Sample records for material properties information

  1. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  2. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  3. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  4. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  5. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  6. Materials data handbook: Inconel alloy 718

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for Inconel alloy 718 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  7. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  8. Materials data handbook. Titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for Titanium 6Al-4V alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  9. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  10. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  11. Dielectric properties of agricultural materials and their application

    USDA-ARS?s Scientific Manuscript database

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  12. Establishment of Low Energy Building materials and Equipment Database Based on Property Information

    NASA Astrophysics Data System (ADS)

    Kim, Yumin; Shin, Hyery; eon Lee, Seung

    2018-03-01

    The purpose of this study is to provide reliable service of materials information portal through the establishment of public big data by collecting and integrating scattered low energy building materials and equipment data. There were few cases of low energy building materials database in Korea have provided material properties as factors influencing material pricing. The framework of the database was defined referred with Korea On-line E-procurement system. More than 45,000 data were gathered by the specification of entities and with the gathered data, price prediction models for chillers were suggested. To improve the usability of the prediction model, detailed properties should be analysed for each item.

  13. Cryogenic Information Center

    NASA Technical Reports Server (NTRS)

    Mohling, Robert A.; Marquardt, Eric D.; Fusilier, Fred C.; Fesmire, James E.

    2003-01-01

    The Cryogenic Information Center (CIC) is a not-for-profit corporation dedicated to preserving and distributing cryogenic information to government, industry, and academia. The heart of the CIC is a uniform source of cryogenic data including analyses, design, materials and processes, and test information traceable back to the Cryogenic Data Center of the former National Bureau of Standards. The electronic database is a national treasure containing over 146,000 specific bibliographic citations of cryogenic literature and thermophysical property data dating back to 1829. A new technical/bibliographic inquiry service can perform searches and technical analyses. The Cryogenic Material Properties (CMP) Program consists of computer codes using empirical equations to determine thermophysical material properties with emphasis on the 4-300K range. CMP's objective is to develop a user-friendly standard material property database using the best available data so government and industry can conduct more accurate analyses. The CIC serves to benefit researchers, engineers, and technologists in cryogenics and cryogenic engineering, whether they are new or experienced in the field.

  14. Paradigm Shift in Data Content and Informatics Infrastructure Required for Generalized Constitutive Modeling of Materials Behavior

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    2006-01-01

    Materials property information such as composition and thermophysical/mechanical properties abound in the literature. Oftentimes, however, the corresponding response curves from which these data are determined are missing or at the very least difficult to retrieve. Further, the paradigm for collecting materials property information has historically centered on (1) properties for materials comparison/selection purposes and (2) input requirements for conventional design/analysis methods. However, just as not all materials are alike or equal, neither are all constitutive models (and thus design/ analysis methods) equal; each model typically has its own specific and often unique required materials parameters, some directly measurable and others indirectly measurable. Therefore, the type and extent of materials information routinely collected is not always sufficient to meet the current, much less future, needs of the materials modeling community. Informatics has been defined as the science concerned with gathering, manipulating, storing, retrieving, and classifying recorded information. A key aspect of informatics is its focus on understanding problems and applying information technology as needed to address those problems. The primary objective of this article is to highlight the need for a paradigm shift in materials data collection, analysis, and dissemination so as to maximize the impact on both practitioners and researchers. Our hope is to identify and articulate what constitutes "sufficient" data content (i.e., quality and quantity) for developing, characterizing, and validating sophisticated nonlinear time- and history-dependent (hereditary) constitutive models. Likewise, the informatics infrastructure required for handling the potentially massive amounts of materials data will be discussed.

  15. Organic Materials For Optical Switching

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1993-01-01

    Equations predict properties of candidate materials. Report presents results of theoretical study of nonlinear optical properties of organic materials. Such materials used in optical switching devices for computers and telecommunications, replacing electronic switches. Optical switching potentially offers extremely high information throughout in compact hardware.

  16. Reflector and Shield Material Properties for Project Prometheus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  17. Rheology of Coating Materials and Their Coating Characteristics

    NASA Astrophysics Data System (ADS)

    Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.

    2008-07-01

    Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.

  18. Electronic-Power-Transformer Design Guide

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Lagadinos, J. C.; Ahearn, J. F.

    1983-01-01

    Compilation of information on design procedures, electrical properties, and fabrication. Guide provides information on design procedures; magnetic and insulating material electrical properties; impregnating, encapsulating and processing techniques.

  19. Predicting physical properties of emerging compounds with limited physical and chemical data: QSAR model uncertainty and applicability to military munitions.

    PubMed

    Bennett, Erin R; Clausen, Jay; Linkov, Eugene; Linkov, Igor

    2009-11-01

    Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.

  20. Classification-free threat detection based on material-science-informed clustering

    NASA Astrophysics Data System (ADS)

    Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.

    2017-05-01

    X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.

  1. Thermodynamic data for biomass conversion and waste incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domalski, E.S.; Jobe, T.L. Jr; Milne, T.A.

    1986-09-01

    The general purpose of this collection of thermodynamic data of selected materials is to make property information available to the engineering community on chemical mixtures, polymers, composite materials, solid wastes, biomass, and materials not easily identifiable by a single stoichiometric formula. More than 700 materials have been compiled covering properties such as specific heat, gross heat of combustion, heat of fusion, heat of vaporization, and vapor pressure. The information was obtained from the master files of the NBS Chemical Thermodynamics Data Center, the annual issues of the Bulletin of Chemical Thermodynamics, intermittent examinations of the Chemical Abstracts subject indexes, individualmore » articles by various authors, and other general reference sources. The compilation is organized into several broad categories; materials are listed alphabetically within each category. For each material, the physical state, information as to the composition or character of the material, the kind of thermodynamic property reported, the specific property values for the material, and citations to the reference list are given. In addition, appendix A gives an empirical formula that allows heats of combustion of carbonaceous materials to be predicted with surprising accuracy when the elemental composition is known. A spread sheet illustrates this predictability with examples from this report and elsewhere. Appendix B lists some reports containing heats of combustion not included in this publication. Appendix C contains symbols, units, conversion factors, and atomic weights used in evaluating and compiling the thermodynamic data.« less

  2. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  3. Informed Consent, Body Property, and Self-Sovereignty.

    PubMed

    Rao, Radhika

    2016-09-01

    Recent cases involving biosamples taken from indigenous tribes and newborn babies reveal the emptiness of informed consent. This venerable doctrine often functions as a charade, a collective fiction which thinly masks the uncomfortable fact that the subjects of human research are not actually afforded full information regarding the types of research that may be contemplated, nor do they provide meaningful consent. But if informed consent fails to provide adequate protection to the donors of biological materials, why not turn to principles of property law? Property is power, yet current law permits everyone except for those who donate biological materials to possess property rights. The reluctance to invoke property probably stems from fears of resurrecting slavery and the commodification of human beings. But ironically, avoidance of property transforms the subjects of human research into objects that can be owned only by others, resulting in new forms of oppression and exploitation. Human research subjects are autonomous individuals who should not only possess the power to contribute their biological materials, but also the right to help control the course of research, and to share in the resulting benefits or profits. Conferring body property might enable research subjects to regain power and a measure of self-sovereignty. © 2016 American Society of Law, Medicine & Ethics.

  4. Development of a Novel Method for Determination of Residual Stresses in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    2001-01-01

    Material constitutive properties, which describe the mechanical behavior of a material under loading, are vital to the design and implementation of engineering materials. For homogeneous materials, the standard process for determining these properties is the tensile test, which is used to measure the material stress-strain response. However, a majority of the applications for engineering materials involve the use of heterogeneous materials and structures (i.e. alloys, welded components) that exhibit heterogeneity on a global or local level. Regardless of the scale of heterogeneity, the overall response of the material or structure is dependent on the response of each of the constituents. Therefore, in order to produce materials and structures that perform in the best possible manner, the properties of the constituents that make up the heterogeneous material must be thoroughly examined. When materials exhibit heterogeneity on a local level, such as in alloys or particle/matrix composites, they are often treated as statistically homogenous and the resulting 'effective' properties may be determined through homogenization techniques. In the case of globally heterogeneous materials, such as weldments, the standard tensile test provides the global response but no information on what is Occurring locally within the different constituents. This information is necessary to improve the material processing as well as the end product.

  5. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  6. Structural integrity of materials in nuclear service: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heddleson, F.A.

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  7. 36 CFR 1256.70 - What controls access to national security-classified information?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... national security-classified information? 1256.70 Section 1256.70 Parks, Forests, and Public Property... HISTORICAL MATERIALS Access to Materials Containing National Security-Classified Information § 1256.70 What controls access to national security-classified information? (a) The declassification of and public access...

  8. Probabilistic simulation of multi-scale composite behavior

    NASA Technical Reports Server (NTRS)

    Liaw, D. G.; Shiao, M. C.; Singhal, S. N.; Chamis, Christos C.

    1993-01-01

    A methodology is developed to computationally assess the probabilistic composite material properties at all composite scale levels due to the uncertainties in the constituent (fiber and matrix) properties and in the fabrication process variables. The methodology is computationally efficient for simulating the probability distributions of material properties. The sensitivity of the probabilistic composite material property to each random variable is determined. This information can be used to reduce undesirable uncertainties in material properties at the macro scale of the composite by reducing the uncertainties in the most influential random variables at the micro scale. This methodology was implemented into the computer code PICAN (Probabilistic Integrated Composite ANalyzer). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in the material properties of a typical laminate and comparing the results with the Monte Carlo simulation method. The experimental data of composite material properties at all scales fall within the scatters predicted by PICAN.

  9. 36 CFR 228.67 - Information collection requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Information collection requirements. 228.67 Section 228.67 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.67 Information...

  10. 36 CFR 228.67 - Information collection requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Information collection requirements. 228.67 Section 228.67 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.67 Information...

  11. 36 CFR 228.67 - Information collection requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Information collection requirements. 228.67 Section 228.67 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.67 Information...

  12. 36 CFR 228.67 - Information collection requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Information collection requirements. 228.67 Section 228.67 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.67 Information...

  13. 36 CFR 228.67 - Information collection requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Information collection requirements. 228.67 Section 228.67 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.67 Information...

  14. PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Lin, Lianshan

    2013-01-01

    To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced featuresmore » facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.« less

  15. Effective Materials Property Information Management for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive modelsmore » and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.« less

  16. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  17. Materials: A compilation. [considering metallurgy, polymers, insulation, and coatings

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is provided for the properties and fabrication of metals and alloys, as well as for polymeric materials, such as lubricants, coatings, and insulation. Available patent information is included in the compilation.

  18. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  19. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  20. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  1. 36 CFR 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials may I use for research? 1254.1 Section 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  2. Thermal Expansion Properties of Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Green, E. F.

    1969-01-01

    Thermal expansion properties of materials used in aerospace systems are compiled into a single handbook. The data, derived from experimental measurements supplemented by information from literature sources, are presented in charts and tables arranged in two sections, covering cryogenic and elevated temperatures.

  3. Establishment of computerized numerical databases on thermophysical and other properties of molten as well as solid materials and data evaluation and validation for generating recommended reliable reference data

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.

    1993-01-01

    The Center for Information and Numerical Data Analysis and Synthesis, (CINDAS), measures and maintains databases on thermophysical, thermoradiative, mechanical, optical, electronic, ablation, and physical properties of materials. Emphasis is on aerospace structural materials especially composites and on infrared detector/sensor materials. Within CINDAS, the Department of Defense sponsors at Purdue several centers: the High Temperature Material Information Analysis Center (HTMIAC), the Ceramics Information Analysis Center (CIAC) and the Metals Information Analysis Center (MIAC). The responsibilities of CINDAS are extremely broad encompassing basic and applied research, measurement of the properties of thin wires and thin foils as well as bulk materials, acquisition and search of world-wide literature, critical evaluation of data, generation of estimated values to fill data voids, investigation of constitutive, structural, processing, environmental, and rapid heating and loading effects, and dissemination of data. Liquids, gases, molten materials and solids are all considered. The responsibility of maintaining widely used databases includes data evaluation, analysis, correlation, and synthesis. Material property data recorded on the literature are often conflicting, diverging, and subject to large uncertainties. It is admittedly difficult to accurately measure materials properties. Systematic and random errors both enter. Some errors result from lack of characterization of the material itself (impurity effects). In some cases assumed boundary conditions corresponding to a theoretical model are not obtained in the experiments. Stray heat flows and losses must be accounted for. Some experimental methods are inappropriate and in other cases appropriate methods are carried out with poor technique. Conflicts in data may be resolved by curve fitting of the data to theoretical or empirical models or correlation in terms of various affecting parameters. Reasons (e.g. phase transitions) must be found for unusual dependence or any anomaly. Such critical evaluation involves knowledge of theory, experience in measurement, familiarity with metallurgy (microstructural behavior) and not inconsiderable judgment. An examination of typical data compiled and analyzed by CINDAS shows that the thermal conductivity of a material reported in the literature may vary by a factor of two of more; the range of reported values increases as temperature increases reflecting the difficulty of high temperature measurements. Often only estimates of melt behavior are available, despite the importance of melt properties in modeling, welding, or other solidification processes. There may be only a few measurements available for properties such as kinematic viscosity, even for widely used materials such as stainless steel. In the face of such a paucity of existing data and in a national environment where too few new data are being generated it is nonetheless the responsibility of CINDAS to select and disseminate recommended values of a wide variety of thermophysical properties.

  4. Refurbishment of NASA aircraft with fire-retardant materials. [aircraft compartments of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Supkis, D. E.

    1975-01-01

    Selected fire-retardant materials for possible application to commercial aircraft are described. The results of flammability screening tests and information on the physical and chemical properties of both original and newly installed materials after extended use are presented in tabular form, with emphasis on wear properties, strength, puncture and tear resistances, and cleanability.

  5. 41 CFR 105-60.405 - Processing requests for confidential commercial information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MATERIALS 60.4-Described Records § 105-60.405 Processing requests for confidential commercial information... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Processing requests for confidential commercial information. 105-60.405 Section 105-60.405 Public Contracts and Property Management...

  6. 36 CFR 271.2 - Use of official campaign materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of increasing public information regarding forest fire prevention. ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Use of official campaign materials. 271.2 Section 271.2 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  7. 36 CFR 271.2 - Use of official campaign materials.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of increasing public information regarding forest fire prevention. ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Use of official campaign materials. 271.2 Section 271.2 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE...

  8. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  9. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  10. Study of materials performance model for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Leary, K.; Skratt, J.

    1980-01-01

    A demonstration version of an aircraft interior materials computer data library was developed and contains information on selected materials applicable to aircraft seats and wall panels, including materials for the following: panel face sheets, bond plies, honeycomb, foam, decorative film systems, seat cushions, adhesives, cushion reinforcements, fire blocking layers, slipcovers, decorative fabrics and thermoplastic parts. The information obtained for each material pertains to the material's performance in a fire scenario, selected material properties and several measures of processability.

  11. Thermophysical Property Models for Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Schreiner, Samuel S.; Dominguez, Jesus A.; Sibille, Laurent; Hoffman, Jeffrey A.

    2015-01-01

    We present a set of models for a wide range of lunar regolith material properties. Data from the literature are t with regression models for the following regolith properties: composition, density, specific heat, thermal conductivity, electrical conductivity, optical absorption length, and latent heat of melting/fusion. These models contain both temperature and composition dependencies so that they can be tailored for a range of applications. These models can enable more consistent, informed analysis and design of lunar regolith processing hardware. Furthermore, these models can be utilized to further inform lunar geological simulations. In addition to regression models for each material property, the raw data is also presented to allow for further interpretation and fitting as necessary.

  12. Thermal and Chemical Characterization of Composite Materials. MSFC Center Director's Discretionary Fund Final Report, Project No. ED36-18

    NASA Technical Reports Server (NTRS)

    Stanley, D. C.; Huff, T. L.

    2003-01-01

    The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.

  13. 36 CFR 1256.74 - How does NARA process Freedom of Information Act (FOIA) requests for classified information?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false How does NARA process Freedom of Information Act (FOIA) requests for classified information? 1256.74 Section 1256.74 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PUBLIC AVAILABILITY AND USE ACCESS TO RECORDS AND DONATED HISTORICAL MATERIALS...

  14. 36 CFR § 1254.1 - What kinds of archival materials may I use for research?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials may I use for research? § 1254.1 Section § 1254.1 Parks, Forests, and Public Property NATIONAL... MATERIALS General Information § 1254.1 What kinds of archival materials may I use for research? (a) The... information about records and we make them available to the public for research unless they have access...

  15. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  16. Our Material World. Resource in Technology.

    ERIC Educational Resources Information Center

    Jacobs, Martha B.

    1992-01-01

    Describes families of materials and their properties and provides a student quiz, possible outcomes, sources of information, and a design brief in which students build something using a variety of materials. (SK)

  17. Materials And Processes Technical Information System (MAPTIS) LDEF materials database

    NASA Technical Reports Server (NTRS)

    Davis, John M.; Strickland, John W.

    1992-01-01

    The Materials and Processes Technical Information System (MAPTIS) is a collection of materials data which was computerized and is available to engineers in the aerospace community involved in the design and development of spacecraft and related hardware. Consisting of various database segments, MAPTIS provides the user with information such as material properties, test data derived from tests specifically conducted for qualification of materials for use in space, verification and control, project management, material information, and various administrative requirements. A recent addition to the project management segment consists of materials data derived from the LDEF flight. This tremendous quantity of data consists of both pre-flight and post-flight data in such diverse areas as optical/thermal, mechanical and electrical properties, atomic concentration surface analysis data, as well as general data such as sample placement on the satellite, A-O flux, equivalent sun hours, etc. Each data point is referenced to the primary investigator(s) and the published paper from which the data was taken. The MAPTIS system is envisioned to become the central location for all LDEF materials data. This paper consists of multiple parts, comprising a general overview of the MAPTIS System and the types of data contained within, and the specific LDEF data element and the data contained in that segment.

  18. 40 CFR 270.17 - Specific part B information requirements for surface impoundments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... volume, physical, and chemical characteristics of the wastes, including their potential to migrate through soil or to volatilize or escape into the atmosphere; (2) The attenuative properties of underlying and surrounding soils or other materials; (3) The mobilizing properties of other materials co-disposed...

  19. Submillimeter and far-infrared dielectric properties of thin films

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Wollack, Edward J.

    2016-07-01

    The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.

  20. Materials research at Stanford University

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Information briefly describing the total research activity related to the science of materials is reported. Emphasis is placed on physical and mechanical properties of composite materials, energy transportation, superconductors, microwave electronics, and solid state electrochemistry.

  1. Materials data handbook: Aluminum alloy 2014, 2nd edition

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A revised edition of the materials data handbook on the aluminum alloy 2014 is presented. The scope of the information presented includes physical and mechanical property data at cryogenic, ambient and elevated temperatures, supplemented with useful information in such areas as material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication and joining techniques. Design data are presented, as available, and these data are complemented with information on the typical behavior of the alloy.

  2. The electrical properties and glass transition of some dental materials after temperature exposure.

    PubMed

    Marcinkowska, Agnieszka; Gauza-Wlodarczyk, Marlena; Kubisz, Leszek; Hedzelek, Wieslaw

    2017-10-17

    The physicochemical properties of dental materials will remain stable only when these materials in question are resistant to the changes in the oral cavity. The oral environment is subject to large temperature variations. The aim of the study was the assessment of electrical properties and glass transition of some dental materials after temperature exposure. Composite materials, compomers, materials for temporary prosthetic replacement and resin-based pit and fissure sealants were used in the study. The method used was electric conductivity of materials under changing temperature. The order of materials presenting the best characteristics for insulators was as follows: materials for temporary prosthetic replacement, resin-based pit and fissure sealants, composites, and compomers. Thanks to comparisons made between graphs during I and II heating run, the method could be used to observe changes in the heated material and determine whether the changes observed are reversible or permanent. The graphs also provided temperature values which contain information on glass transition during heating. In the oral cavity the effect of the constant temperature stimulus influences maturity of dental materials and improves their properties. But high temperatures over glass transition temperature can cause irreversible deformation and changes of the materials properties, even in a short time.

  3. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties

    NASA Astrophysics Data System (ADS)

    Xie, Tian; Grossman, Jeffrey C.

    2018-04-01

    The use of machine learning methods for accelerating the design of crystalline materials usually requires manually constructed feature vectors or complex transformation of atom coordinates to input the crystal structure, which either constrains the model to certain crystal types or makes it difficult to provide chemical insights. Here, we develop a crystal graph convolutional neural networks framework to directly learn material properties from the connection of atoms in the crystal, providing a universal and interpretable representation of crystalline materials. Our method provides a highly accurate prediction of density functional theory calculated properties for eight different properties of crystals with various structure types and compositions after being trained with 1 04 data points. Further, our framework is interpretable because one can extract the contributions from local chemical environments to global properties. Using an example of perovskites, we show how this information can be utilized to discover empirical rules for materials design.

  4. Computationally Driven Two-Dimensional Materials Design: What Is Next?

    DOE PAGES

    Pan, Jie; Lany, Stephan; Qi, Yue

    2017-07-17

    Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. Additionally, we discuss challenges and opportunities to boost the power of computation formore » the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.« less

  5. Property Management and Maintenance. Sacramento County Bilingual Vocational Training Program.

    ERIC Educational Resources Information Center

    Elk Grove Unified School District, CA.

    This curriculum guide provides materials for a course that prepares limited English speaking Indochinese adults for entry-level employment in the field of property management and building maintenance. Information on the project that developed these materials is followed by a curriculum outline for the Vocational English as a Second Language (VESL)…

  6. Exploring the Properties of Liquids. Grade 5. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This unit contains 14 lessons on the properties of liquids for fifth graders. It describes materials, supplementary materials, use of process skill terminology, unit objectives, vocabulary, and background information for teachers. Lessons are: (1) "Heaping and Drops/Cohesion"; (2) "Beading of Liquid Columns/Cohesion"; (3)…

  7. Creation of a ceramics handbook

    NASA Technical Reports Server (NTRS)

    Craft, W. J.

    1976-01-01

    A group of common ceramic materials (alumina, magnesium oxide, silicon nitride, and silicon carbide) were characterized through literature searches according to their physical properties. The files used were the NASA file, DDC/GRA File, Engineering Index File and standard library searches. The results of these searches are arranged by material properties including mechanical, electrical, electromagnetic, where applicable, and fracture; and the entries are arranged in chronological order by candidate. A list, by author, follows where tabular information including charts and figures of results is given along with a brief statement of the results and conclusions. In both cases, information on the independent variables along with their range is given. The results of an extensive industry survey asking for names of other candidates on which information is lacking and also what type of service, if any, is desired in keeping a current information file on general ceramic materials.

  8. Submillimeter and Far-Infrared Dielectric Properties of Thin Films

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.

    2016-01-01

    The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approach typically reproduce the observed transmittance spectra with an accuracy of less than 4%.

  9. Compendium of fluorine data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1983-04-16

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report.

  10. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  11. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  12. Space Materials Handbook. 3rd; ed.

    NASA Technical Reports Server (NTRS)

    Rittenhouse, John B.; Singletary, John B.

    1969-01-01

    This edition is the result of an extensive revision and reworking of the second edition of the Space Materials Handbook along with the incorporation of entirely new subject matter coverage and new materials data. All of the most significant material, phenomena, properties, and principles covered in the original Handbook are presented and expanded in this revised and updated version. However, treatment of theoretical aspects has been condensed in order that more emphasis could be placed on the extensive new materials knowledge and data obtained from the design and successful launching of a wide variety of space systems. The handbook is organized into four parts, namely: space environment, effect of space environment on materials, materials in space, and biological interaction with spacecraft materials. Information on mechanical, physical, and chemical properties and characteristics is given for a wide variety of metallic and nonmetallic materials. The effects of natural and induced environments on materials are appraised. Materials categories include coverage of thermal control materials, optical materials, adhesives, organic structural materials, inorganic structural materials, electronic components and materials, materials for sealing applications, and lubrication materials. In addition, a comprehensive multiple citation index is incorporated which gives ready access to information on specific subject areas with regard to their locations within the Handbook.

  13. General Nonlinear Ferroelectric Model v. Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Wen; Robbins, Josh

    2017-03-14

    The purpose of this software is to function as a generalized ferroelectric material model. The material model is designed to work with existing finite element packages by providing updated information on material properties that are nonlinear and dependent on loading history. The two major nonlinear phenomena this model captures are domain-switching and phase transformation. The software itself does not contain potentially sensitive material information and instead provides a framework for different physical phenomena observed within ferroelectric materials. The model is calibrated to a specific ferroelectric material through input parameters provided by the user.

  14. Effective Materials Property Information Management for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear,more » anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v) access to the information via a wide range of interfaces, including web browsers, rich clients, programmatic access and clients embedded in third-party applications, such as CAE systems. This paper discusses the important requirements for advanced material data management systems as well as the future challenges and opportunities such as automated error checking, automated data quality assessment and characterization, identification of gaps in data, as well as functionalities and business models to keep users returning to the source: to generate user demand to fuel database growth and maintenance.« less

  15. Impact of Intellectual Property Laws on Part-Time Faculty. The Effective Voice for You.

    ERIC Educational Resources Information Center

    Duby, James R., Jr.

