49 CFR 230.28 - Higher shearing strength of rivets.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Higher shearing strength of rivets. 230.28 Section... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may... quality as to justify a higher allowable shearing strength. Inspection and Repair ...
49 CFR 230.28 - Higher shearing strength of rivets.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Higher shearing strength of rivets. 230.28 Section... Appurtenances Strength of Materials § 230.28 Higher shearing strength of rivets. A higher shearing strength may... quality as to justify a higher allowable shearing strength. Inspection and Repair ...
Probabilistic Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.
Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction
NASA Astrophysics Data System (ADS)
Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon
2017-01-01
Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.
Mechanical properties and failure behavior of unidirectional porous ceramics
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-04-01
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Mechanical properties and failure behavior of unidirectional porous ceramics.
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-04-14
We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.
Application peculiarities of magnetic materials for protection from magnetic fields
NASA Astrophysics Data System (ADS)
Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.
2016-02-01
In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.
On Critical States, Rupture States and Interlocking Strength of Granular Materials.
Szalwinski, Chris M
2017-07-27
The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.
Smart materials and structures
NASA Technical Reports Server (NTRS)
Rogowski, Robert S.; Heyman, Joseph S.
1993-01-01
Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.
The importance of fracture toughness in ultrafine and nanocrystalline bulk materials
Pippan, R.; Hohenwarter, A.
2016-01-01
ABSTRACT The suitability of high-strength ultrafine and nanocrystalline materials processed by severe plastic deformation methods and aimed to be used for structural applications will strongly depend on their resistance against crack growth. In this contribution some general available findings on the damage tolerance of this material class will be summarized. Particularly, the occurrence of a pronounced fracture anisotropy will be in the center of discussion. In addition, the great potential of this generated anisotropy to obtain high-strength materials with exceptionally high fracture toughness in specific loading and crack growth directions will be enlightened. IMPACT STATEMENT Severely plastically deformed materials are reviewed in light of their damage tolerance. The frequently observed toughness anisotropy allows unprecedented fracture toughness – strength combinations. PMID:27570712
High-strength cellular ceramic composites with 3D microarchitecture.
Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver
2014-02-18
To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).
Certification Issues Relating to ABDR
2010-05-01
design techniques, among them increased utilization of advanced fibre reinforced materials or advanced metal alloys with higher material allowables for...most cases as a combination of a high strength/modulus carbon fibre and a hot curing thermoset resin. A high percentage of modern fighter aircraft’s...34Limited Fibre Strain Approach" at ultimate design loadcases, where the reduced material allowables account for a low energy impact damage level
EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS
Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M
2009-01-01
A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the biomechanical behaviour of aneurysms using experimental techniques. PMID:19595622
Modeling of orthotropic plate fracture under impact load using various strength criteria
NASA Astrophysics Data System (ADS)
Radchenko, Andrey; Krivosheina, Marina; Kobenko, Sergei; Radchenko, Pavel; Grebenyuk, Grigory
2017-01-01
The paper presents the comparative analysis of various tensor multinomial criteria of strength for modeling of orthotropic organic plastic plate fracture under impact load. Ashkenazi, Hoffman and Wu strength criteria were used. They allowed fracture modeling of orthotropic materials with various compressive and tensile strength properties. The modeling of organic plastic fracture was performed numerically within the impact velocity range of 700-1500 m/s.
Notched Strength Allowables and Inplane Shear Strength of AS4/VRM-34 Textile Laminates
NASA Technical Reports Server (NTRS)
Grenoble, Ray W.; Johnston, William M.
2013-01-01
Notched and unnotched strength allowables were developed for a textile composite to provide input data to analytical structural models based on the Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS) concept. Filled-hole tensile strength, filled-hole compressive strength, and inplane shear strength along stitch lines have been measured. The material system evaluated in this study is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. All specimens were tested in as-fabricated (dry) condition. Filled-hole strengths were evaluated with and without through-thickness stitching. The effects of scaling on filled-hole tensile strength were evaluated by testing specimens in two widths, but with identical width / hole-diameter ratios. Inplane shear specimens were stitched in two configurations, and two specimen thicknesses were tested for each stitch configuration.
Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.
2018-05-01
Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.
Laboratory investigation of the use of volcanic ash in concrete : final report.
DOT National Transportation Integrated Search
2016-09-01
Supplementary cementitious materials (SCMs) are commonly used in KDOT concrete pavements and : bridge decks to improve strength and permeability characteristics. The supplementary cementitious materials : allowed under current KDOT specifications are...
Laboratory investigation of the use of volcanic ash in concrete : technical summary.
DOT National Transportation Integrated Search
2016-09-01
Supplementary cementitious materials (SCMs) are commonly used in KDOT : concrete pavements and bridge decks to improve strength and permeability : characteristics. The supplementary cementitious materials allowed under : current KDOT specifications a...
Scale effects on the transverse tensile strength of graphite epoxy composites
NASA Technical Reports Server (NTRS)
Obrien, T. Kevin; Salpekar, Satish A.
1992-01-01
The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.
A comparison of the mechanical properties of fiberglass cast materials and their clinical relevance.
Berman, A T; Parks, B G
1990-01-01
The mechanical properties of five synthetic fiberglass casting materials were evaluated and compared with the properties of plaster of Paris. Two of the tests were designed to bear clinical relevance and the third to determine intrinsic material properties. The effect of water on strength degradation was also evaluated. It was found that the synthetics as a group are far superior to plaster of Paris in all methods of testing and that, among the synthetics, KCast Tack Free, Deltalite "S", and KCast Improved were the stronger materials. Clinically, the most important results are that the synthetics attain their relatively high strength in a much shorter time frame than does plaster of Paris, and retain 70-90% of their strength after being immersed in water and allowed to dry.
High dislocation density-induced large ductility in deformed and partitioned steels
NASA Astrophysics Data System (ADS)
He, B. B.; Hu, B.; Yen, H. W.; Cheng, G. J.; Wang, Z. K.; Luo, H. W.; Huang, M. X.
2017-09-01
A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Pogrebniak, A. D.; Kochetkova, E. S.
2008-01-01
The prediction of the high-cycle fatigue strength of polymeric and composite materials in asymmetric loading is considered. The problem is solved on the basis of a nonlinear model of ultimate state allowing us to describe all typical forms of the diagrams of ultimate stresses. The material constants of the model are determined from the results of fatigue tests in symmetric reversed cycling, in a single fatigue test with the minimum stress equal to zero, and in a short-term strength test. The fatigue strength characteristics of some polymers, glass-fiber laminates, glass-fiber-reinforced plastics, organic-fiber-reinforced plastics, and wood laminates in asymmetric tension-compression, bending, and torsion have been calculated and approved experimentally.
Justification of the Production Process of Pressed Wood and Study of its Properties
NASA Astrophysics Data System (ADS)
Polilov, A. N.; Dornyak, O. R.; Shamaev, V. A.; Rumachik, M. M.
2018-05-01
Results of a numerical analysis of the stress-strain state of wood during its pressing in different symmetry directions of the anisotropic material are presented. It is shown that the anisotropy of mechanical properties of wood is an important factor determining both the structural characteristics of the porous system and its strength. A mathematical modeling of the process of pressing wood as a three-phase anisotropic rheologically complex capillary-porous system allows one to predict parameters of the resulting wood composite. The compressed wood obtained by the production modes developed has a tensile strength eight times greater than that of the natural one, which is comparable to the strength of the St3 steel, but its specific strength is higher than that of the St45 steel. Compression and impregnation of softwood species with an aqueous solution of carbamide allows one to harden them. This kind of treatment endows the wood with enhanced strength characteristics comparable to the characteristics of the St3 steel. The special features of tensile tests used to estimate the elastic modulus and strength characteristics of such materials are considered. Data obtained by different testing methods are correlated, and characteristics of the strengthened wood and some brends of steel are compared.
Corrosion fatigue of high strength fastener materials in seawater
NASA Technical Reports Server (NTRS)
Tipton, D. G.
1983-01-01
Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.
Corrosion fatigue of high strength fastener materials in seawater
NASA Astrophysics Data System (ADS)
Tipton, D. G.
1983-12-01
Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.
Trends in aerospace structures
NASA Technical Reports Server (NTRS)
Card, M. F.
1978-01-01
Recent developments indicate that there may soon be a revolution in aerospace structures. Increases in allowable operational stress levels, utilization of high-strength, high-toughness materials, and new structural concepts will highlight this advancement. Improved titanium and aluminum alloys and high-modulus, high-strength advanced composites, with higher specific properties than aluminum and high-strength nickel alloys, are expected to be the principal materials. Significant advances in computer technology will cause major changes in the preliminary design cycle and permit solutions of otherwise too-complex interactive structural problems and thus the development of vehicles and components of higher performance. The energy crisis will have an impact on material costs and choices and will spur the development of more weight-efficient structures. There will also be significant spinoffs of aerospace structures technology, particularly in composites and design/analysis software.
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2013 CFR
2013-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2012 CFR
2012-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2011 CFR
2011-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2014 CFR
2014-10-01
... Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... allowable stress values on boiler components: (a) Use of materials not of sufficient tensile strength 1,000... in boiler calculations 2,000 4,000 230.25Maximum allowable stresses on stays and braces: (a...
Tailoring nanostructured, graded, and particle-reinforced Al laminates by accumulative roll bonding.
Göken, Mathias; Höppel, Heinz Werner
2011-06-17
Accumulative roll bonding (ARB) is a very attractive process for processing large sheets to achieve ultrafine-grained microstructure and high strength. Commercial purity Al and many Al alloys from the 5xxx and the precipitation strengthened 6xxx alloy series have been successfully processed by the ARB process into an ultrafine-grained state and superior ductility have been achieved for some materials like technical purity Al. It has also been shown that the ARB process can be successfully used to produce multi-component materials with tailored properties by reinforcement or grading, respectively. This allows optimizing the properties based on two or more materials/alloys. For example, to achieve high corrosion resistance and good visual surface properties it is interesting to produce a composite of two different Al alloys, where for example a high strength alloy of the 5xxx series is used as the core material and a 6xxx series alloy as the clad material. It has been shown that such a composite achieves more or less the same strength as the core material although 50% of the composite consists of the significant softer clad alloy. Furthermore, it has been found, that the serrated yielding which typically appears in 5xxx series alloys and limits applications as outer skin materials completely disappears. Moreover, the ARB process allows many other attractive ways to design new composites and graded material structures with unique properties by the introduction of particles, fibres and sheets. Strengthening with nanoparticles for example is a very attractive way to improve the properties and accelerate the grain refining used in the severe plastic deformation process. With an addition of only 0.1 vol.-% Al2O3 nanoparticles a significantly accelerated grain refinement has been found which reduces the number of ARB passes necessary to achieve the maximum in strength. The paper provides a short review on recent developments in the field of ARB processing for producing multicomponent ultrafine-grained sheet materials with tailored properties.
Mechanical Testing of Common-Use Polymeric Materials with an In-House-Built Apparatus
ERIC Educational Resources Information Center
Pedrosa, Cristiana; Mendes, Joaquim; Magalhaes, Fernao D.
2006-01-01
A low-cost tensile testing machine was built for testing polymeric films. This apparatus also allows for tear-strength and flexural tests. The experimental results, obtained from common-use materials, selected by the students, such as plastic bags, illustrate important aspects of the mechanical behavior of polymeric materials. Some of the tests…
ERIC Educational Resources Information Center
Petrov, Mark G.
2016-01-01
Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…
Mechanical properties of nanostructure of biological materials
NASA Astrophysics Data System (ADS)
Ji, Baohua; Gao, Huajian
2004-09-01
Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.
NASA Technical Reports Server (NTRS)
Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.
1972-01-01
A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.
Development of a Real Time Internal Charging Tool for Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Posey, Nathaniel A.; Minow, Joesph I.
2013-01-01
The high-energy electron fluxes encountered by satellites in geosynchronous orbit pose a serious threat to onboard instrumentation and other circuitry. A substantial build-up of charge within a satellite's insulators can lead to electric fields in excess of the breakdown strength, which can result in destructive electrostatic discharges. The software tool we've developed uses data on the plasma environment taken from NOAA's GOES-13 satellite to track the resulting electric field strength within a material of arbitrary depth and conductivity and allows us to monitor the risk of material failure in real time. The tool also utilizes a transport algorithm to simulate the effects of shielding on the dielectric. Data on the plasma environment and the resulting electric fields are logged to allow for playback at a variable frame rate.
Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha
2009-05-25
We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.
NASA Astrophysics Data System (ADS)
Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert
2016-06-01
Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond.
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-07-01
Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.
Strengthening Mechanisms in Microtruss Metals
NASA Astrophysics Data System (ADS)
Ng, Evelyn K.
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
NASA Technical Reports Server (NTRS)
Salem, Jonathan A.
2002-01-01
A generalized reliability model was developed for use in the design of structural components made from brittle, homogeneous anisotropic materials such as single crystals. The model is based on the Weibull distribution and incorporates a variable strength distribution and any equivalent stress failure criteria. In addition to the reliability model, an energy based failure criterion for elastically anisotropic materials was formulated. The model is different from typical Weibull-based models in that it accounts for strength anisotropy arising from fracture toughness anisotropy and thereby allows for strength and reliability predictions of brittle, anisotropic single crystals subjected to multiaxial stresses. The model is also applicable to elastically isotropic materials exhibiting strength anisotropy due to an anisotropic distribution of flaws. In order to develop and experimentally verify the model, the uniaxial and biaxial strengths of a single crystal nickel aluminide were measured. The uniaxial strengths of the <100> and <110> crystal directions were measured in three and four-point flexure. The biaxial strength was measured by subjecting <100> plates to a uniform pressure in a test apparatus that was developed and experimentally verified. The biaxial strengths of the single crystal plates were estimated by extending and verifying the displacement solution for a circular, anisotropic plate to the case of a variable radius and thickness. The best correlation between the experimental strength data and the model predictions occurred when an anisotropic stress analysis was combined with the normal stress criterion and the strength parameters associated with the <110> crystal direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N
Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less
Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen
NASA Astrophysics Data System (ADS)
Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.
2015-12-01
Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.
Accelerated Strength Testing of Thermoplastic Composites
NASA Technical Reports Server (NTRS)
Reeder, J. R.; Allen, D. H.; Bradley, W. L.
1998-01-01
Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.
Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers
NASA Astrophysics Data System (ADS)
O'Connor, Thomas C.; Robbins, Mark O.
Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.
NASA Astrophysics Data System (ADS)
Prime, M. B.; Vaughan, D. E.; Preston, D. L.; Buttler, W. T.; Chen, S. R.; Oró, D. M.; Pack, C.
2014-05-01
Experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/s using Richtmyer-Meshkov (RM) instabilities. Buttler et al. recently reported experimental results for RM instability growth in copper but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and interpretation from numerical simulations of the Buttler RM instability experiments. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data. The numerical simulations are used to examine various assumptions previously made in an analytical model and to estimate the sensitivity of such experiments to material strength.
Corrosion fatigue of high strength fastener materials in seawater. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipton, D.G.
1983-12-01
Environmental effects can significantly reduce the fatigue life of metals. As such, corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L40 high strength steel blade-to-hub attachment bolt at the MOD-0A 200 kW wind turbine generator in Oahu, Hawaii prompted the current test program. Tests were undertaken to confirm the dramatic reduction of fatigue strength of AISI 41L40 in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials. AISI 41L40, AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35Nmore » were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data were fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.« less
NASA Astrophysics Data System (ADS)
Sung, Back-Sub; Bang, Hee-Seon; Jeong, Su-Ok; Choi, Woo-Seong; Kwon, Yong-Hyuk; Bang, Han-Sur
2017-05-01
Two dissimilar materials, aluminum alloy Al5083-O and advanced high strength steel DP590, were successfully joined by using friction stir spot joining (FSSJ). Satisfactory joint strengths were obtained at a rotational speed of 300 rpm and a plunge depth of 0.7 mm. Resulting joints were welded without a non-welded zone. This may be attributed to the enhanced smooth material flow owing to sufficient stirring effect and tool down force between the upper Al5083-O side and the lower DP590 side. The maximum tensile shear strength was 6.5 kN, which was higher than the joint strength required by the conventional method of resistance spot welding. The main fracture mode was plug fracture in the tensile shear test of joints. An intermetallic compound (IMC) layer with <6 μm thickness was formed at the joint interface, which meets the allowance value of <10 μm for the dissimilar material Al-Fe joints. Thus, the use of FSSJ to weld the dissimilar materials Al5083-O and DP590 resulted in mechanically and metallurgically sound joints.
Printing nature: Unraveling the role of nacre's mineral bridges.
Gu, Grace X; Libonati, Flavia; Wettermark, Susan D; Buehler, Markus J
2017-12-01
Creating materials with strength and toughness has been a long-sought goal. Conventional engineering materials often face a trade-off between strength and toughness, prompting researchers seeking to overcome these limitations to explore more sophisticated materials, such as composites. This paradigm shift in material design is spurred by nature, which exhibits a plethora of heterogeneous materials that offer outstanding material properties, and many natural materials are widely regarded as examples of high-performing hybrid materials. A classic example is nacre, also known as mother-of-pearl, which boasts a combination of high stiffness, strength, and fracture toughness. Various microstructural features contribute to the toughness of nacre, including mineral bridges (MBs), nano-asperities, and waviness of the constituent platelets. Recent research in biomimicry suggests that MBs contribute to the high strength and toughness observed in nacre and nacre-inspired materials. However, previous work in this area did not allow for complete control over the length scale of the bridges and had limitations on the volume fraction of mineral content. In this work, we present a systematic investigation elucidating the effects of structural parameters, such as volume fraction of mineral phase and density of MBs, on the mechanical response of nacre-inspired additive manufactured composites. Our results demonstrate that it is possible to tune the composite properties by tuning sizes and content of structural features (e.g. MBs and mineral content) in a heterogeneous material. Looking forward, this systematic approach enables materials-by-design of complex architectures to tackle demanding engineering challenges in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fishnet model for failure probability tail of nacre-like imbricated lamellar materials
NASA Astrophysics Data System (ADS)
Luo, Wen; Bažant, Zdeněk P.
2017-12-01
Nacre, the iridescent material of the shells of pearl oysters and abalone, consists mostly of aragonite (a form of CaCO3), a brittle constituent of relatively low strength (≈10 MPa). Yet it has astonishing mean tensile strength (≈150 MPa) and fracture energy (≈350 to 1,240 J/m2). The reasons have recently become well understood: (i) the nanoscale thickness (≈300 nm) of nacre's building blocks, the aragonite lamellae (or platelets), and (ii) the imbricated, or staggered, arrangement of these lamellea, bound by biopolymer layers only ≈25 nm thick, occupying <5% of volume. These properties inspire manmade biomimetic materials. For engineering applications, however, the failure probability of ≤10-6 is generally required. To guarantee it, the type of probability density function (pdf) of strength, including its tail, must be determined. This objective, not pursued previously, is hardly achievable by experiments alone, since >10^8 tests of specimens would be needed. Here we outline a statistical model of strength that resembles a fishnet pulled diagonally, captures the tail of pdf of strength and, importantly, allows analytical safety assessments of nacreous materials. The analysis shows that, in terms of safety, the imbricated lamellar structure provides a major additional advantage—˜10% strength increase at tail failure probability 10^-6 and a 1 to 2 orders of magnitude tail probability decrease at fixed stress. Another advantage is that a high scatter of microstructure properties diminishes the strength difference between the mean and the probability tail, compared with the weakest link model. These advantages of nacre-like materials are here justified analytically and supported by millions of Monte Carlo simulations.
Modelling the effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2017-01-01
Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2014-01-01
Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.
Fatigue of graphite/epoxy /0/90/45/-45/s laminates under dual stress levels
NASA Technical Reports Server (NTRS)
Yang, J. N.; Jones, D. L.
1982-01-01
A model for the prediction of loading sequence effects on the statistical distribution of fatigue life and residual strength in composite materials is generalized and applied to (0/90/45/-45)s graphite/epoxy laminates. Load sequence effects are found to be caused by both the difference in residual strength when failure occurs (boundary effect) and the effect of previously applied loads (memory effect). The model allows the isolation of these two effects, and the estimation of memory effect magnitudes under dual fatigue loading levels. It is shown that the material memory effect is insignificant, and that correlations between predictions of the number of early failures agree with the verification tests, as do predictions of fatigue life and residual strength degradation under dual stress levels.
NASA Astrophysics Data System (ADS)
Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.
2015-12-01
The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.
Techniques for Strength Measurement at High Pressures and Strain-Rates Using Transverse Waves
NASA Astrophysics Data System (ADS)
Richmond, Victoria Stolyar
The study of the strength of a material is relevant to a variety of applications including automobile collisions, armor penetration and inertial confinement fusion. Although dynamic behavior of materials at high pressures and strain-rates has been studied extensively using plate impact experiments, the results provide measurements in one direction only. Material behavior that is dependent on strength is unaccounted for. The research in this study proposes two novel configurations to mitigate this problem. The first configuration introduced is the oblique wedge experiment, which is comprised of a driver material, an angled target of interest and a backing material used to measure in-situ velocities. Upon impact, a shock wave is generated in the driver material. As the shock encounters the angled target, it is reflected back into the driver and transmitted into the target. Due to the angle of obliquity of the incident wave, a transverse wave is generated that allows the target to be subjected to shear while being compressed by the initial longitudinal shock such that the material does not slip. Using numerical simulations, this study shows that a variety of oblique wedge configurations can be used to study the shear response of materials and this can be extended to strength measurement as well. Experiments were performed on an oblique wedge setup with a copper impactor, polymethylmethacrylate driver, aluminum 6061-t6 target, and a lithium fluoride window. Particle velocities were measured using laser interferometry and results agree well with the simulations. The second novel configuration is the y-cut quartz sandwich design, which uses the anisotropic properties of y-cut quartz to generate a shear wave that is transmitted into a thin sample. By using an anvil material to back the thin sample, particle velocities measured at the rear surface of the backing plate can be implemented to calculate the shear stress in the material and subsequently the strength. Numerical simulations were conducted to show that this configuration has the ability to measure the strength for a variety of materials.
Test methods and design allowables for fibrous composites. Volume 2
NASA Technical Reports Server (NTRS)
Chamis, Christos C. (Editor)
1989-01-01
Topics discussed include extreme/hostile environment testing, establishing design allowables, and property/behavior specific testing. Papers are presented on environmental effects on the high strain rate properties of graphite/epoxy composite, the low-temperature performance of short-fiber reinforced thermoplastics, the abrasive wear behavior of unidirectional and woven graphite fiber/PEEK, test methods for determining design allowables for fiber reinforced composites, and statistical methods for calculating material allowables for MIL-HDBK-17. Attention is also given to a test method to measure the response of composite materials under reversed cyclic loads, a through-the-thickness strength specimen for composites, the use of torsion tubes to measure in-plane shear properties of filament-wound composites, the influlence of test fixture design on the Iosipescu shear test for fiber composite materials, and a method for monitoring in-plane shear modulus in fatigue testing of composites.
Liou, Kai-Hsin; Tsou, Nien-Ti; Kang, Dun-Yen
2015-10-21
Carbon nanotubes (CNTs) are regarded as small but strong due to their nanoscale microstructure and high mechanical strength (Young's modulus exceeds 1000 GPa). A longstanding question has been whether there exist other nanotube materials with mechanical properties as good as those of CNTs. In this study, we investigated the mechanical properties of single-walled aluminosilicate nanotubes (AlSiNTs) using a multiscale computational method and then conducted a comparison with single-walled carbon nanotubes (SWCNTs). By comparing the potential energy estimated from molecular and macroscopic material mechanics, we were able to model the chemical bonds as beam elements for the nanoscale continuum modeling. This method allowed for simulated mechanical tests (tensile, bending, and torsion) with minimum computational resources for deducing their Young's modulus and shear modulus. The proposed approach also enabled the creation of hypothetical nanotubes to elucidate the relative contributions of bond strength and nanotube structural topology to overall nanotube mechanical strength. Our results indicated that it is the structural topology rather than bond strength that dominates the mechanical properties of the nanotubes. Finally, we investigated the relationship between the structural topology and the mechanical properties by analyzing the von Mises stress distribution in the nanotubes. The proposed methodology proved effective in rationalizing differences in the mechanical properties of AlSiNTs and SWCNTs. Furthermore, this approach could be applied to the exploration of new high-strength nanotube materials.
Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Gleason, Brian; Beringer, Woody; Stephen, Ryan
2010-01-01
Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from 4 suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used nickel and active braze allows to prepare the carbon fibers for joining with aluminum. This approach was repeatable and scalable with improved strength and thermal conductance when compared with epoxy bonding.
Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan
2011-01-01
Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.
Anisotropic nature of radially strained metal tubes
NASA Astrophysics Data System (ADS)
Strickland, Julie N.
Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw yield strength to calculate these ratings. I set out to characterize the anisotropic nature of swaged metal. As expected, the tensile tests showed a difference between the axial and transverse tensile strength. The correlation was 12% difference in yield strength in the axial and transverse directions for strained material and 9% in strained and aged material. This means that the strength of the metal in the hoop (transverse) direction is approximately 10% stronger than in the axial direction, because the metal was work hardened during the swaging process. Therefore, the metal is more likely to fail in axial tension than in burst or collapse. I presented the findings from the microstructure examination, standard tensile tests, and SEM data. All of this data supported the findings of the mini-tensile tests. This information will help engineers set burst and collapse ratings and allow material scientists to predict the anisotropic characteristics of swaged steel tubes.
NASA Astrophysics Data System (ADS)
Kraft, R. H.; Molinari, J. F.; Ramesh, K. T.; Warner, D. H.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.
Mechanical strength of welding zones produced by material extrusion additive manufacturing.
Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E
2017-08-01
As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.
Evanoff, Kara; Benson, Jim; Schauer, Mark; Kovalenko, Igor; Lashmore, David; Ready, W Jud; Yushin, Gleb
2012-11-27
Materials that can perform simultaneous functions allow for reductions in the total system mass and volume. Developing technologies to produce flexible batteries with good performance in combination with high specific strength is strongly desired for weight- and power-sensitive applications such as unmanned or aerospace vehicles, high-performance ground vehicles, robotics, and smart textiles. State of the art battery electrode fabrication techniques are not conducive to the development of multifunctional materials due to their inherently low strength and conductivities. Here, we present a scalable method utilizing carbon nanotube (CNT) nonwoven fabric-based technology to develop flexible, electrochemically stable (∼494 mAh·g(-1) for 150 cycles) battery anodes that can be produced on an industrial scale and demonstrate specific strength higher than that of titanium, copper, and even a structural steel. Similar methods can be utilized for the formation of various cathode and anode composites with tunable strength and energy and power densities.
Terapascal static pressure generation with ultrahigh yield strength nanodiamond
Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A.; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B.; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly
2016-01-01
Studies of materials’ properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications. PMID:27453944
High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.
Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D
2018-02-27
The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.
Shear Bond Strength of Repair Systems to New CAD/CAM Restorative Materials.
Üstün, Özlem; Büyükhatipoğlu, Işıl Keçik; Seçilmiş, Aslı
2016-11-23
To evaluate the bond strength of repair systems (Ceramic Repair, Clearfil Repair) to computer-aided design/computer-assisted machining (CAD/CAM) restorative materials (IPS e.max CAD, Vita Suprinity, Vita Enamic, Lava Ultimate). Thermally aged CAD/CAM restorative material specimens (5000 cycles between 5°C and 55°C) were randomly divided into two groups according to the repair system: Ceramic Repair (37% phosphoric acid + Monobond-S + Heliobond + Tetric N Ceram) or Clearfil Repair (40% phosphoric acid + mixture of Clearfil Porcelain Bond Activator and Clearfil SE Bond Primer + Clearfil SE Bond + Filtek Z250). The resin composite was light-cured on conditioned specimens. All specimens were stored in distilled water at 37°C for 24 hours and then additionally aged for 5000 thermal cycles. The shear bond strength test was performed using a universal testing machine (0.5 mm/min). Two-way ANOVA was used to detect significance differences according to the CAD/CAM material and composite repair system factors. Subgroup analyses were conducted using the least significant difference post-hoc test. The results of two-way ANOVA indicated that bond strength values varied according to the restorative materials (p < 0.05). No significant differences were observed between the CAD/CAM restorative materials (p > 0.05), except in the Vita Suprinity group (p < 0.05). Moreover, no differences were observed between the repair systems. Both the Clearfil and Ceramic repair systems used in the study allow for successful repairs. © 2016 by the American College of Prosthodontists.
Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms
NASA Astrophysics Data System (ADS)
McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel
2014-09-01
Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.
The effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2015-06-01
Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.
Ti:sapphire - A theoretical assessment for its spectroscopy
NASA Astrophysics Data System (ADS)
Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.
2017-03-01
This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.
Development of self-anchoring bone implants. I. Processing and material characterization.
Abusafieh, A; Siegler, S; Kalidindi, S R
1997-01-01
We recently designed and produced a family of new swelling-type materials that are potentially capable of self-fixation in bone. These materials are designed to absorb body fluids and swell by small amounts, which will allow the implants made from these materials to achieve self-fixation by an expansion-fit mechanism. The developed material system is essentially a crosslinked random copolymer based on poly (methyl methacrylate-acrylic acid). For potential structural (load-bearing) bioimplant applications, we reinforced this copolymer with AS-4 carbon and Kevlar 49 fibers. The details of processing these materials and the steps involved in optimizing their microstructures are presented in this article. A set of mechanical tests were performed on these materials in both dry and swollen conditions to measure their moduli and yield strengths. In the dry state, the copolymers were found to exhibit Young's moduli in the range of 3 to 4 GPa and yield strengths in the range of 70 to 85 MPa. The reinforced composites exhibited moduli in the range of 15 to 65 GPa and yield strengths in the range of 125 to 500 MPa. Upon controlling the volumetric swelling in these materials to be less than about 10%, the loss in mechanical properties was found to be less than about 30%. These hygromechanical properties are well suited for self-anchoring bone implant applications.
Tension fracture of laminates for transport fuselage. Part 2: Large notches
NASA Technical Reports Server (NTRS)
Walker, Tom H.; Ilcewicz, Larry B.; Polland, D. R.; Poe, C. C., Jr.
1993-01-01
Tests were conducted on over 200 center-crack specimens to evaluate: (a) the tension-fracture performance of candidate materials and laminates for commercial fuselage applications; and (b) the accuracy of several failure criteria in predicting response. Crack lengths of up to 12 inches were considered. Other variables included fiber/matrix combination, layup, lamination manufacturing process, and intraply hybridization. Laminates fabricated using the automated tow-placement process provided significantly higher tension-fracture strengths than nominally identical tape laminates. This confirmed earlier findings for other layups, and possibly relates to a reduced stress concentration resulting from a larger scale of repeatable material inhomogeneity in the tow-placed laminates. Changes in material and layup result in a trade-off between small-notch and large-notch strengths. Toughened resins and 0 deg-dominate layups result in higher small-notch strengths but lower large-notch strengths than brittle resins, 90 deg and 45 deg dominated layups, and intraply S2-glass hybrid material forms. Test results indicate that strength-prediction methods that allow for a reduced order singularity of the crack-tip stress field are more successful at predicting failure over a range of notch sizes than those relying on the classical square-root singularity. The order of singularity required to accurately predict large-notch strength from small-notch data was affected by both material and layup. Measured crack-tip strain distributions were generally higher than those predicted using classical methods. Traditional methods of correcting for finite specimen width were found to be lacking, confirming earlier findings with other specimen geometries. Fracture tests of two stiffened panels, identical except for differing materials, with severed central stiffeners resulted in nearly identical damage progression and failure sequences. Strain-softening laws implemented within finite element models appear attractive to account for load redistribution in configured structure due to damage-induced crack tip softening
Nanotwinned metal MEMS films with unprecedented strength and stability
Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.
2017-01-01
Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015
Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Halbig, Michael C.
2003-01-01
Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) High alloy steel plate: High alloy steel plate must comply with one of the following specifications... and with the indicated minimum tensile strength and elongation in the welded condition. (b) Carbon steel plate: The maximum allowable carbon content must be 0.31 percent when the individual specification...
Active Responding in Content Classrooms.
ERIC Educational Resources Information Center
Davey, Beth
1989-01-01
Describes how Multiple Response Techniques (MRTs) can be used before, during, and after reading to help students better comprehend content material. Argues that MRTs enhance comprehension by engaging all students, focusing on students' strengths, training students in reflectivity and self-monitoring, and allowing the teacher quick evaluation of…
The development of test methodology for testing glassy materials
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
1987-01-01
The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength (i.e., static fatigue). Loading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods as compared to glass which undergoes rapid loading. In this instance the purpose of rapid loading is to fail the glass before any significant crack growth occurs. However, a decrease in strength occurs with a decrease in loading rate, pursuant to substantial crack extension. These properties complicate the structural design allowable for the utilization of glass components in applications such as mirrors for the Space Telescope and AXAF for Spacelab and the space station.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling.
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin; Ehrmann, Andrea
2017-10-19
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling
Fafenrot, Susanna; Grimmelsmann, Nils; Wortmann, Martin
2017-01-01
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength. PMID:29048347
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, Stephen M.; Tao, Hongyi; Todd-Copley, Judith A.
1991-01-01
A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.
Etching process for improving the strength of a laser-machined silicon-based ceramic article
Copley, S.M.; Tao, H.; Todd-Copley, J.A.
1991-06-11
A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.
NASA Astrophysics Data System (ADS)
Herbold, E. B.; Nesterenko, V. F.; Benson, D. J.; Cai, J.; Vecchio, K. S.; Jiang, F.; Addiss, J. W.; Walley, S. M.; Proud, W. G.
2008-11-01
The variation of metallic particle size and sample porosity significantly alters the dynamic mechanical properties of high density granular composite materials processed using a cold isostatically pressed mixture of polytetrafluoroethylene (PTFE), aluminum (Al), and tungsten (W) powders. Quasistatic and dynamic experiments are performed with identical constituent mass fractions with variations in the size of the W particles and pressing conditions. The relatively weak polymer matrix allows the strength and fracture modes of this material to be governed by the granular type behavior of agglomerated metal particles. A higher ultimate compressive strength was observed in relatively high porosity samples with small W particles compared to those with coarse W particles in all experiments. Mesoscale granular force chains of the metallic particles explain this unusual phenomenon as observed in hydrocode simulations of a drop-weight test. Macrocracks forming below the critical failure strain for the matrix and unusual behavior due to a competition between densification and fracture in dynamic tests of porous samples were also observed. Numerical modeling of shock loading of this granular composite material demonstrated that the internal energy, specifically thermal energy, of the soft PTFE matrix can be tailored by the W particle size distribution.
Jet formation in cerium metal to examine material strength
Jensen, B. J.; Cherne, F. J.; Prime, M. B.; ...
2015-11-18
Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Some recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solidmore » phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. And from these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. Finally, the data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.« less
Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect
Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...
2015-03-09
Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
NASA Astrophysics Data System (ADS)
Prime, Michael; Vaughan, Diane; Preston, Dean; Oro, David; Buttler, William
2013-06-01
Rayleigh-Taylor instabilities have been widely used to study the deviatoric (flow) strength of solids at high strain rates. More recently, experiments applying a supported shock through mating surfaces (Atwood number = 1) with geometrical perturbations have been proposed for studying strength at strain rates up to 107/sec using Richtmyer-Meshkov (RM) instabilities. Buttler et al. [J. Fluid Mech., 2012] recently reported experimental results for RM instability growth but with an unsupported shock applied by high explosives and the geometrical perturbations on the opposite free surface (Atwood number = -1). This novel configuration allowed detailed experimental observation of the instability growth and arrest. We present results and detailed interpretation from numerical simulations of the Buttler experiments on copper. Highly-resolved, two-dimensional simulations were performed using a Lagrangian hydrocode and the Preston-Tonks-Wallace (PTW) strength model. The model predictions show good agreement with the data in spite of the PTW model being calibrated on lower strain rate data. The numerical simulations are used to 1) examine various assumptions previously made in an analytical model, 2) to estimate the sensitivity of such experiments to material strength and 3) to explore the possibility of extracting meaningful strength information in the face of complicated spatial and temporal variations of stress, pressure, and temperature during the experiments.
NASA Astrophysics Data System (ADS)
Binal, Adil
2017-10-01
In the historic masonry structures, hard and large rock fragments were used as the construction materials. The hydraulic binder material prepared to keep this used material in its entirety is a different material than the cement used today. Khorasan mortar made by using aggregate and lime exhibits a more flexible structure than the concrete. This feature allows the historic building to be more durable. There is also a significant industrial value because of the use of Khorasan mortar in the restoration of historic masonry structures. Therefore, the calculation of the ideal mixture of Khorasan mortar and the determination of its mechanical and physical properties are of great importance regarding preserving historic buildings. In this study, the mixtures of different lime and brick fractions were prepared. It was determined that Khorasan mortar shows the highest compressive strength in mixtures with water/lime ratio of 0.55 and lime/aggregate ratio of 0.66. By keeping the mixing ratio constant, it was observed that the strengths of the samples kept in the humidity chamber for different curing times increased day by day. The early strength values of samples with the high lime/aggregate ratio (l/a: 0.83) were higher than those with the low lime/aggregate ratio (l/a: 0.5). For the samples with low lime/aggregate ratio, there was an increase in the strength values depending on the curing period. As the cure duration increases, a chemical reaction takes place between the lime and the brick fracture, and as a result of this reaction, the strength values are increased.
NASA Technical Reports Server (NTRS)
Otte, Neil
1997-01-01
The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.
Glasses, ceramics, and composites from lunar materials
NASA Technical Reports Server (NTRS)
Beall, George H.
1992-01-01
A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.
The influence of fines on strength and drainage characteristics of aggregate bases.
DOT National Transportation Integrated Search
1996-01-01
One of the most commonly used dense-graded aggregate mixes in Virginia is designated as Type 2lB. In an effort to improve drainage characteristics of the 21B material it was proposed to decrease the maximum allowable percentage of fines from 7% to 5%...
Asteroid collisions, craters, regoliths, and lifetimes
NASA Technical Reports Server (NTRS)
Chapman, C. R.
1978-01-01
Laboratory experiments and computer modeling are used to predict the development of regoliths on all asteroids more than a few tens of kilometers in diameter, allowing for a wide range in the intrinsic strength of asteroidal surface materials. The high frequency of interasteroid collisions requires nearly all asteroids to be fragments of precursors.
Applicability of recycled aggregates in concrete piles for soft soil improvement.
Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G
2017-01-01
The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.
Push-off tests and strength evaluation of joints combining shrink fitting with bonding
NASA Astrophysics Data System (ADS)
Yoneno, Masahiro; Sawa, Toshiyuki; Shimotakahara, Ken; Motegi, Yoichi
1997-03-01
Shrink fitted joints have been used in mechanical structures. Recently, joints combining shrink fitting with anaerobic adhesives bonded between the shrink fitted surfaces have been appeared in order to increase the joint strength. In this paper, push-off test was carried out on strength of joints combining shrink fitting with bonding by material testing machine. In addition, the push-off strength of shrink fitting joints without an anaerobic adhesive was also measured. In the experiments, the effects of the shrinking allowance and the outer diameter of the rings on the joint strength are examined. The interface stress distribution in bonded shrink fitted joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the interface stress distribution, a method for estimating joint strength is proposed. The experimental results are in a fairly good agreement with the numerical results. It is found that the strength of combination joints is greater than that of shrink fitted joints.
Adhesive bonding and brazing of nanocrystalline diamond foil onto different substrate materials
NASA Astrophysics Data System (ADS)
Lodes, Matthias A.; Sailer, Stefan; Rosiwal, Stefan M.; Singer, Robert F.
