temperature in the container unit with a modified design for the production of {sup 99}Mo at the VVR-Ts research reactor facility (IVV.10M)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantsev, A. A., E-mail: kazantsevanatoly@gmail.com; Sergeev, V. V.; Kochnov, O. Yu.

    The temperature regime is calculated for two different designs of containers with uranium-bearing material for the upgraded VVR-Ts research reactor facility (IVV.10M). The containers are to be used in the production of {sup 99}Mo. It is demonstrated that the modification of the container design leads to a considerable temperature reduction and an increase in the near-wall boiling margin and allows one to raise the amount of material loaded into the container. The calculations were conducted using the international thermohydraulic contour code TRAC intended to analyze the technical safety of water-cooled nuclear power units.

  18. Facility for orbital material processing

    NASA Astrophysics Data System (ADS)

    Starodubov, D.; McCormick, K.; Dellosa, M.; Erdelyi, E.; Volfson, L.

    2018-05-01

    The sustainable orbital manufacturing with commercially viable and profitable operation has tremendous potential for driving the space exploration industry and human expansion into outer space. This highly challenging task has never been accomplished before. The current relatively high delivery cost of materials represents the business challenge of value proposition for making products in space. FOMS Inc. team identified an opportunity of fluoride optical fiber manufacturing in space that can lead to the first commercial production on orbit. To address continued cost effective International Space Station (ISS) operations FOMS Inc. has developed and demonstrated for the first time a fully operational space facility for orbital remote manufacturing with up to 50 km fiber fabrication capability and strong commercial potential for manufacturing operations on board the ISS.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brink, J.

    Crude oil (c. 10,700 BOPD) was produced through temporary topside facilities in the Rolf Field offshore Denmark from January 7th to September 17th, 1986. These simple, unmanned and remote controlled facilities were a low cost solution to a problem caused by delays of the permanent topside facilities. Project execution time was two months from start of conceptual design until start-up of oil production. Installation works were performed from a jack-up drilling rig - in part simultaneously with drilling operations. Materials and equipment installed were obtained with very short delivery times. The facilties which were certified by a Certification Society andmore » approved by the Danish Authoritites included all necessary safety features. Total costs for the facilities amounted to c. 1 million US$ (excl. rig time for installation). Due to simplicity high reliability of the production system was obtained. Availability of the facilities for the entire period from start-up was 99.6 percent. The facilities were manned 3.2 percent of the total operating time mainly due to wireline work for reservoir monitoring. It is considered that the experience with the concept applied for the early production from the Rolf Field could form the basis for more simple and cost effective topside facilities for minor offshore fields.« less

  20. Manufacturing Planning Guide

    NASA Technical Reports Server (NTRS)

    Waid, Michael

    2011-01-01

    Manufacturing process, milestones and inputs are unknowns to first-time users of the manufacturing facilities. The Manufacturing Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their project engineering personnel in manufacturing planning and execution. Material covered includes a roadmap of the manufacturing process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, products, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  1. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-10-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less

  2. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power Production...

  3. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power Production...

  4. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power Production...

  5. 77 FR 49833 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... with States at Commercial Nuclear Power Plants and Other Nuclear Production and Utilization Facilities... or asked to report: Nuclear Power Plant Licensees, Materials Security Licensees and those States... and interested in monitoring the safety status of nuclear power plants and radioactive materials. This...

  6. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 1: Missile Technology reasons 2: Nuclear Nonproliferation reasons 3: Chemical & Biological Weapons...) Categories. The CCL is divided into 10 categories, numbered as follows: 0—Nuclear Materials, Facilities and... and Production Equipment C—Materials D—Software E—Technology (c) Order of review. In order to classify...

  7. 15 CFR 738.2 - Commerce Control List (CCL) structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 1: Missile Technology reasons 2: Nuclear Nonproliferation reasons 3: Chemical & Biological Weapons...) Categories. The CCL is divided into 10 categories, numbered as follows: 0—Nuclear Materials, Facilities and... and Production Equipment C—Materials D—Software E—Technology (c) Order of review. In order to classify...

  8. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power Production...

  9. 10 CFR 51.97 - Final environmental impact statement-materials license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Final environmental impact statement-materials license. 51.97 Section 51.97 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION... enrichment facility. As provided in section 5(e) of the Solar, Wind, Waste, and Geothermal Power Production...

  10. DETECTION AND IDENTIFICATION OF TOXIC AIR POLLUTANTS USING AIRBORNE LWIR HYPERSPECTRAL IMAGING

    EPA Science Inventory

    Gaseous releases from petrochemical, refinery, and electrical production facilities can contribute to regional air quality problems. Fugitive emissions or leaks can be costly to industry in terms of lost materials and products. Ground-based sampling and monitoring for leaks are t...

  11. An analysis of workplace exposures to benzene over four decades at a petrochemical processing and manufacturing facility (1962-1999).

    PubMed

    Sahmel, J; Devlin, K; Burns, A; Ferracini, T; Ground, M; Paustenbach, D

    2013-01-01

    Benzene, a known carcinogen, can be generated as a by-product during the use of petroleum-based raw materials in chemical manufacturing. The aim of this study was to analyze a large data set of benzene air concentration measurements collected over nearly 40 years during routine employee exposure monitoring at a petrochemical manufacturing facility. The facility used ethane, propane, and natural gas as raw materials in the production of common commercial materials such as polyethylene, polypropylene, waxes, adhesives, alcohols, and aldehydes. In total, 3607 benzene air samples were collected at the facility from 1962 to 1999. Of these, in total 2359 long-term (>1 h) personal exposure samples for benzene were collected during routine operations at the facility between 1974 and 1999. These samples were analyzed by division, department, and job title to establish employee benzene exposures in different areas of the facility over time. Sampling data were also analyzed by key events over time, including changes in the occupational exposure limits (OELs) for benzene and key equipment process changes at the facility. Although mean benzene concentrations varied according to operation, in nearly all cases measured benzene quantities were below the OEL in place at the time for benzene (10 ppm for 1974-1986 and 1 ppm for 1987-1999). Decreases in mean benzene air concentrations were also found when data were evaluated according to 7- to 10-yr periods following key equipment process changes. Further, an evaluation of mortality rates for a retrospective employee cohort (n = 3938) demonstrated that the average personal benzene exposures at this facility (0.89 ppm for the period 1974-1986 and 0.125 ppm for the period 1987-1999) did not result in increased standardized mortality ratio (SMRs) for diseases or malignancies of the lymphatic system. The robust nature of this data set provides comprehensive exposure information that may be useful for assessing human benzene exposures at similar facilities. The data also provide a basis for comparable measured exposure levels and the potential for adverse health effects. These data may also prove beneficial for comparing relative exposure potential for production versus nonproduction operations and the relationship between area and personal breathing zone samples.

  12. The RIB production target for the SPES project

    NASA Astrophysics Data System (ADS)

    Monetti, Alberto; Andrighetto, Alberto; Petrovich, Carlo; Manzolaro, Mattia; Corradetti, Stefano; Scarpa, Daniele; Rossetto, Francesco; Martinez Dominguez, Fernando; Vasquez, Jesus; Rossignoli, Massimo; Calderolla, Michele; Silingardi, Roberto; Mozzi, Aldo; Borgna, Francesca; Vivian, Gianluca; Boratto, Enrico; Ballan, Michele; Prete, Gianfranco; Meneghetti, Giovanni

    2015-10-01

    Facilities making use of the Isotope Separator On-Line (ISOL) method for the production of Radioactive Ion Beams (RIB) attract interest because they can be used for nuclear structure and reaction studies, astrophysics research and interdisciplinary applications. The ISOL technique is based on the fast release of the nuclear reaction products from the chosen target material together with their ionization into short-lived nuclei beams. Within this context, the SPES (Selective Production of Exotic Species) facility is now under construction in Italy at INFN-LNL (Istituto Nazionale di Fisica Nucleare — Laboratori Nazionali di Legnaro). The SPES facility will produce RIBs mainly from n-rich isotopes obtained by a 40 MeV cyclotron proton beam (200 μA) directly impinging on a uranium carbide multi-foil fission target. The aim of this work is to describe and update, from a comprehensive point of view, the most important results obtained by the analysis of the on-line behavior of the SPES production target assembly. In particular an improved target configuration has been studied by comparing different codes and physics models: the thermal analyses and the isotope production are re-evaluated. Then some consequent radioprotection aspects, which are essential for the installation and operation of the facility, are presented.

  13. Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amanda Rynes

    2010-11-01

    With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against themore » misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.« less

  14. TBC costing. [test bed concentrator

    NASA Technical Reports Server (NTRS)

    Kaminski, H. L.

    1980-01-01

    Procedures to be used in determining the cost of producing and installing a parabolic dish collector in annual production volumes of 10,000, 50,000, 100,000, and 1,000,000 units include (1) evaluating each individual part for material cost and for the type and number of operations required to work the raw material into the finished part; (2) costing labor, burden, tooling, gaging, machinery, and equipment; (3) estimating facilities requirements for each production volume; and (4) considering suggestions for design and material alterations that could result in cost reduction.

  15. Sustainable Materials Management (SMM) Web Academy Webinar: Wasted Food to Energy: How 6 Water Resource Recovery Facilities are Boosting Biogas Production & the Bottom Line

    EPA Pesticide Factsheets

    This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community

  16. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  17. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  18. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  19. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  20. 10 CFR 51.60 - Environmental report-materials licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...

  1. Effects of bedding material on ammonia volatilization in a broiler house

    USDA-ARS?s Scientific Manuscript database

    Ammonia volatilization from poultry house bedding material is a major production issues because the buildup of ammonia within the facilities is a human health issue and can negatively impact the performance of the birds. Major operational cost is associated with the ventilation of poultry houses to ...

  2. 9 CFR 51.8 - Disinfection of premises, conveyances, and materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities, conveyances, or other materials on the premises that would require such cleaning and disinfection... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Cattle, Bison, and Swine § 51.8 Disinfection of...

  3. Amorphous silicon photovoltaic manufacturing technology, phase 2A

    NASA Astrophysics Data System (ADS)

    Duran, G.; Mackamul, K.; Metcalf, D.

    1995-01-01

    Utility Power Group (UPG), and its lower-tier subcontractor, Advanced Photovoltaic Systems, Inc. (APS) have conducted efforts in developing their manufacturing lines. UPG has focused on the automation of encapsulation and termination processes developed in Phase 1. APS has focused on completion of the encapsulation and module design tasks, while continuing the process and quality control and automation projects. The goal is to produce 55 watt (stabilized) EP50 modules in a new facility. In the APS Trenton EUREKA manufacturing facility, APS has: (1) Developed high throughput lamination procedures; (2) Optimized existing module designs; (3) Developed new module designs for architectural applications; (4) Developed enhanced deposition parameter control; (5) Designed equipment required to manufacture new EUREKA modules developed during Phase II; (6) Improved uniformity of thin-film materials deposition; and (7) Improved the stabilized power output of the APS EP50 EUREKA module to 55 watts. In the APS Fairfield EUREKA manufacturing facility, APS has: (1) Introduced the new products developed under Phase 1 into the APS Fairfield EUREKA module production line; (2) Increased the extent of automation in the production line; (3) Introduced Statistical Process Control to the module production line; and (4) Transferred-progress made in the APS Trenton facility into the APS Fairfield facility.

  4. 48 CFR 9.308-2 - Testing performed by the Government.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-2 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... purchase material or to commence production before first article approval, the contracting officer shall...

  5. 48 CFR 9.308-2 - Testing performed by the Government.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-2 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... purchase material or to commence production before first article approval, the contracting officer shall...

  6. 48 CFR 9.308-2 - Testing performed by the Government.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-2 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... purchase material or to commence production before first article approval, the contracting officer shall...

  7. 48 CFR 9.308-2 - Testing performed by the Government.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-2 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... purchase material or to commence production before first article approval, the contracting officer shall...

  8. 48 CFR 9.308-2 - Testing performed by the Government.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-2 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... purchase material or to commence production before first article approval, the contracting officer shall...

  9. Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser

    NASA Technical Reports Server (NTRS)

    Holloway, Brian C.

    2003-01-01

    We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.

  10. Thin film microelectronics materials production in the vacuum of space

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.

    1997-01-01

    The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.

  11. Commercialising genetically engineered animal biomedical products.

    PubMed

    Sullivan, Eddie J; Pommer, Jerry; Robl, James M

    2008-01-01

    Research over the past two decades has increased the quality and quantity of tools available to produce genetically engineered animals. The number of potentially viable biomedical products from genetically engineered animals is increasing. However, moving from cutting-edge research to development and commercialisation of a biomedical product that is useful and wanted by the public has significant challenges. Even early stage development of genetically engineered animal applications requires consideration of many steps, including quality assurance and quality control, risk management, gap analysis, founder animal establishment, cell banking, sourcing of animals and animal-derived material, animal facilities, product collection facilities and processing facilities. These steps are complicated and expensive. Biomedical applications of genetically engineered animals have had some recent successes and many applications are well into development. As researchers consider applications for their findings, having a realistic understanding of the steps involved in the development and commercialisation of a product, produced in genetically engineered animals, is useful in determining the risk of genetic modification to the animal nu. the potential public benefit of the application.

  12. Process for Low Cost Domestic Production of LIB Cathode Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurston, Anthony

    The objective of the research was to determine the best low cost method for the large scale production of the Nickel-Cobalt-Manganese (NCM) layered cathode materials. The research and development focused on scaling up the licensed technology from Argonne National Laboratory in BASF’s battery material pilot plant in Beachwood Ohio. Since BASF did not have experience with the large scale production of the NCM cathode materials there was a significant amount of development that was needed to support BASF’s already existing research program. During the three year period BASF was able to develop and validate production processes for the NCM 111,more » 523 and 424 materials as well as begin development of the High Energy NCM. BASF also used this time period to provide free cathode material samples to numerous manufactures, OEM’s and research companies in order to validate the ma-terials. The success of the project can be demonstrated by the construction of the production plant in Elyria Ohio and the successful operation of that facility. The benefit of the project to the public will begin to be apparent as soon as material from the production plant is being used in electric vehicles.« less

  13. An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.

    2011-10-01

    The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

  14. THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2001-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less

  15. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    PubMed

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  17. 48 CFR 9.308-1 - Testing performed by the contractor.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-1 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... material or to commence production before first article approval, the contracting officer shall use the...

  18. 48 CFR 9.308-1 - Testing performed by the contractor.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-1 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... material or to commence production before first article approval, the contracting officer shall use the...

  19. 48 CFR 9.308-1 - Testing performed by the contractor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-1 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... material or to commence production before first article approval, the contracting officer shall use the...

  20. 48 CFR 9.308-1 - Testing performed by the contractor.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-1 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... material or to commence production before first article approval, the contracting officer shall use the...

  1. 48 CFR 9.308-1 - Testing performed by the contractor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ACQUISITION PLANNING CONTRACTOR QUALIFICATIONS First Article Testing and Approval 9.308-1 Testing performed by... produce the first article and the production quantity at the same facility, the contracting officer shall... material or to commence production before first article approval, the contracting officer shall use the...

  2. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2014-10-01

    Evaluation Research (CDER), the Center for Biologics Evaluation Research (CBER), and the Center for Devices and Radiological Health ( CDRH ) to clarify...submitting a new application to the CDRH for a new product. This new product is the material that is produced in the validated manufacturing facility

  3. Manufactured caverns in carbonate rock

    DOEpatents

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  4. Copper as an antibacterial material in different facilities.

    PubMed

    Inkinen, J; Mäkinen, R; Keinänen-Toivola, M M; Nordström, K; Ahonen, M

    2017-01-01

    The present study was performed in real life settings in different facilities (hospital, kindergarten, retirement home, office building) with copper and copper alloy touch surface products (floor drain lids, toilet flush buttons, door handles, light switches, closet touch surfaces, corridor hand rails, front door handles and toilet support rails) in parallel to reference products. Pure copper surfaces supported lower total bacterial counts (16 ± 45 vs 105 ± 430 CFU cm -2 , n = 214, P < 0·001) and a lower occurrence of Staphylococcus aureus (2·6 vs 14%, n = 157, P < 0·01) and Gram-negatives (21 vs 34%, n = 214, P < 0·05) respectively than did reference surfaces, whereas the occurrence of enterococci (15%, n = 214, P > 0·05) was similar. The studied products could be assigned to three categories according to their bacterial loads as follows (P < 0·001): floor drain lids (300 ± 730 CFU cm -2 , n = 32), small area touch surfaces (8·0 ± 7·1 to 62 ± 160 CFU cm -2 , n = 90) and large area touch surfaces (1·1 ± 1·1 to 1·7 ± 2·4 CFU cm -2 , n = 92). In conclusion, copper touch surface products can function as antibacterial materials to reduce the bacterial load, especially on frequently touched small surfaces. The efficiency of copper as an antimicrobial material has been noted in laboratory studies and in the hospital environment. The present study further shows that copper exerted an antibacterial effect in different facilities, i.e. in a hospital, a kindergarten, an office building and in a retirement home for the elderly. The study suggests that copper has potential use as an antibacterial material and therefore might serve as a means to lower the incidence of transmission of infectious agents from inanimate surfaces in different facilities, with everyday functions. © 2016 The Society for Applied Microbiology.

  5. Production cost of a real microalgae production plant and strategies to reduce it.

    PubMed

    Acién, F G; Fernández, J M; Magán, J J; Molina, E

    2012-01-01

    The cost analysis of a real facility for the production of high value microalgae biomass is presented. The facility is based on ten 3 m3 tubular photobioreactors operated in continuous mode for 2 years, data of Scenedesmus almeriensis productivity but also of nutrients and power consumption from this facility being used. The yield of the facility was close to maximum expected for the location of Almería, the annual production capacity being 3.8 t/year (90 t/ha·year) and the photosynthetic efficiency being 3.6%. The production cost was 69 €/kg. Economic analysis shows that labor and depreciation are the major factors contributing to this cost. Simplification of the technology and scale-up to a production capacity of 200 t/year allows to reduce the production cost up to 12.6 €/kg. Moreover, to reduce the microalgae production cost to approaches the energy or commodities markets it is necessary to reduce the photobioreactor cost (by simplifying its design or materials used), use waste water and flue gases, and reduce the power consumption and labor required for the production step. It can be concluded that although it has been reported that production of biofuels from microalgae is relatively close to being economically feasible, data here reported demonstrated that to achieve it by using the current production technologies, it is necessary to substantially reduce their costs and to operate them near their optimum values. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Fabrication and Improvement of Lmsc's All-silica RSI

    NASA Technical Reports Server (NTRS)

    Beasley, R. M.; Izu, Y. D.; Nakano, H. N.; Ozolin, A. A.; Peachman, A.

    1973-01-01

    The LI-1500 and LI-900 all silica RSI materials have made the transition from laboratory to manufacturing operation. Improvements in both quality and reproducibility have been achieved. The LI-1500 material has displayed superior reliability in evaluations conducted at various facilities. The dependable performance of the material is attributed to the adherence to the stringent requirements of the numerous material, process, and product control evaluations and inspection points performed during manufacture.

  7. Effect of turning frequency and season on composting materials from swine high-rise facilities

    USDA-ARS?s Scientific Manuscript database

    Composting of swine manure has several advantages, liquid slurries are converted to solid, the total volume of material is reduced and the stabilized product is more easily transported off-site. Despite this, swine waste is generally stored, treated and applied in its liquid form. The high-rise fini...

  8. PAPERBACK BOOKS AND THE COLLEGE LIBRARY.

    ERIC Educational Resources Information Center

    HARTZ, FREDERIC R.

    THE TOTAL ACADEMIC PROGRAM OF A COLLEGE IS ENHANCED BY A LIBRARY THAT (1) PROVIDES A RICH VARIETY OF MATERIALS FOR USE BY FACULTY AND STUDENTS, (2) MAKES AVAILABLE FACILITIES, SERVICES, AND EQUIPMENT NECESSARY FOR THE SELECTION, ORGANIZATION, AND USE OF INSTRUCTIONAL MATERIALS, AND (3) OFFERS LEADERSHIP IN THE PRODUCTION AND USE OF VARIOUS…

  9. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  10. 10 CFR Appendix F to Part 50 - Policy Relating to the Siting of Fuel Reprocessing Plants and Related Waste Management Facilities

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... transferred to a Federal repository no later than 10 years following separation of fission products from the.... Disposal of high-level radioactive fission product waste material will not be permitted on any land other... of the policy stated above with respect to high-level radioactive fission product wastes generated...

  11. Jointly optimizing selection of fuel treatments and siting of forest biomass-based energy production facilities for landscape-scale fire hazard reduction.

    Treesearch

    Peter J. Daugherty; Jeremy S. Fried

    2007-01-01

    Landscape-scale fuel treatments for forest fire hazard reduction potentially produce large quantities of material suitable for biomass energy production. The analytic framework FIA BioSum addresses this situation by developing detailed data on forest conditions and production under alternative fuel treatment prescriptions, and computes haul costs to alternative sites...

  12. A modern depleted uranium manufacturing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagula, T.A.

    1995-07-01

    The Specific Manufacturing Capabilities (SMC) Project located at the Idaho National Engineering Laboratory (INEL) and operated by Lockheed Martin Idaho Technologies Co. (LMIT) for the Department of Energy (DOE) manufactures depleted uranium for use in the U.S. Army MIA2 Abrams Heavy Tank Armor Program. Since 1986, SMC has fabricated more than 12 million pounds of depleted uranium (DU) products in a multitude of shapes and sizes with varying metallurgical properties while maintaining security, environmental, health and safety requirements. During initial facility design in the early 1980`s, emphasis on employee safety, radiation control and environmental consciousness was gaining momentum throughout themore » DOE complex. This fact coupled with security and production requirements forced design efforts to focus on incorporating automation, local containment and computerized material accountability at all work stations. The result was a fully automated production facility engineered to manufacture DU armor packages with virtually no human contact while maintaining security, traceability and quality requirements. This hands off approach to handling depleted uranium resulted in minimal radiation exposures and employee injuries. Construction of the manufacturing facility was complete in early 1986 with the first armor package certified in October 1986. Rolling facility construction was completed in 1987 with the first certified plate produced in the fall of 1988. Since 1988 the rolling and manufacturing facilities have delivered more than 2600 armor packages on schedule with 100% final product quality acceptance. During this period there was an annual average of only 2.2 lost time incidents and a single individual maximum radiation exposure of 150 mrem. SMC is an example of designing and operating a facility that meets regulatory requirements with respect to national security, radiation control and personnel safety while achieving production schedules and product quality.« less

  13. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, S. J.

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less

  14. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  15. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond. The major objective of this project was to produce a more versatile composition of this material and find new applications. Major target applications were use for nuclear radiation shields, such as in dry storage casks; use in immobilization of most difficult waste streams, such as Hanford K-Basin waste; use for soluble and volatile fission products, such asmore » Cs, Tc, Sr, and I; and use for corrosion and fire protection applications in nuclear facilities.« less

  16. Actinide targets for the synthesis of super-heavy elements

    DOE PAGES

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; ...

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  17. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 3: Appendices

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Appendices are presented which include: statement of work; material vendor contacts; formulation/processing data sheet; upward propagation test; flammability test conditions/results sheet; odor test; vacuum stability requirements; flammability test facility; determination of offgassing products and carbon monoxide test; and pneumatic and mechanical impact test guidelines.

  18. Imports and exports of roundwood in the upper Midwestern United States. Chapter 2.

    Treesearch

    Charles H. Perry; Mark D. Nelson; Ronald J. Piva

    2010-01-01

    Industrial roundwood is the raw material produced from harvested trees that is used to manufacture a wide range of wood products. Roundwood is harvested from the forest and is transported to primary manufacturing facilities to be processed into primary and secondary wood products. Roundwood includes sawlogs that are processed into...

  19. 78 FR 69417 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... days of this notice. Proposed Project An Investigation of Lung Health at an Indium-Tin Oxide Production... conduct a study regarding the lung health of workers at an indium-tin oxide production facility. Indium-tin oxide (ITO) is a sintered material used in the manufacture of devices such as liquid crystal...

  20. 77 FR 77016 - Foreign-Trade Zone 33 - Pittsburgh, Pennsylvania Notification of Proposed Export Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Confectionery Bars) Pittsburgh, PA Tsudis Chocolate Company (Tsudis), an operator of FTZ 33, submitted a... the facility would involve the production of chocolate confectionery bars for export (no shipments for... markets, FTZ procedures could exempt Tsudis from customs duty payments on the foreign status material used...

  1. Issues on the production and electrochemical separation of oxygen from carbon dioxide

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Sridhar, K. R.

    1991-01-01

    There is considerable interest in in-situ propellant manufacturing on the moon and Mars. One of the concepts of oxygen production that is being actively pursued is the processing of atmospheric carbon dioxide on Mars to produce oxygen by means of thermal decomposition and electrochemical separation. The key component of such a production facility is the electrochemical separation cell that filters out the oxygen from the gas mixture of carbon dioxide, carbon monoxide, and oxygen. Efficient design of the separation cell and the selection of electrolyte and electrode materials of superior performance for the cell would translate to significant reduction in the power requirement and the mass of the production facility. The objective is to develop the technology required to produce the cells in-house and test various electrolyte and electrode materials systematically until the optimal combination is found. An effective technique was developed for the fabrication of disk shaped cells. Zirconia and Ceria cells were made in-house. Complete modules of the electrochemical cell and housings were designed, fabricated, and tested.

  2. Installation and first operation of the International Fusion Materials Irradiation Facility injector at the Rokkasho site

    NASA Astrophysics Data System (ADS)

    Gobin, Raphael; Bogard, Daniel; Bolzon, Benoit; Bourdelle, Gilles; Chauvin, Nicolas; Chel, Stéphane; Girardot, Patrick; Gomes, Adelino; Guiho, Patrice; Harrault, Francis; Loiseau, Denis; Lussignol, Yves; Misiara, Nicolas; Roger, Arnaud; Senée, Franck; Valette, Matthieu; Cara, Philippe; Duglué, Daniel; Gex, Dominique; Okumura, Yoshikazu; Marcos Ayala, Juan; Knaster, Juan; Marqueta, Alvaro; Kasugai, Atsushi; O'Hira, Shigeru; Shinto, Katsuhiro; Takahashi, Hiroki

    2016-02-01

    The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014. Then after the check-out phase, the production of the first proton beam occurred in November 2014. Hydrogen and deuteron beam commissioning is now in progress after having proceeded with the final tests on the entire injector equipment including high power diagnostics. This article reports the different phases of the injector installation pointing out the safety and security needs, as well as the first beam production results in Japan and chopper tests. Detailed operation and commissioning results (with H+ and D+ 100 keV beams) are reported in a second article.

  3. Microgravity

    NASA Image and Video Library

    1994-02-03

    The objective of this facility is to investigate the potential of space grown semiconductor materials by the vapor transport technique and develop powdered metal and ceramic sintering techniques in microgravity. The materials processed or developed in the SEF have potential application for improving infrared detectors, nuclear particle detectors, photovoltaic cells, bearing cutting tools, electrical brushes and catalysts for chemical production. Flown on STS-60 Commercial Center: Consortium for Materials Development in Space - University of Alabama Huntsville (UAH)

  4. A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems

    NASA Astrophysics Data System (ADS)

    Kumar, Ravi; Singh, Surya Prakash

    2017-11-01

    The dynamic cellular facility layout problem (DCFLP) is a well-known NP-hard problem. It has been estimated that the efficient design of DCFLP reduces the manufacturing cost of products by maintaining the minimum material flow among all machines in all cells, as the material flow contributes around 10-30% of the total product cost. However, being NP hard, solving the DCFLP optimally is very difficult in reasonable time. Therefore, this article proposes a novel similarity score-based two-phase heuristic approach to solve the DCFLP optimally considering multiple products in multiple times to be manufactured in the manufacturing layout. In the first phase of the proposed heuristic, a machine-cell cluster is created based on similarity scores between machines. This is provided as an input to the second phase to minimize inter/intracell material handling costs and rearrangement costs over the entire planning period. The solution methodology of the proposed approach is demonstrated. To show the efficiency of the two-phase heuristic approach, 21 instances are generated and solved using the optimization software package LINGO. The results show that the proposed approach can optimally solve the DCFLP in reasonable time.

  5. Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers; Second Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A.