    This guide explains some of the intellectual property rights of part-time college faculty members and the circumstances under which faculty can defend intellectual property rights. The term "intellectual property" refers to proprietary information, materials, or products, the owner of which may possess intellectual property rights under trademark,…

  16. The Physics and Chemistry of Materials

    NASA Astrophysics Data System (ADS)

    Gersten, Joel I.; Smith, Frederick W.

    2001-06-01

    A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.

  17. 36 CFR 1256.58 - Information related to law enforcement investigations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Information related to law enforcement investigations. 1256.58 Section 1256.58 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION PUBLIC AVAILABILITY AND USE ACCESS TO RECORDS AND DONATED HISTORICAL MATERIALS General Restrictions § 1256.58...

  18. Contributions of Raman spectroscopy to the understanding of bone strength.

    PubMed

    Mandair, Gurjit S; Morris, Michael D

    2015-01-01

    Raman spectroscopy is increasingly commonly used to understand how changes in bone composition and structure influence tissue-level bone mechanical properties. The spectroscopic technique provides information on bone mineral and matrix collagen components and on the effects of various matrix proteins on bone material properties as well. The Raman spectrum of bone not only contains information on bone mineral crystallinity that is related to bone hardness but also provides information on the orientation of mineral crystallites with respect to the collagen fibril axis. Indirect information on collagen cross-links is also available and will be discussed. After a short introduction to bone Raman spectroscopic parameters and collection methodologies, advances in in vivo Raman spectroscopic measurements for animal and human subject studies will be reviewed. A discussion on the effects of aging, osteogenesis imperfecta, osteoporosis and therapeutic agents on bone composition and mechanical properties will be highlighted, including genetic mouse models in which structure-function and exercise effects are explored. Similarly, extracellular matrix proteins, proteases and transcriptional proteins implicated in the regulation of bone material properties will be reviewed.

  19. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often advised, If you cant determine a specific optical property of a particle after two minutes, move onto another configuration. Since optical properties can be seen so very quickly and easily under polarized light, it is only necessary to spend a maximum of two minutes on a technique to determine a particular property, though often only a few seconds are required.

  20. Materials, processes, and environmental engineering network

    NASA Technical Reports Server (NTRS)

    White, Margo M.

    1993-01-01

    The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.

  1. Liquid electrolyte informatics using an exhaustive search with linear regression.

    PubMed

    Sodeyama, Keitaro; Igarashi, Yasuhiko; Nakayama, Tomofumi; Tateyama, Yoshitaka; Okada, Masato

    2018-06-14

    Exploring new liquid electrolyte materials is a fundamental target for developing new high-performance lithium-ion batteries. In contrast to solid materials, disordered liquid solution properties have been less studied by data-driven information techniques. Here, we examined the estimation accuracy and efficiency of three information techniques, multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), and exhaustive search with linear regression (ES-LiR), by using coordination energy and melting point as test liquid properties. We then confirmed that ES-LiR gives the most accurate estimation among the techniques. We also found that ES-LiR can provide the relationship between the "prediction accuracy" and "calculation cost" of the properties via a weight diagram of descriptors. This technique makes it possible to choose the balance of the "accuracy" and "cost" when the search of a huge amount of new materials was carried out.

  2. High Throughput Experimental Materials Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy; Perkins, John; Schwarting, Marcus

    The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).

  3. Materials Degradation & Failure: Assessment of Structure and Properties. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    This module provides information on materials destruction (through corrosion, oxidation, and degradation) and failure. A design brief includes objective, student challenge, resources, student outcomes, and quiz. (SK)

  4. Atomic force microscopy for two-dimensional materials: A tutorial review

    NASA Astrophysics Data System (ADS)

    Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle

    2018-01-01

    Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.

  5. Applications of mass spectrometry techniques to autoclave curing of materials

    NASA Technical Reports Server (NTRS)

    Smith, A. C.

    1983-01-01

    Mass spectrometer analysis of gases evolved from polymer materials during a cure cycle can provide a wealth of information useful for studying cure properties and procedures. In this paper data is presented for two materials to support the feasibility of using mass spectrometer gas analysis techniques to enhance the knowledge of autoclave curing of composite materials and provide additional information for process control evaluation. It is expected that this technique will also be useful in working out the details involved in determining the proper cure cycle for new or experimental materials.

  6. Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chyasnavichyus, Marius; Young, Seth L.; Tsukruk, Vladimir V.

    2015-08-01

    Probing of micro- and nanoscale mechanical properties of soft materials with atomic force microscopy (AFM) gives essential information about the performance of the nanostructured polymer systems, natural nanocomposites, ultrathin coatings, and cell functioning. AFM provides efficient and is some cases the exclusive way to study these properties nondestructively in controlled environment. Precise force control in AFM methods allows its application to variety of soft materials and can be used to go beyond elastic properties and examine temperature and rate dependent materials response. In this review, we discuss experimental AFM methods currently used in the field of soft nanostructured composites and biomaterials. We discuss advantages and disadvantages of common AFM probing techniques, which allow for both qualitative and quantitative mappings of the elastic modulus of soft materials with nanosacle resolution. We also discuss several advanced techniques for more elaborate measurements of viscoelastic properties of soft materials and experiments on single cells.

  7. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  8. National Educators' Workshop. Update 92: Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Craig, Douglas F. (Compiler)

    1993-01-01

    This document contains a collection of experiments presented and demonstrated at the workshop. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  9. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.

    PubMed

    Oomen, Agnes G; Bleeker, Eric A J; Bos, Peter M J; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J G M; Rasmussen, Kirsten; Jiménez, Araceli Sánchez; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-10-26

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  10. 41 CFR 105-60.301 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false General. 105-60.301 Section 105-60.301 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  11. 41 CFR 105-60.301 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false General. 105-60.301 Section 105-60.301 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  12. 41 CFR 105-60.305 - Fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Fees. 105-60.305 Section 105-60.305 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  13. 41 CFR 105-60.301 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false General. 105-60.301 Section 105-60.301 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  14. 41 CFR 105-60.305 - Fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Fees. 105-60.305 Section 105-60.305 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  15. 41 CFR 105-60.305 - Fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Fees. 105-60.305 Section 105-60.305 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.3-Availability of Opinions, Orders, Policies...

  16. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  17. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  18. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...

  19. 36 CFR § 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...

  20. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...

  1. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...

  2. 36 CFR 1290.4 - Types of materials included in scope of assassination record and additional records and information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION JFK ASSASSINATION RECORDS... COLLECTION ACT OF 1992 (JFK ACT) § 1290.4 Types of materials included in scope of assassination record and... information includes, for purposes of interpreting and implementing the JFK Act: (a) Papers, maps, and other...

  3. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  4. Y-12 Integrated Materials Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclearmore » material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.« less

  5. 41 CFR 51-8.8 - Business information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Business information. 51... AGENCY MATERIALS § 51-8.8 Business information. (a) When, in responding to an FOIA request, the Committee... business information or when a submitter has labeled information as proprietary at the time of submission...

  6. 41 CFR 51-8.8 - Business information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Business information. 51... AGENCY MATERIALS § 51-8.8 Business information. (a) When, in responding to an FOIA request, the Committee... business information or when a submitter has labeled information as proprietary at the time of submission...

  7. 41 CFR 51-8.8 - Business information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Business information. 51... AGENCY MATERIALS § 51-8.8 Business information. (a) When, in responding to an FOIA request, the Committee... business information or when a submitter has labeled information as proprietary at the time of submission...

  8. 41 CFR 51-8.8 - Business information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Business information. 51... AGENCY MATERIALS § 51-8.8 Business information. (a) When, in responding to an FOIA request, the Committee... business information or when a submitter has labeled information as proprietary at the time of submission...

  9. 41 CFR 51-8.8 - Business information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Business information. 51... AGENCY MATERIALS § 51-8.8 Business information. (a) When, in responding to an FOIA request, the Committee... business information or when a submitter has labeled information as proprietary at the time of submission...

  10. 41 CFR 105-60.602 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Definitions. 105-60.602 Section 105-60.602 Public Contracts and Property Management Federal Property Management Regulations System... GSA. (b) Information means any knowledge or facts contained in material, and any knowledge or facts...

  11. 41 CFR 105-60.602 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Definitions. 105-60.602 Section 105-60.602 Public Contracts and Property Management Federal Property Management Regulations System... GSA. (b) Information means any knowledge or facts contained in material, and any knowledge or facts...

  12. 41 CFR 105-60.602 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Definitions. 105-60.602 Section 105-60.602 Public Contracts and Property Management Federal Property Management Regulations System... GSA. (b) Information means any knowledge or facts contained in material, and any knowledge or facts...

  13. 41 CFR 105-60.102 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Application. 105-60.102 Section 105-60.102 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.102 Application...

  14. 41 CFR 105-60.103 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Policy. 105-60.103 Section 105-60.103 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.103 Policy. ...

  15. 41 CFR 105-60.101 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Purpose. 105-60.101 Section 105-60.101 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.101 Purpose. This...

  16. 41 CFR 105-60.102 - Application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Application. 105-60.102 Section 105-60.102 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.102 Application...

  17. 41 CFR 105-60.103 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Policy. 105-60.103 Section 105-60.103 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.103 Policy. ...

  18. 41 CFR 105-60.101 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Purpose. 105-60.101 Section 105-60.101 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.101 Purpose. This...

  19. 41 CFR 105-60.401 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false General. 105-60.401 Section 105-60.401 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.4-Described Records § 105-60.401 General. (a...

  20. 41 CFR 105-60.103 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Policy. 105-60.103 Section 105-60.103 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.103 Policy. ...

  1. 41 CFR 105-60.101 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Purpose. 105-60.101 Section 105-60.101 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.101 Purpose. This...

  2. 41 CFR 105-60.102 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Application. 105-60.102 Section 105-60.102 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.102 Application...

  3. 41 CFR 105-60.101 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Purpose. 105-60.101 Section 105-60.101 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.101 Purpose. This...

  4. 41 CFR 105-60.102 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Application. 105-60.102 Section 105-60.102 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.102 Application...

  5. 41 CFR 105-60.401 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false General. 105-60.401 Section 105-60.401 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.4-Described Records § 105-60.401 General. (a...

  6. 41 CFR 105-60.401 - General.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false General. 105-60.401 Section 105-60.401 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.4-Described Records § 105-60.401 General. (a...

  7. 41 CFR 105-60.101 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Purpose. 105-60.101 Section 105-60.101 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.101 Purpose. This...

  8. 41 CFR 105-60.401 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false General. 105-60.401 Section 105-60.401 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.4-Described Records § 105-60.401 General. (a...

  9. 41 CFR 105-60.102 - Application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Application. 105-60.102 Section 105-60.102 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.102 Application...

  10. 41 CFR 105-60.401 - General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false General. 105-60.401 Section 105-60.401 Public Contracts and Property Management Federal Property Management Regulations System... AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.4-Described Records § 105-60.401 General. (a...

  11. Method and apparatus for measuring the intensity and phase of one or more ultrashort light pulses and for measuring optical properties of materials

    DOEpatents

    Trebino, Rick P.; DeLong, Kenneth W.

    1996-01-01

    The intensity and phase of one or more ultrashort light pulses are obtained using a non-linear optical medium. Information derived from the light pulses is also used to measure optical properties of materials. Various retrieval techniques are employed. Both "instantaneously" and "non-instantaneously" responding optical mediums may be used.

  12. Precise Heat Control: What Every Scientist Needs to Know About Pyrolytic Techniques to Solve Real Problems

    NASA Technical Reports Server (NTRS)

    Devivar, Rodrigo

    2014-01-01

    The performance of a material is greatly influenced by its thermal and chemical properties. Analytical pyrolysis, when coupled to a GC-MS system, is a powerful technique that can unlock the thermal and chemical properties of almost any substance and provide vital information. At NASA, we depend on precise thermal analysis instrumentation for understanding aerospace travel. Our analytical techniques allow us to test materials in the laboratory prior to an actual field test; whether the field test is miles up in the sky or miles underground, the properties of any involved material must be fully studied and understood in the laboratory.

  13. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  14. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  15. Application of materials database (MAT.DB.) to materials education

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    Finding the right material for the job is an important aspect of engineering. Sometimes the choice is as fundamental as selecting between steel and aluminum. Other times, the choice may be between different compositions in an alloy. Discovering and compiling materials data is a demanding task, but it leads to accurate models for analysis and successful materials application. Mat. DB. is a database management system designed for maintaining information on the properties and processing of engineered materials, including metals, plastics, composites, and ceramics. It was developed by the Center for Materials Data of American Society for Metals (ASM) International. The ASM Center for Materials Data collects and reviews material property data for publication in books, reports, and electronic database. Mat. DB was developed to aid the data management and material applications.

  16. National Educators' Workshop: Update 95. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A.; Karnitz, Michael A.

    1996-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 95. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  17. National Educators' Workshop: Update 1994. Standard experiments in engineering materials science and technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Fraker, Anna C. (Compiler)

    1995-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 94. The experiments relate to the nature and properties of engineering materials and provide information to assist in teaching about materials in the education community.

  18. David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2009-03-01

    The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].

  19. RIM as the data base management system for a material properties data base

    NASA Technical Reports Server (NTRS)

    Karr, P. H.; Wilson, D. J.

    1984-01-01

    Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.

  20. Materials Selection. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    This learning activity develops algorithms to ensure that the process of selecting materials is well defined and sound. These procedures require the use of many databases to provide the designer with information such as physical, mechanical, and chemical properties of the materials under consideration. A design brief, student quiz, and five…

  1. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials

    PubMed Central

    Oomen, Agnes G.; Bleeker, Eric A. J.; Bos, Peter M. J.; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J. G. M.; Rasmussen, Kirsten; Sánchez Jiménez, Araceli; Scott-Fordsmand, Janeck J.; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-01-01

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments. PMID:26516872

  2. 36 CFR 1275.70 - Freedom of information requests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Freedom of information... HISTORICAL MATERIALS OF THE NIXON ADMINISTRATION Access by the Public § 1275.70 Freedom of information requests. (a) The Archivist will process Freedom of Information Act requests for access to only those...

  3. The "soil" of Mars (viking 1).

    PubMed

    Shorthill, R W; Moore, H J; Scott, R F; Hutton, R E; Liebes, S; Spitzer, C R

    1976-10-01

    The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.

  4. The "Soil" of mars (viking 1)

    USGS Publications Warehouse

    Shorthill, R.W.; Moore, H.J.; Scott, R.F.; Hutton, R.E.; Liebes, S.; Spitzer, G.R.

    1976-01-01

    The location of the Viking 1 lander is most ideal for the study of soil properties because it has one footpad in soft material and one on hard material. As each soil sample was acquired, information on soil properties was obtained. Although analysis is still under way, early results on bulk density, particle size, angle of internal friction, cohesion, adhesion, and penetration resistance of the soil of Mars are presented.

  5. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  6. Commodification and privacy: a Lockean perspective.

    PubMed

    Volkman, Richard

    2010-09-01

    This paper defends the thesis that privacy as a right is derived from fundamental rights to life, liberty, and property and does not permit restricting the commodification of bodily material; however, privacy as life, liberty, property does require conventions that ensure a robust and just market in bodily material. The analysis proceeds by defending a general commitment to liberty and markets, but not in the manner one might expect from a 'doctrinaire' libertarian. Ethical concerns about commodification are legitimate in the context of new medical and information technologies, but these concerns are not sufficiently well defined to justify political conclusions, since not every ethical concern is in itself a political concern, and the best way to resolve certain ethical difficulties is to draw up political boundaries that facilitate the discovery and testing of various solutions to our ethical puzzles. To illustrate the point, I will indicate how privacy as life, liberty, property defines such a dynamic solution to the problems of commodification of human bodily material and slippery information in insurance markets.

  7. Adaptive strategies for materials design using uncertainties

    DOE PAGES

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James; ...

    2016-01-21

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  8. Adaptive strategies for materials design using uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James

    Here, we compare several adaptive design strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young’s (E) modulus] have been computed using density functional theory. The design strategies are decomposed into an iterative loop with two main steps: machine learning is used to train a regressor that predicts elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions and their uncertainties to choose the next material to investigate. The ultimate goal is to obtain a material withmore » desired elastic properties in as few iterations as possible. We examine how the choice of data set size, regressor and selector impact the design. We find that selectors that use information about the prediction uncertainty outperform those that don’t. Our work is a step in illustrating how adaptive design tools can guide the search for new materials with desired properties.« less

  9. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties

    USDA-ARS?s Scientific Manuscript database

    This book summarizes the science and technology of new generation high energy and insensitive explosives. The objective is to provide the professionals with comprehensive information on synthesis, physicochemical, and detonation properties of the explosives. Potential technologies applicable for tre...

  10. Unified System Of Data On Materials And Processes

    NASA Technical Reports Server (NTRS)

    Key, Carlo F.

    1989-01-01

    Wide-ranging sets of data for aerospace industry described. Document describes Materials and Processes Technical Information System (MAPTIS), computerized set of integrated data bases for use by NASA and aerospace industry. Stores information in standard format for fast retrieval in searches and surveys of data. Helps engineers select materials and verify their properties. Promotes standardized nomenclature as well as standarized tests and presentation of data. Format of document of photographic projection slides used in lectures. Presents examples of reports from various data bases.

  11. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    USGS Publications Warehouse

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  12. Investigation of hot mix asphalt mixtures at Mn/ROAD : final report

    DOT National Transportation Integrated Search

    1997-02-01

    This report presents the material characterization for the Minnesota Road Research Project (Mn/ROAD) bituminous materials. This effort will provide the historical base line information on properties needed for the validation of future pavement evalua...

  13. Wood handbook : wood as an engineering material.

    Treesearch

    Forest Products Laboratory

    1999-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  14. Wood handbook : wood as an engineering material

    Treesearch

    Robert J. Ross; Forest Products Laboratory USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  15. Image Statistics and the Representation of Material Properties in the Visual Cortex

    PubMed Central

    Baumgartner, Elisabeth; Gegenfurtner, Karl R.

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  16. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    PubMed

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  18. Materials properties numerical database system established and operational at CINDAS/Purdue University

    NASA Technical Reports Server (NTRS)

    Ho, C. Y.; Li, H. H.

    1989-01-01

    A computerized comprehensive numerical database system on the mechanical, thermophysical, electronic, electrical, magnetic, optical, and other properties of various types of technologically important materials such as metals, alloys, composites, dielectrics, polymers, and ceramics has been established and operational at the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) of Purdue University. This is an on-line, interactive, menu-driven, user-friendly database system. Users can easily search, retrieve, and manipulate the data from the database system without learning special query language, special commands, standardized names of materials, properties, variables, etc. It enables both the direct mode of search/retrieval of data for specified materials, properties, independent variables, etc., and the inverted mode of search/retrieval of candidate materials that meet a set of specified requirements (which is the computer-aided materials selection). It enables also tabular and graphical displays and on-line data manipulations such as units conversion, variables transformation, statistical analysis, etc., of the retrieved data. The development, content, accessibility, etc., of the database system are presented and discussed.

  19. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  20. Metallic Fuels Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janney, Dawn E.; Papesch, Cynthia A.; Burkes, Douglas E.

    This is not a typical External Report--It is a Handbook. No Abstract is involved. This includes both Parts 1 and 2. The Metallic Fuels Handbook summarizes currently available information about phases and phase diagrams, heat capacity, thermal expansion, and thermal conductivity of elements and alloys in the U-Pu-Zr-Np-Am-La-Ce-Pr-Nd system. Although many sections are reviews and updates of material in previous versions of the Handbook [1, 2], this revision is the first to include alloys with four or more elements. In addition to presenting information about materials properties, the handbook attempts to provide information about how well each property is knownmore » and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data.« less

  1. The Antimicrobial Properties of Red Algae. The Fight of Your Life: Battling Bacteria.

    ERIC Educational Resources Information Center

    Case, Christine L.; Warner, Michael

    2001-01-01

    Describes a research project in which a professor and a student collaborated in the screening of macroscopic algae for antimicrobial properties. Includes background information, materials and methods, results, and a discussion of the experiment. (SAH)

  2. Technologies Enabling Scientific Exploration of Asteroids and Moons

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Fulford, P.; Chappell, L.

    2016-12-01

    Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.

  3. Brownfields Recover Your Resources - Reduce, Reuse, and Recycle Construction and Demolition Materials at Land Revitalization Projects

    EPA Pesticide Factsheets

    This document provides background information on how the sustainable reuse of brownfield properties includes efforts to reduce the environmental impact by reusing and recycling materials generated during building construction, demolition, or renovation.

  4. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    DOE PAGES

    Dhak, Debasis; Hong, Seungbum; Das, Soma; ...

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore » of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less

  5. (abstract) Oblique Insonification Ultrasonic NDE of Composite Materials for Space Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Lih, S. S.; Mal, A. K.

    1997-01-01

    In recent years, a great deal of research has been exerted to developing NDE methods for the characterization of the material properties of composites as well as other space structural materials. The need for information about such parameters as the elastic properties, density, and thickness are critical to the safe design and operation of such structural materials. Ultrasonics using immersion methods has played an important role in these efforts due to its capability, cost effectiveness, and ease of use. The authors designed a series of ultrasonic oblique insonification experiments in order to develop a practical field applicable NDE method for space structures.

  6. From Tomography to Material Properties of Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Panerai, Francesco; Ferguson, Joseph C.; Borner, Arnaud; Barnhardt, Michael; Wright, Michael

    2017-01-01

    A NASA Ames Research Center (ARC) effort, under the Entry Systems Modeling (ESM) project, aims at developing micro-tomography (micro-CT) experiments and simulations for studying materials used in hypersonic entry systems. X-ray micro-tomography allows for non-destructive 3D imaging of a materials micro-structure at the sub-micron scale, providing fiber-scale representations of porous thermal protection systems (TPS) materials. The technique has also allowed for In-situ experiments that can resolve response phenomena under realistic environmental conditions such as high temperature, mechanical loads, and oxidizing atmospheres. Simulation tools have been developed at the NASA Ames Research Center to determine material properties and material response from the high-fidelity tomographic representations of the porous materials with the goal of informing macroscopic TPS response models and guiding future TPS design.

  7. 37 CFR 202.1 - Material not subject to copyright.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copyright. 202.1 Section 202.1 Patents, Trademarks, and Copyrights COPYRIGHT OFFICE, LIBRARY OF CONGRESS... forms, order forms and the like, which are designed for recording information and do not in themselves convey information; (d) Works consisting entirely of information that is common property containing no...

  8. Theoretical calculating the thermodynamic properties of solid sorbents for CO{sub 2} capture applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Yuhua

    2012-11-02

    Since current technologies for capturing CO{sub 2} to fight global climate change are still too energy intensive, there is a critical need for development of new materials that can capture CO{sub 2} reversibly with acceptable energy costs. Accordingly, solid sorbents have been proposed to be used for CO{sub 2} capture applications through a reversible chemical transformation. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO{sub 2} sorbent candidates from the vast array of possible solid materials has been proposed and validated. The calculatedmore » thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO{sub 2} adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO{sub 2} capture reactions by the solids of interest, we were able to screen only those solid materials for which lower capture energy costs are expected at the desired pressure and temperature conditions. Only those selected CO{sub 2} sorbent candidates were further considered for experimental validations. The ab initio thermodynamic technique has the advantage of identifying thermodynamic properties of CO{sub 2} capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. Such methodology not only can be used to search for good candidates from existing database of solid materials, but also can provide some guidelines for synthesis new materials. In this presentation, we first introduce our screening methodology and the results on a testing set of solids with known thermodynamic properties to validate our methodology. Then, by applying our computational method to several different kinds of solid systems, we demonstrate that our methodology can predict the useful information to help developing CO{sub 2} capture Technologies.« less

  9. Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Maughan, Michael R.

    If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity, and 3) integrate the sources of and propagate the variation into materials simulations, 4) study the influence of dislocation processes on indentation size effects, and 5) apply this learning to difficult to measure or interpret materials applications.

  10. Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering

    NASA Astrophysics Data System (ADS)

    Kainer, Karl U.

    2006-02-01

    Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.

  11. Manipulating Ferroelectrics through Changes in Surface and Interface Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu

    Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less

  12. Manipulating Ferroelectrics through Changes in Surface and Interface Properties

    DOE PAGES

    Balke, Nina; Ramesh, Ramamoorthy; Yu, Pu

    2017-10-23

    Ferroelectric materials are used in many applications of modern technologies including information storage, transducers, sensors, tunable capacitors, and other novel device concepts. In many of these applications, the ferroelectric properties, such as switching voltages, piezoelectric constants, or stability of nanodomains, are crucial. For any application, even for material characterization, the material itself needs to be interfaced with electrodes. On the basis of the structural, chemical, and electronic properties of the interfaces, the measured material properties can be determined by the interface. This is also true for surfaces. However, the importance of interfaces and surfaces and their effect on experiments aremore » often neglected, which results in many dramatically different experimental results for nominally identical samples. Therefore, it is crucial to understand the role of the interface and surface properties on internal bias fields and the domain switching process. Here, the nanoscale ferroelectric switching process and the stability of nanodomains for Pb(Zr,Ti)O 3 thin films are investigated by using scanning probe microscopy. Interface and surface properties are modulated through the selection/redesign of electrode materials as well as tuning the surface-near oxygen vacancies, which both can result in changes of the electric fields acting across the sample, and consequently this controls the measured ferroelectric and domain retention properties. By understanding the role of surfaces and interfaces, ferroelectric properties can be tuned to eliminate the problem of asymmetric domain stability by combining the effects of different electrode materials. Lastly, this study forms an important step toward integrating ferroelectric materials in electronic devices.« less

  13. 3D-Printable Photochromic Molecular Materials for Reversible Information Storage.