2013-10-01
Diamond coatings are used in heavily stressed industrial applications to reduce friction and wear. Hot-filament chemical vapour deposition (HFCVD) is the favourable coating method, as it allows a coating of large surface areas with high homogeneity. Due to the high temperatures occurring in this CVD-process, the selection of substrate materials is limited. With the desire to coat light materials, steels and polymers a new approach has been developed. First, by using temperature-stable templates in the HFCVD and stripping off the diamond layer afterwards, a flexible, up to 150 μm thick and free standing nanocrystalline diamond foil (NCDF) can be produced. Afterwards, these NCDF can be applied on technical components through bonding and brazing, allowing any material as substrate. This two-step process offers the possibility to join a diamond layer on any desired surface. With a modified scratch test and Rockwell indentation testing the adhesion strength of NCDF on aluminium and steel is analysed. The results show that sufficient adhesion strength is reached both on steel and aluminium. The thermal stress in the substrates is very low and if failure occurs, cracks grow undercritically. Adhesion strength is even higher for the brazed samples, but here crack growth is critical, delaminating the diamond layer to some extent. In comparison to a sample directly coated with diamond, using a high-temperature CVD interlayer, the brazed as well as the adhesively bonded samples show very good performance, proving their competitiveness. A high support of the bonding layer could be identified as crucial, though in some cases a lower stiffness of the latter might be acceptable considering the possibility to completely avoid thermal stresses which occur during joining at higher temperatures.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1977-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo was conducted. Two mill-processed forms of this alloy were examined. The forged material was essentially processed above the beta transus while the rolled form was subjected to considerable work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
Mechanical properties in crumple-formed paper derived materials subjected to compression.
Hanaor, D A H; Flores Johnson, E A; Wang, S; Quach, S; Dela-Torre, K N; Gan, Y; Shen, L
2017-06-01
The crumpling of precursor materials to form dense three dimensional geometries offers an attractive route towards the utilisation of minor-value waste materials. Crumple-forming results in a mesostructured system in which mechanical properties of the material are governed by complex cross-scale deformation mechanisms. Here we investigate the physical and mechanical properties of dense compacted structures fabricated by the confined uniaxial compression of a cellulose tissue to yield crumpled mesostructuring. A total of 25 specimens of various densities were tested under compression. Crumple formed specimens exhibited densities in the range 0.8-1.3 g cm -3 , and showed high strength to weight characteristics, achieving ultimate compressive strength values of up to 200 MPa under both quasi-static and high strain rate loading conditions and deformation energy that compares well to engineering materials of similar density. The materials fabricated in this work and their mechanical attributes demonstrate the potential of crumple-forming approaches in the fabrication of novel energy-absorbing materials from low-cost precursors such as recycled paper. Stiffness and toughness of the materials exhibit density dependence suggesting this forming technique further allows controllable impact energy dissipation rates in dynamic applications.
Modification of Surface Density of a Porous Medium
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret M. (Inventor); Espinoza, Christian (Inventor)
2016-01-01
A method for increasing density of a region of a porous, phenolic bonded ("PPB") body adjacent to a selected surface to increase failure tensile strength of the adjacent region and/or to decrease surface recession at elevated temperatures. When the surface-densified PPB body is brought together with a substrate, having a higher failure tensile strength, to form a composite body with a PPB body/substrate interface, the location of tensile failure is moved to a location spaced apart from the interface, the failure tensile strength of the PPB body is increased, and surface recession of the material at elevated temperature is reduced. The method deposits and allows diffusion of a phenolic substance on the selected surface. The PPB body and the substrate may be heated and brought together to form the composite body. The phenolic substance is allowed to diffuse into the PPB body, to volatilize and to cure, to provide a processed body with an increased surface density.
Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y
2011-09-01
The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, M.S.; Henk, P.O.
1996-12-31
The use of additives to insulating materials is one of the methods to improve certain properties of these materials. Additives can also be used to provide more insight into some processes like conduction, space charge formation and breakdown under certain conditions of field application. In the present paper, the effect of the addition of fine particles 1 wt% BaTiO{sub 3} to plain low density polyethylene (LDPE) on the short-term dc breakdown strength of LDPE at room temperature was investigated. The characteristics of the used polyethylene are as follows: density 0.925 g/cm{sup 3}, melt index 0.25 g/10 min. The BaTiO{sub 3}more » used was laboratory grade with particle size less than 7 {micro}m. Special cylindrical test samples of both undoped and doped materials were used in this investigation. Stainless steel hemispherically tipped electrodes were embedded in the material by molding. The mean value of the gap length between the electrodes was 0.25 mm. The design of the test sample allows for determining the intrinsic breakdown strength of the material. The Weibull plots were used to analyze the breakdown test results. Analysis of the results indicate that the addition of BaTiO{sub 3} to LDPE has reduced the short term dc breakdown strength of the doped material by about 16% if compared with the corresponding value for the plain LDPE. An attempt is made to correlate between the present results, and earlier published results about the effect of BaTiO{sub 3} on dc conductivity and space charge formation in LDPE.« less
NASA Astrophysics Data System (ADS)
Uhlig, K.; Spickenheuer, A.; Bittrich, L.; Heinrich, G.
2013-05-01
Increasing the rotational frequency of bladed rotors used in turbomachinery leads to their increased efficiency and performance. Especially for turbomolecular pumps, this would allow either higher compression rates or smaller pump dimensions. The maximal rotational frequency is focused on the structural strength of the construction and the material used. Due to their high density, specific strength, and stiffness in the fiber direction, carbon-fiberreinforced plastics (CFRPs) seem to be ideal for such an application. The highly orthotropic material behavior of CFRPs demands new approaches in terms of their manufacturing and dimensioning. As a new approach, a rotor with 17 blades in a blade-integrated disk construction (BLISK) made of a CFRP, allowing a 35% higher burst speed than a bladed rotor made of a high-strength aluminum alloy, was developed. An appropriate fiber layout has to reflect the rotational symmetry, which demands either a radial or tangential fiber orientation. Therefore, the Tailored Fiber Placement (TFP) technology was used, which allows a high flexibility for the fiber layout. For consolidation, resin infiltration was performed using a modified vacuum-assisted process, and the final geometry was generated employing a milling machine. A radius-dependent layer setup of tangential and radial fibers was chosen to maximize the burst speed by using an adapted finite-element analysis. Additionally, a numerical modal analysis and a numerical failure analysis were performed. Finally, the theoretical results were verified on manufactured rotors by an experimental modal analysis and burst tests, where experimental data showed a good coincidence with numerical results.
Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity
Wan, Sijie; Li, Yuchen; Mu, Jiuke; Aliev, Ali E.; Fang, Shaoli; Kotov, Nicholas A.; Jiang, Lei; Cheng, Qunfeng; Baughman, Ray H.
2018-01-01
We here show that infiltrated bridging agents can convert inexpensively fabricated graphene platelet sheets into high-performance materials, thereby avoiding the need for a polymer matrix. Two types of bridging agents were investigated for interconnecting graphene sheets, which attach to sheets by either π–π bonding or covalent bonding. When applied alone, the π–π bonding agent is most effective. However, successive application of the optimized ratio of π–π bonding and covalent bonding agents provides graphene sheets with the highest strength, toughness, fatigue resistance, electrical conductivity, electromagnetic interference shielding efficiency, and resistance to ultrasonic dissolution. Raman spectroscopy measurements of stress transfer to graphene platelets allow us to decipher the mechanisms of property improvement. In addition, the degree of orientation of graphene platelets increases with increasing effectiveness of the bonding agents, and the interlayer spacing increases. Compared with other materials that are strong in all directions within a sheet, the realized tensile strength (945 MPa) of the resin-free graphene platelet sheets was higher than for carbon nanotube or graphene platelet composites, and comparable to that of commercially available carbon fiber composites. The toughness of these composites, containing the combination of π–π bonding and covalent bonding, was much higher than for these other materials having high strengths for all in-plane directions, thereby opening the path to materials design of layered nanocomposites using multiple types of quantitatively engineered chemical bonds between nanoscale building blocks. PMID:29735659
Method and apparatus for measuring nuclear magnetic properties
Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.
1987-12-01
A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.
Method and apparatus for measuring nuclear magnetic properties
Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander
1987-01-01
A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.
Mechanics Methodology for Textile Preform Composite Materials
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1996-01-01
NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.
Sustainability of Metal Structures via Spray-Clad Remanufacturing
NASA Astrophysics Data System (ADS)
Smith, Gregory M.; Sampath, Sanjay
2018-04-01
Structural reclamation and remanufacturing is an important future design consideration to allow sustainable recovery of degraded structural metals. Heavy machinery and infrastructure components subjected to extended use and/or environment induced degradation require costly and time-consuming replacement. If these parts can be remanufactured to original tolerances, and returned to service with "as good or better" performance, significant reductions in materials, cost, and environmental impact can be achieved. Localized additive restoration via thermal or cold spray methods is a promising approach in recovering and restoring original design strength of degraded metals. The advent of high velocity spray deposition technologies has allowed deposition of near full density materials. In this review, the fundamental scientific and technological elements of such local additive restoration is contemplated including materials, processes, and methodologies to assess the capabilities of such remanufactured systems. This points to sustainable material reclamation, as well as a route toward resource and process sustainability.
The geomechanical strength of carbonate rock in Kinta valley, Ipoh, Perak Malaysia
NASA Astrophysics Data System (ADS)
Mazlan, Nur Amanina; Lai, Goh Thian; Razib, Ainul Mardhiyah Mohd; Rafek, Abdul Ghani; Serasa, Ailie Sofyiana; Simon, Norbert; Surip, Noraini; Ern, Lee Khai; Mohamed, Tuan Rusli
2018-04-01
The stability of both cut rocks and underground openings were influenced by the geomechanical strength of rock materials, while the strength characteristics are influenced by both material characteristics and the condition of weathering. This paper present a systematic approach to quantify the rock material strength characteristics for material failure and material & discontinuities failure by using uniaxial compressive strength, point load strength index and Brazilian tensile strength for carbonate rocks. Statistical analysis of the results at 95 percent confidence level showed that the mean value of compressive strength, point load strength index and Brazilian tensile strength for with material failure and material & discontinuities failure were 76.8 ± 4.5 and 41.2 ± 4.1 MPa with standard deviation of 15.2 and 6.5 MPa, respectively. The point load strength index for material failure and material & discontinuities failure were 3.1 ± 0.2 MPa and 1.8 ± 0.3 MPa with standard deviation of 0.9 and 0.6 MPa, respectively. The Brazilian tensile strength with material failure and material & discontinuities failure were 7.1 ± 0.3 MPa and 4.1 ± 0.3 MPa with standard deviation of 1.4 and 0.6 MPa, respectively. The results of this research revealed that the geomechanical strengths of rock material of carbonate rocks for material & discontinuities failure deteriorates approximately ½ from material failure.
NASA Astrophysics Data System (ADS)
Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.
2017-01-01
Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.
Tsouknidas, Alexander; Maropoulos, Stergios; Savvakis, Savvas; Michailidis, Nikolaos
2011-01-01
Recent advances in Computer Aided Design and Manufacturing techniques (CAD/CAM) have facilitated the rapid and precise construction of customized implants used for craniofacial reconstruction. Data of the patients' trauma, acquired through Computer Topographies (CT), provide sufficient information with regard to the defect contour profile, thus allowing a thorough preoperative evaluation whilst ensuring excellent implant precision. During the selection, however, of a suitable implant material for the specific trauma, the mechanical aspects of the implant have to be considered. This investigation aims to assess the mechanical strength, the shock resistance and the critical deflection of cranial implants manufactured with two commonly used materials, Polymethylmethacrylate (PMMA) and Ti6Al4V. Even though the strength properties of Ti-alloys are far superior to those of PMMA, there are several aspects that may act in advantage of PMMA, e.g., it is known that discontinuities in the elastic modulus of adjoined parts (bone-implant) lead to bone resorption thus loosening the fixation of the implant over time.The implant design and fixation was the same in both cases allowing a direct comparison of the implant behavior for various loads. Finite Element Methods (FEM) assisted procedures were employed, providing a valuable insight to the neurocranial protection granted by these implants.
Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs
NASA Technical Reports Server (NTRS)
Whitley, Karen S.; Collins, TImothy J.
2006-01-01
Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.
Helping Aircraft Engines Lighten Up
NASA Technical Reports Server (NTRS)
2004-01-01
High-temperature polyimide/carbon fiber matrix composites are developed by the Polymers Branch at NASA's Glenn Research Center. These materials can withstand high temperatures and have good processing properties, which make them particularly useful for jet and rocket engines and for components such as fan blades, bushings, and duct segments. Applying polyimide composites as components for aerospace structures can lead to substantial vehicle weight reductions. A typical polyimide composite is made up of layers of carbon or glass fibers glued together by a high-temperature polymer to make the material strong, stiff, and lightweight. Organic molecules containing carbon, nitrogen, oxygen, and hydrogen within the polyimide keep the material s density low, resulting in the light weight. The strength of a component or part made from a polyimide comes mainly from the reinforcing high-strength fibers. The strength of the carbon fibers coupled with the stiffness of polyimides allows engineers to make a very rigid structure without it being massive. Another benefit of a polyimide s suitability for aerospace applications is its reduced need for machining. When polyimide parts are removed from a mold, they are nearly in their final shape. Usually, very little machining is needed before a part is ready for use.
Using plastic instability to validate and test the strength law of a material under pressure
NASA Astrophysics Data System (ADS)
Bolis, Cyril; Counilh, Denis; Savale, Brice
2015-09-01
In dynamical experiments (pressures higher than 10 GPa, strain rate around 104-106 s-1), metals are classically described using an equation of state and a strength law which is usually set using data from compression or traction tests at low pressure (few MPa) and low strain rates (less than 103 s-1). In consequence, it needs to be extrapolated during dynamical experiments. Classical shock experiments do not allow a fine validation of the stress law due to the interaction with the equation of state. To achieve this aim, we propose to use a dedicated experiment. We started from the works of Barnes et al. (1974 and 1980) where plastic instabilities initiated by a sinusoidal perturbation at the surface of the metal develop with the pressure. We adapted this principle to a new shape of initial perturbation and realized several experiments. We will present the setup and its use on a simple material: gold. We will detail how the interpretation of the experiments, coupled with previous characterization experiments helps us to test the strength lax of this material at high pressure and high strain rate.
Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter
2013-04-01
The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress load or the allowable maximum stress for a minimum required life time.
Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel
NASA Astrophysics Data System (ADS)
Wang, Jifeng; Müller, Norbert
2012-06-01
An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.
NASA Astrophysics Data System (ADS)
Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.
2017-09-01
High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.
Krull, Annika; Morlock, Michael M; Bishop, Nicholas E
2017-10-01
Intraoperative interface contamination of modular head-stem taper junctions of hip implants can lead to poor fixation strength, causing fretting and crevice corrosion or even stem taper fracture. Careful cleaning before assembly should help to reduce these problems. The purpose of this study was to determine the effect of cleaning (with and without drying) contaminated taper interfaces on the taper fixation strength. Metal or ceramic heads were impacted onto titanium alloy stem tapers with cleaned or contaminated (fat or saline solution) interfaces. The same procedure was performed after cleaning and drying the contaminated interfaces. Pull-off force was used to determine the influence of contamination and cleaning on the taper strength. Pull-off forces after contamination with fat were significantly lower than those for uncontaminated interfaces for both head materials. Pull-off forces after application of saline solution were not significantly different from those for uncontaminated tapers. However, a large variation in taper strength was observed, pull-off forces for cleaned and dried tapers were similar to those for uncontaminated tapers for both head materials. Intraoperative contamination of taper interfaces may be difficult to detect but has a major influence on taper fixation strength. Cleaning of the stem taper with saline solution and drying with gauze directly before assembly allows the taper strength of the pristine components to be achieved. Not drying the taper results in a large variation in pull-off forces, emphasizing that drying is essential for sufficient and reproducible fixation strength. Copyright © 2017 Elsevier Inc. All rights reserved.
The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture
NASA Technical Reports Server (NTRS)
Reeder, James R.
2014-01-01
Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.
NASA Technical Reports Server (NTRS)
Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.
2011-01-01
A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.
Mechanical behavior of glass and Blackglas{reg_sign} ceramic matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawovy, R.H.; Kampe, S.L.; Curtin, W.A.
Room temperature tensile tests are reported on two low-cost ceramic matrix composite materials, comprised of matrices of Blackglas{reg_sign} and a proprietary glass composition each reinforced with Nicalon{reg_sign} SiC-based fibers. The measured mechanical behaviors, supplemented by post-fracture analysis of fiber pullout and fiber fracture mirrors, are compared in detail to the performance predicted theoretically. This allows for an assessment of the roles of the matrix, fiber strength, residual stresses, fiber geometry, and the fiber/matrix interfacial properties in determining mechanical response. The Blackglas{reg_sign} matrix cracks extensively during processing, and so the mechanical response is controlled by the deformation and fracture of themore » fiber bundle. The interfacial sliding resistance, {tau}, is determined to be {approx} 17 MPa and the in-situ (post-processed) fiber characteristic strength, {sigma}{sub c} is found to be {approx} 2.0 GPa, both similar to values reported in the literature for Nicalon{reg_sign}/CAS-glass systems. For the glass matrix, the unidirectional and cross-ply materials show marked differences in mechanical behavior. In the cross-ply composites, {tau} {approx} 14 MPa and {sigma}{sub c} {approx} 2.9 GPa; in the unidirectional variants, these values were 1.7 MPa and 1.6 GPa, respectively. With these data and other derived micromechanical parameters, the stress-strain and failure point of these materials was predicted using existing models, and excellent agreement with the experiments was obtained. These materials thus perform as expected given the in-situ fiber and interface properties. Notably, the cross-ply glass matrix composites exhibit high fiber strength retention and hence show tensile strengths that are better than other Nicalon{reg_sign}-based materials tested to date.« less
Engineering Graphene Mechanical Systems
2012-07-05
strength material. On the basis of chemical /defect manipulation and recrystallization this technique allows wide-range engineering of mechanical... Engineering Graphene Mechanical Systems Maxim K. Zalalutdinov,† Jeremy T. Robinson,*,† Chad E. Junkermeier,‡ James C. Culbertson, Thomas L. Reinecke...Information ABSTRACT: We report a method to introduce direct bonding between graphene platelets that enables the transformation of a multilayer chemically
Fate of superconductivity in three-dimensional disordered Luttinger semimetals
NASA Astrophysics Data System (ADS)
Mandal, Ipsita
2018-05-01
Superconducting instability can occur in three-dimensional quadratic band crossing semimetals only at a finite coupling strength due to the vanishing of density of states at the quadratic band touching point. Since realistic materials are always disordered to some extent, we study the effect of short-ranged-correlated disorder on this superconducting quantum critical point using a controlled loop-expansion applying dimensional regularization. The renormalization group (RG) scheme allows us to determine the RG flows of the various interaction strengths and shows that disorder destroys the superconducting quantum critical point. In fact, the system exhibits a runaway flow to strong disorder.
NASA Astrophysics Data System (ADS)
Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.
2018-02-01
Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.
Landau levels and magnetic oscillations in gapped Dirac materials with intrinsic Rashba interaction
NASA Astrophysics Data System (ADS)
Tsaran, V. Yu.; Sharapov, S. G.
2014-11-01
A new family of the low-buckled Dirac materials which includes silicene, germanene, etc. is expected to possess a more complicated sequence of Landau levels than in pristine graphene. Their energies depend, among other factors, on the strength of the intrinsic spin-orbit (SO) and Rashba SO couplings and can be tuned by an applied electric field Ez. We studied the influence of the intrinsic Rashba SO term on the energies of Landau levels using both analytical and numerical methods. The quantum magnetic oscillations of the density of states are also investigated. A specific feature of the oscillations is the presence of the beats with the frequency proportional to the field Ez. The frequency of the beats becomes also dependent on the carrier concentration when Rashba interaction is present allowing experimental determination of its strength.
Wide Panel Testing Technique for Evaluating Repair Weld Strengths
NASA Technical Reports Server (NTRS)
Rogers, Patrick R.; Bynum, Julian E.; Shah, Sandeep R.
1998-01-01
This paper describes a new tensile testing technique for evaluating the overall effect of a repair weld on the strength of a welded joint. Previously, repair weld strengths have been evaluated using one-inch width tensile specimens, but this technique does not capture all of the effects that result from a repair. The new technique involves testing of "wide panel" tensile specimens which contain the full length of a repair weld within a longer initial weld, allowing the specimen to capture the combined effects of residual stresses, local strength degradation, and load redistribution around a repair. The development of strains in the repair area of standard aluminum alloy specimens and new high-performance aluminum-lithium alloy specimens was observed and evaluated using photoelastic material. The results of this evaluation show an increased sensitivity to repair welding residual stresses in the aluminum-lithium alloy specimens.
Gasparić, Lana Bergman; Schauperl, Zdravko; Mehulić, Ketij
2013-03-01
Aim of the study was to assess the effect of different surface treatments on the shear bond strength (SBS) of the veneering ceramics to zirconia core. In a shear test the influence of grinding and sandblasting of the zirconia surface on bonding were assessed. Statistical analysis was performed using SPSS statistical package (version 17.0, SPSS Inc., Chicago, IL, USA) and Microsoft Office Excel 2003 (Microsoft, Seattle, WA, USA). There was a significant difference between the groups considering shear bond strength (SBS) values, i.e. ground and sandblasted samples had significantly higher SBS values than only ground samples (mean difference = -190.67; df = 10, t = -6.386, p < 0.001). The results of the present study indicate that ground and sandblasted cores are superior to ground cores, allowing significantly higher surface roughness and significantly higher shear bond strength between the core and the veneering material.
Strength Investigations in Aircraft Construction Under Repeated Application of the Load
NASA Technical Reports Server (NTRS)
Gassner, E.
1946-01-01
In the calculation of the dimensions of modern machines and building constructions, account is taken of the frequency of the occurrence of the anticipated loads. It is generally assumed that these loads will be repeated an infinite number, or at any rate some millions, of times during the total working life of the construction, When calculating the dimensions of the structural parts of aircraft, on the contrary, a consideration only of those frequencies in the appearance of the loads which actually come into play in the various states of stress is allowable. This is because in aircraft construction it is absolutely essential not only to ensure adequate structural strength but also to keep down the structural weight to the lowest possible limit, Strength tests in which this requirement is directly taken into account have recently been carried out by the DVL Material Strength Department.
Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber
NASA Astrophysics Data System (ADS)
Berrehail, Tahar; Zemmouri, Noureddine; Agoudjil, Boudjemaa
2018-05-01
Recently, some cheap materials are available and adaptable to climate seem to meet current requirements. This paper investigates the thermal and mechanical properties of cement stabilized earth bricks(CSEB) reinforced with date palm fibers (DPF). The main goal is to develop and expand the field of use of these materials in the construction sector, and investigate the possibility of new bio composite as renewable, insulating building material with low cost, made of earth and reinforced with palm wood waste. In this study, a particular interest is brought to the thermal and mechanical characteristics, which constitute a decisive character for the choice of a building material. A series of earthen samples stabilized at 5% and reinforced with DPF of various fiber weight fractions, (5%, 10%), were manufactured and compacted applying two levels compacting, (5MPa and 10MPa). Compressive strength and thermal conductivity were experimentally studied; heating capacity and diffusivity were indirectly calculated. It was found that the fibrous reinforcement proved thermal conductivity and compressive strength. it also enhanced thermal performances. Thus, the results found allow us to investigate hygrothermal behaviour and its impact on occupants comfort.
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Moore, T. J.
1979-01-01
A study of the flow strength, creep resistance and diffusion welding characteristics of the titanium alloy Ti-6Al-2Nb-1Ta-0.8Mo has been conducted. Two mill-processed forms of this alloy were examined. The forged material had been processed above the beta transus (approximately 1275 K) while the rolled form had been subjected to work below the beta transus. Between 1150 and 1250 K, the forged material was stronger and more creep resistant than the rolled alloy. Both forms exhibit superplastic characteristics in this temperature range. Strain measurements during diffusion welding experiments at 1200 K reveal that weld interfaces have no measurable effect on the overall creep deformation. Significant deformation appears to be necessary to produce a quality diffusion weld between superplastic materials. A 'soft' interlayer inserted between faying surfaces would seemingly allow manufacture of quality diffusion welds with little overall deformation.
Porous materials based on foaming solutions obtained from industrial waste
NASA Astrophysics Data System (ADS)
Starostina, I. V.; Antipova, A. N.; Ovcharova, I. V.; Starostina, Yu L.
2018-03-01
This study analyzes foam concrete production efficiency. Research has shown the possibility of using a newly-designed protein-based foaming agent to produce porous materials using gypsum and cement binders. The protein foaming agent is obtained by alkaline hydrolysis of a raw mixture consisting of industrial waste in an electromagnetic field. The mixture consists of spent biomass of the Aspergillus niger fungus and dust from burning furnaces used in cement production. Varying the content of the foaming agent allows obtaining gypsum binder-based foam concretes with the density of 200-500 kg/m3 and compressive strength of 0.1-1.0 MPa, which can be used for thermal and sound insulation of building interiors. Cement binders were used to obtain structural and thermal insulation materials with the density of 300-950 kg/m3 and compressive strength of 0.9-9.0 MPa. The maximum operating temperature of cement-based foam concretes is 500°C because it provides the shrinkage of less than 2%.
Technologies Enabling Scientific Exploration of Asteroids and Moons
NASA Astrophysics Data System (ADS)
Shaw, A.; Fulford, P.; Chappell, L.
2016-12-01
Scientific exploration of moons and asteroids is enabled by several key technologies that yield topographic information, allow excavation of subsurface materials, and allow delivery of higher-mass scientific payloads to moons and asteroids. These key technologies include lidar systems, robotics, and solar-electric propulsion spacecraft buses. Many of these technologies have applications for a variety of planetary targets. Lidar systems yield high-resolution shape models of asteroids and moons. These shape models can then be combined with radio science information to yield insight into density and internal structure. Further, lidar systems allow investigation of topographic surface features, large and small, which yields information on regolith properties. Robotic arms can be used for a variety of purposes, especially to support excavation, revealing subsurface material and acquiring material from depth for either in situ analysis or sample return. Robotic arms with built-in force sensors can also be used to gauge the strength of materials as a function of depth, yielding insight into regolith physical properties. Mobility systems allow scientific exploration of multiple sites, and also yield insight into regolith physical properties due to the interaction of wheels with regolith. High-power solar electric propulsion (SEP) spacecraft bus systems allow more science instruments to be included on missions given their ability to support greater payload mass. In addition, leveraging a cost-effective commercially-built SEP spacecraft bus can significantly reduce mission cost.
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
Strength conditions for the elastic structures with a stress error
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2017-10-01
As is known, the constraints (strength conditions) for the safety factor of elastic structures and design details of a particular class, e.g. aviation structures are established, i.e. the safety factor values of such structures should be within the given range. It should be noted that the constraints are set for the safety factors corresponding to analytical (exact) solutions of elasticity problems represented for the structures. Developing the analytical solutions for most structures, especially irregular shape ones, is associated with great difficulties. Approximate approaches to solve the elasticity problems, e.g. the technical theories of deformation of homogeneous and composite plates, beams and shells, are widely used for a great number of structures. Technical theories based on the hypotheses give rise to approximate (technical) solutions with an irreducible error, with the exact value being difficult to be determined. In static calculations of the structural strength with a specified small range for the safety factors application of technical (by the Theory of Strength of Materials) solutions is difficult. However, there are some numerical methods for developing the approximate solutions of elasticity problems with arbitrarily small errors. In present paper, the adjusted reference (specified) strength conditions for the structural safety factor corresponding to approximate solution of the elasticity problem have been proposed. The stress error estimation is taken into account using the proposed strength conditions. It has been shown that, to fulfill the specified strength conditions for the safety factor of the given structure corresponding to an exact solution, the adjusted strength conditions for the structural safety factor corresponding to an approximate solution are required. The stress error estimation which is the basis for developing the adjusted strength conditions has been determined for the specified strength conditions. The adjusted strength conditions presented by allowable stresses are suggested. Adjusted strength conditions make it possible to determine the set of approximate solutions, whereby meeting the specified strength conditions. Some examples of the specified strength conditions to be satisfied using the technical (by the Theory of Strength of Materials) solutions and strength conditions have been given, as well as the examples of stress conditions to be satisfied using approximate solutions with a small error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. A. Smith; D. L. Cottle; B. H. Rabin
2013-09-01
This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less
Chemochromic Detector for Sensing Gas Leakage and Process for Producing the Same
NASA Technical Reports Server (NTRS)
Williams, Martha K. (Inventor); Captain, Janine E. (Inventor); Roberson, Luke B. (Inventor); Tate, LaNetra Clayton (Inventor)
2015-01-01
A chemochromic sensor for detecting a combustible gas, such as hydrogen, includes a chemochromic pigment and a textile polymer. The textile material includes a chemochromic pigment operably responsive to a combustible gas. The combustible gas sensing textile material can be made by melt spinning, solution spinning, or other similar techniques. In a preferred embodiment carbon nanotubes are used with the textile material which will increase the material strength and alter the thermal and/or electrical properties. These textiles woven into fabrics can provide garments not only with hydrogen sensing capabilities but the carbon nanotubes will allow for a range of sensing capabilities to be embedded (i.e. gas, health, and electronic monitors) within the garments.
Local structure of percolating gels at very low volume fractions
NASA Astrophysics Data System (ADS)
Griffiths, Samuel; Turci, Francesco; Royall, C. Patrick
2017-01-01
The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures.
2011-11-01
within these cusps where electrons collide with the ceramic insulator lining the channel. In the MIT design, the overall magnetic field strength...allow compression of the anode spring (Sp), which holds the anode insulator (AI) flush with the base core (1). The anode stem and anode (A) are...case Aluminum bulk material 3 Insulator Cone HP-BN St. Gobain/ Ferro- Ceramic Grinding Inc. M1-M3 Permanent
Comparative study of mechanical properties of direct core build-up materials
Kumar, Girish; Shivrayan, Amit
2015-01-01
Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905
Plasma assisted surface treatments of biomaterials.
Minati, L; Migliaresi, C; Lunelli, L; Viero, G; Dalla Serra, M; Speranza, G
2017-10-01
The biocompatibility of an implant depends upon the material it is composed of, in addition to the prosthetic device's morphology, mechanical and surface properties. Properties as porosity and pore size should allow, when required, cells penetration and proliferation. Stiffness and strength, that depend on the bulk characteristics of the material, should match the mechanical requirements of the prosthetic applications. Surface properties should allow integration in the surrounding tissues by activating proper communication pathways with the surrounding cells. Bulk and surface properties are not interconnected, and for instance a bone prosthesis could possess the necessary stiffness and strength for the application omitting out prerequisite surface properties essential for the osteointegration. In this case, surface treatment is mandatory and can be accomplished using various techniques such as applying coatings to the prosthesis, ion beams, chemical grafting or modification, low temperature plasma, or a combination of the aforementioned. Low temperature plasma-based techniques have gained increasing consensus for the surface modification of biomaterials for being effective and competitive compared to other ways to introduce surface functionalities. In this paper we review plasma processing techniques and describe potentialities and applications of plasma to tailor the interface of biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zamer, M. M.; Irwan, J. M.; Othman, N.; Faisal, S. K.; Anneza, L. H.; Alshalif, A. F.; Teddy, T.
2018-02-01
Interlocking compressed earth blocks (ICEB) are soil based blocks that allows for mortarless construction. This characteristic resulted to faster the process of building walls and required less skilled labor as the blocks are laid dry and lock into place. Recently, implementation in using bacteria as construction material improvement is vigorously used in research in order pursuit the sustainable construction works. This paper provide the results of ureolytic bacteria (UB) throughout enrichment process in soil condition to acclimatize the ICEB environment, compressive strength of 1%, 3% and 5% UB and SEM analysis of ICEB. The bacteria were added as partial replacement of limestone water in ICEB. The results showed the optimal growth achieved based on the days and absorbance from optical density (OD) test which are in 12th days with absorbance of 0.55 whereas the results for strength shows the increment of 15.25% with 5% UB on 28th days of testing compared to control specimen. Therefore this study hopes that positive results from the UB as improving in strength of ICEB which will lead to improve others ICEB properties and others construction materials.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S.; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J.; Kaplan, David L.
2016-01-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrated excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. PMID:27697669
Process for making polymers comprising derivatized carbon nanotubes and compositions thereof
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)
2007-01-01
The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved.
A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detor, Andrew; DiDomizio, Richard; McAllister, Don
The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels.more » The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.« less
Nakajima, Yasuyuki; Hu, Rongwei; Kirshenbaum, Kevin; Hughes, Alex; Syers, Paul; Wang, Xiangfeng; Wang, Kefeng; Wang, Renxiong; Saha, Shanta R; Pratt, Daniel; Lynn, Jeffrey W; Paglione, Johnpierre
2015-06-01
We report superconductivity and magnetism in a new family of topological semimetals, the ternary half-Heusler compound RPdBi (R: rare earth). In this series, tuning of the rare earth f-electron component allows for simultaneous control of both lattice density via lanthanide contraction and the strength of magnetic interaction via de Gennes scaling, allowing for a unique tuning of the normal-state band inversion strength, superconducting pairing, and magnetically ordered ground states. Antiferromagnetism with ordering vector (½,½,½) occurs below a Néel temperature that scales with de Gennes factor dG, whereas a superconducting transition is simultaneously supressed with increasing dG. With superconductivity appearing in a system with noncentrosymmetric crystallographic symmetry, the possibility of spin-triplet Cooper pairing with nontrivial topology analogous to that predicted for the normal-state electronic structure provides a unique and rich opportunity to realize both predicted and new exotic excitations in topological materials.
Hosein, Yara K; King, Graham J W; Dunning, Cynthia E
2013-09-01
The ulnar component of a total elbow replacement can fail by "pistoning." Stem surface treatments have improved stability at the stem-cement interface but with varied success. This study investigated the role of surface treatment and stem substrate material on implant stability under axial loading. Sixty circular stems (diameter, 8 mm) made of cobalt chrome (n = 30) or titanium (n = 30) had different surfaces: smooth, sintered beads, and plasma spray. The surface treatment length was either 10 mm or 20 mm. Stems were potted in bone cement, allowed to cure for 24 hours, and tested in a materials testing machine under a compressive staircase loading protocol. Failure was defined as 2 mm of push-out or completion of the protocol. Two-way analyses of variance compared the effects of surface treatment and substrate material on interface strength and motion. Significant interactions were found between surface treatment and substrate material for both interface strength and motion (P < .05). For titanium, the 20-mm beaded stems had greater interface strength than all other stems (P < .05) and had less motion than the 10-mm plasma-spray and smooth stems (P < .05). For cobalt chrome, the 20-mm beaded stems showed greater interface strength (P < .05) and similar motion (P > .05) to the 20-mm plasma-spray stems (P < .05), which outperformed all other stems (P < .05). Mechanisms of catastrophic failure varied: smooth stems debonded at the stem-cement interface, beaded stems experienced debonding of the beads from the stem, and plasma-spray stems showed loss of frictional force between the surface treatment and cement. Stem surface treatment can enhance ulnar component stability but is dependent on substrate material. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Belov, V. K.; Zheleznov, L. P.; Ognyanova, T. S.
2018-03-01
A previously developed technique is used to solve problems of strength and stability of discretely reinforced noncircular cylindrical shells made of a composite material with allowance for the moments and nonlinearity of their subcritical stress-strain state. Stability of a reinforced bay of the aircraft fuselage made of a composite material under combined loading with bending and twisting moments is studied. The effects of straining nonlinearity, stiffness of longitudinal ribs, and shell thickness on the critical loads that induce shell buckling are analyzed.
Impelluso, Thomas J
2003-06-01
An algorithm for bone remodeling is presented which allows for both a redistribution of density and a continuous change of principal material directions for the orthotropic material properties of bone. It employs a modal analysis to add density for growth and a local effective strain based analysis to redistribute density. General re-distribution functions are presented. The model utilizes theories of cellular solids to relate density and strength. The code predicts the same general density distributions and local orthotropy as observed in reality.
Material Gradients in Oxygen System Components Improve Safety
NASA Technical Reports Server (NTRS)
Forsyth, Bradley S.
2011-01-01
Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.
THE BALLISTICS OF A RIBBON COMPOSITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larcombe, J.; Morley, M.; Earp, S.
2009-12-28
The impact behaviour of composites is of great importance in the field of aerospace and vehicle protection. The combination of formability, lightness and strength make composite systems attractive compared to equivalent monolithic systems. However, their use as optical components has been hampered by their lack of transparency. Transparency is strongly affected by refractive index differences in the materials that form the composite. In this study a number of ribbon-based composites were produced. The impact velocity, sample deformation during the impact process and residual impactor velocity were measured. This allowed comparison between the materials ballistic efficiency. The materials are then comparedmore » to other transparent systems.« less
New developments in the field of high voltage and extra-high voltage cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jocteur, R.
1990-04-01
In this paper, the author presents the developments in progress at the present time in France concerning the high voltage (HV) and extra-high voltage (EHV) cables with synthetic insulation and their accessories up to the 500 kV range. The authors have adopted a maximum operating field strength approaching 16 kV/mm (405 V/mil) for low density polyethylene (LDPE) insulated cables. The on-going studies should allow to bring the maximum operating field strength for crosslinked polyethylene (XLPE) insulation from 7 to 10 kV/mm (180 to 255 V/mil) and cables could be manufactured more economically with this material.
Ahn, Hyunhee; Patel, Ravi R; Hoyt, Anthony J; Lin, Angela S P; Torstrick, F Brennan; Guldberg, Robert E; Frick, Carl P; Carpenter, R Dana; Yakacki, Christopher M; Willett, Nick J
2018-05-01
Poly(para-phenylene) (PPP) is a novel aromatic polymer with higher strength and stiffness than polyetheretherketone (PEEK), the gold standard material for polymeric load-bearing orthopaedic implants. The amorphous structure of PPP makes it relatively straightforward to manufacture different architectures, while maintaining mechanical properties. PPP is promising as a potential orthopaedic material; however, the biocompatibility and osseointegration have not been well investigated. The objective of this study was to evaluate biological and mechanical behavior of PPP, with or without porosity, in comparison to PEEK. We examined four specific constructs: 1) solid PPP, 2) solid PEEK, 3) porous PPP and 4) porous PEEK. Pre-osteoblasts (MC3T3) exhibited similar cell proliferation among the materials. Osteogenic potential was significantly increased in the porous PPP scaffold as assessed by ALP activity and calcium mineralization. In vivo osseointegration was assessed by implanting the cylindrical materials into a defect in the metaphysis region of rat tibiae. Significantly more mineral ingrowth was observed in both porous scaffolds compared to the solid scaffolds, and porous PPP had a further increase compared to porous PEEK. Additionally, porous PPP implants showed bone formation throughout the porous structure when observed via histology. A computational simulation of mechanical push-out strength showed approximately 50% higher interfacial strength in the porous PPP implants compared to the porous PEEK implants and similar stress dissipation. These data demonstrate the potential utility of PPP for orthopaedic applications and show improved osseointegration when compared to the currently available polymeric material. PEEK has been widely used in orthopaedic surgery; however, the ability to utilize PEEK for advanced fabrication methods, such as 3D printing and tailored porosity, remain challenging. We present a promising new orthopaedic biomaterial, Poly(para-phenylene) (PPP), which is a novel class of aromatic polymers with higher strength and stiffness than polyetheretherketone (PEEK). PPP has exceptional mechanical strength and stiffness due to its repeating aromatic rings that provide strong anti-rotational biaryl bonds. Furthermore, PPP has an amorphous structure making it relatively easier to manufacture (via molding or solvent-casting techniques) into different geometries with and without porosity. This ability to manufacture different architectures and use different processes while maintaining mechanical properties makes PPP a very promising potential orthopaedic biomaterial which may allow for closer matching of mechanical properties between the host bone tissue while also allowing for enhanced osseointegration. In this manuscript, we look at the potential of porous and solid PPP in comparison to PEEK. We measured the mechanical properties of PPP and PEEK scaffolds, tested these scaffolds in vitro for osteocompatibility with MC3T3 cells, and then tested the osseointegration and subsequent functional integration in vivo in a metaphyseal drill hole model in rat tibia. We found that PPP permits cell adhesion, growth, and mineralization in vitro. In vivo it was found that porous PPP significantly enhanced mineralization into the construct and increased the mechanical strength required to push out the scaffold in comparison to PEEK. This is the first study to investigate the performance of PPP as an orthopaedic biomaterial in vivo. PPP is an attractive material for orthopaedic implants due to the ease of manufacturing and superior mechanical strength. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.