    2001-05-16

    Greening Federal Facilities, Second Edition, is a nuts-and-bolts resource guide compiled to increase energy and resource efficiency, cut waste, and improve the performance of Federal buildings and facilities. The guide highlights practical actions that facility managers, design and construction staff, procurement officials, and facility planners can take to save energy and money, improve the comfort and productivity of employees, and benefit the environment. It supports a national effort to promote energy and environmental efficiency in the nation's 500,000 Federal buildings and facilities. Topics covered include current Federal regulations; environmental and energy decision-making; site and landscape issues; building design; energy systems;more » water and wastewater; materials; waste management, and recycling; indoor environmental quality; and managing buildings.« less

  6. Radiochemical Processing Laboratory (RPL) at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, Tony; Clark, Sue; Bryan, Sam

    2017-03-23

    Nuclear research is one of the core components of PNNL's mission. The centerpiece of PNNL's nuclear research is the Radiochemical Processing Laboratory (RPL), a Category 2 nuclear facility with state-of-the-art instrumentation, scientific expertise, and specialized capabilities that enable research with significant quantities of fissionable materials and other radionuclides—from tritium to plutonium. High impact radiological research has been conducted in the RPL since the 1950's, when nuclear weapons and energy production at Hanford were at the forefront of national defense. Since then, significant investments have been made in the RPL to maintain it as a premier nuclear science research facility supportingmore » multiple programs. Most recently, PNNL is developing a world-class analytical electron microscopy facility dedicated to the characterization of radiological materials.« less

  7. Material Compatibility Evaluation for DWPF Nitric-Glycolic Acid - Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.; Skidmore, T. E.

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid. The reportedmore » corrosion rates and degradation characteristics have shown the following for the materials of construction.« less

  8. Construction of a naturally occurring radioactive material project in the BeAAT hazardous waste facilities.

    PubMed

    Abuahmad, H

    2015-06-01

    This paper does not necessarily reflect the views of the International Commission on Radiological Protection. Naturally occurring radioactive material (NORM) is produced during exploration and production operations of subsidiaries of the Abu Dhabi National Oil Company (ADNOC) in the United Arab Emirates, and accumulates in drilling tubulars, plant equipment, and components. These NORM hazardous wastes need to be managed in such a way that they do not damage human health and the environment. The primary radionuclides of concern in the oil and gas industries are radium-226 and radium-228. These radioisotopes are the decay products of uranium and thorium isotopes that are present in subsurface formations from which hydrocarbons are produced. While uranium and thorium are largely immobile, radium is slightly more soluble and may become mobilised in the fluid phases of the formation (International Association of Oil & Gas Producers, 2008). In order to treat and dispose of NORM waste products safely, ADNOC's subsidiary 'TAKREER' is developing a new facility, on behalf of all ADNOC subsidiaries, within the existing Central Environmental Protection Facilities (BeAAT) in Ruwais city. The NORM plant is envisaged to treat, handle, and dispose of NORM waste in the forms of scale, sludge, and contaminated equipment. The NORM treatment facility will cover activities such as decontamination, volume reduction, NORM handling, and concrete immobilisation of NORM waste into packages for designated landfilling. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.

  10. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    PubMed Central

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  11. Synchronization of workshops, using facilities planning

    NASA Astrophysics Data System (ADS)

    Zineb, Britel; Abdelghani, Cherkaoui

    2017-08-01

    In this paper, we will present a methodology used for the synchronization of two workshops of a sheet metal department. These two workshops have a supplier-customer relationship. The aim of the study is to synchronise the two workshops as a step towards creating a better material flow, reduced inventory and achieving Just in time and lean production. To achieve this, we used a different set of techniques: SMED, Facilities planning…

  12. Evaluation of performance indicators applied to a material recovery facility fed by mixed packaging waste.

    PubMed

    Mastellone, Maria Laura; Cremiato, Raffaele; Zaccariello, Lucio; Lotito, Roberta

    2017-06-01

    Most of the integrated systems for municipal solid waste management aim to increase the recycling of secondary materials by means of physical processes including sorting, shredding and reprocessing. Several restrictions prevent from reaching a very high material recycling efficiency: the variability of the composition of new-marketed materials used for packaging production and its shape and complexity are critical issues. The packaging goods are in fact made of different materials (aluminium, polymers, paper, etc.), possibly assembled, having different shape (flat, cylindrical, one-dimensional, etc.), density, colours, optical properties and so on. These aspects limit the effectiveness and efficiency of the sorting and reprocessing plants. The scope of this study was to evaluate the performance of a large scale Material Recovery Facility (MRF) by utilizing data collected during a long period of monitoring. The database resulted from the measured data has been organized in four sections: (1) data related to the amount and type of inlet waste; (2) amount and composition of output products and waste; (3) operating data (such as worked hours for shift, planned and unscheduled maintenance time, setting parameters of the equipment, and energy consumption for shift); (4) economic data (value of each product, disposal price for the produced waste, penalty for non-compliance of products and waste, etc.). A part of this database has been utilized to build an executive dashboard composed by a set of performance indicators suitable to measure the effectiveness and the efficiency of the MRF operations. The dashboard revealed itself as a powerful tool to support managers and engineers in their decisions in respect to the market demand or compliance regulation variation as well as in the designing of the lay-out improvements. The results indicated that the 40% of the input waste was recovered as valuable products and that a large part of these (88%) complied with the standards of the recycling companies. The evaluation of the indicators led to the decision to modify the layout to improve the interception of some polymers for which the performance indicators were poor. In particular, two additional optical sorters have to be inserted to increase the yield indicator and to the overall performance of the facility. Definitely, the results of the work allowed to: increase the yield and purity of products' flows; ensure the compliance of waste flows; increase the workability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Autoclave Meltout of Cast Explosives

    DTIC Science & Technology

    1996-08-22

    various tanks , kettles , and pelletizing equipment a usable product was recovered. This process creates large amounts of pink water requiring...vacuum treatment melt kettles , flaker belts, and improved material handling equipment in an integrated system. During the 1976/1977 period, AED...McAlester Army Ammo Plant , Oklahoma, to discuss proposed workload and inspect available facilities and equipment . Pilot model production and testing

  14. One perspective on stakeholder involvement at Hanford.

    PubMed

    Martin, Todd

    2011-11-01

    The Hanford nuclear site in Washington State had a major role in the production of nuclear weapons materials during the Manhattan Project in World War II and during the Cold War that followed. The production of weapons-grade radionuclides produced a large amount of radioactive byproducts that have been stored since the mid-1900s at the Hanford Site. These by-product radionuclides have leaked from containment facilities into the groundwater, contaminated buildings used for radionuclide processing, and also contaminated the nuclear reactors used to produce weapons-grade uranium and plutonium. This issue has been a major concern to Hanford stakeholders for several decades, and the U.S. Department of Energy, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology established a Tri-Party Agreement in 1989, at which time Hanford ceased production of nuclear weapons materials and began a major effort to clean up and remediate the Hanford Site's contaminated groundwater, soil, and facilities. This paper describes the concerns of stakeholders in the production of nuclear weapons, the secrecy of Hanford operations, and the potential impacts to public health and the environment from the unintended releases of weapons-grade materials and by-products associated with their production at the Hanford Site. It also describes the involvement of public stakeholders in the development and oversight by the Hanford Advisory Board of the steps that have been taken in cleanup activities at the Hanford Site that began as a major effort about two decades ago. The importance of involvement of the general public and public interest organizations in developing and implementing the Hanford cleanup strategy are described in detail.

  15. 75 FR 32122 - Revisions to Defense Priorities and Allocations System Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ...This proposed rule would reorganize and clarify existing standards and procedures by which the Bureau of Industry and Security (BIS) may require that certain contracts or orders that promote the national defense be given priority over other contracts or orders. This rule also sets new standards and procedures by which BIS may allocate materials, services and facilities to promote the national defense. BIS is publishing this rule to comply with a requirement of the Defense Production Act Reauthorization of 2009 to publish regulations providing standards and procedures for prioritization of contracts and orders and for allocation of materials, services and facilities to promote the national defense.

  16. 50 CFR 260.100 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... or material not intended for human food or which creates an objectionable condition shall be... locations throughout the plant. [36 FR 21040, Nov. 3, 1971] ...

  17. 50 CFR 260.100 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Products for Human Consumption Requirements for Plants Operating Under Continuous Inspection on A Contract... or material not intended for human food or which creates an objectionable condition shall be... locations throughout the plant. [36 FR 21040, Nov. 3, 1971] ...

  18. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  19. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  20. Bench-scale research in biomass liquefaction in support of the Albany, Oregon experimental facility

    NASA Astrophysics Data System (ADS)

    Elliott, D. C.

    1981-03-01

    The liquefaction of solid materials (wood, newsprint, animal manure) by beating to produce useful liquid fuels was investigated. Highlights of work performed include: (1) catalyst mechanism studies; (2) analytical reports on TR8 and TR9 product oils; (3) liquid chromatography/mass spectroscopy analysis of wood oil; (4) batch conversion tests on bottom material; (5) vapor pressure studies; and (6) product evaluation. It was confirmed that the key process parameters and the effects of varying operating conditions are in support of biomass liquefaction.

  1. Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menke, D.

    1990-12-31

    CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of amore » new product from waste material, Minor process changes to reduce the frequency of breaks.« less

  2. Impact of glycolate anion on aqueous corrosion in DWPF and downstream facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J. I.

    2015-12-15

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system has not been previously evaluated. A literature review had revealed that corrosion data were not available for the MoCs in glycolic-bearing solutions applicable tomore » SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion.« less

  3. Effects of space environment on structural materials - A preliminary study and development of materials characterization protocols

    NASA Technical Reports Server (NTRS)

    Miglionico, C.; Stein, C.; Murr, L. E.

    1991-01-01

    A preliminary study of materials exposed in space in LEO for nearly six years in the NASA Long-Duration Exposure Facility is presented. It is demonstrated that it will be necessary to isolate surface debris and reaction products from materials exposed in space. Replication techniques originally designed for electron microscopy examination of surfaces can be applied to lift off and isolate such surface features. Debris and reaction products were examined through a variety of analytical techniques, including the surface morphology by SEM, and internal microstructures by STEM and TEM, EDS, and SAD. The results illustrate the role that atomic oxygen and micrometeorites play in surface alteration and reaction in LEO space environments, as well as the role of debris created from other proximate materials.

  4. A generalized method for characterization of 235U and 239Pu content using short-lived fission product gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Knowles, Justin; Skutnik, Steven; Glasgow, David; Kapsimalis, Roger

    2016-10-01

    Rapid nondestructive assay methods for trace fissile material analysis are needed in both nuclear forensics and safeguards communities. To address these needs, research at the Oak Ridge National Laboratory High Flux Isotope Reactor Neutron Activation Analysis facility has developed a generalized nondestructive assay method to characterize materials containing fissile isotopes. This method relies on gamma-ray emissions from short-lived fission products and makes use of differences in fission product yields to identify fissile compositions of trace material samples. Although prior work has explored the use of short-lived fission product gamma-ray measurements, the proposed method is the first to provide a complete characterization of isotopic identification, mass ratios, and absolute mass determination. Successful single fissile isotope mass recoveries of less than 6% recovery bias have been conducted on standards of 235U and 239Pu as low as 12 ng in less than 10 minutes. Additionally, mixtures of fissile isotope standards containing 235U and 239Pu have been characterized as low as 198 ng of fissile mass with less than 7% recovery bias. The generalizability of this method is illustrated by evaluating different fissile isotopes, mixtures of fissile isotopes, and two different irradiation positions in the reactor. It is anticipated that this method will be expanded to characterize additional fissile nuclides, utilize various irradiation facilities, and account for increasingly complex sample matrices.

  5. Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-07-14

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less

  6. Analysis of federal and state policies and environmental issues for bioethanol production facilities.

    PubMed

    McGee, Chandra; Chan Hilton, Amy B

    2011-03-01

    The purpose of this work was to investigate incentives and barriers to fuel ethanol production from biomass in the U.S. during the past decade (2000-2010). In particular, we examine the results of policies and economic conditions during this period by way of cellulosic ethanol activity in four selected states with the potential to produce different types of feedstocks (i.e., sugar, starch, and cellulosic crops) for ethanol production (Florida, California, Hawaii, and Iowa). Two of the four states, Iowa and California, currently have commercial ethanol production facilities in operation using corn feedstocks. While several companies have proposed commercial scale facilities in Florida and Hawaii, none are operating to date. Federal and state policies and incentives, potential for feedstock production and conversion to ethanol and associated potential environmental impacts, and environmental regulatory conditions among the states were investigated. Additionally, an analysis of proposed and operational ethanol production facilities provided evidence that a combination of these policies and incentives along with the ability to address environmental issues and regulatory environment and positive economic conditions all impact ethanol production. The 2000-2010 decade saw the rise of the promise of cellulosic ethanol. Federal and state policies were enacted to increase ethanol production. Since the initial push for development, expansion of cellulosic ethanol production has not happened as quickly as predicted. Government and private funding supported the development of ethanol production facilities, which peaked and then declined by the end of the decade. Although there are technical issues that remain to be solved to more efficiently convert cellulosic material to ethanol while reducing environmental impacts, the largest barriers to increasing ethanol production appear to be related to government policies, economics, and logistical issues. The numerous federal and state policies do not effectively give investors confidence to commit to the construction and long-term operation of facilities under current economic conditions. Additional changes in policy and breakthroughs in technology and logistics will be required to address these hurdles to increases in ethanol production in the U.S. in the next decade.

  7. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  8. Segmented beryllium target for a 2 MW super beam facility

    DOE PAGES

    Davenne, T.; Caretta, O.; Densham, C.; ...

    2015-09-14

    The Long Baseline Neutrino Facility (LBNF, formerly the Long Baseline Neutrino Experiment) is under design as a next generation neutrino oscillation experiment, with primary objectives to search for CP violation in the leptonic sector, to determine the neutrino mass hierarchy and to provide a precise measurement of θ 23. The facility will generate a neutrino beam at Fermilab by the interaction of a proton beam with a target material. At the ultimate anticipated proton beam power of 2.3 MW the target material must dissipate a heat load of between 10 and 25 kW depending on the target size. This paper presents amore » target concept based on an array of spheres and compares it to a cylindrical monolithic target such as that which currently operates at the T2K facility. Thus simulation results show that the proposed technology offers efficient cooling and lower stresses whilst delivering a neutrino production comparable with that of a conventional solid cylindrical target.« less

  9. Induced activation study of LDEF

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1993-01-01

    Analysis of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is continuing with extraction of specific activities for various spacecraft materials. Data and results of activation measurements from eight facilities are being collected for interpretation at Eastern Kentucky University and NASA/Marshall Space Flight Center. The major activation mechanism in LDEF components is the proton flux in the South Atlantic Anomaly (SAA). This flux is highly anisotropic, and could be sampled by taking advantage of the gravity-gradient stabilization of the LDEF. The directionally-dependent activation due to these protons was clearly observed in the data from aluminum experiment tray clamps (reaction product Na-22), steel trunnions (reaction product Mn-54 and others) and is also indicated by the presence of a variety of nuclides in other materials. A secondary production mechanism, thermal neutron capture, was observed in cobalt, indium, and tantalum, which are known to have large capture cross sections. Experiments containing samples of these metals and significant amounts of thermalizing low atomic number (Z) material showed clear evidence of enhanced activation of Co-60, In-114m, and Ta-182. Other mechanisms which activate spacecraft material that are not as easily separable from SAA proton activation, such as galactic proton bombardment and secondary production by fast neutrons, are being investigated by comparison to radiation environmental calculations. Deviations from one-dimensional radiation models indicate that these mechanisms are more important at greater shielding depths. The current status of the induced radioactivity measurements as of mid-year 1992 are reviewed. Specific activities for a number of materials which show SAA effects and thermal neutron capture are presented. The results for consistency by combining data from the participating institutions is also examined.

  10. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.« less

  11. Pin bearing evaluation of LTM25 composite materials

    NASA Technical Reports Server (NTRS)

    Shah, C. H.; Postyn, A. S.

    1996-01-01

    This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.

  12. Food Waste to Energy: How Six Water Resource Recovery ...

    EPA Pesticide Factsheets

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and the addition of outside organic wastes. Enhancing biogas production by adding fats, oil and grease (FOG) to digesters has become a familiar practice. Less widespread is the addition of other types of food waste, ranging from municipally collected food scraps to the byproducts of food processing facilities and agricultural production. Co-digesting with food waste, however, is becoming more common. As energy prices rise and as tighter regulations increase the cost of compliance, WRRFs across the county are tapping excess capacity while tempering rates. This report presents the co-digestion practices, performance, and the experiences of six such WRRFs. The report describes the types of food waste co-digested and the strategies--specifically, the tools, timing, and partnerships--employed to manage the material. Additionally, the report describes how the facilities manage wastewater solids, providing information about power production, biosolids use, and program costs. This product is intended to describe the available infrastructure for energy recovery from co-digestion of food waste and wastewater treatment facilities.

  13. 235U Holdup Measurements in the 321-M Exhaust Elbows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salaymeh, S.R.

    The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meetmore » criticality safety controls. This report covers holdup measurements of uranium residue in the exhaust piping elbows removed from the roof the 321-M facility.« less

  14. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Finckenor, M. M.; Boothe, R. E.; Albyn, K. C.; Finchum, C. A.

    2003-01-01

    The Materials Contamination Team of the Environmental Effects Group, Materials, Processes, and Manufacturing Department, has been recognized for its contribution to space flight, including space transportation, space science and flight projects, such as the reusable solid rocket motor, Chandra X-Ray Observatory, and the International Space Station. The Materials Contamination Team s realm of responsibility encompasses all phases of hardware development including design, manufacturing, assembly, test, transportation, launch-site processing, on-orbit exposure, return, and refurbishment if required. Contamination is a concern in the Space Shuttle with sensitivity bondlines and reactive fluid (liquid oxygen) compatibility as well as for sensitive optics, particularly spacecraft such as Hubble Space Telescope and Chandra X-Ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The team of engineers and technicians also develop and evaluates new surface cleanliness inspection technologies. Databases are maintained by the team for proces! materials as well as outgassing and optical compatibility test results for specific environments.

  15. Modification of Chitin with Kraft Lignin and Development of New Biosorbents for Removal of Cadmium(II) and Nickel(II) Ions

    PubMed Central

    Wysokowski, Marcin; Klapiszewski, Łukasz; Moszyński, Dariusz; Bartczak, Przemysław; Szatkowski, Tomasz; Majchrzak, Izabela; Siwińska-Stefańska, Katarzyna; Bazhenov, Vasilii V.; Jesionowski, Teofil

    2014-01-01

    Novel, functional materials based on chitin of marine origin and lignin were prepared. The synthesized materials were subjected to physicochemical, dispersive-morphological and electrokinetic analysis. The results confirm the effectiveness of the proposed method of synthesis of functional chitin/lignin materials. Mechanism of chitin modification by lignin is based on formation of hydrogen bonds between chitin and lignin. Additionally, the chitin/lignin materials were studied from the perspective of waste water treatment. The synthetic method presented in this work shows an attractive and facile route for producing low-cost chitin/lignin biosorbents with high efficiency of nickel and cadmium adsorption (88.0% and 98.4%, respectively). The discovery of this facile method of synthesis of functional chitin/lignin materials will also have a significant impact on the problematic issue of the utilization of chitinous waste from the seafood industry, as well as lignin by-products from the pulp and paper industry. PMID:24727394

  16. Overview of NASA's Microgravity Materials Research Program

    NASA Technical Reports Server (NTRS)

    Downey, James Patton; Grugel, Richard

    2012-01-01

    The NASA microgravity materials program is dedicated to conducting microgravity experiments and related modeling efforts that will help us understand the processes associated with the formation of materials. This knowledge will help improve ground based industrial production of such materials. The currently funded investigations include research on the distribution of dopants and formation of defects in semiconductors, transitions between columnar and dendritic grain morphology, coarsening of phase boundaries, competition between thermally and kinetically favored phases, and the formation of glassy vs. crystalline material. NASA microgravity materials science investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by participation in a team proposing to a foreign agency research announcement. In the latter case, a US investigator participating in a successful proposal to a foreign agency can then apply to NASA for funding of an unsolicited proposal. The program relies on cooperation with other aerospace partners from around the world. The ISS facilities used for these investigations are provided primarily by partnering with foreign agencies and in most cases the US investigators are working as a part of a larger team studying a specific area of materials science. The following facilities are to be utilized for the initial investigations. The ESA provided Low Gradient Facility and the Solidification and Quench Inserts to the Materials Research Rack/Materials Science Laboratory are to be used primarily for creating bulk samples that are directionally solidified or quenched from a high temperature melt. The CNES provided DECLIC facility is used to observe morphological development in transparent materials. The ESA provided Electro-Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to study nucleation behavior. The facility provides conditions in which nucleation of the solid is not triggered from the wall and in which fluid flows in the sample can be controlled and manipulated. These conditions allow scientists ideal conditions for understanding the relative amounts and distribution of different phases that form in the solid. Finally, the Coarsening of Solid Liquid Melts hardware allows quenching of low temperature samples in the Microgravity Science Glovebox.

  17. Development of Technology for Image-Guided Proton Therapy

    DTIC Science & Technology

    2011-10-01

    testing proton RBE in the Penn proton beam facility  Assemble equipment and develop data analysis software  Install and test tablet PCs...production  Use dual-energy CT and MRI to determine the composition of materials Year 4 ending 9/30/2011  Measurement of RBE for protons using the...Penn proton beam facility  Measure LET for scattered and scanned beams  Enter forms on tablet PCs Phase 5 Scope of Work Year 1 ending 9

  18. 2. VIEW LOOKING NORTHEAST AT BUILDING 444 UNDER CONSTRUCTION. BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW LOOKING NORTHEAST AT BUILDING 444 UNDER CONSTRUCTION. BUILDING 444 WAS THE PRIMARY NON-PLUTONIUM MANUFACTURING FACILITY AT THE ROCKY FLATS PLANT. MANUFACTURING PROCESSES COMPLETED IN THIS BUILDING WERE USED TO FABRICATE WEAPONS COMPONENTS AND ASSEMBLIES FOR A VARIETY OF MATERIALS, INCLUDING DEPLETED URANIUM, BERYLLIUM, STAINLESS STEEL, ALUMINUM, AND VANADIUM. (4/25/52) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  19. First Materials Science Research Facility Rack Capabilities and Design Features

    NASA Technical Reports Server (NTRS)

    Cobb, S.; Higgins, D.; Kitchens, L.; Curreri, Peter (Technical Monitor)

    2002-01-01

    The first Materials Science Research Rack (MSRR-1) is the primary facility for U.S. sponsored materials science research on the International Space Station. MSRR-1 is contained in an International Standard Payload Rack (ISPR) equipped with the Active Rack Isolation System (ARIS) for the best possible microgravity environment. MSRR-1 will accommodate dual Experiment Modules and provide simultaneous on-orbit processing operations capability. The first Experiment Module for the MSRR-1, the Materials Science Laboratory (MSL), is an international cooperative activity between NASA's Marshall Space Flight Center (MSFC) and the European Space Agency's (ESA) European Space Research and Technology Center (ESTEC). The MSL Experiment Module will accommodate several on-orbit exchangeable experiment-specific Module Inserts which provide distinct thermal processing capabilities. Module Inserts currently planned for the MSL are a Quench Module Insert, Low Gradient Furnace, and a Solidification with Quench Furnace. The second Experiment Module for the MSRR-1 configuration is a commercial device supplied by MSFC's Space Products Development (SPD) Group. Transparent furnace assemblies include capabilities for vapor transport processes and annealing of glass fiber preforms. This Experiment Module is replaceable on-orbit. This paper will describe facility capabilities, schedule to flight and research opportunities.

  20. Material and Energy Requirement for Rare Earth Production

    NASA Astrophysics Data System (ADS)

    Talens Peiró, Laura; Villalba Méndez, Gara

    2013-10-01

    The use of rare earth metals (REMs) for new applications in renewable and communication technologies has increased concern about future supply as well as environmental burdens associated with the extraction, use, and disposal (losses) of these metals. Although there are several reports describing and quantifying the production and use of REM, there is still a lack of quantitative data about the material and energy requirements for their extraction and refining. Such information remains difficult to acquire as China is still supplying over 95% of the world REM supply. This article attempts to estimate the material and energy requirements for the production of REM based on the theoretical chemical reactions and thermodynamics. The results show the material and energy requirement varies greatly depending on the type of mineral ore, production facility, and beneficiation process selected. They also show that the greatest loss occurs during mining (25-50%) and beneficiation (10-30%) of RE minerals. We hope that the material and energy balances presented in this article will be of use in life cycle analysis, resource accounting, and other industrial ecology tools used to quantify the environmental consequences of meeting REM demand for new technology products.

  1. Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries

    NASA Astrophysics Data System (ADS)

    Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.

    2018-01-01

    The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.

  2. Computer Augmented Video Education.

    ERIC Educational Resources Information Center

    Sousa, M. B.

    1979-01-01

    Describes project CAVE (Computer Augmented Video Education), an ongoing effort at the U.S. Naval Academy to present lecture material on videocassette tape, reinforced by drill and practice through an interactive computer system supported by a 12 channel closed circuit television distribution and production facility. (RAO)

  3. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... subcategory. The provisions of this subpart are applicable to discharges resulting from the production of nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials. ...

  4. Jesse E. Hensley | NREL

    Science.gov Websites

    biomass Low temperature hydrodeoxygenation Advanced equipment and laboratory design Membrane separations Production of Premium Fuels and Chemicals from Gasified Biomass Plant materials contain complex chemical conversion facility and the energy costs associated with gasification (studied in detail by our Analysis team

  5. Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.

    1978-01-01

    Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.

  6. [Evaluation of Livestock Carcasses and Performance.] Student Materials. V.A. III. [II-B-1 through II-B-2; II-D-1].

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Part of a series of eight student learning modules in vocational agriculture, this booklet deals with evaluation of livestock. It contains sections on carcass evaluation, the evaluation of performance and production, and the design of livestock production facilities. Each of the first two sections has a glossary, and all three conclude with a…

  7. Manufacturing process scale-up of optical grade transparent spinel ceramic at ArmorLine Corporation

    NASA Astrophysics Data System (ADS)

    Spilman, Joseph; Voyles, John; Nick, Joseph; Shaffer, Lawrence

    2013-06-01

    While transparent Spinel ceramic's mechanical and optical characteristics are ideal for many Ultraviolet (UV), visible, Short-Wave Infrared (SWIR), Mid-Wave Infrared (MWIR), and multispectral sensor window applications, commercial adoption of the material has been hampered because the material has historically been available in relatively small sizes (one square foot per window or less), low volumes, unreliable supply, and with unreliable quality. Recent efforts, most notably by Technology Assessment and Transfer (TA and T), have scaled-up manufacturing processes and demonstrated the capability to produce larger windows on the order of two square feet, but with limited output not suitable for production type programs. ArmorLine Corporation licensed the hot-pressed Spinel manufacturing know-how of TA and T in 2009 with the goal of building the world's first dedicated full-scale Spinel production facility, enabling the supply of a reliable and sufficient volume of large Transparent Armor and Optical Grade Spinel plates. With over $20 million of private investment by J.F. Lehman and Company, ArmorLine has installed and commissioned the largest vacuum hot press in the world, the largest high-temperature/high-pressure hot isostatic press in the world, and supporting manufacturing processes within 75,000 square feet of manufacturing space. ArmorLine's equipment is capable of producing window blanks as large as 50" x 30" and the facility is capable of producing substantial volumes of material with its Lean configuration and 24/7 operation. Initial production capability was achieved in 2012. ArmorLine will discuss the challenges that were encountered during scale-up of the manufacturing processes, ArmorLine Optical Grade Spinel optical performance, and provide an overview of the facility and its capabilities.

  8. LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blink, J A

    2011-03-23

    Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. Formore » on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007] adds a fourth high-level category: time required to transform the materials. For the situation of an orphaned surface storage facility, the categories are applicable, but the evaluations of each category and subcategory will be significantly different for later radionuclide dispersion than for later processing and fabrication into a nuclear explosive. The fabrication stage of Cleary has three high-level categories (difficulty associated with design, handling difficulties, and knowledge and skills needed to design and fabricate). King replaces the first two high-level categories with the Figure of Merit for Nuclear Explosives Utility (FOM), with subcategories of bare critical mass, heat content of transformed material, dose rate of transformed material, and SQs available for theft. The next section of this report describes the FOM in more detail.« less

  9. Solar energy and conservation technologies for Caribbean Tourist Facilities (CTF)

    NASA Astrophysics Data System (ADS)

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and U.S. conservation and renewable energy industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies.