    PubMed

    Wales, Dominic J; Cao, Qun; Kastner, Katharina; Karjalainen, Erno; Newton, Graham N; Sans, Victor

    2018-06-01

    The formulation of advanced molecular materials with bespoke polymeric ionic-liquid matrices that stabilize and solubilize hybrid organic-inorganic polyoxometalates and allow their processing by additive manufacturing, is effectively demonstrated. The unique photo and redox properties of nanostructured polyoxometalates are translated across the scales (from molecular design to functional materials) to yield macroscopic functional devices with reversible photochromism. These properties open a range of potential applications including reversible information storage based on controlled topological and temporal reduction/oxidation of pre-formed printed devices. This approach pushes the boundaries of 3D printing to the molecular limits, allowing the freedom of design enabled by 3D printing to be coupled with the molecular tuneability of polymerizable ionic liquids and the photoactivity and orbital engineering possible with hybrid polyoxometalates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Crystallographic Information Resources

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2016-01-01

    Crystallographic information provides the fundamental basis for understanding the properties and behavior of materials. This data, such as chemical composition, unit cell dimensions, space group, and atomic positions, derives from the primary literature--that is, from published experimental measurement or theoretical calculation. Although the…

  15. Thermal capacitator design rationale. Part 1: Thermal and mechanical property data for selected materials potentially useful in thermal capacitor design and construction

    NASA Technical Reports Server (NTRS)

    Bailey, J. A.; Liao, C. K.

    1975-01-01

    The thermal properties of paraffin hydrocarbons and hydrocarbon mixtures which may be used as the phase change material (PCM) in thermal capacitors are discussed. The paraffin hydrocarbons selected for consideration are those in the range from C11H24 (n-Undecane) to C20H42 (n-Eicosane). A limited amount of data is included concerning other properties of paraffin hydrocarbons and the thermal and mechanical properties of several aluminum alloys which may find application as constructional materials. Data concerning the melting temperature, transition temperature, latent heat of fusion, heat of transition, specific heat, and thermal conductivity of pure and commercial grades of paraffin hydrocarbons are given. An index of companies capable of producing paraffin hydrocarbons and information concerning the availability of various grades (purity levels) is provided.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmermans, F. J.; Otto, C.

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemicallymore » or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.« less

  17. Contributed review: Review of integrated correlative light and electron microscopy.

    PubMed

    Timmermans, F J; Otto, C

    2015-01-01

    New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

  18. Wound diagnostics with microwaves.

    PubMed

    Schertlen, Ralph; Pivit, Florian; Wiesbeck, Werner

    2002-01-01

    The reflection of electromagnetic waves on material surfaces is very depending on the electric and magnetic properties of these materials, on their structure and on the surface texture. Therefore the different layers and dielectric properties of healthy and unsound body tissue also show different reflection behavior towards incidentating electromagnetic waves. By analyzing the reflected signals of incident electromagnetic waves, it is possible to get information about the inner structure of the reflecting body tissue. This effect could then be used for a contactless analysis of body tissue e.g. to gain crucial medical information about healing processes. In this paper the results of several full wave simulations of various tissue structures are presented and the significance and usability of this method is shown.

  19. National Educators' Workshop: Update 1991. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler); Stiegler, James O. (Compiler)

    1992-01-01

    Given here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 91, held at the Oak Ridge National Laboratory on November 12-14, 1991. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  20. National Educators' Workshop: Update 1997. Standard Experiments in Engineering Materials, Science, and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Freeman, Ginger L. (Compiler); Jacobs, James A. (Compiler); Miller, Alan G. (Compiler); Smith, Brian W. (Compiler)

    1998-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 97, held at Boeing Commercial Airplane Group, Seattle, Washington, on November 2-5, 1997. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  1. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla

    2018-05-23

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  2. Polymers for hydrogen infrastructure and vehicle fuel systems :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  3. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear.

    PubMed

    Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan

    2015-06-01

    This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Characterization of the Dynamic Material Properties of Magnetostrictive Terfenol-D

    NASA Technical Reports Server (NTRS)

    Calkins, Frederick T.; Flatau, Alison B.; Hall, David L.

    1996-01-01

    A major limitation in use of electromagnetic and/or magnetomechanical models for design of Terfenol-D actuators is the lack of reliable material property data for Terfenol-D. In particular data on the performance of Terfenol-D as employed in a transducer, operating under real world dynamic conditions is needed. To provide this information, Terfenol-D rod properties need to be measured under as run prestressed and magnetically biased states. Using a Terfenol-D actuator, the following properties can be measured and/or calculated: mechanical quality factor, speed of sound in the material, the resonant frequency, the anti-resonant frequency, two magnetic permeabilities (one at constant stress and one at constant strain), two Young's moduli (one at constant amplitude applied magnetic field and one at constant amplitude magnetic flux density in the material), the magnetomechanical coupling, and the axial strain coefficient. The development of the material properties measurements and calculations is based on the model of low signal, linear, magnetostriction from Clark, the linear transduction equations for a transducer from Hunt, and a one degree of freedom mechanical model of the transducer. The electrical impedance and admittance mobility loops are used to determine the resonant, anti-resonant, and half power point frequencies. The rest of the material properties indicated above can then be calculated using these frequencies, acceleration from an accelerometer mounted on the actuator arm, and readily measurable transducer and Terfenol-D rod parameters.

  5. Radiative Properties of Thin Films of Common Dielectric Materials in the IR Spectral Range of 1.5-14.2 μm: Application to Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Bañobre, Asahel; Marthi, Sita Rajyalaxmi; Ravindra, N. M.

    2018-05-01

    To measure, map and control temperature, imaging of materials in a thermal furnace routinely utilizes non-contact sensors, such as pyrometers. These pyrometers require a pre-knowledge of the radiative properties of materials in the desired infrared range of wavelengths. In this study, radiative properties of some commonly used thin films of dielectric materials are investigated within the infrared (IR) spectral range of 1.5-14.2 μm. Radiative properties of aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN) and silicon nitride (Si3N4) have been simulated and compared, utilizing a matrix method of representing the optical properties. The simulated results of the radiative properties show that Si3N4 is an excellent choice for the infrared radiation absorbing layer that is currently used in infrared uncooled detectors (microbolometers) because of its optical, mechanical and electrical properties. A case study of the radiative properties of an infrared uncooled microbolometer (Honeywell structure) is presented and discussed in the infrared spectral range of 8-14 μm. The results obtained serve as useful information for the design and fabrication of infrared imaging systems and components such as coatings, detectors, filters, lenses and waveguides.

  6. Relationships Among Chondrite Groups as Inferred from Presolar-Grain Abundances

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Meshik, A. P.; Hohenberg, C. M.; Smith, J. B.

    2002-01-01

    Presolar-grain abundances show that C chondrites consist of two quite distinct groups, those containing primitive material, and those consisting of processed material. Ordinary chondrites are intermediate in many properties between these groups. Additional information is contained in the original extended abstract.

  7. Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications

    NASA Astrophysics Data System (ADS)

    Franke, M.; Leubner, S.; Dubavik, A.; George, A.; Savchenko, T.; Pini, C.; Frank, P.; Melnikau, D.; Rakovich, Y.; Gaponik, N.; Eychmüller, A.; Richter, A.

    2017-04-01

    Microfluidic devices present the basis of modern life sciences and chemical information processing. To control the flow and to allow optical readout, a reliable sensor material that can be easily utilized for microfluidic systems is in demand. Here, we present a new optical readout system for pH sensing based on pH sensitive, photoluminescent glutathione capped cadmium telluride quantum dots that are covalently immobilized in a poly(acrylate) hydrogel. For an applicable pH sensing the generated hybrid material is integrated in a microfluidic sensor chip setup. The hybrid material not only allows in situ readout, but also possesses valve properties due to the swelling behavior of the poly(acrylate) hydrogel. In this work, the swelling property of the hybrid material is utilized in a microfluidic valve seat, where a valve opening process is demonstrated by a fluid flow change and in situ monitored by photoluminescence quenching. This discrete photoluminescence detection (ON/OFF) of the fluid flow change (OFF/ON) enables upcoming chemical information processing.

  8. Gap Analysis of Material Properties Data for Ferritic/Martensitic HT-9 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Neil R.; Serrano De Caro, Magdalena; Rodriguez, Edward A.

    2012-08-28

    The US Department of Energy (DOE), Office of Nuclear Energy (NE), is supporting the development of an ASME Code Case for adoption of 12Cr-1Mo-VW ferritic/martensitic (F/M) steel, commonly known as HT-9, primarily for use in elevated temperature design of liquid-metal fast reactors (LMFR) and components. In 2011, Los Alamos National Laboratory (LANL) nuclear engineering staff began assisting in the development of a small modular reactor (SMR) design concept, previously known as the Hyperion Module, now called the Gen4 Module. LANL staff immediately proposed HT-9 for the reactor vessel and components, as well as fuel clad and ducting, due to itsmore » superior thermal qualities. Although the ASME material Code Case, for adoption of HT-9 as an approved elevated temperature material for LMFR service, is the ultimate goal of this project, there are several key deliverables that must first be successfully accomplished. The most important key deliverable is the research, accumulation, and documentation of specific material parameters; physical, mechanical, and environmental, which becomes the basis for an ASME Code Case. Time-independent tensile and ductility data and time-dependent creep and creep-rupture behavior are some of the material properties required for a successful ASME Code case. Although this report provides a cursory review of the available data, a much more comprehensive study of open-source data would be necessary. This report serves three purposes: (a) provides a list of already existing material data information that could ultimately be made available to the ASME Code, (b) determines the HT-9 material properties data missing from available sources that would be required and (c) estimates the necessary material testing required to close the gap. Ultimately, the gap analysis demonstrates that certain material properties testing will be required to fulfill the necessary information package for an ASME Code Case.« less

  9. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  10. Thermophysical Properties of Selected Aerospace Materials. Part 1. Thermal Radiative Properties

    DTIC Science & Technology

    1976-01-01

    discusses the available data and information, the theoretical guidelines and other factors on which the critical evaluation, analysis, and synthesis of...text and a specification table. The former reviews and discusses the available data and information, the theoretical guidelines and other factors on...conditions 6’ Zenith angle for viewing conditions A6 Half angle of acceptance of optical system K Loss value factor X Wavelength p Reflectance p

  11. Polarization ratio property and material classification method in passive millimeter wave polarimetric imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Yayun; Qi, Bo; Liu, Siyuan; Hu, Fei; Gui, Liangqi; Peng, Xiaohui

    2016-10-01

    Polarimetric measurements can provide additional information as compared to unpolarized ones. In this paper, linear polarization ratio (LPR) is created to be a feature discriminator. The LPR properties of several materials are investigated using Fresnel theory. The theoretical results show that LPR is sensitive to the material type (metal or dielectric). Then a linear polarization ratio-based (LPR-based) method is presented to distinguish between metal and dielectric materials. In order to apply this method to practical applications, the optimal range of incident angle have been discussed. The typical outdoor experiments including various objects such as aluminum plate, grass, concrete, soil and wood, have been conducted to validate the presented classification method.

  12. Controlled low strength materials (CLSM), reported by ACI Committee 229

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajendran, N.

    1997-07-01

    Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavementmore » bases, conduit bedding, erosion control, void filling, and radioactive waste management.« less

  13. Antimicrobial graphene family materials: Progress, advances, hopes and fears.

    PubMed

    Lukowiak, Anna; Kedziora, Anna; Strek, Wieslaw

    2016-10-01

    Graphene-based materials have become very popular bionanotechnological instruments in the last few years. Since 2010, the graphene family materials have been recognized as worthy of attention due to its antimicrobial properties. Functionalization of graphene (or rather graphene oxide) surface creates the possibilities to obtain efficient antimicrobial agents. In this review, progress and advances in this field in the last few years are described and discussed. Special attention is devoted to materials based on graphene oxide in which specifically selected components significantly modify biological activity of this carbon structure. Short introduction concerns the physicochemical properties of the graphene family materials. In the section on antimicrobial properties, proposed mechanisms of activity against microorganisms are given showing enhanced action of nanocomposites also under light irradiation (photoinduced activity). Another important feature, i.e. toxicity against eukaryotic cells, is presented with up-to-date data. Taking into account all the information on the properties of the described materials and usefulness of the graphene family as antimicrobial agents, hopes and fears concerning their application are discussed. Finally, some examples of promising usage in medicine and other fields, e.g. in phytobiology and water remediation, are shown. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. BP network identification technology of infrared polarization based on fuzzy c-means clustering

    NASA Astrophysics Data System (ADS)

    Zeng, Haifang; Gu, Guohua; He, Weiji; Chen, Qian; Yang, Wei

    2011-08-01

    Infrared detection system is frequently employed on surveillance operations and reconnaissance mission to detect particular targets of interest in both civilian and military communities. By incorporating the polarization of light as supplementary information, the target discrimination performance could be enhanced. So this paper proposed an infrared target identification method which is based on fuzzy theory and neural network with polarization properties of targets. The paper utilizes polarization degree and light intensity to advance the unsupervised KFCM (kernel fuzzy C-Means) clustering method. And establish different material pol1arization properties database. In the built network, the system can feedback output corresponding material types of probability distribution toward any input polarized degree such as 10° 15°, 20°, 25°, 30°. KFCM, which has stronger robustness and accuracy than FCM, introduces kernel idea and gives the noise points and invalid value different but intuitively reasonable weights. Because of differences in characterization of material properties, there will be some conflicts in classification results. And D - S evidence theory was used in the combination of the polarization and intensity information. Related results show KFCM clustering precision and operation rate are higher than that of the FCM clustering method. The artificial neural network method realizes material identification, which reasonable solved the problems of complexity in environmental information of infrared polarization, and improperness of background knowledge and inference rule. This method of polarization identification is fast in speed, good in self-adaption and high in resolution.

  15. Tunable Collagen I Hydrogels for Engineered Physiological Tissue Micro-Environments

    PubMed Central

    Antoine, Elizabeth E.; Vlachos, Pavlos P.; Rylander, Marissa N.

    2015-01-01

    Collagen I hydrogels are commonly used to mimic the extracellular matrix (ECM) for tissue engineering applications. However, the ability to design collagen I hydrogels similar to the properties of physiological tissues has been elusive. This is primarily due to the lack of quantitative correlations between multiple fabrication parameters and resulting material properties. This study aims to enable informed design and fabrication of collagen hydrogels in order to reliably and reproducibly mimic a variety of soft tissues. We developed empirical predictive models relating fabrication parameters with material and transport properties. These models were obtained through extensive experimental characterization of these properties, which include compression modulus, pore and fiber diameter, and diffusivity. Fabrication parameters were varied within biologically relevant ranges and included collagen concentration, polymerization pH, and polymerization temperature. The data obtained from this study elucidates previously unknown fabrication-property relationships, while the resulting equations facilitate informed a priori design of collagen hydrogels with prescribed properties. By enabling hydrogel fabrication by design, this study has the potential to greatly enhance the utility and relevance of collagen hydrogels in order to develop physiological tissue microenvironments for a wide range of tissue engineering applications. PMID:25822731

  16. Micro Labs for High School Chemistry.

    ERIC Educational Resources Information Center

    Thiel, Russell

    This resource guide provides information for 13 laboratory experiments designed to be conducted in small schools with limited equipment and materials. For each experiment, the document outlines necessary equipment and materials, experiment procedures, and questions to be answered. The experiments are: (1) studying the properties of water; (2)…

  17. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  18. Fabrication and properties of gallium phosphide variable colour displays

    NASA Technical Reports Server (NTRS)

    Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.

    1973-01-01

    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.

  19. Physicochemical and Electrophysical Properties of Metal/Semiconductor Containing Nanostructured Composites

    NASA Astrophysics Data System (ADS)

    Gerasimov, G. N.; Gromov, V. F.; Trakhtenberg, L. I.

    2018-06-01

    The properties of nanostructured composites based on metal oxides and metal-polymer materials are analyzed, along with ways of preparing them. The effect the interaction between metal and semiconductor nanoparticles has on the conductivity, photoconductivity, catalytic activity, and magnetic, dielectric, and sensor properties of nanocomposites is discussed. It is shown that as a result of this interaction, a material can acquire properties that do not exist in systems of isolated particles. The transfer of electrons between metal particles of different sizes in polymeric matrices leads to specific dielectric losses, and to an increase in the rate and a change in the direction of chemical reactions catalyzed by these particles. The interaction between metal-oxide semiconductor particles results in the electronic and chemical sensitization of sensor effects in nanostructured composite materials. Studies on creating molecular machines (Brownian motors), devices for magnetic recording of information, and high-temperature superconductors based on nanostructured systems are reviewed.

  20. Material Property Database and Environmental Attribute Models for NM Science Research

    DTIC Science & Technology

    2011-03-28

    3 Goals 1. Provide place "to go " for initial information 2. Basic understanding of what types of information you might need to... MWCNT , SWCNT, Fullerene, Waste • Aluminum ...,. Explosive, propellant • Silver ...,. Coatings, textiles, polymers • Titanium dioxide

  1. Sustainability Product Properties in Building Information Models

    DTIC Science & Technology

    2012-09-01

    Covrlhovses, Oota c enters, Hospitals IAcvle care and Children’s), Hotels/ Mote ~, Hovses of Worship, K- 12 Schools, Med1cal Offic&s, Offices, Restdence Holts...RenewableContent n/a n/a 70 RenewableMaterial n/a n/a Cotton BiobasedContent n/a n/a 70 BiobasedMaterial n/a n/a Cotton RawMaterialLocation n/a n/a

  2. National Educators' Workshop: Update 1989 Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 89, held October 17 to 19, 1989 at the National Aeronautics and Space Administration, Hampton, Virginia. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  3. National Educators' Workshop: Update 1993. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1994-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 93 held at the NASA Langley Research Center in Hampton, Virginia, on November 3-5, 1993. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  4. National Educators' Workshop: Update 1988. Standard Experiments in Engineering Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Gardner, James E. (Compiler); Jacobs, James A. (Compiler)

    1990-01-01

    Presented here is a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 88, held May 10 to 12, 1988 at the National Institute of Standards and Technology (NIST), Gaithersberg, Maryland. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  5. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties

    NASA Astrophysics Data System (ADS)

    Cheng, Shaoling; Zhang, Yapei; Cha, Ruitao; Yang, Jinliang; Jiang, Xingyu

    2015-12-01

    By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food.By mixing a guar gum (GG) solution with a nanocrystalline cellulose (NCC) dispersion using a novel circular casting technology, we manufactured biodegradable films as packaging materials with improved optical and mechanical properties. These films could act as barriers for oxygen and could completely dissolve in water within 5 h. We also compared the effect of nanocomposite films and commercial food packaging materials on the preservation of food. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07647a

  6. Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Sliemers, F. A.; Kistler, C. W.; Igou, R. D.

    1976-01-01

    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions.

  7. Thermophysical and Electronic Properties Information Analysis Center (TEPIAC): A Continuing Systematic Program on Tables of Thermophysical and Electronic Properties of Materials.

    DTIC Science & Technology

    1977-02-01

    oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated

  8. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  9. Charting the complete elastic properties of inorganic crystalline compounds

    PubMed Central

    de Jong, Maarten; Chen, Wei; Angsten, Thomas; Jain, Anubhav; Notestine, Randy; Gamst, Anthony; Sluiter, Marcel; Krishna Ande, Chaitanya; van der Zwaag, Sybrand; Plata, Jose J; Toher, Cormac; Curtarolo, Stefano; Ceder, Gerbrand; Persson, Kristin A.; Asta, Mark

    2015-01-01

    The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design. PMID:25984348

  10. Mirror Material Properties Compiled for Preliminary Design of the Next Generation Space Telescope (30 to 294 Kelvin)

    NASA Technical Reports Server (NTRS)

    Luz, P. L.; Rice, T.

    1998-01-01

    This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) Study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the pre-phase A program for it. After finishing some initial studies and concepts development work on the NGST, MFSC's Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC's Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in Support of NASA GSFC. It contains material properties for 9 mirror Substrate materials, using information from at least 6 industrial Suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.

  11. Engineered materials characterization report, volume 3 - corrosion data and modeling update for viability assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCright, R D

    1998-06-30

    This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less

  12. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation.

    PubMed

    Boverhof, Darrell R; David, Raymond M

    2010-02-01

    Nanotechnology is a rapidly emerging field of great interest and promise. As new materials are developed and commercialized, hazard information also needs to be generated to reassure regulators, workers, and consumers that these materials can be used safely. The biological properties of nanomaterials are closely tied to the physical characteristics, including size, shape, dissolution rate, agglomeration state, and surface chemistry, to name a few. Furthermore, these properties can be altered by the medium used to suspend or disperse these water-insoluble particles. However, the current toxicology literature lacks much of the characterization information that allows toxicologists and regulators to develop "rules of thumb" that could be used to assess potential hazards. To effectively develop these rules, toxicologists need to know the characteristics of the particle that interacts with the biological system. This void leaves the scientific community with no options other than to evaluate all materials for all potential hazards. Lack of characterization could also lead to different laboratories reporting discordant results on seemingly the same test material because of subtle differences in the particle or differences in the dispersion medium used that resulted in altered properties and toxicity of the particle. For these reasons, good characterization using a minimal characterization data set should accompany and be required of all scientific publications on nanomaterials.

  13. Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys

    NASA Astrophysics Data System (ADS)

    Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.

    The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.

  14. 40 CFR 30.36 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Information Act (FOIA) request for research data relating to published research findings produced under an...

  15. 14 CFR 1260.136 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... response to a Freedom of Information Act (FOIA) request for research data relating to published research...

  16. 38 CFR 49.36 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  17. 38 CFR 49.36 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  18. 14 CFR 1260.136 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... response to a Freedom of Information Act (FOIA) request for research data relating to published research...

  19. 2 CFR 215.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  20. 38 CFR 49.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  1. 40 CFR 30.36 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Information Act (FOIA) request for research data relating to published research findings produced under an...

  2. 38 CFR 49.36 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  3. 14 CFR 1260.136 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... response to a Freedom of Information Act (FOIA) request for research data relating to published research...

  4. 40 CFR 30.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Information Act (FOIA) request for research data relating to published research findings produced under an...

  5. 38 CFR 49.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  6. 14 CFR 1260.136 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... response to a Freedom of Information Act (FOIA) request for research data relating to published research...

  7. 40 CFR 30.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Information Act (FOIA) request for research data relating to published research findings produced under an...

  8. 40 CFR 30.36 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Information Act (FOIA) request for research data relating to published research findings produced under an...

  9. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    PubMed

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  10. Exploring the Solid Rocket Boosters and Properties of Matter

    NASA Technical Reports Server (NTRS)

    Moffett, Amy

    2007-01-01

    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  11. Carbon nanotubes and nanowires for biological sensing

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ng, Hou Tee; Chen, Hua

    2005-01-01

    This chapter reviews the recent development in biological sensing using nanotechnologies based on carbon nanotubes and various nanowires. These 1D materials have shown unique properties that are efficient in interacting with biomolecules of similar dimensions, i.e., on a nanometer scale. Various aspects including synthesis, materials properties, device fabrication, biofunctionalization, and biological sensing applications of such materials are reviewed. The potential of such integrated nanobiosensors in providing ultrahigh sensitivity, fast response, and high-degree multiplex detection, yet with minimum sample requirements is demonstrated. This chapter is intended to provide comprehensive updated information for people from a variety of backgrounds but with common interests in the fast-moving interdisciplinary field of nanobiotechnology.

  12. The Impact Response of Composite Materials Involved in Helicopter Vulnerability Assessment: Literature Review - Part 1

    DTIC Science & Technology

    2006-04-01

    contraction) caused by a load when deforming the material; which takes the form of a stress-strain curve . The stress- strain curve is the key information...anisotropy associated with large variability of the mechanical properties of its constituents. Therefore, every experimental stress-strain curve for...these materials is closely associated with the load direction with respect to the material symmetry axes. Under static conditions, stress-strain curves

  13. Combining spectral material properties in the infrared and the visible spectral range for qualification and nondestructive evaluation of components

    NASA Astrophysics Data System (ADS)

    Eisler, K.; Goldammer, M.; Rothenfusser, M.; Arnold, W.; Homma, C.

    2012-05-01

    The spectral selective thermography with infrared filters can be used to determine or to distinguish materials such as contaminations on a metallic component. With additional visual information, the indications by the IR signal can be selectively accentuated or suppressed for easier evaluation of passive and active thermography measurements. For flash thermography the detected IR signal between 3.4 and 5.1 μm is analyzed with regard to the spectral material information. The presented hybrid camera uses beam overlapping to obtain combined images of both in the infrared and the visual range.