2018-05-01
In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.
A new polymer nanocomposite repair material for restoring wellbore seal integrity
Genedy, Moneeb; Kandil, Usama F.; Matteo, Edward N.; ...
2017-03-01
Seal integrity of functional oil wells and abandoned wellbores used for CO 2 subsequent storage has become of significant interest with the oil and gas leaks worldwide. This is attributed to the fact that wellbores intersecting geographical formations contain potential leakage pathways. One of the critical leakage pathways is the cement-shale interface. In this study, we examine the efficiency of a new polymer nanocomposite repair material that can be injected for sealing micro annulus in wellbores. The bond strength and microstructure of the interface of Type G oil well cement (reference), microfine cement, Novolac epoxy incorporating Neat, 0.25%, 0.5%, andmore » 1.0% Aluminum Nanoparticles (ANPs) with shale is investigated. Interfacial bond strength testing shows that injected microfine cement repair has considerably low bond strength, while ANPs-epoxy nanocomposites have a bond strength that is an order of magnitude higher than cement. Microscopic investigations of the interface show that micro annulus interfacial cracks with widths up to 40 μm were observed at the cement-shale interface while these cracks were absent at the cement-epoxy-shale interface. Finally, Fourier Transform Infrared and Dynamic mechanical analysis measurements showed that ANPs improve interfacial bond by limiting epoxy crosslinking, and therefore allowing epoxy to form robust bonds with cement and shale.« less
Estimating the R-curve from residual strength data
NASA Technical Reports Server (NTRS)
Orange, T. W.
1985-01-01
A method is presented for estimating the crack-extension resistance curve (R-curve) from residual-strength (maximum load against original crack length) data for precracked fracture specimens. The method allows additional information to be inferred from simple test results, and that information can be used to estimate the failure loads of more complicated structures of the same material and thickness. The fundamentals of the R-curve concept are reviewed first. Then the analytical basis for the estimation method is presented. The estimation method has been verified in two ways. Data from the literature (involving several materials and different types of specimens) are used to show that the estimated R-curve is in good agreement with the measured R-curve. A recent predictive blind round-robin program offers a more crucial test. When the actual failure loads are disclosed, the predictions are found to be in good agreement.
Cicala, Gianluca; Tosto, Claudio; Latteri, Alberta; La Rosa, Angela Daniela; Blanco, Ignazio; Elsabbagh, Ahmed; Russo, Pietro; Ziegmann, Gerhard
2017-08-26
Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called "liquid wood". The PP/"Liquid Wood" blends were extruded with "liquid wood" content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling.
NASA Technical Reports Server (NTRS)
Turner, M. J.; Grande, D. L.
1978-01-01
Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.
Latteri, Alberta; La Rosa, Angela Daniela; Elsabbagh, Ahmed; Ziegmann, Gerhard
2017-01-01
Green composites from polypropylene and lignin-based natural material were manufactured using a melt extrusion process. The lignin-based material used was the so called “liquid wood”. The PP/“Liquid Wood” blends were extruded with “liquid wood” content varying from 20 wt % to 80 wt %. The blends were thoroughly characterized by flexural, impact, and dynamic mechanical testing. The addition of the Liquid Wood resulted in a great improvement in terms of both the flexural modulus and strength but, on the other hand, a reduction of the impact strength was observed. For one blend composition, the composites reinforced with hemp fibers were also studied. The addition of hemp allowed us to further improve the mechanical properties. The composite with 20 wt % of hemp, subjected to up to three recycling cycles, showed good mechanical property retention and thermal stability after recycling. PMID:28846607
Environmental Factors Affecting the Strength Characteristics of Modified Resin Mortars
NASA Astrophysics Data System (ADS)
Debska, Bernardeta; Licholai, Lech
2017-12-01
Resin concretes are composites in which a cement binder has been completely replaced by a synthetic resin. These materials are a good choice for the construction industry, especially in solutions requiring high strength, fast curing and durability. Polymer mortars are mainly used for the manufacture of industrial floors and prefabricated products such as tanks for aggressive chemicals, sewage pipes, or road and bridge drainage systems, as well as for the repair of damaged concrete structures. In all these applications, the strength and high chemical resistance of the applied material solutions are of key importance. It is particularly crucial to obtain information on how resin composites behave when exposed to aggressive agents over extended periods of time. It is also very important to use waste materials in order to obtain resin composites, as these activities are very well inscribed in the idea of environmental protection and meet the criteria of sustainable construction. The mortars described in this article meet the above principles. The article presents how the compressive strength of glycolyzate-modified epoxy mortars, obtained with the use of poly(ethylene terephthalate), changes after they are immersed in 10% sodium chloride solution. Sodium chloride solution was chosen due to the prospective applicability of the tested composites as repair materials used for e.g. bridges or overpasses that are exposed to this salt solution in wintertime. Changes in the properties of the composite samples were monitored over the period of one year. Statistical analysis of the test results was carried out with the use of Statistica programme. The module available in the mentioned program called Nonparametric Statistics - Comparing multiple independent samples made it possible to check the monitoring times during which the compressive strength values differed significantly. The obtained results allowed for determining the equation of the function approximating the course of changes in mortar properties. The designated parameters of regression equations can be used to project the properties of composites.
Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement
NASA Astrophysics Data System (ADS)
Abour, Mohamed Abour Bashir
These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical comparative evaluation of Hi-Dense with a disperse phase alloy placed as Class I restoration, the indirect assessment showed that Hi-Dense showed greater wear at six months than the amalgam using Ivoclar method of model assessment of wear. These studies indicate that the incorporation of a metal addition in the glass ionomer may have brought about a slight improvement in some of the properties tested. However, the performance of the experimental material with similar high powder content but no metal addition indicates that the use of a high powder content may be the predominant cause for the possible improvement.
Diametral and compressive strength of dental core materials.
Cho, G C; Kaneko, L M; Donovan, T E; White, S N
1999-09-01
Strength greatly influences the selection of core materials. Many disparate material types are now recommended for use as cores. Cores must withstand forces due to mastication and parafunction for many years. This study compared the compressive and diametral tensile strengths of 8 core materials of various material classes and formulations (light-cured hybrid composite, autocured titanium containing composite, amalgam, glass ionomer, glass ionomer cermet, resin-modified glass ionomer, and polyurethane). Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive and diametral strengths with associated standard errors were calculated for each material (n = 10). Analyses of variance were computed (P <.0001) and multiple comparisons tests discerned many differences among materials. Compressive strengths varied widely from 61.1 MPa for a polyurethane to 250 MPa for a resin composite. Diametral tensile strengths ranged widely from 18.3 MPa for a glass ionomer cermet to 55.1 MPa for a resin composite. Some resin composites had compressive and tensile strengths equal to those of amalgam. Light-cured hybrid resin composites were stronger than autocured titanium containing composites. The strengths of glass ionomer-based materials and of a polyurethane material were considerably lower than for resin composites or amalgam.
High-strength bolt corrosion fatigue life model and application.
Hui-li, Wang; Si-feng, Qin
2014-01-01
The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.
Numerical-experimental investigation of load paths in DP800 dual phase steel during Nakajima test
NASA Astrophysics Data System (ADS)
Bergs, Thomas; Nick, Matthias; Feuerhack, Andreas; Trauth, Daniel; Klocke, Fritz
2018-05-01
Fuel efficiency requirements demand lightweight construction of vehicle body parts. The usage of advanced high strength steels permits a reduction of sheet thickness while still maintaining the overall strength required for crash safety. However, damage, internal defects (voids, inclusions, micro fractures), microstructural defects (varying grain size distribution, precipitates on grain boundaries, anisotropy) and surface defects (micro fractures, grooves) act as a concentration point for stress and consequently as an initiation point for failure both during deep drawing and in service. Considering damage evolution in the design of car body deep drawing processes allows for a further reduction in material usage and therefore body weight. Preliminary research has shown that a modification of load paths in forming processes can help mitigate the effects of damage on the material. This paper investigates the load paths in Nakajima tests of a DP800 dual phase steel to research damage in deep drawing processes. Investigation is done via a finite element model using experimentally validated material data for a DP800 dual phase steel. Numerical simulation allows for the investigation of load paths with respect to stress states, strain rates and temperature evolution, which cannot be easily observed in physical experiments. Stress triaxiality and the Lode parameter are used to describe the stress states. Their evolution during the Nakajima tests serves as an indicator for damage evolution. The large variety of sheet metal forming specific load paths in Nakajima tests allows a comprehensive evaluation of damage for deep drawing. The results of the numerical simulation conducted in this project and further physical experiments will later be used to calibrate a damage model for simulation of deep drawing processes.
NASA Astrophysics Data System (ADS)
Viviani, M.; Glisic, B.; Smith, I. F. C.
2006-12-01
This article presents an experimental system developed to determine the kinetic parameters of hardening materials. Kinetic parameters allow computation of the degree of reaction indices (DRIs). DRIs are used in predictive formulae for strength and are used to decouple the autogenous deformation (AD) and thermal deformation (TD). Although there are several methods to determine values for kinetic reaction parameters, most require extensive testing and large databases. A measurement system has been developed in order to determine kinetic parameters. The measurement system consists of optical fiber sensors embedded in specimens that are cured at varying temperatures and conditions. Sensors are used in pairs inside each specimen, and each pair has two deformation sensors that, aside from their axial stiffness, have the same characteristics. The study of the interaction between sensors and hardening material leads to establishment of a link between the deformations measured and the degree of reaction, by means of the newly developed concept of the equivalency point. The equivalency point is assumed to be an indicator of the degree of reaction and it allows the determination of the apparent activation energy (Ea) which defines the equivalent time. Equivalent time is a degree of reaction index (DRI) and it accounts for the combined effect of time and temperature in concrete. This new methodology has been used to predict the compressive strength and separate the AD and thermal expansion coefficient (TEC) in seven types of concrete. The measurement system allows gathering of data necessary for fast and efficient predictions. Due to its robustness and reduced dimensions it also has potential for in situ application.
Compressive strength of human openwedges: a selection method
NASA Astrophysics Data System (ADS)
Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.
2004-02-01
A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.
Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911
Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
NASA Astrophysics Data System (ADS)
Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia
2018-03-01
Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J; Kaplan, David L
2016-12-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of construction materials like concrete from lunar soils without water
NASA Technical Reports Server (NTRS)
Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.
1989-01-01
The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.
Fracture control procedures for aircraft structural integrity
NASA Technical Reports Server (NTRS)
Wood, H. A.
1972-01-01
The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.
Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Gyekenyesi, John P.
2002-01-01
Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Barua, A.; Zhou, M., E-mail: min.zhou@me.gatech.edu
2014-05-07
Accounting for the combined effect of multiple sources of stochasticity in material attributes, we develop an approach that computationally predicts the probability of ignition of polymer-bonded explosives (PBXs) under impact loading. The probabilistic nature of the specific ignition processes is assumed to arise from two sources of stochasticity. The first source involves random variations in material microstructural morphology; the second source involves random fluctuations in grain-binder interfacial bonding strength. The effect of the first source of stochasticity is analyzed with multiple sets of statistically similar microstructures and constant interfacial bonding strength. Subsequently, each of the microstructures in the multiple setsmore » is assigned multiple instantiations of randomly varying grain-binder interfacial strengths to analyze the effect of the second source of stochasticity. Critical hotspot size-temperature states reaching the threshold for ignition are calculated through finite element simulations that explicitly account for microstructure and bulk and interfacial dissipation to quantify the time to criticality (t{sub c}) of individual samples, allowing the probability distribution of the time to criticality that results from each source of stochastic variation for a material to be analyzed. Two probability superposition models are considered to combine the effects of the multiple sources of stochasticity. The first is a parallel and series combination model, and the second is a nested probability function model. Results show that the nested Weibull distribution provides an accurate description of the combined ignition probability. The approach developed here represents a general framework for analyzing the stochasticity in the material behavior that arises out of multiple types of uncertainty associated with the structure, design, synthesis and processing of materials.« less
Improved C/SiC Ceramic Composites Made Using PIP
NASA Technical Reports Server (NTRS)
Easler, Timothy
2007-01-01
Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber reinforcement in a material of this type can be in any of several alternative forms, including tow, fabric, or complex preforms containing fibers oriented in multiple directions.
MAHDI, Alaa Abdul; BOLAÑOS-CARMONA, Victoria; GONZALEZ-LOPEZ, Santiago
2013-01-01
Objectives To investigate the bond strength and seal ability produced by AH Plus/gutta-percha, EndoREZ and RealSeal systems to root canal dentin. Material and Methods Sixty extracted single-root human teeth, instrumented manually to size 40, were divided into three groups (n=20) according to the sealer used; G1: AH Plus, G2: EndoREZ, and G3: RealSeal sealers. After filling using the lateral condensation technique, each sealer group was randomly divided into two subgroups according to the tests applied (n=10 for µPush-out test and n=10 for fluid filtration test). A fluid filtration method was used for quantitative evaluation of apical leakage. Four 1-mm-thick slices (cervical and medium level) were obtained from each root sample and a µPush-out test was performed. Failure modes were examined under microscopy at 40x, and a one-way ANOVA was applied to analyze the permeability. Non-parametrical statistics for related (Friedman's and Wilcoxon's rank tests) or unrelated samples (Kruskal-Wallis' and Mann-Whitney's tests) allowed for comparisons of µPush-out strength values among materials at the different levels. Statistical significance was accepted for p values <.05. Results There are no significant differences among fluid filtration of the three sealers. The sealer/core material does not significantly influence the µPush-out bond strength values (F=2.49; p=0.10), although statistically significant differences were detected with regard to root level (Chi2=23.93; p<0.001). AH Plus and RealSeal obtained higher bond strength to intraradicular dentin in the medium root slices. Conclusions There are no significant differences between the permeability and global µPush-out bond strength to root canal dentin achieved by AH Plus/gutta-percha, EndoREZ and RealSeal systems. PMID:24037078
The effect of notches and pits on corrosion fatigue strength
NASA Astrophysics Data System (ADS)
Tatner, Ian
An investigation has been undertaken to examine the fatigue behaviour of two martensitic steels in air and aggressive environments. The steels studied are, 18% Ni marageing steel and FV520B, the later being a stainless steel turbine blade material and the former being a marageing steel that suffers general corrosion in mild environments. Both steels were heat treated to give similar tensile strength.The design and manufacture of an autoclave allowed push-pull fatigue tests to be conducted in aggressive environments at elevated temperatures.Corrosion potential was monitored using a three electrode cell and was controlled during testing. Base-line fatigue tests were conducted with a range of constant corrosion potentials, using both notched and plain FV520B specimens. In addition fatigue tests with pulsed corrosion potential were performed to asses the effect of transient corrosion conditions on the corrosion fatigue strength. The pulsed tests were designed to simulate service transients in the oxygen content and general chemical hostility in the condensing steam environment during start-up and shut down of the steam turbine.Post test examination of fractured samples was performed using Scanning Electron Microscopy (SEM) and optical microscope techniques. The fractography results were used to quantify microstructural and fracture features of the steels.A model based on the size and geometry of the initial corrosion pitting has been proposed to asses the fatigue life of FV520B in an aggressive environment.The effect of pitting on the corrosion fatigue strength of FV520B has been modelled using linear elastic fracture mechanics (LEFM) type approach. The model has shown a good correlation between predicted fatigue lives with experimental results.The results suggest that the fatigue life is governed by the mechanical stress concentrating effect of the pits rather than the electrochemical damage caused by the environment.Finite Element Analysis (FEA) of the notch allowed calculation of the elastic stress intensity factor (K[t]) for the specimen geometry used. The experimental results together with numerical results of FEA were used to calculate of the notch strength reduction factor (K[f]) for the material. This has been used to derive the notch sensitivity factors (q) for both materials.The results of fatigue tests in air showed that although both materials have similar tensile strength their plain fatigue strengths are different. The sensitivity of the fatigue strength to notches was also found to be significantly different. The marageing steel showed a higher sensitivity to a notch than the FV520B.An empirical model has been proposed to quantify the notch sensitivity and the effects of various microstructural features on the fatigue strength. A model has been developed to predict the serviceable life of a peak hardened FV520B turbine blade subjected to aggressive low load conditions during start-up and non-aggressive high load conditions during continual running. The model is based on the conclusions suggested in the work of a threshold stress intensity factor being reached where a fatigue crack will grow from a corrosion pit at the root of a notch. The model is then used to highlight the life reduction caused to steam turbine blades due to increased numbers of start-up cycles.
NASA Astrophysics Data System (ADS)
Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.
2018-01-01
To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.
Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi
2012-12-01
Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.
The in situ transverse lamina strength of composite laminates
NASA Technical Reports Server (NTRS)
Flaggs, D. L.
1983-01-01
The objective of the work reported in this presentation is to determine the in situ transverse strength of a lamina within a composite laminate. From a fracture mechanics standpoint, in situ strength may be viewed as constrained cracking that has been shown to be a function of both lamina thickness and the stiffness of adjacent plies that serve to constrain the cracking process. From an engineering point of view, however, constrained cracking can be perceived as an apparent increase in lamina strength. With the growing need to design more highly loaded composite structures, the concept of in situ strength may prove to be a viable means of increasing the design allowables of current and future composite material systems. A simplified one dimensional analytical model is presented that is used to predict the strain at onset of transverse cracking. While it is accurate only for the most constrained cases, the model is important in that the predicted failure strain is seen to be a function of a lamina's thickness d and of the extensional stiffness bE theta of the adjacent laminae that constrain crack propagation in the 90 deg laminae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less
Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials.
Salis, Andrea; Medda, Luca; Cugia, Francesca; Monduzzi, Maura
2016-01-01
This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling. Ordered mesoporous silica materials represent a valid choice as widely demonstrated. Both proteins and silica mesoporous materials possess charged surfaces, and here, the crucial role of pH, buffer, ionic strength and electrolyte type is posed in relation with loading/release of proteins onto/from the silica support through the analysis of adsorption and release processes. A delicate interplay of electrostatic and van der Waals interactions arises from considering electrolytes' effects on the two different charged surfaces. Clear outcomes concern the effect of pH and ionic strength. Protein loading onto the silica matrix is favored by an adsorbing solution having a pH close to the protein pI, and by a high ionic strength that reduces the Debye length. Release is instead favored by an adsorbing solution characterized by an intermediate ionic strength, close to the physiological values. Significant specific ions effects are shown to affect both proteins and silica matrices, as well as protein adsorption onto silica matrices. Further work is needed to quantify specific ion effects on the preservation of the biological activity, and on the release performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Development of Yield and Tensile Strength Design Curves for Alloy 617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancy Lybeck; T. -L. Sham
2013-10-01
The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PVmore » Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.« less
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
On the shock response of the magnesium alloy Elektron 675
NASA Astrophysics Data System (ADS)
Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan
2011-06-01
Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.
Structural analysis and sizing of stiffened, metal matrix composite panels for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Collier, Craig S.
1992-01-01
The present method for strength and stability analyses of stiffened, fiber-reinforced composite panels to be used in hypersonic vehicle structures is of great generality, and can be linked with planar finite-element analysis (FEA). Nonlinear temperature and load-dependent material data for each laminate are used to 'build-up' the stiffened panel's membrane, bending, and membrane-bending coupling stiffness terms, as well as thermal coefficients. The resulting, FEA-solved thermomechanical forces and moments are used to calculate strain at any location in the panel; this allows an effective ply-by-ply orthotropic strength analysis to be conducted, together with orthotropic instability checks for each laminated segment of the cross-section.
Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment
Herbert, Emily N.; Li, Victor C.
2013-01-01
This paper builds on previous self-healing engineered cementitious composites (ECC) research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF) and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events. PMID:28811411
Advances in the study of mechanical properties and constitutive law in the field of wood research
NASA Astrophysics Data System (ADS)
Zhao, S.; Zhao, J. X.; Han, G. Z.
2016-07-01
This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.
NASA Astrophysics Data System (ADS)
Vergara, Maximiliano R.; Van Sint Jan, Michel; Lorig, Loren
2016-04-01
The mechanical behavior of rock containing parallel non-persistent joint sets was studied using a numerical model. The numerical analysis was performed using the discrete element software UDEC. The use of fictitious joints allowed the inclusion of non-persistent joints in the model domain and simulating the progressive failure due to propagation of existing fractures. The material and joint mechanical parameters used in the model were obtained from experimental results. The results of the numerical model showed good agreement with the strength and failure modes observed in the laboratory. The results showed the large anisotropy in the strength resulting from variation of the joint orientation. Lower strength of the specimens was caused by the coalescence of fractures belonging to parallel joint sets. A correlation was found between geometrical parameters of the joint sets and the contribution of the joint sets strength in the global strength of the specimen. The results suggest that for the same dip angle with respect to the principal stresses; the uniaxial strength depends primarily on the joint spacing and the angle between joints tips and less on the length of the rock bridges (persistency). A relation between joint geometrical parameters was found from which the resulting failure mode can be predicted.
Creep and Rupture Strength of an Advanced CVD SiC Fiber
NASA Technical Reports Server (NTRS)
Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.
1997-01-01
In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.
Geopolymerisation of silt generated from construction and demolition waste washing plants.
Lampris, C; Lupo, R; Cheeseman, C R
2009-01-01
Recycling plants that size, sort and wash construction and demolition waste can produce high quality aggregate. However, they also produce up to 80ton per hour of filter cake waste containing fine (<63mum) silt particles that is classified as inert waste and normally landfilled. This research investigated the potential to form geopolymers containing silt, which would allow this problematic waste to be beneficially reused as aggregate. This would significantly improve the economic viability of recycling plants that wash wastes. Silt filter cakes have been collected from a number of aggregate washing plants operating in the UK. These were found to contain similar aluminosilicate crystalline phases. Geopolymer samples were produced using silt and silt mixed with either metakaolin or pulverised fuel ash (PFA). Silt geopolymers cured at room temperature had average 7-day compressive strengths of 18.7MPa, while partial substitution of silt by metakaolin or PFA increased average compressive strengths to 30.5 and 21.9MPa, respectively. Curing specimens for 24h at 105 degrees C resulted in a compressive strength of 39.7MPa and microstructural analysis confirmed the formation of dense materials. These strengths are in excess of those required for materials to be used as aggregate, particularly in unbound applications. The implications of this research for the management of waste silt at construction and demolition waste washing plants are discussed.
The deformation of gum metal under nanoindentation and sub-micron pillar compression
NASA Astrophysics Data System (ADS)
Withey, Elizabeth Ann
Reaching ideal strength has proven to be difficult in most materials. Dislocation slip, phase transformations, twinning, and fracture all tend to occur at stresses well below the ideal strength of a material. Only on very small scales has it been possible to approach ideal strength. Thus, it was of great interest when a set of beta-Ti alloys, Gum Metal, were found to have a bulk yield strength close to half of its ideal strength. However, some recent studies have questioned the reliability of this claim. Several studies have suggested Gum Metal deforms by dislocation slip. Others have suggested the possibility of transformation-induced plasticity. The present study was undertaken in order to help clarify if and how Gum Metal can reach ideal strength. Two different experiments, ex situ nanoindentation and quantitative in situ nanopillar compression in a transmission electron microscope to correlate real-time deformation behavior, were performed on a single composition of Gum Metal, Ti-23Nb-0.7Ta-2Zr-1.20 at. %, obtained from Toyota Central R&D Laboratories. Nanoindented specimens were thinned from the bottom surface until the pits of multiple indentations became electron-transparent allowing for qualitative analysis of the deformation microstructure in both fully cold-worked and solution-treated specimens. Real-time load-displacement behavior from the nanopillar compression tests was correlated with real-time video recorded during each compression to determine both the compressive strength of each pillar and the timing and strengths of different deformation behaviors observed. Combining the results from both experiments provided several important conclusions. First, Gum Metal approaches and can attain ideal strength in nanopillars regardless of processing condition. While dislocations exist in Gum Metal, they can be tightly pinned by obstacles with spacing less than ˜20 nm, which should inhibit their motion at strengths below the ideal shear strength. The plastic deformation of Gum Metal is not controlled by giant faults or by stress-induced phase transformations. Both of these phenomena, while active, are not the source of plasticity in Gum Metal.
Waveguide-based electro-absorption modulator performance: comparative analysis
NASA Astrophysics Data System (ADS)
Amin, Rubab; Khurgin, Jacob B.; Sorger, Volker J.
2018-06-01
Electro-optic modulation is a key function for data communication. Given the vast amount of data handled, understanding the intricate physics and trade-offs of modulators on-chip allows revealing performance regimes not explored yet. Here we show a holistic performance analysis for waveguide-based electro-absorption modulators. Our approach centers around material properties revealing obtainable optical absorption leading to effective modal cross-section, and material broadening effects. Taken together both describe the modulator physical behavior entirely. We consider a plurality of material modulation classes to include two-level absorbers such as quantum dots, free carrier accumulation or depletion such as ITO or Silicon, two-dimensional electron gas in semiconductors such as quantum wells, Pauli blocking in Graphene, and excitons in two-dimensional atomic layered materials such as found in transition metal dichalcogendies. Our results show that reducing the modal area generally improves modulator performance defined by the amount of induced electrical charge, and hence the energy-per-bit function, required switching the signal. We find that broadening increases the amount of switching charge needed. While some material classes allow for reduced broadening such as quantum dots and 2-dimensional materials due to their reduced Coulomb screening leading to increased oscillator strengths, the sharpness of broadening is overshadowed by thermal effects independent of the material class. Further we find that plasmonics allows the switching charge and energy-per-bit function to be reduced by about one order of magnitude compared to bulk photonics. This analysis is aimed as a guide for the community to predict anticipated modulator performance based on both existing and emerging materials.
Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process
NASA Technical Reports Server (NTRS)
Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.
2012-01-01
Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.
Scale-dependent measurements of meteorite strength: Implications for asteroid fragmentation
NASA Astrophysics Data System (ADS)
Cotto-Figueroa, Desireé; Asphaug, Erik; Garvie, Laurence A. J.; Rai, Ashwin; Johnston, Joel; Borkowski, Luke; Datta, Siddhant; Chattopadhyay, Aditi; Morris, Melissa A.
2016-10-01
Measuring the strengths of asteroidal materials is important for developing mitigation strategies for potential Earth impactors and for understanding properties of in situ materials on asteroids during human and robotic exploration. Studies of asteroid disruption and fragmentation have typically used the strengths determined from terrestrial analog materials, although questions have been raised regarding the suitability of these materials. The few published measurements of meteorite strength are typically significantly greater than those estimated from the stratospheric breakup of meter-sized meteoroids. Given the paucity of relevant strength data, the scale-varying strength properties of meteoritic and asteroidal materials are poorly constrained. Based on our uniaxial failure studies of centimeter-sized cubes of a carbonaceous and ordinary chondrite, we develop the first Weibull failure distribution analysis of meteorites. This Weibull distribution projected to meter scales, overlaps the strengths determined from asteroidal airbursts and can be used to predict properties of to the 100 m scale. In addition, our analysis shows that meter-scale boulders on asteroids are significantly weaker than small pieces of meteorites, while large meteorites surviving on Earth are selected by attrition. Further, the common use of terrestrial analog materials to predict scale-dependent strength properties significantly overestimates the strength of meter-sized asteroidal materials and therefore is unlikely well suited for the modeling of asteroid disruption and fragmentation. Given the strength scale-dependence determined for carbonaceous and ordinary chondrite meteorites, our results suggest that boulders of similar composition on asteroids will have compressive strengths significantly less than typical terrestrial rocks.
Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites
Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Colangelo, Francesco; Cioffi, Raffaele; Tarallo, Oreste
2013-01-01
The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged. PMID:28788310
Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear.
Baran, G R; McCool, J I; Paul, D; Boberick, K; Wunder, S
1998-01-01
In estimating lifetimes of dental restorative materials, it is useful to have available data on the fatigue behavior of these materials. Current efforts at estimation include several untested assumptions related to the equivalence of flaw distributions sampled by shear, tensile, and compressive stresses. Environmental influences on material properties are not accounted for, and it is unclear if fatigue limits exist. In this study, the shear and flexural strengths of three resins used as matrices in dental restorative composite materials were characterized by Weibull parameters. It was found that shear strengths were lower than flexural strengths, liquid sorption had a profound effect on characteristic strengths, and the Weibull shape parameter obtained from shear data differed for some materials from that obtained in flexure. In shear and flexural fatigue, a power law relationship applied for up to 250,000 cycles; no fatigue limits were found, and the data thus imply only one flaw population is responsible for failure. Again, liquid sorption adversely affected strength levels in most materials (decreasing shear strengths and flexural strengths by factors of 2-3) and to a greater extent than did the degree of cure or material chemistry.
NASA Astrophysics Data System (ADS)
Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon
2014-07-01
Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.
Plate and butt-weld stresses beyond elastic limit, material and structural modeling
NASA Technical Reports Server (NTRS)
Verderaime, V.
1991-01-01
Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.
Durability characterization of ceramic materials for gas turbines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Lindberg, L. J.
1987-01-01
The strength retention of ceramic materials during extended high-temperature cyclic exposure is critical to their widespread application in gas turbine engines. During a continuing NASA funded program initated in 1979, reaction bonded silicon nitride (RBSN), sintered silicon carbide (SSC), reaction sintered silicon carbide (RSSC), and sintered silicon nitride (SSN) materials were evaluated following simulated gas turbine engine exposures. Exposures were performed by cycling specimens five times per hour between a high velocity burner discharge and a rapid air quench. The retained flexural strengths were determined following up to 3500 hours of exposure at temperatures up to 1370 C. Post-exposure strengths have been correlated with fractography and surface examination using SEM. Results illustrate excellent strength retention of SSC materials after 3500 hours of exposure to 1370 C. At 1200 C, RBSN and RSSC also demonstrate significant strength retention. Although SSN materials typically suffer significant strength losses during exposures at 1200 C, a new composition, which has improved high-temperature strength, also shows improved durability. In the majority of the materials, strength loss is typically associated with flaw formation in the protective SiO2 layer.
Development and mechanical properties of structural materials from lunar simulant
NASA Technical Reports Server (NTRS)
Desai, Chandra S.
1991-01-01
Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.
Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin
Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; de Moraes, Rafael Ratto
2017-01-01
Abstract Objectives: This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Material and methods: Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. Results: In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Conclusion: Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup. PMID:29069150
A Review on Functionally Gradient Materials (FGMs) and Their Applications
NASA Astrophysics Data System (ADS)
Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.
2017-09-01
Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.
1992-01-01
The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
NASA Astrophysics Data System (ADS)
Pattnaik, Rashmi R.; Rangaraju, Prasada Rao
2014-12-01
An experimental study was conducted on composite beam of repair materials and substrate concrete to investigate the failures of concrete repair due to differences in strength of repair materials and substrate concrete. In this investigation the flexural strength, load-deflection curves and failure patterns of the composite beam specimens are studied for the durability of the concrete repair. Flexure test was conducted to simulate tensile stress in the concrete repair material. Compressive strength and split tensile strength of the repair materials and substrate concrete are investigated to aid in the analysis of the concrete repair. It was observed that the repair materials of higher compressive strength than the substrate concrete are causing an incompatible failure in the concrete repair.
Mechanical properties of provisional dental materials: A systematic review and meta-analysis
Bellot-Arcís, Carlos; Pascual-Moscardó, Agustín; Almerich-Silla, José Manuel
2018-01-01
Provisional restorations represent an important phase during the rehabilitation process, knowledge of the mechanical properties of the available materials allows us to predict their clinical performance. At present, there is no systematic review, which supports the clinicians’ criteria, in the selection of a specific material over another for a particular clinical situation. The purpose of this systematic review and meta-analysis was to assess and compare the mechanical properties of dimethacrylates and monomethacrylates used in fabricating direct provisional restorations, in terms of flexural strength, fracture toughness and hardness. This review followed the PRISMA guidelines. The searches were conducted in PubMed, Embase, Web of Science, Scopus, the New York Academy of Medicine Grey Literature Report and were complemented by hand-searching, with no limitation of time or language up to January 10, 2017. Studies that assess and compare the mechanical properties of dimethacrylate- and monomethacrylate-based provisional restoration materials were selected. A quality assessment of full-text articles were performed according to modified ARRIVE and CONSORT criteria and modified Cochrane Collaboration’s tool for in vitro studies. Initially, 256 articles were identified. After removing the duplicates and applying the selection criteria, 24 articles were included in the qualitative synthesis and 7 were included in the quantitative synthesis (meta-analysis). It may be concluded that dimethacrylate-based provisional restorations presented better mechanical behavior than monomethacrylate-based ones in terms of flexural strength and hardness. Fracture toughness showed no significant differences. Within the monomethacrylate group, polymethylmethacrylate showed greater flexural strength than polyethylmethacrylate. PMID:29489883
NASA Astrophysics Data System (ADS)
Deev, Artem; Kuznetsov, Pavel; Zhukov, Anton; Bobyr, Vitaliy
Additive technologies, which obtained the wide spreading in the last decade, allow producing items of any shape from metal materials practically without additional mechanical treatment. This approach based on the layer by layer melting of powder material accordingly to the premade 3D-CAD model, provides the geometrical accuracy which mostly depends on the size of the used material. In the present study, as material a 410 L steel powder was chosen, for which the basic dependencies between the selective laser melting (SLM) parameters and the mechanical properties were determined. Trial batches of standard samples for uniaxial tension and impact strength tests (according to the ASTM A370 and ASTM E8 M standards) were produced. It was shown that in the as build (after SLM) the fracture appeared to be brittle with the impact strength 3-5 J/cm2. The carried out heat treatment of quenching-tempering cycle and subsequent tests provide the viscous fracture and evaluation of impact strength up to 20-30 J/cm2. Presumably, this is due to a refinement of the grain structure and the inner stresses reduction of the samples, which also acknowledges the execution EBSD analysis, which points to the presence of quenched and tempered martensite. The presence of high inner stresses can be attributed to two α-γ-α transformations that were revealed by dilatometry investigation. In the range of cooling or heating rates from 1 to 500 °C/s temperatures of phase transformation are shifted.
2010-09-01
a porous silica mesh structure. For wavy silica, unfolding mechanisms are achieved for increasing amplitude and allow for greater ductility ...as toughness, strength, and ductility , is extremely important when looking into future applications of nanoscale materials. Altering the mechanical...as brittle to ductile or weak to tough, through geometric alterations at the nanoscale, is a profound discovery that may unleash a new paradigm in the
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineer's perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for "graceful" rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic failure strength envelope of the material; develop a statistically based reliability computer algorithm, verify the reliability model and computer algorithm, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macroanalysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Design Protocols and Analytical Strategies that Incorporate Structural Reliability Models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1997-01-01
Ceramic matrix composites (CMC) and intermetallic materials (e.g., single crystal nickel aluminide) are high performance materials that exhibit attractive mechanical, thermal, and chemical properties. These materials are critically important in advancing certain performance aspects of gas turbine engines. From an aerospace engineers perspective the new generation of ceramic composites and intermetallics offers a significant potential for raising the thrust/weight ratio and reducing NO(sub x) emissions of gas turbine engines. These aspects have increased interest in utilizing these materials in the hot sections of turbine engines. However, as these materials evolve and their performance characteristics improve a persistent need exists for state-of-the-art analytical methods that predict the response of components fabricated from CMC and intermetallic material systems. This need provided the motivation for the technology developed under this research effort. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Thus modeling efforts supported under this research effort have focused on predicting this sort of behavior. For single crystal intermetallics the issues that motivated the technology development involved questions relating to material behavior and component design. Thus the research effort supported by this grant had to determine the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; map a simplistic future strength envelope of the material; develop a statistically based reliability computer algorithm; verify the reliability model and computer algorithm-, and model stator vanes for rig tests. Thus establishing design protocols that enable the engineer to analyze and predict the mechanical behavior of ceramic composites and intermetallics would mitigate the prototype (trial and error) approach currently used by the engineering community. The primary objective of the research effort supported by this short term grant is the continued creation of enabling technologies for the macro-analysis of components fabricated from ceramic composites and intermetallic material systems. The creation of enabling technologies aids in shortening the product development cycle of components fabricated from the new high technology materials.
Quantifying the effects of disorder on switching of perpendicular spin ice arrays
NASA Astrophysics Data System (ADS)
Kempinger, Susan; Fraleigh, Robert; Lammert, Paul; Crespi, Vincent; Samarth, Nitin; Zhang, Sheng; Schiffer, Peter
There is much contemporary interest in probing custom designed, frustrated systems such as artificial spin ice. To that end, we study arrays of lithographically patterned, single-domain Pt/Co multilayer islands. Due to the perpendicular anisotropy of these materials, we are able to use diffraction-limited magneto-optical Kerr effect microscopy to access the magnetic state in situ with an applied field. As we tune the interaction strength by adjusting the lattice spacing, we observe the switching field distribution broadening with increasing dipolar interactions. Using a simple mathematical analysis we extract the intrinsic disorder (the disorder that would be present without interactions) from these switching field distributions. We also characterize the intrinsic disorder by systematically removing neighbor effects from the switching field distribution. Understanding this disorder contribution as well as the interaction strength allows us to more accurately characterize the moment correlation. This project was funded by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE- SC0010778
Ultrasonic fatigue of a high strength steel
NASA Astrophysics Data System (ADS)
Koster, M.; Wagner, G.; Eifler, D.
2010-07-01
At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.
Stress-rupture behavior of small diameter polycrystalline alumina fibers
NASA Technical Reports Server (NTRS)
Yun, Hee Mann; Goldsby, Jon C.; Dicarlo, James A.
1993-01-01
Continuous length polycrystalline alumina fibers are candidates as reinforcement in high temperature composite materials. Interest therefore exists in characterizing the thermomechanical behavior of these materials, obtaining possible insights into underlying mechanisms, and understanding fiber performance under long term use. Results are reported on the time-temperature dependent strength behavior of Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Below 1000 C and 100 hours, Nextel 610 with the smaller grain size had a greater fast fracture and rupture strength than Fiber FP. The time exponents for stress-rupture of these fibers were found to decrease from approximately 13 at 900 C to below 3 near 1050 C, suggesting a transition from slow crack growth to creep rupture as the controlling fracture mechanism. For both fiber types, an effective activation energy of 690 kJ/mol was measured for rupture. This allowed stress-rupture predictions to be made for extended times at use temperatures below 1000 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerstenberg, H.; Kraehling, E.; Katheder, H.
1997-06-01
The shear strengths of various fibre reinforced resins being promising candidate insulators for superconducting coils to be used tinder a strong radiation load, e.g. in future fusion reactors were investigated prior and subsequent to reactor in-core irradiation at liquid helium temperature. A large number of sandwich-like (steel-bonded insulation-steel) specimens representing a widespread variety of materials and preparation techniques was exposed to irradiation doses of up to 5 x 10{sup 7} Gy in form of fast neutrons and {gamma}-radiation. In a systematic study several experimental parameters including irradiation dose, postirradiation storage temperature and measuring temperature were varied before the determination ofmore » the ultimate shear strength. The results obtained from the different tested materials are compared. In addition an upgrade of the in-situ test rig installed at the Munich research reactor is presented, which allows combined shear/compression loading of low temperature irradiated specimens and provides a doubling of the testing rate.« less
IR thermography for the assessment of the thermal conductivity of aluminum alloys
NASA Astrophysics Data System (ADS)
Nazarov, S.; Rossi, S.; Bison, P.; Calliari, I.