  10. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    NASA Astrophysics Data System (ADS)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  11. The CDC SHIELD Orange County Project – Baseline Multi Drug-Resistant Organism (MDRO) Prevalence in a Southern California Region

    PubMed Central

    Singh, Raveena D; Jernigan, John A; Slayton, Rachel B; Stone, Nimalie D; McKinnell, James A; Miller, Loren G; Kleinman, Ken; Heim, Lauren; Dutciuc, Tabitha D; Estevez, Marlene; Gussin, Gabrielle; Chang, Justin; Peterson, Ellena M; Evans, Kaye D; Lee, Bruce Y; Mueller, Leslie E; Bartsch, Sarah M; Zahn, Matthew; Janssen, Lynn; Weinstein, Robert A; Hayden, Mary K; Gohil, Shruti K; Park, Steven; Tam, Steven; Saavedra, Raheeb; Yamaguchi, Stacey; Custodio, Harold; Nguyen, Jenny; Tjoa, Thomas; He, Jiayi; O’Donnell, Kathleen; Coady, Micaela H; Platt, Richard; Huang, Susan S

    2017-01-01

    Abstract Background MDROs can spread between hospitals, nursing homes (NH), and long-term acute care facilities (LTACs) via shared patients. SHIELD OC is a regional decolonization collaborative involving 38 of 104 countywide adult facilities identified by their high degree of direct and indirect patient sharing with one another. We report baseline MDRO prevalence in these facilities. Methods Adult patients in 38 facilities (17 hospitals, 18 NHs, 3 LTACs) underwent point-prevalence screening between September 2016–April 2017 for MRSA, VRE, ESBL, and CRE using nares, skin (axilla/groin), and peri-rectal swabs. In NHs and LTACs, residents were randomly selected until 50 sets of swabs were obtained. Swabbing in hospitals involved all patients in contact precautions. An additional set of swabs were also performed for all LTAC admissions from November 2016–February 2017. Results The overall prevalence of any MDRO among patients was 64% (44%–88%) in NHs, 80% (range 72%–86%) in LTACs, and 64% (54–84%) in hospitals (contact precaution patients) (Table 1). Only 25%, 64%, and 81% of patients were already known to harbor an MDRO in NHs, LTACs, and hospitals, respectively. Known MDRO patients also harbored another MDRO 49%, 63%, and 34% of the time for NHs, LTACs, and hospitals, respectively. In LTACs, MDRO point prevalence was 38% higher than the usual admission prevalence (65% higher for MRSA, 34% higher for VRE, 95% higher for ESBL, and 50% higher for CRE). Conclusion MDRO carriage in highly inter-connected NHs and LTACs was widespread, rivaling that found in hospitalized patients on contact precautions. MRSA, VRE, and ESBL carriage far outnumbered CRE carriage. A history of MDRO was insensitive for identifying MDRO carriers, and many patients carried multiple MDROs. The extensive MDRO burden and transmission in long-term care settings suggests that regional MDRO prevention efforts must include MDRO control in long-term care facilities. Disclosures R. D. Singh, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; J. A. McKinnell, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L. G. Miller, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; K. Kleinman, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L. Heim, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; T. D. Dutciuc, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; M. Estevez, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; G. Gussin, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L’Oreal: Consultant, Consulting fee; J. Chang, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; E. M. Peterson, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; B. Y. Lee, GSK: Consultant, Consulting fee; R. A. Weinstein, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; OpGen Company: Study support, Provided services at no charge; M. K. Hayden, Sage Products: Receipt of contributed product, Sage is contributing product to healthcare facilities participating in a regional collaborative on which I am a co-investigator. Neither I nor my hospital receive product.; Clorox: Receipt of contributed product, Research support; CDC: Grant Investigator and Receipt of contributed product, Research grant; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; OpGen Company: Study support, Provided services at no charge for studies; S. K. Gohil, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Park, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Tam, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; R. Saavedra, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Yamaguchi, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; H. Custodio, Xttrium Laboratories: Study coordination, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Study coordination, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Study coordination, Conducting studies in healthcare facilities that are receiving contributed product; J. Nguyen, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; T. Tjoa, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; J. He, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; M. H. Coady, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; R. Platt, Sage Products: Receipt of contributed product, Conducting clinical studies in which participating healthcare facilities are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting clinical studies in which participating healthcare facilities are receiving contributed product; Clorox: Receipt of contributed product, Conducting clinical studies in which participating healthcare facilities are receiving contributed product; receive research funds from Clorox, but Clorox has no role in the design; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. S. Huang, Sage Products: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Clorox: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; 3M: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Molnlycke: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product

  12. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  13. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  14. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  15. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  16. 7 CFR 58.510 - Rooms and compartments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... avoided. Rooms, compartments, coolers, and dry storage space in which any raw material, packaging or... contamination. (d) Coolers. Coolers shall be equipped with facilities for maintaining proper temperature and... quality and condition of the products. Coolers shall be kept clean, orderly and free from mold, and...

  17. 7 CFR 1450.3 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions § 1450.3 General. (a) The objectives of BCAP are to: (1) Support the establishment and production of..., storage, and transportation costs of eligible material for use in a biomass conversion facility. (b) A...

  18. 7 CFR 1450.3 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions § 1450.3 General. (a) The objectives of BCAP are to: (1) Support the establishment and production of..., storage, and transportation costs of eligible material for use in a biomass conversion facility. (b) A...

  19. 7 CFR 1450.3 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions § 1450.3 General. (a) The objectives of BCAP are to: (1) Support the establishment and production of..., storage, and transportation costs of eligible material for use in a biomass conversion facility. (b) A...

  20. 7 CFR 1450.3 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS BIOMASS CROP ASSISTANCE PROGRAM (BCAP) Common Provisions § 1450.3 General. (a) The objectives of BCAP are to: (1) Support the establishment and production of..., storage, and transportation costs of eligible material for use in a biomass conversion facility. (b) A...

  1. Environmental impact of cheese production: A case study of a small-scale factory in southern Europe and global overview of carbon footprint.

    PubMed

    Canellada, Fernando; Laca, Amanda; Laca, Adriana; Díaz, Mario

    2018-09-01

    The environmental performance of a small-scale cheese factory sited in a NW Spanish region has been analysed by Life Cycle Assessment (LCA) as representative of numerous cheese traditional factories that are scattered through the European Union, especially in the southern countries. Inventory data were directly obtained from this facility corresponding to one-year operation, and the main subsystems involved in cheese production were included, i.e. raw materials, water, electricity, energy, cleaning products, packaging materials, transports, solid and liquid wastes and gas emissions. Results indicated that the environmental impacts derived from cheese making were mainly originated from raw milk production and the natural land transformation was the most affected of the considered categories. On the contrary, the manufacturing of packaging material and other non-dairy ingredients barely influenced on the total impact. Additionally, an average carbon footprint of the cheeses produced in the analysed facility has also been calculated, resulting milk production and pellet boiler emissions the most contributing subsystems. Furthermore, it was notable the positive environmental effect that entailed the direct use of whey as animal feed, which was considered in this study as avoided fodder. Finally, a revision of published works regarding the environmental performance of cheese production worldwide was provided and compared to results found in the present work. According to the analysed data, it is clear that the content of fat and dry extract are determinant factors for the carbon footprint of cheeses, whereas the cheesemaking scale and the geographical area have a very low effect. Copyright © 2018. Published by Elsevier B.V.

  2. Natural production of biological optical systems

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2015-03-01

    Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.

  3. When a Home is Not a Home: MultiDrug-Resistant Organism (MDRO) Colonization and Environmental Contamination in 28 Nursing Homes (NHs)

    PubMed Central

    McKinnell, James A; Miller, Loren; Singh, Raveena D; Mendez, Job; Franco, Ryan; Gussin, Gabrielle; Chang, Justin; Dutciuc, Tabitha D; Saavedra, Raheeb; Kleinman, Ken; Peterson, Ellena M; Evans, Kaye D; Heim, Lauren; Miner, Aaron; Estevez, Marlene; Custodio, Harold; Yamaguchi, Stacey; Nguyen, Jenny; Varasteh, Alex; Launer, Bryn; Agrawal, Shalini; Tjoa, Thomas; He, Jiayi; Park, Steven; Tam, Steven; Gohil, Shruti K; Stone, Nimalie D; Steinberg, Karl; Montgomery, Jocelyn; Beecham, Nancy; Huang, Susan S

    2017-01-01

    Abstract Background The majority of healthcare-associated infections due to MDROs occur in the post-discharge setting. Understanding MDRO spread and containment in NHs can help identify infection prevention activities needed to care for vulnerable patients in a medical home setting. Methods We conducted a baseline point prevalence study of MDRO colonization in residents of 28 Southern California NHs participating in a decolonization trial. In Fall 2016, residents were randomly sampled to obtain a set of 50 nares and skin (axilla/groin) swabs from each NH. Nasal swabs were processed for MRSA and skin swabs were processed for MRSA, VRE, ESBL, and CRE. In addition, environmental swabs were collected from high touch objects in resident rooms (bedrail, call button/TV remote, door knobs, light switch, bathroom) and common areas (nursing station, table, chair, railing, and drinking fountain). Results A total of 2,797 body swabs were obtained from 1400 residents. Overall, 48.6% (N = 680) of residents harbored MDROs. MRSA was found in 37% of residents (29.5% nares, 24.4% skin), followed by ESBL in 16% (Table 1). Resident MDRO status was only known for 11% of MRSA (59/518), 18% ESBL (40/228), 4% VRE (4/99), and none of the CRE (0/13) carriers. Colonization did not differ between long stay (48.8%, 534/1094) vs. post-acute (47.7%, 146/306) residents (P = NS), but bedbound residents were more likely to be MDRO colonized (58.7%, 182/310) vs. ambulatory residents (45.7%, 497/1088, P < 0.001). A total of 560 environmental swabs were obtained with 93% of common areas and 74% of resident rooms having an MDRO+ object with an average of 2.5 and 1.9 objects found to be contaminated (Table 2). Conclusion One in two NH residents are colonized with MDROs, which is largely unknown to the facility. MDRO carriage is associated with total care needs, but not long stay status. Environmental contamination in resident rooms and common areas is common. The burden of MDRO colonization and contamination is sufficiently high that universal strategies to reduce colonization and transmission are warranted. Disclosures J. A. McKinnell, Allergan: Research Contractor, Scientific Advisor and Speaker’s Bureau, Consulting fee, Research support and Speaker honorarium; Achaogen: Research Contractor, Scientific Advisor and Shareholder, Research support; Cempra: Research Contractor and Scientific Advisor, Research support; Theravance: Research Contractor, Research support; Science 37: Research Contractor, Salary; Expert Stewardship, LLC: Board Member and Employee, Salary; Thermo Fisher: Scientific Advisor, Salary; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L. Miller, 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; R. D. Singh, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; J. Mendez, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; R. Franco, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; G. Gussin, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L’Oreal: Consultant, Consulting fee; J. Chang, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; T. D. Dutciuc, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; R. Saavedra, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; K. Kleinman, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Molnlycke: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; E. M. Peterson, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; L. Heim, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; A. Miner, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; M. Estevez, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; H. Custodio, Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Yamaguchi, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; J. Nguyen, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; A. Varasteh, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Product: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; B. Launer, 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Agrawal, Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; T. Tjoa, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; J. He, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Park, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. Tam, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; 3M: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. K. Gohil, Sage Products: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; Clorox: Receipt of contributed product, Conducting studies in healthcare facilities that are receiving contributed product; S. S. Huang, Sage Products: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Xttrium Laboratories: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Clorox: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; 3M: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product; Molnlycke: Receipt of contributed product, Conducting studies in which participating healthcare facilities are receiving contributed product (no contribution in submitted abstract), Participating healthcare facilities in my studies received contributed product

  4. Progress of organic matter degradation and maturity of compost produced in a large-scale composting facility.

    PubMed

    Nakasaki, Kiyohiko; Marui, Taketoshi

    2011-06-01

    To monitor the progress of organic matter degradation in a large-scale composting facility, the percentage of organic matter degradation was determined by measuring CO(2) evolution during recomposting of compost samples withdrawn from the facility. The percentage of organic matter degradation was calculated as the ratio of the amount of CO(2) evolved from compost raw material to that evolved from each sample during recomposting in the laboratory composting apparatus. It was assumed that the difference in the cumulative emission of CO(2) between the compost raw material and a sample corresponds to the amount of CO( 2) evolved from the sample in the composting facility. Using this method, the changes in organic matter degradation during composting in practical large-scale composting facilities were estimated and it was found that the percentage of organic matter degradation increased more vigorously in the earlier stages than in the later stages of composting. The percentage of organic matter degradation finally reached 78 and 55% for the compost produced from garbage-animal manure mixture and distillery waste (shochu residue), respectively. It was thus ascertained that organic matter degradation progressed well in both composting facilities. Furthermore, by performing a plant growth assay, it was observed that the compost products of both the facilities did not inhibit seed germination and thus were useful in promoting plant growth.

  5. Modeling to Evaluate Coordination and Flexibility in Aluminum Recycling Operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey; Olivetti, Elsa; Fjeldbo, Snorre; Kirchain, Randolph

    Reprocessing of aluminum production byproducts or dross for use in secondary production presents a particular challenge to the aluminum industry. While use of these non-traditional secondary materials is of interest due to their reduced energy and economic burden over virgin counterparts, these materials necessitate the use of particular furnaces, specialized handling and processing conditions. Therefore, to make use of them firms may pursue use of an intermediate recycling facility that can reprocess the secondary materials into a liquid product. After reprocessing downstream aluminum remelters could incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges result because of the energy cost to maintain the liquid. Further coordination challenges result from the need to establish long term recycling production plans in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses?

  6. Benchmarking organic mixed conductors for transistors.

    PubMed

    Inal, Sahika; Malliaras, George G; Rivnay, Jonathan

    2017-11-24

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  7. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STERN, E.A.; LODGE, J.; JONES, K.W.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including themore » use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.« less

  8. Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application.

    PubMed

    De Sousa, P A; Downie, J M; Tye, B J; Bruce, K; Dand, P; Dhanjal, S; Serhal, P; Harper, J; Turner, M; Bateman, M

    2016-09-01

    From 2006 to 2011, Roslin Cells Ltd derived 17 human embryonic stem cells (hESC) while developing (RCM1, RC-2 to -8, -10) and implementing (RC-9, -11 to -17) quality assured standards of operation in a facility operating in compliance with European Union (EU) directives and United Kingdom (UK) licensure for procurement, processing and storage of human cells as source material for clinical application, and targeted to comply with an EU Good Manufacturing Practice specification. Here we describe the evolution and specification of the facility, its operation and outputs, complementing hESC resource details communicated in Stem Cell Research Lab Resources. Copyright © 2016. Published by Elsevier B.V.

  9. Cradle-to-gate life-cycle assessment of composite I-joists produced in the Pacific Northwest region of the United States

    Treesearch

    Richard D. Bergman; Sevda Alanya-Rosenbaum

    2017-01-01

    The goal of this study was to update life-cycle assessment (LCA) data associated with I-joist production in the Pacific Northwest (PNW) region of the United States from cradle-to-gate mill output. The authors collected primary mill data from I-joist production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) research guidelines....

  10. Cradle-to-gate life cycle assessment of composite I-joists produced in the southeast region of the United States

    Treesearch

    Richard D. Bergman; Sevda Alanya-Rosenbaum

    2017-01-01

    The goal of this study was to update life-cycle assessment (LCA) data on I-joist production in the southeast (SE) region of the United States. The authors collected primary mill data from I-joist production facilities per Consortium on Research for Renewable Industrial Materials (CORRIM) research guidelines. Comparative assertions were not a goal of this study.

  11. Neutron production by cosmic-ray muons in various materials

    NASA Astrophysics Data System (ADS)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.; Yudin, A. V.

    2016-07-01

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes. It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth's surface.

  12. The Neutrons for Science Facility at SPIRAL-2

    NASA Astrophysics Data System (ADS)

    Ledoux, X.; Aïche, M.; Avrigeanu, M.; Avrigeanu, V.; Audouin, L.; Balanzat, E.; Ban-détat, B.; Ban, G.; Barreau, G.; Bauge, E.; Bélier, G.; Bem, P.; Blideanu, V.; Borcea, C.; Bouffard, S.; Caillaud, T.; Chatillon, A.; Czajkowski, S.; Dessagne, P.; Doré, D.; Fallot, M.; Farget, F.; Fischer, U.; Giot, L.; Granier, T.; Guillous, S.; Gunsing, F.; Gustavsson, C.; Jacquot, B.; Jansson, K.; Jurado, B.; Kerveno, M.; Klix, A.; Landoas, O.; Lecolley, F. R.; Lecouey, J. L.; Majerle, M.; Marie, N.; Materna, T.; Mrazek, J.; Negoita, F.; Novak, J.; Oberstedt, S.; Oberstedt, A.; Panebianco, S.; Perrot, L.; Plompen, A. J. M.; Pomp, S.; Ramillon, J. M.; Ridikas, D.; Rossé, B.; Rudolf, G.; Serot, O.; Simakov, S. P.; Simeckova, E.; Smith, A. G.; Sublet, J. C.; Taieb, J.; Tassan-Got, L.; Tarrio, D.; Takibayev, A.; Thfoin, I.; Tsekhanovich, I.; Varignon, C.

    2014-05-01

    The Neutrons For Science (NFS) facility is a component of SPIRAL-2 laboratory under construction at Caen (France). SPIRAL-2 is dedicated to the production of high intensity Radioactive Ions Beams (RIB). It is based on a high-power linear accelerator (LINAG) to accelerate deuterons beams in order to produce neutrons by breakup reactions on a C converter. These neutrons will induce fission in 238U for production of radioactive isotopes. Additionally to the RIB production, the proton and deuteron beams delivered by the accelerator will be used in the NFS facility. NFS is composed of a pulsed neutron beam and irradiation stations for cross-section measurements and material studies. The beams delivered by the LINAG will allow producing intense neutron beams in the 100 keV-40 MeV energy range with either a continuous or quasi-mono-energetic spectrum. At NFS available average fluxes will be up to 2 orders of magnitude higher than those of other existing time-of-flight facilities in the 1 MeV - 40 MeV range. NFS will be a very powerful tool for fundamental physics and application related research in support of the transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. The facility and its characteristics are described, and several examples of the first potential experiments are presented.

  13. Long-Term Prospects for Developments in Space (A Scenario Approach)

    DTIC Science & Technology

    1977-10-30

    to operate and maintain the facility. Its first products were biological materials of great purity unavailable from earth-bound processes ( vaccines ...as autism , schizo- phrenia, and severe neuroses; these all came about by the year 2025 because of the computer. Within the dominant knowledge-oriented

  14. Use of industrial by-products to sorb and retain phosphorus

    USDA-ARS?s Scientific Manuscript database

    The potential of six industrial byproducts for use as phosphorus sorbing materials (PSMs) in solutions and manures was evaluated. These included two different acid mine drainage treatment residuals (AMDR1 and AMDR2); water treatment residual (WTR) from a drinking water treatment facility in Lancaste...

  15. Argonne wins four R&D 100 Awards | Argonne National Laboratory

    Science.gov Websites

    . High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles converting discovery science into innovative, high-impact products, processes and systems." Globus scientific facilities (such as supercomputing centers and high energy physics experiments), cloud storage

  16. 10 CFR 20.1002 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Scope. 20.1002 Section 20.1002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1002 Scope. The regulations in... byproduct, source, or special nuclear material or to operate a production or utilization facility under...

  17. 10 CFR 20.1002 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Scope. 20.1002 Section 20.1002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1002 Scope. The regulations in... byproduct, source, or special nuclear material or to operate a production or utilization facility under...

  18. 10 CFR 20.1002 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Scope. 20.1002 Section 20.1002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1002 Scope. The regulations in... byproduct, source, or special nuclear material or to operate a production or utilization facility under...

  19. 10 CFR 20.1002 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Scope. 20.1002 Section 20.1002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1002 Scope. The regulations in... byproduct, source, or special nuclear material or to operate a production or utilization facility under...

  20. 10 CFR 20.1002 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Scope. 20.1002 Section 20.1002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1002 Scope. The regulations in... byproduct, source, or special nuclear material or to operate a production or utilization facility under...

  1. 46 CFR 164.015-5 - Procedure for acceptance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: SPECIFICATIONS AND APPROVAL MATERIALS Plastic Foam, Unicellular, Buoyant, Sheet and Molded Shape § 164.015-5 Procedure for acceptance. (a) Unicellular plastic foam is not subject to formal approval, but will be... District will detail a marine inspector to the factory to observe the production facilities and...

  2. Aerospace electrode line

    NASA Technical Reports Server (NTRS)

    Miller, L.

    1980-01-01

    A facility which produces electrodes for spacecraft power supplies is described. The electrode assembly procedures are discussed. A number of design features in the production process are reported including a batch operation mode and an independent equipment module design approach for transfering the electrode materials from process tank to process tank.

  3. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures. All previously identified high-risk jobs had high air concentrations, dermal mass loading, or both, and none had low dermal and air. We have found that both pathways are relevant. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a file describing the forms of beryllium materials encountered during production and characteristics of the aerosols by process areas.].

  4. Planning for Materials Processing in Space

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.

  5. Worldwide Environmental Compliance Assessment and Management System Program (ECAMP)

    DTIC Science & Technology

    1993-09-01

    where spices are produced using animal and vegetable acids 7.22 Coffee roasting facilities with capacities of 75 kg/h 7.23 Plants for roasting coffee ...22. Industrial plants Verify that dusty gases released during the processing of dusty materials hawe required to have are collected and passed through...standards for the release of dusty gases during the production, crushing, classification and loading of dusty materials or other process involving such

  6. Determination of Offgassed Products

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A technician at Marshall Space Flight Center's Materials Combustion Research Facility begins the Determination of Offgassed Products Test to determine the identity and quantity of volatile offgassed products from materials and assembled articles. Materials are measured, weighed, and loaded into a clean toxicity chamber (pictured). The chamber is purged with high-purity air and loaded into an oven where it will be held at 120 degrees Fahrenheit (48.9 degrees Celsius) for 72 hours. At the end of the 72-hour period, the chamber is removed and allowed to cool to room temperature. Gas samples are taken from the chamber and analyzed using gas chromatography and mass spectrometry. From this, the quantity of the material that may be used safely in habitable areas of spacecraft is determined. This test also determines whether a flight hardware item may be flown safely in a crew compartment. Everything going into space with the astronauts is tested prior to flight to ensure the health and safety of the crew members.

  7. Production facility layout by comparing moment displacement using BLOCPLAN and ALDEP Algorithms

    NASA Astrophysics Data System (ADS)

    Tambunan, M.; Ginting, E.; Sari, R. M.

    2018-02-01

    Production floor layout settings include the organizing of machinery, materials, and all the equipments used in the production process in the available area. PT. XYZ is a company that manufactures rubber and rubber compounds for retreading tire threaded with hot and cold cooking system. In the production of PT. XYZ is divided into three interrelated parts, namely Masterbatch Department, Department Compound, and Procured Thread Line Department. PT. XYZ has a production process with material flow is irregular and the arrangement of machine is complicated and need to be redesigned. The purpose of this study is comparing movement displacement using BLOCPLAN and ALDEP algorithm in order to redesign existing layout. Redesigning the layout of the production floor is done by applying algorithms of BLOCPLAN and ALDEP. The algorithm used to find the best layout design by comparing the moment displacement and the flow pattern. Moment displacement on the floor layout of the company’s production currently amounts to 2,090,578.5 meters per year and material flow pattern is irregular. Based on the calculation, the moment displacement for the BLOCPLAN is 1,551,344.82 meter per year and ALDEP is 1,600,179 meter per year. Flow Material resulted is in the form of straight the line.

  8. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurley, JP

    2001-08-16

    To increase national energy self-sufficiency for the near future, power systems will be required to fire low-grade fuels more efficiently than is currently possible. The typical coal-fired steam cycle used at present is limited to a maximum steam temperature of 540 C and a conversion efficiency of 35%. Higher working-fluid temperatures are required to boost efficiency, exposing subsystems to very damaging conditions. Issues of special concern to materials developers are corrosion and warping of hot-gas particulate filters and corrosion and erosion of high-temperature heat exchangers. The University of North Dakota Energy and Environmental Research Center (EERC) is working with themore » National Energy Technology Laboratory in conjunction with NCC Engineering, Inc., to provide technical assistance and coal by-products to the Fossil Energy Materials Advanced Research and Technology Development Materials Program investigating materials failure in fossil energy systems. The main activities of the EERC are to assemble coal slag and hot-gas filter ash samples for use by materials researchers, to assist in providing opportunities for realistic tests of advanced materials in pilot-scale fossil energy systems, and to provide analytical support in determining corrosion mechanisms of the exposed materials. In this final report for the project year of September 2000 through August 2001, the facilities at the EERC that can be used by researchers for realistic testing of materials are described. Researchers can include sample coupons in each of these facilities at no cost since they are being operated under separate funding. In addition, two pilot-scale coal combustion tests are described in which material sample coupons were included from researchers involved in the development of fossil energy materials. The results of scanning electron microscopy (SEM) energy dispersive x-ray analyses of the corrosion products and interactions between the surface scales of the coupons and the products of coal combustion found on the coupons exposed during those tests are reported. Finally, a relative comparison of ceramic and alloy material performance based on the SEM results is presented.« less

  9. Uranium Enrichment Safeguards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demuth, Scott F.; Trahan, Alexis Chanel

    2017-06-26

    DIV of facility layout, material flows, and other information provided in the DIQ. Material accountancy through an annual PIV and a number of interim inventory verifications, including UF6 cylinder identification and counting, NDA of cylinders, and DA on a sample collection of UF6. Application of C/S technologies utilizing seals and tamper-indicating devices (TIDs) on cylinders, containers, storage rooms, and IAEA instrumentation to provide continuity of knowledge between inspection. Verification of the absence of undeclared material and operations, especially HEU production, through SNRIs, LFUA of cascade halls, and environmental swipe sampling

  10. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  11. Towards deriving Ni-rich cathode and oxide-based anode materials from hydroxides by sharing a facile co-precipitation method.

    PubMed

    Qiu, Haifa; Du, Tengfei; Wu, Junfeng; Wang, Yonglong; Liu, Jian; Ye, Shihai; Liu, Sheng

    2018-05-22

    Although intensive studies have been conducted on layered transition metal oxide(TMO)-based cathode materials and metal oxide-based anode materials for Li-ion batteries, their precursors generally follow different or even complex synthesis routes. To share one route for preparing precursors of the cathode and anode materials, herein, we demonstrate a facile co-precipitation method to fabricate Ni-rich hydroxide precursors of Ni0.8Co0.1Mn0.1(OH)2. Ni-rich layered oxide of LiNi0.8Co0.1Mn0.1O2 is obtained by lithiation of the precursor in air. An NiO-based anode material is prepared by calcining the precursor or multi-walled carbon nanotubes (MWCNTs) incorporated precursors. The pre-addition of ammonia solution can simplify the co-precipitation procedures and the use of an air atmosphere can also make the heat treatment facile. LiNi0.8Co0.1Mn0.1O2 as the cathode material delivers a reversible capacity of 194 mA h g-1 at 40 mA g-1 and a notable cycling retention of 88.8% after 100 cycles at 200 mA g-1. This noticeable performance of the cathode arises from a decent particle morphology and high crystallinity of the layered oxides. As the anode material, the MWCNTs-incorporated oxides deliver a much higher reversible capacity of 811.1 mA h g-1 after 200 cycles compared to the pristine oxides without MWCNTs. The improvement on electrochemical performance can be attributed to synergistic effects from MWCNTs incorporation, including reinforced electronic conductivity, rich meso-pores and an alleviated volume effect. This facile and sharing method may offer an integrated and economical approach for commercial production of Ni-rich electrode materials for Li-ion batteries.

  12. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  13. 31 CFR 9.4 - Criteria for determining effects of imports on national security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials. (iv) Production equipment and facilities. (v) Other supplies and services essential to the... requirements. (5) The economic welfare of the Nation as it is related to our national security, including the impact of foreign competition on the economic welfare of individual domestic industries. In determining...