  14. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  15. Relationship between Surface Modifications of Nanoparticle and Invasion into Suspension Cells

    NASA Astrophysics Data System (ADS)

    Matsui, Y.; Sakai, N.; Tsuda, A.; Yoneda, M.

    2011-07-01

    Nanomaterials have a variety of properties for each material. There is little information available on which kinds of material properties have effects on toxicity and kinetics. This paper presents that a relationship between material properties and hazard data by undertaking a bibliographical survey at first. With respect to cytotoxicity, it probably depends mainly on the particle volume dose and to a certain degree on particle solubility. It can be concluded from these results that there is a relationship between material properties and hazard data. Many activities involving nano risk are occurring all over the world. Secondly, we assayed actually for cellular uptake of three kinds of Quantum dots (15 nm, 5.5×1012 particles/ml) to demonstrate our result of bibliographical survey. Three different surface modification quantum dots (non-modification, -COOH, -NH3) were mixed with floating Jurkat cells in each. After thirty minute, we washed these cells three times and detected fluorescence by flow cytometer. Almost all the carboxylate particles invaded a cell, about 60% aminated them also invaded and few non-modification particles were taken up. Nanomaterials are often very broadly categorized and named based upon their basic material composition or product shape. Our results confirm that we have to examine which physical-chemical properties affect some adverse effects for each nanomaterial.

  16. Rheology of tissue conditioners.

    PubMed

    Murata, H; Hamada, T; Djulaeha, E; Nikawa, H

    1998-02-01

    Tissue conditioners can be used to condition abused tissues, record functional impressions, make temporary relinings, and for other clinical applications, mainly because of their specific viscoelasticity. However, little information is available on the rheology of the materials, manipulation, and suitability for various clinical applications. This study evaluated the gelation times, the viscoelastic properties after gelation of tissue conditioners, and the influence of the powder/liquid (P/L) ratio. Ten tissue conditioners were used and gelation times were obtained with an oscillating rheometer. A series of stress relaxation tests were also conducted to evaluate the viscoelastic properties after gelation and the changes with the passage of time by means of Maxwell model analogies. Significant differences were found in the gelation times and flow properties after gelation among the materials mixed with the P/L ratios recommended by the manufacturers. The flow properties tended to increase with time of storage. Large differences in the limits of the clinically acceptable P/L ratios and the adjustable limits of elasticity and viscosity by altering P/L ratios were found among the materials. The results suggested that each material should be selected according to each clinical purpose because of the wide ranges of viscoelastic properties and changes in viscoelasticity with time among the materials. Furthermore, gelation times and the viscoelastic properties after gelation can be controlled to improve handling and suit various applications by altering the P/L ratios within the acceptable limits.

  17. Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites

    DOE PAGES

    Ahmadi, Mahshid; Collins, Liam; Puretzky, Alexander; ...

    2018-01-22

    Organometallic halide perovskites (OMHPs) have attracted broad attention as prospective materials for optoelectronic applications. Among the many anomalous properties of these materials, of special interest are the ferroelectric properties including both classical and relaxor-like components, as a potential origin of slow dynamics, field enhancement, and anomalous mobilities. Here, ferroelectric properties of the three representative OMHPs are explored, including FAPb xSn 1–xI 3 (x = 0, x = 0.85) and FA 0.85MA 0.15PbI 3 using band excitation piezoresponse force microscopy and contact mode Kelvin probe force microscopy, providing insight into long- and short-range dipole and charge dynamics in these materials andmore » probing ferroelectric density of states. Furthermore, second-harmonic generation in thin films of OMHPs is observed, providing a direct information on the noncentrosymmetric polarization in such materials. Overall, the data provide strong evidence for the presence of ferroelectric domains in these systems; however, the domain dynamics is suppressed by fast ion dynamics. These materials hence present the limit of ferroelectric materials with spontaneous polarization dynamically screened by ionic and electronic carriers.« less

  18. Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmadi, Mahshid; Collins, Liam; Puretzky, Alexander

    Organometallic halide perovskites (OMHPs) have attracted broad attention as prospective materials for optoelectronic applications. Among the many anomalous properties of these materials, of special interest are the ferroelectric properties including both classical and relaxor-like components, as a potential origin of slow dynamics, field enhancement, and anomalous mobilities. Here, ferroelectric properties of the three representative OMHPs are explored, including FAPb xSn 1–xI 3 (x = 0, x = 0.85) and FA 0.85MA 0.15PbI 3 using band excitation piezoresponse force microscopy and contact mode Kelvin probe force microscopy, providing insight into long- and short-range dipole and charge dynamics in these materials andmore » probing ferroelectric density of states. Furthermore, second-harmonic generation in thin films of OMHPs is observed, providing a direct information on the noncentrosymmetric polarization in such materials. Overall, the data provide strong evidence for the presence of ferroelectric domains in these systems; however, the domain dynamics is suppressed by fast ion dynamics. These materials hence present the limit of ferroelectric materials with spontaneous polarization dynamically screened by ionic and electronic carriers.« less

  19. 14 CFR § 1260.136 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... response to a Freedom of Information Act (FOIA) request for research data relating to published research...

  20. DFT Studies of Semiconductor and Scintillator Detection Materials

    NASA Astrophysics Data System (ADS)

    Biswas, Koushik

    2013-03-01

    Efficient radiation detection technology is dependent upon the development of new semiconductor and scintillator materials with advanced capabilities. First-principles based approaches can provide vital information about the structural, electrical, optical and defect properties that will help develop new materials. In addition to the predictive power of modern density functional methods, these techniques can be used to establish trends in properties that may lead to identifying new materials with optimum properties. We will discuss the properties of materials that are of current interest both in the field of scintillators and room temperature semiconductor detectors. In case of semiconductors, binary compounds such as TlBr, InI, CdTe and recently developed ternary chalcohalide Tl6SeI4 will be discussed. Tl6SeI4 mixes a halide (TlI) with a chalcogenide (Tl2Se), which results in an intermediate band gap (1.86 eV) between that of TlI (2.75 eV) and Tl2Se (0.6 eV). For scintillators, we will discuss the case of the elpasolite compounds whose rich chemical compositions should enable the fine-tuning of the band gap and band edges to achieve high light yield and fast scintillation response.

  1. Quantify patient-specific coronary material property and its impact on stress/strain calculations using in vivo IVUS data and 3D FSI models: a pilot study

    PubMed Central

    Guo, Xiaoya; Zhu, Jian; Maehara, Akiko; Monoly, David; Samady, Habib; Wang, Liang; Billiar, Kristen L.; Zheng, Jie; Yang, Chun; Mintz, Gary S.; Giddens, Don P.; Tang, Dalin

    2016-01-01

    Computational models have been used to calculate plaque stress and strain for plaque progression and rupture investigations. An intravascular ultrasound (IVUS)-based modeling approach is proposed to quantify in vivo vessel material properties for more accurate stress/strain calculations. In vivo Cine IVUS and VH-IVUS coronary plaque data were acquired from one patient with informed consent obtained. Cine IVUS data and 3D thin-slice models with axial stretch were used to determine patient-specific vessel material properties. Twenty full 3D fluid–structure interaction models with ex vivo and in vivo material properties and various axial and circumferential shrink combinations were constructed to investigate the material stiffness impact on stress/strain calculations. The approximate circumferential Young’s modulus over stretch ratio interval [1.0, 1.1] for an ex vivo human plaque sample and two slices (S6 and S18) from our IVUS data were 1631, 641, and 346 kPa, respectively. Average lumen stress/strain values from models using ex vivo, S6 and S18 materials with 5 % axial shrink and proper circumferential shrink were 72.76, 81.37, 101.84 kPa and 0.0668, 0.1046, and 0.1489, respectively. The average cap strain values from S18 material models were 150–180 % higher than those from the ex vivo material models. The corresponding percentages for the average cap stress values were 50–75 %. Dropping axial and circumferential shrink consideration led to stress and strain over-estimations. In vivo vessel material properties may be considerably softer than those from ex vivo data. Material stiffness variations may cause 50–75 % stress and 150–180 % strain variations. PMID:27561649

  2. Rheological Principles for Food Analysis

    NASA Astrophysics Data System (ADS)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  3. Properties of seven Colombian woods

    Treesearch

    B. A. Bendtsen; M. Chudnoff

    1981-01-01

    Woods from abroad are an important raw material to the forest products industries in the United States. A major concern in effective utilization of this resource is the lack of technical information on many species. This report presents the results of an evaluation of the mechanical properties of small, clear specimens of seven Colombian woods. These results are...

  4. Development and Assessment of a Molecular Structure and Properties Learning Progression

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Underwood, Sonia M.; Hilley, Caleb Z.; Klymkowsky, Michael W.

    2012-01-01

    Previously, we found that: (i) many students were unable to construct representations of simple molecular structures; (ii) a majority of students fail to make the important connection between these representations and macroscopic properties of the material; and (iii) they were unable to decode the information contained in such representations.…

  5. Transmission of chirality through space and across length scales

    NASA Astrophysics Data System (ADS)

    Morrow, Sarah M.; Bissette, Andrew J.; Fletcher, Stephen P.

    2017-05-01

    Chirality is a fundamental property and vital to chemistry, biology, physics and materials science. The ability to use asymmetry to operate molecular-level machines or macroscopically functional devices, or to give novel properties to materials, may address key challenges at the heart of the physical sciences. However, how chirality at one length scale can be translated to asymmetry at a different scale is largely not well understood. In this Review, we discuss systems where chiral information is translated across length scales and through space. A variety of synthetic systems involve the transmission of chiral information between the molecular-, meso- and macroscales. We show how fundamental stereochemical principles may be used to design and understand nanoscale chiral phenomena and highlight important recent advances relevant to nanotechnology. The survey reveals that while the study of stereochemistry on the nanoscale is a rich and dynamic area, our understanding of how to control and harness it and dial-up specific properties is still in its infancy. The long-term goal of controlling nanoscale chirality promises to be an exciting journey, revealing insight into biological mechanisms and providing new technologies based on dynamic physical properties.

  6. 10 CFR 32.26 - Gas and aerosol detectors containing byproduct material: Requirements for license to manufacture...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... byproduct material and designed to protect life or property from fires and airborne hazards, or to initially... submits sufficient information relating to the design, manufacture, prototype testing, quality control... the product and changes in chemical and physical form that may occur during the useful life of the...

  7. National Educators' Workshop: Update 1996

    NASA Technical Reports Server (NTRS)

    Gardner, James E.; Freeman, Ginger L.; Jacobs, James; Parkin, Don M.

    1997-01-01

    This document contains a collection of experiments presented and demonstrated at the National Educators' Workshop: Update 96, held at Los Alamos National Laboratory, Los Alamos, New Mexico on October 27-30, 1996. The experiments related to the nature and properties of engineering materials and provided information to assist in teaching about materials in the education community.

  8. Materials Properties of Printable Edible Inks and Printing Parameters Optimization during 3D Printing: a review.

    PubMed

    Feng, Chunyan; Zhang, Min; Bhandari, Bhesh

    2018-06-01

    Interest in additive manufacture has grown significantly in recent years, driving a need for printable materials that can sustain high strains and still fulfill their function in applications such as tissue engineering, regenerative medicine field, food engineering and field of aerospace, etc. As an emerging and promising technology, 3Dprinting has attracted more and more attention with fast manipulation, reduce production cost, customize geometry, increase competitiveness and advantages in many hot research areas. Many researchers have done a lot of investigations on printable materials, ranging from a single material to composite material. Main content: This review focuses on the contents of printable edible inks. It also gathers and analyzes information on the effects of printable edible ink material properties on 3D print accuracy. In addition, it discusses the impact of printing parameters on accurate printing, and puts forward current challenges and recommendations for future research and development.

  9. Lightweight Ablative and Ceramic Thermal Protection System Materials for NASA Exploration Systems Vehicles

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Lawrence, Timothy W.; Gubert, Michael K.; Milos, Frank S.; Kiser, James D.; Ohlhorst, Craig W.; Koenig, John R.

    2006-01-01

    As a collaborative effort among NASA Centers, the "Lightweight Nonmetallic Thermal Protection Materials Technology" Project was set up to assist mission/vehicle design trade studies, to support risk reduction in thermal protection system (TPS) material selections, to facilitate vehicle mass optimization, and to aid development of human-rated TPS qualification and certification plans. Missions performing aerocapture, aerobraking, or direct aeroentry rely on advanced heatshields that allow reductions in spacecraft mass by minimizing propellant requirements. Information will be presented on candidate materials for such reentry approaches and on screening tests conducted (material property and space environmental effects tests) to evaluate viable candidates. Seventeen materials, in three classes (ablatives, tiles, and ceramic matrix composites), were studied. In additional to physical, mechanical, and thermal property tests, high heat flux laser tests and simulated-reentry oxidation tests were performed. Space environmental effects testing, which included exposures to electrons, atomic oxygen, and hypervelocity impacts, was also conducted.

  10. Dielectric Rheo-SANS: An Instrument for the Simultaneous Interrogation of Rheology, Microstructure and Electronic Properties of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Wagner, Norman; Richards, Jeffrey; Hipp, Julie; Butler, Paul

    In situ measurements are an increasingly important tool to inform the complex relationship between nanoscale properties and macroscopic measurements. For conducting colloidal suspensions, we seek intrinsic relationships between the measured electrical and mechanical response of a material both in quiescence and under applied shear. These relationships can be used to inform the development of new materials with enhanced electrical and mechanical performance. In order to study these relationships, we have developed a dielectric rheology instrument that is compatible with small angle neutron scattering (SANS) experiments. This Dielectric RheoSANS instrument consists of a Couette geometry mounted on an ARES G2 strain controlled rheometer enclosed in a modified Forced Convection Oven (FCO). In this talk, we outline the development of the Dielectric RheoSANS instruments and demonstrate its operation using two systems - a suspension of carbon black particles in propylene carbonate and poly(3-hexylthiophene) organogel - where there is interest in how shear influences the microstructure state of the material. By monitoring the conductivity and rheological response of these materials at the same time, we can capture the entire evolution of the material response to an applied deformation. NCNR NIST Cooperative Agreement #70NANB12H239.

  11. Material and shape perception based on two types of intensity gradient information

    PubMed Central

    Nishida, Shin'ya

    2018-01-01

    Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644

  12. Material platforms for spin-based photonic quantum technologies

    NASA Astrophysics Data System (ADS)

    Atatüre, Mete; Englund, Dirk; Vamivakas, Nick; Lee, Sang-Yun; Wrachtrup, Joerg

    2018-05-01

    A central goal in quantum optics and quantum information science is the development of quantum networks to generate entanglement between distributed quantum memories. Experimental progress relies on the quality and efficiency of the light-matter quantum interface connecting the quantum states of photons to internal states of quantum emitters. Quantum emitters in solids, which have properties resembling those of atoms and ions, offer an opportunity for realizing light-matter quantum interfaces in scalable and compact hardware. These quantum emitters require a material platform that enables stable spin and optical properties, as well as a robust manufacturing of quantum photonic circuits. Because no emitter system is yet perfect and different applications may require different properties, several light-matter quantum interfaces are being developed in various platforms. This Review highlights the progress in three leading material platforms: diamond, silicon carbide and atomically thin semiconductors.

  13. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    DOE PAGES

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...

    2015-08-05

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  14. The Extraterrestrial Materials Simulation Laboratory

    NASA Technical Reports Server (NTRS)

    Green, J. R.

    2001-01-01

    In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.

  15. Lunar Regolith Simulant User's Guide

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Rickman, D. L.; McLemore, C. A.; Fikes, J. C.

    2010-01-01

    Based on primary characteristics, currently or recently available lunar regolith simulants are discussed from the perspective of potential experimental uses. The characteristics used are inherent properties of the material rather than their responses to behavioral (geomechanical, physiochemical, etc.) tests. We define these inherent or primary properties to be particle composition, particle size distribution, particle shape distribution, and bulk density. Comparable information about lunar materials is also provided. It is strongly emphasized that anyone considering either choosing or using a simulant should contact one of the members of the simulant program listed at the end of this document.

  16. Machine-learning-assisted materials discovery using failed experiments

    NASA Astrophysics Data System (ADS)

    Raccuglia, Paul; Elbert, Katherine C.; Adler, Philip D. F.; Falk, Casey; Wenny, Malia B.; Mollo, Aurelio; Zeller, Matthias; Friedler, Sorelle A.; Schrier, Joshua; Norquist, Alexander J.

    2016-05-01

    Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on ‘dark’ reactions—failed or unsuccessful hydrothermal syntheses—collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.

  17. Nanoparticle–Cell Interactions: Relevance for Public Health

    PubMed Central

    2017-01-01

    Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle–cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle–cell research in which physical chemistry expertise could help to inform the public health community. PMID:29111728

  18. Nanoparticle-Cell Interactions: Relevance for Public Health.

    PubMed

    Runa, Sabiha; Hussey, Michael; Payne, Christine K

    2018-01-25

    Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.

  19. Ballistic Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Emmerling, William C.; Altobelli, Donald J.

    2012-01-01

    An experimental program is underway to develop a consistent set of material property and impact test data, and failure analysis, for a variety of materials that can be used to develop improved impact failure and deformation models. Unique features of this set of data are that all material property information and impact test results are obtained using identical materials, the test methods and procedures are extensively documented and all of the raw data is available. This report describes ballistic impact testing which has been conducted on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade.

  20. 41 CFR 105-62.202 - Review of classified materials for declassification purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Systematic review for declassification. Except for foreign government information, classified information... declassification as it becomes 20 years old. Transition to systematic review at 20 years shall be implemented as... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Review of classified...

  1. The Story of the Plastics Industry.

    ERIC Educational Resources Information Center

    Masson, Don, Ed.

    This is an illustrated informative booklet, designed to serve members of the Society of the Plastics Industry, Inc., and the plastics industry as a whole. It provides basic information about the industry's history and growth, plastics raw materials, typical uses of plastics, properties, and methods of processing and fabricating. (Author/DS)

  2. An efficient algorithm for generating diverse microstructure sets and delineating properties closures

    DOE PAGES

    Johnson, Oliver K.; Kurniawan, Christian

    2018-02-03

    Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less

  3. An efficient algorithm for generating diverse microstructure sets and delineating properties closures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Oliver K.; Kurniawan, Christian

    Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less

  4. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  5. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  6. Data mining for better material synthesis: The case of pulsed laser deposition of complex oxides

    NASA Astrophysics Data System (ADS)

    Young, Steven R.; Maksov, Artem; Ziatdinov, Maxim; Cao, Ye; Burch, Matthew; Balachandran, Janakiraman; Li, Linglong; Somnath, Suhas; Patton, Robert M.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2018-03-01

    The pursuit of more advanced electronics, and finding solutions to energy needs often hinges upon the discovery and optimization of new functional materials. However, the discovery rate of these materials is alarmingly low. Much of the information that could drive this rate higher is scattered across tens of thousands of papers in the extant literature published over several decades but is not in an indexed form, and cannot be used in entirety without substantial effort. Many of these limitations can be circumvented if the experimentalist has access to systematized collections of prior experimental procedures and results. Here, we investigate the property-processing relationship during growth of oxide films by pulsed laser deposition. To do so, we develop an enabling software tool to (1) mine the literature of relevant papers for synthesis parameters and functional properties of previously studied materials, (2) enhance the accuracy of this mining through crowd sourcing approaches, (3) create a searchable repository that will be a community-wide resource enabling material scientists to leverage this information, and (4) provide through the Jupyter notebook platform, simple machine-learning-based analysis to learn the complex interactions between growth parameters and functional properties (all data/codes available on https://github.com/ORNL-DataMatls). The results allow visualization of growth windows, trends and outliers, which can serve as a template for analyzing the distribution of growth conditions, provide starting points for related compounds and act as a feedback for first-principles calculations. Such tools will comprise an integral part of the materials design schema in the coming decade.

  7. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less

  8. The Marble-Hand Illusion

    PubMed Central

    Senna, Irene; Maravita, Angelo; Bolognini, Nadia; Parise, Cesare V.

    2014-01-01

    Our body is made of flesh and bones. We know it, and in our daily lives all the senses constantly provide converging information about this simple, factual truth. But is this always the case? Here we report a surprising bodily illusion demonstrating that humans rapidly update their assumptions about the material qualities of their body, based on their recent multisensory perceptual experience. To induce a misperception of the material properties of the hand, we repeatedly gently hit participants' hand with a small hammer, while progressively replacing the natural sound of the hammer against the skin with the sound of a hammer hitting a piece of marble. After five minutes, the hand started feeling stiffer, heavier, harder, less sensitive, unnatural, and showed enhanced Galvanic skin response (GSR) to threatening stimuli. Notably, such a change in skin conductivity positively correlated with changes in perceived hand stiffness. Conversely, when hammer hits and impact sounds were temporally uncorrelated, participants did not spontaneously report any changes in the perceived properties of the hand, nor did they show any modulation in GSR. In two further experiments, we ruled out that mere audio-tactile synchrony is the causal factor triggering the illusion, further demonstrating the key role of material information conveyed by impact sounds in modulating the perceived material properties of the hand. This novel bodily illusion, the ‘Marble-Hand Illusion', demonstrates that the perceived material of our body, surely the most stable attribute of our bodily self, can be quickly updated through multisensory integration. PMID:24621793

  9. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, David C.

    1991-04-30

    A non-destructive evaluation technique for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  10. Method for deriving information regarding stress from a stressed ferromagnetic material

    DOEpatents

    Jiles, D.C.

    1991-04-30

    A nondestructive evaluation technique is disclosed for deriving stress in ferromagnetic materials including deriving anhysteretic and hysteresis magnetization curves for the material in both unstressed and stressed states. The anhysteretic curve is expressed as a Langevin function. The stress is expressed as an equivalent magnetic field dependent on stress and change of magnetostriction with magnetization. By measurement of these bulk magnetic properties, stress can be derived.

  11. 77 FR 3556 - Proposed Agency Information Collection Activities; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... trespass. With such knowledge, specific educational programs, materials, and messages regarding the hazards and consequences of trespassing on railroad property can be developed and effectively distributed. Due...

  12. 76 FR 70463 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; NANO Special...

  13. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2017-12-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  14. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2018-04-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  15. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2018-02-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  16. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2017-10-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  17. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2017-11-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  18. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2018-01-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  19. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2018-03-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  20. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2018-05-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  1. New Products

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2013-06-01

    In order to supplement manufacturers' information, this Department will welcome the submission by our readers of brief communications reporting measurements on the physical properties of materials which supersede earlier data or suggest new research applications.

  2. Polarization-based material classification technique using passive millimeter-wave polarimetric imagery.

    PubMed

    Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong

    2016-11-01

    The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

  3. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    PubMed

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Testing of the permanent magnet material Mn-Al-C for potential use in propulsion motors for electric vehicles

    NASA Technical Reports Server (NTRS)

    Abdelnour, Z. A.; Mildrum, H. F.; Strnat, K. J.

    1980-01-01

    The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The commercial material now available is described by the manufacturer's data. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. From this, a list of the needed specific information is extracted. A plan for experimental work is made which would generate this information, or verify data supplied by the producer. The results of these measurements are presented in the form of tables and graphs. The tests determined magnetic design data and some mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 C to +150 C. Hysteresis loops were also measured for three orthogonal directions (the easy and 2 hard axes of magnetization).

  5. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  6. Properties of barium strontium titanate at millimeter wave frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, Nurul; Free, Charles

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less

  7. Modeling adsorption properties of structurally deformed metal–organic frameworks using structure–property map

    PubMed Central

    Lim, Dae-Woon; Kim, Sungjune; Harale, Aadesh; Yoon, Minyoung; Suh, Myunghyun Paik; Kim, Jihan

    2017-01-01

    Structural deformation and collapse in metal-organic frameworks (MOFs) can lead to loss of long-range order, making it a challenge to model these amorphous materials using conventional computational methods. In this work, we show that a structure–property map consisting of simulated data for crystalline MOFs can be used to indirectly obtain adsorption properties of structurally deformed MOFs. The structure–property map (with dimensions such as Henry coefficient, heat of adsorption, and pore volume) was constructed using a large data set of over 12000 crystalline MOFs from molecular simulations. By mapping the experimental data points of deformed SNU-200, MOF-5, and Ni-MOF-74 onto this structure–property map, we show that the experimentally deformed MOFs share similar adsorption properties with their nearest neighbor crystalline structures. Once the nearest neighbor crystalline MOFs for a deformed MOF are selected from a structure–property map at a specific condition, then the adsorption properties of these MOFs can be successfully transformed onto the degraded MOFs, leading to a new way to obtain properties of materials whose structural information is lost. PMID:28696307

  8. Lunar fiberglass: Properties and process design

    NASA Technical Reports Server (NTRS)

    Dalton, Robert; Nichols, Todd

    1987-01-01

    A Clemson University ceramic engineering design for a lunar fiberglass plant is presented. The properties of glass fibers and metal-matrix composites are examined. Lunar geology is also discussed. A raw material and site are selected based on this information. A detailed plant design is presented, and summer experiments to be carried out at Johnson Space Center are reviewed.