2017-05-01
Aluminium alloys are here considered as a structural material for aerospace applications, guaranteeing lightness and strength at the same time. As aluminium alone is not particularly performing from a mechanical point of view, in this experimental solution it is produced as an alloy with Lithium added at 6 % in weight. To increase furtherly the strength of the material, two new alloys are produced by adding 0.5 % in weight of the rare earth elements Neodymium (Nd) and Yttrium (Y). The improvement of the mechanical properties is measured by means of hardness tests. At the same time the thermophysical properties are measured as well, at various temperature, from 80 °C to 500 °C. Thermal diffusivity is measured by Laser Flash equipment in vacuum. One possible drawback of the Al-Li alloy produced at so high percentage of Li (6 %) is an essential anisotropy that is evaluated by IR thermography thank to its imaging properties that allows to measure simultaneously both the in-plane and through-depth thermal diffusivity.
The flexural properties of endodontic post materials.
Stewardson, Dominic A; Shortall, Adrian C; Marquis, Peter M; Lumley, Philip J
2010-08-01
To measure the flexural strengths and moduli of endodontic post materials and to assess the effect on the calculated flexural properties of varying the diameter/length (D/L) ratio of three-point bend test samples. Three-point bend testing of samples of 2mm diameter metal and fiber-reinforced composite (FRC) rods was carried out and the mechanical properties calculated at support widths of 16 mm, 32 mm and 64 mm. Weibull analysis was performed on the strength data. The flexural strengths of all the FRC post materials exceeded the yield strengths of the gold and stainless steel samples; the flexural strengths of two FRC materials were comparable with the yield strength of titanium. Stainless steel recorded the highest flexural modulus while the titanium and the two carbon fiber materials exhibited similar values just exceeding that of gold. The remaining glass fiber materials were of lower modulus within the range of 41-57 GPa. Weibull modulus values for the FRC materials ranged from 16.77 to 30.09. Decreasing the L/D ratio produced a marked decrease in flexural modulus for all materials. The flexural strengths of FRC endodontic post materials as new generally exceed the yield strengths of metals from which endodontic posts are made. The high Weibull modulus values suggest good clinical reliability of FRC posts. The flexural modulus values of the tested posts were from 2-6 times (FRC) to 4-10 times (metal) that of dentin. Valid measurement of flexural properties of endodontic post materials requires that test samples have appropriate L/D ratios. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Comparative study of the physical properties of core materials.
Saygili, Gülbin; Mahmali, Sevil M
2002-08-01
This study was undertaken to measure physical properties of materials used for direct core buildups, including high-copper amalgam, visible light-cured resin composite, autocured titanium-containing composite, polyacid-modified composite, resin-modified glass-ionomer, and silver cermet cement. Compressive strength, diametral tensile strength, and flexural strength of six core materials of various material classes were measured for each material as a function of time up to 3 months at different storage conditions, using a standard specification test designed for the materials. Three different storage conditions (dry, humid, wet) at 37 degrees C were chosen. Materials were manipulated according to manufacturers' instructions for use as cores. Mean compressive, diametral tensile, and flexural strengths with associated standard deviations were calculated for each material. Multiple comparison and Newman-Keuls tests discerned many differences among materials. All materials were found to meet the minimum specification requirements, except in terms of flexural strength for amalgam after 1 hour and the silver cermet at all time intervals.
Stability performance and interface shear strength of geocomposite drain/soil systems
NASA Astrophysics Data System (ADS)
Othman, Maidiana; Frost, Matthew; Dixon, Neil
2018-02-01
Landfill covers are designed as impermeable caps on top of waste containment facilities after the completion of landfill operations. Geocomposite drain (GD) materials consist of a geonet or geospacer (as a drainage core) sandwiched between non-woven geotextiles that act as separators and filters. GD provides a drainage function as part of the cover system. The stability performance of landfill cover system is largely controlled by the interface shear strength mobilized between the elements of the cover. If a GD is used, the interface shear strength properties between the upper surface of the GD and the overlying soil may govern stability of the system. It is not uncommon for fine grained materials to be used as cover soils. In these cases, understanding soil softening issues at the soil interface with the non-woven geotextile is important. Such softening can be caused by capillary break behaviour and build-up of water pressures from the toe of the drain upwards into the cover soil. The interaction processes to allow water flow into a GD core through the soil-geotextile interface is very complex. This paper reports the main behaviour of in-situ interface shear strength of soil-GD using field measurements on the trial landfill cover at Bletchley, UK. The soil softening at the interface due to soaked behaviour show a reduction in interface shear strength and this aspect should be emphasized in design specifications and construction control. The results also help to increase confidence in the understanding of the implications for design of cover systems.
[Toward an anthropometric diagnosis of osteopenia and a biochemical diagnosis of osteoporoses].
Cointry, Gustavo R; Capozza, Ricardo F; Ferretti, Jose L; Frost, Harold M
2003-01-01
The current (metabolic) conception of bone-weakening diseases regards bone strength as determined by a systemically-controlled "mineralized mass" which grows until it reaches a peak and then is lost at individually-specific rates. This concept disregards bone biomechanics. Skeletons are structures, it reaches of which depends on the stiffness and the spatial distribution rather than the volume of the calcified material. Rather than allowing a systemic regulation of their "mass" as a way to optimize their strength, bones autocontrol their stiffness by orienting bone formation and destruction as locally determined by the directional sensing, by osteocytes, of the strains caused by mechanical usage (gravity, muscle contractions). Bone mass and strength are just side products of that control. Endocrine-metabolic systems modulate non-directionally the work of bone cells as required for achieving a mineral equilibrium, despite the biomechanical controls, and can determine osteopenias and osteoporoses. Osteoporoses are not "intense osteopenias" (as per the current WHO's conception) but "osteopenic bone fragilities" (as recently stated by the NIH). The diagnosis of osteopenia is an anthropometric problem that can be solved densitometrically; but that of bone fragility is a biomechanical matter that requires evaluation of bone material's stiffness and distribution by other means ("resistometry"). For therapeutic purposes, osteopenias and osteoporoses should be also evaluated according to the relationship between bone mass or strength and muscle mass or strength in order to distinguish between "mechanical" (disuse) and "metabolic" etiologies (intrinsic bone lesion, or systemic disequilibrium), in which the bone/muscle proportionality tends to remain normal or to deteriorate, respectively.
Spall fracture in additive manufactured Ti-6Al-4V
Jones, David Robert; Fensin, Saryu Jindal; Dippo, Olivia; ...
2016-10-07
Here, we present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on amore » plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.« less
Spall fracture in additive manufactured Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Jones, D. R.; Fensin, S. J.; Dippo, O.; Beal, R. A.; Livescu, V.; Martinez, D. T.; Trujillo, C. P.; Florando, J. N.; Kumar, M.; Gray, G. T.
2016-10-01
We present a study on the spall strength of additive manufactured (AM) Ti-6Al-4V. Samples were obtained from two pieces of selective laser melted (SLM, a powder bed fusion technique) Ti-6Al-4V such that the response to dynamic tensile loading could be investigated as a function of the orientation between the build layers and the loading direction. A sample of wrought bar-stock Ti-6Al-4V was also tested to act as a baseline representing the traditionally manufactured material response. A single-stage light gas-gun was used to launch a thin flyer plate into the samples, generating a region of intense tensile stress on a plane normal to the impact direction. The rear free surface velocity time history of each sample was recorded with laser-based velocimetry to allow the spall strength to be calculated. The samples were also soft recovered to enable post-mortem characterization of the spall damage evolution. Results showed that when the tensile load was applied normal to the interfaces between the build layers caused by the SLM fabrication process the spall strength was drastically reduced, dropping to 60% of that of the wrought material. However, when loaded parallel to the AM build layer interfaces the spall strength was found to remain at 95% of the wrought control, suggesting that when loading normal to the AM layer interfaces, void nucleation is facilitated more readily due to weaknesses along these boundaries. Quasi-static testing of the same sample orientations revealed a much lower degree of anisotropy, demonstrating the importance of rate-dependent studies for damage evolution in AM materials.
Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison
De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo
2015-01-01
Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227
Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
NASA Technical Reports Server (NTRS)
Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)
2011-01-01
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
The processing and heterostructuring of silk with light
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Kumar, Bhupesh; Singh, Kamal P.
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
Joining of Silicon Carbide Through the Diffusion Bonding Approach
NASA Technical Reports Server (NTRS)
Halbig, Michael .; Singh, Mrityunjay
2009-01-01
In order for ceramics to be fully utilized as components for high-temperature and structural applications, joining and integration methods are needed. Such methods will allow for the fabrication the complex shapes and also allow for insertion of the ceramic component into a system that may have different adjacent materials. Monolithic silicon carbide (SiC) is a ceramic material of focus due to its high temperature strength and stability. Titanium foils were used as an interlayer to form diffusion bonds between chemical vapor deposited (CVD) SiC ceramics with the aid of hot pressing. The influence of such variables as interlayer thickness and processing time were investigated to see which conditions contributed to bonds that were well adhered and crack free. Optical microscopy, scanning electron microscopy, and electron microprobe analysis were used to characterize the bonds and to identify the reaction formed phases.
The processing and heterostructuring of silk with light.
Sidhu, Mehra S; Kumar, Bhupesh; Singh, Kamal P
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Haley, Aaron Alan; Banerjee, Arindam
2010-11-01
The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.
Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
Zhang, Lei; Le Coz-Botrel, Ronan; Beddoes, Charlotte; Sjöström, Terje; Su, Bo
2017-01-17
Titanium is a material commonly used for dental and orthopaedic implants. However, due to large differences in properties between the titanium metal and the natural bone, stress shielding has been observed in the surrounding area, resulting in bone atrophy, and thus has raised concerns of the use of this material. Ideally implant materials should possess similar properties to the surrounding tissues in order to distribute the load as the joint would naturally, while also possessing a similar porous structure to the bone to enable interaction with the surrounding material. In this paper we report the formation of aligned porous titanium alloy scaffolds with the use of unidirectional freeze casting with a temperature gradient. The resulting scaffolds had a dense bottom part with sufficient strength for loading, while the top part remaining porous in order to allow bone growth in the scaffold and fully integrating with the surrounding tissue. The anisotropic nature of the pores within the titanium alloy samples were observed via micro computed tomography, where a gradient structure similar to bone was observed. The compressive strength of the fabricated scaffolds was found to be up to 427 MPa when measured with the pores aligned with the applied load, depending on the pore density. This is within the range of cortical bone.
Use of rubble from building demolition in mortars.
Corinaldesi, V; Giuggiolini, M; Moriconi, G
2002-01-01
Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Two strength level variations of sintered NiCrAl (about 40 percent dense), candidate high pressure turbine seal materials, were subject to rub tolerance testing against AM 355 steel blade tips. The high strength material (17 N/sq mm tensile strength) showed frictional and radial loads that were 20 to 50 percent higher than those measured for the low strength material (15.5 N/ sq mm tensile strength). Measured wear to the AM 355 blade tips was not significantly different for the two sintered NiCrAl seal materials. Wear of the sintered NiCrAl was characterized by material removal to a depth greater than the depth to which blade tips were driven into the seal, indicating self-erosion effects.
A New Approach to Fibrous Composite Laminate Strength Prediction
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1990-01-01
A method of predicting the strength of cross-plied fibrous composite laminates is based on expressing the classical maximum-shear-stress failure criterion for ductile metals in terms of strains. Starting with such a formulation for classical isotropic materials, the derivation is extended to orthotropic materials having a longitudinal axis of symmetry, to represent the fibers in a unidirectional composite lamina. The only modification needed to represent those same fibers with properties normalized to the lamina rather than fiber is a change in axial modulus. A mirror image is added to the strain-based lamina failure criterion for fiber-dominated failures to reflect the cutoffs due to the presence of orthogonal fibers. It is found that the combined failure envelope is now identical with the well-known maximum-strain failure model in the tension-tension and compression-compression quadrants but is truncated in the shear quadrants. The successive application of this simple failure model for fibers in the 0/90 degree and +/- 45 degree orientations, in turn, is shown to be the necessary and sufficient characterization of the fiber-dominated failures of laminates made from fibers having the same tensile and compressive strengths. When one such strength is greater than the other, the failure envelope is appropriately truncated for the lesser direct strain. The shear-failure cutoffs are now based on the higher axial strain to failure since they occur at lower strains than and are usually not affected by such mechanisms as microbuckling. Premature matrix failures can also be covered by appropriately truncating the fiber failure envelope. Matrix failures are excluded from consideration for conventional fiber/polymer composites but the additional features needed for a more rigorous analysis of exotic materials are covered. The new failure envelope is compared with published biaxial test data. The theory is developed for unnotched laminates but is easily shrunk to incorporate reductions to allow for bolt holes, cutouts, reduced compressive strength after impact, and the like.
Investigation into the Cyclic Strength of the Bodies of Steam Shutoff Valves from 10Kh9MFB-Sh Steel
NASA Astrophysics Data System (ADS)
Skorobogatykh, V. N.; Kunavin, S. A.; Prudnikov, D. A.; Shchenkova, I. A.; Bazhenov, A. M.; Zadoinyi, V. A.; Starkovskii, G. L.
2018-02-01
Steam shutoff valves are operated under complex loading conditions at thermal and nuclear power stations. In addition to exposure to high temperature and stresses resulting in fatigue, these valves are subjected to cyclic loads in heating-up-cooling down, opening-closing, etc. cycles. The number of these cycles to be specified in designing the valves should not exceed the maximum allowable value. Hence, the problem of cyclic failure rate of steam shutoff valve bodies is critical. This paper continues the previous publications about properties of the construction material for steam shutoff valve bodies (grade 10Kh9MFB-Sh steel) produced by electroslag melting and gives the results of investigation into the cyclic strength of this material. Fatigue curves for the steal used for manufacturing steam shutoff valve bodies are presented. The experimental data are compared with the calculated fatigue curves plotted using the procedures outlined in PNAE G-002-986 and RD 10-249-98. It is confirmed that these procedures may be used in designing valve bodies from 10Kh9MFB-Sh steel. The effect of the cyclic damage after preliminary cyclic loading of the specimens according to the prescribed load conditions on the high-temperature strength of the steel is examined. The influence of cyclic failure rate on the long-term strength was investigated using cylindrical specimens with a smooth working section in the as-made conditions and after two regimes of preliminary cyclic loading (training) at a working temperature of 570°C and the number of load cycles exceeding the design value, which was 2 × 103 cycles. The experiments corroborated that the material (10Kh9MFB-Sh steel) of the body manufactured by the method of electroslag melting had high resistance to cyclic failure rate. No effect of cyclic damages in the metal of the investigated specimens on the high-temperature strength has been found.
Micro-Scale Mechanical Testing of Non-Woven Carbon Nanotube Sheets and Yarns
NASA Technical Reports Server (NTRS)
Magargee, J.; Morestin, F.; Cao, J.; Jones, J. S.
2013-01-01
Non-woven carbon nanotube (CNT) sheets and yarns were tested using a novel micro-scale mechanical testing system. CNT sheets were observed to delaminate during uniaxial testing using an adbesive gripping method, resulting from a higher proportion of load bearing in the outer sheets versus internal sheets and an apparently low interlaminar shear strength. In response to this, a new spool-grip method was used to alleviate non-uniform through-thickness stresses, circumvent premature delamination, and allow the sheet material to sustain a 72% increase in measured tensile strength. Furthermore, tension tests of CNT yarns showed that the yarn-structure was approximaiely 7 times stronger than the sheet structure, owing to a higher degree of CNT alignment in the test direction.
NASA Astrophysics Data System (ADS)
Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.
2016-11-01
Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed low-temperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.
Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures
NASA Technical Reports Server (NTRS)
Wright, Matthew J.; Ramachandran, Gautham; Williams, Brian E.
2011-01-01
Carbon/carbon (C/C) is an established engineering material used extensively in aerospace. The beneficial properties of C/C include high strength, low density, and toughness. Its shortcoming is its limited usability at temperatures higher than the oxidation temperature of carbon . approximately 400 C. Ceramic matrix composites (CMCs) are used instead, but carry a weight penalty. Combining a thin laminate of CMC to a bulk structure of C/C retains all of the benefits of C/C with the high temperature oxidizing environment usability of CMCs. Ultramet demonstrated the feasibility of combining the light weight of C/C composites with the oxidation resistance of zirconium carbide (ZrC) and zirconium- silicon carbide (Zr-Si-C) CMCs in a unique system composed of a C/C primary structure with an integral CMC liner with temperature capability up to 4,200 F (.2,315 C). The system effectively bridged the gap in weight and performance between coated C/C and bulk CMCs. Fabrication was demonstrated through an innovative variant of Ultramet fs rapid, pressureless melt infiltration processing technology. The fully developed material system has strength that is comparable with that of C/C, lower density than Cf/SiC, and ultra-high-temperature oxidation stability. Application of the reinforced ceramic casing to a predominantly C/C structure creates a highly innovative material with the potential to achieve the long-sought goal of long-term, cyclic high-temperature use of C/C in an oxidizing environment. The C/C substructure provided most of the mechanical integrity, and the CMC strengths achieved appeared to be sufficient to allow the CMC to perform its primary function of protecting the C/C. Nozzle extension components were fabricated and successfully hot-fire tested. Test results showed good thermochemical and thermomechanical stability of the CMC, as well as excellent interfacial bonding between the CMC liner and the underlying C/C structure. In particular, hafnium-containing CMCs on C/C were shown to perform well at temperatures exceeding 3,500 F (.1,925 C). The melt-infiltrated CMC-lined C/C composites offered a lower density than Cf/SiC. The melt-infiltrated composites offer greater use temperature than Cf/SiC because of the more refractory ceramic matrices and the C/C substructure provides greater high-temperature strength. The progress made in this work will allow multiple high-temperature components used in oxidizing environments to take advantage of the low density and high strength of C/C combined with the high-temperature oxidation resistance of melt-infiltrated CMCs.
Azéma, Emilien; Linero, Sandra; Estrada, Nicolas; Lizcano, Arcesio
2017-08-01
By means of extensive contact dynamics simulations, we analyzed the effect of particle size distribution (PSD) on the strength and microstructure of sheared granular materials composed of frictional disks. The PSDs are built by means of a normalized β function, which allows the systematic investigation of the effects of both, the size span (from almost monodisperse to highly polydisperse) and the shape of the PSD (from linear to pronouncedly curved). We show that the shear strength is independent of the size span, which substantiates previous results obtained for uniform distributions by packing fraction. Notably, the shear strength is also independent of the shape of the PSD, as shown previously for systems composed of frictionless disks. In contrast, the packing fraction increases with the size span, but decreases with more pronounced PSD curvature. At the microscale, we analyzed the connectivity and anisotropies of the contacts and forces networks. We show that the invariance of the shear strength with the PSD is due to a compensation mechanism which involves both geometrical sources of anisotropy. In particular, contact orientation anisotropy decreases with the size span and increases with PSD curvature, while the branch length anisotropy behaves inversely.
Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations
Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...
2014-11-01
Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.
The mechanics of tessellations - bioinspired strategies for fracture resistance.
Fratzl, Peter; Kolednik, Otmar; Fischer, F Dieter; Dean, Mason N
2016-01-21
Faced with a comparatively limited palette of minerals and organic polymers as building materials, evolution has arrived repeatedly on structural solutions that rely on clever geometric arrangements to avoid mechanical trade-offs in stiffness, strength and flexibility. In this tutorial review, we highlight the concept of tessellation, a structural motif that involves periodic soft and hard elements arranged in series and that appears in a vast array of invertebrate and vertebrate animal biomaterials. We start from basic mechanics principles on the effects of material heterogeneities in hypothetical structures, to derive common concepts from a diversity of natural examples of one-, two- and three-dimensional tilings/layerings. We show that the tessellation of a hard, continuous surface - its atomization into discrete elements connected by a softer phase - can theoretically result in maximization of material toughness, with little expense to stiffness or strength. Moreover, the arrangement of soft/flexible and hard/stiff elements into particular geometries can permit surprising functions, such as signal filtering or 'stretch and catch' responses, where the constrained flexibility of systems allows a built-in safety mechanism for ensuring that both compressive and tensile loads are managed well. Our analysis unites examples ranging from exoskeletal materials (fish scales, arthropod cuticle, turtle shell) to endoskeletal materials (bone, shark cartilage, sponge spicules) to attachment devices (mussel byssal threads), from both invertebrate and vertebrate animals, while spotlighting success and potential for bio-inspired manmade applications.
Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.
2004-01-01
Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.
Flexible barrier materials for protection against electromagnetic fields and their characterization
NASA Astrophysics Data System (ADS)
Jaroszewski, Maciej
2015-10-01
Composite materials for electromagnetic shielding can be manufactured as textiles using conductive yarns and textiles with conductivity obtained by various finishing processes on textile surfaces. The EM shielding effectiveness of fabrics are improved by lowering its conductivity using different methods and materials. An alternative is the usage of new light shielding materials in the form of metallized nonwoven fabrics or textiles. Their advantages are: a general availability on the market, a low price, good mechanical properties (strength, elasticity) and resistance to the environmental conditions. The composite anisotropic materials with a sandwich structure constituting of materials with different spatial orientations of fibers allow one to achieve relatively high and constant values of the shielding effectiveness which, together with the materials' mechanical properties, leads to a wide range of applicability in various disciplines of modern technology. This article is devoted to innovative flexible materials shielding electromagnetic field. The results of the PEM shielding effectiveness obtained for the polypropylene (PP) nonwoven fabrics metallized by pulsed magnetron sputtering are presented.
In vitro evaluation of five core materials.
Gu, Steven; Rasimick, Brian J; Deutsch, Allan S; Musikant, Barry L
2007-01-01
This in vitro study determined the fracture strength of five core materials supported by two different endodontic dowels. Diametral tensile strength and microhardness of the three resin composite core materials used in this study were also tested. The fracture strength study used one lanthanide-reinforced flowable resin composite (Ti-Core Auto E), one titanium- and lanthanide-reinforced composite (Ti-Core), one lanthanide-reinforced composite (Ti-Core Natural), and two metal-reinforced glass ionomer core materials (Ketac Silver and GC Miracle Mix). Two types of dowels were used: a multitiered, split-shank threaded dowel with a flange (#1 Flexi-Flange) and one without a flange design (#1 Flexi-Post). The specimens were divided into ten groups. Each tooth/dowel and core specimen was placed in a special jig at 45 degrees and subjected to a load by a universal testing machine. The diametral tensile strength and the microhardness of the three resin composite core materials were measured by a universal testing machine and Barcol hardness tester, respectively. All test groups contained ten specimens. The fracture strength value of the resin composite core materials was significantly larger ( p < 0.0001) than those for the metal-reinforced glass-ionomer core materials. Analysis of variance (ANOVA) also showed that the Flexi-Flange dowel interacted with Ti-Core and Ti-Core Auto E to significantly ( p < 0.0013) increase the fracture strength relative to the Flexi-Post. One-way ANOVA revealed that there were no significant differences between them in terms of diametral tensile strength. The Barcol hardness values of the composite core materials were statistically different ( p < 0.0001), with the Ti-Core the highest, followed by Ti-Core Natural, then Ti-Core Auto E. Resin composite core material performed better than glass ionomer material in this in vitro study. The flowable composite core material performed about the same in terms of fracture strength and diametral tensile strength compared with nonflowable composites. Combined with certain core materials, the flange design increased the fracture strength of the tooth/dowel and core combination.
Strength of orthotropic materials subjected to combined stresses
Charles B. Norris
1962-01-01
A theory of the strength of orthotropic materials subjected to combined stresses, based on the Henky-von Mises theory of energy due to change of shape, is presented. When this theory is applied to macroscopically isotropic materials, it yields the diagram currently used in design with metals. Equations relating the strength of orthotropic materials subjected to a...
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
Segmented molecular design of self-healing proteinaceous materials
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-01-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335
Mechanical properties of experimental composites with different calcium phosphates fillers.
Okulus, Zuzanna; Voelkel, Adam
2017-09-01
Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Segmented molecular design of self-healing proteinaceous materials
NASA Astrophysics Data System (ADS)
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
Segmented molecular design of self-healing proteinaceous materials.
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
NASA Technical Reports Server (NTRS)
Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.
1982-01-01
The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen; ...
2018-01-24
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabel, Joey; Hosemann, Peter; Zayachuk, Yevhen
We present that ceramic fiber–matrix composites (CFMCs) are exciting materials for engineering applications in extreme environments. By integrating ceramic fibers within a ceramic matrix, CFMCs allow an intrinsically brittle material to exhibit sufficient structural toughness for use in gas turbines and nuclear reactors. Chemical stability under high temperature and irradiation coupled with high specific strength make these materials unique and increasingly popular in extreme settings. This paper first offers a review of the importance and growing body of research on fiber–matrix interfaces as they relate to composite toughening mechanisms. Second, micropillar compression is explored experimentally as a high-fidelity method formore » extracting interface properties compared with traditional fiber push-out testing. Three significant interface properties that govern composite toughening were extracted. For a 50-nm-pyrolytic carbon interface, the following were observed: a fracture energy release rate of ~2.5 J/m 2, an internal friction coefficient of 0.25 ± 0.04, and a debond shear strength of 266 ± 24 MPa. Lastly, this research supports micromechanical evaluations as a unique bridge between theoretical physics models for microcrack propagation and empirically driven finite element models for bulk CFMCs.« less
Analysis of tristable energy harvesting system having fractional order viscoelastic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumbé Tékam, G. T.; Woafo, P.; Kitio Kwuimy, C. A.
2015-01-15
A particular attention is devoted to analyze the dynamics of a strongly nonlinear energy harvester having fractional order viscoelastic flexible material. The strong nonlinearity is obtained from the magnetic interaction between the end free of the flexible material and three equally spaced magnets. Periodic responses are computed using the KrylovBogoliubov averaging method, and the effects of fractional order damping on the output electric energy are analyzed. It is obtained that the harvested energy is enhanced for small order of the fractional derivative. Considering the order and strength of the fractional viscoelastic property as control parameter, the complexity of the systemmore » response is investigated through the Melnikov criteria for horseshoes chaos, which allows us to derive the mathematical expression of the boundary between intra-well motion and bifurcations appearance domain. We observe that the order and strength of the fractional viscoelastic property can be effectively used to control chaos in the system. The results are confirmed by the smooth and fractal shape of the basin of attraction as the order of derivative decreases. The bifurcation diagrams and the corresponding Lyapunov exponents are plotted to get insight into the nonlinear response of the system.« less
Developing an Asteroid Rotational Theory
NASA Astrophysics Data System (ADS)
Geis, Gena; Williams, Miguel; Linder, Tyler; Pakey, Donald
2018-01-01
The goal of this project is to develop a theoretical asteroid rotational theory from first principles. Starting at first principles provides a firm foundation for computer simulations which can be used to analyze multiple variables at once such as size, rotation period, tensile strength, and density. The initial theory will be presented along with early models of applying the theory to the asteroid population. Early results confirm previous work by Pravec et al. (2002) that show the majority of the asteroids larger than 200m have negligible tensile strength and have spin rates close to their critical breakup point. Additionally, results show that an object with zero tensile strength has a maximum rotational rate determined by the object’s density, not size. Therefore, an iron asteroid with a density of 8000 kg/m^3 would have a minimum spin period of 1.16h if the only forces were gravitational and centrifugal. The short-term goal is to include material forces in the simulations to determine what tensile strength will allow the high spin rates of asteroids smaller than 150m.
Application and Prospects of High-strength Lightweight Materials used in Coal mine
NASA Astrophysics Data System (ADS)
He, Pan
2017-09-01
This paper describes some high-strength lightweight materials used in coal mine, and if their performance can meet the requirements of underground safety for explosion-proof, anti-static, friction sparks mine; and reviewed the species, characteristic, preparation process of high-strength lightweight materials for having inspired lightweight high-strength performance by modifying or changing the synthesis mode used in coal mine equipment.
Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods
NASA Astrophysics Data System (ADS)
Mayer, Carl Randolph
Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.
NASA Astrophysics Data System (ADS)
Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa
2017-09-01
Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.
Development of Laser Fabricated Ti-6Al-4V
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2006-01-01
Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the presence of voids. It is likely that the relatively high scan speeds used in our depositions contributed to the lack of full density in our LENS material.
NASA Astrophysics Data System (ADS)
Cerfontaine, B.; Charlier, R.; Collin, F.; Taiebat, M.
2017-10-01
Old mines or caverns may be used as reservoirs for fuel/gas storage or in the context of large-scale energy storage. In the first case, oil or gas is stored on annual basis. In the second case pressure due to water or compressed air varies on a daily basis or even faster. In both cases a cyclic loading on the cavern's/mine's walls must be considered for the design. The complexity of rockwork geometries or coupling with water flow requires finite element modelling and then a suitable constitutive law for the rock behaviour modelling. This paper presents and validates the formulation of a new constitutive law able to represent the inherently cyclic behaviour of rocks at low confinement. The main features of the behaviour evidenced by experiments in the literature depict a progressive degradation and strain of the material with the number of cycles. A constitutive law based on a boundary surface concept is developed. It represents the brittle failure of the material as well as its progressive degradation. Kinematic hardening of the yield surface allows the modelling of cycles. Isotropic softening on the cohesion variable leads to the progressive degradation of the rock strength. A limit surface is introduced and has a lower opening than the bounding surface. This surface describes the peak strength of the material and allows the modelling of a brittle behaviour. In addition a fatigue limit is introduced such that no cohesion degradation occurs if the stress state lies inside this surface. The model is validated against three different rock materials and types of experiments. Parameters of the constitutive laws are calibrated against uniaxial tests on Lorano marble, triaxial test on a sandstone and damage-controlled test on Lac du Bonnet granite. The model is shown to reproduce correctly experimental results, especially the evolution of strain with number of cycles.
Crippling Strength of Axially Loaded Rods
NASA Technical Reports Server (NTRS)
Natalis, FR
1921-01-01
A new empirical formula was developed that holds good for any length and any material of a rod, and agrees well with the results of extensive strength tests. To facilitate calculations, three tables are included, giving the crippling load for solid and hollow sectioned wooden rods of different thickness and length, as well as for steel tubes manufactured according to the standards of Army Air Services Inspection. Further, a graphical method of calculation of the breaking load is derived in which a single curve is employed for determination of the allowable fiber stress. Finally, the theory is discussed of the elastic curve for a rod subject to compression, according to which no deflection occurs, and the apparent contradiction of this conclusion by test results is attributed to the fact that the rods under test are not perfectly straight, or that the wall thickness and the material are not uniform. Under the assumption of an eccentric rod having a slight initial bend according to a sine curve, a simple formula for the deflection is derived, which shows a surprising agreement with test results. From this a further formula is derived for the determination of the allowable load on an eccentric rod. The resulting relations are made clearer by means of a graphical representation of the relation of the moments of the outer and inner forces to the deflection.
Tungsten fiber reinforced copper matrix composites: A review
NASA Technical Reports Server (NTRS)
Mcdanels, David L.
1989-01-01
Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.
MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel
2017-10-02
Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.
Preparation and Testing of Plant Seed Meal-based Wood Adhesives
He, Zhongqi; Chapital, Dorselyn C.
2015-01-01
Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications. PMID:25867092
Self-Healable Electrical Insulation for High Voltage Applications
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.
2017-01-01
Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.
Preparation and testing of plant seed meal-based wood adhesives.
He, Zhongqi; Chapital, Dorselyn C
2015-03-05
Recently, the interest in plant seed meal-based products as wood adhesives has steadily increased, as these plant raw materials are considered renewable and environment-friendly. These natural products may serve as alternatives to petroleum-based adhesives to ease environmental and sustainability concerns. This work demonstrates the preparation and testing of the plant seed-based wood adhesives using cottonseed and soy meal as raw materials. In addition to untreated meals, water washed meals and protein isolates are prepared and tested. Adhesive slurries are prepared by mixing a freeze-dried meal product with deionized water (3:25 w/w) for 2 hr. Each adhesive preparation is applied to one end of 2 wood veneer strips using a brush. The tacky adhesive coated areas of the wood veneer strips are lapped and glued by hot-pressing. Adhesive strength is reported as the shear strength of the bonded wood specimen at break. Water resistance of the adhesives is measured by the change in shear strength of the bonded wood specimens at break after water soaking. This protocol allows one to assess plant seed-based agricultural products as suitable candidates for substitution of synthetic-based wood adhesives. Adjustments to the adhesive formulation with or without additives and bonding conditions could optimize their adhesive properties for various practical applications.
Tableting properties of silica aerogel and other silicates.
Hentzschel, C M; Alnaief, M; Smirnova, I; Sakmann, A; Leopold, C S
2012-04-01
In solid oral dosage forms silicates are commonly used as glidants in low concentration. However, due to their large specific surface area, silicates may also be used as carrier materials for drugs. Moreover, silicates allow amorphisation of drugs by co-grinding or processing with supercritical fluids. The aim of this study was to investigate the physical and the tableting properties of Silica Aerogel (special type of silica with an extremely large specific surface area), Neusilin(®) US2 (magnesium aluminometasilicate), Florite(®) (calcium silicate) and Aerosil(®) 200 (colloidal silica). Powder blends of Avicel(®) PH102 (microcrystalline cellulose) and different amounts of the respective silicate were compacted and analyzed for their tabletability (tensile strength vs. compaction pressure) as well as their Heckel plot. With Neusilin(®) the tabletability appeared to be independent of the silicate concentration, whereas with Florite(®) an increasing silicate concentration led to a higher tensile strength. In contrast, the addition of Silica Aerogel and Aerosil(®) resulted in a decrease of the tensile strength. With Aerosil(®) a maximum tolerable concentration of 20% [w/w] was determined. Plastic deformation of all powder blends decreased with increasing silicate concentration. This effect was most pronounced with Aerosil(®) and least with Florite(®). Tablets with acceptable tensile strength were obtained with all plain silicates except for Aerosil(®). Therefore, these silicates may be used in tablet formulations, e.g. as carrier materials for liquid or amorphous drugs.
Tedesco, Tamara K; Calvo, Ana F B; Yoshioka, Laysa; Fukushima, Karen A; Cesar, Paulo F; Raggio, Daniela P
2018-05-31
To evaluate the effect of acidic challenge (AC) on the properties and bond stability of restorative materials to primary enamel and dentin. One hundred twenty primary molars were assigned to 12 groups according to substrate (enamel or dentin), restorative material (composite, high-viscosity glass ionomer cement [HV-GIC] or resin-modified glass-ionomer cement [RM-GIC]), and immersion after restoration (control [saline solution/7 days] or AC [cola-based drink/5 min/3x per day/7 days]). Twenty-four hours after the restorative procedure, specimens were submitted to one of the proposed challenges. Half of the specimens were immediately subjected to the microshear bond strength test, and the other half after 12 months. To determine flexural strength flexural strength and superficial roughness (SR), 30 specimens were built up. After 24 h, the first measurement of SR from 10 specimens was performed. Specimens were then immersed in one of proposed challenges and SR was measured again. Subsequently, flexural strength testing was performed. Bond strength, surface roughness, and flexural strength data were subjected to ANOVA and Tukey's test. Composite showed the highest bond strengths compared to the others materials on both substrates. The storage period negatively influenced the bond strength only for composite groups in dentin. AC after restoration negatively influenced bond strength when the materials were evaluated in eroded dentin. AC affected the second SR measurement, showing increased SR for all restorative materials. AC did not affect flexural strength. The acidic challenge jeopardizes the surface roughness and bond strength of restorations to eroded dentin.
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971-2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03-7971-2013 about Cold formed steel.
Experimental Study of Axially Tension Cold Formed Steel Channel Members
NASA Astrophysics Data System (ADS)
Apriani, Widya; Lubis, Fadrizal; Angraini, Muthia
2017-12-01
Experimental testing is commonly used as one of the steps to determine the cause of the collapse of a building structure. The collapse of structures can be due to low quality materials. Although material samples have passed laboratory tests and the existing technical specifications have been met but there may be undetected defects and known material after failure. In this paper will be presented Experimental Testing of Axially Tension Cold Formed Steel Channel Members to determine the cause of the collapse of a building roof truss x in Pekanbaru. Test of tensile strength material cold formed channel sections was performed to obtain the main characteristics of Cold Formed steel material, namely ultimate tensile strength loads that can be held by members and the yield stress possessed by channel sections used in construction. Analysis of axially tension cold formed steel channel section presents in this paper was conducted through experimental study based on specificationsAnnualBook of ASTM Standards: Metal Test methods and Analitical Procedures, Section 3 (1991). The result of capacity loads experimental test was compared with design based on SNI 03-7971- 2013standard of Indonesia for the design of cold formed steel structural members. The results of the yield stress of the material will be seen against the minimum allowable allowable stress range. After the test, the percentace of ultimate axial tension capacity theory has a result that is 16.46% larger than the ultimate axial tension capacity experimental. When compared with the load that must be borne 5.673 kN/m it can be concluded that 2 specimens do not meet. Yield stress of member has fulfilled requirement that wass bigger than 550 MPa. Based on the curve obtained ultimate axial tension capacity theory, results greater than experimental. The greatest voltage value (fu) is achieved under the same conditions as its yield stress. For this specimen with a melting voltage value fy = 571.5068 MPa has fulfilled the minimum melting point value of 550 MPa required for standard mild steel materials in accordance with the code SNI 03- 7971-2013 about Cold formed steel.
ZERODUR: deterministic approach for strength design
NASA Astrophysics Data System (ADS)
Hartmann, Peter
2012-12-01
There is an increasing request for zero expansion glass ceramic ZERODUR substrates being capable of enduring higher operational static loads or accelerations. The integrity of structures such as optical or mechanical elements for satellites surviving rocket launches, filigree lightweight mirrors, wobbling mirrors, and reticle and wafer stages in microlithography must be guaranteed with low failure probability. Their design requires statistically relevant strength data. The traditional approach using the statistical two-parameter Weibull distribution suffered from two problems. The data sets were too small to obtain distribution parameters with sufficient accuracy and also too small to decide on the validity of the model. This holds especially for the low failure probability levels that are required for reliable applications. Extrapolation to 0.1% failure probability and below led to design strengths so low that higher load applications seemed to be not feasible. New data have been collected with numbers per set large enough to enable tests on the applicability of the three-parameter Weibull distribution. This distribution revealed to provide much better fitting of the data. Moreover it delivers a lower threshold value, which means a minimum value for breakage stress, allowing of removing statistical uncertainty by introducing a deterministic method to calculate design strength. Considerations taken from the theory of fracture mechanics as have been proven to be reliable with proof test qualifications of delicate structures made from brittle materials enable including fatigue due to stress corrosion in a straight forward way. With the formulae derived, either lifetime can be calculated from given stress or allowable stress from minimum required lifetime. The data, distributions, and design strength calculations for several practically relevant surface conditions of ZERODUR are given. The values obtained are significantly higher than those resulting from the two-parameter Weibull distribution approach and no longer subject to statistical uncertainty.
NASA Technical Reports Server (NTRS)
Baker, Donald J.
1994-01-01
Residual strength results are presented for four composite material systems that have been exposed for up to 10 years to the environment at five different locations on the North American continent. The exposure locations are near where the Bell Model 206L helicopters, which participated in a flight service program sponsored by NASA Langley Research Center and the U.S. Army, were flying in daily commercial service. The composite material systems are (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 graphite/E-788 epoxy. Six replicates of each material were removed and tested after 1, 3, 5, 7, and 10 years of exposure. The average baseline strength was determined from testing six as-fabricated specimens. More than 1700 specimens have been tested. All specimens that were tested to determine their strength were painted with a polyurethane paint. Each set of specimens also included an unpainted panel for observing the weathering effects on the composite materials. A statistically based procedure has been used to determine the strength value above which at least 90 percent of the population is expected to fall with a 95-percent confidence level. The computed compression strengths are 80 to 90 percent of the baseline (no-exposure) strengths. The resulting compression strengths are approximately 8 percent below the population mean strengths. The computed short-beam-shear strengths are 83 to 92 percent of the baseline (no-exposure) strengths. The computed tension strength of all materials is 93 to 97 percent of the baseline (no-exposure) strengths.