  14. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  15. 40 CFR 98.144 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.144 Monitoring and QA/QC requirements. (a) You must measure annual amounts of carbonate-based raw materials charged to each continuous glass... calibrated scales or weigh hoppers. Total annual mass charged to glass melting furnaces at the facility shall...

  16. 40 CFR 98.140 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.140 Definition of the source category. (a) A glass manufacturing facility manufactures flat glass, container glass, pressed and blown glass, or wool fiberglass by melting a mixture of raw materials to produce molten glass and form the molten...

  17. 40 CFR 98.140 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.140 Definition of the source category. (a) A glass manufacturing facility manufactures flat glass, container glass, pressed and blown glass, or wool fiberglass by melting a mixture of raw materials to produce molten glass and form the molten...

  18. 78 FR 66803 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... information to appropriate agencies, entities, or persons when VA suspects or has confirmed that the integrity...; tracking information as to file location and employee productivity information. Material in this system... to alert them to the presence of dangerous persons in VA facilities or at VA activities conducted in...

  19. Temperature-Dependent Refractive Index of Cleartran® ZnS to Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Leviton, Doug; Frey, Brad

    2013-01-01

    First, let's talk about the CHARMS facility at NASA's Goddard Space Flight Center: Cryogenic, High-Accuracy Refraction Measuring System (CHARMS); design features for highest accuracy and precision; technologies we rely on; data products and examples; optical materials for which we've measured cryogenic refractive index.

  20. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... impacts. (2) Applicable engineering, design/build, construction management, inspection and plant start-up... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of...

  1. 7 CFR Appendix D to Subpart E of... - Alcohol Production Facilities Planning, Performing, Development and Project Control

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... impacts. (2) Applicable engineering, design/build, construction management, inspection and plant start-up... imposed by construction, equipment, material or service contracts, penalty payments, damage claims, awards... consultants with suitable experience, training and professional competence in the design and construction of...

  2. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less

  3. An overview: Recycling of solid barley waste generated as a by-product in distillery and brewery.

    PubMed

    Nigam, Poonam Singh

    2017-04-01

    This overview has focused on the options available for the utilisation of residual-biomass generated in distillery and brewery for the production of added-value products. Bio-processing approaches have been reviewed and discussed for the economical bioconversion and utilisation of this waste for the production of bioproducts, such as lactic acid, enzymes, xylitol and animal feed. Though this overview provides several options for the bioprocessing of this residual material, a more suitable one could be chosen according to the processing-facilities available and the amount of residue available in local area. The feasibility of any chosen process should be evaluated on the basis of cost of material available, its local utilisation for animal feed, and the overall economical advantages that could be gained by changing its current traditional landfill use to produce higher added value products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Technology demonstration of space intravehicular automation and robotics

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  5. 44 CFR 312.6 - Materials and facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Materials and facilities. 312... OF HOMELAND SECURITY PREPAREDNESS USE OF CIVIL DEFENSE PERSONNEL, MATERIALS, AND FACILITIES FOR NATURAL DISASTER PURPOSES § 312.6 Materials and facilities. FEMA also contributes to the development and...

  6. Information logistics: A production-line approach to information services

    NASA Technical Reports Server (NTRS)

    Adams, Dennis; Lee, Chee-Seng

    1991-01-01

    Logistics can be defined as the process of strategically managing the acquisition, movement, and storage of materials, parts, and finished inventory (and the related information flow) through the organization and its marketing channels in a cost effective manner. It is concerned with delivering the right product to the right customer in the right place at the right time. The logistics function is composed of inventory management, facilities management, communications unitization, transportation, materials management, and production scheduling. The relationship between logistics and information systems is clear. Systems such as Electronic Data Interchange (EDI), Point of Sale (POS) systems, and Just in Time (JIT) inventory management systems are important elements in the management of product development and delivery. With improved access to market demand figures, logisticians can decrease inventory sizes and better service customer demand. However, without accurate, timely information, little, if any, of this would be feasible in today's global markets. Information systems specialists can learn from logisticians. In a manner similar to logistics management, information logistics is concerned with the delivery of the right data, to the ring customer, at the right time. As such, information systems are integral components of the information logistics system charged with providing customers with accurate, timely, cost-effective, and useful information. Information logistics is a management style and is composed of elements similar to those associated with the traditional logistics activity: inventory management (data resource management), facilities management (distributed, centralized and decentralized information systems), communications (participative design and joint application development methodologies), unitization (input/output system design, i.e., packaging or formatting of the information), transportations (voice, data, image, and video communication systems), materials management (data acquisition, e.g., EDI, POS, external data bases, data entry) and production scheduling (job, staff, and project scheduling).

  7. Multicenter Clinical Trial of Keratin Biomaterial for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2015-12-01

    Radiological Health ( CDRH ) to clarify the designation of the hydrogel. As a result of this meeting, steps required for an IND for the keratin...the Center for Biologics Evaluation Research (CBER), and the Center for Devices and Radiological Health 8 ( CDRH ) to clarify the designation of the...application to the CDRH for a new product. This new product is the material that is produced in the validated manufacturing facility at KeraNetics. This

  8. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    NASA Astrophysics Data System (ADS)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  9. Elimination of Porcine Epidemic Diarrhea Virus in an Animal Feed Manufacturing Facility.

    PubMed

    Huss, Anne R; Schumacher, Loni L; Cochrane, Roger A; Poulsen, Elizabeth; Bai, Jianfa; Woodworth, Jason C; Dritz, Steve S; Stark, Charles R; Jones, Cassandra K

    2017-01-01

    Porcine Epidemic Diarrhea Virus (PEDV) was the first virus of wide scale concern to be linked to possible transmission by livestock feed or ingredients. Measures to exclude pathogens, prevent cross-contamination, and actively reduce the pathogenic load of feed and ingredients are being developed. However, research thus far has focused on the role of chemicals or thermal treatment to reduce the RNA in the actual feedstuffs, and has not addressed potential residual contamination within the manufacturing facility that may lead to continuous contamination of finished feeds. The purpose of this experiment was to evaluate the use of a standardized protocol to sanitize an animal feed manufacturing facility contaminated with PEDV. Environmental swabs were collected throughout the facility during the manufacturing of a swine diet inoculated with PEDV. To monitor facility contamination of the virus, swabs were collected at: 1) baseline prior to inoculation, 2) after production of the inoculated feed, 3) after application of a quaternary ammonium-glutaraldehyde blend cleaner, 4) after application of a sodium hypochlorite sanitizing solution, and 5) after facility heat-up to 60°C for 48 hours. Decontamination step, surface, type, zone and their interactions were all found to impact the quantity of detectable PEDV RNA (P < 0.05). As expected, all samples collected from equipment surfaces contained PEDV RNA after production of the contaminated feed. Additionally, the majority of samples collected from non-direct feed contact surfaces were also positive for PEDV RNA after the production of the contaminated feed, emphasizing the potential role dust plays in cross-contamination of pathogen throughout a manufacturing facility. Application of the cleaner, sanitizer, and heat were effective at reducing PEDV genomic material (P < 0.05), but did not completely eliminate it.

  10. Life Science Research Facility materials management requirements and concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.

    1986-01-01

    The Advanced Programs Office at NASA Ames Research Center has defined hypothetical experiments for a 90-day mission on Space Station to allow analysis of the materials necessary to conduct the experiments and to assess the impact on waste processing of recyclable materials and storage requirements of samples to be returned to earth for analysis as well as of nonrecyclable materials. The materials include the specimens themselves, the food, water, and gases necessary to maintain them, the expendables necessary to conduct the experiments, and the metabolic products of the specimens. This study defines the volumes, flow rates, and states of these materials. Process concepts for materials handling will include a cage cleaner, trash compactor, biological stabilizer, and various recycling devices.

  11. Research and development in pilot plant production of granular NPK fertilizer

    NASA Astrophysics Data System (ADS)

    Failaka, Muhamad Fariz; Firdausi, Nadia Zahrotul; Chairunnisa, Altway, Ali

    2017-05-01

    PT Pupuk Kaltim (Pupuk Kaltim) as one of the biggest fertilizer manufacturer in Indonesia, always striving to improve the product quality and achieve the optimal performance while facing the challenges of global competition NPK (Nitrogen, Phosphorus, Potassium) market. In order to continuously improve operations and processes of two units NPK compound plant, Pupuk Kaltim has successfully initiated a new facility which is referred to as a NPK pilot-scale research facility with design capacity of 30 kg/hr. This mini-plant is used to assist in the scale up of new innovations from laboratory research to better understand the effect of using new raw materials and experiment with process changes to improve quality and efficiency. The pilot installation is composed of the following main parts: mixer, screw feeder, granulator, dryer and cooler. The granulator is the equipment where NPK granules is formed by spraying appropriate steam and water onto raw materials in a rotating drum. The rotary dryer and cooler are intended for the drying process where temperature reduction and the final moisture are obtained. As a part of innovations project since 2014, the pilot plant has conducted many of experiments such as trials using Ammonium Sulfate (ZA) as a new raw material, alternative raw materials of Diammonium Phosphate (DAP), Potassium Chloride (KCl) and clay, and using a novel material of fly ash. In addition, the process engineering staff also conduct the trials of raw materials ratio so that an ideal formulation with lower cost can be obtained especially when it is applied in the existing full-scale plant.

  12. Integrated forward and reverse supply chain: A tire case study.

    PubMed

    Pedram, Ali; Yusoff, Nukman Bin; Udoncy, Olugu Ezutah; Mahat, Abu Bakar; Pedram, Payam; Babalola, Ayo

    2017-02-01

    This paper attempts to integrate both a forward and reverse supply chain to design a closed-loop supply chain network (CLSC). The problem in the design of a CLSC network is uncertainty in demand, return products and the quality of return products. Scenario analyses are generated to overcome this uncertainty. In contrast to the existing supply chain network design models, a new application of a CLSC network was studied in this paper to reduce waste. A multi-product, multi-tier mixed integer linear model is developed for a CLSC network design. The main objective is to maximize profit and provide waste management decision support in order to minimize pollution. The result shows applicability of the model in the tire industry. The model determines the number and the locations of facilities and the material flows between these facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  14. Spallation Neutron Source Materials Studies

    NASA Astrophysics Data System (ADS)

    Sommer, W. F.

    1998-04-01

    Operation of accelerator facilities such as Los Alamos Neutron Science Center (LANSCE), ISIS at Rutherford Appleton Laboratory, the Swiss Institute Neutron Source (SINQ) at Paul Scherrer Institute, and others has provided valuable information on materials performance in high energy particle beams and high energy neutron environments. The Accelerator Production of Tritium (APT) project is sponsoring an extensive series of tests on the effect of spallation neutron source environments to physical and mechanical properties of candidate materials such as nickel-based alloys, stainless steel alloys, aluminum alloys and solid target materials such as tungsten. Measurements of corrosion rates of these candidate materials during irradiation and while in contact with flowing coolant water are being made. The APT tests use the irradiation facility in the beam stop area of the LANSCE accelerator using 800 MeV protons as well as the neutron flux-spectrum generated as these protons interact with targets. The initial irradiations were completed in summer 1997, exposing materials to a fluence approaching 4-6 x 10^21 protons/cm^2. Sample retrieval is now underway. Mechanical properties measurements are being conducted at several laboratories. Studies on components used in service have also been initiated.

  15. Admixture enhanced controlled low-strength material for direct underwater injection with minimal cross-contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepworth, H.K.; Davidson, J.S.; Hooyman, J.L.

    1997-03-01

    Commercially available admixtures have been developed for placing traditional concrete products under water. This paper evaluates adapting anti-washout admixture (AWA) and high range water reducing admixture (HRWRA) products to enhance controlled low-strength materials (CLSMs) for underwater placement. A simple experimental scale model (based on dynamic and geometric similitude) of typical grout pump emplacement equipment has been developed to determine the percentage of cementing material washed out. The objective of this study was to identify proportions of admixtures and underwater CLSM emplacement procedures which would minimize the cross-contamination of the displaced water while maintaining the advantages of CLSM. Since the displacedmore » water from radioactively contaminated systems must be subsequently treated prior to release to the environment, the amount of cross-contamination is important for cases in which cementing material could form hard sludges in a water treatment facility and contaminate the in-place CLSM stabilization medium.« less

  16. Mesoporous silicon synthesis and applications in Li-ion batteries and solar hydrogen fuel cells

    DOEpatents

    Wang, Donghai; Dai, Fang; Yi, Ran; Zai, Jianto

    2017-05-23

    We provide a mesoporous silicon material (PSi) prepared via a template-free and HF-free process. The production process is facile and scalable, and it may be conducted under mild reaction conditions. The silicon may be produced directly by the reduction of a silicon-halogenide precursor (for example, SiCl.sub.4) with an alkaline alloy (for example, NaK alloy). The resulting Si-salt matrix is then annealed for the pore formation and crystallite growth. Final product is obtained by removal of the salt by-products with water.

  17. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napoli, D. R., E-mail: napoli@lnl.infn.it; Andrighetto, A.; Antonini, P.

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and theirmore » maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.« less

  18. Relevance of an academic GMP Pan-European vector infra-structure (PEVI).

    PubMed

    Cohen-Haguenauer, O; Creff, N; Cruz, P; Tunc, C; Aïuti, A; Baum, C; Bosch, F; Blomberg, P; Cichutek, K; Collins, M; Danos, O; Dehaut, F; Federspiel, M; Galun, E; Garritsen, H; Hauser, H; Hildebrandt, M; Klatzmann, D; Merten, O W; Montini, E; O'Brien, T; Panet, A; Rasooly, L; Scherman, D; Schmidt, M; Schweitzer, M; Tiberghien, P; Vandendriessche, T; Ziehr, H; Ylä-Herttuala, S; von Kalle, C; Gahrton, G; Carrondo, M

    2010-12-01

    In the past 5 years, European investigators have played a major role in the development of clinical gene therapy. The provision of substantial funds by some individual member states to construct GMP facilities makes it an opportune time to network available gene therapy GMP facilities at an EU level. The integrated coordination of GMP production facilities and human skills for advanced gene and genetically-modified (GM) cell therapy, can dramatically enhance academic-led "First-in-man" gene therapy trials. Once proof of efficacy is gathered, technology can be transferred to the private sector which will take over further development taking advantage of knowledge and know-how. Complex technical challenges require existing production facilities to adapt to emerging technologies in a coordinated manner. These include a mandatory requirement for the highest quality of production translating gene-transfer technologies with pharmaceutical-grade GMP processes to the clinic. A consensus has emerged on the directions and priorities to adopt, applying to advanced technologies with improved efficacy and safety profiles, in particular AAV, lentivirus-based and oncolytic vectors. Translating cutting-edge research into "First-in-man" trials require that pre-normative research is conducted which aims to develop standard assays, processes and candidate reference materials. This research will help harmonise practices and quality in the production of GMP vector lots and GM-cells. In gathering critical expertise in Europe and establish conditions for interoperability, the PEVI infrastructure will contribute to the demands of the advanced therapy medicinal products* regulation and to both health and quality of life of EU-citizens.

  19. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... production and processing is prone to disruption by hurricanes. In 2005, Hurricanes Katrina and Rita caused... Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice... the passage of Hurricanes. ADDRESSES: This document can be viewed on the Office of Pipeline Safety...

  20. 19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF THE PLATING BATHS AND CONTROL PANELS. GOLD AND SILVER WERE AMONG THE MATERIALS PLATED ONTO PARTS MADE OF COPPER, STAINLESS STEEL AND STEEL. (11/15/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  1. 7 CFR Guide 2 to Subpart G of... - Resolution

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... use or occupy the facility if such use or occupancy would be calculated to, or is likely to, result in..., or subsidiary if the establishment of such branch, affiliate, or subsidiary will not result in the..., or is likely to, result in an increase in the production of goods, materials, or commodities, or the...

  2. 7 CFR Guide 2 to Subpart G of... - Resolution

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... use or occupy the facility if such use or occupancy would be calculated to, or is likely to, result in..., or subsidiary if the establishment of such branch, affiliate, or subsidiary will not result in the..., or is likely to, result in an increase in the production of goods, materials, or commodities, or the...

  3. 7 CFR Guide 2 to Subpart G of... - Resolution

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... use or occupy the facility if such use or occupancy would be calculated to, or is likely to, result in..., or subsidiary if the establishment of such branch, affiliate, or subsidiary will not result in the..., or is likely to, result in an increase in the production of goods, materials, or commodities, or the...

  4. 7 CFR Guide 2 to Subpart G of... - Resolution

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use or occupy the facility if such use or occupancy would be calculated to, or is likely to, result in..., or subsidiary if the establishment of such branch, affiliate, or subsidiary will not result in the..., or is likely to, result in an increase in the production of goods, materials, or commodities, or the...

  5. 7 CFR Guide 2 to Subpart G of... - Resolution

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... use or occupy the facility if such use or occupancy would be calculated to, or is likely to, result in..., or subsidiary if the establishment of such branch, affiliate, or subsidiary will not result in the..., or is likely to, result in an increase in the production of goods, materials, or commodities, or the...

  6. HEAVY METALS IN RECOVERED FINES FOR CONSTRUCTION AND DEMOLITION DEBRIS RECYCLING FACILITIES IN FLORIDA

    EPA Science Inventory

    A major product recovered from the processing and recycling of construction and demolition (C&D) debris is screened soil, also referred to as fines. A proposed reuse option for C&D debris fines is fill material, typically in construction projects as a substitute for natural soil....

  7. Oxygen production on the Lunar materials processing frontier

    NASA Technical Reports Server (NTRS)

    Altenberg, Barbara H.

    1992-01-01

    During the pre-conceptual design phase of an initial lunar oxygen processing facility, it is essential to identify and compare the available processes and evaluate them in order to ensure the success of such an endeavor. The focus of this paper is to provide an overview of materials processing to produce lunar oxygen as one part of a given scenario of a developing lunar occupation. More than twenty-five techniques to produce oxygen from lunar materials have been identified. While it is important to continue research on any feasible method, not all methods can be implemented at the initial lunar facility. Hence, it is necessary during the pre-conceptual design phase to evaluate all methods and determine the leading processes for initial focus. Researchers have developed techniques for evaluating the numerous proposed methods in order to suggest which processes would be best to go to the Moon first. As one section in this paper, the recent evaluation procedures that have been presented in the literature are compared and contrasted. In general, the production methods for lunar oxygen fall into four categories: thermochemical, reactive solvent, pyrolytic, and electrochemical. Examples from two of the four categories are described, operating characteristics are contrasted, and terrestrial analogs are presented when possible. In addition to producing oxygen for use as a propellant and for life support, valuable co-products can be derived from some of the processes. This information is also highlighted in the description of a given process.

  8. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  9. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production.

    PubMed

    Gikas, Petros; Zhu, Baoning; Batistatos, Nicolas Ion; Zhang, Ruihong

    2018-06-15

    Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g -1 VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification. Copyright © 2017. Published by Elsevier Ltd.

  10. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  11. Neutron production by cosmic-ray muons in various materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manukovsky, K. V.; Ryazhskaya, O. G.; Sobolevsky, N. M.

    The results obtained by studying the background of neutrons produced by cosmic-raymuons in underground experimental facilities intended for rare-event searches and in surrounding rock are presented. The types of this rock may include granite, sedimentary rock, gypsum, and rock salt. Neutron production and transfer were simulated using the Geant4 and SHIELD transport codes. These codes were tuned via a comparison of the results of calculations with experimental data—in particular, with data of the Artemovsk research station of the Institute for Nuclear Research (INR, Moscow, Russia)—as well as via an intercomparison of results of calculations with the Geant4 and SHIELD codes.more » It turns out that the atomic-number dependence of the production and yield of neutrons has an irregular character and does not allow a description in terms of a universal function of the atomic number. The parameters of this dependence are different for two groups of nuclei—nuclei consisting of alpha particles and all of the remaining nuclei. Moreover, there are manifest exceptions from a power-law dependence—for example, argon. This may entail important consequences both for the existing underground experimental facilities and for those under construction. Investigation of cosmic-ray-induced neutron production in various materials is of paramount importance for the interpretation of experiments conducted at large depths under the Earth’s surface.« less

  12. The use of nuclear data in the field of nuclear fuel recycling

    NASA Astrophysics Data System (ADS)

    Martin, Julie-Fiona; Launay, Agnès; Grassi, Gabriele; Binet, Christophe; Lelandais, Jacques; Lecampion, Erick

    2017-09-01

    AREVA NC La Hague facility is the first step of the nuclear fuel recycling process implemented in France. The processing of the used fuel is governed by high standards of criticality-safety, and strong expectations on the quality of end-products. From the received used fuel assemblies, the plutonium and the uranium are extracted for further energy production purposes within the years following the reprocessing. Furthermore, the ultimate waste - fission products and minor actinides on the one hand, and hulls and end-pieces on the other hand - is adequately packaged for long term disposal. The used fuel is therefore separated into very different materials, and time scales which come into account may be longer than in some other nuclear fields of activity. Given the variety of the handled nuclear materials, as well as the time scales at stake, the importance given to some radionuclides, and hence to the associated nuclear data, can also be specific to the AREVA NC La Hague plant. A study has thus been led to identify a list of the most important radionuclides for the AREVA NC La Hague plant applications, relying on the running constraints of the facility, and the end-products expectations. The activities at the AREVA NC La Hague plant are presented, and the methodology to extract the most important radionuclides for the reprocessing process is detailed.

  13. Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries.

    PubMed

    Zeng, Jiong; Cui, Yanhui; Qu, Deyang; Zhang, Qian; Wu, Junwei; Zhu, Xiaomeng; Li, Zuohua; Zhang, Xinhe

    2016-10-05

    Lithium-rich layered oxides are promising cathode candidates for the production of high-energy and high-power electronic devices with high specific capacity and high discharge voltage. However, unstable cycling performance, especially at high charge-recharge rate, is the most challenge issue which needs to be solved to foster the diffusion of these materials. In this paper, hierarchical platelike Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode materials were synthesized by a facile solvothermal method followed by calcination. Calcination time was found to be a key parameter to obtain pure layered oxide phase and tailor its hierarchical morphology. The Li-rich material consists of primary nanoparticles with exposed {010} planes assembled to form platelike layers which exhibit low resistance to Li + diffusion. In detail, the product by calcination at 900 °C for 12 h exhibits specific capacity of 228, 218, and 204 mA h g -1 at 200, 400, and 1000 mA g -1 , respectively, whereas after 100 cycles at 1000 mA g -1 rate of charge and recharge the specific capacity was retained by about 91%.

  14. SIC material and technology for space optics

    NASA Astrophysics Data System (ADS)

    Bougoin, Michel

    2017-11-01

    Taking benefit from its very high specific stiffness and its exclusive thermal stability, the SiCSPACE material is now used for the fabrication of scientific and commercial lightweight space telescopes. This paper gives a review of the characteristics of this sintered silicon carbide. The BOOSTEC facilities and the technology described here allow to manufacture large structural components or mirrors (up to several meters) at cost effective condition, from a single part to mass production. Several examples of SiC space optical components are presented.

  15. Improving efficiency of polystyrene concrete production with composite binders

    NASA Astrophysics Data System (ADS)

    Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhina, A. A.

    2018-03-01

    According to leading marketing researchers, the construction market in Russia and CIS will continue growing at a rapid rate; this applies not only to a large-scale major construction, but to a construction of single-family houses and small-scale industrial facilities as well. Due to this, there are increased requirements for heat insulation of the building enclosures and a significant demand for efficient walling materials with high thermal performance. All these developments led to higher requirements imposed on the equipment that produces such materials.

  16. Balanced program plan. Analysis for biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    Major issues associated with the use of nuclear power are health hazards of exposure to radioactive materials; sources of radiation exposure; reactor accidents; sabotage of nuclear facilities; diversion of fissile material and its use for extortion; and the presence of plutonium in the environment. Fission fuel cycle technology is discussed with regard to milling, UF/sub 6/ production, uranium enrichment, plutonium fuel fabrication, power production, fuel processing, waste management, and fuel and waste transportation. The following problem areas of fuel cycle technology are briefly discussed: characterization, measurement, and monitoring; transport processes; health effects; ecological processes and effects; and integrated assessment. Estimatedmore » program unit costs are summarized by King-Muir Category. (HLW)« less

  17. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  18. UV-cured polymer optics

    NASA Astrophysics Data System (ADS)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  19. Reducing drinking water supply chemical contamination: risks from underground storage tanks.

    PubMed

    Enander, Richard T; Hanumara, R Choudary; Kobayashi, Hisanori; Gagnon, Ronald N; Park, Eugene; Vallot, Christopher; Genovesi, Richard

    2012-12-01

    Drinking water supplies are at risk of contamination from a variety of physical, chemical, and biological sources. Ranked among these threats are hazardous material releases from leaking or improperly managed underground storage tanks located at municipal, commercial, and industrial facilities. To reduce human health and environmental risks associated with the subsurface storage of hazardous materials, government agencies have taken a variety of legislative and regulatory actions--which date back more than 25 years and include the establishment of rigorous equipment/technology/operational requirements and facility-by-facility inspection and enforcement programs. Given a history of more than 470,000 underground storage tank releases nationwide, the U.S. Environmental Protection Agency continues to report that 7,300 new leaks were found in federal fiscal year 2008, while nearly 103,000 old leaks remain to be cleaned up. In this article, we report on an alternate evidence-based intervention approach for reducing potential releases from the storage of petroleum products (gasoline, diesel, kerosene, heating/fuel oil, and waste oil) in underground tanks at commercial facilities located in Rhode Island. The objective of this study was to evaluate whether a new regulatory model can be used as a cost-effective alternative to traditional facility-by-facility inspection and enforcement programs for underground storage tanks. We conclude that the alternative model, using an emphasis on technical assistance tools, can produce measurable improvements in compliance performance, is a cost-effective adjunct to traditional facility-by-facility inspection and enforcement programs, and has the potential to allow regulatory agencies to decrease their frequency of inspections among low risk facilities without sacrificing compliance performance or increasing public health risks. © 2012 Society for Risk Analysis.

  20. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    DOE PAGES

    Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...

    2014-10-01

    An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less

  1. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  2. Basic Energy Sciences Program Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, andmore » operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.« less

  3. Design of a high-temperature experiment for evaluating advanced structural materials

    NASA Technical Reports Server (NTRS)

    Mockler, Theodore T.; Castro-Cedeno, Mario; Gladden, Herbert J.; Kaufman, Albert

    1992-01-01

    This report describes the design of an experiment for evaluating monolithic and composite material specimens in a high-temperature environment and subject to big thermal gradients. The material specimens will be exposed to aerothermal loads that correspond to thermally similar engine operating conditions. Materials evaluated in this study were monolithic nickel alloys and silicon carbide. In addition, composites such as tungsten/copper were evaluated. A facility to provide the test environment has been assembled in the Engine Research Building at the Lewis Research Center. The test section of the facility will permit both regular and Schlieren photography, thermal imaging, and laser Doppler anemometry. The test environment will be products of hydrogen-air combustion at temperatures from about 1200 F to as high as 4000 F. The test chamber pressure will vary up to 60 psia, and the free-stream flow velocity can reach Mach 0.9. The data collected will be used to validate thermal and stress analysis models of the specimen. This process of modeling, testing, and validation is expected to yield enhancements to existing analysis tools and techniques.

  4. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline,more » sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.« less

  5. Material interactions with the Low Earth Orbital (LEO) environment: Accurate reaction rate measurements

    NASA Technical Reports Server (NTRS)

    Visentine, James T.; Leger, Lubert J.

    1987-01-01

    To resolve uncertainties in estimated LEO atomic oxygen fluence and provide reaction product composition data for comparison to data obtained in ground-based simulation laboratories, a flight experiment has been proposed for the space shuttle which utilizes an ion-neutral mass spectrometer to obtain in-situ ambient density measurements and identify reaction products from modeled polymers exposed to the atomic oxygen environment. An overview of this experiment is presented and the methodology of calibrating the flight mass spectrometer in a neutral beam facility prior to its use on the space shuttle is established. The experiment, designated EOIM-3 (Evaluation of Oxygen Interactions with Materials, third series), will provide a reliable materials interaction data base for future spacecraft design and will furnish insight into the basic chemical mechanisms leading to atomic oxygen interactions with surfaces.