  9. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Treesearch

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  10. Progress in dimethacrylate-based dental composite technology and curing efficiency.

    PubMed

    Leprince, Julian G; Palin, William M; Hadis, Mohammed A; Devaux, Jacques; Leloup, Gaetane

    2013-02-01

    This work aims to review the key factors affecting the polymerization efficiency of light-activated resin-based composites. The different properties and methods used to evaluate polymerization efficiency will also be critically appraised with focus on the developments in dental photopolymer technology and how recent advances have attempted to improve the shortcomings of contemporary resin composites. Apart from the classical literature on the subject, the review focused in particular on papers published since 2009. The literature research was performed in Scopus with the terms "dental resin OR dimethacrylate". The list was screened and all papers relevant to the objectives of this work were included. Though new monomer technologies have been developed and some of them already introduced to the dental market, dimethacrylate-based composites still currently represent the vast majority of commercially available materials for direct restoration. The photopolymerization of resin-based composites has been the subject of numerous publications, which have highlighted the major impact of the setting process on material properties and quality of the final restoration. Many factors affect the polymerization efficiency, be they intrinsic; photoinitiator type and concentration, viscosity (co-monomer composition and ratio, filler content) and optical properties, or extrinsic; light type and spectrum, irradiation parameters (radiant energy, time and irradiance), curing modes, temperature and light guide tip positioning. : This review further highlights the apparent need for a more informative approach by manufacturers to relay appropriate information in order for dentists to optimize material properties of resin composites used in daily practice. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Molecular-level understanding of the carbonisation of polysaccharides.

    PubMed

    Shuttleworth, Peter S; Budarin, Vitaliy; White, Robin J; Gun'ko, Vladimir M; Luque, Rafael; Clark, James H

    2013-07-08

    Understanding of both the textural and functionality changes occurring during (mesoporous) polysaccharide carbonisation at the molecular level provides a deeper insight into the whole spectrum of material properties, from chemical activity to pore shape and surface energy, which is crucial for the successful application of carbonaceous materials in adsorption, catalysis and chromatography. Obtained information will help to identify the most appropriate applications of the carbonaceous material generated during torrefaction and different types of pyrolysis processes and therefore will be important for the development of cost- and energy-efficient zero-waste biorefineries. The presented approach is informative and semi-quantitative with the potential to be extended to the formation of other biomass-derived carbonaceous materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Birefringent coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  13. 10 CFR 32.26 - Gas and aerosol detectors containing byproduct material: Requirements for license to manufacture...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... byproduct material and designed to protect life or property from fires and airborne hazards, or to initially... submits sufficient information relating to the design, manufacture, prototype testing, quality control... paragraphs (b) (3) and (12) of this section; (5) Details of construction and design of the product as related...

  14. 10 CFR 32.26 - Gas and aerosol detectors containing byproduct material: Requirements for license to manufacture...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... byproduct material and designed to protect life or property from fires and airborne hazards, or to initially... submits sufficient information relating to the design, manufacture, prototype testing, quality control... paragraphs (b) (3) and (12) of this section; (5) Details of construction and design of the product as related...

  15. 41 CFR 105-60.605 - Procedure in the event of a demand for production or disclosure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (2) Production of material. When information other than oral testimony is sought by a demand, the... of a demand for production or disclosure. 105-60.605 Section 105-60.605 Public Contracts and Property... MATERIALS 60.6-Production or Disclosure by Present or Former General Services Administration Employees in...

  16. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  17. Textile Materials for the Design of Wearable Antennas: A Survey

    PubMed Central

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  18. Understanding online health information: Evaluation, tools, and strategies.

    PubMed

    Beaunoyer, Elisabeth; Arsenault, Marianne; Lomanowska, Anna M; Guitton, Matthieu J

    2017-02-01

    Considering the status of the Internet as a prominent source of health information, assessing online health material has become a central issue in patient education. We describe the strategies available to evaluate the characteristics of online health information, including readability, emotional content, understandability, usability. Popular tools used in assessment of readability, emotional content and comprehensibility of online health information were reviewed. Tools designed to evaluate both printed and online material were considered. Readability tools are widely used in online health material evaluation and are highly covariant. Assessment of emotional content of online health-related communications via sentiment analysis tools is becoming more popular. Understandability and usability tools have been developed specifically for health-related material, but each tool has important limitations and has been tested on a limited number of health issues. Despite the availability of numerous assessment tools, their overall reliability differs between readability (high) and understandability (low). Approaches combining multiple assessment tools and involving both quantitative and qualitative observations would optimize assessment strategies. Effective assessment of online health information should rely on mixed strategies combining quantitative and qualitative evaluations. Assessment tools should be selected according to their functional properties and compatibility with target material. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. 36 CFR 1256.52 - Trade secrets and commercial or financial information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Trade secrets and commercial... MATERIALS General Restrictions § 1256.52 Trade secrets and commercial or financial information. In accordance with 5 U.S.C. 552(b)(4), NARA may withhold records that contain trade secrets and commercial or...

  20. 36 CFR 1256.52 - Trade secrets and commercial or financial information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Trade secrets and commercial... MATERIALS General Restrictions § 1256.52 Trade secrets and commercial or financial information. In accordance with 5 U.S.C. 552(b)(4), NARA may withhold records that contain trade secrets and commercial or...

  1. 36 CFR 1256.52 - Trade secrets and commercial or financial information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Trade secrets and commercial... MATERIALS General Restrictions § 1256.52 Trade secrets and commercial or financial information. In accordance with 5 U.S.C. 552(b)(4), NARA may withhold records that contain trade secrets and commercial or...

  2. 36 CFR 1256.52 - Trade secrets and commercial or financial information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Trade secrets and commercial... MATERIALS General Restrictions § 1256.52 Trade secrets and commercial or financial information. In accordance with 5 U.S.C. 552(b)(4), NARA may withhold records that contain trade secrets and commercial or...

  3. Energy efficiency in light-frame wood construction

    Treesearch

    Gerald E. Sherwood; Gunard Hans

    1979-01-01

    This report presents information needed for design and construction of energy-efficient light-frame wood structures. The opening section discusses improving the thermal performance of a house by careful planning and design. A second section of the report provides technical information on the thermal properties of construction materials, and on the basic engineering...

  4. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  5. Vitreous humour - routine or alternative material for analysis in forensic medicine.

    PubMed

    Markowska, Joanna; Szopa, Monika; Zawadzki, Marcin; Piekoszewski, Wojciech

    2017-01-01

    Biological materials used in toxicological analyses in forensic medicine traditionally include blood, urine and vitreous humour. Forensic use of the vitreous body is mostly due to the need to assess the endogenous concentration of ethyl alcohol in the process of human body decomposition. The vitreous body is an underestimated biological material, even though its biochemical properties and anatomical location make it suitable for specific forensic toxicology tests as a reliable material for the preparation of forensic expert opinions. Based on the available literature the paper gathers information on the biochemical structure of the vitreous body, ways to secure the material after collection and its use in postmortem diagnostics. Specific applications of the vitreous humour for biochemical and toxicological tests are discussed, with a focus on its advantages and limitations in forensic medical assessment which are attributable to its biochemical properties, anatomical location and limited scientific studies on the distribution of xenobiotics in the vitreous body.

  6. Measurement of elastic and thermal properties of composite materials using digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra

    2015-08-01

    In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.

  7. Compendium of information on identification and testing of materials for plastic solar thermal collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.

    1980-07-31

    This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less

  8. Micro-mechanics of micro-composites

    NASA Technical Reports Server (NTRS)

    Donovan, Richard P.

    1995-01-01

    The Structural Dynamics branch at NASA LaRC is working on developing an active passive mount system for vibration control. Toward this end a system utilizing piezoelectric actuators is currently being utilized. There are limitations to the current system related to space applications under which it is desired to eliminate deformations in the actuators associated with thermal effects. In addition, a material that is readily formable into complex shapes and whose mechanical properties can be optimized with regards to vibration control would be highly desirable. Microcomposite material are currently under study to service these needs. Microcomposite materials are essentially materials in which particles on the scale of microns are bound together with a polyimide (LaRC Si) that has been developed at LaRC. In particular a micro-composite consisting of LaRC Si binder and piezoelectric ceramic particles shows promise in satisfying the needs of the active passive mount project. The LaRC/ Si microcomposite has a unique combination of piezoelectric properties combined with a near zero coefficient of thermal expansion and easy machinability. The goal of this ASEE project is to develop techniques to analytically determine important material properties necessary to characterize the dynamic properties of actuators and mounts made from the LaRC Si / ceramic microcomposite. In particular, a generalized method of cells micromechanics originally developed at NASA Lewis is employed to analyze the microstructural geometry of the microcomposites and predict the overall mechanical properties of the material. A testing program has been established to evaluate and refine the GMC approach to these materials. In addition, a theory of mixtures analysis is being developed that utilizes the GMC micromechanics information to analyze complex behavior of the microcomposite material which has a near zero CTE.

  9. Report On Design And Preliminary Data Of Halden In-Pile Creep Rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A; Karlsen, T. M.; Yamamoto, Yukinori

    2015-09-01

    A set of in-pile creep tests is ongoing in the Halden reactor on ORNL’s candidate accident tolerant fuel cladding materials. These tests are meant to provide essential material property information that is needed for an informed analysis of these fuel concepts under normal operating conditions. These tests provide detailed information regarding swelling, thermal creep, and irradiation creep rates of these materials. The results to date have been compared with the limited set of information available in literature that is form irradiation tests in other reactors or out-of-pile tests. Most of the results are in good agreement with prior literature, exceptmore » for irradiation creep rate of SiC. To elucidate the difference between the HFIR and Halden test results continued testing is necessary. The tests describe in this progress report are ongoing and will continue for at least another year.« less

  10. Ab initio theory of point defects in oxide materials: structure, properties, chemical reactivity

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco

    2000-05-01

    Point defects play a fundamental role in determining the physical and chemical properties of inorganic materials. This holds not only for the bulk properties but also for the surface of oxides where several kinds of point defects exist and exhibit a rich and complex chemistry. A particularly important defect in oxides is the oxygen vacancy. Depending on the electronic structure of the material the nature of oxygen vacancies changes dramatically. In this article we provide a rationalization of the very different electronic structure of neutral and charged oxygen vacancies in SiO 2 and MgO, two oxide materials with completely different electronic structure (from very ionic, MgO, to largely covalent, SiO 2). We used methods of ab initio quantum chemistry, from density functional theory (DFT) to configuration interaction (CI), to determine the ground and excited state properties of these defects. The theoretical results are combined with recent spectroscopic measurements. A series of observable properties has been determined in this way: defect formation energies, hyperfine interactions in electron paramagnetic resonance (EPR) spectra of paramagnetic centers, optical spectra, surface chemical reactivity. The interplay between experimental and theoretical information allows one to unambiguously identify the structure of oxygen vacancies in these binary oxides and on their surfaces.

  11. Recent advances in organic one-dimensional composite materials: design, construction, and photonic elements for information processing.

    PubMed

    Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng

    2013-07-19

    Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.

    PubMed

    Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L

    2018-04-26

    Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.

  13. Anthropometric sourcebook

    NASA Technical Reports Server (NTRS)

    Bond, R. L.; Jackson, J. T.; Louviere, A. J.; Thornton, W. E.

    1979-01-01

    Three-volume "Anthropometric Source Book' contains large body of anthropometric data, design information, and references. Subjects covered include variability in body size, mass distribution properties of human body, arm and leg reach, joint motion and numerous other materials.

  14. Disordered solids: In search of the perfect glass

    NASA Astrophysics Data System (ADS)

    Biroli, Giulio

    2014-08-01

    The jury's still out on how glasses and other disordered materials form. However, a new framework suggests that we can understand their mechanical properties without this information, by using the physics of jamming.

  15. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    NASA Astrophysics Data System (ADS)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  16. Guidelines for the use of fiberglass reinforced plastic in utility FGD systems. [Flue gas desulfurization (FGD); contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoza, R.J.; Vollmer, H.R.; Haberly, K.L.

    1992-11-01

    Fiberglass reinforced plastic (FRP) materials offer excellent corrosion-resistant properties and long-term cost advantages compared to exotic alloys or organic lining systems. This guideline document provides potential buyers of FRP FGD (flue gas desulfurization) equipment with enough knowledge of FRP materials and methods to make informed decisions when procuring FRP equipment or services. It is divided into the following chapters: application criteria, procurement strategies, FRP basics, guidelines for designing FRP equipment, quality management. A glossary and manufacturers information/recommendations are included.

  17. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    NASA Astrophysics Data System (ADS)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.

  18. Beryllium—A critical mineral commodity—Resources, production, and supply chain

    USGS Publications Warehouse

    Lederer, Graham W.; Foley, Nora K.; Jaskula, Brian W.; Ayuso, Robert A.

    2016-11-14

    Beryllium is a lightweight metallic element used in a wide variety of specialty and industrial applications. As a function of its unique chemical and physical properties, such as a high stiffness-to-weight ratio, resistance to temperature extremes, and high thermal conductivity, beryllium cannot be easily replaced by substitute materials in applications where combinations of these properties make it the material of choice. Because the number of beryllium producers is limited and the use of substitute materials in specific defense-related applications that are vital to national security is inadequate, several studies have categorized beryllium as a critical and strategic material. This categorization has led to the United States Government recommending that beryllium be stockpiled for use in the event of a national emergency. As of December 31, 2015, the National Defense Stockpile inventory of hot-pressed beryllium metal powder, structured beryllium metal powder, and vacuum-cast beryllium metal totaled 78 metric tons (t).The U.S. Geological Survey (USGS) Mineral Resources Program supports research on the occurrence, quality, quantity, and availability of mineral resources vital to the economy and national security. The USGS, through its National Minerals Information Center (NMIC), collects, analyzes, and disseminates information on more than 90 nonfuel mineral commodities from more than 180 countries. This fact sheet provides information on the production, consumption, supply chain, geology, and resource availability of beryllium in a global context.

  19. An Information-Based Machine Learning Approach to Elasticity Imaging

    PubMed Central

    Hoerig, Cameron; Ghaboussi, Jamshid; Insana, Michael. F.

    2016-01-01

    An information-based technique is described for applications in mechanical-property imaging of soft biological media under quasi-static loads. We adapted the Autoprogressive method that was originally developed for civil engineering applications for this purpose. The Autoprogressive method is a computational technique that combines knowledge of object shape and a sparse distribution of force and displacement measurements with finite-element analyses and artificial neural networks to estimate a complete set of stress and strain vectors. Elasticity imaging parameters are then computed from estimated stresses and strains. We introduce the technique using ultrasonic pulse-echo measurements in simple gelatin imaging phantoms having linear-elastic properties so that conventional finite-element modeling can be used to validate results. The Autoprogressive algorithm does not require any assumptions about the material properties and can, in principle, be used to image media with arbitrary properties. We show that by selecting a few well-chosen force-displacement measurements that are appropriately applied during training and establish convergence, we can estimate all nontrivial stress and strain vectors throughout an object and accurately estimate an elastic modulus at high spatial resolution. This new method of modeling the mechanical properties of tissue-like materials introduces a unique method of solving the inverse problem and is the first technique for imaging stress without assuming the underlying constitutive model. PMID:27858175

  20. Local structure studies of materials using pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph W.

    A collection of pair distribution function studies on various materials is presented in this dissertation. In each case, local structure information of interest pushes the current limits of what these studies can accomplish. The goal is to provide insight into the individual material behaviors as well as to investigate ways to expand the current limits of PDF analysis. Where possible, I provide a framework for how PDF analysis might be applied to a wider set of material phenomena. Throughout the dissertation, I discuss 0 the capabilities of the PDF method to provide information pertaining to a material's structure and properties, ii) current limitations in the conventional approach to PDF analysis, iii) possible solutions to overcome certain limitations in PDF analysis, and iv) suggestions for future work to expand and improve the capabilities PDF analysis.

  1. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  2. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  3. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  4. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  5. Influence of porosity on thermophysical properties of a composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishaeva, N. Yu., E-mail: anohina@mail2000.ru; Ljukshin, B. A., E-mail: lba2008@yandex.ru; Bochkareva, S. A., E-mail: svetlanab7@yandex.ru

    2015-10-27

    In many modern information systems, the heat generated during the operation of electronic devices is usually dissipated by heat-conductive pads between the casing of the respective equipment and a massive base (platform). For newly developed pads, the promising materials are composites on the basis of various types of silicone rubber. At the same time, during the production of the pads without a vacuum setup, the material can contain air bubbles, which causes the porosity potentially negative for the thermal properties of the material. This work studies the thermal conductivity depending on the degree of silicone matrix filling by copper particles,more » introduced to improve thermal conductivity, and by air bubbles that are considered as reinforcing inclusions.« less

  6. Visualizing Earth Materials

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can help scientists to visualize materials, but also how artists and scientists can work together to learn from each other. To illustrate this point, our poster will provide opportunities for hands on experimentation with earth materials as artistic media.

  7. Measurement and Validation of Bidirectional Reflectance of Space Shuttle and Space Station Materials for Computerized Lighting Models

    NASA Technical Reports Server (NTRS)

    Fletcher, Lauren E.; Aldridge, Ann M.; Wheelwright, Charles; Maida, James

    1997-01-01

    Task illumination has a major impact on human performance: What a person can perceive in his environment significantly affects his ability to perform tasks, especially in space's harsh environment. Training for lighting conditions in space has long depended on physical models and simulations to emulate the effect of lighting, but such tests are expensive and time-consuming. To evaluate lighting conditions not easily simulated on Earth, personnel at NASA Johnson Space Center's (JSC) Graphics Research and Analysis Facility (GRAF) have been developing computerized simulations of various illumination conditions using the ray-tracing program, Radiance, developed by Greg Ward at Lawrence Berkeley Laboratory. Because these computer simulations are only as accurate as the data used, accurate information about the reflectance properties of materials and light distributions is needed. JSC's Lighting Environment Test Facility (LETF) personnel gathered material reflectance properties for a large number of paints, metals, and cloths used in the Space Shuttle and Space Station programs, and processed these data into reflectance parameters needed for the computer simulations. They also gathered lamp distribution data for most of the light sources used, and validated the ability to accurately simulate lighting levels by comparing predictions with measurements for several ground-based tests. The result of this study is a database of material reflectance properties for a wide variety of materials, and lighting information for most of the standard light sources used in the Shuttle/Station programs. The combination of the Radiance program and GRAF's graphics capability form a validated computerized lighting simulation capability for NASA.

  8. Highly Non-Linear Optical (NLO) organic crystals and films. Electrooptical organic materials

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Rosenberger, Franz; Matthews, John

    1987-01-01

    Devices employing nonlinear optics (NLO) hold great promise for important applications in integrated optics, optical information processing and telecommunications. Properly designed organics possess outstanding optical and electrooptical properties which will substantially advance many technologies including electrooptical switching, optical amplification for communications, and parallel processing for hybrid optical computers. A brief comparison of organic and inorganic materials is given.

  9. 75 FR 31799 - Center for Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... commercial property such as patentable material, and personal information concerning individuals associated...: Cardiac Conduction System, Calcium Release and Arrhythmia. Date: June 9, 2010. Time: 10:30 a.m. to 12:30 p...

  10. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to...

  11. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to...

  12. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to...

  13. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to...

  14. 15 CFR 270.321 - Entry and inspection of property where building components, materials, artifacts, and records...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NATIONAL CONSTRUCTION SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Collection and Preservation of Evidence; Information Created Pursuant to...

  15. Advancements in the Quantification of the Crystal Structure of ZNS Materials Produced in Variable Gravity

    NASA Astrophysics Data System (ADS)

    Castillo, Martin

    2016-07-01

    Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.

  16. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications.

    PubMed

    Mohamed, Mohamad Azuwa; Abd Mutalib, Muhazri; Mohd Hir, Zul Adlan; M Zain, M F; Mohamad, Abu Bakar; Jeffery Minggu, Lorna; Awang, Nor Asikin; W Salleh, W N

    2017-10-01

    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  18. A high-quality fuels database of photos and information

    Treesearch

    Clinton S. Wright; Paige C. Eagle; Diana L. Olson

    2010-01-01

    Photo series and their associated data provide a quick and easy way for managers to quantify and describe fuel and vegetation properties, such as loading of dead and down woody material, tree density, or height of understory vegetation. This information is critical for making fuel management decisions and for predicting fire behavior and fire effects. The Digital Photo...

  19. Dynamic tension testing equipment for paperboard and corrugated fiberboard

    Treesearch

    W. D. Godshall

    1965-01-01

    The objective of this work was to develop a method, the testing equipment, and the instrumentation with which dynamic stress-strain information may be obtained for paperboards and built-up corrugated fiberboards as used in corrugated fiberboard containers. Much information is available on the properties of these materials when subjected to static or low rates of...

  20. 36 CFR § 1256.52 - Trade secrets and commercial or financial information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Trade secrets and commercial... MATERIALS General Restrictions § 1256.52 Trade secrets and commercial or financial information. In accordance with 5 U.S.C. 552(b)(4), NARA may withhold records that contain trade secrets and commercial or...

  1. Material Characterization for Ductile Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Hill, Michael R.

    2000-01-01

    The research summarized in this document provides valuable information for structural health evaluation of NASA infrastructure. Specifically, material properties are reported which will enable calibration of ductile fracture prediction methods for three high-toughness metallic materials and one aluminum alloy which can be found in various NASA facilities. The task of investigating these materials has also served to validate an overall methodology for ductile fracture prediction is currently being employed at NASA. In facilitating the ability to incorporate various materials into the prediction scheme, we have provided data to enable demonstration of the overall generality of the approach.

  2. Bone strength in pure bending: bearing of geometric and material properties.

    PubMed

    Winter, Werner

    2008-01-01

    Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.

  3. Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers.

    PubMed

    Li, Yuanyuan; Cui, Qiannan; Ceballos, Frank; Lane, Samuel D; Qi, Zeming; Zhao, Hui

    2017-11-08

    Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connection of the involved atomic layers through efficient interlayer charge or energy transfer. Recently, ultrafast charge transfer on a time scale shorter than 100 fs has been observed in several van der Waals bilayer heterostructures formed by two different materials. However, information on the transfer between two atomic layers of the same type is rare. Because these homobilayers are essential elements in constructing multilayer structures with desired optoelectronic properties, efficient interlayer transfer is highly desired. Here we show that electron transfer between two monolayers of MoSe 2 occurs on a picosecond time scale. Even faster transfer was observed in homobilayers of WS 2 and WSe 2 . The samples were fabricated by manually stacking two exfoliated monolayer flakes. By adding a graphene layer as a fast carrier recombination channel for one of the two monolayers, the transfer of the photoexcited carriers from the populated to the drained monolayers was time-resolved by femtosecond transient absorption measurements. The observed efficient interlayer carrier transfer indicates that such homobilayers can be used in van der Waals multilayers to enhance their optical absorption without significantly compromising the interlayer transport performance. Our results also provide valuable information for understanding interlayer charge transfer in heterostructures.

  4. Materials Discovery via CALYPSO Methodology

    NASA Astrophysics Data System (ADS)

    Ma, Yanming

    2014-03-01

    Materials design has been the subject of topical interests in materials and physical sciences for long. Atomistic structures of materials occupy a central and often critical role, when establishing a correspondence between materials performance and their basic compositions. Theoretical prediction of atomistic structures of materials with the only given information of chemical compositions becomes crucially important, but it is extremely difficult as it basically involves in classifying a huge number of energy minima on the lattice energy surface. To tackle the problems, we have developed an efficient CALYPSO (Crystal structural AnLYsis by Particle Swarm Optimization) approach for structure prediction from scratch based on particle swarm optimization algorithm by taking the advantage of swarm intelligence and the spirit of structures smart learning. The method has been coded into CALYPSO software (http://www.calypso.cn) which is free for academic use. Currently, CALYPSO method is able to predict structures of three-dimensional crystals, isolated clusters or molecules, surface reconstructions, and two-dimensional layers. The applications of CALYPSO into purposed materials design of layered materials, high-pressure superconductors, and superhard materials were successfully made. Our design of superhard materials introduced a useful scheme, where the hardness value has been employed as the fitness function. This strategy might also be applicable into design of materials with other desired functional properties (e.g., thermoelectric figure of merit, topological Z2 number, etc.). For such a structural design, a well-understood structure to property formulation is required, by which functional properties of materials can be easily acquired at given structures. An emergent application is seen on design of photocatalyst materials.

  5. Quantifying yield behaviour in metals by X-ray nanotomography

    PubMed Central

    Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.

    2016-01-01

    Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472

  6. Touchstone for success

    NASA Astrophysics Data System (ADS)

    Longdon, Norman; Dauphin, J.; Dunn, B. D.; Judd, M. D.; Levadou, F. G.; Zwaal, A.