NASA Technical Reports Server (NTRS)
Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.
2016-01-01
Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.
Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures
NASA Astrophysics Data System (ADS)
Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.
2017-05-01
In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.
Advanced Ceramics for NASA's Current and Future Needs
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.
2006-01-01
Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.
NASA Astrophysics Data System (ADS)
Weiss, K.-P.; Bagrets, N.; Lange, C.; Goldacker, W.; Wohlgemuth, J.
2015-12-01
Insulating materials for use in cryogenic boundary conditions are still limited to a proved selection as Polyamid, Glasfiber reinforced resins, PEEK, Vespel etc. These materials are usually formed to parts by mechanical machining or sometimes by cast methods. Shaping complex geometries in one piece is limited. Innovative 3D printing is now an upcoming revolutionary technology to construct functional parts from a couple of thermoplastic materials as ABS, Nylon and others which possess quite good mechanical stability and allow realizing very complex shapes with very subtle details. Even a wide range of material mixtures is an option and thermal treatments can be used to finish the material structure for higher performance. The use of such materials in cryogenic environment is very attractive but so far poor experience exists. In this paper, first investigations of the thermal conductivity, expansion and mechanical strength are presented for a few selected commercial 3D material samples to evaluate their application prospects in the cryogenic temperature regime.
Comparison of the flexural strength of six reinforced restorative materials.
Cohen, B I; Volovich, Y; Musikant, B L; Deutsch, A S
2001-01-01
This study calculated the flexural strength for six reinforced restorative materials and demonstrated that flexural strength values can be determined simply by using physical parameters (diametral tensile strength and Young's modulus values) that are easily determined experimentally. A one-way ANOVA analysis demonstrated a statistically significant difference between the two reinforced glass ionomers and the four composite resin materials, with the composite resin being stronger than the glass ionomers.
An Experimental Design of Bypass Magneto-Rheological (MR) damper
NASA Astrophysics Data System (ADS)
Rashid, MM; Aziz, Mohammad Abdul; Raisuddin Khan, Md.
2017-11-01
The magnetorheological (MR) fluid bypass damper fluid flow through a bypass by utilizing an external channel which allows the controllability of MR fluid in the channel. The Bypass MR damper (BMRD) contains a rectangular bypass flow channel, current controlled movable piston shaft arrangement and MR fluid. The static piston coil case is winding by a coil which is used inside the piston head arrangement. The current controlled coil case provides a magnetic flux through the BMRD cylinder for controllability. The high strength of alloy steel materials are used for making piston shaft which allows magnetic flux propagation throughout the BMRD cylinder. Using the above design materials, a Bypass MR damper is designed and tested. An excitation of current is applied during the experiment which characterizes the BMRD controllability. It is shown that the BMRD with external flow channel allows a high controllable damping force using an excitation current. The experimental result of damping force-displacement characteristics with current excitation and without current excitation are compared in this research. The BMRD model is validated by the experimental result at various frequencies and applied excitation current.
Fracture Analysis of Particulate Reinforced Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Min, James B.; Cornie, James A.
2013-01-01
A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.
Field induced gap infrared detector
NASA Technical Reports Server (NTRS)
Elliott, C. Thomas (Inventor)
1990-01-01
A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.
Comparison of the compressive strengths for stitched and toughened composite systems
NASA Technical Reports Server (NTRS)
Reeder, James R.
1994-01-01
The compression strength of a stitched and a toughened matrix graphite/epoxy composite was determined and compared to a baseline unstitched untoughened composite. Two different layups with a variety of test lengths were tested under both ambient and hot/wet conditions. No significant difference in strength was seen for the different materials when the gage lengths of the specimens were long enough to lead to a buckling failure. For shorter specimens, a 30 percent reduction in strength from the baseline was seen due to stitching for both a 48-ply quasi-isotropic and a (0/45/0/-45/90/-45/0/45/0)s laminate. Analysis of the results suggested that the decrease in strength was due to increased fiber misalignment due to the stitches. An observed increasing strength with decreasing gage length, which was seen for all materials, was explained with a size effect model. The model assumed a random distribution of flaws (misaligned fibers). The toughened materials showed a small increase in strength over the baseline material for both laminates presumably due to the compensating effects of a more compliant matrix and straighter fibers in the toughened material. The hot/wet strength of the stitched and baseline material fell 30 percent below their ambient strengths for shorter, nonbuckling specimen, while the strength of the toughened matrix material only fell 20 percent. Video images of the failing specimen were recorded and showed local failures prior to global collapse of the specimen. These images support the theory of a random distribution of flaws controlling composite failure. Failed specimen appearance, however, seems to be a misleading indication of the cause of failure.
In situ frustum indentation of nanoporous copper thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ran; Pathak, Siddhartha; Mook, William M.
Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikalsky, Paul J.; Bahia, Hussain U.; Deng, An
2004-10-15
This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Notmore » limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauul J. Tikalsky
2004-10-31
This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis andmore » leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.« less
Development of Smart Optical Gels with Highly Magnetically Responsive Bicelles.
Isabettini, Stéphane; Stucki, Sandro; Massabni, Sarah; Baumgartner, Mirjam E; Reckey, Pernille Q; Kohlbrecher, Joachim; Ishikawa, Takashi; Windhab, Erich J; Fischer, Peter; Kuster, Simon
2018-03-14
Hydrogels delivering on-demand tailorable optical properties are formidable smart materials with promising perspectives in numerous fields, including the development of modern sensors and switches, the essential quality criterion being a defined and readily measured response to environmental changes. Lanthanide ion (Ln 3+ )-chelating bicelles are interesting building blocks for such materials because of their magnetic responsive nature. Imbedding these phospholipid-based nanodiscs in a magnetically aligned state in gelatin permits an orientation-dependent retardation of polarized light. The resulting tailorable anisotropy gives the gel a well-defined optical signature observed as a birefringence signal. These phenomena were only reported for a single bicelle-gelatin pair and required high magnetic field strengths of 8 T. Herein, we demonstrate the versatility and enhance the viability of this technology with a new generation of aminocholesterol (Chol-NH 2 )-doped bicelles imbedded in two different types of gelatin. The highly magnetically responsive nature of the bicelles allowed to gel the anisotropy at commercially viable magnetic field strengths between 1 and 3 T. Thermoreversible gels with a unique optical signature were generated by exposing the system to various temperature conditions and external magnetic field strengths. The resulting optical properties were a signature of the gel's environmental history, effectively acting as a sensor. Solutions containing the bicelles simultaneously aligning parallel and perpendicular to the magnetic field directions were obtained by mixing samples chelating Tm 3+ and Dy 3+ . These systems were successfully gelled, providing a material with two distinct temperature-dependent optical characteristics. The high degree of tunability in the magnetic response of the bicelles enables encryption of the gel's optical properties. The proposed gels are viable candidates for temperature tracking of sensitive goods and provide numerous perspectives for future development of tomorrow's smart materials and technologies.
In situ frustum indentation of nanoporous copper thin films
Liu, Ran; Pathak, Siddhartha; Mook, William M.; ...
2017-07-24
Mechanical properties of thin films are often obtained solely from nanoindentation. At the same time, such measurements are characterized by a substantial amount of uncertainty, especially when mean pressure or hardness are used to infer uniaxial yield stress. In this paper we demonstrate that indentation with a pyramidal flat tip (frustum) indenter near the free edge of a sample can provide a significantly better estimate of the uniaxial yield strength compared to frequently used Berkovich indenter. This is first demonstrated using a numerical model for a material with an isotropic pressure sensitive yield criterion. Numerical simulations confirm that the indentermore » geometry provides a clear distinction of the mean pressure at which a material transitions to inelastic behavior. The mean critical pressure is highly dependent on the plastic Poisson ratio ν p so that at the 1% offset of normalized indent depth, the critical pressure p m c normalized to the uniaxial yield strength σ 0 is 1 < p m c/σ 0 < 1.3 for materials with 0 < ν p < 0.5. Choice of a frustum over Berkovich indenter reduces uncertainty in hardness by a factor of 3. These results are used to interpret frustum indentation experiments on nanoporous (NP) Copper with struts of typical diameter of 45 nm. An estimate of the yield strength of NP Copper is obtained 230 MPa < σ 0 < 300 MPa. Edge indentation further allows one to obtain in-plane strain maps near the critical pressure. Finally, comparison of the experimentally obtained in-plane strain maps of NP Cu during deformation and the strain field for different plastic Poisson ratios suggest that this material has a plastic Poisson ratio of the order of 0.2–0.3. However, existing constitutive models may not adequately capture post-yield behavior of NP metals.« less
NASA Astrophysics Data System (ADS)
Ammar Khodja, L'Hady
The rehabilitation and strengthening concrete structures in shear using composite materials such as externally bonded (EB) or near surface mounted rebar (NSMR) are well established techniques. However, debonding of these strengthening materials is still present and constitute the principal cause of shear failure of beams strengthened with composite materials. A new method called ETS (Embedded Through Section) was recently developed in order to avoid premature failures due to debonding of composite materials. The objective of this study is to highlight the importance and influence of important parameters on the behavior of CFRP bars anchorages subjected to pullout forces. These parameters are: concrete strength, anchorage length of CFRP bars, hole diameter in concrete, diameter of the bar and CFRP surface type (smooth versus sanded). Understanding the influence of these parameters on the relationship between the pullout force and the slip is paramount. This allows an accurate description of the behavior of all elements that contribute to the resistance of the CFRP bars pullout. A series of 25 specimens were subjected to pullout tests. The impact of these parameters on the pullout performance of CFRP rods is summarized in terms of failure mode, ultimate tensile strength and loading force slip relationship. The results of these investigations show that using the ETS method, failure of the anchors can be avoided by providing adequate anchorage length and concrete strength. The method provides greater confinement and thus leads to a substantial improvement in the performance of anchors. As a result, designers will be able to avoid failures that are due to debonding of anchors using thereby the full capabilities of reinforced beams strengthened in shear with EB FRP. Keywords: ETS method, shear, strengthening, anchor, slip, FRP, NSM.
Processing equipment for grinding of building powders
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Ibragimov, R. A.; Lesovik, V. S.; Pak, A. A.; Krylov, V. V.; Poleschuk, M. M.; Stoyushko, N. Y.; Gladkova, N. A.
2018-03-01
In the article questions of mechanical grinding up to nanosize of building powder materials are considered. In the process of mechanoactivation of the composite binder, active molecules of cement minerals arise when molecular packets are destroyed in the areas of defects and loosening of the metastable phase during decompensation of intermolecular forces. The process is accompanied by a change in the kinetics of hardening Portland cement. Mechanical processes in the grinding of mineral materials cause, together with an increase in their surface energy, the growth of the isobaric potential of the powders and, accordingly, their chemical activity, which also contributes to high adhesion strength when they come into contact with binders. Thus, a set of measures for mechanical activation allows more fully use the mass of components of the filled cement systems and regulate their properties. At relatively low costs, it is possible to provide an impressive and, importantly, easily repeatable in production conditions result. It is revealed that the use of a vario-planetary mill allows to achieve the best results on grinding the powder building materials.
Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.
Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O
2012-01-01
To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.
Picosecond laser bonding of highly dissimilar materials
NASA Astrophysics Data System (ADS)
Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.
2016-10-01
We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.
NASA Astrophysics Data System (ADS)
Pattnaik, Rashmi Ranjan
2017-06-01
A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.
Multiscale modeling of shock wave localization in porous energetic material
NASA Astrophysics Data System (ADS)
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.
2018-01-01
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.
Gurram, Ravi; Krishna, C H Vamsi; Reddy, K Mahendranadh; Reddy, G V K Mohan; Shastry, Y Mahadev
2014-12-01
The study was undertaken to evaluate the biaxial flexural strength, biaxial flexural strength after etching with 9 % HF acid and fracture toughness of three commonly used pressable all ceramic core materials. Ninety glass ceramic specimens were fabricated from three commercially available leucite based core ceramic material (1) Esthetic Empress, (2) Cergo, and (3) Performance Plus. Thirty discs of each material were divided into three groups of 10 discs each. Biaxial flexural strength (30 discs,) Biaxial flexural strength for samples treated with 9 % HF acid (30 discs) and fracture toughness (30 discs) were evaluated. Core material Performance Plus had the lowest biaxial strength of 124.89 MPa, Cergo had strength of 152.22 MPa and the highest value of 163.95 was reported for Esthetic Empress. For samples treated 9 % HF, Performance Plus had the lowest biaxial strength of 98.37 MPa, Cergo had strength of 117.42 MPa and the highest value of 143.74 was reported for Esthetic Empress. Core material Performance Plus had the lowest fracture toughness of 1.063 MPa, Cergo had strength of 1.112 MPa and the highest value of 1.225 was reported for Esthetic Empress. The results shows that Esthetic Empress had better mechanical properties compared to Cergo had Performance Plus in relation to the parameters tested.
An investigation of the compressive strength of PRD-49-3/Epoxy composites
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Rice, J. S.; Rosen, B. W.
1973-01-01
The development of unidirectional fiber composite materials is discussed. The mechanical and physical properties of the materials are described. Emphasis is placed in analyzing the compressive behavior of composite materials and developing methods for increasing compressive strength. The test program for evaluating the various procedures for improving compressive strength are reported.
Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures
NASA Astrophysics Data System (ADS)
Aziz, M.; Halim, Z.; Othman, M.
2018-01-01
Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zahn, M.
2013-10-01
The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.
Hybrid Laser-Arc Welding of the High-Strength Shipbuilding Steels: Equipment and Technology
NASA Astrophysics Data System (ADS)
Turichin, G.; Kuznetsov, M.; Tsibulskiy, I.; Firsova, A.
Hybrid laser-arc welding (HLAW) allows getting weld joints with thickness up to 35 mm for one pass, provide good quality formation of joints, minimal thermal deformations, the productivity in 10 times more in comparison with arc welding. In addition, replacement arc welding to the HLAW allows economizing filler materials, shielding gas and consumable electricity more than 4 times. Therefore, HLAW is actually technology for basic engineering branches and especially for shipbuilding. The Institute of Laser and Welding Technologies (ILWT) developed laser and hybrid laser-arc welding technologies for different type of steels and alloys including high-strength shipbuilding steels. Also ILWT produced portal and robotic systems for HLAW process realization. Portal system for hybrid laser-arc welding of panels with dimensions 6x6 m using at the manufacturing of flat curvilinear sections in the shipbuilding is depicted in the article. Results of experimental researches of the hybrid laser-arc welding parameters influence on the formation and mechanical properties of weld joint are described at the publication also. Experimental part was made with using of the portal system.
Observation of Pull-in Instability in Graphene Membranes under Interfacial Forces
NASA Astrophysics Data System (ADS)
Liu, Xinghui; Boddeti, Narasimha; Szpunar, Mariah; Wang, Luda; Rodriguez, Miguel; Long, Rong; Xiao, Jianliang; Dunn, Martin; Bunch, Scott; Jianliang Xiao'S Collaboration; Scott Bunch's Team; Martin Dunn's Team
2014-03-01
We present a unique experimental configuration that allows us to determine the interfacial forces on nearly parallel plates made from single and few layer graphene membranes. Our approach consists of using a pressure difference across a graphene membrane to bring the membrane to within ~ 10-20 nm above a circular post covered with SiOx or Au until a critical point is reached whereby the membrane snaps into adhesive contact with the post. Continuous measurements of the deforming membrane with an AFM coupled with a theoretical model allow us to deduce the magnitude of the interfacial forces between graphene and SiOx and graphene and Au. The nature of the interfacial forces at ~ 10 - 20 nm separations is consistent with an inverse fourth power distance dependence, implying that the interfacial forces are dominated by van der Waals interactions. Furthermore, the strength of the interactions is found to increase linearly with the number of graphene layers. The experimental approach can be applied to measure the strength of the interfacial forces for other emerging atomically thin two-dimensional materials.
Benson, Jim; Kovalenko, Igor; Boukhalfa, Sofiane; Lashmore, David; Sanghadasa, Mohan; Yushin, Gleb
2013-12-03
Pulsed electrodeposition of polyaniline (PANI) allows the fabrication of flexible, electrically conductive, nonwoven PANI-carbon nanotube (PANI-CNT) composite fabrics. They possess specific tensile strength and a modulus of toughness higher than that of aluminum matrix composites, titanium and aluminum alloys, steels, and many other structural materials. Electrochemical tests show that these nanocomposites additionally offer excellent cycle stability and ion electro-sorption and storage properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetic helical micromachines.
Peyer, Kathrin E; Tottori, Soichiro; Qiu, Famin; Zhang, Li; Nelson, Bradley J
2013-01-02
Helical microrobots have the potential to be used in a variety of application areas, such as in medical procedures, cell biology, or lab-on-a-chip. They are powered and steered wirelessly using low-strength rotating magnetic fields. The helical shape of the device allows propulsion through numerous types of materials and fluids, from tissue to different types of bodily fluids. Helical propulsion is suitable for pipe flow conditions or for 3D swimming in open fluidic environments. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Asai, Tetsuya; Kazama, Ryunosuke; Fukushima, Masayoshi; Okiji, Takashi
2010-11-01
Controversy prevails over the effect of overglazing on the fracture strength of ceramic materials. Therefore, the effects of different surface finishes on the compressive fracture strength of machinable ceramic materials were investigated in this study. Plates prepared from four commercial brands of ceramic materials were either surface-polished or overglazed (n=10 per ceramic material for each surface finish), and bonded to flat surfaces of human dentin using a resin cement. Loads at failure were determined and statistically analyzed using two-way ANOVA and Bonferroni test. Although no statistical differences in load value were detected between polished and overglazed groups (p>0.05), the fracture load of Vita Mark II was significantly lower than those of ProCAD and IPS Empress CAD, whereas that of IPS e.max CAD was significantly higher than the latter two ceramic materials (p<0.05). It was concluded that overglazed and polished surfaces produced similar compressive fracture strengths irrespective of the machinable ceramic material tested, and that fracture strength was material-dependent.
Cryogenic Properties of Aluminum Beryllium and Beryllium Materials
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.
The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats
NASA Astrophysics Data System (ADS)
Goldbaum, Dina; Shockley, J. Michael; Chromik, Richard R.; Rezaeian, Ahmad; Yue, Stephen; Legoux, Jean-Gabriel; Irissou, Eric
2012-03-01
Cold spray is a complex process where many parameters have to be considered in order to achieve optimized material deposition and properties. In the cold spray process, deposition velocity influences the degree of material deformation and material adhesion. While most materials can be easily deposited at relatively low deposition velocity (<700 m/s), this is not the case for high yield strength materials like Ti and its alloys. In the present study, we evaluate the effects of deposition velocity, powder size, particle position in the gas jet, gas temperature, and substrate temperature on the adhesion strength of cold spayed Ti and Ti6Al4V splats. A micromechanical test technique was used to shear individual splats of Ti or Ti6Al4V and measure their adhesion strength. The splats were deposited onto Ti or Ti6Al4V substrates over a range of deposition conditions with either nitrogen or helium as the propelling gas. The splat adhesion testing coupled with microstructural characterization was used to define the strength, the type and the continuity of the bonded interface between splat and substrate material. The results demonstrated that optimization of spray conditions makes it possible to obtain splats with continuous bonding along the splat/substrate interface and measured adhesion strengths approaching the shear strength of bulk material. The parameters shown to improve the splat adhesion included the increase of the splat deposition velocity well above the critical deposition velocity of the tested material, increase in the temperature of both powder and the substrate material, decrease in the powder size, and optimization of the flow dynamics for the cold spray gun nozzle. Through comparisons to the literature, the adhesion strength of Ti splats measured with the splat adhesion technique correlated well with the cohesion strength of Ti coatings deposited under similar conditions and measured with tubular coating tensile (TCT) test.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.
NASA Technical Reports Server (NTRS)
Boyce, Lola; Bast, Callie C.; Trimble, Greg A.
1992-01-01
The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.
Development of a core sheath process for production of oxide fibers
NASA Technical Reports Server (NTRS)
Freske, S.
1972-01-01
Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.
Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon.
Kujala, Sauli; Pajala, Ari; Kallioinen, Matti; Pramila, Antti; Tuukkanen, Juha; Ryhänen, Jorma
2004-01-01
Nitinol (NiTi) is a promising new tendon suture material with good strength, easy handling and good super-elastic properties. NiTi sutures were implanted for biocompatibility testing into the right medial gastrocnemius tendon in 15 rabbits for 2, 6 and 12 weeks. Additional sutures were implanted in subcutaneous tissue for strength measurements in order to determine the effect of implantation on strength properties of NiTi suture material. Braided polyester sutures (Ethibond) of approximately the same diameter were used as control. Encapsulating membrane formation around the sutures was minimal in the case of both materials. The breaking load of NiTi was significantly greater compared to braided polyester. Implantation did not affect the strength properties of either material.
Pin bearing evaluation of LTM25 composite materials
NASA Technical Reports Server (NTRS)
Shah, C. H.; Postyn, A. S.
1996-01-01
This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.
Fracture and strain rate behavior of airplane fuselage materials under blast loading
NASA Astrophysics Data System (ADS)
Mediavilla Varas, J.; Soetens, F.; Kroon, E.; van Aanhold, J. E.; van der Meulen, O. R.; Sagimon, M.
2010-06-01
The dynamic behavior of three commonly used airplane fuselage materials is investigated, namely of Al2024-T3, Glare-3 and CFRP. Dynamic tensile tests using a servo-hydraulic and a light weight shock testing machine (LSM) have been performed. The results showed no strain rate effect on Al2024-T3 and an increase in the failure strain and failure strength of Glare-3, but no stiffening. The LSM results on CFRP were inconclusive. Two types of fracture tests were carried out to determine the dynamic crack propagation behavior of these materials, using prestressed plates and pressurized barrels, both with the help of explosives. The prestressed plates proved to be not suitable, whereas the barrel tests were quite reliable, allowing to measure the crack speeds. The tougher, more ductile materials, Al2024-T3 and Glare-3, showed lower crack speeds than CFRP, which failed in a brittle manner.
Advances in Porous Biomaterials for Dental and Orthopaedic Applications
Mour, Meenakshi; Das, Debarun; Winkler, Thomas; Hoenig, Elisa; Mielke, Gabriela; Morlock, Michael M.; Schilling, Arndt F.
2010-01-01
The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.
Fatigue strength degradation of metals in corrosive environments
NASA Astrophysics Data System (ADS)
Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.
2017-12-01
Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.
Experimental study of self-compacted concrete in hardened state
NASA Astrophysics Data System (ADS)
Parra Costa, Carlos Jose
The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial displacement). Thus SCC reaches higher average bond strength. Although the variation in bond strength at different elevations, due to top-bar effect, is also observed in SCC the extent is less significant than that of TC. Finally, tests show that water depth penetration under pressure is much lower for SCC than for TC.
Surface fluorination of zirconia: adhesive bond strength comparison to commercial primers.
Piascik, Jeffrey R; Swift, Edward J; Braswell, Krista; Stoner, Brian R
2012-06-01
This study evaluated contact angle and shear bond strength of three commercial zirconia primers and compared them to a recently developed fluorination pre-treatment. Earlier investigations reported that plasma fluorinated zirconia modifies the chemical bonding structure creating a more reactive surface. Yttria-stabilized zirconia (LAVA, 3M ESPE) plates were highly polished using 3μm diamond paste (R(a) ∼200nm) prior to pretreatments. After primer and fluorination treatment, contact angles were measured to quantify surface hydrophobicity before and after ethanol clean. Additionally, simple shear bond tests were performed to measure the adhesion strength to a composite resin. Plasma fluorination produced the lowest contact angle (7.8°) and the highest shear bond strength (37.3MPa) suggesting this pretreatment facilitates a more "chemically" active surface for adhesive bonding. It is hypothesized that plasma fluorination increase hydroxylation at the surface, making it more reactive, thus allowing for covalent bonding between zirconia surface and resin cement. A strong correlation was observed between contact angle and adhesion strength for all specimens; a relationship which may help understand the frequency and modes of failures, clinically. It is also believed that this surface treatment can increase long-term viability of zirconia restorations over other adhesive techniques. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Xiaotao; Smith, Gregory M.; Sampath, Sanjay
2018-02-01
Adhesion of thermal spray (TS) coatings is an important system level property in coating design and application. Adhesive-based pull testing (ASTM C633) has long been used to evaluate coating/substrate bonding. However, this approach is not always suitable for high velocity spray coatings, for example, where adhesion strengths are routinely greater than the strength of the adhesive bonding agent used in the testing. In this work, a new approach has been proposed to evaluate the adhesion of TS coatings. A systematic investigation of the effects of substrate roughness on both the uniaxial tensile yield strength and traditional bond pull adhesive strength of HVOF Ni and Ni-5wt.%Al, as well as cold-sprayed Ni-coated laminates revealed a strong correlation between these two test methodologies for the respective materials and processes. This approach allows measurement of the adhesion response even where the adhesive method is not applicable, overcoming many of the issues in the traditional ASTM C633. Analysis of cracking patterns of the coatings after 10.5% strain was used to assess the adhesion and cohesion properties. The mechanisms which determine the load transfer between the substrate and the coating are also briefly discussed.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, T. J.; Winterbottom, W. L.
1986-01-01
Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.
Mechanical properties of direct core build-up materials.
Combe, E C; Shaglouf, A M; Watts, D C; Wilson, N H
1999-05-01
This work was undertaken to measure mechanical properties of a diverse group of materials used for direct core build-ups, including a high copper amalgam, a silver cermet cement, a VLC resin composite and two composites specifically developed for this application. Compressive strength, elastic modulus, diametral tensile strength and flexural strength and modulus were measured for each material as a function of time up to 3 months, using standard specification tests designed for the materials. All the materials were found to meet the minimum specification requirements except in terms of flexural strength for the amalgam after 1 h and the silver cermet at all time intervals. There proved to be no obvious superior material in all respects for core build-ups, and the need exists for a specification to be established specifically for this application.
Tensile strength of 67P/Churyumov-Gerasimenko nucleus material from overhangs
NASA Astrophysics Data System (ADS)
Attree, N.; Groussin, O.; Jorda, L.; Nébouy, D.; Thomas, N.; Brouet, Y.; Kührt, E.; Preusker, F.; Scholten, F.; Knollenberg, J.; Hartogh, P.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; A'Hearn, M. F.; Auger, A.-T.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Bodewits, D.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; El-Maarry, M. R.; Fornasier, S.; Fulle, M.; Gutiérrez, P. J.; Güttler, C.; Hviid, S.; Ip, W.-H.; Kovacs, G.; Kramm, J. R.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Lowry, S.; Marchi, S.; Marzari, F.; Mottola, S.; Naletto, G.; Oklay, N.; Pajola, M.; Toth, I.; Tubiana, C.; Vincent, J.-B.; Shi, X.
2018-03-01
We directly measured twenty overhanging cliffs on the surface of comet 67P/Churyumov-Gerasimenko extracted from the latest shape model and estimated the minimum tensile strengths needed to support them against collapse under the comet's gravity. We find extremely low strengths of around 1 Pa or less (1 to 5 Pa, when scaled to a metre length). The presence of eroded material at the base of most overhangs, as well as the observed collapse of two features andthe implied previous collapse of another, suggests that they are prone to failure and that the true material strengths are close to these lower limits (although we only consider static stresses and not dynamic stress from, for example, cometary activity). Thus, a tensile strength of a few pascals is a good approximation for the tensile strength of the 67P nucleus material, which is in agreement with previous work. We find no particular trends in overhang properties either with size over the 10-100 m range studied here or location on the nucleus. There are no obvious differences, in terms of strength, height or evidence of collapse, between the populations of overhangs on the two cometary lobes, suggesting that 67P is relatively homogenous in terms of tensile strength. Low material strengths are supportive of cometary formation as a primordial rubble pile or by collisional fragmentation of a small body (tens of km).
NASA Astrophysics Data System (ADS)
Saiki, Toshiharu
2016-09-01
Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.
Superplasticity in a lean Fe-Mn-Al steel.
Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook
2017-09-29
Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.
Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants
NASA Astrophysics Data System (ADS)
Wang, Y.; Khor, K. A.; Cheang, P.
1998-03-01
Biomedical requirements in a prosthesis are often complex and diverse in nature. Biomaterials for implants have to display a wide range of adaptability to suit the various stages of the bio-integration process of any foreign material into the human body. Often, a combination of materials is needed. The preparation of a functionally graded bioceramic coating composed of essentially calcium phosphate compounds is explored. The coating is graded in accordance to adhesive strength, bioactivity, and bioresorbability. The bond coat on the Ti-6Al-4V stub is deposited with a particle range of the hydroxyapatite (HA) that will provide a high adhesive strength and bioactivity but have poor bioresorption properties. The top coat, however, is composed of predominantly α-tricalcium phosphate (α-TCP) that is highly bioresorbable. This arrangement has the propensity of allowing accelerated bio-integration of the coating by the body tissues as the top layer is rapidly resorbed, leaving the more bioactive intermediate layer to facilitate the much needed bioactive properties for proper osteoconduction. The processing steps and problems are highlighted, as well as the results of post-spray heat treatment.
Modeling of karst deformation and analysis of acoustic emission during sinkhole formation
NASA Astrophysics Data System (ADS)
Bakeev, R. A.; Stefanov, Yu. P.; Duchkov, A. A.; Myasnikov, A. V.
2017-12-01
In this paper, the fracture pattern and formation of a sinkhole are estimated depending on the rock properties. The possibility of using geophysical methods for recording and analyzing acoustic emission to monitor and predict the state of the medium is considered. The problem of deformation of the sedimentary cover over the growing karst cavity is solved on the basis of the elastoplastic Drucker-Prager-Nikolaevsky model and the equation of damage accumulation. The specified kinetics of accumulation of damages allows us to describe slow processes of degradation of the strength of the medium under stresses that are low for the development of inelastic deformations. The results are obtained for different values of the strength of karst rock; we show the influence of the kinetic parameters of damage accumulation on the shape of collapse depressions. We also model acoustic emission caused by the material fracture. One can follow different stages of the karst development by looking at patterns of cells which fail at a given time. Our observations show the relation between the intensity of material fracture and the intensity of seismic emission.
Analysis of concrete targets with different kinds of reinforcements subjected to blast loading
NASA Astrophysics Data System (ADS)
Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.
2016-05-01
In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.
Effect of ultrasonic tip and root-end filling material on bond strength.
Vivan, Rodrigo Ricci; Guerreiro-Tanomaru, Juliane Maria; Bernardes, Ricardo Affonso; Reis, José Mauricio Santos Nunes; Hungaro Duarte, Marco Antonio; Tanomaru-Filho, Mário
2016-11-01
The objective of this study was to evaluate the bond strength of three root-end filling materials (MTAA-MTA Angelus, MTAS-experimental MTA Sealer, and ZOE- zinc oxide and eugenol cement) in retrograde preparations performed with different ultrasonic tips (CVD, Trinity, and Satelec). Ninety 2-mm root sections from single-rooted human teeth were used. The retrograde cavities were prepared by using the ultrasonic tips, coupled to a device for position standardization. The specimens were randomly divided into nine groups: CVD MTAA; CVD MTAS; CVD ZOE; Trinity MTAA; Trinity MTAS; Trinity ZOE; Satelec MTAA; Satelec MTAS; Satelec ZOE. Each resin disc/dentin/root-end filling material was placed in the machine to perform the push-out test. The specimens were examined in a stereomicroscope to evaluate the type of failure. Data were submitted to statistical analysis using ANOVA and Tukey tests (α = 0.05). The highest bond strength was observed for the CVD tip irrespective of the material used (P < 0.05). There was no significant difference for the Trinity TU-18 diamond and S12 Satelec tips (P > 0.05). MTAA and MTAS showed highest bond strength. The most common type of failure was adhesion between the filling material and dentin wall, except for ZOE, where mixed failure was predominant. The CVD tip favored higher bond strength of the root-end filling materials. MTA Angelus and experimental MTAS presented bond strength to dentin prepared with ultrasonic tips. Root-end preparation with the CVD tip positively influences the bond strength of root-end filling materials. MTA Angelus and experimental MTAS present bond strength to be used as root-end filling materials.
Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study
Ranganath, V.; Nichani, Ashish Sham
2013-01-01
Purpose The purpose of this study was to evaluate the tensile strength of surgical synthetic absorbable sutures over a period of 14 days under simulated oral conditions. Methods Three suture materials (polyglycolic acid [PGA], polyglactin [PG] 910, and poly (glycolide-co-є-caprolactone) [PGC]) were used in 4-0 and 5-0 gauges. 210 suture samples (35 of each material and gauge) were used. All of the samples were tested preimmersion and 1 hour and 1, 3, 7, 10, and 14 days postimmersion. The tensile strength of each suture material and gauge was assessed. The point of breakage and the resorption pattern of the sutures were also assessed. Results During the first 24 hours of immersion, all 4-0 and 5-0 samples of PGA, PG 910, and PGC maintained their initial tensile strength. At baseline (preimmersion), there was a statistically significant (P<0.001) difference in the tensile strengths between the 4-0 and 5-0 gauge of PGA, PG 910, and PGC. PGA 4-0 showed the highest tensile strength until day 10. At 7 days, all the 4-0 sutures of the three materials had maintained their tensile strength with PGA 4-0 having significantly greater (P=0.003) tensile strength compared to PG. Conclusions 4-0 sutures are stronger and have greater tensile strength than 5-0 sutures. The PGA 4-0 suture showed the highest tensile strength at the end of day 10. PMID:23837127
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-01
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young’s modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant–bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young’s modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants. PMID:29342864
Mechanical Properties of a Newly Additive Manufactured Implant Material Based on Ti-42Nb.
Schulze, Christian; Weinmann, Markus; Schweigel, Christoph; Keßler, Olaf; Bader, Rainer
2018-01-13
The application of Ti-6Al-4V alloy or commercially pure titanium for additive manufacturing enables the fabrication of complex structural implants and patient-specific implant geometries. However, the difference in Young's modulus of α + β-phase Ti alloys compared to the human bone promotes stress-shielding effects in the implant-bone interphase. The aim of the present study is the mechanical characterization of a new pre-alloyed β-phase Ti-42Nb alloy for application in additive manufacturing. The present investigation focuses on the mechanical properties of SLM-printed Ti-42Nb alloy in tensile and compression tests. In addition, the raw Ti-42Nb powder, the microstructure of the specimens prior to and after compression tests, as well as the fracture occurring in tensile tests are characterized by means of the SEM/EDX analysis. The Ti-42Nb raw powder exhibits a dendrite-like Ti-structure, which is melted layer-by-layer into a microstructure with a very homogeneous distribution of Nb and Ti during the SLM process. Tensile tests display Young's modulus of 60.51 ± 3.92 GPa and an ultimate tensile strength of 683.17 ± 16.67 MPa, whereas, under a compressive load, a compressive strength of 1330.74 ± 53.45 MPa is observed. The combination of high mechanical strength and low elastic modulus makes Ti-42Nb an interesting material for orthopedic and dental implants. The spherical shape of the pre-alloyed material additionally allows for application in metal 3D printing, enabling the fabrication of patient-specific structural implants.
Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks.
Guo, Junling; Richardson, Joseph J; Besford, Quinn A; Christofferson, Andrew J; Dai, Yunlu; Ong, Chien W; Tardy, Blaise L; Liang, Kang; Choi, Gwan H; Cui, Jiwei; Yoo, Pil J; Yarovsky, Irene; Caruso, Frank
2017-10-10
Metal-phenolic networks (MPNs) are a versatile class of self-assembled materials that are able to form functional thin films on various substrates with potential applications in areas including drug delivery and catalysis. Different metal ions (e.g., Fe III , Cu II ) and phenols (e.g., tannic acid, gallic acid) have been investigated for MPN film assembly; however, a mechanistic understanding of the thermodynamics governing MPN formation remains largely unexplored. To date, MPNs have been deposited at low ionic strengths (<5 mM), resulting in films with typical thicknesses of ∼10 nm, and it is still unclear how a bulk complexation reaction results in homogeneous thin films when a substrate is present. Herein we explore the influence of ionic strength (0-2 M NaCl) on the conformation of MPN precursors in solution and how this determines the final thickness and morphology of MPN films. Specifically, the film thickness increases from 10 nm in 0 M NaCl to 12 nm in 0.5 M NaCl and 15 nm in 1 M NaCl, after which the films grow rougher rather than thicker. For example, the root-mean-square roughness values of the films are constant below 1 M NaCl at 1.5 nm; in contrast, the roughness is 3 nm at 1 M NaCl and increases to 5 nm at 2 M NaCl. Small-angle X-ray scattering and molecular dynamics simulations allow for comparisons to be made with chelated metals and polyelectrolyte thin films. For example, at a higher ionic strength (2 M NaCl), sodium ions shield the galloyl groups of tannic acid, allowing them to extend away from the Fe III center and interact with other MPN complexes in solution to form thicker and rougher films. As the properties of films determine their final performance and application, the ability to tune both thickness and roughness using salts may allow for new applications of MPNs.
Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires
Piccione, Brian; Aspetti, Carlos O.; Cho, Chang-Hee; Agarwal, Ritesh
2014-01-01
Understanding interactions between light and matter is central to many fields, providing invaluable insights into the nature of matter. In its own right, a greater understanding of light-matter coupling has allowed for the creation of tailored applications, resulting in a variety of devices such as lasers, switches, sensors, modulators, and detectors. Reduction of optical mode volume is crucial to enhancing light-matter coupling strength, and among solid-state systems, self-assembled semiconductor and hybrid-plasmonic nanowires are amenable to creation of highly-confined optical modes. Following development of unique spectroscopic techniques designed for the nanowire morphology, carefully engineered semiconductor nanowire cavities have recently been tailored to enhance light-matter coupling strength in a manner previously seen in optical microcavities. Much smaller mode volumes in tailored hybrid-plasmonic nanowires have recently allowed for similar breakthroughs, resulting in sub-picosecond excited-state lifetimes and exceptionally high radiative rate enhancement. Here, we review literature on light-matter interactions in semiconductor and hybrid-plasmonic monolithic nanowire optical cavities to highlight recent progress made in tailoring light-matter coupling strengths. Beginning with a discussion of relevant concepts from optical physics, we will discuss how our knowledge of light-matter coupling has evolved with our ability to produce ever-shrinking optical mode volumes, shifting focus from bulk materials to optical microcavities, before moving on to recent results obtained from semiconducting nanowires. PMID:25093385
Compressive and flexural strength of high strength phase change mortar
NASA Astrophysics Data System (ADS)
Qiao, Qingyao; Fang, Changle
2018-04-01
High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.
Sealing of cracks in cement using microencapsulated sodium silicate
NASA Astrophysics Data System (ADS)
Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.
2016-08-01
Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.