  6. Remediation of subsurface and groundwater contamination with uranium from fuel fabrication facilities at Hanau (Germany)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitzsche, Olaf; Thierfeldt, Stefan; Hummel, Lothar

    2013-07-01

    This paper presents aspects of site decommissioning and clearance of a former fuel fabrication facility (development and production of fuel assemblies for research reactors and HTR) at Hanau (Germany). The main pathways for environmental contamination were deposition on soil surface and topsoil and pollution of deep soil and the aquifer by waste water channel leakage. Soil excavation could be done by classical excavator techniques. An effective removal of material from the saturated zone was possible by using advanced drilling techniques. A large amount of demolished building structure and excavated soil had to be classified. Therefore the use of conveyor detectormore » was necessary. Nearly 100000 Mg of material (excavated soil and demolished building material) were disposed of at an underground mine. A remaining volume of 700 m{sup 3} was classified as radioactive waste. Site clearance started in 2006. Groundwater remediation and monitoring is still ongoing, but has already provided excellent results by reducing the remaining Uranium considerably. (authors)« less

  7. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    PubMed

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety of the products, as C. zeylanoides has been documented as an emerging pathogen.

  8. Capabilities of the Materials Contamination Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Burns, Howard; Albyn, Keith; Edwards, David; Boothe, Richard; Finchum, Charles; Finckenor, Miria

    2003-01-01

    The Materials Contamination Team at the Marshall Space Flight Center (MSFC) has been recognized for its contributions supporting the National Aeronautics and Space Administration (NASA) spacecraft development programs. These programs include the Reusable Solid Rocket Motor (RSRM), Chandra X-Ray Observatory, and the International Space Station (ISS). The Environmental Effects Group, with the Materials Contamination Team and the Space Environmental Effects Team has been an integral part of NASA's success by the testing, evaluation, and qualification of materials, hardware, and processes. This paper focuses on the capabilities of the Materials Contamination Team. The Materials Contamination Team's realm of responsibility includes establishing contamination control during all phases of hardware development, including design, manufacturing, assembly, test, transportation, launch site processing, on-orbit exposure, return, and refurbishment. The team continues its mission of reducing the risk of equipment failure due to molecular or particulate contamination. Contamination is a concern in the Space Shuttle with sensitive bond-lines and reactive fluid (liquid oxygen) compatibility as well as for spacecraft with sensitive optics, such as Hubble Space Telescope and Chandra X-ray Observatory. The Materials Contamination Team has a variety of facilities and instrumentation capable of contaminant detection, identification, and monitoring. The team addresses material applications dealing with environments, including production facilities, clean rooms, and on-orbit exposure. The optically stimulated electron emission (OSEE) system, the Ultraviolet (UV) fluorescence (UVF) surface contamination detection, and the Surface Optics Corporation 400 (SOC 400) portable hand-held Fourier Transform Infrared (FTIR) spectrometer are state-of-the-art tools for in-process molecular contamination detection. The team of engineers and technicians also develop contamination calibration standards and evaluate new surface cleanliness inspection technologies. The team utilizes facilities for on-orbit simulation testing of materials for outgassing and molecular film deposition characteristics in the presence of space environmental effects, such as Atomic Oxygen (AO) and UV radiation exposure. The Materials Contamination Team maintains databases for process materials as well as outgassing and optical compatibility test results for specific environments.

  9. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    PubMed

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li 2 CO 3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H 2 SO 4 , and the cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi 1/3 Co 1/3 Mn 1/3 O 2 is miro spherical morphology without any impurities, which can meet with LiNi 1/3 Co 1/3 Mn 1/3 O 2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Auditing and inspection-area liason program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, W.A.

    1989-01-01

    Prior to 1986 the Material Control and Accountability (MC and A) organization at the Savannah River Site (SRS) was centrally located in the administration area. Since most production facilities are located at least 7-15 miles from the administration area, there was very little interaction between MC and A and operations personnel. Oversight of site material control and accountability practices was limited to periodic audits conducted by an accountant assigned to the MC and A organization. These audits focused mainly on accountability practices. With increased emphasis placed on material control in recent years, it became imperative that the MC and Amore » organization have representation in the production areas at SRS. Therefore, the position of MC and A area liaison was formed. The concept was to place technical personnel in the key production areas at SRS to assume MC and A auditing responsibilities in those areas, and more importantly, interact with area personnel to provide MC and A oversight and guidance on a day-to-day basis« less

  11. Measuring the gypsum content of C&D debris fines.

    PubMed

    Musson, Stephen E; Xu, Qiyong; Townsend, Timothy G

    2008-11-01

    Construction and demolition (C&D) debris recycling facilities often produce a screened material intended for use as alternative daily cover (ADC) at active landfills or for shaping and grading at closed landfills. This product contains soil and small pieces of wood, concrete, gypsum drywall, shingles and other components of C&D debris. Concerns have been raised over the contribution of gypsum drywall in C&D debris fines to odor problems at landfills where the product is used. To address such concerns, limitations may be placed on the percentage of gypsum (or sulfate) that can occur, and standardized testing procedures are required to permit valid compliance testing. A test procedure was developed for measuring the gypsum content in C&D debris fines. The concentration of sulfate leached in an aqueous solution was used to estimate the initial gypsum content of the sample. The impact of sample size and leaching time were evaluated. Precision and accuracy increased with increasing gypsum content. Results from replicate samples had an average relative standard deviation of 9%. The gypsum content of fines obtained from different facilities in the US varied widely from 1% to over 25%. These variations not only occurred between differing facilities, but within batches produced within a single facility.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  13. Evaluation and Repair of War-Damaged Port Facilities. Report 3. Concepts for Expedient War-Damage Repair of Pier and Wharf Decking

    DTIC Science & Technology

    1987-06-01

    calculations) Timber or laminated wood could be used to provide a deck for an expedient repair. Forest products may be the materials of choice because of...splits in the wood near the end of the timber. This problem may be mitigated by nail or glue laminating smaller members into mats of the desired...explanation of possible uses for laminated forest products in expedient port construction. As mentioned in the discussion con-^ cerning prefabricated

  14. Extraterrestrial processing and manufacturing of large space systems, volume 2, chapters 7-14 and appendices

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Production and support equipment specifications are described for the space manufacturing facility (SMF). Defined production equipment includes electromagnetic pumps for liquid metal, metal alloying furnaces, die casters, electron beam welders and cutters, glass forming for structural elements, and rolling. A cost analysis is presented which includes the development, the aquisition of all SMF elements, initial operating cost, maintenance and logistics cost, cost of terrestrial materials, and transportation cost for each major element. Computer program listings and outputs are appended.

  15. Test facility for 6000 hour life test of 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Caldwell, J. J.

    1973-01-01

    The environmental and instrumentation requirements for long term testing of electrical propulsion thrusters which impose severe and unusual requirements upon the simulation facility were studied. High speed ions ejected from a mercury thruster erode material from collecting surfaces, which is then scattered and redeposited upon other surfaces, with resultant damage to the chamber and test article. By collecting the thruster plume on a frozen mercury surface damage to the thruster and chamber by back-scattered erosion products was minimized. Provisions for unattended operation, remote data acquisition, personnel safety, and instrumentation for assessing thruster performance are also discussed.

  16. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review.

    PubMed

    Arevalo-Gallegos, Alejandra; Ahmad, Zanib; Asgher, Muhammad; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-06-01

    A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Materials characterization of propellants using ultrasonics

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Jones, David

    1993-01-01

    Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.

  18. Organizational Commitment of Employees of TV Production Center (Educational Television ETV) for Open Education Facility, Anadolu University

    ERIC Educational Resources Information Center

    Gurses, Nedim; Demiray, Emine

    2009-01-01

    In like manner as conventional education and teaching approaches distance education tends to model the same procedures. Indeed, formerly enriched on printed material served as a primary source. However, thanks to the developments in technology and evolution in education, computerised information has made inroads in distance education programmes.…

  19. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ratios are as specified in the TSCA section 5(e) consent order. (B) Upon start-up of manufacture of the PMN at any new facility, conduct the American Society for Testing and Materials International (ASTM..., demonstrating that formaldehyde emissions are less than or equal to 0.04 ppm. (C) Development and implementation...

  20. 40 CFR 721.10237 - Formaldehyde, polymers with acetone-phenol reaction products and phenol, sodium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ratios are as specified in the TSCA section 5(e) consent order. (B) Upon start-up of manufacture of the PMN at any new facility, conduct the American Society for Testing and Materials International (ASTM..., demonstrating that formaldehyde emissions are less than or equal to 0.04 ppm. (C) Development and implementation...

  1. CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ted Berglund; Jeffrey T. Ranney; Carol L. Babb

    2002-04-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less

  2. The presence and partitioning behavior of flame retardants in waste, leachate, and air particles from Norwegian waste-handling facilities.

    PubMed

    Morin, Nicolas A O; Andersson, Patrik L; Hale, Sarah E; Arp, Hans Peter H

    2017-12-01

    Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000μg/kg; ∑FR-7: 300-13,000μg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m 3 WEEE/vehicle facilities, 80-900pg/m 3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, K waste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated K waste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices. Copyright © 2017. Published by Elsevier B.V.

  3. 78 FR 55993 - Revisions to Reporting and Recordkeeping Requirements, and Proposed Confidentiality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... facilities. Adipic Acid Production 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary aluminum production facilities Ammonia Manufacturing 325311 Anhydrous and aqueous ammonia production facilities. Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production...

  4. Space station needs attributes and architectural options study costing working group briefing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Individuals in the United States who understand the promise of materials processing in space and who also are senior technical personnel associated with commercial firms that process materials: (1) endorsed the concept of a space station as a desirable national asset; (2) stated that a commercial MPS research program is mandatory to extend commericalization of space for materials processing; and (3) described in general terms a national research laboratory and free flying facilities that are needed. Participants agreed that industry R&D is motivated largely by market pull rather than by technology push, that initial interest is low-g materials research; and that to farther, commercial market assurance (a salable product) is a must.

  5. Video segmentation for post-production

    NASA Astrophysics Data System (ADS)

    Wills, Ciaran

    2001-12-01

    Specialist post-production is an industry that has much to gain from the application of content-based video analysis techniques. However the types of material handled in specialist post-production, such as television commercials, pop music videos and special effects are quite different in nature from the typical broadcast material which many video analysis techniques are designed to work with; shots are short and highly dynamic, and the transitions are often novel or ambiguous. We address the problem of scene change detection and develop a new algorithm which tackles some of the common aspects of post-production material that cause difficulties for past algorithms, such as illumination changes and jump cuts. Operating in the compressed domain on Motion JPEG compressed video, our algorithm detects cuts and fades by analyzing each JPEG macroblock in the context of its temporal and spatial neighbors. Analyzing the DCT coefficients directly we can extract the mean color of a block and an approximate detail level. We can also perform an approximated cross-correlation between two blocks. The algorithm is part of a set of tools being developed to work with an automated asset management system designed specifically for use in post-production facilities.

  6. Summary of Plutonium-238 Production Alternatives Analysis Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner; Wade E. Bickford; David B. Lord

    The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baselinemore » technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faye, S. A.; Shaughnessy, D. A.

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will bemore » addressed in addition to a summary of the isotopes that are already regularly produced. This is a planning document only.« less

  8. Reliability of mobile systems in construction

    NASA Astrophysics Data System (ADS)

    Narezhnaya, Tamara; Prykina, Larisa

    2017-10-01

    The purpose of the article is to analyze the influence of the mobility of construction production in the article taking into account the properties of reliability and readiness. Basing on the studied systems the effectiveness and efficiency is estimated. The construction system is considered to be the complete organizational structure providing creation or updating of construction facilities. At the same time the production sphere of these systems joins the production on the building site itself, material and technical resources of the construction production and live labour in these spheres within the construction dynamics. The author concludes, that the estimation of the degree of mobility of systems the of construction production makes a great positive effect in the project.

  9. Economics of End-of-Life Materials Recovery: A Study of Small Appliances and Computer Devices in Portugal.

    PubMed

    Ford, Patrick; Santos, Eduardo; Ferrão, Paulo; Margarido, Fernanda; Van Vliet, Krystyn J; Olivetti, Elsa

    2016-05-03

    The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.

  10. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  11. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    NASA Technical Reports Server (NTRS)

    Burns, H. D.; Mitchell, M. A.; McMillian, J. H.; Farner, B. R.; Harper, S. A.; Peralta, S. F.; Lowrey, N. M.; Ross, H. R.; Juarez, A.

    2015-01-01

    Since the 1990's, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have used hydrochlorofluorocarbon-225 (HCFC-225), a Class II ozone-depleting substance, to safety clean and verify the cleanliness of large scale propulsion oxygen systems and associated test facilities. In 2012 through 2014, test laboratories at MSFC, SSC, and Johnson Space Center-White Sands Test Facility collaborated to seek out, test, and qualify an environmentally preferred replacement for HCFC-225. Candidate solvents were selected, a test plan was developed, and the products were tested for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Honewell Soltice (TradeMark) Performance Fluid (trans-1-chloro-3,3, 3-trifluoropropene) was selected to replace HCFC-225 at NASA's MSFC and SSC rocket propulsion test facilities.

  12. Evaluation of multiple emission point facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miltenberger, R.P.; Hull, A.P.; Strachan, S.

    In 1970, the New York State Department of Environmental Conservation (NYSDEC) assumed responsibility for the environmental aspect of the state's regulatory program for by-product, source, and special nuclear material. The major objective of this study was to provide consultation to NYSDEC and the US NRC to assist NYSDEC in determining if broad-based licensed facilities with multiple emission points were in compliance with NYCRR Part 380. Under this contract, BNL would evaluate a multiple emission point facility, identified by NYSDEC, as a case study. The review would be a nonbinding evaluation of the facility to determine likely dispersion characteristics, compliance withmore » specified release limits, and implementation of the ALARA philosophy regarding effluent release practices. From the data collected, guidance as to areas of future investigation and the impact of new federal regulations were to be developed. Reported here is the case study for the University of Rochester, Strong Memorial Medical Center and Riverside Campus.« less

  13. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  14. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  15. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally, similar coating resins showed acceptable resistance to glycolic acid.« less

  16. Impact of Glycolate Anion on Aqueous Corrosion in DWPF and Downstream Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.

    Glycolic acid is being evaluated as an alternate reductant in the preparation of high level waste for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). During processing, the glycolic acid may not be completely consumed with small quantities of the glycolate anion being carried forward to other high level waste (HLW) facilities. The SRS liquid waste contractor requested an assessment of the impact of the glycolate anion on the corrosion of the materials of construction (MoC) throughout the waste processing system since this impact had not been previously evaluated. A literature review revealed that corrosion datamore » were not available for the MoCs in glycolic-bearing solutions applicable to SRS systems. Data on the material compatibility with only glycolic acid or its derivative products were identified; however, data were limited for solutions containing glycolic acid or the glycolate anion. For the proprietary coating systems applied to the DWPF concrete, glycolic acid was deemed compatible since the coatings were resistant to more aggressive chemistries than glycolic acid. Additionally similar coating resins showed acceptable resistance to glycolic acid.« less

  17. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.« less

  18. 7 CFR Appendix C to Subpart E of... - Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... beverage purposes, is manufactured from biomass. (2) The alcohol production facility includes all... Production Facilities C Appendix C to Subpart E of Part 1980 Agriculture Regulations of the Department of...—Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities (1) Alcohol production facility. An...

  19. 7 CFR Appendix C to Subpart E of... - Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... beverage purposes, is manufactured from biomass. (2) The alcohol production facility includes all... Production Facilities C Appendix C to Subpart E of Part 1980 Agriculture Regulations of the Department of...—Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities (1) Alcohol production facility. An...

  20. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  1. Company profile: tengion.

    PubMed

    Bertram, Timothy

    2009-05-01

    Founded in 2005, Tengion is a clinical-stage organ regeneration company with products in urologic, vascular and renal regeneration based on its proprietary Autologous Organ Regeneration Platform. Tengion uses biocompatible materials and a patient's own (autologous) cells to assemble neo-organs or neo-tissues that are designed to catalyze the body's innate ability to regenerate. Tengion is a fully-integrated organization, with scalable US and European manufacturing and distribution capabilities, experienced research, development, clinical and commercial teams, and significant intellectual property. The company's corporate headquarters and commercial manufacturing facility are in East Norriton, PA, USA, and its research offices, a development laboratory and a pilot manufacturing facility are located in Winston-Salem, NC, USA. Tengion's product candidates may ultimately address the most critical problems facing organ and tissue failure patients, enabling people to lead healthier lives without donor transplants or the side effects of related therapies.

  2. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.

  3. 44 CFR 331.5 - Production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Production facilities. 331.5... AND FACILITIES IN LABOR SURPLUS AREAS § 331.5 Production facilities. All Federal departments and... production facilities, including expansion, to the extent that such selection is consistent with existing law...

  4. Leo Szilard Lectureship Award: Fissile Materials: A Global Threat

    NASA Astrophysics Data System (ADS)

    Rajaraman, Ramamurti

    2014-03-01

    The world has built up a huge glut of Fissile Materials, posing a potentially devastating threat. While specialists in the field have been aware of this danger for a long time, it was only after President Obama organized the Nuclear Security Summit in 2010 that the attention of the world's political leadership was drawn to it. We will present here an introductory overview of Fissile materials - their definition, significance and their production facilities and stocks in different parts of the world. We will also mention some of the efforts being made to verifiably cap and reduce their stocks as well as the technical and political complications involved in the process.

  5. TomoBank: a tomographic data repository for computational x-ray science

    DOE PAGES

    De Carlo, Francesco; Gürsoy, Doğa; Ching, Daniel J.; ...

    2018-02-08

    There is a widening gap between the fast advancement of computational methods for tomographic reconstruction and their successful implementation in production software at various synchrotron facilities. This is due in part to the lack of readily available instrument datasets and phantoms representative of real materials for validation and comparison of new numerical methods. Recent advancements in detector technology made sub-second and multi-energy tomographic data collection possible [1], but also increased the demand to develop new reconstruction methods able to handle in-situ [2] and dynamic systems [3] that can be quickly incorporated in beamline production software [4]. The X-ray Tomography Datamore » Bank, tomoBank, provides a repository of experimental and simulated datasets with the aim to foster collaboration among computational scientists, beamline scientists, and experimentalists and to accelerate the development and implementation of tomographic reconstruction methods for synchrotron facility production software by providing easy access to challenging dataset and their descriptors.« less

  6. Superfund Record of Decision (EPA Region 4): Sodyeco Site, Charlotte, North Carolina (first remedial action), September 1987. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-24

    The Southern Dyestuff Company (Sodyeco) site, located in Mecklenburg County, North Carolina, consists of approximately 1,300 acres. Approximately 20-30 residents reside within a one-quarter mile radius of the site, while many of the areas 9,137 residents commute daily to the site for employment. The site contains an operating manufacturing facility consisting of production units, a waste-water-treatment area and materials storage areas. Approximately 1040 acres are underdeveloped. Sodyeco began operations at the site in 1936. In 1958, American Marietta (which became Martin Marietta in 1961) purchased the site and expanded the company's liquid sulfur dye production to include the manufacture ofmore » vat and disperse dyes and specialty products for agrochemical, electronic, explosive, lithographic, pigment, plastic, rubber and general chemical industries. The Sandoz Chemical Company purchased the plant in 1983. Five CERCLA facilities, identified as A, B, C, D and E, were identified as probable sources of the ground water and soil contamination.« less

  7. Reduction of environmental and energy footprint of microalgal biodiesel production through material and energy integration.

    PubMed

    Chowdhury, Raja; Viamajala, Sridhar; Gerlach, Robin

    2012-03-01

    The life cycle impacts were assessed for an integrated microalgal biodiesel production system that facilitates energy- and nutrient- recovery through anaerobic digestion, and utilizes glycerol generated within the facility for additional heterotrophic biodiesel production. Results show that when external fossil energy inputs are lowered through process integration, the energy demand, global warming potential (GWP), and process water demand decrease significantly and become less sensitive to algal lipid content. When substitution allocation is used to assign additional credit for avoidance of fossil energy use (through utilization of recycled nutrients and biogas), GWP and water demand can, in fact, increase with increase in lipid content. Relative to stand-alone algal biofuel facilities, energy demand can be lowered by 3-14 GJ per ton of biodiesel through process integration. GWP of biodiesel from the integrated system can be lowered by up to 71% compared to petroleum fuel. Evaporative water loss was the primary water demand driver. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Wall finish selection in hospital design: a survey of facility managers.

    PubMed

    Lavy, Sarel; Dixit, Manish K

    2012-01-01

    This paper seeks to analyze healthcare facility managers' perceptions regarding the materials used for interior wall finishes and the criteria used to select them. It also examines differences in wall finish materials and the selection process in three major hospital spaces: emergency, surgery, and in-patient units. These findings are compared with healthcare designers' perceptions on similar issues, as currently documented in the literature. Hospital design and the materials used for hospital construction have a considerable effect on the environment and health of patients. A 2002 survey revealed which characteristics healthcare facility designers consider when selecting materials for healthcare facilities; however, no similar study has examined the views of facility managers on building finish selection. A 22-question survey questionnaire was distributed to 210 facility managers of metropolitan, for-profit hospitals in Texas; IRB approval was obtained. Respondents were asked to rank 10 interior wall finish materials and 11 selection criteria for wall finishes. Data from 48 complete questionnaires were analyzed using descriptive statistics and nonparametric statistical analysis methods. The study found no statistically significant differences in terms of wall finish materials or the characteristics for material selection in the three major spaces studied. It identified facility managers' four most-preferred wall finish materials and the five-most preferred characteristics, with a statistical confidence level of greater than 95%. The paper underscores the importance of incorporating all perspectives: facility designers and facility managers should work together toward achieving common organizational goals.

  9. Production cost analysis of Euphorbia lathyris. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, D.A.

    1979-08-01

    The purpose of this study is to estimate costs of production for Euphorbia lathyris (hereafter referred to as Euphorbia) in commercial-scale quantities. Selection of five US locations for analysis was based on assumed climatic and cultivation requirements. The five areas are: nonirrigated areas (Southeast Kansas and Central Oklahoma, Northeast Louisiana and Central Mississippi, Southern Illinois), and irrigated areas: (San Joaquin Valley and the Imperial Valley, California and Yuma, Arizona). Cost estimates are tailored to reflect each region's requirements and capabilities. Variable costs for inputs such as cultivation, planting, fertilization, pesticide application, and harvesting include material costs, equipment ownership, operating costs,more » and labor. Fixed costs include land, management, and transportation of the plant material to a conversion facility. Euphorbia crop production costs, on the average, range between $215 per acre in nonirrigated areas to $500 per acre in irrigated areas. Extraction costs for conversion of Euphorbia plant material to oil are estimated at $33.76 per barrel of oil, assuming a plant capacity of 3000 dry ST/D. Estimated Euphorbia crop production costs are competitive with those of corn. Alfalfa production costs per acre are less than those of Euphorbia in the Kansas/Oklahoma and Southern Illinois site, but greater in the irrigated regions. This disparity is accounted for largely by differences in productivity and irrigation requirements.« less

  10. Investigation of test methods, material properties, and processes for solar cell encapsulants. Fourteenth quarterly progress report, August 12, 1978-November 12, 1979. [EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1979-12-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. This report presents the results of a cost analysis of candidate potting compounds for long life solar module encapsulation. Additionally, the two major encapsulation processes, sheet lamination and liquid casting, are costed on the basis of a large scale production facility. Potting compounds studied include EVA, sheet, clear; EVA,more » sheet, pigmented; EPDM, sheet, clear; Aliphatic urethane, syrup; PVC Plastisol; Butyl acrylate, syrup; and Butyl acrylate, sheet.« less

  11. Layout design in order to improve efficiency in manufacturing

    NASA Astrophysics Data System (ADS)

    Siregar, I.; Tarigan, U.; Nasution, T. H.

    2018-02-01

    This research was conducted at the company that produces bobbins and ream type cigarette paper. Problems that found on the production process is the back and forth (back tracking) movement. Back and forth (back tracking) movement extending the total distance moved by the material and increase the total moment of transfer materials thus reducing the efficiency of the transfer of materials in the production process. The purpose of this study is to give design for the layout of production facilities in the company, so that the expected production produced by the company can reach the targets set by the management company. The method used in this research is the Graph-Based Construction and Travel Chart Method. The results of the analysis of the proposed layout with Graph-Based Construction was selected with a total value that is equal to the moment of transfer of 780 758 m / year. This result is better than the actual layout in the amount of 1,021,038.12 meters / year and the results of the method Travel Alternative Chart I of 826.236,60 meters/year, Alternative II of 1.004.433,56 meters / year, and Alternative III for 828,467.12 meters/year. The design layout of Graph-Based Construction material increases the transfer efficiency for 23.53%. With this layout proposal, expected production capacity will be increased along with the shortening of the distance of the displacement that must be passed by the material to be processed.

  12. Fire-Resistant Reinforcement Makes Steel Structures Sturdier

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Built and designed by Avco Corporation, the Apollo heat shield was coated with an ablative material whose purpose was to burn and, thus, dissipate energy. The material charred to form a protective coating which blocked heat penetration beyond the outer surface. Avco Corporation subsequently entered into a contract with Ames Research Center to develop spinoff applications of the heat shield in the arena of fire protection, specifically for the development of fire-retardant paints and foams for aircraft. This experience led to the production of Chartek 59, manufactured by Avco Specialty Materials (a subsidiary of Avco Corporation eventually acquired by Textron, Inc.) and marketed as the world s first intumescent epoxy material. As an intumescent coating, Chartek 59 expanded in volume when exposed to heat or flames and acted as an insulating barrier. It also retained its space-age ablative properties and dissipated heat through burn-off. Further applications were discovered, and the fireproofing formulation found its way into oil refineries, chemical plants, and other industrial facilities working with highly flammable products.

  13. 78 FR 67223 - Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., 72, et al. Proposed Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 and Amendments to Material Control and Accounting Regulations; Proposed Rules #0;#0... Guidance for Fuel Cycle Facility; Material Control and Accounting Plans and Completing NRC Form 327 AGENCY...

  14. [3D printing in health care facilities: What legislation in France?].

    PubMed

    Montmartin, M; Meyer, C; Euvrard, E; Pazart, L; Weber, E; Benassarou, M

    2015-11-01

    Health care facilities more and more use 3D printing, including making their own medical devices (MDs). However, production and marketing of MDs are regulated. The goal of our work was to clarify what is the current French regulation that should be applied concerning the production of custom-made MDs produced by 3D printing in a health care facility. MDs consist of all devices used for diagnosis, prevention, or treatment of diseases in patients. Prototypes and anatomic models are not considered as MDs and no specific laws apply to them. Cutting guides, splints, osteosynthesis plates or prosthesis are MDs. In order to become a MD manufacturer in France, a health care facility has to follow the requirements of the 93/42/CEE directive. In addition, custom-made 3D-printed MDs must follow the annex VIII of the directive. This needs the writing of a declaration of conformity and the respect of the essential requirements (proving that a MD is secure and conform to what is expected), the procedure has to be qualified, a risk analysis and a control of the biocompatibility of the material have to be fulfilled. The documents proving that these rules have been respected have to be available. Becoming a regulatory manufacturer of MD in France is possible for a health care facility but the specifications have to be respected. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. 6 CFR 37.43 - Physical security of DMV production facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 6 Domestic Security 1 2012-01-01 2012-01-01 false Physical security of DMV production facilities... Identification Card Production Facilities § 37.43 Physical security of DMV production facilities. (a) States must ensure the physical security of facilities where driver's licenses and identification cards are produced...

  16. DoD Key Technologies Plan

    DTIC Science & Technology

    1992-07-01

    methodologies ; software performance analysis; software testing; and concurrent languages. Finally, efforts in algorithms, which are primarily designed to upgrade...These codes provide a powerful research tool for testing new concepts and designs prior to experimental implementation. DoE’s laser program has also...development, and specially designed production facilities. World leadership in bth non -fluorinated and fluorinated materials resides in the U.S. but Japan

  17. [Implementation and evaluation of critical hazards and check points analysis (CHCPA) in gofio-producing industries from Tenerife].