    1992-04-01

    This booklet is addressed to the users of the Materials and Processes Laboratories of the European Space Research and Technology Centre (ESTEC). The revised edition updates the July 1988 edition featuring the enhancement of existing laboratories and the establishment of a ceramics laboratory. Information on three ESTEC laboratories is presented as well as a look into the future. The three laboratories are the Environmental Effects Laboratory, the Metallic Materials Laboratory, and the Non-metallic Laboratory. The booklet reports on the effects of the space environment on radiation effects (UV and particles), outgassing and contamination, charging-up and discharges, particulate contaminants, atomic oxygen and debris/impacts. Applications of metallic materials to space hardware are covered in the areas of mechanical properties, corrosion/stress corrosion, fracture testing and interpretation, metallurgical processes and failure analysis. Particular applications of non metallic materials to space hardware that are covered are advanced and reinforced polymers, advanced ceramics, thermal properties, manned ambiance, polymer processing, non-destructive tests (NDT), and failure analysis. Future emphasis will be on the measurement of thermo-optical properties for the Infrared Space Observatory (ISO) and other infrared telescopes, support of the Columbus program, Hermes related problems such as 'warm' composites and 'hot' reinforced ceramics for thermal insulation, materials for extravehicular activity (EVA), and NDT.

  7. a Brief Survey on Basic Properties of Thin Films for Device Application

    NASA Astrophysics Data System (ADS)

    Rao, M. C.; Shekhawat, M. S.

    Thin film materials are the key elements of continued technological advances made in the fields of optoelectronic, photonic and magnetic devices. Thin film studies have directly or indirectly advanced many new areas of research in solid state physics and chemistry which are based on phenomena uniquely characteristic of the thickness, geometry and structure of the film. The processing of materials into thin films allows easy integration into various types of devices. Thin films are extremely thermally stable and reasonably hard, but they are fragile. On the other hand organic materials have reasonable thermal stability and are tough, but are soft. Thin film mechanical properties can be measured by tensile testing of freestanding films and by the micro beam cantilever deflection technique, but the easiest way is by means of nanoindentation. Optical experiments provide a good way of examining the properties of semiconductors. Particularly measuring the absorption coefficient for various energies gives information about the band gaps of the material. Thin film materials have been used in semiconductor devices, wireless communications, telecommunications, integrated circuits, rectifiers, transistors, solar cells, light-emitting diodes, photoconductors and light crystal displays, lithography, micro- electromechanical systems (MEMS) and multifunctional emerging coatings, as well as other emerging cutting technologies.

  8. 77 FR 72367 - Center for Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... commercial property such as patentable material, and personal information concerning individuals associated...: Understanding and Promoting Health Literacy (R21). Date: December 5, 2012. Time: 10:00 a.m. to 12:00 p.m. Agenda...

  9. 78 FR 25281 - Center for Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... commercial property such as patentable material, and personal information concerning individuals associated...: Understanding and Promoting Health Literacy. Date: May 17, 2013. Time: 12:30 p.m. to 6:00 p.m. Agenda: To review...

  10. 75 FR 52763 - Eunice Kennedy Shriver National Institute of Child Health & Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... commercial property such as patentable material, and personal information concerning individuals associated... on the planning of the NICHD Science Vision; and other business of the Council. Place: National...

  11. 77 FR 74199 - Center For Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... commercial property such as patentable material, and personal information concerning individuals associated...: Genetics of Cancer and Hypertension. Date: January 11, 2013. Time: 12:00 p.m. to 2:00 p.m. Agenda: To...

  12. 76 FR 63626 - Center for Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... commercial property such as patentable material, and personal information concerning individuals associated...: Epidemiology and Genetics of Cancer. Date: October 27, 2011. Time: 1 p.m. to 2:30 p.m. Agenda: To review and...

  13. Stochastic Analysis and Design of Heterogeneous Microstructural Materials System

    NASA Astrophysics Data System (ADS)

    Xu, Hongyi

    Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.

  14. Material Structure of a Graded Refractive Index Lens in Decapod Squid

    NASA Astrophysics Data System (ADS)

    Cai, Jing; Heiney, Paul; Sweeney, Alison

    2013-03-01

    Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.

  15. Progress towards Growth and Characterization of Rare-Earth Nanoparticles using the Inverse Micelle Method

    NASA Astrophysics Data System (ADS)

    Romero, Dulce G.; Ho, Pei-Chun

    2008-03-01

    Nano-sized particles and clusters have promising electrical, chemical, and magnetic properties as compared to the bulk materials. Due to their reduced dimensionality, it makes their physical properties significantly different from the bulk material. The nano-sized materials have great potential for technical applications, such as, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the preliminary results on the growth and characterization of rare-earth metallic nanoparticles of Gd and Nd synthesized by the inverse micelle method [1]. These results will be compared to the bulk properties of Gd and Nd, as well as, to those exhibited by metallic nanoparticles, such as Co (by inverse micelle), and Gd (by laser evaporation cluster source), which have been found to show superparamagnetic behavior, enhanced magnetization, and self-organization [2-4]. [1] X.M. Lin, et al. Langmuir. 14, 7140 (1998). [2] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995).

  16. Robust Informatics Infrastructure Required For ICME: Combining Virtual and Experimental Data

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Holland, Frederic A. Jr.; Bednarcyk, Brett A.

    2014-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for robust automated materials information management system(s) enabling sophisticated data mining tools is increasing, as evidenced by the emphasis on Integrated Computational Materials Engineering (ICME) and the recent establishment of the Materials Genome Initiative (MGI). This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and or multi-scale models requires both the processing of large volumes of test data and complex materials data necessary to establish processing-microstructure-property-performance relationships. Fortunately, material information management systems have kept pace with the growing user demands and evolved to enable: (i) the capture of both point wise data and full spectra of raw data curves, (ii) data management functions such as access, version, and quality controls;(iii) a wide range of data import, export and analysis capabilities; (iv) data pedigree traceability mechanisms; (v) data searching, reporting and viewing tools; and (vi) access to the information via a wide range of interfaces. This paper discusses key principles for the development of a robust materials information management system to enable the connections at various length scales to be made between experimental data and corresponding multiscale modeling toolsets to enable ICME. In particular, NASA Glenn's efforts towards establishing such a database for capturing constitutive modeling behavior for both monolithic and composites materials

  17. Giant refractive-index modulation by two-photon reduction of fluorescent graphene oxides for multimode optical recording.

    PubMed

    Li, Xiangping; Zhang, Qiming; Chen, Xi; Gu, Min

    2013-10-02

    Graphene oxides (GOs) have emerged as precursors offering the potential of a cost-effective and large-scale production of graphene-based materials. Despite that their intrinsic fluorescence property has already brought interest of researchers for optical applications, to date, refractive-index modulation as one of the fundamental aspects of optical properties of GOs has received less attention. Here we reported on a giant refractive-index modulation on the order of 10(-2) to 10(-1), accompanied by a fluorescence intensity change, through the two-photon reduction of GOs. These features enabled a mechanism for multimode optical recording with the fluorescence contrast and the hologram-encoded refractive-index modulation in GO-dispersed polymers for security-enhanced high-capacity information technologies. Our results show that GO-polymer composites may provide a new material platform enabling flexible micro-/nano-photonic information devices.

  18. Thermophysical and Electronic Properties Information Analysis Center (TEPIAC): A Continuing Systematic Program on Data Tables of Thermophysical and Electronic Properties of Materials.

    DTIC Science & Technology

    1980-03-01

    laboratories and agencies, defense contractors and other industrial organizations, and academic institutions. Furthermore, under multiple sponsorship...agencies, defense contractors and other industrial organizations, and academic institutions. Furthermore, under multiple sponsorship four volumes of...1,091 Inquiries from defense contractors and other industrial organizations ... ........... 357 4,007 Inquiries from academic institutions

  19. Damage-mitigating control of aerospace systems for high performance and extended life

    NASA Technical Reports Server (NTRS)

    Ray, Asok; Wu, Min-Kuang; Carpino, Marc; Lorenzo, Carl F.; Merrill, Walter C.

    1992-01-01

    The concept of damage-mitigating control is to minimize fatigue (as well as creep and corrosion) damage of critical components of mechanical structures while simultaneously maximizing the system dynamic performance. Given a dynamic model of the plant and the specifications for performance and stability robustness, the task is to synthesize a control law that would meet the system requirements and, at the same time, satisfy the constraints that are imposed by the material and structural properties of the critical components. The authors present the concept of damage-mitigating control systems design with the following objectives: (1) to achieve high performance with a prolonged life span; and (2) to systematically update the controller as the new technology of advanced materials evolves. The major challenge is to extract the information from the material properties and then utilize this information in a mathematical form so that it can be directly applied to robust control synthesis for mechanical systems. The basic concept of damage-mitigating control is illustrated using a relatively simplified model of a space shuttle main engine.

  20. Process description language: an experiment in robust programming for manufacturing systems

    NASA Astrophysics Data System (ADS)

    Spooner, Natalie R.; Creak, G. Alan

    1998-10-01

    Maintaining stable, robust, and consistent software is difficult in face of the increasing rate of change of customers' preferences, materials, manufacturing techniques, computer equipment, and other characteristic features of manufacturing systems. It is argued that software is commonly difficult to keep up to date because many of the implications of these changing features on software details are obscure. A possible solution is to use a software generation system in which the transformation of system properties into system software is made explicit. The proposed generation system stores the system properties, such as machine properties, product properties and information on manufacturing techniques, in databases. As a result this information, on which system control is based, can also be made available to other programs. In particular, artificial intelligence programs such as fault diagnosis programs, can benefit from using the same information as the control system, rather than a separate database which must be developed and maintained separately to ensure consistency. Experience in developing a simplified model of such a system is presented.

  1. Information transport in classical statistical systems

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  2. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teixeira, Silvio R., E-mail: rainho@fct.unesp.br; Souza, Agda E.; Carvalho, Claudio L.

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), andmore » light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.« less

  3. Tuning the instrument: sonic properties in the spider's web

    PubMed Central

    Soler, A.; Siviour, C. R.; Zaera, R.; Vollrath, F.

    2016-01-01

    Spider orb webs are multifunctional, acting to absorb prey impact energy and transmit vibratory information to the spider. This paper explores the links between silk material properties, propagation of vibrations within webs and the ability of the spider to control and balance web function. Combining experimental and modelling approaches, we contrast transverse and longitudinal wave propagation in the web. It emerged that both transverse and longitudinal wave amplitude in the web can be adjusted through changes in web tension and dragline silk stiffness, i.e. properties that can be controlled by the spider. In particular, we propose that dragline silk supercontraction may have evolved as a control mechanism for these multifunctional fibres. The various degrees of active influence on web engineering reveals the extraordinary ability of spiders to shape the physical properties of their self-made materials and architectures to affect biological functionality, balancing trade-offs between structural and sensory functions. PMID:27605164

  4. A Comparative study of two RVE modelling methods for chopped carbon fiber SMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhangxing; Li, Yi; Shao, Yimin

    To achieve vehicle light-weighting, the chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, the Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed for material RVE property prediction. The two methods are compared in terms of the predicted elastic modulus andmore » the predicted results are validated using the Digital Image Correlation (DIC) tensile test results. Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.« less

  5. Material selection indices for design of surgical instruments with long tubular shafts.

    PubMed

    Nelson, Carl A

    2013-02-01

    In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.

  6. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  7. Controlled nanostructrures formation by ultra fast laser pulses for color marking.

    PubMed

    Dusser, B; Sagan, Z; Soder, H; Faure, N; Colombier, J P; Jourlin, M; Audouard, E

    2010-02-01

    Precise nanostructuration of surface and the subsequent upgrades in material properties is a strong outcome of ultra fast laser irradiations. Material characteristics can be designed on mesoscopic scales, carrying new optical properties. We demonstrate in this work, the possibility of achieving material modifications using ultra short pulses, via polarization dependent structures generation, that can generate specific color patterns. These oriented nanostructures created on the metal surface, called ripples, are typically smaller than the laser wavelength and in the range of visible spectrum. In this way, a complex colorization process of the material, involving imprinting, calibration and reading, has been performed to associate a priori defined colors. This new method based on the control of the laser-driven nanostructure orientation allows cumulating high quantity of information in a minimal surface, proposing new applications for laser marking and new types of identifying codes.

  8. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    PubMed

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  9. Transferable Reactive Force Fields: Extensions of ReaxFF-lg to Nitromethane.

    PubMed

    Larentzos, James P; Rice, Betsy M

    2017-03-09

    Transferable ReaxFF-lg models of nitromethane that predict a variety of material properties over a wide range of thermodynamic states are obtained by screening a library of ∼6600 potentials that were previously optimized through the Multiple Objective Evolutionary Strategies (MOES) approach using a training set that included information for other energetic materials composed of carbon, hydrogen, nitrogen, and oxygen. Models that best match experimental nitromethane lattice constants at 4.2 K and 1 atm are evaluated for transferability to high-pressure states at room temperature and are shown to better predict various liquid- and solid-phase structural, thermodynamic, and transport properties as compared to the existing ReaxFF and ReaxFF-lg parametrizations. Although demonstrated for an energetic material, the library of ReaxFF-lg models is supplied to the scientific community to enable new research explorations of complex reactive phenomena in a variety of materials research applications.

  10. Development of the system of reactor thermophysical data on the basis of ontological modelling

    NASA Astrophysics Data System (ADS)

    Chusov, I. A.; Kirillov, P. L.; Bogoslovskaya, G. P.; Yunusov, L. K.; Obysov, N. A.; Novikov, G. E.; Pronyaev, V. G.; Erkimbaev, A. O.; Zitserman, V. Yu; Kobzev, G. A.; Trachtengerts, M. S.; Fokin, L. R.

    2017-11-01

    Compilation and processing of the thermophysical data was always an important task for the nuclear industry. The difficulties of the present stage of this activity are explained by sharp increase of the data volume and the number of new materials, as well as by the increased requirements to the reliability of the data used in the nuclear industry. General trend in the fields with predominantly orientation at the work with data (material science, chemistry and others) consists in the transition to a common infrastructure with integration of separate databases, Web-portals and other resources. This infrastructure provides the interoperability, the procedures of the data exchange, storage and dissemination. Key elements of this infrastructure is a domain-specific ontology, which provides a single information model and dictionary for semantic definitions. Formalizing the subject area, the ontology adapts the definitions for the different database schemes and provides the integration of heterogeneous data. The important property to be inherent for ontologies is a possibility of permanent expanding of new definitions, e.g. list of materials and properties. The expansion of the thermophysical data ontology at the reactor materials includes the creation of taxonomic dictionaries for thermophysical properties; the models for data presentation and their uncertainties; the inclusion along with the parameters of the state, some additional factors, such as the material porosity, the burnup rate, the irradiation rate and others; axiomatics of the properties applicable to the given class of materials.

  11. Computational designing and screening of solid materials for CO2capture

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua

    In this presentation, we will update our progress on computational designing and screening of solid materials for CO2 capture. By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials have been proposed and validated at NETL. The advantage of this method is that it identifies the thermodynamic properties of the CO2 capture reaction as a function of temperature and pressure without any experimental input beyond crystallographic structural information of the solid phases involved. The calculated thermodynamic properties of different classes of solid materials versus temperature and pressure changes were further used to evaluate the equilibrium properties for the CO2 adsorption/desorption cycles. According to the requirements imposed by the pre- and post- combustion technologies and based on our calculated thermodynamic properties for the CO2 capture reactions by the solids of interest, we were able to identify only those solid materials for which lower capture energy costs are expected at the desired working conditions. In addition, we present a simulation scheme to increase and decrease the turnover temperature (Tt) of solid capturing CO2 reaction by mixing other solids. Our results also show that some solid sorbents can serve as bi-functional materials: CO2 sorbent and CO oxidation catalyst. Such dual functionality could be used for removing both CO and CO2 after water-gas-shift to obtain pure H2.

  12. In situ study of Li-ions diffusion and deformation in Li-rich cathode materials by using scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Kaiyang; Li, Tao; Tian, Tian

    2017-08-01

    In this paper, the scanning probe microscopy (SPM) based techniques, namely, conductive-AFM, electrochemical strain microscopy (ESM) and AM-FM (amplitude modulation-frequency modulation) techniques, are used to in situ characterize the changes in topography, conductivity and elastic properties of Li-rich layered oxide cathode (Li1.2Mn0.54Ni0.13Co0.13O2) materials, in the form of nanoparticles, when subject to the external electric field. Nanoparticles are the basic building blocks for composite cathode in a Li-ion rechargeable battery. Characterization of the structure and electrochemical properties of the nanoparticles is very important to understand the performance and reliability of the battery materials and devices. In this study, the conductivity, deformation and mechanical properties of the Li-rich oxide nanoparticles under different polarities of biases are studied using the above-mentioned SPM techniques. This information can be correlated with the Li+-ion diffusion and migration in the particles under external electrical field. The results also confirm that the SPM techniques are ideal tools to study the changes in various properties of electrode materials at nano- to micro-scales during or after the ‘simulated’ battery operation conditions. These techniques can also be used to in situ characterize the electrochemical performances of other energy storage materials, especially in the form of the nanoparticles.

  13. Finite Element Modeling of Passive Material Influence on the Deformation and Force Output of Skeletal Muscle

    PubMed Central

    Hodgson, John A.; Chi, Sheng-Wei; Yang, Judy P.; Chen, Jiun-Shyan; Edgerton, V. Reggie; Sinha, Shantanu

    2014-01-01

    The pattern of deformation of the different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. Maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a 3-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. PMID:22498294

  14. Finite element modeling of passive material influence on the deformation and force output of skeletal muscle.

    PubMed

    Hodgson, John A; Chi, Sheng-Wei; Yang, Judy P; Chen, Jiun-Shyan; Edgerton, Victor R; Sinha, Shantanu

    2012-05-01

    The pattern of deformation of different structural components of a muscle-tendon complex when it is activated provides important information about the internal mechanics of the muscle. Recent experimental observations of deformations in contracting muscle have presented inconsistencies with current widely held assumption about muscle behavior. These include negative strain in aponeuroses, non-uniform strain changes in sarcomeres, even of individual muscle fibers and evidence that muscle fiber cross sectional deformations are asymmetrical suggesting a need to readjust current models of contracting muscle. We report here our use of finite element modeling techniques to simulate a simple muscle-tendon complex and investigate the influence of passive intramuscular material properties upon the deformation patterns under isometric and shortening conditions. While phenomenological force-displacement relationships described the muscle fiber properties, the material properties of the passive matrix were varied to simulate a hydrostatic model, compliant and stiff isotropically hyperelastic models and an anisotropic elastic model. The numerical results demonstrate that passive elastic material properties significantly influence the magnitude, heterogeneity and distribution pattern of many measures of deformation in a contracting muscle. Measures included aponeurosis strain, aponeurosis separation, muscle fiber strain and fiber cross-sectional deformation. The force output of our simulations was strongly influenced by passive material properties, changing by as much as ~80% under some conditions. The maximum output was accomplished by introducing anisotropy along axes which were not strained significantly during a muscle length change, suggesting that correct costamere orientation may be a critical factor in the optimal muscle function. Such a model not only fits known physiological data, but also maintains the relatively constant aponeurosis separation observed during in vivo muscle contractions and is easily extrapolated from our plane-strain conditions into a three-dimensional structure. Such modeling approaches have the potential of explaining the reduction of force output consequent to changes in material properties of intramuscular materials arising in the diseased state such as in genetic disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The role of endogenous lipids in the emulsifying properties of cocoa

    NASA Astrophysics Data System (ADS)

    Gould, Joanne; Furse, Samuel; Wolf, Bettina

    2016-03-01

    This paper describes a study in which the emulsifying properties of cocoa material with and without its lipid fraction were explored. This study was motivated by the commercial interest in naturally-occurring particulate emulsifiers as opposed to the chemically modified emulsifying particles presently available for commercial use. The hypothesis was that endogenous lipids from cocoa were responsible for driving the formation of stable oil-in-water (o/w) emulsions. The data presented includes relative quantification of phospholipids from different commercially available cocoa material using 31P NMR spectroscopy and analyses of the emulsifying power of delipidified cocoa material. The commercially available cocoa material comprised several phospholipids, with phosphatidylcholine being the most abundant in all samples. Dispersions of delipidified cocoa material were found to drive the formation of o/w emulsions despite the absence of lipids. We therefore concluded that the emulsifying behaviour of cocoa material is not entirely reliant upon the endogenous lipids. This suggests that cocoa material may have a new and potentially widespread use in industrial food preparation and may inform manufacturing strategies for novel food grade emulsifiers.

  16. Understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates

    NASA Technical Reports Server (NTRS)

    Etters, R. D.

    1985-01-01

    Work directed toward understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates is reported. The motivation, apart from expanding our basic knowledge about these systems, was to understand and predict the properties of new materials synthesized at high pressure, including pressure induced metallic and superconducting states. As a consequence, information about the states of matter of the Jovian planets and their satellites, which are natural high pressure laboratories was also provided. The work on molecular surfaces and finite two and three dimensional clusters of atoms and molecules was connected with the composition and behavior of planetary atmospheres and on the processes involved in forming surface layers, which is vital to the development of composite materials and microcircuitry.

  17. Thermophysical and Electronic Properties Information Analysis Center (TEPIAC). A Continuing Systematic Program on Data Tables of Thermophysical and Electronic Properties of Materials.

    DTIC Science & Technology

    1981-05-01

    cermets, intermetallics, polymers, tomposites, elements, compounds, glasses , coatings, systems, materials, data 1tion. data evaluation, data analysis...intermetallics, glasses , ceramics, cermets, applied coatings, polymers, composites, and systems. The strategy of literature search has been to use both the...Tv i]3qTMt- I I [ 1 f-TL 1i 1: I 11c IQ I HT. Tsfl-)EN11R2 P- J 99’)~ 0 J917 V2O5 Vanadium Ox ide Li~~~~~~~~j ff T7AV~fi YJ rILLVL7T_(For

  18. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  19. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1992-01-01

    Overcash MATERIALS Research and Development in the Abbey-Polymer Processing and Properties ................... 574 J. Magill Corrosion and Protection Centre...gressi• ely pursuing the development of powerful "* Software Engineering and microprocessors and communication chips. The Information Processing ...differential equations, processing , Europe has a number of fascinating weather forecasting) that are to be developed by a projects in distributed

  20. 75 FR 27796 - Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... secrets or commercial property such as patentable material, and personal information concerning...; (3) a discussion on the planning of the NICHD Science Vision; and other business of the Council...

  1. Berkeley Lab - Materials Sciences Division

    Science.gov Websites

    MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division

  2. 36 CFR 1220.16 - What recorded information must be managed in accordance with the regulations in subchapter B?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT FEDERAL... subchapter B? The requirements in subchapter B apply to documentary materials that meet the definition of...

  3. DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow

    USGS Publications Warehouse

    Fan, Yin; Richard, Steve; Bristol, R. Sky; Peters, Shanan; Ingebritsen, Steven E.; Moosdorf, Nils; Packman, Aaron I.; Gleeson, Tom; Zazlavsky, Ilya; Peckham, Scott; Murdoch, Larry; Cardiff, Michael; Tarboton, David; Jones, Norm; Hooper, Richard; Arrigo, Jennifer; Gochis, David; Olson, John

    2015-01-01

    Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle–ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

  4. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  5. Survey of Materials Problems Resulting from Low-Pressure and Radiation Environment in Space

    NASA Technical Reports Server (NTRS)

    Lad, Robert A.

    1960-01-01

    On the basis of our present knowledge of the space environment, one might state that the exposure of materials to the radiation environment will present problems mainly with the impairment of the transparency of plastics and ionic solids due to ultraviolet radiation and with surface sputtering effects on emissivity and other thin film properties. The high vacuum in space will be of greater consequence in that it will render useless some members of practically all of the material classes. However, adequate solutions to most problems can be anticipated if enough information is at hand. This survey indicates that information is lacking at levels from the basic to the applied. A partial list of research areas in need of attack is included.

  6. Edge orientations of mechanically exfoliated anisotropic two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Yang, Juntan; Wang, Yi; Li, Yinfeng; Gao, Huajian; Chai, Yang; Yao, Haimin

    2018-03-01

    Mechanical exfoliation is an approach widely applied to prepare high-quality two-dimensional (2D) materials for investigating their intrinsic physical properties. During mechanical exfoliation, in-plane cleavage results in new edges whose orientations play an important role in determining the properties of the as-exfoliated 2D materials especially those with high anisotropy. Here, we systematically investigate the factors affecting the edge orientation of 2D materials obtained by mechanical exfoliation. Our theoretical study manifests that the fractured direction during mechanical exfoliation is determined synergistically by the tearing direction and material anisotropy of fracture energy. For a specific 2D material, our theory enables us to predict the possible edge orientations of the exfoliated flakes as well as their occurring probabilities. The theoretical prediction is experimentally verified by examining the inter-edge angles of the exfoliated flakes of four typical 2D materials including graphene, MoS2, PtS2, and black phosphorus. This work not only sheds light on the mechanics of exfoliation of the 2D materials but also provides a new approach to deriving information of edge orientations of mechanically exfoliated 2D materials by data mining of their macroscopic geometric features.

  7. Predicting New Materials for Hydrogen Storage Application

    PubMed Central

    Vajeeston, Ponniah; Ravindran, Ponniah; Fjellvåg, Helmer

    2009-01-01

    Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed.