NASA Astrophysics Data System (ADS)
Page, Christian David
A large body of scientific research and development worldwide has focused on the unprecedented structural/functional properties of carbon nanotubes (CNT), yet translation of these unique properties of CNTs to macroscopic materials has been slow to develop. CNT yarns are an appealing application for CNTs; their lightweight and small diameter can allow for them to be embedded into composite materials. Since the individual nanotubes have shown to have incredibly high strength, stiffness, and strain sensitivity, CNT yarns have the potential to be highly effective for in-situ structural health monitoring of advanced materials and structures. This work identifies the sources for losses in strength and electromechanical sensitivity. This is done by first understanding the physics involved with a CNT yarn under axial strain. Since this material is not a Newtonian solid, the stress-strain relationships are dissimilar to conventional materials, exhibiting a three zone behavior. This is present in both the stress-strain and resistance-strain relationships. A tensile test performed in-situ within a scanning electron microscope showed that the diameter of the yarn reduced greatly during tension, which indicates that the volume is not constant; therefore, the intratube/intrabundle load transfer efficiency and electrical conductivity change significantly under strain. Observation of this phenomenon helps elucidate the source for loss in the translation from nanoscopic CNTs to the macroscopic CNT yarns. Following the observation that the CNT yarn is not a solid body mechanics system, investigation into the long-standing field of textile engineering helped to identify that the CNT yarn structural hierarchy should be re-evaluated. Literary review reveals that the predominant base morphology of CNT yarns is bundles of CNTs as opposed to individual CNTs. Furthermore, in conventional textiles, it is well known that the base morphology (in textiles this is the "fiber") will bundle together during twisting. For CNT yarns, this level is referred to as packs since the title "bundle" has already been widely used as the grouping of individual CNTs. The utilization of conventional textile mechanics is supported by the congruent stress strain curves of cotton/wool yarns and CNT yarns. With this new perspective, sources of strength losses can be identified and, in most cases, quantified. Deterministic and statistical textile models are used to enumerate three top-level parameters which affect the yarn's strength. This approach offers guidance for future work to be done in the field of CNT yarns, including the growth of raw CNT forests, the spinning procedures involved, and any post-processing steps that may arise that can mitigate these losses that are extremely degrading to the CNT yarn mechanical strength. The strength of the yarn is a direct reflection of the quality of the yarn's structure. These morphological properties across the nano, meso, and macro scales have an effect on other physical properties such as electromechanical sensitivity. Improving the strength will also improve the yarn's ability to serve as a strain gage. Coupled with its appealing size, these yarns will be an effective in-situ embedded strain sensor. In conclusion, high quality CNT yarns with minimized strength losses show promise for structural health monitoring of advanced materials and structures since they can be both strongly reinforcing and electromechanically sensitive.
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.
On collisional disruption - Experimental results and scaling laws
NASA Technical Reports Server (NTRS)
Davis, Donald R.; Ryan, Eileen V.
1990-01-01
Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.
Tensile Strength and Microstructure of Al2O3-ZrO2 Hypo-Eutectic Fibers Studied
NASA Technical Reports Server (NTRS)
Farmer, Serene C.; Sayir, Ali
2001-01-01
Oxide eutectics offer high-temperature strength retention and creep resistance in oxidizing environments. Al2O3-ZrO2 eutectic strengths have been studied since the 1970's. Directionally solidified oxide eutectics exhibit improved resistance to slow crack growth and excellent strength retention at high temperatures up to 1400 C. Materials studied typically contain Y2O3 to metastably retain the high-temperature cubic and tetragonal polymorphs at room temperature. Al2O3-ZrO2 is of fundamental interest for creep studies because it combines a creep-resistant material, Al2O3, with a very low creep resistance material, ZrO2. Results on mechanical properties and microstructures of these materials will be used to define compositions for creep testing in future work. Substantial variations from the eutectic alumina to zirconia ratio can be tolerated without a loss in room-temperature strength. The effect of increasing Y2O3 addition on the room-temperature tensile strength of an Al2O3-ZrO2 material containing excess Al2O3 was examined at the NASA Glenn Research Center, where the materials were grown using Glenn's world-class laser growth facilities.
Gerschutz, Maria J; Haynes, Michael L; Nixon, Derek M; Colvin, James M
2011-01-01
Prosthetic sockets serve as the interface between people with amputations and their prostheses. Although most materials used to make prosthetic sockets have been used for many years, knowledge of these materials' properties is limited, especially after they are subjected to fabrication processes. This study evaluated tensile and impact properties of the current state-of-the-art materials used to fabricate prosthetic check sockets, copolymer sockets, and definitive laminated sockets. Thermolyn Rigid and Orfitrans Stiff check socket materials produced significantly lower tensile strength and impact resistance than polyethylene terephthalate glycol (PETG). Copolymer socket materials exhibited greater resistance to impact forces than the check socket materials but lower tensile strengths than PETG. The heated molding processes, for the check socket and copolymer materials, reduced both tensile strength and elongation at break. Definitive laminated sockets were sorted according to fabrication techniques. Nyglass material had significantly higher elongation, indicating a more ductile material than carbon-based laminations. Carbon sockets with pigmented resin had higher tensile strength and modulus at break than nonpigmented carbon sockets. Elongation at yield and elongation at break were similar for both types of carbon-based laminations. The material properties determined in this study provide a foundation for understanding and improving the quality of prosthetic sockets using current fabrication materials and a basis for evaluating future technologies.
Reuse of solid petroleum waste in the manufacture of porcelain stoneware tile.
Pinheiro, B C A; Holanda, J N F
2013-03-30
This study investigates the incorporation of solid petroleum waste as raw material into a porcelain stoneware tile body, in replacement to natural kaolin material by up to 5 wt.%. Tile formulations containing solid petroleum waste were pressed and fired at 1240 °C by using a fast-firing cycle. The tile pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, and flexural strength), sintered microstructure, and leaching toxicity. The results therefore indicated that the growing addition of solid petroleum waste into tile formulations leads to a decrease of linear shrinkage, apparent density, and flexural strength, and to an increase of water absorption of the produced tile materials. It was also found that the replacement of kaolin with solid petroleum waste, in the range up to 2.5 wt.%, allows the production of porcelain stoneware tile (group BIa, ISO 13006 standard). All concentrations of Ag, As, Ba, Cd, Cr (total), Hg, and Pb of the fired porcelain stoneware tile pieces in the leachate comply with the current regulatory limits. These results indicate that the solid petroleum waste could be used for high-quality porcelain stoneware tile production, thus giving rise to a new possibility for an environmentally friendly management of this abundant waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
Magnetic iron oxides in the cementation technology of the boron-containing radioactive waste
NASA Astrophysics Data System (ADS)
Fedotov, M. A.; Gorbunova, O. A.; Fedorova, O. V.; Folmanis, G. E.; Kovalenko, L. V.
2015-04-01
Two ways of synthesis of non-detachable dispersed particles of magnetic materials useful for the boron-containing waste cementation process regulation were developed. Powder XRD showed that the method of carbothermic recovery of nanoscale iron hydroxide allows obtaining a mixture of iron oxides with content of the magnetic phase up to 70%. Method of low-temperature hydrogen reduction of the raw materials allows obtaining various compositions of a-iron and iron oxides with the possibility to change the size of the final particles in a wide range. The possibility of using composites of magnetic iron oxides and metal oxide compositions instead of ferromagnetic rods with VEP of boron-containing liquid radioactive waste in the fluidized field was studied. It was shown that the use of fine and nano particles of the iron oxides in the pre-treatment of the boron-containing LRW increases the strength of the final compounds and accelerates the cement setting compounds from 13 to 5-9 days.
Fiber-reinforced resin coating for endocrown preparations: a technical report.
Rocca, G T; Rizcalla, N; Krejci, I
2013-01-01
Coronal rehabilitation of endodontically treated posterior teeth is still a controversial issue. Although the use of classical crowns supported by radicular metal posts remains widespread in dentistry, their invasiveness has been largely criticized. New materials and therapeutic options based entirely on adhesion are available nowadays, from direct composite resins to indirect endocrowns. They allow for a more conservative, faster, and less expensive dental treatment. However, the absence of a metal or high-strength ceramic substructure as in full-crown restorations can expose this kind of restoration to a higher risk of irreversible fracture in case of crack propagation. The aim of this case report is to present a technique to reinforce the cavity of an endodontically treated tooth by incorporating a fiber-reinforced composite (FRC) layer into the resin coating of the tooth preparation, before the final impressions of the cavity. This technique allows the use of FRCs in combination with any kind of restorative material for an adhesive overlay/endocrown.
Thermoplastic composites for veneering posterior teeth-a feasibility study.
Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R
2002-09-01
This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.
NASA Technical Reports Server (NTRS)
Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.
2010-01-01
Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.
Adhesion of resin composite core materials to dentin.
O'Keefe, K L; Powers, J M
2001-01-01
This study determined (1) the effect of polymerization mode of resin composite core materials and dental adhesives on the bond strength to dentin, and (2) if dental adhesives perform as well to dentin etched with phosphoric acid as to dentin etched with self-etching primer. Human third molars were sectioned 2 mm from the highest pulp horn and polished. Three core materials (Fluorocore [dual cured], Core Paste [self-cured], and Clearfil Photo Core [light cured]) and two adhesives (Prime & Bond NT Dual Cure and Clearfil SE Bond [light cured]) were bonded to dentin using two dentin etching conditions. After storage, specimens were debonded in microtension and bond strengths were calculated. Scanning electron micrographs of representative bonding interfaces were analyzed. Analysis showed differences among core materials, adhesives, and etching conditions. Among core materials, dual-cured Fluorocore had the highest bond strengths. There were incompatibilities between self-cured Core Paste and Prime & Bond NT in both etched (0 MPa) and nonetched (3.0 MPa) dentin. Among adhesives, in most cases Clearfil SE Bond had higher bond strengths than Prime & Bond NT and bond strengths were higher to self-etched than to phosphoric acid-etched dentin. Scanning electron micrographs did not show a relationship between resin tags and bond strengths. There were incompatibilities between a self-cured core material and a dual-cured adhesive. All other combinations of core materials and adhesives produced strong in vitro bond strengths both in the self-etched and phosphoric acid-etched conditions.
Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics.
Albakry, Mohammad; Guazzato, Massimiliano; Swain, Michael Vincent
2004-09-01
This study evaluated the biaxial flexural strength and identified the crystalline phases and the microstructural features of pressed and repressed materials of the glass ceramics, Empress 1 and Empress 2. Twenty pressed and 20 repressed disc specimens measuring 14 mm x 1 mm per material were prepared following the manufacturers' recommendations. Biaxial flexure (piston on 3-ball method) was used to assess strength. X-ray diffraction was performed to identify the crystalline phases, and a scanning electron microscope was used to disclose microstructural features. Biaxial flexural strength, for the pressed and repressed specimens, respectively, were E1 [148 (SD 18) and 149 (SD 35)] and E2 [340 (SD 40), 325 (SD 60)] MPa. There was no significant difference in strength between the pressed and the repressed groups of either material, Empress 1 and Empress 2 (p > 0.05). Weibull modulus values results were E1: (8, 4.7) and E2: (9, 5.8) for the same groups, respectively. X-ray diffraction revealed that leucite was the main crystalline phase for Empress 1 groups, and lithium disilicate for Empress 2 groups. No further peaks were observed in the X-ray diffraction patterns of either material after repressing. Dispersed leucite crystals and cracks within the leucite crystals and glass matrix were features observed in Empress 1 for pressed and repressed samples. Similar microstructure features--dense lithium disilicate crystals within a glass matrix--were observed in Empress 2 pressed and repressed materials. However, the repressed material showed larger lithium disilicate crystals than the singly pressed material. Second pressing had no significant effect on the biaxial flexural strength of Empress 1 or Empress 2; however, higher strength variations among the repressed samples of the materials may indicate less reliability of these materials after second pressing.
Properties of indirect composites reinforced with monomer-impregnated glass fiber.
Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F
2012-07-01
Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination.
NASA Technical Reports Server (NTRS)
Choi, S. R.; Salem, J. A.
1992-01-01
The flexural strength and fracture toughness of 30 vol pct SiC whisker-reinforced Si3N4 material were determined as a function of temperature from 25 to 1400 C in an air environment. It was found that both strength and toughness of the composite material were almost the same as those of the monolithic counterpart. The room-temperature strength was retained up to 1100 C; however, appreciable strength degradation started at 1200 C and reached a maximum at 1400 C due to stable crack growth. In contrast, the fracture toughness of the two materials was independent of temperature with an average value of 5.66 MPa sq rt m. It was also observed that the composite material exhibited no rising R-curve behavior at room temperature, as was the case for the monolithic material. These results indicate that SiC whisker addition to the Si3N4 matrix did not provide any favorable effects on strength, toughness and R-curve behavior.
NASA Astrophysics Data System (ADS)
Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal
2017-01-01
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal
2017-01-28
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4 s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Erzar, Benjamin
2017-01-01
Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504
Multiscale modeling of shock wave localization in porous energetic material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less
Multiscale modeling of shock wave localization in porous energetic material
Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...
2018-01-30
Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spanos, George
2015-02-05
The Neutron and X-Ray Studies of Advanced Materials VII Symposium, held at the 2014, 143rd Annual Meeting of The Minerals, Metals, and Materials Society (TMS), brought together experts, young investigators, and students from this sub-discipline of materials science in order for them to share their latest discoveries and develop collaborations. This annual symposium, which is organized by The Minerals, Metals, and Materials Society, is an important event for this community of scientists. This year, over 100 high-level technical talks were delivered over the course of the four day event. In addition, the large number of students and young investigators inmore » attendance ensured the maximum benefit to the next generation’s work force in this area of study. The science surrounding the utilization of neutrons and x-rays to study advanced materials is becoming increasingly important in increasing the understanding of how the exceptional materials properties of such materials arise. In particular, x-rays and neutrons can be used to visualize material structures at an extremely high resolution and in some cases, three dimensions—allowing unprecedented insights into the mechanisms governing certain materials properties such as strength and toughness. Moreover, some of these techniques allow materials to be visualized without damaging the material, approaches known as non-destructive evaluation or “NDE”. This allows materials to be studied in 3 dimensions while undergoing change in real time which represents an important (and long sought-after) advancement in materials science. The types of interactions afforded by this event are beneficial to society at large primarily because they provide opportunities for the leaders within this field to learn from one another and thus improve the quality and productivity of their investigations. Additionally, the presence of young investigators and students with technical interests in this field provides promise that the United States will continue to be a leader in this area. The support provided by the Department of Energy for this event directly enhanced its impact on the field by helping a number of students, young investigators, and technical experts attend and participate in this event.« less
Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.
Luthringer, B J C; Ali, F; Akaichi, H; Feyerabend, F; Ebel, T; Willumeit, R
2013-10-01
Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this problem. This should improve healing processes, implant integration, and dynamic strength of implants retaining. Three Ti-6Al-4V materials were metal injection moulded and tailored porosities were effectively achieved. After microstructural and mechanical characterisation, two different primary cells of mesenchymal origin (human umbilical cord perivascular cells and human bone derived cells which revealed to be two pertinent models) as well as one cell line originated from primary osteogenic sarcoma, Saos-2, were bestowed to investigate cell-material interaction on genomic and proteome levels. Biological examinations disclosed that no material has negative impact on early adhesion, proliferation or cell viability. An efficient cell ingrowth into material with an average porosity of 25-50 μm was proved.
Statistical Analyses of Raw Material Data for MTM45-1/CF7442A-36% RW: CMH Cure Cycle
NASA Technical Reports Server (NTRS)
Coroneos, Rula; Pai, Shantaram, S.; Murthy, Pappu
2013-01-01
This report describes statistical characterization of physical properties of the composite material system MTM45-1/CF7442A, which has been tested and is currently being considered for use on spacecraft structures. This composite system is made of 6K plain weave graphite fibers in a highly toughened resin system. This report summarizes the distribution types and statistical details of the tests and the conditions for the experimental data generated. These distributions will be used in multivariate regression analyses to help determine material and design allowables for similar material systems and to establish a procedure for other material systems. Additionally, these distributions will be used in future probabilistic analyses of spacecraft structures. The specific properties that are characterized are the ultimate strength, modulus, and Poisson??s ratio by using a commercially available statistical package. Results are displayed using graphical and semigraphical methods and are included in the accompanying appendixes.
Spatiotemporally Resolved Acoustics in a Photoelastic Granular Material
NASA Astrophysics Data System (ADS)
Owens, Eli; Daniels, Karen
2010-03-01
In granular materials, stress transmission is manifested as force chains that propagate through the material in a branching structure. We send acoustic pulses into a two dimensional photoelastic granular material in which force chains are visible and investigate how the force chains influence the amplitude, speed, and dispersion of the sound waves. We observe particle scale dynamics using two methods, movies which provide spatiotemporally resolved measurements and accelerometers within individual grains. The movies allow us to visualize the sound's path through the material, revealing that the sound travels primarily along the force chains. Using the brightness of the photoelastic particles as a measure of the force chain strength, we observe that the sound travels both faster and at higher amplitude along the strong force chains. An exception to this trend is seen in transient force chains that only exist while the sound is closing particle contacts. We also measure the frequency dependence of the amplitude, speed, and dispersion of the sound wave.
High temperature ceramic interface study
NASA Technical Reports Server (NTRS)
Lindberg, L. J.
1984-01-01
Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.
Tu(r)ning weakness to strength: Mechanomutable bioinspired materials
2017-04-03
into Strength,” Bio-inspired Materials, Potsdam, Germany March 2012 - “Nonlinear behaviour of silk minimizes damage and begets spider web robustness...atoms to structures – how spiders turn weakness into strength,” Society of Engineering Science Meeting, Atlanta, GA Keynote Lecture October 2012...Georgia Tech, October 19, 2015, Atlanta, GA October 2015 DISTRIBUTION A: Distribution approved for public release. 8 - "Multiscale materials by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spachner, S.A.
1962-10-31
A container-sleeve-liner assembly was designed which will provide adequate support for ceramic, ceramic coated metal, or metal liners. The design minimizes mechanical property requirements of liner materials, and permits rapid removal of worn or damaged liners. A high-strength stem was designed and fabricated. Technical literature on high-strength materials was reviewed, and high-strength materials producers were contacted to locate sources and assess applicability of existing materials for refractory metal extrusion liner use. (auth)
Design protocols and analytical strategies that incorporate structural reliability models
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1995-01-01
In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.
Design protocols and analytical strategies that incorporate structural reliability models
NASA Astrophysics Data System (ADS)
Duffy, Stephen F.
1995-08-01
In spite of great improvements in accuracy through the use of computers, design methods, which can be equally critical in establishing the commercial success of a material, have been treated as afterthoughts. Early investment in design and development technologies can easily reduce manufacturing costs later in the product cycle. To avoid lengthy product development times for ceramic composites, funding agencies for materials research must commit resources to support design and development technologies early in the material life cycle. These technologies need not focus on designing the material, rather, the technology must focus on designing with the material, i. e., developing methods to design components fabricated from the new material. Thus a basic tenet that motivated this research effort is that a persistent need exists for improvements in the analysis of components fabricated from CMC material systems. From an aerospace design engineer's perspective the new generation of ceramic composites offers a significant potential for raising the thrust/weight ratio and reducing NOx emissions of gas turbine engines. Continuous ceramic fiber composites exhibit an increase in work of fracture, which allows for 'graceful' rather than catastrophic failure. When loaded in the fiber direction, these composites retain substantial strength capacity beyond the initiation of transverse matrix cracking despite the fact that neither of its constituents would exhibit such behavior if tested alone. As additional load is applied beyond first matrix cracking, the matrix tends to break in a series of cracks bridged by the ceramic fibers. Thus any additional load is born increasingly by the fibers until the ultimate strength of the composite is reached. Establishing design protocols that enable the engineer to analyze and predict this type of behavior in ceramic composites was the general goal of this project.
Hannig, Christian; Hahn, Petra; Thiele, Patrick-Philipp; Attin, Thomas
2003-01-01
Contamination of etched enamel with repair bond agents during repair of dental restorations may interfere with the bonding of composite to enamel. This study examined the bond strength of adhesive filling materials to etched bovine enamel after pre-treatment with the repair systems Monobond S, Silibond and Co-Jet. The materials Tetric Ceram, Dyract and Definite and their corresponding bonding agents (Syntac Single Comp, Prime & Bond NT, Etch and Prime) were tested in combination with the repair systems. One hundred and thirty-five enamel specimens were etched (37% phosphoric acid, 60 seconds) and equally distributed among three groups (A-C). In Group A, the repair materials were applied on etched enamel followed by applying the composite materials without using their respective bonding material. In Group B, the composite materials were placed on etched enamel after applying the repair materials and bonding agents. In control Group C, the composite materials and bonding agents were applied on etched enamel without using the repair systems. In each sub-group, every composite material was applied on 15 specimens. Samples were stored in artificial saliva for 14 days and thermocycled 1,000 times (5 degrees C/55 degrees C). The shear bond strength of the samples were then determined in a universal testing machine (ISO 10477). Applying Monobond or Silibond followed by the use of its respective bonding agents resulted in a bond strength that was not statistically different from the controls for all filling materials (Group C). The three composites that used Monobond and Silibond without applying the corresponding bonding agent resulted in bond strengths that were significantly lower than the controls. Utilizing the Co-Jet-System drastically reduced the bond strength of composites on etched enamel. Contamination of etched enamel with the repairing bonding agents Monobond and Silibond does not interfere with bond strength if the application of Monobond and Silibond is followed by using its corresponding bonding system of the composites tested.
Hu, Chen; Wang, Feng; Yang, Huiyong; Ai, Jun; Wang, Linlin; Jing, Dongdong; Shao, Longquan; Zhou, Xingui
2014-12-01
Currently used fibre-reinforced composite (FRC) intracanal posts possess low flexural strength which usually causes post fracture when restoring teeth with extensive loss. To improve the flexural strength of FRC, we aimed to apply a high-performance fibre, poly p-phenylene-2, 6-benzobisoxazole (PBO), to FRCs to develop a new intracanal post material. To improve the interfacial adhesion strength, the PBO fibre was treated with coupling agent (Z-6040), argon plasma, or a combination of above two methods. The effects of the surface modifications on PBO fibre were characterised by determining the single fibre tensile strength and interfacial shear strength (IFSS). The mechanical properties of PBO FRCs were characterised by flexural strength and flexural modulus. The cytotoxicity of PBO FRC was evaluated by the MTT assay. Fibres treated with a combination of Z-6040 and argon plasma possessed a significantly higher IFSS than untreated fibres. Fibre treated with the combination of Z-6040-argon-plasma FRC had the best flexural strength (531.51 ± 26.43MPa) among all treated fibre FRCs and had sufficient flexural strength and appropriate flexural moduli to be used as intracanal post material. Furthermore, an in vitro cytotoxicity assay confirmed that PBO FRCs possessed an acceptable level of cytotoxicity. In summary, our study verified the feasibility of using PBO FRC composites as new intracanal post material. Although the mechanical property of PBO FRC still has room for improvement, our study provides a new avenue for intracanal post material development in the future. To our knowledge, this is the first study to verify the feasibility of using PBO FRC composites as new intracanal post material. Our study provided a new option for intracanal post material development. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
van de Camp, W.; Dhallé, M. M. J.; Warnet, L.; Wessel, W. A. J.; Vos, G. S.; Akkerman, R.; ter Brake, H. J. M.
2017-02-01
The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural materials for the transport and storage of liquified gasses such as LNG. Combining different constituents in a laminate opens up the possibility to enhance its functionality, e.g. offering lower specific weight and increased damage tolerance. To explore this possibility, a test programme is underway at the University of Twente to study transverse crack initiation in different material combinations under combined thermal and mechanical loading. Specifically, the samples are tested in a three-point bending experiment at temperatures ranging from 77 to 293 K. These tests will serve as a validation of the model presented in this paper which, by incorporating temperature-dependent mechanical properties and differential thermal expansion, will allow to select optimal material combinations and laminate layouts. By combining the temperature-dependent mechanical properties and the differential thermal contraction explicitly, the model allows for a more accurate estimate of the resulting thermal stresses which can then be compared to the strength of the constituent materials.
NASA Astrophysics Data System (ADS)
Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.
Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.
Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander
2016-04-13
Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.
NASA Astrophysics Data System (ADS)
Spearing, S. Mark; Sinclair, Ian
2016-07-01
Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.
NASA Technical Reports Server (NTRS)
Hodges, W. T.; Tyeryar, J. R.; Berry, M.
1985-01-01
Bonded single overlap shear specimens were fabricated from Graphite/PEEK (Polyetheretherketone) composite adherends and titanium adherends. Six advanced thermoplastic adhesives were used for the bonding. The specimens were bonded by an electromagnetic induction technique producing high heating rates and high-strength bonds in a few minutes. This contrasts with conventionally heated presses or autoclaves that take hours to process comparable quality bonds. The Graphite/PEEK composites were highly resistant to delamination during the testing. This allowed the specimen to fail exclusively through the bondline, even at very high shear loads. Nondestructive evaluation of bonded specimens was performed ultrasonically by energizing the entire thickness of the material through the bondline and measuring acoustic impedance parameters. Destructive testing confirmed the unique ultrasonic profiles of strong and weak bonds, establishing a standard for predicting relative bond strength in subsequent specimens.
Inferences of Strength of Soil Deposits along MER Rover Traverses
NASA Astrophysics Data System (ADS)
Richter, L.; Schmitz, N.; Weiss, S.; Mer/Athena Team
As the two MER Mars Exploration Rovers ,Spirit' and ,Opportunity' traverse terrains within Gusev crater and at Meridiani Planum, respectively, they leave behind wheel tracks that are routinely imaged by the different sets of cameras as part of the Athena instrument suite. Stereo observations of these tracks reveal wheel sinkage depths which are diagnostic of the strength of the soil-like deposits crossed by the vehicles, and observations of track morphology at different imaging scales - including that of the Microscopic Imager - allow estimations of soil grain size distributions. This presentation will discuss results of systematic analyses of MER-A and -B wheel track observations with regard to solutions for soil bearing strength and soil shear strength. Data are analyzed in the context of wheel-soil theory calibrated to the shape of the MER wheel and by consulting comparisons with terrestrial soils. Results are applicable to the top ˜20-30 cm of the soil deposits, the depth primarily affected by the stress distribution under the wheels. The large number of wheel track observations per distance travelled enables investigations of variations of soil physical properties as a function of spatial scale, type of surface feature encountered, and local topography. Exploiting relationships between soil strength and degree of soil consolidation known from lunar regolith and dry terrestrial soils allows one to relate inferred soil strengths to bulk density. This provides a means to ground-truth radar Fresnel reflection coefficients obtained for the landing sites from Earth-based observations. Moreover, bulk density is correlated with soil dielectric constant, a parameter of direct relevance also for Mars-orbiting radars. The obtained estimates for soil bulk density are also used to determine local thermal conductivity of near-surface materials, based on correlations between the two quantities, and to subsequently estimate thermal inertia. This represents an independent method to provide ground truth to thermal inertia determined from orbital thermal measurements of the MER landing sites (MGS TES, MODY THEMIS, MEX PFS & OMEGA), in addition to thermal inertia retrievals from the Athena Mini-TES instrument. Key results suggest different types of soils as judged from their strength, with most materials encountered being similar in consistency to terrestrial sandy loams. Relatively looser soils have been identified on the slopes of crater walls and in local 1 soil patches of smooth appearance, being interpreted as deposits of unconsolidated dust-like soils. Bulk densities for the different soils vary between ˜1100 and ˜1500 kgm-3 . Results of chemical measurements are currently being exploited to relate soil strength to inferred enrichments in salts possibly acting as cementing agents. Thermal inertias of the soil component obtained from the bulk density estimates range between ˜130 and ˜150 Jm-2 s-1/2 K-1 for the MER-A Gusev site and between ˜130 and ˜140 Jm-2 s-1/2 K-1 for the MER-B Meridiani site. 2
A NEW APPROACH TO THE STUDY OF MUCOADHESIVENESS OF POLYMERIC MEMBRANES USING SILICONE DISCS.
Nowak, Karolina Maria; Szterk, Arkadiusz; Fiedor, Piotr; Bodek, Kazimiera Henryka
2016-01-01
The introduction of new test methods and the modification of existing ones are crucial for obtaining reliable results, which contributes to the development of innovative materials that may have clinical applications. Today, silicone is commonly used in medicine and the diversity of its applications are continually growing. The aim of this study is to evaluate the mucoadhesiveness of polymeric membranes by a method that modifies the existing test methods through the introduction of silicone discs. The matrices were designed for clinical application in the management of diseases within the oral cavity. The use of silicone discs allows reliable and reproducible results to be obtained, which allows us to make various tensometric measurements. In this study, different types of polymeric matrices were examined, as well as their crosslinking and the presence for the active pharmaceutical ingredient were compared to the pure dosage form. The lidocaine hydrochloride (Lid(HCl)) was used as a model active substance, due to its use in dentistry and clinical safety. The results were characterized by a high repeatability (RSD < 10.6%). The advantage of silicone material due to its mechanical strength, chemical and physical resistance, allowed a new test method using a texture analyzer to be proposed.
Tamping Mortars with Stabilizing and Plasticizing Admixtures
NASA Astrophysics Data System (ADS)
Terlyha, Volodymir; Sobol, Khrystyna
2012-06-01
Boreholes cementing operations at the depth of several kilometers requires the best technology as well as the best materials. To produce the materials satisfying all the requirements concerning the tamping works is possible using the technology of dry building mixes (DBM) prepared at the factories by thorough mixing of accurately dosed components. Using of chemical admixtures allows improving some properties of these mixes. In this work the influence of mineral fillers and chemical admixtures on the properties of the fresh mixture and hardened tamping mortar was investigated. It is established that introduction of the admixture with complex action on the basis of stabilizer Walocel 15-01 and plasticizer Melflux 2651 allows obtaining the fresh mixture with high spreadability. At the same time the value of dehydration approaches to zero which favorably effects on stabilization of fresh mixture and not allows the sedimentation processes to take place. By the X-ray analysis, the positive influence of modification admixtures on the hydration processes in the tamping mortars by activating them was identified. In the result of this, the formation of hydrate phases is accelerated; these phases tightly mud the pore area of tamping stone increasing by this its strength.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
Three distinct soillike materials sampled by the Viking landers (VL) on Mars are (in order of increasing strength): (1) drift; (2) crusty to cloddy; and (3) blocky. Relative strengths of these materials are manifested by footpad penetrations during landing (VL 1), depths of deep holes, motor currents during sampling, sampler backhoe penetrations, comminutor motor currents, impact pits, trench tailings, and successful acquisitions of the coarse fraction (only blocky material). Cementation by S Cl compounds probably contributes to the relative strengths. This is shown where the weight pct. of SO3 + Cl of each material is plotted against their relative strengths. A similar result is obtained using SO3 alone, but not with Cl which is deficient in VL 2 samples.
Development and mechanical properties of construction materials from lunar simulant
NASA Technical Reports Server (NTRS)
Desai, Chandra S.
1992-01-01
Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.
Yield strength measurement of shock-loaded metal by flyer-impact perturbation method
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Shi, Zhan
2018-06-01
Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.
Effect of human pancreatic juice and bile on the tensile strength of suture materials.
Muftuoglu, M A Tolga; Ozkan, Erkan; Saglam, Abdullah
2004-08-01
Several suture materials are used for pancreatojejunal anastomosis. In this study, we tested the durability of these suture materials in human pancreatic juice and bile. Plain and chromic catgut, polyglactin 910, polyglycolic acid, polydioxanone, polypropylene, and silk sutures were incubated in pancreatic juice and bile that was collected from patients. Fifteen samples of each type of suture material were placed in human juices for 1, 3, and 7 days. Tensile strengths were measured with a tensionmeter. Plain and chromic catgut disintegrated in pancreatic juice and pancreatic juice plus bile mixture. Polyglycolic acid and polyglactin 910 suture materials were vulnerable to pancreatic juice within 7 days. Polydioxanone retained most of its initial strength in pancreatic juice and bile. Polypropylene and silk retained 84% and 92% of their initial strength, respectively. We found that polidioxanone was the strongest suture material in pancreatic juice.
Engineering Properties and Correlation Analysis of Fiber Cementitious Materials
Lin, Wei-Ting; Wu, Yuan-Chieh; Cheng, An; Chao, Sao-Jeng; Hsu, Hui-Mi
2014-01-01
This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%), water/cement ratio (0.35 and 0.55) and steel fiber dosage (0.5%, 1.0% and 2.0%). The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result. PMID:28788256
Ha, Seung-Ryong; Yang, Jae-Ho; Lee, Jai-Bong; Han, Jung-Suk; Kim, Sung-Hun
2010-03-01
The purpose of this study was to investigate the diametral tensile strength of polymer-based temporary crown and fixed partial denture (FPD) materials, and the change of the diametral tensile strength with time. One monomethacrylate-based temporary crown and FPD material (Trim) and three dimethacrylate-based ones (Protemp 3 Garant, Temphase, Luxtemp) were investigated. 20 specimens (ø 4 mm × 6 mm) were fabricated and randomly divided into two groups (Group I: Immediately, Group II: 1 hour) according to the measurement time after completion of mixing. Universal Testing Machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed using one-way ANOVA, the multiple comparison Scheffe test and independent sample t test (α = 0.05). Trim showed severe permanent deformation without an obvious fracture during loading at both times. There were statistically significant differences among the dimethacrylate-based materials. The dimethacrylate-based materials presented an increase in strength from 5 minutes to 1 hour and were as follows: Protemp 3 Garant (23.16 - 37.6 MPa), Temphase (22.27 - 28.08 MPa), Luxatemp (14.46 - 20.59 MPa). Protemp 3 Garant showed the highest value. The dimethacrylate-based temporary materials tested were stronger in diametral tensile strength than the monomethacrylate-based one. The diametral tensile strength of the materials investigated increased with time.
Properties of five toughened matrix composite materials
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Dow, Marvin B.
1992-01-01
The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
NASA Astrophysics Data System (ADS)
Roberts, Stephen K.
Nanomaterials show immense promise for the future in numerous areas of application. Properties that are unique from the bulk material and are tunable allow for innovation in material design. This thesis will focus on controlling the physical properties of core/shell nanostructures to enhance the utility of the materials. The first focus is on the impact of different solvent mixtures during the shell growth phase of SILAR based core/shell quantum dot synthesis is studied. Gaining insight into the mechanism for SILAR growth of core/shell nanoparticles allows improved synthetic yields and precursor binding, providing enhanced control to synthesis of core/shell nanoparticles. The second focus of this thesis is exploring the use of magnetic nanoparticles for magnetic drug targeting for cardiovascular conditions. Magnetic targeting for drug delivery enables increased local drug concentration, while minimizing non-specific interactions. In order to be effective for magnetic targeting, it must be shown that low magnetic strength is sufficient to capture flowing nanoparticles. By demonstrating the binding of a therapeutic agent to the surface at medicinal levels, the viability for use as a nanoparticle drug delivery system is improved.
NASA Technical Reports Server (NTRS)
2001-01-01
A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.
Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments
White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...
2016-05-26
Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less
Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.
Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less
Garg, Sandeep
2016-01-01
Introduction Provisional restorations serve a key role as a functional and esthetic try-in for the design of the final prosthesis. During selection of materials for this restoration, clinicians must consider physical properties, ease of handling, cost and patient satisfaction and approval. Aim To evaluate and compare the flexural strength of provisional crown and bridge materials available commercially. Materials and Methods This in-vitro study was done to compare the flexural strength of six temporary crown and bridge materials available commercially at 24 hours, 8 days and after repair. Three poly methyl methacrylate based materials (DPI, SC10 and Trulon) and three bis-acrylic based composite resins (Protemp, Cooltemp and Luxatemp) were selected. A total of 72 specimens of dimensions 64mm×10mm×2.5mm were prepared from these materials (12 from each material) and divided into two groups (n=36). Specimens were stored in artificial saliva and were fractured after 24 hours and 8 days using Universal Testing Machine. The fractured samples from the 8 days study were then subjected to repair. A uniform space of 2mm and a 450 bevel was maintained for all the repaired samples for better distribution of forces. Flexural strength of these repaired samples was recorded using the same machine. Results were recorded and statistically analysed by one-way Anova and Post hoc tests. Result: Results revealed that there was decrease in flexural strength for all the materials tested from 24 hours to 8 days, though flexural strength between poly methyl methacrylate and bis-acrylic resins was similar at 24 hours and 8 days time interval. A substantial decrease was noticed in the strength of bis-acrylic composite resins after repair. Conclusion From the current study it can be suggested that though there is decrease in flexural strength for all the materials from 24 hours to 8 days, both can be used to fabricate the provisional restorations. However, in the event of a fracture of a bis-acrylic provisional restoration, it may be more advantageous to make a new provisional restoration than to repair the fractured one. PMID:27656568
Samadi, Firoza; Jaiswal, JN; Saha, Sonali
2014-01-01
ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300
Yi, Myong-Hee; Shim, Joon-Sung; Lee, Keun-Woo; Chung, Moon-Kyu
2009-07-01
Use of custom tray and tray adhesive is clinically recommended for elastomeric impression material. However there is not clear mention of drying time of tray adhesive in achieving appropriate bonding strength of tray material and impression material. This study is to investigate an appropriate drying time of tray adhesives by evaluating tensile bonding strength between two types of polyvinylsiloxane impression materials and resin tray, according to various drying time intervals of tray adhesives, and with different manufacturing company combination of impression material and tray adhesive. Adhesives used in this study were Silfix (Dentsply Caulk, Milford, Del, USA) and VPS Tray Adhesive (3M ESPE, Seefeld, Germany) and impression materials were Aquasil Ultra (monophase regular set, Dentsply Caulk, Milford, Del, USA) and Imprint II Garant (regular body, 3M ESPE, Seefeld, Germany). They were used combinations from the same manufacture and exchanged combinations of the two. The drying time was designed to air dry, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. Total 240 of test specimens were prepared by auto-polymerizing tray material (Instant Tray Mix, Lang, Wheeling, Il, USA) with 10 specimens in each group. The specimens were placed in the Universal Testing machine (Instron, model 3366, Instron Corp, University avenue, Nowood, MA, USA) to perform the tensile test (cross head speed 5 mm/min). The statistically efficient drying time was evaluated through ANOVA and Scheffe test. All the tests were performed at 95% confidence level. The results revealed that at least 10 minutes is needed for Silfix-Aquasil, and 15 minutes for VPS Tray Adhesive-Imprint II, to attain an appropriate tensile bonding strength. VPS Tray Adhesive-Imprint II had a superior tensile bonding strength when compared to Silfix-Aquasil over 15 minutes. Silfix-Aquasil had a superior bonding strength to VPS Tray Adhesive-Aquasil, and VPS Tray Adhesive-Imprint II had a superior tensile bonding strength to Silfix-Imprint II at all drying periods. Significant increase in tensile bonding strength with Silfix-Aquasil and VPS Tray adhesive-Imprint II combination until 10 and 15 minutes respectively. Tray adhesive-impression material combination from the same company presented higher tensile bonding strength at all drying time intervals than when using tray adhesive-impression material of different manufactures.
Microshear Bond Strength of Tri-Calcium Silicate-based Cements to Different Restorative Materials.
Cengiz, Esra; Ulusoy, Nuran
To evaluate the microshear bond strength of tri-calcium silicate-based materials to different restorative materials. Thirty-five disks of TheraCal LC and Biodentine were fabricated using teflon molds according to manufacturers' instructions. Then the specimens were randomly divided into 7 groups according to the materials applied: Fuji IX, Fuji II, Equia Fil, Vertise Flow, Filtek Bulk Fill Posterior Restorative, Filtek Z250 with Prime&Bond NT and with Clearfil SE Bond. All restorative materials were placed onto the disks using tygon tubes. Following a storage period, the specimens underwent microshear bond strength testing in a universal testing machine, and fracture modes were analyzed. Data were analyzed using one-way ANOVA and Tukey's post-hoc test. For all restorative materials, TheraCal LC showed significantly higher μSBS values compared to Biodentine. GIC based materials showed the lowest μSBS for TheraCal and Biodentine. For Biodentine, Filtek Z250 applied with Prime&Bond NT and Filtek Bulk Fill Posterior Restorative applied with Scotchbond Universal Adhesive exhibited the highest μSBS, while Filtek Z250 applied with Clearfil SE Bond revealed the highest bond strength to TheraCal LC. For all restorative materials tested in this study, TheraCal LC showed higher μSBS compared to Biodentine. For both TheraCal LC and Biodentine, the placement of GIC-based materials prior to composite resin restorations might decrease the bond strength. Composite resins applied with self-etching adhesives increased the bond strength of TheraCal LC; however, for Biodentine, application of etch-and-rinse adhesives may improve the adhesion of composite resins.