    PubMed

    Caballero Mesa, J M; Alonso Marrero, S; González Weller, D M; Afonso Gutiérrez, V L; Rubio Armendariz, C; Hardisson de la Torre, A

    2006-01-01

    To satisfactorily implement the critical hazards and check points analysis. Tenerife Island Subjects: 15 industries visits to gofio-manufacturing industries were done with the aim of giving advice to employers and workers, and thereafter, the intervention was assessed verifying the hygiene and sanitary conditions of the industry and the correct application of the established auto-control system. After the advising intervention, we observed that certain parameters taken into account from the hygiene and sanitary perspective have been corrected, such as modifying the facilities to adapt them to in force regulations, or asking the suppliers to certify raw materials. With regards to food production process, the intervention was effective in such a way that more than have of the industries reduced the time of those phases with higher contamination susceptibility and to carry out the control registries that were established. All industries implemented the auto-control system by means of registration charts of each one of the elaboration phases. 86% of the industries have introduced more hygienic materials. 60% implemented a reduction in intermediate times of production phases. 26% perfmored some obsolete machinery replacement modernaizing the facilities.

  18. Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.

    2010-01-01

    Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

  19. Radio Frequency Plasma Synthesis of Boron Nitride Nanotubes (BNNTs) for Structural Applications. Part II

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Alexa, Joel A.; Jensen, Brian J.

    2016-01-01

    Boron nitride nanotubes (BNNTs) are more thermally and chemically compatible with metal- and ceramic-matrix composites than carbon nanotubes (CNTs). The lack of an abundant supply of defect-free, high-aspect-ratio BNNTs has hindered development as reinforcing agents in structural materials. Recent activities at the National Research Council - Canada (NRC-C) and the University of California - Berkeley (UC-B) have resulted in bulk synthesis of few-walled, small diameter BNNTs. Both processes employ induction plasma technology to create boron vapor and highly reactive nitrogen species at temperatures in excess of 8000 K. Subsequent recombination under controlled cooling conditions results in the formation of BNNTs at a rate of 20 g/hr and 35 g/hr, respectively. The end product tends to consist of tangled masses of fibril-, sheet-, and cotton candy-like materials, which accumulate within the processing equipment. The radio frequency plasma spray (RFPS) facility at NASA Langley (LaRC), developed for metallic materials deposition, has been re-tooled for in-situ synthesis of BNNTs. The NRC-C and UC-B facilities comprise a 60 kW RF torch, a reactor with a stove pipe geometry, and a filtration system. In contrast, the LaRC facility has a 100 kW torch mounted atop an expansive reaction chamber coupled with a cyclone separator. The intent is to take advantage of both the extra power and the equipment configuration to simultaneously produce and gather BNNTs in a macroscopic form amenable to structural material applications.

  20. Waterjet processes for coating removal

    NASA Technical Reports Server (NTRS)

    Burgess, Fletcher; Cosby, Steve; Hoppe, David

    1995-01-01

    USBI and NASA have been testing and investigating the use of high pressure water for coating removal for approximately the past 12 years at the Automated TPS (Thermal Protection System - ablative materials used for thermal protection during ascent and descent of the solid rocket boosters) Removal Facility located in the Productivity Enhancement Complex at Marshall Space Flight Center. Originally the task was to develop and automate the removal process and transfer the technology to a production facility at Kennedy Space Center. Since that time more and more applications and support roles for the waterjet technology have been realized. The facility has become a vital part of development activities ongoing at MSFC. It supports the development of environmentally compliant insulations, sealants, and coatings. It also supports bonding programs, test motors, and pressure vessels. The most recent role of the cell is supporting Thiokol Corporation's solid rocket motor program in the development of waterjet degreasing and paint stripping methods. Currently vapor degreasing methods use 500,000 lbs. of ozone depleting chemicals per year. This paper describes the major cell equipment, test methods practiced, and coatings that have been removed.

  1. Plant observation report and evaluation, Pennwalt Corporation, secondary and tertiary aliphatic monoamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-27

    A site visit was made to the amine manufacturing facility of the Pennwalt Corporation, Wyandotte, Michigan, to evaluate the facility in regard to the Secondary and Tertiary Aliphatic Monoamines Criteria Document. A total of 21 people were directly in contact with the amine production process. Two to four of the maintenance personnel may also come in contact with the process. Maintenance workers ran the risk of exposure not only to primary, secondary and tertiary amine compounds, but also to several other chemicals being used in the process. The processes used to unload raw materials are described, along with reactor operations,more » decanter and recycling operations, distillation operations, product storage and shipping. Medical monitoring at the facility included chest x-ray, respiratory function tests, sight screening, urinalysis, and back x-rays. Restricted and potentially hazardous area signs were clearly posted. Employees wore hard hats and safety glasses on the job as well as gloves, rubber boots, face shields, goggles, and respirators as necessary. Emergency procedures are described, including fire protection. Sanitation and personal hygiene are discussed, along with monitoring of the workplace conditions.« less

  2. [Application of risk-based approach for determination of critical factors in technology transfer of production of medicinal products].

    PubMed

    Beregovykh, V V; Spitskiy, O R

    2014-01-01

    Risk-based approach is used for examination of impact of different factors on quality of medicinal products in technology transfer. A general diagram is offered for risk analysis execution in technology transfer from pharmaceutical development to production. When transferring technology to full- scale commercial production it is necessary to investigate and simulate production process application beforehand in new real conditions. The manufacturing process is the core factorfor risk analysis having the most impact on quality attributes of a medicinal product. Further importantfactors are linked to materials and products to be handled and manufacturing environmental conditions such as premises, equipment and personnel. Usage of risk-based approach in designing of multipurpose production facility of medicinal products is shown where quantitative risk analysis tool RAMM (Risk Analysis and Mitigation Matrix) was applied.

  3. Recent upgrades and new scientific infrastructure of MARIA research reactor, Otwock-Swierk, Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The MARIA reactor is open-pool type, water and beryllium moderated. It has two independent primary cooling systems: fuel and pool cooling system. Each fuel assembly is cooled down separately in pressurized channels with individual performances characterization. The fuel assemblies consist of five layers of bent plates or six concentric tubes. Currently it is one of the most powerful research reactors in Europe with operation availability at least up to 2030. Its nominal thermal power is 30 MW. It is characterized by high neutron flux density: up to 3x10{sup 14} n cm{sup -2} s{sup -1} in case of thermal neutrons, andmore » up to 2x10{sup 13} n cm{sup -2} s{sup -1} in case of fast neutrons. The reactor is operated for ca. 4000 h per year. The reactor facility is equipped with fully equipped three hot cells with shielding up to 10{sup 15} Bq. Adjacent to the reactor facility, the radio-pharmaceutics plant (POLATOM) and Material Research Laboratory are located. They are equipped with a number of hot cells with instrumentation. The transport system of radioactive materials from reactor facility to Material Research Laboratory is available. During 2014 the MARIA reactor has been operated with three different types of fuel the same time: previous 36% enriched fuel, and two types of new LEU fuels. In the meantime, molybdenum irradiation programme has been developed. Maria is a multifunctional research tool, with a notable application in production of radioisotopes, radio-pharmaceutics manufacturing (ca. 600 TBq/y), {sup 99}Mo for medical scintigraphy (ca. 6000 TBq/y), neutron transmutation doping of silicon single crystals, wide scientific research based on neutron beams utilization. From the beginning MARIA reactor was intended for loop and fuel testing research activities. Currently it is used mostly as material testing and irradiation facility and for that reason it has wide experimental capabilities. There are eight horizontal irradiation channels from among whom six of them are equipped with instrumentation for condensed matter physics research: - H3 - spectrometer and diffractometer with double monochromator; - H4 - small angle scattering spectrometer; - H5 - polarized neutrons spectrometer; - H6, H7 - two 3-axial crystal neutron spectrometers; - H8 - neutron radiography stand. For two horizontal channels are ongoing exploitation programs: - H2 - station with epithermal neutron beam produced in uranium converter is being developed. Intelligent converter will be installed on the periphery of reactor core. The intensity of the beam will be at the level 2x10{sup 9} n cm{sup -2}s{sup -1} what makes the beam unique in the Europe. - H1 - special pneumatic horizontal mail is being developed for irradiation material samples in the vicinity of the core i.e. in the distal part of the H1 channel. The number of neutron irradiation facilities in MARIA reactor is increasing every year. Numerous of thermal neutron irradiation channels including fast hydraulic rabbit system and large size channels for fast neutron irradiation are used routinely. Recently new in-pile facility with ITER-like neutron energy spectrum for 14 MeV neutron irradiation has been constructed. Taking into account its performance and ability of almost incessant operation the facility appears as one of the most powerful 14 MeV neutron sources. The facility shall be used for material research connected with thermonuclear devices (ITER) and 4. generation nuclear reactors. The system of independent fuels channels used in MARIA reactor appear to be very flexible and very convenient to be used as irradiation channels for uranium targets for {sup 99}Mo production. Currently, MARIA reactor supplies ca. 18% world production of {sup 99}Mo. The MARIA reactor research activities are still extended. The current scientific projects are connected e.g. with silicon neutron transmutation doping, in-pile gamma heating measurements, French calculation codes implementation (TRIPOLI4, APOLLO2). The horizontal neutron beams utilization is also developed. The MARIA reactor, due to its primary application connected with loop and fuel testing, is very convenient for testing the nuclear instrumentation, control and measurement systems.« less

  4. Estimating costs of programme services and products using information provided in standard financial statements.

    PubMed

    Ellwein, L B; Thulasiraj, R D; Boulter, A R; Dhittal, S P

    1998-01-01

    The financial viability of programme services and product offerings requires that revenue exceeds expenses. Revenue includes payments for services and products as well as donor cash and in-kind contributions. Expenses reflect consumption of purchased or contributed time and materials and utilization (depreciation) of physical plant facilities and equipment. Standard financial reports contain this revenue and expense information, complemented when necessary by valuation and accounting of in-kind contributions. Since financial statements are prepared using consistent and accepted accounting practices, year-to-year and organization-to-organization comparisons can be made. The use of such financial information is illustrated in this article by determining the unit cost of cataract surgery in two hospitals in Nepal. The proportion of unit cost attributed to personnel, medical supplies, administrative materials, and depreciation varied significantly by institution. These variations are accounted for by examining differences in operational structure and capacity utilization.

  5. Facile Synthesis and Catalysis of Pure-Silica and Heteroatom LTA

    DOE PAGES

    Boal, Ben W.; Schmidt, Joel E.; Deimund, Mark A.; ...

    2015-11-05

    Zeolite A (LTA) has many large-scale uses in separations and ion exchange applications. Because of the high aluminum content and lack of high-temperature stability, applications in catalysis, while highly desired, have been extremely limited. Herein, we report a robust method to prepare pure-silica, aluminosilicate (product Si/Al = 12–42), and titanosilicate LTA in fluoride media using a simple, imidazolium- based organic structure-directing agent. The aluminosilicate material is an active catalyst for the methanol-to-olefins reaction with higher product selectivities to butenes as well as C 5 and C 6 products than the commercialized silicoalumniophosphate or zeolite analogue that both have the chabazitemore » framework (SAPO- 34 and SSZ-13, respectively). Furthermore, the crystal structures of the as-made and calcined pure-silica materials were solved using singlecrystal X-ray diffraction, providing information about the occluded organics and fluoride as well as structural information.« less

  6. Estimating costs of programme services and products using information provided in standard financial statements.

    PubMed Central

    Ellwein, L. B.; Thulasiraj, R. D.; Boulter, A. R.; Dhittal, S. P.

    1998-01-01

    The financial viability of programme services and product offerings requires that revenue exceeds expenses. Revenue includes payments for services and products as well as donor cash and in-kind contributions. Expenses reflect consumption of purchased or contributed time and materials and utilization (depreciation) of physical plant facilities and equipment. Standard financial reports contain this revenue and expense information, complemented when necessary by valuation and accounting of in-kind contributions. Since financial statements are prepared using consistent and accepted accounting practices, year-to-year and organization-to-organization comparisons can be made. The use of such financial information is illustrated in this article by determining the unit cost of cataract surgery in two hospitals in Nepal. The proportion of unit cost attributed to personnel, medical supplies, administrative materials, and depreciation varied significantly by institution. These variations are accounted for by examining differences in operational structure and capacity utilization. PMID:9868836

  7. Synthesis and Characterization of LaTiO2N

    NASA Astrophysics Data System (ADS)

    Rugen, Evan E.

    Photocatalysts offer an excellent opportunity to shift the global energy landscape from a fossil fuel-dependent paradigm to sustainable and carbon-neutral solar fuels. Oxynitride materials such as LaTiO2N are potential photocatalysts for the water splitting reaction due to their high oxidative stability and their narrow band gaps, which are suitable for visible light absorption. However, facile synthetic routes to metal oxynitrides with controlled morphologies are rare, and the local structures of these materials are under-characterized. Ultrasonic spray synthesis (USS) offers a facile method toward complex metal oxides which can potentially be converted to oxynitrides with preservation of the microsphere structures that typify the products from such aerosol routes. Here, La-Ti-O microspheres were facilely produced by USS and converted by ammonolysis to LaTiO2N microspheres with porous shells and hollow interiors. This particle architecture is accounted for by coupling suitable combustion chemistry with the aerosol technique, producing precursor particles where the La3+ and Ti4+ are well-mixed at small length scales; this feature enables preservation of the microsphere morphology during nitridation despite the crystallographic changes that occur. The LaTiO2N microspheres are comparable oxygen evolving photocatalysts to samples produced by conventional solid state methods. Pair distribution function (PDF) analysis is a local probe designed to examine the structure of disordered crystalline materials, and is an ideal technique for characterizing the ordering of anions in oxynitrides. Preliminary studies using PDF analysis to determine the presence of anion ordering and local structure in LaTiO2N produced by solid state methods are presented here. Future experiments are proposed that will grant detailed insight into the factors driving the degree of anion ordering in these types of materials. These results demonstrate the utility of USS as a facile, potentially scalable route to complex photocatalytic materials and their precursors, and the feasibility of PDF analysis for the determination of local structures in complex oxynitrides.

  8. 10 CFR 75.10 - Facility information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... features of the facility relating to material accounting, containment, and surveillance; (4) A description of the existing and proposed procedures at the facility for nuclear material accounting and control, with special reference to material balance areas established by the licensee, measurement of flow, and...

  9. Long-term experiences in cryopreservation of mobilized peripheral blood stem cells using a closed-bag system: a technology with potential for broader application.

    PubMed

    Spoerl, Silvia; Peter, Robert; Wäscher, Dagmar; Verbeek, Mareike; Menzel, Helge; Peschel, Christian; Krackhardt, Angela M

    2015-11-01

    In several European countries, preparation of cellular products with open manufacturing systems as used for cryopreservation of peripheral blood stem cells (PBSCs) needs to be performed in a clean-room facility. However, this form of manufacturing is highly expensive and laborious. Thus, safe techniques providing improved efficacy regarding time and material, which are in accordance with legal requirements are highly desirable. We have developed, validated, and applied a simple method for cryopreservation of PBSCs within a functionally closed-bag system using the closed cryo freeze prep set. This process fulfills good manufacturing practice requirements and allows for the cryopreservation of PBSCs without a clean-room facility. In addition to cryopreservation of PBSCs, we have recently successfully modified our system for processing, portioning, and cryopreservation of allogeneic donor lymphocytes. Since 2010, cryopreservation of PBSCs using a closed-bag system has been performed in our facility on a routine basis and 210 patients and healthy donors have been included in this analysis. No significant reduction in viability of CD34+ cells and no process-related contamination were observed. Outcome of hematopoietic stem cell transplantation regarding time of engraftment and infectious complications is comparable to products manufactured in conventional clean-room facilities. Our data confirm that cryopreservation of PBSCs within a functionally closed-bag system is safe, effective, and economical. Furthermore, the system has the potential to be extended to other manufacturing processes of cellular products. © 2015 AABB.

  10. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  11. Downgrade of the Savannah River Sites FB-Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI

    2005-07-05

    This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less

  12. Hybrid Thermochemical/Biological Processing

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  13. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  14. Ground-based simulation of LEO environment: Investigations of a select LDEF material: FEP Teflon (trademark)

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) has produced a wealth of data on materials degradation in the low earth orbit (LEO) space environment and has conclusively shown that surface chemistry (as opposed to surface physics-sputtering) is the key to understanding and predicting the degradation of materials in the LEO environment. It is also clear that materials degradation and spacecraft contamination are closely linked and that the fundamental mechanisms responsible for this linking are in general not well understood especially in the area of synergistic effects. The study of the fundamental mechanisms underlying materials degradation in LEO is hampered by the fact that the degradation process itself is not observed during the actual exposure to the environment. Rather the aftermath of the degradation process is studied, i.e., the material that remains after exposure is observed and mechanisms are proposed to explain the observed results. The EOIM-3 flight experiment is an attempt to bring sophisticated diagnostic equipment into the space environment and monitor the degradation process in real time through the use of mass spectrometry. More experiments of this nature which would include surface sensitive diagnostics (Auger and photoelectron spectroscopes) are needed to truly unravel the basic chemical mechanisms involved in the materials degradation process. Since these in-space capabilities will most likely not be available in the near future, ground-based LEO simulation facilities employing sophisticated diagnostics are needed to further advance the basic understanding of the materials degradation mechanisms. The LEO simulation facility developed at Los Alamos National Laboratory has been used to investigate the atomic oxygen/vacuum ultraviolet (AO/VUV) enhanced degradation of FEP Teflon. The results show that photo-ejection of polymer fragments occur at elevated temperature (200 C), that VUV synergistic rare gas sputtering of polymer fragments occur even at 25 C, and that combined OA/VUV interaction produces a wide variety of gas phase reaction products.

  15. Review of nuclear pharmacy practice in hospitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawada, T.K.; Tubis, M.; Ebenkamp, T.

    1982-02-01

    An operational profile for nuclear pharmacy practice is presented, and the technical and professional role of nuclear pharmacists is reviewed. Key aspects of nuclear pharmacy practice in hospitals discussed are the basic facilities and equipment for the preparation, quality control, and distribution of radioactive drug products. Standards for receiving, storing, and processing radioactive material are described. The elements of a radiopharmaceutical quality assurance program, including the working procedures, documentation systems, data analysis, and specific control tests, are presented. Details of dose preparation and administration and systems of inventory control for radioactive products are outlined.

  16. Plutonium (TRU) transmutation and 233U production by single-fluid type accelerator molten-salt breeder (AMSB)

    NASA Astrophysics Data System (ADS)

    Furukawa, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-09-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility: (2) few operation/maintenance/processing works; (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  17. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  18. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  19. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  20. Evaluation of a Biological Pathogen Decontamination Protocol for Animal Feed Mills.

    PubMed

    Huss, Anne R; Cochrane, Roger A; Deliephan, Aiswariya; Stark, Charles R; Jones, Cassandra K

    2015-09-01

    Animal feed and ingredients are potential vectors of pathogenic bacteria. Contaminated ingredients can contaminate facility equipment, leading to cross-contamination of other products. This experiment was conducted to evaluate a standardized protocol for decontamination of an animal feed manufacturing facility using Enterococcus faecium (ATCC 31282) as an indicator. A pelleted swine diet inoculated with E. faecium was manufactured, and environmental samples (swabs, replicate organism detection and counting plates, and air samples) were collected (i) before inoculation (baseline data), (ii) after production of inoculated feed, (iii) after physical removal of organic material using pressurized air, (iv) after application of a chemical sanitizer containing a quaternary ammonium-glutaraldehyde blend, (v) after application of a chemical sanitizer containing sodium hypochlorite, (vi) after facility heat-up to 60 8 C for 24 h, (vii) for 48 h, and (viii) for 72 h. Air samples collected outside the facility confirmed pathogen containment; E. faecium levels were equal to or lower than baseline levels at each sample location. The decontamination step and its associated interactions were the only variables that affected E. faecium incidence (P < 0.0001 versus P > 0.22). After production of the inoculated diet, 85.7% of environmental samples were positive for E. faecium. Physical cleaning of equipment had no effect on contamination (P = 0.32). Chemical cleaning with a quaternary ammonium-glutaraldehyde blend and sodium hypochlorite each significantly reduced E. faecium contamination (P < 0.0001) to 28.6 and 2.4% of tested surfaces, respectively. All samples were negative for E. faecium after 48 h of heating. Both wet chemical cleaning and facility heating but not physical cleaning resulted in substantial E. faecium decontamination. These results confirmed both successful containment and decontamination of biological pathogens in the tested pilot-scale feed mill.

  1. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  2. HB-Line Plutonium Oxide Data Collection Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.; Varble, J.; Jordan, J.

    2015-05-26

    HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequentmore » storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which identifies the required facility procedures, DCS print outs, and laboratory results needed to assemble a final data package for each HB-Line plutonium oxide interim oxide can. The data traveler may identify the specific values (data) required to be extracted from the collected facility procedures and DCS print outs. The data traveler may also identify associated criteria to be checked. Inevitably there will be procedure anomalies during the course of the HB-Line plutonium oxide campaign that will have to be addressed in a timely manner.« less

  3. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  4. 30 CFR 57.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 57.6130 Section 57.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage-Surface Only § 57.6130 Explosive material storage facilities. (a) Detonators and explosives shall...

  5. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The primary objectives of the Caribbean Tourist Facilities (CTF) project were to develop and publish materials and conduct workshops on solar energy and conservation technologies that would directly address the needs and interests of tourist facilities in the Caribbean basin. Past contacts with the Caribbean and US tourist industries indicated that decision-makers remained unconvinced that renewable technologies could have a significant impact on development and operation costs or that renewable energy products and services suited their needs. In order to assure that the materials and programs developed were responsive to the Caribbean tourist industry and US conservation and renewable energymore » industries, marketing research with potential end users and the organizations and associations that serve those users was included as an underlying task in the project. The tasks outlined in the CTF Statement of Work included conference planning, gathering of field data, development of educational materials, and conduct of workshop(s). In addition to providing a chronicle of the fulfillment of those tasks, this final report includes suggestions for distributing the documents developed during the project, venues for future workshops, and other technology transfer and market influence strategies. 3 refs.« less

  7. Introduction to Pits and Weapons Systems (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kautz, D.

    2012-07-02

    A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less

  8. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  9. Re-utilization of Industrial CO 2 for Algae Production Using a Phase Change Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Brian

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO 2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO 2 to liquid biofuels, electricity, and specialty products, while demonstratingmore » the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.« less

  10. [Production chain supply management for public hospitals: a logistical approach to healthcare].

    PubMed

    Infante, Maria; dos Santos, Maria Angélica Borges

    2007-01-01

    Despite their importance for hospital operations, discussions of healthcare organization logistics and supply and materials management are notably lacking in Brazilian literature. This paper describes a methodology for organizing the supply of medical materials in public hospitals, based on an action-research approach. Interventions were based on the assumption that a significant portion of problems in Brazil's National Health System (SUS) facilities derive from the fact that their clinical and administrative departments do not see themselves as belonging to the same production chain - neither the hospital nor the supply department is aware of what the other produces. The development of the methodology and its main steps are presented and discussed, against a background of recent literature and total quality and supply chain management concepts.

  11. Materials Test Laboratory activities at the NASA-Johnson Space Center White Sands Test Facility (WSTF)

    NASA Technical Reports Server (NTRS)

    Stradling, J.; Pippen, D. L.

    1985-01-01

    The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.

  12. Partnering with NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and Psams Initiative

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Draper, D. S.

    2016-12-01

    NASA Johnson Space Center's (JSC) Astromaterials Research and Exploration Science Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. We intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science, which should result in substantial cost savings to PIs who wish to use our facilities. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products and standards that could be shared and distributed to community members, products that could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale. A CT scanner will be delivered August 2016 and installed in the same building as all the other division experimental and analytical facilities, allowing users to construct a 3 dimensional model of their run product and/or starting material before any destruction of their sample for follow up analyses. The 3D printer may also be utilized to construct containers for diamond anvil cell experiments. Our staff scientists will work with PIs to maximize science return and serve the needs of the community. We welcome student visitors, and a graduate semester internship is available through Jacobs.

  13. The effect of radiation on a variety of pharmaceuticals and materials containing polymers.

    PubMed

    Silindir, Mine; Ozer, Yekta

    2012-01-01

    The interaction of radiation, whether it has natural or artificial, electromagnetic or particle-type characterizations, with materials causes different effects depending on the dose and type of radiation and physicochemical properties of the material. In the medical field, understanding the effect of radiation on a variety of materials including pharmaceuticals, medical devices, polymers as biomaterials, and packaging is crucial. Although there are many kinds of sterilization methods, the use of radiation in sterilization has many advantages such as being a substantially less toxic, safer terminal sterilization method. Radiosterilization is sterilization with an ionizing radiation such as gamma rays or electron beam (e-beam), the latter being a newer but less-frequently used technique. However, the need for large facilities with proper radiation protections for personnel and the environment from the effects of radiation and radioactive wastes makes this procedure highly costly. The effects of radiation on materials, especially pharmaceuticals and polymer-containing medical devices, cause degradation or chemical changes. The effects of radiation on a variety of different materials is a growing research area that can create safer techniques that reduce radiation damage and increase cost-effectiveness in the future. Radiation can be used for positive purposes such as medical applications and the sterilization of pharmaceutical products, medical devices, and food and agricultural products as well as clinical applications such as diagnosis and/or therapy of a variety of diseases. The dose rate, time, type and emitted energy of the radiation are critical issues for determining its benefit/damage ratio. The sterilization of pharmaceuticals and medical devices that contain polymers can be achieved safely and effectively by irradiation. The sterilization of materials at the terminal phase-that is, in its final packaging materials-and its suitability to a variety of different kinds of packaging materials have brought additional value to radiosterilization. However, radiation sterilization is more expensive than the other sterilization methods that require large facilities. Although this method is safe in application, the effects of radiation on drugs and polymers must be evaluated by various analytical methods. In the nuclear chemistry and radiochemistry field, more effective and novel methods are being developed to decrease the harmful effects of radiation on materials.

  14. Superconducting cavity material for the European XFEL

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Brinkmann, A.; Iversen, J.; Matheisen, A.; Navitski, A.; Tamashevich, Y.; Michelato, P.; Monaco, L.

    2015-08-01

    Analysis of the strategy for superconducting cavity material procurement and quality management is done on the basis of the experience with the cavity production for the European x-ray free electron laser (EXFEL) facility. An adjustment of the material specification to EXFEL requirements, procurement of material, quality control (QC), documentation, and shipment to cavity producers have been worked out and carried out by DESY. A multistep process of qualification of the material suppliers included detailed material testing, single- and nine-cell cavity fabrication, and cryogenic radiofrequency tests. Production of about 25 000 semi-finished parts of high purity niobium and niobium-titanium alloy in a period of three years has been divided finally between companies Heraeus, Tokyo Denkai, Ningxia OTIC, and PLANSEE. Consideration of large-grain (LG) material as a possible option for the EXFEL has resulted in the production of one cryogenic module consisting of seven (out of eight) LG cavities. LG materials fulfilled the EXFEL requirements and showed even 25% to 30% higher unloaded quality factor. A possible shortage of the required quantity of LG material on the market led, however, to the choice of conventional fine-grain (FG) material. Eddy-current scanning (ECS) has been applied as an additional QC tool for the niobium sheets and contributed significantly to the material qualification and sorting. Two percent of the sheets have been rejected, which potentially could affect up to one-third of the cavities. The main imperfections and defects in the rejected sheets have been analyzed. Samples containing foreign material inclusions have been extracted from the sheets and electrochemically polished. Some inclusions remained even after 150 μm surface layer removal. Indications of foreign material inclusions have been found in the industrially fabricated and treated cavities and a deeper analysis of the defects has been performed.

  15. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  16. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  17. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  18. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  19. 49 CFR 175.25 - Notification at air passenger facilities of hazardous materials restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Notification at air passenger facilities of... MATERIALS REGULATIONS CARRIAGE BY AIRCRAFT General Information and Regulations § 175.25 Notification at air passenger facilities of hazardous materials restrictions. Each person who engages in for-hire air...

  20. 40 CFR 63.9485 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing Facilities... you own or operate a friction materials manufacturing facility (as defined in § 63.9565) that is (or... that applies to you, as specified in § 63.9495. Your friction materials manufacturing facility is a...

  1. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  2. 30 CFR 56.6130 - Explosive material storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Explosive material storage facilities. 56.6130 Section 56.6130 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage § 56.6130 Explosive material storage facilities. (a) Detonators and explosives shall be stored in...

  3. 77 FR 42973 - Export and Reexport Controls to Rwanda and United Nations Sanctions Under the Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...

  4. Who's keeping the code? Compliance with the international code for the marketing of breast-milk substitutes in Greater Glasgow.