  8. Electronic properties of new topological quantum materials

    NASA Astrophysics Data System (ADS)

    Kaminski, Adam

    Topological materials are characterized by the presence of nontrivial quantum electronic states, where often the electron spin is locked to its momentum. This opens up the possibility for developing new devices in which information is processed or stored by means of spin rather than charge. In this talk we will discuss the electronic properties of several of newly discovered topological quantum materials. In WTe2 we have observed a topological transition involving a change of the Fermi surface topology (known as a Lifshitz transition) driven by temperature. The strong temperature-dependence of the chemical potential that is at the heart of this phenomenon is also important for understanding the thermoelectric properties of such semimetals. Both WTe2 and MoTe2 were proposed to host type II Weyl semimetalic state. Indeed our data provides first experimental confirmation of such state in both of these materials. We will also present evidence for a new topological state in PtSn4 where pairs of extended Dirac node arcs rather are present rather than Dirac points, that is so far not understood theoretically. Our research opens up new directions on enhancing topological responsiveness of new quantum materials. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division (ARPES measurements), Center for Emergent Materials, an NSF MRSEC, under Grant DMR-1420451 (theory and data anal.

  9. Atomistic modeling for interfacial properties of Ni-Al-V ternary system

    NASA Astrophysics Data System (ADS)

    Dong, Wei-ping; Lee, Byeong-Joo; Chen, Zheng

    2014-05-01

    Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.

  10. Investigating polarized fluorescence emission of Napthalene Diimide polymer films via Stokes Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulrich, Steven; Sutch, Thabita; Schweizer, Matthias; Szulczewski, Greg; Barbosa Neto, Newton; Araujo, Paulo; Szulczewski's Group. Collaboration; Nanolab@UA Collaboration

    Structural studies of materials, especially polymers, has been an area of growing interest in the past decades. This is due to the wide variety of physical, optical and chemical properties which can be tuned to obtain desired outcomes. Such polymers include P(NDI2OD-T2) an organic n-type, donor-acceptor polymer. Techniques to measure the structure, chemical and optical properties of these materials include XRD, time resolved spectroscopy and other timely and expensive methods. This work seeks to implement Stokes parameter analysis to create a new spectroscopic method, which can be implemented at a fraction of the cost and with relative ease. This technique, when used to probe P(NDI2OD-T2), has been able to discern information about polymer aggregate formation, energy transfer and out of plane stacking on the basis of solvent choice and sample thickness. Additionally, this technique gives information regarding the polarized emission from excited sources, which could provide insight for increased device performance. College of Arts and Sciences and Center for Information Technology, University of Alabama. CNPq Brazil Grant number 401453/2014-6.

  11. Combining electronic structure and many-body theory with large databases: A method for predicting the nature of 4 f states in Ce compounds

    NASA Astrophysics Data System (ADS)

    Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.

    2017-08-01

    Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is about 0.42. Our approach demonstrates the predictive power of materials informatics when a large number of materials is used to establish significant trends. This predictive power can be used to design new materials with desired properties. The applicability of this approach for other correlated electron systems is discussed.

  12. GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications

    NASA Astrophysics Data System (ADS)

    Adachi, Sadao

    1985-08-01

    The AlxGa1-xAs/GaAs heterostructure system is potentially useful material for high-speed digital, high-frequency microwave, and electro-optic device applications. Even though the basic AlxGa1-xAs/GaAs heterostructure concepts are understood at this time, some practical device parameters in this system have been hampered by a lack of definite knowledge of many material parameters. Recently, Blakemore has presented numerical and graphical information about many of the physical and electronic properties of GaAs [J. S. Blakemore, J. Appl. Phys. 53, R123 (1982)]. The purpose of this review is (i) to obtain and clarify all the various material parameters of AlxGa1-xAs alloy from a systematic point of view, and (ii) to present key properties of the material parameters for a variety of research works and device applications. A complete set of material parameters are considered in this review for GaAs, AlAs, and AlxGa1-xAs alloys. The model used is based on an interpolation scheme and, therefore, necessitates known values of the parameters for the related binaries (GaAs and AlAs). The material parameters and properties considered in the present review can be classified into sixteen groups: (1) lattice constant and crystal density, (2) melting point, (3) thermal expansion coefficient, (4) lattice dynamic properties, (5) lattice thermal properties, (6) electronic-band structure, (7) external perturbation effects on the band-gap energy, (8) effective mass, (9) deformation potential, (10) static and high-frequency dielectric constants, (11) magnetic susceptibility, (12) piezoelectric constant, (13) Fröhlich coupling parameter, (14) electron transport properties, (15) optical properties, and (16) photoelastic properties. Of particular interest is the deviation of material parameters from linearity with respect to the AlAs mole fraction x. Some material parameters, such as lattice constant, crystal density, thermal expansion coefficient, dielectric constant, and elastic constant, obey Vegard's rule well. Other parameters, e.g., electronic-band energy, lattice vibration (phonon) energy, Debye temperature, and impurity ionization energy, exhibit quadratic dependence upon the AlAs mole fraction. However, some kinds of the material parameters, e.g., lattice thermal conductivity, exhibit very strong nonlinearity with respect to x, which arises from the effects of alloy disorder. It is found that the present model provides generally acceptable parameters in good agreement with the existing experimental data. A detailed discussion is also given of the acceptability of such interpolated parameters from an aspect of solid-state physics. Key properties of the material parameters for use in research work and a variety of AlxGa1-xAs/GaAs device applications are also discussed in detail.

  13. Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.

    2016-12-01

    To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.

  14. TOWARD THE DEVELOPMENT OF A CONSENSUS MATERIALS DATABASE FOR PRESSURE TECHNOLGY APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, Robert W; Ren, Weiju

    The ASME construction code books specify materials and fabrication procedures that are acceptable for pressure technology applications. However, with few exceptions, the materials properties provided in the ASME code books provide no statistics or other information pertaining to material variability. Such information is central to the prediction and prevention of failure events. Many sources of materials data exist that provide variability information but such sources do not necessarily represent a consensus of experts with respect to the reported trends that are represented. Such a need has been identified by the ASME Standards Technology, LLC and initial steps have been takenmore » to address these needs: however, these steps are limited to project-specific applications only, such as the joint DOE-ASME project on materials for Generation IV nuclear reactors. In contrast to light-water reactor technology, the experience base for the Generation IV nuclear reactors is somewhat lacking and heavy reliance must be placed on model development and predictive capability. The database for model development is being assembled and includes existing code alloys such as alloy 800H and 9Cr-1Mo-V steel. Ownership and use rights are potential barriers that must be addressed.« less

  15. Present Practice of Using Nautical Depth to Manage Navigation Channels in the Presence of Fluid Mud

    DTIC Science & Technology

    2017-05-01

    material surfaces cannot be interpreted reliably unless other correlating information is developed. Surveying of fluid mud properties. At some locations...depth to manage navigation channels and ports requires a mud property that determines a navigability criteria, a practical method for surveying that...for managing navigation channels, (3) issues related to conducting hydrographic surveying in waterways with fluid mud bottoms, (4) the newest

  16. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  17. TOF-SIMS imaging technique with information entropy

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Kawashima, Y.; Kudo, Masahiro

    2005-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples in principal. However, selection of specific peaks related to a particular protein, which are necessary for chemical imaging, out of numerous candidates had been difficult without an appropriate spectrum analysis technique. Therefore multivariate analysis techniques, such as principal component analysis (PCA), and analysis with mutual information defined by information theory, have been applied to interpret SIMS spectra of protein samples. In this study mutual information was applied to select specific peaks related to proteins in order to obtain chemical images. Proteins on insulated materials were measured with TOF-SIMS and then SIMS spectra were analyzed by means of the analysis method based on the comparison using mutual information. Chemical mapping of each protein was obtained using specific peaks related to each protein selected based on values of mutual information. The results of TOF-SIMS images of proteins on the materials provide some useful information on properties of protein adsorption, optimality of immobilization processes and reaction between proteins. Thus chemical images of proteins by TOF-SIMS contribute to understand interactions between material surfaces and proteins and to develop sophisticated biomaterials.

  18. Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu

    The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less

  19. Application of laboratory permeability data

    USGS Publications Warehouse

    Johnson, A.I.

    1963-01-01

    Some of the basic material contained in this report originally was prepared in 1952 as instructional handouts for ground-water short courses and for training of foreign participants. The material has been revised and expanded and is presented in the present form to make it more readily available to the field hydrologist. Illustrations now present published examples of the applications suggested in the 1952 material. For small areas, a field pumping test is sufficient to predict the characteristics of an aquifer. With a large area under study, the aquifer properties must be determined at many different locations and it is not usually economically feasible to make sufficient field tests to define the aquifer properties in detail for the whole aquifer. By supplementing a few field tests with laboratory permeability data and geologic interpretation, more point measurements representative of the hydrologic properties of the aquifer may be obtained. A sufficient number of samples seldom can be obtained to completely identify the permeability or transmissibility in detail for a project area. However, a few judiciously chosen samples of high quality, combined with good geologic interpretation, often will permit the extrapolation of permeability information over a large area with a fair degree of reliability. The importance of adequate geologic information, as well as the importance of collecting samples representative of at least all major textural units lying within the section or area of study, cannot be overemphasized.

  20. Zirconia in dental implantology: A review

    PubMed Central

    Apratim, Abhishek; Eachempati, Prashanti; Krishnappa Salian, Kiran Kumar; Singh, Vijendra; Chhabra, Saurabh; Shah, Sanket

    2015-01-01

    Background: Titanium has been the most popular material of choice for dental implantology over the past few decades. Its properties have been found to be most suitable for the success of implant treatment. But recently, zirconia is slowly emerging as one of the materials which might replace the gold standard of dental implant, i.e., titanium. Materials and Methods: Literature was searched to retrieve information about zirconia dental implant and studies were critically analyzed. PubMed database was searched for information about zirconia dental implant regarding mechanical properties, osseointegration, surface roughness, biocompatibility, and soft tissue health around it. The literature search was limited to English language articles published from 1975 to 2015. Results: A total of 45 papers met the inclusion criteria for this review, among the relevant search in the database. Conclusion: Literature search showed that some of the properties of zirconia seem to be suitable for making it an ideal dental implant, such as biocompatibility, osseointegration, favourable soft tissue response and aesthetics due to light transmission and its color. At the same time, some studies also point out its drawbacks. It was also found that most of the studies on zirconia dental implants are short-term studies and there is a need for more long-term clinical trials to prove that zirconia is worth enough to replace titanium as a biomaterial in dental implantology. PMID:26236672

  1. Data mining graphene: Correlative analysis of structure and electronic degrees of freedom in graphenic monolayers with defects

    DOE PAGES

    Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...

    2016-11-09

    The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less

  2. X-ray Computed Microtomography technique applied for cementitious materials: A review.

    PubMed

    da Silva, Ítalo Batista

    2018-04-01

    The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Composite Materials Handbook. Volume 1. Polymer Matrix Composites Guidelines for Characterization of Structural Materials

    DTIC Science & Technology

    2002-06-17

    power law type (References 6.8.6.1(h) and (i)). Various attempts have been made to use fracture mechanics based methods for predicting failure of...participate in the MIL-HDBK-17 coordination activity . 7. All information and data contained in this handbook have been coordinated with industry and the U.S...for statistically- based properties ............................. 6 2.2.3 Issues of data equivalence

  4. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam.

    PubMed

    Alaie, Seyedhamidreza; Goettler, Drew F; Jiang, Ying-Bing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, D H; Chaieb, S; Leseman, Zayd C

    2015-02-27

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m(-1) K(-1) versus 71.6 W m(-1) K(-1) at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  5. Defects in electro-optically active polymer solids

    NASA Technical Reports Server (NTRS)

    Martin, David C.

    1993-01-01

    There is considerable current interest in the application of organic and polymeric materials for electronic and photonic devices. The rapid, non-linear optical (NLO) response of these materials makes them attractive candidates for waveguides, interferometers, and frequency doublers. In order to realize the full potential of these systems, it is necessary to develop processing schemes which can fabricate these molecules into ordered arrangements. There is enormous potential for introducing well-defined, local variations in microstructure to control the photonic properties of organic materials by rational 'defect engineering.' This effort may eventually become as technologically important as the manipulation of the electronic structure of solid-state silicon based devices is at present. The success of this endeavor will require complimentary efforts in the synthesis, processing, and characterization of new materials. Detailed information about local microstructure will be necessary to understand the influence of symmetry breaking of the solid phases near point, line, and planar defects. In metallic and inorganic polycrystalline materials, defects play an important role in modifying macroscopic properties. To understand the influence of particular defects on the properties of materials, it has proven useful to isolate the defect by creating bicrystals between two-component single crystals. In this way the geometry of a grain boundary defect and its effect on macroscopic properties can be determined unambiguously. In crystalline polymers it would be valuable to establish a similar depth of understanding about the relationship between defect structure and macroscopic properties. Conventionally processed crystalline polymers have small crystallites (10-20 nm), which implies a large defect density in the solid state. Although this means that defects may play an important or even dominant role in crystalline or liquid crystalline polymer systems, it also makes it difficult to isolate the effect of a particular boundary on a macroscopically observed property. However, the development of solid-state and thin-film polymerization mechanisms have facilitated the synthesis of highly organized and ordered polymers. These systems provide a unique opportunity to isolate and investigate in detail the structure of covalently bonded solids near defects and the effect of these defects on the properties of the material. The study of defects in solid polymers has been the subject of a recent review (Martin, 1993).

  6. Preparation of a Phosphor, ZnS:Cupric.

    ERIC Educational Resources Information Center

    Suib, Steven L.; Tanaka, John

    1984-01-01

    Background information (including optical properties of inorganic materials) and procedures are provided for an experiment which introduces students to preparation of a doped semiconductor; phosphorescence; gettering procedures; reducing atmospheres; and use of a high-temperature furnace with associated thermocouples, temperature controllers, and…

  7. 77 FR 26021 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... confidential trade secrets or commercial property such as patentable material, and personal information... Integration Support Contract (BISC).'' Date: May 25, 2012. Time: 8:00 a.m. to 5:00 p.m. Agenda: To review and...

  8. 7 CFR 550.42 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  9. 2 CFR 200.315 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. ...) request for research data relating to published research findings produced under a Federal award that were...

  10. 7 CFR 550.42 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  11. 7 CFR 550.42 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  12. 7 CFR 550.42 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  13. 7 CFR 550.42 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research, peer reviews, or communications with colleagues. This “recorded” material excludes physical... information that could be used to identify a particular person in a research study. (ii) Published is defined... Regulations of the Department of Agriculture (Continued) AGRICULTURAL RESEARCH SERVICE, DEPARTMENT OF...

  14. 76 FR 28055 - Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... confidential trade secrets or commercial property such as patentable material, and personal information... below, with attendance limited to space available. Individuals who plan to attend and need special... Federal Domestic Assistance Program Nos. 93.14, Intramural Research Training Award; 93.22, Clinical...

  15. Database of Novel and Emerging Adsorbent Materials

    National Institute of Standards and Technology Data Gateway

    SRD 205 NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials (Web, free access)   The NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials is a free, web-based catalog of adsorbent materials and measured adsorption properties of numerous materials obtained from article entries from the scientific literature. Search fields for the database include adsorbent material, adsorbate gas, experimental conditions (pressure, temperature), and bibliographic information (author, title, journal), and results from queries are provided as a list of articles matching the search parameters. The database also contains adsorption isotherms digitized from the cataloged articles, which can be compared visually online in the web application or exported for offline analysis.

  16. The liquid wood heat flow and material properties as a function of temperature

    NASA Astrophysics Data System (ADS)

    Mazurchevici, Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2018-03-01

    There are three types of ‘liquid wood’, Arbofill, Arboblend and Arboform and will replace plastics materials in the near future taking into account the biodegradability and higher properties versus common used plastics materials. In order to get more information about the materials properties of ‘liquid wood’ the granules and samples obtained by injection molding were studied using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for Arboform L,V3 Nature-‘liquid wood’ (A-LW) and Arboform L, V3 Nature reinforced with Aramid Fibers (A-LWAF).In case of A-LW granule studied, the DSC analysis presents that at 97 °C appears an endoderm peak which represents the crystallization of the material, at 175 °C the exoderm peak which means the melting point of the material. After the tested granule cooling period of time this one was tested again and the endoderm peak disappears, which means that crystallization of material disappeared. The melting point of the second test decreases slightly at 174.6 °C. Also, the new test shows that at 61.7 °C the glass transition temperature appears and the melting point slightly decreases. In case of A-LW samples the DSC analyses shows that the melting point increased by 2.77 °C compared to the melting point of Arboform granule. The material behavior is more or less the same without the crystallization area.

  17. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  18. Recent advances in conjugated polymers for light emitting devices.

    PubMed

    Alsalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

  19. Recent Advances in Conjugated Polymers for Light Emitting Devices

    PubMed Central

    AlSalhi, Mohamad Saleh; Alam, Javed; Dass, Lawrence Arockiasamy; Raja, Mohan

    2011-01-01

    A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review. PMID:21673938

  20. Learning and retention through predictive inference and classification.

    PubMed

    Sakamoto, Yasuaki; Love, Bradley C

    2010-12-01

    Work in category learning addresses how humans acquire knowledge and, thus, should inform classroom practices. In two experiments, we apply and evaluate intuitions garnered from laboratory-based research in category learning to learning tasks situated in an educational context. In Experiment 1, learning through predictive inference and classification were compared for fifth-grade students using class-related materials. Making inferences about properties of category members and receiving feedback led to the acquisition of both queried (i.e., tested) properties and nonqueried properties that were correlated with a queried property (e.g., even if not queried, students learned about a species' habitat because it correlated with a queried property, like the species' size). In contrast, classifying items according to their species and receiving feedback led to knowledge of only the property most diagnostic of category membership. After multiple-day delay, the fifth-graders who learned through inference selectively retained information about the queried properties, and the fifth-graders who learned through classification retained information about the diagnostic property, indicating a role for explicit evaluation in establishing memories. Overall, inference learning resulted in fewer errors, better retention, and more liking of the categories than did classification learning. Experiment 2 revealed that querying a property only a few times was enough to manifest the full benefits of inference learning in undergraduate students. These results suggest that classroom teaching should emphasize reasoning from the category to multiple properties rather than from a set of properties to the category. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  1. Remarkable proanthocyanidin adsorption properties of monastrell pomace cell wall material highlight its potential use as an alternative fining agent in red wine production.

    PubMed

    Bautista-Ortín, Ana Belén; Ruiz-García, Yolanda; Marín, Fátima; Molero, Noelia; Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna

    2015-01-21

    The existence of interactions between the polysaccharides of vegetal cell walls and proanthocyanins makes this cell wall material an interesting option for its use as a fining agent to reduce the level of proanthocyanins in wines. Pomace wastes from the winery are widely available and a source of cell wall material, and the identification of varieties whose pomace cell walls present high proanthocyanin binding capacity and of processing methods that could enhance their adsorption properties could be of great interest. This study compared the proanthocyanin adsorption properties of pomace cell wall material from three different grape varieties (Monastrell, Cabernet Sauvignon, and Syrah), and the results were compared with those obtained using fresh grape cell walls. Also, the effect of the vinification method has been studied. Analysis of the proanthocyanidins in the solution after reaction with the cell wall material, using phloroglucinolysis and size exclusion chromatography, provided quantitative and qualitative information on the adsorbed and nonadsorbed compounds. A highlight of this study was the observation that Monastrell pomace cell wall material showed a strong affinity for proanthocyanidins, with values similar to that obtained for fresh grapes cell walls, and a preferential binding of high molecular mass proanthocyanidins, so these pomace cell walls could be used in wines to reduce astringency. The use of maceration enzymes during vinification had little effect on the retention capacity of the pomace cell walls obtained from this vinification, although an increase in the retention of low molecular mass proanthocyanidins was observed, and this might have implications for wine sensory properties.

  2. 41 CFR 105-60.103 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Policy. 105-60.103... (Continued) GENERAL SERVICES ADMINISTRATION Regional Offices-General Services Administration 60-PUBLIC AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.103 Policy. ...

  3. 41 CFR 105-60.103 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Policy. 105-60.103... (Continued) GENERAL SERVICES ADMINISTRATION Regional Offices-General Services Administration 60-PUBLIC AVAILABILITY OF AGENCY RECORDS AND INFORMATIONAL MATERIALS 60.1-General Provisions § 105-60.103 Policy. ...

  4. Calibration of the AASHTO pavement design guide to South Carolina conditions - phase I : final report.

    DOT National Transportation Integrated Search

    2016-07-20

    The primary objective of this research was to identify existing historical data (i.e., climate, traffic, : pavement design information, material properties, and pavement performance) within the SCDOT for use : in the local calibration of the Mechanis...

  5. 76 FR 35227 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Translational...

  6. 75 FR 57969 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business...

  7. 78 FR 14097 - Center for Scientific Review; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business...

  8. 78 FR 64224 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business...

  9. 76 FR 66075 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel, Small Business...

  10. 75 FR 29771 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Center for Scientific Review... commercial property such as patentable material, and personal information concerning individuals associated... personal privacy. Name of Committee: Center for Scientific Review Special Emphasis Panel; Small Business...

  11. Satellite Contamination and Materials Outgassing Knowledgebase - An Interactive Database Reference

    NASA Technical Reports Server (NTRS)

    Green, D. B.; Burns, Dewitt (Technical Monitor)

    2001-01-01

    The goal of this program is to collect at one site much of the knowledge accumulated about the outgassing properties of aerospace materials based on ground testing, the effects of this outgassing observed on spacecraft in flight, and the broader contamination environment measured by instruments on-orbit. We believe that this Web site will help move contamination a step forward, away from anecdotal folklore toward engineering discipline. Our hope is that once operational, this site will form a nucleus for information exchange, that users will not only take information from our knowledge base, but also provide new information from ground testing and space missions, expanding and increasing the value of this site to all. We urge Government and industry users to endorse this approach that will reduce redundant testing, reduce unnecessary delays, permit uniform comparisons, and permit informed decisions.

  12. Proceedings of the International Congress (12th), Corrosion Control for Low-Cost Reliability, Held in Houston, Texas on September 19-24, 1993. Volume 5B. Corrosion: General Issues

    DTIC Science & Technology

    1993-09-24

    and to provide basic data for the development of new materials with anticorrosion and antifouling properties. Experimental Methods Thiobacillus thio...directors, members thereof, nor instructors accept any responsibility for the use of the methods and materials discussed herein. Any goods, products...information is advisory only, and use of the materials and methods is solely at the risk of the user. Pninted in the USA. All rights reserved. This book, or

  13. INFOMAT: The international materials assessment and application centre's internet gateway

    NASA Astrophysics Data System (ADS)

    Branquinho, Carmen Lucia; Colodete, Leandro Tavares

    2004-08-01

    INFOMAT is an electronic directory structured to facilitate the search and retrieval of materials science and technology information sources. Linked to the homepage of the International Materials Assessment and Application Centre, INFOMAT presents descriptions of 392 proprietary databases with links to their host systems as well as direct links to over 180 public domain databases and over 2,400 web sites. Among the web sites are associations/unions, governmental and non-governmental institutions, industries, library holdings, market statistics, news services, on-line publications, standardization and intellectual property organizations, and universities/research groups.

  14. Phenomenological and mechanics aspects of nondestructive evaluation and characterization by sound and ultrasound of material and fracture properties

    NASA Technical Reports Server (NTRS)

    Fu, L. S. W.

    1982-01-01

    Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).

  15. Metal- matrix composite processing technologies for aircraft engine applications

    NASA Astrophysics Data System (ADS)

    Pank, D. R.; Jackson, J. J.

    1993-06-01

    Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.

  16. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  17. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE PAGES

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...

    2017-11-13

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  18. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  19. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  20. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data

    PubMed Central

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064

  1. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.

    PubMed

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.

  2. Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe

    NASA Astrophysics Data System (ADS)

    Wright, Joshua T.; Forsythe, Kyle; Hutchins, Jamie; Meulenberg, Robert W.

    2016-04-01

    This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level.This paper investigates how chemical dopants affect the electronic properties of CdSe quantum dots (QDs) and why a model that incorporates the concepts of orbital hybridization must be used to understand these properties. Extended X-ray absorption fine structure spectroscopy measurements show that copper dopants in CdSe QDs occur primarily through a statistical doping mechanism. Ultraviolet photoemission spectroscopy (UPS) experiments provide a detailed insight on the valence band (VB) structure of doped and undoped QDs. Using UPS measurements, we are able to observe photoemission from the Cu d-levels above VB maximum of the QDs which allows a complete picture of the energy band landscape of these materials. This information provides insights into many of the physical properties of doped QDs, including the highly debated near-infrared photoluminescence in Cu doped CdSe QDs. We show that all our results point to a common theme of orbital hybridization in Cu doped CdSe QDs which leads to optically and electronically active states below the conduction band minimum. Our model is supported from current-voltage measurements of doped and undoped materials, which exhibit Schottky to Ohmic behavior with Cu doping, suggestive of a tuning of the lowest energy states near the Fermi level. Electronic supplementary information (ESI) available: Thermogravimetric analysis and X-ray photoelectron spectroscopy of QD films. See DOI: 10.1039/C6NR00494F

  3. Microstructural Quantification, Property Prediction, and Stochastic Reconstruction of Heterogeneous Materials Using Limited X-Ray Tomography Data

    NASA Astrophysics Data System (ADS)

    Li, Hechao

    An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray projection data is ascertained by analyzing the microstructural degeneracy and the roughness of energy landscape associated with different number of projections. Ground-state degeneracy of a microstructure is found to decrease with increasing number of projections, which indicates a higher probability that the reconstructed configurations match the actual microstructure. The roughness of energy landscape can also provide information about the complexity and convergence behavior of the reconstruction for given microstructures and projection number.