    PubMed

    McInnes, Rhona J; Wright, Charlotte; Haq, Shogufta; McGranachan, Margaret

    2007-07-01

    To evaluate compliance with the World Health Organization's International Code of Marketing of Breast-milk Substitutes in primary care, after the introduction of strict local infant feeding guidelines. An audit form was sent to all community-based health professionals with an infant feeding remit. Walking tours were conducted in a random sample of community care facilities. Greater Glasgow Primary Care Division. (1) Primary-care staff with an infant feeding remit; (2) community health-care facilities. Contact with manufacturers of breast-milk substitutes (BMS) and BMS company personnel, free samples or incentives, and advertising of BMS. Contact with company personnel was minimal, usually unsolicited and was mainly to provide product information. Free samples of BMS or feeding equipment were rare but childcare or parenting literature was more prevalent. Staff voiced concerns about the lack of relevant information for bottle-feeding mothers and the need to support the mother's feeding choice. One-third of facilities were still displaying materials non-compliant with the Code, with the most common materials being weight conversion charts and posters. Contact between personnel from primary care and BMS companies was minimal and generally unsolicited. The presence of materials from BMS companies in health-care premises was more common. Due to the high level of bottle-feeding in Glasgow, primary-care staff stated a need for information about BMS.

  5. Comparison of methods to control floor contamination in an animal research facility.

    PubMed

    Allen, Kenneth P; Csida, Tarrant; Leming, Jeaninne; Murray, Kathleen; Gauld, Stephen B; Thulin, Joseph

    2012-10-01

    The authors evaluated the effectiveness of adhesive mats, contamination control flooring, and shoe covers in decreasing the presence of microbial agents on animal holding room floors and footwear. Swab samples taken from animal holding room floors after the use of each product were compared with samples taken from rooms after no products were used. Swab samples were also taken from the heels and soles of the footwear of animal care staff before and after use of each product. The use of contamination control flooring or shoe covers significantly reduced the amount of organic material (as indicated by ATP levels measured by a luminometer) present on floors. Bacterial and ATP contamination of footwear was significantly lower after the use of shoe covers than after the use of adhesive mats or contamination control flooring, and the use of shoe covers led to a greater decrease in contamination before and after use than did use of either of the other two products. Although shoe covers were superior to both adhesive mats and contamination control flooring for decreasing contamination of animal room floors and footwear, facilities must take into account the contamination control standards required, the cost of the product, and the labor and time associated with product use when deciding which contamination control practices to implement.

  6. An Information Framework for Facility Operators

    DTIC Science & Technology

    1991-01-01

    and replacement products. Type: Type is used to decompose the building into smaller categories called arrangements, assemblies, parts, joints , and forro...are organized into crews and shops consisting of tradepersons responsible for building materials (concrete, masonry, metals, drywall , paint, etc...Comp Type (pre-cast, CIP) AS I Curing compound , sealant tyDe A S 04--- Masonry Comp Type (CMU, stone, glazed) A S I Manufacturer, style no., color no

  7. Elimination of Toxic Materials and Solvents from Solid Propellant Compositions

    DTIC Science & Technology

    2001-01-01

    ratio of nitrogen, hydrogen , and oxygen atoms which yield exhaust products that are environmentally benign. Through leveraging with three subsequent...qualification costs make transition to new formulations prohibitive. Therefore, more likely candidates for these new formulations are weapon systems of...facility in place a technology was sought out to treat the nitroglycerin vapors that are emitted. One such technology was photocatalysis of the

  8. AFOSR Mission Critical STEAM Program

    DTIC Science & Technology

    2014-02-10

    recently established several new academic and research facilities in the sciences, and most impressively in the area of Ecology and Biotechnology. Alcorn...the Taiwanese culture • To participate in language and cultural immersion programs • To use Mandarin to function optimally in Taiwan • To forge new...science and mathematics would significantly improve STEAM matriculation in college. In any industry, productivity is a function of the raw material

  9. 40 CFR 63.11166 - What General Provisions apply to primary beryllium production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Beryllium Production Facilities § 63.11166 What General Provisions apply to primary beryllium production facilities? (a) You must... primary beryllium production facilities? 63.11166 Section 63.11166 Protection of Environment ENVIRONMENTAL...

  10. Solar synthesis of advanced materials: A solar industrial program initiative

    NASA Astrophysics Data System (ADS)

    Lewandowski, A.

    1992-06-01

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000 C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  11. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  12. 18 CFR 292.204 - Criteria for qualifying small power production facilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE PUBLIC UTILITY REGULATORY... production capacity of any other small power production facilities that use the same energy resource, are... production facilities within one mile of such facilities. (b) Fuel use. (1)(i) The primary energy source of...

  13. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  14. 40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...

  15. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less

  16. Carbon Fiber Composite Materials for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Jr., Robert E.; Mainka, Hendrik

    Volkswagen (VW) is internationally recognized for quantity and quality of world-wide vehicle production and the Oak Ridge National Laboratory (ORNL) is internationally recognized in materials research and development. With automotive production ramping up in the recently constructed VW Group of America facility in Chattanooga, Tennessee, ORNL and VW initiated discussions in 2012 concerning opportunities for collaboration around ORNL’s carbon fiber and composites programs. ORNL is conducting an internationally recognized program to develop and implement lower cost carbon fibers and composites for automotive and other “energy missions” for the US Department of Energy. Significant effort is ongoing in selecting, developing, andmore » evaluating alternative precursors, developing and demonstrating advanced conversion techniques, and developing and tailoring surface treatment, sizings, and formatting fiber for specific composite matrices and end-use applications. ORNL already had North America’s most comprehensive suite of tools for carbon fiber research and development and established a semiproduction demonstration line referred to as the Carbon Fiber Technology Facility (CFTF) to facilitate implementation of low cost carbon fiber (LCCF) approaches in early 2013. ORNL and VW agreed to collaborate in a formal Cooperative Research and Development Agreement (NFE-12-03992) specifically focused on evaluating applicability of low cost carbon fiber products for potential vehicle components. The goal of the work outlined in this report was to develop and qualify uses for carbon fiber-reinforced structures in connection with civilian ground transportation. Significant progress was achieved in evaluating and understanding lignin-based precursor materials; however, availability of carbon fiber converted from lignin precursor combined with logistical issues associated with the Visa limitations for the VW participant resulted in significantly shortening of the collaboration period and development of the targeted application(s). Alternatively, objectives of this work have been refined and are now largely being pursued through the involvement of ORNL and VW participation in the more recently established Innovation for Advanced Composites Manufacturing Innovation (IACMI) where composite materials applications are being demonstrated in a much larger scope.« less

  17. SU-E-T-264: New Concrete Designed and Evaluation for Megavoltage X Radiotherapy Facilities (CONTEK-RFH2).

    PubMed

    Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A

    2012-06-01

    The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.

  18. Free and Innovative Teaching Resources for STEM Educators

    NASA Astrophysics Data System (ADS)

    Weber, W. J.; McWhirter, J.; Dirks, D.

    2014-12-01

    The Unidata Program Center has implemented a teaching resource facility that allows educators to create, access, and share collections of resource material related to atmospheric, oceanic, and other earth system phenomena. While the facility can manage almost any type of electronic resource, it is designed with scientific data and products, teaching tools such as lesson plans and guided exercises, and tools for displaying data in mind. In addition to being very easy for educators and students to access, the facility makes it simple for other educators and scientists to contribute content related to their own areas of expertise to the collection. This allows existing teaching resources to grow in depth and breadth over time, enhancing their relevance and providing insights from multiple disciplines. Based on the open-source RAMADDA content/data management framework, the teaching resource facility provides a variety of built-in services to analyze and display data, as well as support for Unidata's rich 3D client, the Interactive Data Viewer (IDV).

  19. KSC-97PC1462

    NASA Image and Video Library

    1997-09-15

    United States Microgravity Payload-4 (USMP-4) experiments are prepared to be flown on Space Shuttle mission STS-87 in the Space Station Processing Facility at Kennedy Space Center (KSC). A technician is working on the Advanced Automated Directional Solidification Furnace (AADSF), which will be used by researchers to study the solidification of semiconductor materials in microgravity. Scientists will be able to better understand how microgravity influences the solidification process of these materials and develop better methods for controlling that process during future Space flights and Earth-based production. All STS-87 experiments are scheduled for launch on Nov. 19 from KSC

  20. Materials Characterization Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Characterization Laboratory Materials Characterization Laboratory The Energy Systems Integration Facility's Materials Characterization Laboratory supports the physical and photo -electrochemical characterization of novel materials. Photo of an NREL researcher preparing samples for a gas

  1. Reuse of assembly systems: a great ecological and economical potential for facility suppliers

    NASA Astrophysics Data System (ADS)

    Weule, Hartmut; Buchholz, Carsten

    2001-02-01

    In addition to the consumer goods, capital goods offer a great potential for ecological and economic optimization. In view of this fact the project WiMonDi (Re-Use of Assembly Systems as new Business Fields), started in September 1998, focuses a marketable Remanufacturing and Re-Use of modules and components of assembly systems by using technically and organizationally continuous concepts. The objective of the closed Facility-Management-System is to prolong the serviceable lifespan of assembly facilities through the organized dismantling, refurbishment and reconditioning of the assembly facilities as well as their components. Therefore, it is necessary to develop easible and methodical strategies to realize a workable Re-Use concept. Within the project the focus is based on the optimization of Re-Use-strategies - the direct Re-Use, the Re-Use including Refurbishment as well as Material Recycling. The decision for an optimal strategy depends on economical (e.g. residual value, cost/benefit of relevant processes, etc.), ecological (e.g. pollutant components /substances), etc.) and technical parameters (e.g. reliability, etc.). For the purpose to integrate the total cost-of-ownership of products or components, WiMonDi integrates the costs of the use of products as well as the Re-Use costs/benefits. To initiate the conception of new distribution and user models between the supplier and the user of assembly facilities the described approach is conducted in close cooperation between Industry and University.

  2. 76 FR 30781 - Confidentiality Determinations for Data Required Under the Mandatory Greenhouse Gas Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    .......... 325199 Adipic acid manufacturing facilities. Aluminum Production 331312 Primary Aluminum production.... Cement Production 327310 Portland Cement manufacturing plants. Ferroalloy Production........ 331112 Ferroalloys manufacturing facilities. Glass Production 327211 Flat glass manufacturing facilities. 327213...

  3. The UCL NASA 3D-RPIF Imaging Centre - a status report.

    NASA Astrophysics Data System (ADS)

    Muller, J.-P.; Grindrod, P.

    2013-09-01

    The NASA RPIF (Regional Planetary Imaging Facility) network of 9 US and 8 international centres were originally set-up in 1977 to "maintain photographic and digital data as well as mission documentation and cartographic data. Each facility's general holding contains images and maps of planets and their satellites taken by solar system exploration spacecraft. These planetary image facilities are open to the public. The facilities are primarily reference centers for browsing, studying, and selecting lunar and planetary photographic and cartographic materials. Experienced staff can assist scientists, educators, students, media, and the public in ordering materials for their own use." In parallel, the NASA Planetary Data System (PDS) and ESA Planetary Science Archive (PSA) were set-up to distribute digital data initially on media such as CDROM and DVD but now entirely online. The UK NASA RPIF was the first RPIF to be established outside of the US, in 1980. In [1], the 3D-RPIF is described. Some example products derived using this equipment are illustrated here. In parallel, at MSSL a large linux cluster and associated RAID_based system has been created to act as a mirror PDS Imaging node so that huge numbers of rover imagery (from MER & MSL to begin with) and very high resolution (large size) data is available to users of the RPIF and a variety of EU-FP7 projects based at UCL.

  4. Macroscopic and microscopic variation in recovered magnesium phosphate materials: implications for phosphorus removal processes and product re-use.

    PubMed

    Massey, Michael S; Ippolito, James A; Davis, Jessica G; Sheffield, Ron E

    2010-02-01

    Phosphorus (P) recovery and re-use will become increasingly important for water quality protection and sustainable nutrient cycling as environmental regulations become stricter and global P reserves decline. The objective of this study was to examine and characterize several magnesium phosphates recovered from actual wastewater under field conditions. Three types of particles were examined including crystalline magnesium ammonium phosphate hexahydrate (struvite) recovered from dairy wastewater, crystalline magnesium ammonium phosphate hydrate (dittmarite) recovered from a food processing facility, and a heterogeneous product also recovered from dairy wastewater. The particles were analyzed using "wet" chemical techniques, powder X-ray diffraction (XRD), and scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy (SEM-EDS). The struvite crystals had regular and consistent shape, size, and structure, and SEM-EDS analysis clearly showed the struvite crystals as a surface precipitate on calcium phosphate seed material. In contrast, the dittmarite crystals showed no evidence of seed material, and were not regular in size or shape. The XRD analysis identified no crystalline magnesium phosphates in the heterogeneous product and indicated the presence of sand particles. However, magnesium phosphate precipitates on calcium phosphate seed material were observed in this product under SEM-EDS examination. These substantial variations in the macroscopic and microscopic characteristics of magnesium phosphates recovered under field conditions could affect their potential for beneficial re-use and underscore the need to develop recovery processes that result in a uniform, consistent product.

  5. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...

  6. 40 CFR 122.24 - Concentrated aquatic animal production facilities (applicable to State NPDES programs, see § 123...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE... animal production facility means a hatchery, fish farm, or other facility which meets the criteria in... any warm or cold water aquatic animal production facility as a concentrated aquatic animal production...

  7. 18 CFR 292.602 - Exemption to qualifying facilities from the Public Utility Holding Company Act of 2005 and...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... PRODUCTION AND COGENERATION Exemption of Qualifying Small Power Production Facilities and Cogeneration... small power production facility with a power production capacity over 30 megawatts if such facility produces electric energy solely by the use of biomass as a primary energy source. (b) Exemption from the...

  8. 18 CFR 292.602 - Exemption to qualifying facilities from the Public Utility Holding Company Act of 2005 and...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PRODUCTION AND COGENERATION Exemption of Qualifying Small Power Production Facilities and Cogeneration... small power production facility with a power production capacity over 30 megawatts if such facility produces electric energy solely by the use of biomass as a primary energy source. (b) Exemption from the...

  9. 18 CFR 292.602 - Exemption to qualifying facilities from the Public Utility Holding Company Act of 2005 and...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PRODUCTION AND COGENERATION Exemption of Qualifying Small Power Production Facilities and Cogeneration... small power production facility with a power production capacity over 30 megawatts if such facility produces electric energy solely by the use of biomass as a primary energy source. (b) Exemption from the...

  10. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  11. Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors.

    PubMed

    Abdelkader, Amr M; Vallés, Cristina; Cooper, Adam J; Kinloch, Ian A; Dryfe, Robert A W

    2014-11-25

    Herein we present a green and facile approach to the successful reduction of graphene oxide (GO) materials using molten halide flux at 370 °C. GO materials have been synthesized using a modified Hummers method and subsequently reduced for periods of up to 8 h. Reduced GO (rGO) flakes have been characterized using X-ray-diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), all indicating a significantly reduced amount of oxygen-containing functionalities on the rGO materials. Furthermore, impressive electrical conductivities and electrochemical capacitances have been measured for the rGO flakes, which, along with the morphology determined from scanning electron microscopy, highlight the role of surface corrugation in these rGO materials.

  12. Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwok, Kwan S.

    Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less

  13. Thermal Storage Materials Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    | NREL Materials Laboratory Thermal Storage Materials Laboratory In the Energy Systems Integration Facility's Thermal Storage Materials Laboratory, researchers investigate materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar

  14. Long Duration Space Materials Exposure (LDSE)

    NASA Technical Reports Server (NTRS)

    Allen, David; Schmidt, Robert

    1992-01-01

    The Center on Materials for Space Structures (CMSS) at Case Western Reserve University is one of seventeen Commercial Centers for the Development of Space. It was founded to: (1) produce and evaluate materials for space structures; (2) develop passive and active facilities for materials exposure and analysis in space; and (3) develop improved material systems for space structures. A major active facility for materials exposure is proposed to be mounted on the exterior truss of the Space Station Freedom (SSF). This Long Duration Space Materials Exposure (LDSE) experiment will be an approximately 6 1/2 ft. x 4 ft. panel facing into the velocity vector (RAM) to provide long term exposure (up to 30 years) to atomic oxygen, UV, micro meteorites, and other low earth orbit effects. It can expose large or small active (instrumented) or passive samples. These samples may be mounted in a removable Materials Flight Experiment (MFLEX) carrier which may be periodically brought into the SSF for examination by CMSS's other SSF facility, the Space Materials Evaluation Facility (SMEF), which will contain a Scanning Electron Microscope, a Variable Angle & Scanning Ellipsometer, a Fourier Transform Infrared Spectrometer, and other analysis equipment. These facilities will allow commercial firms to test their materials in space and promptly obtain information on their materials survivability in the LEO environment.

  15. Network modeling for reverse flows of end-of-life vehicles.

    PubMed

    Ene, Seval; Öztürk, Nursel

    2015-04-01

    Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles' recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 36 CFR 1254.20 - What general policies apply in all NARA facilities where archival materials are available for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... What general policies apply in all NARA facilities where archival materials are available for research... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false What general policies apply in all NARA facilities where archival materials are available for research? 1254.20 Section 1254.20...

  17. 40 CFR 63.7936 - What requirements must I meet if I transfer remediation material off-site to another facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer remediation material off-site to another facility? 63.7936 Section 63.7936 Protection of... Hazardous Air Pollutants: Site Remediation General Compliance Requirements § 63.7936 What requirements must I meet if I transfer remediation material off-site to another facility? (a) If you transfer to...

  18. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinheimer, E.

    2012-08-06

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at themore » labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.« less

  19. A roadmap for cost-of-goods planning to guide economic production of cell therapy products.

    PubMed

    Lipsitz, Yonatan Y; Milligan, William D; Fitzpatrick, Ian; Stalmeijer, Evelien; Farid, Suzanne S; Tan, Kah Yong; Smith, David; Perry, Robert; Carmen, Jessica; Chen, Allen; Mooney, Charles; Fink, John

    2017-12-01

    Cell therapy products are frequently developed and produced without incorporating cost considerations into process development, contributing to prohibitively costly products. Herein we contextualize individual process development decisions within a broad framework for cost-efficient therapeutic manufacturing. This roadmap guides the analysis of cost of goods (COG) arising from tissue procurement, material acquisition, facility operation, production, and storage. We present the specific COG considerations related to each of these elements as identified through a 2013 International Society for Cellular Therapy COG survey, highlighting the differences between autologous and allogeneic products. Planning and accounting for COG at each step in the production process could reduce costs, allowing for more affordable market pricing to improve the long-term viability of the cell therapy product and facilitate broader patient access to novel and transformative cell therapies. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  1. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  2. 18 CFR 292.208 - Special requirements for hydroelectric small power production facilities located at a new dam or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for hydroelectric small power production facilities located at a new dam or diversion. 292.208 Section... requirements for hydroelectric small power production facilities located at a new dam or diversion. (a) A hydroelectric small power production facility that impounds or diverts the water of a natural watercourse by...

  3. Meteoroid and Debris Impact Features Documented on the Long Duration Exposure Facility

    DTIC Science & Technology

    1990-08-01

    surfaces was very different from the hole production (penetration) mechanism in true thin films; the laminated structure was never actually penetrated...16 METEOROID & DEBRIS SPECIAL INVESTIGATION GROUP Impacts into laminated polymeric films, such as the Kapton test specimens on experiment A0138...several layers of carbon, glass, and/or Kevlar woven fiber cloth laminated together with resin binders. Impact features in these materials were

  4. The search for CFC alternatives is over?

    NASA Technical Reports Server (NTRS)

    Crawford, Tim

    1995-01-01

    The Electronics Manufacturing Productivity Facility (EMPF) is a U.S. Navy Center of Excellence tasked to do research in electronics manufacturing. For the past seven years, the EMPF has performed extensive research in various cleaning materials and processes that have recently been made available to printed circuit board assemblers. This paper outlines our research and points out the positive and negative aspects that need to be considered when choosing an alternative process.

  5. Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, A. C.; Bradley, P. A.; Grim, G. P.

    2010-01-15

    Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIFmore » production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.« less

  6. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2017-12-11

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.

  7. Alternative Fuel Research in Fischer-Tropsch Synthesis

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.

    2011-01-01

    NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.

  8. Microgravity strategic plan, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Microgravity program is to utilize the unique characteristics of the space environment, primarily the near absence of gravity, to understand the role of gravity in materials processing, and to demonstrate the feasibility of space production of improved materials that have high technological, and possible commercial, utility. The following five goals for the Microgravity Program are discussed: (1) Develop a comprehensive research program in fundamental sciences, materials science, and biotechnology for the purpose of attaining a structured understanding of gravity dependent physical phenomena in both Earth and non-Earth environments; (2) Foster the growth of interdisciplinary research community to conduct research in the space environment; (3) Encourage international cooperation for the purpose of conducting research in the space environment; (4) Utilize a permanently manned, multi-facility national microgravity laboratory in low-Earth orbit to provide a long-duration, stable microgravity environment; (5) Promote industrial applications of space research for the development of new, commercially viable products, services, and markets resulting from research in the space environment.

  9. 40 CFR 63.9565 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Friction materials manufacturing facility means a facility that manufactures friction materials using a... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Friction Materials Manufacturing... components used in the manufacture of friction materials, excluding the HAP solvent. Friction ingredients...

  10. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-09-15

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R and D items including radiation damage, heat removal and material compatibility: (2) few operation/maintenance/processing works; (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  11. Plutonium (TRU) transmutation and {sup 233}U production by single-fluid type accelerator molten-salt breeder (AMSB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukaw, Kazuo; Kato, Yoshio; Chigrinov, Sergey E.

    1995-10-01

    For practical/industrial disposition of Pu(TRU) by accelerator facility, not only physical soundness and safety but also the following technological rationality should be required: (1) few R&D items including radiation damage, heat removal and material compatibility; (2) few operation/maintenance/processing works: (3) few reproduction of radioactivity; (4) effective energy production in parallel. This will be achieved by the new modification of Th-fertilizing Single-Fluid type Accelerator Molten-Salt Breeder (AMSB), by which a global nuclear energy strategy for next century might be prepared.

  12. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less

  13. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less

  14. 7 CFR Appendix C to Subpart E of... - Guidelines for Loan Guarantees for Alcohol Fuel Production Facilities

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities necessary for the production and storage of alcohol and the processing of the by-products of alcohol production. The intent is to limit the alcohol and by-products processing facilities to those... alcohol or by-products in another manufacturing process, are not considered part of the alcohol production...

  15. Preliminary investigation of parasitic radioisotope production using the LANL IPF secondary neutron flux

    NASA Astrophysics Data System (ADS)

    Engle, J. W.; Kelsey, C. T.; Bach, H.; Ballard, B. D.; Fassbender, M. E.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2012-12-01

    In order to ascertain the potential for radioisotope production and material science studies using the Isotope Production Facility at Los Alamos National Lab, a two-pronged investigation has been initiated. The Monte Carlo for Neutral Particles eXtended (MCNPX) code has been used in conjunction with the CINDER 90 burnup code to predict neutron flux energy distributions as a result of routine irradiations and to estimate yields of radioisotopes of interest for hypothetical irradiation conditions. A threshold foil activation experiment is planned to study the neutron flux using measured yields of radioisotopes, quantified by HPGe gamma spectroscopy, from representative nuclear reactions with known thresholds up to 50 MeV.

  16. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...

  17. Temporal narrowing of neutrons produced by high-intensity short-pulse lasers

    DOE PAGES

    Higginson, D. P.; Vassura, L.; Gugiu, M. M.; ...

    2015-07-28

    The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ~3 ns duration neutron pulse with 10 4 n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. Finally, this neutron pulse compares favorably to the duration of conventional accelerator sources andmore » should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.« less

  18. Developing an institutional strategy for transporting defense transuranic waste materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrero, J.V.; Kresny, H.S.

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key tomore » the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.« less

  19. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less

  20. Pyroprocessing of fast flux test facility nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less

  1. Toward the framework and implementation for clearance of materials from regulated facilities.

    PubMed

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.

  2. A quarantine protocol for analysis of returned extraterrestrial samples

    NASA Technical Reports Server (NTRS)

    Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.

    1983-01-01

    A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.

  3. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption.

    PubMed

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-08

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50-100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10-20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is -47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below -10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  4. Facile approach to fabricate BCN/Fe x (B/C/N) y nano-architectures with enhanced electromagnetic wave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zhang, Jian; Luo, Heng; Deng, Lianwen; Zhou, Pengyu; Wen, Guangwu; Xia, Long; Zhong, Bo; Zhang, Haibin

    2018-06-01

    Carbon-based materials have excited extensive interest for their remarkable electrical properties and low density for application in electromagnetic (EM) wave absorbents. However, the processing of heteroatoms doping in carbon nanostructures is an insuperable challenge for attaining effective reflection loss and EM matching. Herein, a facile method for large-scale synthesis of boron and nitrogen doped carbon nanotubes decorated by ferrites particles is proposed. The BCN nanotubes (50–100 nm in diameter) imbedded with nanosized Fe x (B/C/N) y (10–20 nm) are successfully constructed by two steps of polymerization and carbonthermic reduction. The product exhibits an outstanding reflection loss (RL) performance, in that the minimum RL is ‑47.97 dB at 11.44 GHz with a broad bandwidth 11.2 GHz (from 3.76 to 14.9 GHz) below ‑10 dB indicating a competitive absorbent in stealth materials. Crystalline and theoretical studies of the absorption mechanism indicate a unique dielectric dispersion effect in the absorbing bandwidth.

  5. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties.

    PubMed

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-02-24

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  6. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptablemore » for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.« less

  7. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  8. Scalable fabrication of nanostructured devices on flexible substrates using additive driven self-assembly and nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Watkins, James

    2013-03-01

    Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.

  9. Acoustic levitation for high temperature containerless processing in space

    NASA Technical Reports Server (NTRS)

    Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.

  10. Cratos: A Simple Low Power Excavation and Hauling System for Lunar Oxygen Production and General Excavation Tasks

    NASA Technical Reports Server (NTRS)

    Caruso, John J.; Greer, Lawrence C.; John, Wentworth T.; Spina, Dan C.; Krasowski, Mike J.; Abel, Phillip B.; Prokop, Norman F.; Flatico, Joseph M.; Sacksteder, Kurt R.

    2007-01-01

    The development of a robust excavating and hauling system for lunar and planetary excavation is critical to the NASA mission to the Moon and Mars. Cratos was developed as a low center of gravity, small (.75m x .75m x 0.3m), low power tracked test vehicle. The vehicle was modified to excavate and haul because it demonstrated good performance capabilities in a laboratory and field testing. Tested on loose sand in the SLOPE facility, the vehicle was able to pick up, carry, and dump sand, allowing it to accomplish the standard requirements delivery of material to a lunar oxygen production site. Cratos can pick up and deliver raw material to a production plant, as well as deliver spent tailings to a disposal site. The vehicle can complete many other In-Situ Resource Utilization (ISRU) excavation chores and in conjunction with another vehicle or with additional attachments may be able to accomplish all needed ISRU tasks.

  11. Preparation of Gd Loaded Liquid Scintillator for Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Ya-yun, Ding; Zhi-yong, Zhang

    2010-05-01

    Gadolinium loaded liquid scintillator (Gd-LS) is an excellent target material for reactor antineutrino experiments. Ideal Gd-LS should have long attenuation length, high light yield, long term stability, low toxicity, and should be compatible with the material used to build the detector. We have developed a new Gd-LS recipe in which carboxylic acid 3,5,5-trimethylhexanoic acid is used as the complexing ligand to gadolinium, 2,5-diphenyloxazole (PPO) and 1,4-bis[2-methylstyryl]benzene (bis-MSB) are used as primary fluor and wavelength shifter, respectively. The scintillator base is linear alkyl benzene (LAB). Eight hundred liters of Gd-LS has been synthesized and tested in a prototype detector. Results show that the Gd-LS has high quality and is suitable for underground experiments in large quantity. Large scale production facility has been built. A full batch production of 4 t Gd-LS has been produced and monitored for several months. The production of 180 t Gd-LS will be carried out in the near future.

  12. A Clonal Selection Algorithm for Minimizing Distance Travel and Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit

    2018-03-01

    The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.