  4. A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force

    PubMed Central

    Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R

    2010-01-01

    Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621

  5. Fracture toughness study on LIGA fabricated microstructures

    NASA Astrophysics Data System (ADS)

    Oropeza, Catherine; Lian, Kun; Wang, Wanjun

    2003-01-01

    One of the major difficulties faced by MEMS researchers today is the lack of data regarding properties of electroplated metals or alloys at micro-levels as those produced by the LIGA and the LIGA related process. These mechanical properties are not well known and they cannot be extrapolated from macro-scale data without experimental verification. This lack of technical information about physical properties at microscale has affected the consistency and reliability of batch-fabricated components and leads to very low rates of successful fabrication. Therefore, this material issue is of vital importance to the development of LIGA technology and to its industrial applications. The research work reported in this paper focuses on the development of a new capability based on design, fabrication, and testing of groups of UV-LIGA fabricated nickel microspecimens for the evaluation of fracture strength. The devised testing mechanism demonstrated compatibility with the fabricated samples and capability of performing the desired experimentation by generating resistance-to-fracture values of the nickel specimens. The average fracture strength value obtained, expressed with a 95% confidence interval, was 315 +/- 54 Mpa. Further data acquisition, especially involving tensile specimen testing, and material analysis is needed to fully understand the implications of the information obtained.

  6. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  7. Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides.

    PubMed

    Grottel, S; Beck, P; Muller, C; Reina, G; Roth, J; Trebin, H-R; Ertl, T

    2012-12-01

    Metal oxides are important for many technical applications. For example alumina (aluminum oxide) is the most commonly-used ceramic in microelectronic devices thanks to its excellent properties. Experimental studies of these materials are increasingly supplemented with computer simulations. Molecular dynamics (MD) simulations can reproduce the material behavior very well and are now reaching time scales relevant for interesting processes like crack propagation. In this work we focus on the visualization of induced electric dipole moments on oxygen atoms in crack propagation simulations. The straightforward visualization using glyphs for the individual atoms, simple shapes like spheres or arrows, is insufficient for providing information about the data set as a whole. As our contribution we show for the first time that fractional anisotropy values computed from the local neighborhood of individual atoms of MD simulation data depict important information about relevant properties of the field of induced electric dipole moments. Iso surfaces in the field of fractional anisotropy as well as adjustments of the glyph representation allow the user to identify regions of correlated orientation. We present novel and relevant findings for the application domain resulting from these visualizations, like the influence of mechanical forces on the electrostatic properties.

  8. Frontiers in imaging magnetism with polarized x-rays

    DOE PAGES

    Fischer, Peter

    2015-01-08

    Although magnetic imaging with polarized x-rays is a rather young scientific discipline, the various types of established x-ray microscopes have already taken an important role in state-of-the-art characterization of the properties and behavior of spin textures in advanced materials. Furthermore, the opportunities ahead will be to obtain in a unique way indispensable multidimensional information of the structure, dynamics and composition of scientifically interesting and technologically relevant magnetic materials.

  9. In vivo degradation in modern orthopaedic UHMWPE bearings and structural characterization of a novel alternative UHMWPE material

    NASA Astrophysics Data System (ADS)

    Reinitz, Steven D.

    Ultra-high molecular weight polyethylene (UHMWPE) remains the most common bearing material for total joint arthroplasty. Advances in radiation cross-linking and other post-consolidation treatments have led to a rapid differentiation of polyethylene products on the market, with more than twenty unique materials currently being sold by the five largest orthopaedic manufacturers alone. Through oxidation, cross-link density, and free radical measurements, this work demonstrates for the first time that in vivo material degradation is occurring in cross-linked UHMWPE materials. Based on the rate of the reaction in certain materials, it is concluded that oxidative degradation may compromise the mechanical properties of the bearings in as few as ten years, potentially leading to early clinical failure of the devices. Using the knowledge gained from this work as well as previously published observations about UHMWPE oxidation, a two-mechanism model of oxidation is proposed that offers an explanation for the observed in vivo changes. From this model it is concluded that oxidative degradation is in part the result of in vivo chemical species. The two-mechanism model of oxidation suggests that different processing techniques for UHMWPE may reduce the risk of oxidative degradation. It is concluded that by avoiding any radiation cross-linking step, Equal Channel Angular Processing (ECAP) can produce UHMWPE materials with a reduced risk for in vivo oxidation while at the same time offering superior mechanical properties compared to commercially available UHMWPE materials, as well as similar wear behavior. Using dynamic mechanical analysis, the entanglement density in ECAP materials is quantified, and is related back to the ECAP processing parameters. The relationship between entanglement density and resultant material properties is established. The results will allow informed processing parameter selection for producing optimized materials for orthopaedics and other applications.

  10. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    PubMed Central

    Yu, Yong; Zhu, Han

    2016-01-01

    Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs. PMID:28773649

  11. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  12. Impact of variation in materials properties on asphalt pavement life : evaluation of a questionnaire.

    DOT National Transportation Integrated Search

    1981-05-01

    In an effort to collect information on the status of quality control procedures and the use of pay adjustment factors, a questionnaire was distributed to all state agencies, the District of Columbia, and the Federal Highway Administration. Each agenc...

  13. 2 CFR 215.36 - Intangible property.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... Information Act (FOIA) request for research data relating to published research findings produced under an...

  14. 2 CFR 215.36 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... Information Act (FOIA) request for research data relating to published research findings produced under an...

  15. 2 CFR 215.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... Information Act (FOIA) request for research data relating to published research findings produced under an...

  16. 76 FR 18567 - Fogarty International Center; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... meeting will be open to the public as indicated below, with attendance limited to space available... confidential trade secrets or commercial property such as patentable materials, and personal information... be posted when available. (Catalogue of Federal Domestic Assistance Program Nos. 93.14, Intramural...

  17. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  18. Compositional Variability Associated with Stickney Crater on Phobos

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Hogan, R. C.

    2001-01-01

    Unsupervised clustering techniques identified four regions in and near Stickney crater on Phobos having unique spectral properties. These spectra are best matched by spectra of naturally occurring materials, e.g., lunar soils, meteorites, and rocks. Additional information is contained in the original extended abstract.

  19. 41 CFR 105-62.101 - Security classification categories.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Security classification... classification categories. As set forth in Executive Order 12065, official information or material which requires... three categories: Namely, Top Secret, Secret, or Confidential, depending on its degree of significance...

  20. 41 CFR 105-62.101 - Security classification categories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Security classification... classification categories. As set forth in Executive Order 12065, official information or material which requires... three categories: Namely, Top Secret, Secret, or Confidential, depending on its degree of significance...

  1. 41 CFR 105-62.101 - Security classification categories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Security classification... classification categories. As set forth in Executive Order 12065, official information or material which requires... three categories: Namely, Top Secret, Secret, or Confidential, depending on its degree of significance...

  2. Status of characterization techniques for carbon nanotubes and suggestions towards standards suitable for toxicological assessment

    NASA Astrophysics Data System (ADS)

    Schweinberger, Florian F.; Meyer-Plath, Asmus

    2011-07-01

    Nanotechnologies promise to contribute significantly to major technological challenges of the upcoming century. Despite profound scientific progress in the last decades, only minor advances have been made in the field of nanomaterial toxicology. The International Team in Nanosafety (TITNT) is an international and multidisciplinary group of scientists, which aims at better understanding the risks of nanomaterials. Carbon nanotubes (CNT) account for one of the most promising nanomaterials and have therefore been chosen as representative material for nanoscaled particles. They are currently investigated by the different platforms of TITNT. As a starting point, the present report summarizes a literature-based study on the physico-chemical properties of CNT, as they are closely linked with toxicological properties. A brief introduction to synthesis, purification and material properties is given. Characterization methods for CNT are discussed with respect to their reliability and the information content on chemical properties. Recommendations for a set of standard characterizations mandatory for toxicological assessment are derived.

  3. NCTM of liquids at high temperatures using polarization techniques

    NASA Technical Reports Server (NTRS)

    Krishnan, Shankar; Weber, J. K. Richard; Nordine, Paul C.; Schiffman, Robert A.

    1990-01-01

    Temperature measurement and control is extremely important in any materials processing application. However, conventional techniques for non-contact temperature measurement (mainly optical pyrometry) are very uncertain because of unknown or varying surface emittance. Optical properties like other properties change during processing. A dynamic, in-situ measurement of optical properties including the emittance is required. Intersonics is developing new technologies using polarized laser light scattering to determine surface emittance of freely radiating bodies concurrent with conventional optical pyrometry. These are sufficient to determine the true surface temperature of the target. Intersonics is currently developing a system called DAPP, the Division of Amplitude Polarimetric Pyrometer, that uses polarization information to measure the true thermodynamic temperature of freely radiating objects. This instrument has potential use in materials processing applications in ground and space based equipment. Results of thermophysical and thermodynamic measurements using laser reflection as a temperature measuring tool are presented. The impact of these techniques on thermophysical property measurements at high temperature is discussed.

  4. Localized Defect Modes in a Two-Dimensional Array of Magnetic Nanodots

    DTIC Science & Technology

    2013-06-22

    number of defects it is possible to obtain the information about the entire spin-wave spectrum of the array. Index Terms—Spin waves, magnonic crystal...multistability opens a way for the development of a novel type of artificial materials with tunable microwave properties – reconfigurable magnonic ...information about the entire spin-wave spectrum of the array. 15. SUBJECT TERMS Spin waves, magnonic crystal, magnetic dot, ferromagnetic resonance

  5. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  6. Tangible display systems: bringing virtual surfaces into the real world

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2012-03-01

    We are developing tangible display systems that enable natural interaction with virtual surfaces. Tangible display systems are based on modern mobile devices that incorporate electronic image displays, graphics hardware, tracking systems, and digital cameras. Custom software allows the orientation of a device and the position of the observer to be tracked in real-time. Using this information, realistic images of surfaces with complex textures and material properties illuminated by environment-mapped lighting, can be rendered to the screen at interactive rates. Tilting or moving in front of the device produces realistic changes in surface lighting and material appearance. In this way, tangible displays allow virtual surfaces to be observed and manipulated as naturally as real ones, with the added benefit that surface geometry and material properties can be modified in real-time. We demonstrate the utility of tangible display systems in four application areas: material appearance research; computer-aided appearance design; enhanced access to digital library and museum collections; and new tools for digital artists.

  7. A new tensile impact test for the toughness characterization of sheet material

    NASA Astrophysics Data System (ADS)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  8. TOPAZ2D heat transfer code users manual and thermal property data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependentmore » boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.« less

  9. Multi-scale modelling of rubber-like materials and soft tissues: an appraisal

    PubMed Central

    Puglisi, G.

    2016-01-01

    We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927

  10. 3D Microstructures for Materials and Damage Models

    DOE PAGES

    Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan

    2017-02-01

    Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less

  11. Nanostructure studies of strongly correlated materials.

    PubMed

    Wei, Jiang; Natelson, Douglas

    2011-09-01

    Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.

  12. Thermal diffusivity determination using heterodyne phase insensitive transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennett, Cody A.; Short, Michael P.

    2018-06-01

    The elastic and thermal transport properties of opaque materials may be measured using transient grating spectroscopy (TGS) by inducing and monitoring periodic excitations in both reflectivity and surface displacement. The "phase grating" response encodes both properties of interest, but complicates quantitative analysis by convolving temperature dynamics with surface displacement dynamics. Thus, thermal transport characteristics are typically determined using the "amplitude grating" response to isolate the surface temperature dynamics. However, this signal character requires absolute heterodyne phase calibration and contains no elastic property information. Here, a method is developed by which phase grating TGS measurements may be consistently analyzed to determine thermal diffusivity with no prior knowledge of the expected properties. To demonstrate this ability, the wavelength-dependent 1D effective thermal diffusivity of pure germanium is measured using this type of response and found to be consistent with theoretical predictions made by solving the Boltzmann transport equation. This ability to determine the elastic and thermal properties from a single set of TGS measurements will be particularly advantageous for new in situ implementations of the technique being used to study dynamic materials systems.

  13. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.

  14. Characterization of Shear Properties for APO/MBI Syntactic Foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reser, Patrick M.; Lewis, Matthew W.; Clark, Jarod

    Triaxial compression testing is a means for mechanical characterization of a material. A unique feature of the triaxial compression test is the application of two different magnitudes of compressive pressures on the material simultaneously. The material behavior under these different compressive pressures can be monitored over time. Several important characteristics of the material, such as stress yield values and the shear failure envelope may then be determined. Also mechanical properties such as Poisson’s ratio, Young’s modulus and bulk modulus can be determined from the triaxial compression test. The triaxial compression test was employed in this investigation to characterize the shearmore » behavior, shear failure envelope, and mechanical properties of a syntactic foam. Los Alamos National Laboratory (LANL) supplied a total of 36 samples of APO-BMI syntactic foam to the University of New Mexico, Department of Civil Engineering for testing between December 2003 and May 2004. Each sample had a diameter of 1.395±0.005 in. (3.543±0.013cm.) and a length of 2.796±0.004 in. (7.102±0.010 cm.). The samples had an average density of 0.295 g/cm3. Additional information about the material tested in this investigation can be found in the “Specimen Description” section contained in Chapter 1. The nomenclatures used in this study is presented in Chapter 1. In addition to designing and implementing triaxial compression tests capable of up to 2,000 psi. confining pressure (minor principal stress) and roughly 13,000 psi. in axial pressure (major principal stress), a pure tension test was designed and conducted on the foam material. The purpose of this pure tension test was to obtain maximum tensile stress values to enhance the characterization of the shear envelope in the stress space. The sampling procedure and specimen preparation for a standard test can be found in the American Society for Testing Materials (ASTM) D 5379/ D 5379 – 93. The above tests mentioned and their procedures are discussed in Chapter 2. Chapter 2 contains the types of tests performed and the apparatus used for testing the material. Chapter 2 also has a brief explanation of the equipment and the procedures used for conducting the tests. In Chapter 3, the material characteristics and mechanical properties obtained from the tests are described; composite plots of deviatoric vs. mean stress and deviatoric stress vs. longitudinal strain are also included. The plots of deviatoric stress vs. mean stress clearly identify the shear envelope for the material. Chapter 4 summarizes the vital information obtained from the tests and the conclusions made. All the necessary plots and the data generated during the testing have been included in the Appendix. The information in the appendix includes plots of: Strain vs. Time, Stress vs. Time, Stress vs. Strain, Mean Stress vs. Volumetric Strain, Lateral Strain vs. Longitudinal Strain, and q vs. p. Bulk modulus, Poisson’s ratio, and Young’s modulus are displayed in the appropriate plots in each appendix.« less

  15. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening. The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.

  16. In situ mineralogical-chemical analysis of Martian materials at landing/roving sites by active and passive remote sensing methods

    NASA Technical Reports Server (NTRS)

    Neukum, G.; Lehmann, F.; Regner, P.; Jaumann, R.

    1988-01-01

    Remote sensing of the Martian surface from the ground and from orbiting spacecraft has provided some first-order insight into the mineralogical-chemical composition and the weathering state of Martian surface materials. Much more detailed information can be gathered from performing such measurements in situ at the landing sites or from a rover in combination with analogous measurements from orbit. Measurements in the wavelength range of approximately 0.3 to 12.0 micrometers appear to be suitable to characterize much of the physical, mineralogical, petrological, and chemical properties of Martian surface materials and the weathering and other alteration processes that have acted on them. It is of particular importance to carry out measurements at the same time over a broad wavelength range since the reflectance signatures are caused by different effects and hence give different and complementing information. It appears particularly useful to employ a combination of active and passive methods because the use of active laser spectroscopy allows the obtaining of specific information on thermal infrared reflectance of surface materials. It seems to be evident that a spectrometric survey of Martian materials has to be focused on the analysis of altered and fresh mafic materials and rocks, water-bearing silicates, and possibly carbonates.

  17. Materials Database Development for Ballistic Impact Modeling

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael

    2007-01-01

    A set of experimental data is being generated under the Fundamental Aeronautics Program Supersonics project to help create and validate accurate computational impact models of jet engine impact events. The data generated will include material property data generated at a range of different strain rates, from 1x10(exp -4)/sec to 5x10(exp 4)/sec, over a range of temperatures. In addition, carefully instrumented ballistic impact tests will be conducted on flat plates and curved structures to provide material and structural response information to help validate the computational models. The material property data and the ballistic impact data will be generated using materials from the same lot, as far as possible. It was found in preliminary testing that the surface finish of test specimens has an effect on measured high strain rate tension response of AL2024. Both the maximum stress and maximum elongation are greater on specimens with a smoother finish. This report gives an overview of the testing that is being conducted and presents results of preliminary testing of the surface finish study.

  18. Theory of Single-Impact Atomic Force Spectroscopy in liquids with material contrast.

    PubMed

    López-Guerra, Enrique A; Banfi, Francesco; Solares, Santiago D; Ferrini, Gabriele

    2018-05-14

    Scanning probe microscopy has enabled nanoscale mapping of mechanical properties in important technological materials, such as tissues, biomaterials, polymers, nanointerfaces of composite materials, to name only a few. To improve and widen the measurement of nanoscale mechanical properties, a number of methods have been proposed to overcome the widely used force-displacement mode, that is inherently slow and limited to a quasi-static regime, mainly using multiple sinusoidal excitations of the sample base or of the cantilever. Here, a different approach is put forward. It exploits the unique capabilities of the wavelet transform analysis to harness the information encoded in a short duration spectroscopy experiment. It is based on an impulsive excitation of the cantilever and a single impact of the tip with the sample. It performs well in highly damped environments, which are often seen as problematic in other standard dynamic methods. Our results are very promising in terms of viscoelastic property discrimination. Their potential is oriented (but not limited) to samples that demand imaging in liquid native environments and also to highly vulnerable samples whose compositional mapping cannot be obtained through standard tapping imaging techniques.

  19. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    The macroscopic properties of many materials are controlled by the structure and chemistry at the grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (PEELS) at a spatial resolution approaching 0.22nm. The bonding information which can bemore » obtained from the fine structure within the PEELS edges can then be used in conjunction with the Z-contrast images to determine the structure at the grain boundary. In this paper we present 3 examples of correlations between the structural, chemical and electronic properties at materials interfaces in metal-semiconductor systems, superconducting and ferroelectric materials.« less

  20. Rational design of stealthy hyperuniform two-phase media with tunable order

    NASA Astrophysics Data System (ADS)

    DiStasio, Robert A.; Zhang, Ge; Stillinger, Frank H.; Torquato, Salvatore

    2018-02-01

    Disordered stealthy hyperuniform materials are exotic amorphous states of matter that have attracted recent attention because of their novel structural characteristics (hidden order at large length scales) and physical properties, including desirable photonic and transport properties. It is therefore useful to devise algorithms that enable one to design a wide class of such amorphous configurations at will. In this paper, we present several algorithms enabling the systematic identification and generation of discrete (digitized) stealthy hyperuniform patterns with a tunable degree of order, paving the way towards the rational design of disordered materials endowed with novel thermodynamic and physical properties. To quantify the degree of order or disorder of the stealthy systems, we utilize the discrete version of the τ order metric, which accounts for the underlying spatial correlations that exist across all relevant length scales in a given digitized two-phase (or, equivalently, a two-spin state) system of interest. Our results impinge on a myriad of fields, ranging from physics, materials science and engineering, visual perception, and information theory to modern data science.

  1. Effect of Acetyl Group on Mechanical Properties of Chitin/Chitosan Nanocrystal: A Molecular Dynamics Study

    PubMed Central

    Cui, Junhe; Yu, Zechuan; Lau, Denvid

    2016-01-01

    Chitin fiber is the load-bearing component in natural chitin-based materials. In these materials, chitin is always partially deacetylated to different levels, leading to diverse material properties. In order to understand how the acetyl group enhances the fracture resistance capability of chitin fiber, we constructed atomistic models of chitin with varied acetylation degree and analyzed the hydrogen bonding pattern, fracture, and stress-strain behavior of these models. We notice that the acetyl group can contribute to the formation of hydrogen bonds that can stabilize the crystalline structure. In addition, it is found that the specimen with a higher acetylation degree presents a greater resistance against fracture. This study describes the role of the functional group, acetyl groups, in crystalline chitin. Such information could provide preliminary understanding of nanomaterials when similar functional groups are encountered. PMID:26742033

  2. Material point method of modelling and simulation of reacting flow of oxygen

    NASA Astrophysics Data System (ADS)

    Mason, Matthew; Chen, Kuan; Hu, Patrick G.

    2014-07-01

    Aerospace vehicles are continually being designed to sustain flight at higher speeds and higher altitudes than previously attainable. At hypersonic speeds, gases within a flow begin to chemically react and the fluid's physical properties are modified. It is desirable to model these effects within the Material Point Method (MPM). The MPM is a combined Eulerian-Lagrangian particle-based solver that calculates the physical properties of individual particles and uses a background grid for information storage and exchange. This study introduces chemically reacting flow modelling within the MPM numerical algorithm and illustrates a simple application using the AeroElastic Material Point Method (AEMPM) code. The governing equations of reacting flows are introduced and their direct application within an MPM code is discussed. A flow of 100% oxygen is illustrated and the results are compared with independently developed computational non-equilibrium algorithms. Observed trends agree well with results from an independently developed source.

  3. Acousto-ultrasonic nondestructive evaluation of materials using laser beam generation and detection. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1990-01-01

    The acousto-ultrasonic method has proven to be a most interesting technique for nondestructive evaluation of the mechanical properties of a variety of materials. Use of the technique or a modification thereof, has led to correlation of the associated stress wave factor with mechanical properties of both metals and composite materials. The method is applied to the nondestructive evaluation of selected fiber reinforced structural composites. For the first time, conventional piezoelectric transducers were replaced with laser beam ultrasonic generators and detectors. This modification permitted true non-contact acousto-ultrasonic measurements to be made, which yielded new information about the basic mechanisms involved as well as proved the feasibility of making such non-contact measurements on terrestrial and space structures and heat engine components. A state-of-the-art laser based acousto-ultrasonic system, incorporating a compact pulsed laser and a fiber-optic heterodyne interferometer, was delivered to the NASA Lewis Research Center.

  4. Modeling the microstructure of surface by applying BRDF function

    NASA Astrophysics Data System (ADS)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  5. Secret Formulas. GEMS Teacher's Guide.

    ERIC Educational Resources Information Center

    Tilley, Rebecca; Willard, Carolyn

    This teacher's guide features step-by-step instructions for activities that use easily-obtained and inexpensive materials as well as background information, literature connections, and assessment ideas. The unit allows students the opportunity to focus on observing and describing the properties and attributes of substances. In these activities,…

  6. 77 FR 65004 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ...; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated...

  7. 75 FR 33626 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ...; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated...

  8. 75 FR 9908 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ...; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...., as amended. The grant applications and the discussions could disclose confidential trade secrets or commercial property such as patentable material, and personal information concerning individuals associated...

  9. Experiments with Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Fergason, James L.

    1970-01-01

    Describes laboratory experiments designed to demonstrate (1) the properties of cholesteric liquid crystals, (2) thermal mapping, (3) thermal diffusivity, (4) adiabatic expansion of rubber, and (5) measurement of radiated energy by a point source. Contains all of the information on materials and apparatus needed to perform the experiments.…

  10. 78 FR 62640 - National Institute of Allergy and Infectious Diseases; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... confidential trade secrets or commercial property such as patentable material, and personal information... Infectious Diseases Special Emphasis Panel; Drug Target Development and Validation for Antimicrobial... Emphasis Panel; Drug Target Development and Validation for Antimicrobial Resistant Pathogens (R21/R33...

  11. 45 CFR 74.36 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

  12. 45 CFR 2543.36 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

  13. 10 CFR 600.136 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  14. 10 CFR 600.136 - Intangible property.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  15. 36 CFR 1210.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  16. 45 CFR 2543.36 - Intangible property.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

  17. 36 CFR 1210.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... This “recorded” material excludes physical objects (e.g., laboratory samples). Research data also do... person in a research study. (ii) Published is defined as either when: (A) Research findings are published... addition, in response to a Freedom of Information Act (FOIA) request for research data relating to...

  18. 45 CFR 2543.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

  19. 45 CFR 74.36 - Intangible property.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

  20. 45 CFR 74.36 - Intangible property.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...” material excludes physical objects (e.g., laboratory samples). Research data also do not include: (A) Trade... study. (ii) Published is defined as either when: (A) Research findings are published in a peer-reviewed... Information Act (FOIA) request for research data relating to published research findings produced under an...

Top