  13. NASA Helps Keep the Light Burning for the Saturn Car Company

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Saturn Electronics & Engineering, Inc. (Saturn) facility in Marks, Miss., that produces lamp assemblies was experiencing itermittent problems with its automotive under the hood lamps. After numerous testing and engineering efforts, technicians could not pin down the root of the problem. So Saturn contacted the NASA Technology Assistance Program (TAP) at Stennis Space Center. The Marks production facility had been experiencing intermittent problems with under the hood lamp assemblies for some time. The failure rate, at 2 percent, was unacceptable. Every effort was made to identify the problem so that corrective action could be put in place. The problem was investigated and researched by Saturn's engineering department. In addition, Saturn brought in several independent testing laboratories. Other measures included examining the switch component suppliers and auditing them for compliance to the design specifications and for surface contaminants. All attempts to identify the factors responsible for the failures were inconclusive. In an effort to get to the root of the problem, and at the recommendation of the Mississippi Department of Economic Development, Saturn contacted the NASA TAP at Stennis. The NASA Materials and Contamination Laboratory, with assistance from the Stennis Prototype Laboratory, conducted a materials evaluation study on the switch components. The laboratory findings showed the failures were caused by a build-up of carbon-based contaminants on the switch components. Saturn Electronics & Engineering, Inc., is a minority-owned provider of contract manufacturing services to a diverse global marketplace. Saturn operates manufacturing facilities globally serving the North American, European, and Asian markets. Saturn's production facility in Marks, Mississippi, produces more than 1,000,000 lamps and switches monthly. "Since the NASA recommendations were implemented, our internal failure rate for intermittency has dropped to less than .02 percent. Most importantly, we restored our high-level of customer satisfaction. Stennis provided an invaluable service to our business," Patrick said. Both NASA and Saturn were pleased with the results form this technical assistance project. The Technology Assistance Program at Stennis makes available to the public NASA technical expertise and access to lab facilities. This project provided both services with a positive outcome.

  14. Analytical study of space processing of immiscible materials for superconductors and electrical contacts

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Collings, E. W.; Abbott, W. H.; Maringer, R. E.

    1977-01-01

    The results of a study conducted to determine the role space processing or materials research in space plays in the superconductor and electrical contact industries are presented. Visits were made to manufacturers, users, and research organizations connected with these products to provide information about the potential benefits of the space environment and to exchange views on the utilization of space facilities for manufacture, process development, or research. In addition, space experiments were suggested which could result in improved terrestrial processes or products. Notable examples of these are, in the case of superconductors, the development of Nb-bronze alloys (Tsuei alloys) and, in the electrical contact field, the production of Ag-Ni or Ag-metal oxide alloys with controlled microstructure for research and development activities as well as for product development. A preliminary experimental effort to produce and evaluate rapidly cooled Pb-Zn and Cu-Nb-Sn alloys in order to understand the relationship between microstructure and superconducting properties and to simulate the fine structure potentially achievable by space processing was also described.

  15. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production ofmore » medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.« less

  16. 20 CFR 655.1150 - What materials must be available to the public?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Facility Meet to Employ H-1C Nonimmigrant Workers as Registered Nurses? § 655.1150 What materials must be... facility employs any H-1C nurse under the Attestation, the facility must maintain a separate file...

  17. Radiological Protection and Nuclear Engineering Studies in Multi-MW Target Systems

    NASA Astrophysics Data System (ADS)

    Luis, Raul Fernandes

    Several innovative projects involving nuclear technology have emerged around the world in recent years, for applications such as spallation neutron sources, accelerator-driven systems for the transmutation of nuclear waste and radioactive ion beam (RIB) production. While the available neutron Wuxes from nuclear reactors did not increase substantially in intensity over the past three decades, the intensities of neutron sources produced in spallation targets have increased steadily, and should continue to do so during the 21st century. Innovative projects like ESS, MYRRHA and EURISOL lie at the forefront of the ongoing pursuit for increasingly bright neutron sources; driven by proton beams with energies up to 2 GeV and intensities up to several mA, the construction of their proposed facilities involves complex Nuclear Technology and Radiological Protection design studies executed by multidisciplinary teams of scientists and engineers from diUerent branches of Science. The intense neutron Wuxes foreseen for those facilities can be used in several scientiVc research Velds, such as Nuclear Physics and Astrophysics, Medicine and Materials Science. In this work, the target systems of two facilitites for the production of RIBs using the Isotope Separation On-Line (ISOL) method were studied in detail: ISOLDE, operating at CERN since 1967, and EURISOL, the next-generation ISOL facility to be built in Europe. For the EURISOL multi-MW target station, a detailed study of Radiological Protection was carried out using the Monte Carlo code FLUKA. Simulations were done to assess neutron Wuences, Vssion rates, ambient dose equivalent rates during operation and after shutdown and the production of radioactive nuclei in the targets and surrounding materials. DiUerent materials were discussed for diUerent components of the target system, aiming at improving its neutronics performance while keeping the residual activities resulting from material activation as low as possible. The second goal of this work was to perform an optimisation study for the ISOLDE neutron converter and Vssion target system. The target system was simulated using FLUKA and the cross section codes TALYS and ABRABLA, with the objective of maximising the performance of the system for the production of pure beams of neutron-rich isotopes, suppressing the contaminations by undesired neutron-deficient isobars. Two alternative target systems were proposed in the optimisation studies; the simplest of the two, with some modiVcations, was built as a prototype and tested at ISOLDE. The experimental results clearly show that it is possible, with simple changes in the layouts of the target systems, to produce purer beams of neutron-rich isotopes around the doubly magic nuclei 78Ni and 132Sn. A study of Radiological Protection was also performed, comparing the performances of the prototype target system and the standard ISOLDE target system. None

  18. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  19. 10 CFR 50.22 - Class 103 licenses; for commercial and industrial facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities. 50.22 Section 50.22 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND..., transfer, acquire, possess, or use a production or utilization facility for industrial or commercial purposes; Provided, however, That in the case of a production or utilization facility which is useful in...

  20. Humidity effects on soluble core mechanical and thermal properties (polyvinyl alcohol/microballoon composite) type CG extendospheres, volume 2

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.

  1. Progress toward development of a platform for studying burn in the presence of mix on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.

    2013-10-01

    Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  2. Mass production of bulk artificial nacre with excellent mechanical properties.

    PubMed

    Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong

    2017-08-18

    Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.

  3. 20 CFR 655.1150 - What materials must be available to the public?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Facility Meet to Employ H-1C Nonimmigrant Workers as Registered Nurses? § 655.1150 What materials must be... thereafter for so long as the facility employs any H-1C nurse under the Attestation, the facility must...

  4. 14 CFR 145.103 - Housing and facilities requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...

  5. 14 CFR 145.103 - Housing and facilities requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...

  6. 14 CFR 145.103 - Housing and facilities requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...

  7. 14 CFR 145.103 - Housing and facilities requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....103 Section 145.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., Materials, and Data § 145.103 Housing and facilities requirements. (a) Each certificated repair station must provide— (1) Housing for the facilities, equipment, materials, and personnel consistent with its ratings...

  8. Survey of the US materials processing and manufacturing in space program

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  9. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  10. The Military Significance of Small Uranium Enrichment Facilities Fed with Low-Enrichment Uranium (Redacted)

    DTIC Science & Technology

    1969-12-01

    a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel

  11. Resources of Near-Earth Space: Abstracts

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The objectives are by theory, experiment, and bench-level testing of small systems, to develop scientifically-sound engineering processes and facility specifications for producing propellants and fuels, construction and shielding materials, and life support substances from the lithospheres and atmospheres of lunar, planetary, and asteroidal bodies. Current emphasis is on the production of oxygen, other usefull gases, metallic, ceramic/composite, and related byproducts from lunar regolith, carbonaceous chrondritic asteroids, and the carbon dioxide rich Martian atmosphere.

  12. Northeast Oregon Hatchery Project, Final Siting Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and directmore » release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.« less

  13. Solutions to health care waste: life-cycle thinking and "green" purchasing.

    PubMed

    Kaiser, B; Eagan, P D; Shaner, H

    2001-03-01

    Health care waste treatment is linked to bioaccumulative toxic substances, such as mercury and dioxins, which suggests the need for a new approach to product selection. To address environmental issues proactively, all stages of the product life cycle should be considered during material selection. The purchasing mechanism is a promising channel for action that can be used to promote the use of environmentally preferable products in the health care industry; health care facilities can improve environmental performance and still decrease costs. Tools that focus on environmentally preferable purchasing are now emerging for the health care industry. These tools can help hospitals select products that create the least amount of environmental pollution. Environmental performance should be incorporated into the evolving definition of quality for health care.

  14. Compliance with the Aerospace MACT Standard at Lockheed Martin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurucz, K.L.; Vicars, S.; Fetter, S.

    1997-12-31

    Actions taken and planned at four Lockheed Martin Corporation (LMC) facilities to comply with the Aerospace MACT Standard are reviewed. Many LMC sites have taken proactive steps to reduce emissions and implement low VOC coating technology. Significant administrative, facility, and material challenges remain to achieve compliance with the upcoming NESHAP and Control Technology Guideline (CTG) standards. The facilities discussed herein set up programs to develop and implement compliance strategies. These facilities manufacture military aircraft, missiles, satellites, rockets, and electronic guidance and communications systems. Some of the facilities are gearing up for new production lines subject to new source MACT standards.more » At this time the facilities are reviewing compliance status of all primers, topcoats, maskants and solvents subject to the standard. Facility personnel are searching for the most efficient methods of satisfying the recordkeeping, reporting and monitoring, sections of the standards while simultaneously preparing or reviewing their Title V permit applications. Facility decisions on paint booths are the next highest priority. Existing dry filter paint booths will be subject to the filtration standard for existing paint booths which requires the use of two-stage filters. Planned paint booths for the F-22 program, and other new booths must comply with the standard for new and rebuilt booths which requires three stage or HEPA filters. Facilities looking to replace existing water wash paint booths, and those required to retrofit the air handling equipment to accommodate the two-stage filters, are reviewing issues surrounding the rebuilt source definition.« less

  15. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  16. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  17. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  18. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  19. 7 CFR 1424.10 - Succession and control of facilities and production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Succession and control of facilities and production... § 1424.10 Succession and control of facilities and production. A person who obtains a facility that is... grant such request if it is determined that permitting such succession would serve the purposes of the...

  20. Successful implementation of property cleanup under the Ohio and the Texas voluntary programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roffman, A.

    1999-07-01

    Cleanups of two properties, one located in Ohio and the other in Texas were successfully implemented. The facilities were printing plants that manufactured printed material and forms for commercial and industrial use. Primary products and chemicals involved in the manufacturing of the forms included ink, petroleum products and cleaning solvents. The Ohio property underwent a successful cleanup under the Ohio EPA Voluntary Action Program (VAP). It met the Ohio EPA residential land use cleanup standards for soil and shallow groundwater. A No Further Action letter has been submitted to the state and it resulted in the issuance of a Covenantmore » Not to Sue. The Texas facility underwent a successful cleanup under the Texas Natural Resource Conservation Commission (TNRCC) Voluntary Cleanup Program (VCP). It resulted in the issuance of a Certificate of Completion (COC) for residential land use for soil, and a conditional COC for industrial land use for the shallow groundwater.« less

  1. Spin Physics Experiments at NICA-SPD

    NASA Astrophysics Data System (ADS)

    Kouznetsov, O.; Savin, I.

    2017-01-01

    Nuclotron based Ion Collider fAcility (NICA) is a flagship project of the Joint Institute for Nuclear Research which is expected to be operational by 2021. Main tasks of ;NICA Facility; are study of hot and dense baryonic matter, investigation the polarisation phenomena and the nucleon spin structure. The material presented here based on the Letter of Intent (LoI) dedicated to nucleon spin structure studies at NICA. Measurements of asymmetries in the lepton pair (Drell-Yan) production in collisions of non-polarised, longitudinally and transversely polarised proton and deuteron beams to be performed using the specialized Spin Physics Detector (SPD). These measurements can provide an access to all leading twist collinear and Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) in nucleons. The measurements of asymmetries in production of J/ψ and direct photons, which supply complimentary information on the nucleon structure, will be performed simultaneously. The set of these measurements permits to tests the quark-parton model of nucleons at the QCD twist-2 level with minimal systematic errors.

  2. Investigation of the possibility of using hydrogranulation in reprocessing radioactive wastes of radiochemical production facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revyakin, V.; Borisov, L.M.

    1996-05-01

    Radio-chemical production facilities are constantly accumulating liquid radioactive wastes (still residues as the result of evaporation of extraction and adsorption solutions etc.) which are a complex multicomponent mixtures. The wastes are frequently stored for extended periods of time while awaiting disposition and in some cases, and this is much worse, they are released into the environment. In this report, I would like to draw your attention to some results we have obtained from investigations aimed at simplifying handing of such wastes by the precipitation of hard to dissolve metal hydroxides, the flocculation of the above into granules with the helpmore » of surface-active agents (in this case a polyacrylamide - PAA), quickly precipitated and easily filtered. The precipitate may be quickly dried and calcinated, if necessary, and transformed into a dense oxide sinter. In other words it may be transformed into a material convenient for storage or burial.« less

  3. A facile strategy for rapid preparation of graphene spongy balls

    NASA Astrophysics Data System (ADS)

    Wan, Shu; Bi, Hengchang; Xie, Xiao; Su, Shi; Du, Kai; Jia, Haiyang; Xu, Tao; He, Longbing; Yin, Kuibo; Sun, Litao

    2016-09-01

    Porous three dimensional (3D) graphene macrostructures have demonstrated the potential in versatile applications in recent years, including energy storage, sensors, and environment protection, etc. However, great research attention has been focused on the optimization of the structure and properties of graphene-based materials. Comparatively, there are less reports on how to shape 3D graphene macrostructures rapidly and effortlessly, which is critical for mass production in industry. Here, we introduce a facile and efficient method, low temperature frying to form graphene-based spongy balls in liquid nitrogen with a yield of ~400 balls min-1. Moreover, the fabrication process can be easily accelerated by using multi pipettes working at the same time. The graphene spongy balls show energy storage with a specific capacitance of 124 F g-1 and oil adsorbing with a capacity of 105.4 times its own weight. This strategy can be a feasible approach to overcome the low efficiency in production and speed up the development of porous 3D graphene-based macrostructures in industrial applications.

  4. Targets used in the production of radioactive ion beams at the HRIBF

    NASA Astrophysics Data System (ADS)

    Stracener, D. W.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Mueller, P. E.; Bilheux, J. C.

    2004-03-01

    Radioactive ion beams are produced at the Holifield Radioactive Ion Beam Facility using the Isotope Separation On-Line (ISOL) technique where the atoms are produced in a thick target, transported to an ion source, ionized, and extracted from the ion source to form an ion beam. These radioactive ion beams are then accelerated to energies of a few MeV per nucleon and delivered to experimental stations for use in nuclear physics and nuclear astrophysics experiments. At the heart of this facility is the RIB production target, where the radioactive nuclei are produced using beams of light ions (p, d, 3He, α) to induce nuclear reactions in the target nuclei. Several target materials have been developed and used successfully, including Al 2O 3, HfO 2, SiC, CeS, liquid Ge, liquid Ni, and a low-density matrix of uranium carbide. The details of these targets and some of the target developments that led to the delivery of high-quality radioactive ion beams are discussed in this paper.

  5. Photo-ionization of aluminum in a hot cavity for the selective production of exotic species project

    NASA Astrophysics Data System (ADS)

    Scarpa, D.; Makhathini, L.; Tomaselli, A.; Grassi, D.; Corradetti, S.; Manzolaro, M.; Vasquez, J.; Calderolla, M.; Rossignoli, M.; Monetti, A.; Andrighetto, A.; Prete, G.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an Isotope Separation On-Line (ISOL) based accelerator facility that will be built in the Legnaro-Istituto Nazionale di Fisica Nucleare (INFN) Laboratory (Italy), intended to provide intense neutron-rich radioactive ion beams obtained by proton-induced fission of a uranium carbide (UCx) target. Besides this main target material, silicon carbide (SiC) will be the first to be used to deliver p-rich beams. This target will also validate the functionality of the SPES facility with aluminum beam as result of impinging SiC target with proton beam. In the past, off line studies on laser photoionization of aluminum have been performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro; a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. With the new Wien filter installed a better characterization of the ionization process in terms of efficiency was performed and results are discussed.

  6. Mission Risk Reduction Regulatory Change Management

    NASA Technical Reports Server (NTRS)

    Scroggins, Sharon

    2007-01-01

    NASA Headquarters Environmental Management Division supports NASA's mission to pioneer the future in space exploration, scientific discovery, and aeronautics research by integrating environmental considerations into programs and projects early-on, thereby proactively reducing NASA's exposure to institutional, programmatic and operational risk. As part of this effort, NASA established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) as a resource for detecting, analyzing, and communicating environmental regulatory risks to the NASA stakeholder community. The RRAC PC focuses on detecting emerging environmental regulations and other operational change drivers that may pose risks to NASA programs and facilities, and effectively communicating the potential risks. For example, regulatory change may restrict how and where certain activities or operations may be conducted. Regulatory change can also directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Regulatory change can result in significant adverse impacts to NASA programs and facilities due to NASA's stringent performance requirements for materials and components related to human-rated space vehicles. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented a system for proactively managing regulatory change to minimize potential adverse impacts to NASA programs and facilities. This presentation highlights the process utilized by the RRACPC to communicate regulatory change and the associated potential risks within NASA, as well as the process for communicating and cooperating with other government agencies and industry partners, both domestic and international, to ensure mission success.

  7. Production of apple-based baby food: changes in pesticide residues.

    PubMed

    Kovacova, Jana; Kocourek, Vladimir; Kohoutkova, Jana; Lansky, Miroslav; Hajslova, Jana

    2014-01-01

    Apples represent the main component of most fruit-based baby food products. Since not only fruit from organic farming, but also conventionally grown fruit is used for baby food production, the occurrence of pesticide residues in the final product is of high concern. To learn more about the fate of these hazardous compounds during processing of contaminated raw material, apples containing altogether 21 pesticide residues were used for preparation of a baby food purée both in the household and at industrial scale (in the baby food production facility). Within both studies, pesticide residues were determined in raw apples as well as in final products. Intermediate product and by-product were also analysed during the industrial process. Determination of residues was performed by a sensitive multi-detection analytical method based on liquid or gas chromatography coupled with mass spectrometry. The household procedure involved mainly the cooking of unpeeled apples, and the decrease of residues was not extensive enough for most of the studied pesticides; only residues of captan, dithianon and thiram dropped significantly (processing factors less than 0.04). On the other hand, changes in pesticide levels were substantial for all tested pesticides during apple processing in the industrial baby food production facility. The most important operation affecting the reduction of residues was removal of the by-products after pulping (rest of the peel, stem, pips etc.), while subsequent sterilisation has an insignificant effect. Also in this case, captan, dithianon and thiram were identified as pesticides with the most evident decrease of residues.

  8. Development of high temperature liquid metal test facilities for qualification of materials and investigations of thermoelectrical modules

    NASA Astrophysics Data System (ADS)

    Onea, A.; Hering, W.; Reiser, J.; Weisenburger, A.; Diez de los Rios Ramos, N.; Lux, M.; Ziegler, R.; Baumgärtner, S.; Stieglitz, R.

    2017-07-01

    Three classes of experimental liquid metal facilities have been completed during the LIMTECH project aiming the qualification of materials, investigation of thermoelectrical modules, investigation of sodium transitional regimes and fundamental thermo-dynamical flows in concentrating solar power (CSP) relevant geometries. ATEFA facility is dedicated to basic science investigation focussed on the alkali metal thermal-to-electric converter (AMTEC) technology. Three SOLTEC facilities are aimed to be used in different laboratories for long term material investigation sodium environment up to a 1000 K temperature and for long term tests of AMTEC modules. The medium scale integral facility KASOLA is planned as the backbone for CSP development and demonstration.

  9. High Vacuum Creep Facility in the Materials Processing Laboratory

    NASA Image and Video Library

    1973-01-21

    Technicians at work in the Materials Processing Laboratory’s Creep Facility at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The technicians supported the engineers’ studies of refractory materials, metals, and advanced superalloys. The Materials Processing Laboratory contained laboratories and test areas equipped to prepare and develop these metals and materials. The ultra-high vacuum lab, seen in this photograph, contained creep and tensile test equipment. Creep testing is used to study a material’s ability to withstand long durations under constant pressure and temperatures. The equipment measured the strain over a long period of time. Tensile test equipment subjects the test material to strain until the material fails. The two tests were used to determine the strength and durability of different materials. The Materials Processing Laboratory also housed arc and electron beam melting furnaces, a hydraulic vertical extrusion press, compaction and forging equipment, and rolling mills and swagers. There were cryogenic and gas storage facilities and mechanical and oil diffusion vacuum pumps. The facility contained both instrumental and analytical chemistry laboratories for work on radioactive or toxic materials and the only shop to machine toxic materials in the Midwest.

  10. Need for improvements in physical pretreatment of source-separated household food waste.

    PubMed

    Bernstad, A; Malmquist, L; Truedsson, C; la Cour Jansen, J

    2013-03-01

    The aim of the present study was to investigate the efficiency in physical pretreatment processes of source-separated solid organic household waste. The investigation of seventeen Swedish full-scale pretreatment facilities, currently receiving separately collected food waste from household for subsequent anaerobic digestion, shows that problems with the quality of produced biomass and high maintenance costs are common. Four full-scale physical pretreatment plants, three using screwpress technology and one using dispergation technology, were compared in relation to resource efficiency, losses of nitrogen and potential methane production from biodegradable matter as well as the ratio of unwanted materials in produced biomass intended for wet anaerobic digestion. Refuse generated in the processes represent 13-39% of TS in incoming wet waste. The methane yield from these fractions corresponds to 14-36Nm(3)/ton separately collected solid organic household waste. Also, 13-32% of N-tot in incoming food waste is found in refuse. Losses of both biodegradable material and nutrients were larger in the three facilities using screwpress technology compared to the facility using dispersion technology.(1) Thus, there are large potentials for increase of both the methane yield and nutrient recovery from separately collected solid organic household waste through increased efficiency in facilities for physical pretreatment. Improved pretreatment processes could thereby increase the overall environmental benefits from anaerobic digestion as a treatment alternative for solid organic household waste. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Los Alamos Neutron Science Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, andmore » provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.« less

  12. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  13. Gas Sensor Evaluations in Polymer Combustion Product Atmospheres

    NASA Technical Reports Server (NTRS)

    Delgado, Rafael H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.

  14. Developing a byproduct materials information system for the Kentucky Transportation Cabinet.

    DOT National Transportation Integrated Search

    2007-09-01

    Kentucky has numerous coal-fired, electric generating facilities and, as a result, there are abundant byproduct materials being produced from these facilities that have environmental, engineering, and economic potential as materials for use in common...

  15. Sustainable data policy for a data production facility: a work in (continual) progress

    NASA Astrophysics Data System (ADS)

    Ketcham, R. A.

    2017-12-01

    The University of Texas High-Resolution X-Ray Computed Tomography Facility (UTCT) has been producing volumetric data and data products of geological and other scientific specimens and engineering materials for over 20 years. Data volumes, both in terms of the size of individual data sets and overall facility production, have progressively grown and fluctuated near the upper boundary of what can be managed by contemporary workstations and lab-scale servers and network infrastructure, making data policy a preoccupation for our entire history. Although all projects have been archived since our first day of operation, policies on which data to keep (raw, reconstructed after corrections, processed) have varied, and been periodically revisited in consideration of the cost of curation and the likelihood of revisiting and reprocessing data when better techniques become available, such as improved artifact corrections or iterative tomographic reconstruction. Advances in instrumentation regularly make old data obsolete and more advantageous to reacquire, but the simple act of getting a sample to a scanning facility is a practical barrier that cannot be overlooked. In our experience, the main times that raw data have been revisited using improved processing to improve image quality were predictable, high-impact charismatic projects (e.g., Archaeopteryx, A. Afarensis "Lucy"). These cases actually provided the impetus for development of the new techniques (ring and beam hardening artifact reduction), which were subsequently incorporated into our data processing pipeline going forward but were rarely if ever retroactively applied to earlier data sets. The only other times raw data have been reprocessed were when reconstruction parameters were inappropriate, due to unnoticed sample features or human error, which are usually recognized fairly quickly. The optimal data retention policy thus remains an open question, although erring on the side of caution remains the default position.

  16. Analysis of renewable energy projects' implementation in Russia

    NASA Astrophysics Data System (ADS)

    Ratner, S. V.; Nizhegorodtsev, R. M.

    2017-06-01

    With the enactment in 2013 of a renewable energy scheme by contracting qualified power generation facilities working on renewable energy sources (RES), the process of construction and connection of such facilities to the Federal Grid Company has intensified in Russia. In 2013-2015, 93 projects of solar, wind, and small hydropower energy were selected on the basis of competitive bidding in the country with the purpose of subsequent support. Despite some technical and organizational problems and a time delay of some RES projects, in 2014-2015 five solar generating facilities with total capacity of 50 MW were commissioned, including 30 MW in Orenburg oblast. However, the proportion of successful projects is low and amounts to approximately 30% of the total number of announced projects. The purpose of this paper is to analyze the experience of implementation of renewable energy projects that passed through a competitive selection and gained the right to get a partial compensation for the construction and commissioning costs of RES generating facilities in the electric power wholesale market zone. The informational background for the study is corporate reports of project promoters, analytical and information materials of the Association NP Market Council, and legal documents for the development of renewable energy. The methodological base of the study is a theory of learning curves that assumes that cost savings in the production of high-tech products depends on the production growth rate (economy of scale) and gaining manufacturing experience (learning by doing). The study has identified factors that have a positive and a negative impact on the implementation of RES projects. Improvement of promotion measures in the renewable energy development in Russia corresponding to the current socio-economic situation is proposed.

  17. Partnering With NASA JSC for Community Research Needs; Collaborative and Student Opportunities via Jacobs and PSAMS Initiative

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa; Draper, David

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division houses a unique combination of laboratories and other assets for conducting cutting-edge planetary research. These facilities have been accessed for decades by outside scientists; over the past five years, the 16 full time contract research and technical staff members in our division have hosted a total of 223 visiting researchers, representing 35 institutions. In order to continue to provide this level of support to the planetary sciences community, and also expand our services and collaboration within the broader scientific community, we intend to submit a proposal to NASA specifically for facilities support and establishment of our laboratories as a collective, PSAMS, Planetary Sample Analyses and Mission Science. This initiative should result in substantial cost savings to PIs with NASA funding who wish to use our facilities. Another cost saving could be realized by aggregating visiting user experiments and analyses through COMPRES, which would be of particular interest to researchers in earth and material sciences. JSC is a recognized NASA center of excellence for curation, and in future will allow PIs and mission teams easy access to samples in Curation facilities that they have been approved to study. Our curation expertise could also be used for a collection of experimental run products that could be shared and distributed to COMPRES community members. These experimental run products could range from 1 bar controlled atmosphere furnace, piston cylinder, multi-anvil, CETUS (see companion abstract), to shocked products. Coordinated analyses of samples is one of the major strengths of our division, where a single sample can be prepared with minimal destruction for a variety of chemical and structural analyses, from macro to nano-scale.

  18. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  19. 21 CFR 110.37 - Sanitary facilities and controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food-packaging materials, or for employee sanitary facilities. (b) Plumbing. Plumbing shall be of... understandable signs directing employees handling unproteced food, unprotected food-packaging materials, of food... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sanitary facilities and controls. 110.37 Section...

  20. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    NASA Astrophysics Data System (ADS)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling center production design based on maximizing liquid recycled product incorporation and minimizing cast sows. The long term production optimization model was used to evaluate the theoretical viability of the proposed two stage scrap and aluminum dross reprocessing operation including the impact of reducing coordination on model performance. Reducing the coordination between the recycling center and downstream remelters by reducing the number of recycled products from ten to five resulted in only 1.3% less secondary materials incorporated into downstream production. The dynamic simulation tool was used to evaluate the performance of the calculated recycling center production plan when resolved on a daily timeframe for varying levels of operational flexibility. The dynamic simulation revealed the optimal performance corresponded to the fixed recipe with flexible production daily optimization model formulation. Calculating recycled product characteristics using the proposed simulation optimization method increased profitability in cases of uncertain downstream remelter production and expensive aluminum dross and post-consumed secondary materials. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

Top