A Plasticity Model to Predict the Effects of Confinement on Concrete
NASA Astrophysics Data System (ADS)
Wolf, Julie
A plasticity model to predict the behavior of confined concrete is developed. The model is designed to implicitly account for the increase in strength and ductility due to confining a concrete member. The concrete model is implemented into a finite element (FE) model. By implicitly including the change in the strength and ductility in the material model, the confining material can be explicitly included in the FE model. Any confining material can be considered, and the effects on the concrete of failure in the confinement material can be modeled. Test data from a wide variety of different concretes utilizing different confinement methods are used to estimate the model parameters. This allows the FE model to capture the generalized behavior of concrete under multiaxial loading. The FE model is used to predict the results of tests on reinforced concrete members confined by steel hoops and fiber reinforced polymer (FRP) jackets. Loading includes pure axial load and axial load-moment combinations. Variability in the test data makes the model predictions difficult to compare but, overall, the FE model is able to capture the effects of confinement on concrete. Finally, the FE model is used to compare the performance of steel hoop to FRP confined sections, and of square to circular cross sections. As expected, circular sections are better able to engage the confining material, leading to higher strengths. However, higher strains are seen in the confining material for the circular sections. This leads to failure at lower axial strain levels in the case of the FRP confined sections. Significant differences are seen in the behavior of FRP confined members and steel hoop confined members. Failure in the FRP members is always determined by rupture in the composite jacket. As a result, the FRP members continue to take load up to failure. In contrast, the steel hoop confined sections exhibit extensive strain softening before failure. This comparison illustrates the usefulness of the concrete model as a tool for designers. Overall, the concrete model provides a flexible and powerful method to predict the performance of confined concrete.
Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo
2012-10-01
This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P < 0.05), whereas the PLB and CPB + Activator groups had the highest pre- and post-thermocycling bond strengths in ZR-PO-AB and ZR-PO-HF specimens. Among CON disks without opaque material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P < 0.05). Feldspathic porcelain coating of a Katana zirconia framework enhanced the bond strength of Estenia C&B indirect composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.
Rödiger, Matthias; Ziebolz, Dirk; Schmidt, Anne-Kathrin
2015-01-01
This case report describes the fabrication of monolithic all-ceramic restorations using zirconia-reinforced lithium silicate (ZLS) ceramics. The use of powder-free intraoral scanner, generative fabrication technology of the working model, and CAD/CAM of the restorations in the dental laboratory allows a completely digitized workflow. The newly introduced ZLS ceramics offer a unique combination of fracture strength (>420 MPa), excellent optical properties, and optimum polishing characteristics, thus making them an interesting material option for monolithic restorations in the digital workflow. PMID:26509088
Shockless spalling damage of alumina ceramic
NASA Astrophysics Data System (ADS)
Erzar, B.; Buzaud, E.
2012-05-01
Ceramic materials are commonly used to build multi-layer armour. However reliable test data is needed to identify correctly models and to be able to perform accurate numerical simulation of the dynamic response of armour systems. In this work, isentropic loading waves have been applied to alumina samples to induce spalling damage. The technique employed allows assessing carefully the strain-rate at failure and the dynamic strength. Moreover, specimens have been recovered and analysed using SEM. In a damaged but unbroken specimen, interactions between cracks has been highlighted illustrating the fragmentation process.
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
Elsaka, Shaymaa E
2014-12-01
To evaluate the effect of different surface treatments on the microtensile bond strength (μTBS) of novel CAD/CAM restorative materials to self-adhesive resin cement. Two types of CAD/CAM restorative materials (Vita Enamic [VE] and Lava Ultimate [LU]) were used. The specimens were divided into five groups in each test according to the surface treatment performed; Gr 1 (control; no treatment), Gr 2 (sandblasted [SB]), Gr 3 (SB+silane [S]), Gr 4 (hydrofluoric acid [HF]), and Gr 5 (HF+S). A dual-curing self-adhesive resin cement (Bifix SE [BF]) was applied to each group for testing the adhesion after 24 h of storage in distilled water or after 30 days using the μTBS test. Following fracture testing, specimens were examined with a stereomicroscope and SEM. Surface roughness and morphology of the CAD/CAM restorative materials were characterized after treatment. Data were analyzed using ANOVA and Tukey's test. The surface treatment, type of CAD/CAM restorative material, and water storage periods showed a significant effect on the μTBS (p<0.001). For the LU/BF system, there was no significant difference in the bond strength values between different surface treatments (p>0.05). On the other hand, for the VE/BF system, surface treatment with HF+S showed higher bond strength values compared with SB and HF surface treatments (p<0.05). Surface roughness and SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. The effect of surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement is material dependent. The VE/BF CAD/CAM material provided higher bond strength values compared with the LU/BF CAD/CAM material.
Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, Bonnie R.
2004-11-01
The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less
Material strength measured by flyer-impact perturbation method
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Asimow, Paul; Fatyanov, Oleg; Liu, Fusheng
2017-06-01
Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-plate impacts experiments on targets with machined grooves on the impact surface to shock aluminum to between 32 and 71 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins and fibers. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of aluminum to be 1.3-3.1 GPa. These results are in agreement with values obtained from reshock and release wave profiles as well as the result deduced from the SCG model. We conclude that the flyer-impact perturbation method is indeed a reliable means to measure material strength. This work was supported by the National Natural Science Foundation of China (Grant No. 41674088) and the State Scholarship Fund of China Scholarship Council.
Composite Materials for Low-Temperature Applications
NASA Technical Reports Server (NTRS)
2008-01-01
Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.
Strength enhancement process for prealloyed powder superalloys
NASA Technical Reports Server (NTRS)
Waters, W. J.; Freche, J. C.
1977-01-01
A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.
Strong tissue glue with tunable elasticity.
Kelmansky, Regina; McAlvin, Brian J; Nyska, Abraham; Dohlman, Jenny C; Chiang, Homer H; Hashimoto, Michinao; Kohane, Daniel S; Mizrahi, Boaz
2017-04-15
Many bio-adhesive materials adhere weakly to tissue due to their high water content and weak structural integrity. Others provide desirable adhesive strength but suffer from rigid structure and lack of elasticity after administration. We have developed two water-free, liquid four-armed PEG pre-polymers modified with NHS or with NH 2 end groups which upon mixing changed from liquids to an elastic solid. The sealant and adhesive properties increased with the amount of the %v/v PEG 4 -NHS pre-polymer, and achieved adhesive properties comparable to those of cyanoacrylate glues. All mixtures showed minimal cytotoxicity in vitro. Mixtures of 90%v/v PEG 4 -NHS were retained in the subcutaneous space in vivo for up to 14days with minimal inflammation. This material's combination of desirable mechanical properties and biocompatibility has potential in numerous biomedical applications. Many bio-adhesive materials adhere weakly to tissue (e.g. hydrogels) due to their high water content and weak structural integrity. Others provide desirable mechanical properties but suffer from poor biocompatibility (e.g. cyanoacrylates). This study proposes a new concept for the formation of super strong and tunable tissue glues. Our bio-materials' enhanced performance is the product of new neat (without water or other solvents) liquid polymers that solidify after administration while allowing interactions with the tissue. Moreover, the elastic modulus of these materials could easily be tuned without compromising biocompatibility. This system could be an attractive alternative to sutures and staples since it can be applied more quickly, causes less pain and may require less equipment while maintaining the desired adhesion strength. Copyright © 2017 Acta Materialia Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.
2014-06-01
It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.
3D Printing of Advanced Biocomposites on Earth and Beyond
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Gentry, Diana M.; Micks, Ashley
2015-01-01
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology can greatly enhance and expand life's evolved repertoire. Using natural and synthetically altered organisms as the feedstock for additive manufacturing could one day make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. To this end our lab has produced a proof-of-concept bioprinter with nearly one-cell resolution. Genetically engineering yeast cells to secrete bioproducts subsequent to printing allows the potential to make biomaterials with a fine microstructure. Imagine a production system that, at a few micron scale resolution, can add mollusk shell for compressive strength per unit mass, spider silk or collagen for tensile strength per unit mass, and potentially biologically-deposited wires. Now imagine what new products can be enabled by such a technology, on earth or beyond
3D Printing of Advanced Biocomposites on Earth and Beyond
NASA Technical Reports Server (NTRS)
Rothschild, Lynn J.; Gentry, Diana; Micks, Ashley
2014-01-01
Human exploration off planet is severely limited by the cost of launching materials into space and re-supply. Thus materials brought from earth must be light, stable and reliable at destination. Using traditional approaches a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because it can replicate and repair itself, and do a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology can greatly enhance and expand life's evolved repertoire. Using natural and synthetically altered organisms as the feedstock for additive manufacturing could one day make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. To this end our lab has produced a proof-of-concept bioprinter with nearly one-cell resolution. Genetically engineering yeast cells to secrete bioproducts subsequent to printing allows the potential to make biomaterials with a fine microstructure. Imagine a production system that, at a few micron scale resolution, can add mollusk shell for compressive strength per unit mass, spider silk or collagen for tensile strength per unit mass, and potentially biologically-deposited wires. Now imagine what new products can be enabled by such a technology, on earth or beyond.
Simultaneous thermal analysis and thermodilatometry of hybrid fiber reinforced UHPC
NASA Astrophysics Data System (ADS)
Scheinherrová, Lenka; Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2017-07-01
Development of concrete technology and the availability of variety of materials such as silica fume, mineral microfillers and high-range water-reducing admixtures make possible to produce Ultra-High Performance Concrete (UHPC) with compressive strength higher than 160 MPa. However, UHPC is prone to spall under high temperatures what limits its use for special applications only, such as offshore and marine structures, industrial floors, security barriers etc. The spalling is caused by the thermal stresses due to the temperature gradient during heating, and by the splitting force owing to the release of water vapour. Hybrid fibre reinforcement based on combination of steel and polymer fibres is generally accepted by concrete community as a functional solution preventing spalling. In this way, Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) is produced possessing high mechanical strength, durability and resistance to water and salt ingress. Since UHPFRC find use in construction industry in tunnel linings, precast tunnel segments, and high-rise buildings, its behaviour during the high-temperature exposure and its residual parameters are of the particular importance. On this account, Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) were done in the paper to identify the structural and chemical changes in UHPFRC during its high-temperature load. Based on the experimental results, several physical and chemical processes that studied material underwent at high-temperatures were recognized. The obtained data revealed changes in the composition of the studied material and allowed identification of critical temperatures for material damage.
NASA Astrophysics Data System (ADS)
Yalavarthy, Harshavardhan
Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases of same-alloy FSW of two Aluminum-alloy grades: (a) AA5083 (a solid-solution strengthened and strain-hardened/stabilized Al-Mg-Mn alloy); and (b) AA2139 (a precipitation hardened quaternary Al-Cu-Mg-Ag alloy). Both of these alloys are currently being used in military-vehicle hull structural and armor systems. In the case of non-age-hardenable AA5083, the dominant microstructure evolution processes taking place during FSW are extensive plastic deformation and dynamic recrystallization of highly-deformed material subjected to elevated temperatures approaching the melting temperature. To account for the competition between plastic-deformation controlled strengthening and dynamic-recrystallization induced softening phenomena during the FSW process, the original Johnson-Cook strain- and strain-rate hardening and temperature-softening material strength model is modified in the present work using the available recrystallization-kinetics experimental data. In the case of AA2139, in addition to plastic deformation and dynamic recrystallization, precipitates coarsening, over-aging, dissolution and re-precipitation had to be also considered. Limited data available in the open literature pertaining to the kinetics of the aforementioned microstructure-evolution processes are used to predict variation in the material hardness and the residual stresses throughout the various FSW zones of the two alloys. The results showed that with proper modeling of the material behavior under high-temperature/severe-plastic-deformation conditions, significantly improved agreement can be attained between the computed and measured post-FSW residual-stress and material-strength distribution results. Keywords: Friction Stir Welding; AA5083; AA2139; Johnson-Cook Strength Model; Finite Element Analysis; Hardness Prediction.
NASA Astrophysics Data System (ADS)
Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.
2006-12-01
The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.
Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering
NASA Astrophysics Data System (ADS)
Liu, Fwu-Hsing
2014-10-01
In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.
Deformation behavior of human enamel and dentin-enamel junction under compression.
Zaytsev, Dmitry; Panfilov, Peter
2014-01-01
Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.
Polymer ceramic composite that follows the rules of bone growth
NASA Astrophysics Data System (ADS)
Dry, Carolyn M.; Warner, Carrie
1998-07-01
Research at the University of Illinois School of Architecture Material's Lab is being done on a biomimetic building material with the unique properties of bone. This polymer/ceramic composite will mimic bone by controlling the (1) the structure and form of the material, (2) chemical makeup and sequencing of fabrication, (3) ability to adapt to environmental changes during fabrication, and (4) ability to later adapt and repair itself. Bones and shells obtain their great toughness and strength as a result of careful control of these four factors. The organic fibers are made first and the matrix grown around them as opposed to conventional ceramics in which any fibers are added to the matrix. Constituents are also placed in the material which allow it to later adapt to outside changes. The rules under which bone material naturally forms and adapts, albeit at a macroscale, are followed. Our efforts have concentrated on the chemical makeup, and basic sequencing of fabrication. Our research sought to match the intimate connection between material phases of bone by developing the chemical makeup.
Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean
2012-07-01
The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p < 0.0001) than the other two subgroups (subgroups 1.5C and 0.8C). For the ZirCAD group, the 0.8C-0.7VL subgroup had significantly lower flexural strength (p= 0.004) than subgroup 0.8C-0.7VP. Nonetheless, both veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p < 0.0001) than Empress Esthetic/CAD groups. Monolithic core specimens presented with higher Weibull modulus with all selected core materials. For the ZirCAD group, although the bilayer 0.8C-0.7VL subgroup exhibited significantly lower flexural strength, it had highest Weibull modulus than the 0.8C-0.7VP subgroup. The present study suggests that veneering porcelain onto a ceramic core material diminishes the flexural strength and the reliability of the bilayer specimens. Leucite-reinforced glass-ceramic cores have lower flexural strength than lithium-disilicate ones, while fabrication techniques (heat-pressed or CAD/CAM) and specimen thicknesses do not affect the flexural strength of all glass ceramics. Compared with the heat-pressed veneering technique, the powder/liquid veneering technique exhibited lower flexural strength but increased reliability with a higher Weibull modulus for zirconia bilayer specimens. Zirconia-veneered ceramics exhibited greater flexural strength than monolithic leucite-reinforced and lithium-disilicate ceramics regardless of zirconia veneering techniques (heat-pressed or powder/liquid technique). © 2012 by the American College of Prosthodontists.
Palitsch, Anne; Hannig, Matthias; Ferger, Paul; Balkenhol, Markus
2012-03-01
The connection between resin denture teeth and the denture base is essential for the integrity of partial and full dentures. The aim of the present study was to analyse the bond strength of acrylic denture teeth to two light curing denture base materials compared to the gold-standard (MMA/PMMA) using different conditioning liquids. The ridge laps of 220 identical denture teeth were ground and pre-treated using different conditioning liquids (MMA, an experimental conditioning liquid as well as the two commercially available liquids Palabond and Versyo.bond). The denture base materials (PalaXpress, Versyo.com, Eclipse) were applied using a split mould to obtain tensile bond strength specimens of identical shape. Ten specimens per test group were either stored in water for 24h or thermocycled (5000×, 5-55°C) prior to tensile bond strength testing (cross-head speed 10mm/min). Data was subjected to parametric statistics (α=0.05). The three-way ANOVA revealed a significant influence of the material, pre-treatment as well as the storage. PalaXpress showed the highest bond strength (24.3MPa) of all materials tested after TC, whereas the use of MMA led to the most constant results. Lower values were recorded for Versyo.com (17.5MPa) and Eclipse (10.4MPa) bonded with Versyo.bond. The results indicate that MMA/PMMA based denture base resins provide reliable and durable bond strength to acrylic denture teeth. Using light-curing denture base materials requires the application of appropriate conditioning liquids to obtain acceptable bond strength. The use of MMA affects bond strength to light-curing denture base materials. The pre-treatment of denture teeth is critical regarding their bond-strength to denture base materials and in turn for the integrity of removable full and partial dentures. Light-curing denture base resins are more sensitive to the correct tooth pre-treatment compared to conventional MMA/PMMA materials, requiring specific conditioning liquids. Copyright © 2011 Elsevier Ltd. All rights reserved.
Takeda, Hayami; Hashimoto, Shinobu; Yokoyama, Hiroaki; Honda, Sawao; Iwamoto, Yuji
2013-01-01
Zeolite-geopolymer hybrid materials have been formed when kaolin was used as a starting material. Their characteristics are of interest because they can have a wide pore size distribution with micro- and meso-pores due to the zeolite and geopolymer, respectively. In this study, Zeolite-geopolymer hybrid bulk materials were fabricated using four kinds of kaolinitic clays (a halloysite and three kinds of kaolinite). The kaolinitic clays were first calcined at 700 °C for 3 h to transform into the amorphous aluminosilicate phases. Alkali-activation treatment of the metakaolin yielded bulk materials with different amounts and types of zeolite and different compressive strength. This study investigated the effects of the initial kaolinitic clays on the amount and types of zeolite in the resultant geopolymers as well as the strength of the bulk materials. The kaolinitic clays and their metakaolin were characterized by XRD analysis, chemical composition, crystallite size, 29Si and 27Al MAS NMR analysis, and specific surface area measurements. The correlation between the amount of zeolite formed and the compressive strength of the resultant hybrid bulk materials, previously reported by other researchers was not positively observed. In the studied systems, the effects of Si/Al and crystalline size were observed. When the atomic ratio of Si/Al in the starting kaolinitic clays increased, the compressive strength of the hybrid bulk materials increased. The crystallite size of the zeolite in the hybrid bulk materials increased with decreasing compressive strength of the hybrid bulk materials. PMID:28809241
NASA Astrophysics Data System (ADS)
Vlassov, Sergei; Polyakov, Boris; Vahtrus, Mikk; Mets, Magnus; Antsov, Mikk; Oras, Sven; Tarre, Aivar; Arroval, Tõnis; Lõhmus, Rünno; Aarik, Jaan
2017-12-01
The proper choice of coating materials and methods in core-shell nanowire (NW) engineering is crucial to assuring improved characteristics or even new functionalities of the resulting composite structures. In this paper, we have reported electron-beam-induced reversible elastic-to-plastic transition in Ag/Al2O3 and Au/Al2O3 NWs prepared by the coating of Ag and Au NWs with Al2O3 by low-temperature atomic layer deposition. The observed phenomenon enabled freezing the bent core-shell NW at any arbitrary curvature below the yield strength of the materials and later restoring its initially straight profile by irradiating the NW with electrons. In addition, we demonstrated that the coating efficiently protects the core material from fracture and plastic yield, allowing it to withstand significantly higher deformations and stresses in comparison to uncoated NW.
Nano-Composite Material Development for 3-D Printers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satches, Michael Randolph
Graphene possesses excellent mechanical properties with a tensile strength that may exceed 130 GPa, excellent electrical conductivity, and good thermal properties. Future nano-composites can leverage many of these material properties in an attempt to build designer materials for a broad range of applications. 3-D printing has also seen vast improvements in recent years that have allowed many companies and individuals to realize rapid prototyping for relatively low capital investment. This research sought to create a graphene reinforced, polymer matrix nano-composite that is viable in commercial 3D printer technology, study the effects of ultra-high loading percentages of graphene in polymer matricesmore » and determine the functional upper limit for loading. Loadings varied from 5 wt. % to 50 wt. % graphene nanopowder loaded in Acrylonitrile Butadiene Styrene (ABS) matrices. Loaded sample were characterized for their mechanical properties using three point bending, tensile tests, as well as dynamic mechanical analysis.« less
High-Temperature Graphite/Phenolic Composite
NASA Technical Reports Server (NTRS)
Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.
1995-01-01
Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.
Approaches to New Endcaps for Improved Oxidation Resistance
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Frimer, Aryeh A.
1999-01-01
Norbornenyl-end capped PMR polyimide resins are widely used as polymer matrix composite materials for aircraft engine applications, since they combine ease of processing with good oxidative stability up to 300 C. PMR resins are prepared by a two-step approach involving the initial formation of oligomeric pre-polymers capped at both ends by a latent reactive end cap. The end cap undergoes cross-linking during higher temperature processing, producing the desired low density, high specific strength materials, for PMR- 15. The end cap facilitates processing by controlling the molecular weight of the oligomer and allowing flow before it cross-links. However, after cross-linking, this very end cap accounts for much of the weight loss in the polymer on aging in air at elevated temperatures. Understanding this degradation provides clues for designing new end caps to slow down degradation, and prolong the lifetime of the material.
Sintering Behavior of Hypereutectic Aluminum-Silicon Metal Matrix Composites Powder
NASA Astrophysics Data System (ADS)
Rudianto, Haris; Sun, Yang Sang; Jin, Kim Yong; Woo, Nam Ki
Lightweight materials of Aluminum-Silicon P/M alloys offer the advantage of high-wear resistance, high strength, good temperature resistance, and a low coefficient of thermal expansion. An A359 MMC alloy was mixed together with Alumix 231 in this research. Powders were compacted with compaction pressure up to 700 MPa. Particle size and compaction pressure influenced green density. Compacted powders were sintered in a tube furnace under a flowing nitrogen gas. Sintering temperature, heating rate and sintering time were verified to determine best sintering conditions of the alloys. Chemical composition also contributed to gain higher sintered density. Precipitation strengthening method was used to improve mechanical properties of this materials.T6 heat treatment was carried out to produce fine precipitates to impede movement of dislocation. The chemical composition of this materials allow for the potential formation of several strengthening precipitates including θ (Al2Cu) and β (Mg2Si).
Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J
2011-01-01
Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.
Method for nanomachining high aspect ratio structures
Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.
2004-11-09
A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.
New technology and energy-saving equipment for production of composite materials
NASA Astrophysics Data System (ADS)
Romanovich, A. A.; Glagolev, S. N.; Babaevsky, A. N.
2018-03-01
The article considers industrial technology and energy-saving equipment for cement and composite binder production with a reduction in energy intensity of the process up to 50% due to the synergetic effect during mechanic activation of the raw mix with the replacement of part of the clinker component with the mineral hydro-active additive. The technological process is based on the sequential introduction of components in dispersed phases into the feed mixture in the grinding path and at the stage of product separation with certain dispersed characteristics. The increase in the energy efficiency of the line is achieved by the joint operation of the press roller aggregate, which is the development of BSTU named after V.G. Shoukhov, and rotor-vortex mills of a very fine grinding of a new design. The experienced design of the aggregate with the device for deagglomeration of the pressed tape allows combining the processes of grinding and disaggregation of the pressed material, thereby reducing the operating costs and increasing the efficiency of using the grinding unit. Comparative tests of cement samples obtained in energy-saving aggregates (PRA + RVM) are given which allowed establishing that their beam strength for compression and bending is higher by 15-20% than the traditional method obtained in a ball mill. An analytical expression is also given that allows one to determine the power consumed for the deagglomeration of crushed and pressed material between the main rolls, taking into account the geometric dimensions of the rolls and the physico-mechanical characteristics of the material.
NASA Astrophysics Data System (ADS)
Annen, Hans Philipp; Fu, Ling; Leutz, Ralf; González, Luis; Mbakop, Jehu
2011-09-01
The CPV community is still undecided on one critical issue: what material to use best for Fresnel lens parquets. Reliability and longevity are the most important, but all other properties play roles as well. We have developed and manufactured Fresnel lenses with the two commonly used materials: PMMA (Polymethylmethacrylate) and silicone on glass (SOG). Both lenses are designed for the same optical train for best comparability. This allows for better understanding the pros and cons of the materials and making an informed choice for a specific CPV module. While PMMA lenses are embossed from pre-fab sheets in a hot-cold process, the silicone lenses are cast from a heat-curing silicone rubber at moderate temperatures, reducing the energy consumption. PMMA allows for the inclusion of custom low-profile 3D (2.5D) structures for module assembly and mechanical alignment, a feature not possible in silicone due to its low rigidity. Both lenses suffer from thermal expansion and refractive index change. While PMMA parquets expand isotropically, SOG prisms deform due to the difference of expansion coefficients between the glass and the silicone. SOG lenses are prone to delamination of the silicone film. The adhesive strength of the film to the glass can be measured using a modified blister test that we developed. The results show large difference with different materials and confirm the necessity of controlling this issue closely. While the small thermal expansion of the glass sheets allows for larger parquet sizes, the deformation of the prisms with temperature may cause a performance hit.
Bonding Effectiveness of Luting Composites to Different CAD/CAM Materials.
Peumans, Marleen; Valjakova, Emilija Bajraktarova; De Munck, Jan; Mishevska, Cece Bajraktarova; Van Meerbeek, Bart
To evaluate the influence of different surface treatments of six novel CAD/CAM materials on the bonding effectiveness of two luting composites. Six different CAD/CAM materials were tested: four ceramics - Vita Mark II; IPS Empress CAD and IPS e.max CAD; Celtra Duo - one hybrid ceramic, Vita Enamic, and one composite CAD/CAM block, Lava Ultimate. A total of 60 blocks (10 per material) received various mechanical surface treatments: 1. 600-grit SiC paper; 2. sandblasting with 30-μm Al2O3; 3. tribochemical silica coating (CoJet). Subsequent chemical surface treatments involved either no further treatment (control), HF acid etching (HF), silanization (S, or HF acid etching followed by silanization (HF+S). Two specimens with the same surface treatment were bonded together using two dual-curing luting composites: Clearfil Esthetic Cement (self-etching) or Panavia SA Cement (self-adhesive). After 1 week of water storage, the microtensile bond strength of the sectioned microspecimens was measured and the failure mode was evaluated. The bonding performance of the six CAD/CAM materials was significantly influenced by surface treatment (linear mixed models, p < 0.05). The luting cement had a significant influence on bond strength for Celtra Duo and Lava Ultimate (linear mixed models, p < 0.05). Mechanical surface treatment significantly influenced the bond strength for Celtra Duo (p = 0.0117), IPS e.max CAD (p = 0.0115), and Lava Ultimate (p < 0.0001). Different chemical surface treatments resulted in the highest bond strengths for the six CAD/CAM materials: Vita Mark II and IPS Empress CAD: S, HF+S; Celtra Duo: HF, HF+S; IPS e.max CAD: HF+S; Vita Enamic: HF+S, S. For Lava Ultimate, the highest bond strengths were obtained with HF, S, HF+S. Failure analysis showed a relation between bond strength and failure type: more mixed failures were observed with higher bond strengths. Mainly adhesive failures were noticed if no further surface treatment was done. The percentage of adhesive failures was higher for CAD/CAM materials with higher flexural strength (Celtra Duo, IPS e.max CAD, and Lava Ultimate). The bond strength of luting composites to novel CAD/CAM materials is influenced by surface treatment. For each luting composite, an adhesive cementation protocol can be specified in order to obtain the highest bond to the individual CAD/CAM materials.
Systems design of transformation toughened blast-resistant naval hull steels
NASA Astrophysics Data System (ADS)
Saha, Arup
A systems approach to computational materials design has demonstrated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (Cv > 85 ft-lbs (115 J) corresponding to KId > 200 ksi.in1/2 (220 MPa.m1/2)) at strength levels of 150--180 ksi (1034--1241 MPa) yield strength in weldable, formable plate steels. A theoretical design concept was explored integrating the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M2C carbides and BCC copper both at an optimal ˜3nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M2C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability. Hardness and tensile tests conducted on the designed prototype confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 60% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microscopy. Charpy impact tests and fractography demonstrate ductile fracture with C v > 90 ft-lbs (122 J) down to -40°C, with a substantial toughness peak at 25°C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels.
Compression response of thick layer composite laminates with through-the-thickness reinforcement
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Smith, Barry T.; Maiden, Janice
1992-01-01
Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.
Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick
2008-12-01
A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.
Rodriguez, Lucas C.; Chari, Jonathan; Aghyarian, Shant; Gindri, Izabelle M.; Kosmopoulos, Victor; Rodrigues, Danieli C.
2014-01-01
Powder-liquid poly (methyl methacrylate) (PMMA) bone cements are widely utilized for augmentation of bone fractures and fixation of orthopedic implants. These cements typically have an abundance of beneficial qualities, however their lack of bioactivity allows for continued development. To enhance osseointegration and bioactivity, calcium phosphate cements prepared with hydroxyapatite, brushite or tricalcium phosphates have been introduced with rather unsuccessful results due to increased cement viscosity, poor handling and reduced mechanical performance. This has limited the use of such cements in applications requiring delivery through small cannulas and in load bearing. The goal of this study is to design an alternative cement system that can better accommodate calcium-phosphate additives while preserving cement rheological properties and performance. In the present work, a number of brushite-filled two-solution bone cements were prepared and characterized by studying their complex viscosity-versus-test frequency, extrusion stress, clumping tendency during injection through a syringe, extent of fill of a machined void in cortical bone analog specimens, and compressive strength. The addition of brushite into the two-solution cement formulations investigated did not affect the pseudoplastic behavior and handling properties of the materials as demonstrated by rheological experiments. Extrusion stress was observed to vary with brushite concentration with values lower or in the range of control PMMA-based cements. The materials were observed to completely fill pre-formed voids in bone analog specimens. Cement compressive strength was observed to decrease with increasing concentration of fillers; however, the materials exhibited high enough strength for consideration in load bearing applications. The results indicated that partially substituting the PMMA phase of the two-solution cement with brushite at a 40% by mass concentration provided the best combination of the properties investigated. This alternative material may find applications in systems requiring highly injectable and viscous cements such as in the treatment of spinal fractures and bone defects. PMID:28788212
Failure analysis of thick composite cylinders under external pressure
NASA Technical Reports Server (NTRS)
Caiazzo, A.; Rosen, B. W.
1992-01-01
Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.
Standard methods for filled hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.
Strength gradient enhances fatigue resistance of steels
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian
2016-02-01
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.
Strength gradient enhances fatigue resistance of steels
Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian
2016-01-01
Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708
Mechanical properties of new dental pulp-capping materials.
Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S
2016-01-01
The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time.
Noda, Yukari; Nakajima, Masatoshi; Takahashi, Masahiro; Mamanee, Teerapong; Hosaka, Keiichi; Takagaki, Tomohiro; Ikeda, Masaomi; Foxton, Richard M; Tagami, Junji
2017-11-29
This study evaluated the effects of ceramic surface treatment agents on shear bond strengths to ceramic materials with and without thermocycling. Ceramic plates were prepared from feldspathic ceramic; AAA, lithium disilicate ceramic material; IPS e.max Press, zirconia ceramic; Lava. Ceramic surfaces were pretreated with one of five surface treatment agents (Clearfil PhotoBond mixed with Porcelainbond activator (PB), Clearfil SE One mixed with Porcelainbond activator (SO), Ceramic Primer (CP), Universal Primer (UP), Scotchbond Universal (SU)), and then a resin cement (Clapearl DC) was filled. After 0, 5,000, and 10,000 thermocycles, micro-shear bond strengths between ceramic-cement interfaces were determined. SU exhibited significantly lower initial bond strength to AAA and e.max than PB, SO, CP, and UP. For Lava, PB, SO, CP and SU exhibited higher initial bond strengths than UP. Thermocycles reduced bond strengths to all the ceramic materials with any surface treatment.
Surface dynamics of amorphous polymers used for high-voltage insulators.
Shemella, Philip T; Laino, Teodoro; Fritz, Oliver; Curioni, Alessandro
2011-11-24
Amorphous siloxane polymers are the backbone of high-voltage insulation materials. The natural hydrophobicity of their surface is a necessary property for avoiding leakage currents and dielectric breakdown. As these surfaces are exposed to the environment, electrical discharges or strong mechanical impact can temporarily destroy their water-repellent properties. After such events, however, a self-healing process sets in and restores the original hydrophobicity within some hours. In the present study, we investigate possible mechanisms of this restoration process. Using large-scale, all-atom molecular dynamics simulations, we show that molecules on the material surface have augmented motion that allows them to rearrange with a net polarization. The overall surface region has a net orientation that contributes to hydrophobicity, and charged groups that are placed at the surface migrate inward, away from the vacuum interface and into the bulk-like region. Our simulations provide insight into the mechanisms for hydrophobic self-recovery that repair material strength and functionality and suggest material compositions for future high-voltage insulators. © 2011 American Chemical Society
Evaluation of Advanced Polymers for Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; Carter, William G.; Kutchko, Cindy
The goal of this Manufacturing Demonstration Facility (MDF) technical collaboration project between Oak Ridge National Laboratory (ORNL) and PPG Industries, Inc. (PPG) was to evaluate the feasibility of using conventional coatings chemistry and technology to build up material layer-by-layer. The PPG-ORNL study successfully demonstrated that polymeric coatings formulations may overcome many limitations of common thermoplastics used in additive manufacturing (AM), allow lightweight nozzle design for material deposition, and increase build rate. The materials effort focused on layer-by-layer deposition of coatings with each layer fusing together. The combination of materials and deposition results in an additively manufactured build that has sufficientmore » mechanical properties to bear the load of additional layers, yet is capable of bonding across the z-layers to improve build direction strength. The formulation properties were tuned to enable a novel, high-throughput deposition method that is highly scalable, compatible with high loading of reinforcing fillers, and inherently low-cost.« less
Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates
Min, Fanlu; Yao, Zhanhu; Jiang, Teng
2014-01-01
The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355
Factors affecting the pullout strength of cancellous bone screws.
Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D
1996-08-01
Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal threads in the porous material.
In Situ Mechanical Testing of Nanostructured Bijel Fibers.
Haase, Martin F; Sharifi-Mood, Nima; Lee, Daeyeon; Stebe, Kathleen J
2016-06-28
Bijels are a class of soft materials with potential for application in diverse areas including healthcare, food, energy, and reaction engineering due to their unique structural, mechanical, and transport properties. To realize their potential, means to fabricate, characterize, and manipulate bijel mechanics are needed. We recently developed a method based on solvent transfer-induced phase separation (STRIPS) that enables continuous fabrication of hierarchically structured bijel fibers from a broad array of constituent fluids and nanoparticles using a microfluidic platform. Here, we introduce an in situ technique to characterize bijel fiber mechanics at initial and final stages of the formation process within a microfluidics device. By manipulation of the hydrodynamic stresses applied to the fiber, the fiber is placed under tension until it breaks into segments. Analysis of the stress field allows fracture strength to be inferred; fracture strengths can be as high as several thousand Pa, depending on nanoparticle content. These findings broaden the potential for the use of STRIPS bijels in applications with different mechanical demands. Moreover, our in situ mechanical characterization method could potentially enable determination of properties of other soft fibrous materials made of hydrogels, capillary suspensions, colloidal gels, or high internal phase emulsions.
Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7
NASA Astrophysics Data System (ADS)
Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim
2016-12-01
We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.
Feasibility of Kevlar 49/PMR-15 Polyimide for High Temperature Applications
NASA Technical Reports Server (NTRS)
Hanson, M. P.
1980-01-01
Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 F to 600 F for the PMR-15 and from 75 F to 450 F for the Kevlar/3501-6 epoxy material. The effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths were also studied.
Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications
NASA Technical Reports Server (NTRS)
Hanson, M. P.
1980-01-01
Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.
Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo
2016-01-01
This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.
Low cost tooling material and process for graphite and Kevlar composites
NASA Technical Reports Server (NTRS)
Childs, William I.
1987-01-01
An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
Method of making carbon-carbon composites
Engle, Glen B.
1993-01-01
A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.
Ultrafast optical modification of exchange interactions in iron oxides
NASA Astrophysics Data System (ADS)
Mikhaylovskiy, R. V.; Hendry, E.; Secchi, A.; Mentink, J. H.; Eckstein, M.; Wu, A.; Pisarev, R. V.; Kruglyak, V. V.; Katsnelson, M. I.; Rasing, Th.; Kimel, A. V.
2015-09-01
Ultrafast non-thermal manipulation of magnetization by light relies on either indirect coupling of the electric field component of the light with spins via spin-orbit interaction or direct coupling between the magnetic field component and spins. Here we propose a scenario for coupling between the electric field of light and spins via optical modification of the exchange interaction, one of the strongest quantum effects with strength of 103 Tesla. We demonstrate that this isotropic opto-magnetic effect, which can be called inverse magneto-refraction, is allowed in a material of any symmetry. Its existence is corroborated by the experimental observation of terahertz emission by spin resonances optically excited in a broad class of iron oxides with a canted spin configuration. From its strength we estimate that a sub-picosecond modification of the exchange interaction by laser pulses with fluence of about 1 mJ cm-2 acts as a pulsed effective magnetic field of 0.01 Tesla.
Crystallization of high-strength nano-scale leucite glass-ceramics.
Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J
2013-11-01
Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Sieper, Kim; Wille, Sebastian; Kern, Matthias
2017-10-01
The aim of this study was to evaluate the fracture strength of crowns made from current CAD/CAM materials. In addition the influence of crown thickness and chewing simulation on the fracture strength was evaluated. Crowns were fabricated from lithium disilicate, zirconia reinforced lithium silicate (ZLS-ceramic) and a polymer-infiltrated ceramic-network (PICN) with an occlusal thickness of 1.0mm or 1.5mm, respectively (n=16). Crowns were cemented on composite dies. Subgroups of eight specimens were loaded with 5kg in a chewing simulator for 1,200,000 cycles with thermal cycling. Finally, all specimens were loaded until fracture in a universal testing machine. Three-way ANOVA was used to detect statistical interaction. Differences regarding the materials were tested with two-way ANOVA, following one-way ANOVA and a post-hoc Tukey's-Test. All crowns survived the chewing simulation. The material had a significant influence on the fracture resistance (p≤0.05). Lithium disilicate achieved the highest values of fracture strength in almost all groups followed by ZLS-ceramic. PICN achieved the lowest values of fracture strength. Chewing simulation increased the fracture strength of thick lithium disilicate crown significantly. Greater occlusal thickness of all crown materials resulted in higher crown fracture strength before chewing simulation. After chewing simulation occlusal thickness of lithium disilicate and PICN crowns had no significant influence on the fracture strength. All crowns revealed fracture strength above the clinically expected loading forces. Therefore the durability of the tested CAD/CAM materials seems promising also in an occlusal thickness of 1.0mm. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cândido, L. H. A.; Ferreira, D. B.; Júnior, W. Kindlein; Demori, R.; Mauler, R. S.
2014-05-01
The scope of this research is the recycling of polymers from mobile phones hulls discarded and the performance evaluation when they are submitted to the Recycling Cycle of Materials (RCM). The studied material was the ABS/PC blend in a 70/30 proportion. Different compositions were evaluated adding virgin material, recycled material and using the copolymer SBS as impact modifier. In order to evaluate the properties of material's composition, the samples were characterized by TGA, FTIR, SEM, IZOD impact strength and tensile strength tests. At the first stage, the presented results suggest the composition containing 25% of recycled material and 5% of SBS combines good mechanical performance to the higher content of recycled material and lower content of impact modifier providing major benefits to recycling plans. Five cycles (RCM) were applied in the second stage; they evidenced a decrease trend considering the impact strength. At first and second cycle the impact strength was higher than reference material (ABS/PC blend) and from the fourth cycle it was lower. The superiority impact strength in the first and second cycles can be attributed to impact modifier effect. The thermal tests and the spectrometry didn't show the presence of degradation process in the material and the TGA curves demonstrated the process stability. The impact surface of each sample was observed at SEM. The microstructures are not homogeneous presenting voids and lamellar appearance, although the outer surface presents no defects, demonstrating good moldability. The present work aims to assess the life cycle of the material from the successive recycling processes.
Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner
2008-01-01
The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band.
Bock, Jens Johannes; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner
2008-01-01
The aim of this study was to compare the mechanical strength of different joints made by conventional brazing, TIG and laser welding with and without filling material. Five standardized joining configurations of orthodontic wire in spring hard quality were used: round, cross, 3 mm length, 9 mm length and 7 mm to orthodontic band. The joints were made by five different methods: brazing, tungsten inert gas (TIG) and laser welding with and without filling material. For the original orthodontic wire and for each kind of joint configuration or connecting method 10 specimens were carefully produced, totalizing 240. The fracture strengths were measured with a universal testing machine (Zwick 005). Data were analyzed by ANOVA (p=0.05) and Bonferroni post hoc test (p=0.05). In all cases, brazing joints were ruptured on a low level of fracture strength (186-407 N). Significant differences between brazing and TIG or laser welding (p<0.05, Bonferroni post hoc test) were found in each joint configuration. The highest fracture strength means were observed for laser welding with filling material and 3 mm joint length (998 N). Using filling materials, there was a clear tendency to higher mean values of fracture strength in TIG and laser welding. However, statistically significant differences were found only in the 9-mm long joints (p<0.05, Bonferroni post hoc test). In conclusion, the fracture strength of welded joints was positively influenced by the additional use of filling material. TIG welding was comparable to laser welding except for the impossibility of joining orthodontic wire with orthodontic band. PMID:19089229
Estimation of liquefaction-induced lateral spread from numerical modeling and its application
NASA Astrophysics Data System (ADS)
Meng, Xianhong
A noncoupled numerical procedure was developed using a scheme of pore water generation that causes shear modulus degradation and shear strength degradation resulting from earthquake cyclic motion. The designed Fast Lagrangian Analysis of Continua (FLAC) model procedure was tested using the liquefaction-induced lateral spread and ground response for Wildlife and Kobe sites. Sixteen well-documented case histories of lateral spread were reviewed and modeled using the modeling procedure. The dynamic residual strength ratios were back-calculated by matching the predicted displacement with the measured lateral spread, or with the displacement predicted by the Yound et al. model. Statistical analysis on the modeling results and soil properties show that most significant parameters governing the residual strength of the liquefied soil are the SPT blow count, fine content and soil particle size of the lateral spread layer. A regression equation was developed to express the residual strength values with these soil properties. Overall, this research demonstrated that a calibrated numerical model can predict the first order effectiveness of liquefaction-induced lateral spread using relatively simple parameters obtained from routine geotechnical investigation. In addition, the model can be used to plan a soil improvement program for cases where liquefaction remediation is needed. This allows the model to be used for design purposes at bridge approaches structured on liquefiable materials.
Friction Stir Weld Restart+Reweld Repair Allowables
NASA Technical Reports Server (NTRS)
Clifton, Andrew
2008-01-01
A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.
NASA Astrophysics Data System (ADS)
van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon
2010-09-01
We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.
McNamara, Stephanie L; Rnjak-Kovacina, Jelena; Schmidt, Daniel F; Lo, Tim J; Kaplan, David L
2014-08-01
Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Silk as a biocohesive sacrificial binder in the fabrication of hydroxyapatite load bearing scaffolds
McNamara, Stephanie L.; Rnjak-Kovacina, Jelena; Schmidt, Daniel; Lo, Tim J.; Kaplan, David L.
2014-01-01
Limitations of current clinical methods for bone repair continue to fuel the demand for a high strength, bioactive bone replacement material. Recent attempts to produce porous scaffolds for bone regeneration have been limited by the intrinsic weakness associated with high porosity materials. In this study, ceramic scaffold fabrication techniques for potential use in load-bearing bone repairs have been developed using naturally derived silk from Bombyx mori. Silk was first employed for ceramic grain consolidation during green body formation, and later as a sacrificial polymer to impart porosity during sintering. These techniques allowed preparation of hydroxyapatite (HA) scaffolds that exhibited a wide range of mechanical and porosity profiles, with some displaying unusually high compressive strength up to 152.4 ± 9.1 MPa. Results showed that the scaffolds exhibited a wide range of compressive strengths and moduli (8.7 ± 2.7 MPa to 152.4 ± 9.1 MPa and 0.3 ± 0.1 GPa to 8.6 ± 0.3 GPa) with total porosities of up to 62.9 ± 2.7% depending on the parameters used for fabrication. Moreover, HA-silk scaffolds could be molded into large, complex shapes, and further machined post-sinter to generate specific three-dimensional geometries. Scaffolds supported bone marrow-derived mesenchymal stem cell attachment and proliferation, with no signs of cytotoxicity. Therefore, silk-fabricated HA scaffolds show promise for load bearing bone repair and regeneration needs. PMID:24881027
Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration
NASA Technical Reports Server (NTRS)
Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1998-01-01
A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.
NASA Astrophysics Data System (ADS)
Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.
2017-05-01
Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.
Erratum to: Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
Grote, Simon; Kleinebudde, Peter
2018-05-29
The influence of particle morphology and size of alpha-lactose monohydrate on dry granules and tablets was studied. Four different morphologies were investigated: Two grades of primary crystals, which differed in their particle size and structure (compact crystals vs. agglomerates). The materials were roll compacted at different specific compaction forces and changes in the particle size distribution and the specific surface area were measured. Afterwards, two fractions of granules were pressed to tablets and the tensile strength was compared to that from tablets compressed from the raw materials. The specific surface area was increased induced by roll compaction/dry granulation for all materials. At increased specific compaction forces, the materials showed sufficient size enlargement. The morphology of lactose determined the strength of direct compressed tablets. In contrast, the strength of granule tablets was leveled by the previous compression step during roll compaction/dry granulation. Thus, the tensile strength of tablets compressed directly from the powder mixtures determined whether materials exhibited a loss in tabletability after roll compaction/dry granulation or not. The granule size had only a slight influence on the strength of produced tablets. In some cases, the fraction of smaller granules showed a higher tensile strength compared to the larger fraction.
Apparatus and method for performing electrodynamic focusing on a microchip
Ramsey, John Michael; Jacobson, Stephen C.
1999-01-01
A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment.
Embedded Aligned Carbon Nanotube Sheets for Strain and Damage sensing in Composite Structures
NASA Astrophysics Data System (ADS)
Aly, Karim Aly Abdelomoaty Elsayed
The world demand for fiber reinforced composite materials has been steadily increasing because of the widespread adoption of this class of material in many markets. The automotive, aerospace, marine and energy sectors account for a large percentage of this grow. Outstanding fatigue performance, high specific stiffness and strength, and low density are among the most important properties that fiber reinforced polymer composites offer. Furthermore, their properties can be tailored to meet the specific needs of the final applications. However, this class of material is composed of multiple layers of inhomogeneous and anisotropic constituents, i.e. fibers and matrix. Therefore, this laminated nature make the composite material prone to intrinsic damage including interfacial debonding and delamination and their strength and failure are dependent on the fiber architecture and direction of the applied stresses. Consequently, it is of prime importance to monitor the health of these structures. New and improved methods for early detection of damage and structural health monitoring of composite materials may allow for enhanced reliability, lifetime and performance while minimizing maintenance time during a composite part's service life. Over the last few decades different non-destructive methods and materials have been investigated for use as strain sensors. Since the discovery of carbon nanotubes (CNTs), they have attracted much research interest due to their superior electrical, thermal and mechanical properties as well as their high aspect ratio. In this context, CNTs have been used in the recent years to enable sensing capabilities. In this dissertation, the usage of CNTs for performing strain and damage sensing in composites is evaluated. This was enabled by embedding aligned sheets of two millimeters long, interconnected CNTs into laminated structures that were then subjected to different forms of mechanical loading. The localization of the CNT sheets inside the host structure was done using a novel technique that allowed for carrying out the embedment task conveniently and repeatedly. The real-time electrical resistance change of the CNT sheets in response to the applied mechanical stresses was measured in-situ so that the electromechnical behavior of the CNTs could be linked to the strain change and damage in the host structure. The quasi-static and dynamic flexural, axial tensile and compression loadings of the composite structures revealed that the CNT sheets exhibited sensitivity, stability and repeatability which are vital properties for any successful health monitoring technique. (Abstract shortened by ProQuest.).
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.
2014-01-01
The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.
Kearney, C M; Buckley, C T; Jenner, F; Moissonnier, P; Brama, P A J
2014-07-01
Selection of suture material in equine surgery is often based on costs or subjective factors, such as the surgeon's personal experience, rather than objective facts. The amount of objective data available on durability of suture materials with regard to specific equine physiological conditions is limited. To evaluate the effect of various equine physiological and pathological fluids on the rate of degradation of a number of commonly used suture materials. In vitro material testing. Suture materials were exposed in vitro to physiological fluid, followed by biomechanical analysis. Three absorbable suture materials, glycolide/lactide copolymer, polyglactin 910 and polydioxanone were incubated at 37°C for 7, 14 or 28 days in phosphate-buffered saline, equine serum, equine urine and equine peritoneal fluid from an animal with peritonitis. Five strands of each suture material type were tested to failure in a materials testing machine for each time point and each incubation medium. Yield strength, strain and Young's modulus were calculated, analysed and reported. For all suture types, the incubation time had a significant effect on yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). Suture type was also shown significantly to influence changes in each of yield strength, percentage elongation and Young's modulus in all culture media (P<0.0001). While the glycolide/lactide copolymer demonstrated the highest Day 0 yield strength, it showed the most rapid degradation in all culture media. For each of the 3 material characteristics tested, polydioxanone showed the least variation across the incubation period in each culture medium. The duration of incubation and the type of fluid have significant effects on the biomechanical properties of various suture materials. These findings are important for evidence-based selection of suture material in clinical cases. © 2013 EVJ Ltd.
Influence of clamp-up force on the strength of bolted composite joints
NASA Astrophysics Data System (ADS)
Horn, Walter J.; Schmitt, Ron R.
1994-03-01
Composite materials offer the potential for a reduction in the number of individual parts and joints in a structure because large one-piece components can replace multipart assemblies. Nevertheless, there are many situations where composite parts must be joined and often mechanical fasteners provide the only practical method of joining those parts. The long-term strength of mechanically fastened joints of composite members can be directly affected by the clamp-up force of the fastener and thus perhaps by the relaxation of this force due to the viscoelastic character of the composite materials of the joint. Methods for predicting the effect of bolt clamp-up force relaxation on the strength of mechanically fastened joints of thermoplastic composite materials were investigated during the present study. A test program, using two thermoplastic composite materials, was conducted to determine the influence of clamp-up force on joint strength, to measure the relaxation of the joint clamp-up force with time, and to measure the change of joint strength as a function of time.
NASA Technical Reports Server (NTRS)
Bast, Callie C.; Boyce, Lola
1995-01-01
The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.
Shore hardness and tensile bond strength of long-term soft denture lining materials.
Kim, Bong-Jun; Yang, Hong-So; Chun, Min-Geoung; Park, Yeong-Joon
2014-11-01
Reduced softness and separation from the denture base are the most significant problems of long-term soft lining materials. The purpose of this study was to evaluate the durometer Shore A hardness and tensile bond strength of long-term soft denture lining materials and to investigate the correlation between these 2 properties. A group of 7 soft lining materials, 6 silicone based (Dentusil, GC Reline Soft, GC Reline Ultrasoft, Mucopren Soft, Mucosoft, Sofreliner Tough) and 1 acrylic resin based (Durabase), were evaluated for durometer Shore A hardness and tensile bond strength to heat-polymerized denture base resin (Lucitone 199). A specially designed split mold and loading assembly with a swivel connector were used for the durometer Shore A hardness test and tensile bond strength test to improve accuracy and facilitate measurement. Three specimens of each product were stored in a 37°C water bath, and durometer Shore A hardness tests were carried out after 24 hours and 28 days. A tensile bond strength test was carried out for 10 specimens of each product, which were stored in a 37°C water bath for 24 hours before the test. Repeated-measures ANOVA, the Kruskal-Wallis and Duncan multiple range tests, and the Spearman correlation were used for statistical analyses. The repeated-measures ANOVA found significant durometer Shore A hardness differences for the materials (P<.001) and the interaction effect (aging×materials) (P<.001). GC Reline Ultrasoft showed the lowest mean durometer Shore A hardness (21.30 ±0.29 for 24 hours, 34.73 ±0.47 for 28 days), and GC Reline Soft showed the highest mean durometer Shore A hardness (50.13 ±0.48 for 24 hours, 57.20 ±0.28 for 28 days). The Kruskal-Wallis test found a significant difference in the mean tensile bond strength values (P<.001). GC Reline Ultrasoft (0.82 ±0.32 MPa) and Mucopren Soft (0.96 ±0.46 MPa) had a significantly lower mean tensile bond strength (P<.05). GC Reline Soft had the highest mean tensile bond strength (2.99 ±0.43 MPa) (P<.05), and acrylic resin-based Durabase showed a significantly different tensile bond strength (1.32 ±0.16 MPa), except for Mucopren Soft, among the materials (P<.05). The tensile bond strength and Shore A hardness showed a statistically insignificant moderate positive correlation (r=0.571, P=.180 for Shore A hardness 24 hours versus tensile bond strength; r=0.607, P=.148 for Shore A hardness 28 days versus tensile bond strength). Within the limitations of this study, significant differences were found in durometer Shore A hardness (with aging time) and tensile bond strength among the materials. Adhesive failure was moderately correlated with durometer Shore A hardness, especially after 28 days, but was not significant. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Some Examples of the Relations Between Processing and Damage Tolerance
NASA Technical Reports Server (NTRS)
Nettles, Alan T.
2012-01-01
Most structures made of laminated polymer matrix composites (PMCs) must be designed to some damage tolerance requirement that includes foreign object impact damage. Thus from the beginning of a part s life, impact damage is assumed to exist in the material and the part is designed to carry the required load with the prescribed impact damage present. By doing this, some processing defects may automatically be accounted for in the reduced design allowable due to these impacts. This paper will present examples of how a given level of impact damage and certain processing defects affect the compression strength of a laminate that contains both. Knowledge of the impact damage tolerance requirements, before processing begins, can broaden material options and processing techniques since the structure is not being designed to pristine properties.
Survey of four damage models for concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leelavanichkul, Seubpong; Brannon, Rebecca Moss
2009-08-01
Four conventional damage plasticity models for concrete, the Karagozian and Case model (K&C), the Riedel-Hiermaier-Thoma model (RHT), the Brannon-Fossum model (BF1), and the Continuous Surface Cap Model (CSCM) are compared. The K&C and RHT models have been used in commercial finite element programs many years, whereas the BF1 and CSCM models are relatively new. All four models are essentially isotropic plasticity models for which 'plasticity' is regarded as any form of inelasticity. All of the models support nonlinear elasticity, but with different formulations. All four models employ three shear strength surfaces. The 'yield surface' bounds an evolving set of elasticallymore » obtainable stress states. The 'limit surface' bounds stress states that can be reached by any means (elastic or plastic). To model softening, it is recognized that some stress states might be reached once, but, because of irreversible damage, might not be achievable again. In other words, softening is the process of collapse of the limit surface, ultimately down to a final 'residual surface' for fully failed material. The four models being compared differ in their softening evolution equations, as well as in their equations used to degrade the elastic stiffness. For all four models, the strength surfaces are cast in stress space. For all four models, it is recognized that scale effects are important for softening, but the models differ significantly in their approaches. The K&C documentation, for example, mentions that a particular material parameter affecting the damage evolution rate must be set by the user according to the mesh size to preserve energy to failure. Similarly, the BF1 model presumes that all material parameters are set to values appropriate to the scale of the element, and automated assignment of scale-appropriate values is available only through an enhanced implementation of BF1 (called BFS) that regards scale effects to be coupled to statistical variability of material properties. The RHT model appears to similarly support optional uncertainty and automated settings for scale-dependent material parameters. The K&C, RHT, and CSCM models support rate dependence by allowing the strength to be a function of strain rate, whereas the BF1 model uses Duvaut-Lion viscoplasticity theory to give a smoother prediction of transient effects. During softening, all four models require a certain amount of strain to develop before allowing significant damage accumulation. For the K&C, RHT, and CSCM models, the strain-to-failure is tied to fracture energy release, whereas a similar effect is achieved indirectly in the BF1 model by a time-based criterion that is tied to crack propagation speed.« less
Correlation between strength properties in standard test specimens and molded phenolic parts
NASA Technical Reports Server (NTRS)
Turner, P S; Thomason, R H
1946-01-01
This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.
Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros
2014-07-01
To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α = 0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Furrow, Keith W.
1993-01-01
Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
NASA Technical Reports Server (NTRS)
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
In Vitro Tensile Strength Study on Suturing Technique and Material.
González-Barnadas, Albert; Camps-Font, Octavi; Espanya-Grifoll, Dunia; España-Tost, Antoni; Figueiredo, Rui; Valmaseda-Castellón, Eduard
2017-06-01
Suture technique and materials are important in preventing complications such as wound dehiscences. The purpose of this study was to determine the tensile strength of different suturing techniques, comparing several materials with different diameters. One hundred sixty sutures were performed using silk, e-PTFE, and 2 types of polyamide (monofilament and Supramid). Ten simple, 10 horizontal mattress, and 10 combinations of the two stitches were performed with 4-0 gauge of each material. Additionally, 10 simple sutures were performed with the 5-0 gauge of each material. The maximum tensile force resisted by each suture was recorded. When 5 mm of traction was applied, the polyamide monofilament resisted significantly better without untying or breaking compared with Supramid or silk, while the e-PTFE was superior to all the others. However, the force when e-PTFE 4-0 sutures untied or broke was lower than for either type of polyamide. The combined technique withstood a significantly higher tensile force before unknotting or breaking than did the simple and mattress stitches. The 5-0 gauges of silk and both types of polyamide showed lower tensile strengths than the 4-0 materials. Among the 5-0 sutures, Supramid showed a higher tensile strength than silk. The combined suture technique possessed greater tensile strength than did a simple or a horizontal mattress suture, and e-PTFE 4-0 withstood more traction without untying or breaking than did all the other materials, although at a lower tensile force. With the exception of e-PTFE, 4-0 sutures had greater tensile strength than did 5-0 sutures.
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
49 CFR 178.346-2 - Material and thickness of material.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Baffles When Used as Tank Reinforcement) Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel (SS), or Aluminum (AL)—Expressed in Decimals of an Inch After Forming Material... Thickness of Shell Using Mild Steel (MS), High Strength Low Alloy Steel (HSLA), Austenitic Stainless Steel...
Apparatus and method for performing electrodynamic focusing on a microchip
Ramsey, J.M.; Jacobson, S.C.
1999-01-12
A microchip device includes a focusing channel, in which an electric field strength established in the focusing channel is controlled relative to an electric field strength established in a material transport channel segment to spatially focus the material traversing the material transport channel segment. 22 figs.
NASA Astrophysics Data System (ADS)
Dean, A.; Rolfes, R.; Behrens, A.; Bouguecha, A.; Hübner, S.; Bonk, C.; Grbic, N.
2017-10-01
There is a strong trend in the automotive industry to reduce car body-, chassis- and power-train mass in order to lower carbon emissions. More wide spread use of lightweight short fiber reinforced polymer (SFRP) is a promising approach to attain this goal. This poses the challenge of how to integrate new SFRP components by joining them to traditional sheet metal structures. Recently (1), the clinching technique has been successfully applied as a suitable joining method for dissimilar material such as SFRP and Aluminum. The material pairing PA6GF30 and EN AW 5754 is chosen for this purpose due to their common application in industry. The current contribution presents a verification and validation of a finite strain anisotropic material model for SFRP developed in (2) for the FE simulation of the hybrid clinching process. The finite fiber rotation during forming and separation, and thus the change of the preferential material direction, is represented in this model. Plastic deformations in SFRP are considered in this model via an invariant based non-associated plasticity formulation following the multiplicative decomposition approach of the deformation gradient where the stress-free intermediate configuration is introduced. The model allows for six independent characterization curves. The aforementioned material model allows for a detailed simulation of the forming process as well as a simulative prediction of the shear test strength of the produced joint at room temperature.
NASA Astrophysics Data System (ADS)
Matonti, C.; Auger, A. T.; Groussin, O.; Jorda, L.; Attree, N.; Viseur, S.; El Maarry, M. R.
2016-12-01
Fractures and faults are widespread and pervasive in Earth crustal and sedimentary rocks. They result from deviatoric stresses applied on brittle materials. In various contexts, their geometry often allows one to infer the direction and sometimes the magnitude of the stress that led to their formation. The Rosetta spacecraft has orbited comet 67P for two years and has acquired images of the nucleus surface with an unprecedented spatial resolution, down to 20 cm/px. These data open the way for entirely new geological interpretations of the structures observed at the surface of cometary nuclei. In this work, we focus on the structural interpretations of the meter to hectometer scale lineaments observed on the surface from the OSIRIS-NAC images. To improve interpretations, we performed the digitalization of lineaments in selected zones. In brittle material regions (essentially Atum and Khonsu), we observed structures that nicely match fault splay, duplexes blocks and anastomosing or "en-échelon" patterns. Such structures strongly suggest the occurrence of sheared zones and "strike-slip fault" arrays, which are observed here for the first time at the surface of a comet nucleus. Despite the large differences in the gravity magnitude and nucleus material strength compared to Earth, the observation of such structures seems to confirm comparable gravity to strength ratio between 67P and the Earth (Groussin et al., 2015). Most of these shear structures are sub-parallel and located inside or near the nucleus neck regions (Hapi, Sobek and Wosret), which is consistent with an increased relative shear stress at the boundary of the two lobes (Hirabayashi et al., 2016). These results emphasize mechanisms that may have important implications on the nucleus strength estimation and how it is eroded. Indeed, considering the fault propagation laws along with multiple angles views of structures, the observed faults likely propagate inside the nucleus over several tenths to hundreds of meters. Moreover, possible "faults offsets" observations suggest that relatively important/durable "tectonic-like" processes happened or are still happening in the nucleus. Further comparative analyses of successive images from pre-to-post perihelion phases might allow quantifying the timescale at which these processes occur.
Modeling the effect of orientation on the shock response of a damageable composite material
NASA Astrophysics Data System (ADS)
Lukyanov, Alexander A.
2012-10-01
A carbon fiber-epoxy composite (CFEC) shock response in the through thickness orientation and in one of the fiber directions is significantly different. The hydrostatic pressure inside anisotropic materials depends on deviatoric strain components as well as volumetric strain. Non-linear effects, such as shock effects, can be incorporated through the volumetric straining in the material. Thus, a new basis is required to couple the anisotropic material stiffness and strength with anisotropic shock effects, associated energy dependence, and damage softening process. This article presents these constitutive equations for shock wave modeling of a damageable carbon fiber-epoxy composite. Modeling the effect of fiber orientation on the shock response of a CFEC has been performed using a generalized decomposition of the stress tensor [A. A. Lukyanov, Int. J. Plast. 24, 140 (2008)] and Mie-Grüneisen's extrapolation of high-pressure shock Hugoniot states to other thermodynamics states for shocked CFEC materials. The three-wave structure (non-linear anisotropic, fracture, and isotropic elastic waves) that accompanies damage softening process is also proposed in this work for describing CFEC behavior under shock loading which allows to remove any discontinuities observed in the linear case for relation between shock velocities and particle velocities [A. A. Lukyanov, Eur. Phys. J. B 74, 35 (2010)]. Different Hugoniot stress levels are obtained when the material is impacted in different directions; their good agreement with the experiment demonstrates that the anisotropic equation of state, strength, and damage model are adequate for the simulation of shock wave propagation within damageable CFEC material. Remarkably, in the through thickness orientation, the material behaves similar to a simple polymer whereas in the fiber direction, the proposed in this paper model explains an initial ramp, before at sufficiently high stresses, and a much faster rising shock above it. The numerical results for shock wave modeling using proposed constitutive equations are presented, discussed, and future studies are outlined.
Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José
2008-01-01
In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials. PMID:19089261
Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José
2008-01-01
In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization inhibition tests suggest that Vislin can be used as substance of gingival retraction without affecting the tested properties of four impression materials.
Chairside CAD/CAM materials. Part 2: Flexural strength testing.
Wendler, Michael; Belli, Renan; Petschelt, Anselm; Mevec, Daniel; Harrer, Walter; Lube, Tanja; Danzer, Robert; Lohbauer, Ulrich
2017-01-01
Strength is one of the preferred parameters used in dentistry for determining clinical indication of dental restoratives. However, small dimensions of CAD/CAM blocks limit reliable measurements with standardized uniaxial bending tests. The objective of this study was to introduce the ball-on-three-ball (B3B) biaxial strength test for dental for small CAD/CAM block in the context of the size effect on strength predicted by the Weibull theory. Eight representative chairside CAD/CAM materials ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Specimens were prepared with highly polished surfaces in rectangular plate (12×12×1.2mm 3 ) or round disc (Ø=12mm, thickness=1.2mm) geometries. Specimens were tested using the B3B assembly and the biaxial strength was determined using calculations derived from finite element analyses of the respective stress fields. Size effects on strength were determined based on results from 4-point-bending specimens. A good agreement was found between the biaxial strength results for the different geometries (plates vs. discs) using the B3B test. Strength values ranged from 110.9MPa (Vitablocs Mark II) to 1303.21MPa (e.max ZirCAD). The strength dependency on specimen size was demonstrated through the calculated effective volume/surface. The B3B test has shown to be a reliable and simple method for determining the biaxial strength restorative materials supplied as small CAD/CAM blocks. A flexible solution was made available for the B3B test in the rectangular plate geometry. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.
Alp, Gülce; Murat, Sema; Yilmaz, Burak
2018-01-28
To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p < 0.05). CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p < 0.05), and conventional PMMA (p < 0.0001), and significantly lower flexural strength compared to CAD/CAM PMMA-based M (p < 0.05). The flexural strength of CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.
Polymer Nanocomposite Materials with High Dielectric Permittivity and Low Dielectric Loss Properties
NASA Astrophysics Data System (ADS)
Toor, Anju
Materials with high dielectric permittivity have drawn increasing interests in recent years for their important applications in capacitors, actuators, and high energy density pulsed power. Particularly, polymer-based dielectrics are excellent candidates, owing to their properties such as high breakdown strength, low dielectric loss, flexibility and easy processing. To enhance the dielectric permittivity of polymer materials, typically, high dielectric constant filler materials are added to the polymer. Previously, ferroelectric and conductive fillers have been mainly used. However, such systems suffered from various limitations. For example, composites based on ferroelectric materials like barium titanate, exhibited high dielectric loss, and poor saturation voltages. Conductive fillers are used in the form of powder aggregates, and they may show 10-100 times enhancement in dielectric constant, however these nanoparticle aggregates cause the dielectric loss to be significant. Also, agglomerates limit the volume fraction of fillers in polymer and hence, the ability to achieve superior dielectric constants. Thus, the aggregation of nanoparticles is a significant challenge to their use to improve the dielectric permittivity. We propose the use of ligand-coated metal nanoparticle fillers to enhance the dielectric properties of the host polymer while minimizing dielectric loss by preventing nanoparticle agglomeration. The focus is on obtaining uniform dispersion of nanoparticles with no agglomeration by utilizing appropriate ligands/surface functionalizations on the gold nanoparticle surface. Use of ligand coated metal nanoparticles will enhance the dielectric constant while minimizing dielectric loss, even with the particles closely packed in the polymer matrix. Novel combinations of materials, which use 5 nm diameter metal nanoparticles embedded inside high breakdown strength polymer materials are evaluated. High breakdown strength polymer materials are chosen to allow further exploration of these materials for energy storage applications. In summary, two novel nanocomposite materials are designed and synthesized, one involving polyvinylidene fluoride (PVDF) as the host polymer for potential applications in energy storage and the other with SU-8 for microelectronic applications. Scanning elec- tron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy and ultramicrotoming techniques were used for the material characterization of the nanocomposite materials. A homogeneous dispersion of gold nanoparticles with low particle agglomeration has been achieved. Fabricated nanoparticle polymer composite films showed the absence of voids and cracks. Also, no evidence of macro-phase separation of nanoparticles from the polymer phase was observed. This is important because nanoparticle agglomeration and phase separation from the polymer usually results in poor processability of films and a high defect density. Dielectric characterization of the nanocomposite materials showed enhancement in the dielectric constant over the base polymer values and low dielectric loss values were observed.
Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder
NASA Technical Reports Server (NTRS)
Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.
2015-01-01
Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.
Freitag, Franziska; Kleinebudde, Peter
2003-07-01
The effect of roll compaction/dry granulation on the particle and bulk material characteristics of different magnesium carbonates was evaluated. The flowability of all materials could be improved, even by the application of low specific compaction forces. The tablet properties made of powder and dry granulated magnesium carbonate were compared. Roll compaction/dry granulation resulted in a modified compactibility of the material and, consequently, tablets with reduced tensile strength. The higher relative tap density of the compacted material does not allow a densification to the same extent as the uncompacted powder. The degree of densification during tableting can be expressed as the ratio of the relative tablet density to the relative tap density of the feed material. Increasing the specific compaction forces resulted in higher apparent mean yield pressure, gained from Heckel plots, of all materials analysed. The partial loss of compactibility leads to the demand of low loads during roll compaction. Comparing the tablet properties of different magnesium carbonates reveals an obvious capping disposition. However, it depends on the type of magnesium carbonate, the specific compaction force and also on the tableting force applied.
Excitonic gap formation in pumped Dirac materials
NASA Astrophysics Data System (ADS)
Triola, Christopher; Pertsova, Anna; Markiewicz, Robert S.; Balatsky, Alexander V.
2017-05-01
Recent pump-probe experiments demonstrate the possibility that Dirac materials may be driven into transient excited states describable by two chemical potentials, one for the electrons and one for the holes. Given the Dirac nature of the spectrum, such an inverted population allows the optical tunability of the density of states of the electrons and holes, effectively offering control of the strength of the Coulomb interaction. Here we discuss the feasibility of realizing transient excitonic instabilities in optically pumped Dirac materials. We demonstrate, theoretically, the reduction of the critical coupling leading to the formation of a transient condensate of electron-hole pairs and identify signatures of this state. Furthermore, we provide guidelines for experiments by both identifying the regimes in which such exotic many-body states are more likely to be observed and estimating the magnitude of the excitonic gap for a few important examples of existing Dirac materials. We find a set of material parameters for which our theory predicts large gaps and high critical temperatures and which could be realized in future Dirac materials. We also comment on transient excitonic instabilities in three-dimensional Dirac and Weyl semimetals. This study provides an example of a transient collective instability in driven Dirac materials.
A Rational Approach to Determine Minimum Strength Thresholds in Novel Structural Materials
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Bilen, Canan; Sterling, Jerry
2003-01-01
Design of safe and survivable structures requires the availability of guaranteed minimum strength thresholds for structural materials to enable a meaningful comparison of strength requirement and available strength. This paper develops a procedure for determining such a threshold with a desired degree of confidence, for structural materials with none or minimal industrial experience. The problem arose in attempting to use a new, highly weight-efficient structural load tendon material to achieve a lightweight super-pressure balloon. The developed procedure applies to lineal (one dimensional) structural elements. One important aspect of the formulation is that it extrapolates to expected probability distributions for long length specimen samples from some hypothesized probability distribution that has been obtained from a shorter length specimen sample. The use of the developed procedure is illustrated using both real and simulated data.
The Hardness and Strength Properties of WC-Co Composites
Armstrong, Ronald W.
2011-01-01
The industrially-important WC-Co composite materials provide a useful, albeit complicated materials system for understanding the combined influences on hardness and strength properties of the constituent WC particle strengths, the particle sizes, their contiguities, and of Co binder hardness and mean free paths, and in total, the volume fraction of constituents. A connection is made here between the composite material properties, especially including the material fracture toughness, and the several materials-type considerations of: (1) related hardness stress-strain behaviors; (2) dislocation (viscoplastic) thermal activation characterizations; (3) Hall-Petch type reciprocal square root of particle or grain size dependencies; and (4) indentation and conventional fracture mechanics results. Related behaviors of MgO and Al2O3 crystal and polycrystal materials are also described for the purpose of making comparisons. PMID:28824143
Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures
NASA Astrophysics Data System (ADS)
Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.
2018-03-01
Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.
Testing compression strength of wood logs by drilling resistance
NASA Astrophysics Data System (ADS)
Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter
2017-04-01
Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.
Rubbing time and bonding performance of one-step adhesives to primary enamel and dentin.
Botelho, Maria Paula Jacobucci; Isolan, Cristina Pereira; Schwantz, Júlia Kaster; Lopes, Murilo Baena; Moraes, Rafael Ratto de
2017-01-01
This study investigated whether increasing the concentration of acidic monomers in one-step adhesives would allow reducing their application time without interfering with the bonding ability to primary enamel and dentin. Experimental one-step self-etch adhesives were formulated with 5 wt% (AD5), 20 wt% (AD20), or 35 wt% (AD35) acidic monomer. The adhesives were applied using rubbing motion for 5, 10, or 20 s. Bond strengths to primary enamel and dentin were tested under shear stress. A commercial etch-and-rinse adhesive (Single Bond 2; 3M ESPE) served as reference. Scanning electron microscopy was used to observe the morphology of bonded interfaces. Data were analysed at p<0.05. In enamel, AD35 had higher bond strength when rubbed for at least 10 s, while application for 5 s generated lower bond strength. In dentin, increased acidic monomer improved bonding only for 20 s rubbing time. The etch-and-rinse adhesive yielded higher bond strength to enamel and similar bonding to dentin as compared with the self-etch adhesives. The adhesive layer was thicker and more irregular for the etch-and-rinse material, with no appreciable differences among the self-etch systems. Overall, increasing the acidic monomer concentration only led to an increase in bond strength to enamel when the rubbing time was at least 10 s. In dentin, despite the increase in bond strength with longer rubbing times, the results favoured the experimental adhesives compared to the conventional adhesive. Reduced rubbing time of self-etch adhesives should be avoided in the clinical setup.
Assessing degradation of composite resin cements during artificial aging by Martens hardness.
Bürgin, Stefan; Rohr, Nadja; Fischer, Jens
2017-05-19
Aim of the study was to verify the efficiency of Martens hardness measurements in detecting the degradation of composite resin cements during artificial aging. Four cements were used: Variolink II (VL2), RelyX Unicem 2 Automix (RUN), PermaFlo DC (PDC), and DuoCem (DCM). Specimens for Martens hardness measurements were light-cured and stored in water at 37 °C for 1 day to allow complete polymerization (baseline). Subsequently the specimens were artificially aged by water storage at 37 °C or thermal cycling (n = 6). Hardness was measured at baseline as well as after 1, 4, 9 and 16 days of aging. Specimens for indirect tensile strength measurements were produced in a similar manner. Indirect tensile strength was measured at baseline and after 16 days of aging (n = 10). The results were statistically analyzed using one-way ANOVA (α = 0.05). After water storage for 16 days hardness was significantly reduced for VL2, RUN and DCM while hardness of PDC as well as indirect tensile strength of all cements were not significantly affected. Thermal cycling significantly reduced both, hardness and indirect tensile strength for all cements. No general correlation was found between Martens hardness and indirect tensile strength. However, when each material was analyzed separately, relative change of hardness and of indirect tensile strength revealed a strong linear correlation. Martens hardness is a sensible test method to assess aging of resin composite cements during thermal cycling that is easy to perform.
Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo
2013-09-01
To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P < 0.05) than the other groups with or without airborne-particle abrasion. For Type IV substrates, significantly higher bond strengths were obtained in ALP and MLP groups (P < 0.01) compared with the other groups with airborne-particle abrasion. Application of priming agents containing specific phosphoric ester groups significantly enhances the bond strength of a gingiva-colored composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.
Properties of porous magnesium prepared by powder metallurgy.
Čapek, Jaroslav; Vojtěch, Dalibor
2013-01-01
Porous magnesium-based materials are biodegradable and promising for use in orthopaedic applications, but their applications are hampered by their difficult fabrication. This work reports the preparation of porous magnesium materials by a powder metallurgy technique using ammonium bicarbonate as spacer particles. The porosity of the materials depended on the amount of ammonium bicarbonate and was found to have strong negative effects on flexural strength and corrosion behaviour. However, the flexural strength of materials with porosities of up to 28 vol.% was higher than the flexural strength of non-metallic biomaterials and comparable with that of natural bone. Copyright © 2012 Elsevier B.V. All rights reserved.
Nose Fairing Modeling and Simulation to Support Trident II D5 Lifecycle Extension
2013-09-01
Rupture Flexural Modulus Flexural Yield strength Compressive Yield strength Poissons Ratio Machinabi lily Shear strength Impact Work to...Categories: Ceramic; Glass; Glass Fiber , other Engineeting Material; C<>mposite Rbers Material Notes: Used as a reinforcing agent in fiber glass compos~es...MATWEB AMERICAN SITKA SPRUCE WOOD .......................35 APPENDIX B. MATWEB E–GLASS FIBER , GENERIC ......................................37 APPENDIX
Environmental exposure effects on composite materials for commercial aircraft
NASA Technical Reports Server (NTRS)
Hoffman, Daniel J.; Bielawski, William J.
1991-01-01
A study was conducted to determine the effects of long term flight and ground exposure on three commercially available graphite-epoxy material systems: T300/5208, T300/5209, and T300/934. Sets of specimens were exposed on commercial aircraft and ground racks for 1, 2, 3, 5, and 10 years. Inflight specimen sites included both the interior and exterior of aircraft based in Hawaii, Texas, and New Zealand. Ground racks were located at NASA-Dryden and the above mentioned states. Similar specimens were exposed to controlled lab conditions for up to 2 years. After each exposure, specimens were tested for residual strength and a dryout procedure was used to measure moisture content. Both room and high temperature residual strengths were measured and expressed as a pct. of the unexposed strength. Lab exposures included the effects of time alone, moisture, time on moist specimens, weatherometer, and simulated ground-air-ground cycling. Residual strengths of the long term specimens were compared with residual strengths of the lab specimens. Strength retention depended on the exposure condition and the material system. Results showed that composite materials can be successfully used on commercial aircraft if environmental effects are considered.
NASA Astrophysics Data System (ADS)
Tarigan, Johannes; Meka, Randi; Nursyamsi
2018-03-01
Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.
The development of high strength corrosion resistant precipitation hardening cast steels
NASA Astrophysics Data System (ADS)
Abrahams, Rachel A.
Precipitation Hardened Cast Stainless Steels (PHCSS) are a corrosion resistant class of materials which derive their properties from secondary aging after a normalizing heat treatment step. While PHCSS materials are available in austenitic and semi-austenitic forms, the martensitic PHCSS are most widely used due to a combination of high strength, good toughness, and corrosion resistance. If higher strength levels can be achieved in these alloys, these materials can be used as a lower-cost alternative to titanium for high specific strength applications where corrosion resistance is a factor. Although wrought precipitation hardened materials have been in use and specified for more than half a century, the specification and use of PHCSS has only been recent. The effects of composition and processing on performance have received little attention in the cast steel literature. The work presented in these investigations is concerned with the experimental study and modeling of microstructural development in cast martensitic precipitation hardened steels at high strength levels. Particular attention is focused on improving the performance of the high strength CB7Cu alloy by control of detrimental secondary phases, notably delta ferrite and retained austenite, which is detrimental to strength, but potentially beneficial in terms of fracture and impact toughness. The relationship between age processing and mechanical properties is also investigated, and a new age hardening model based on simultaneous precipitation hardening and tempering has been modified for use with these steels. Because the CB7Cu system has limited strength even with improved processing, a higher strength prototype Fe-Ni-Cr-Mo-Ti system has been designed and adapted for use in casting. This prototype is expected to develop high strengths matching or exceed that of cast Ti-6Al-4V alloys. Traditional multicomponent constitution phase diagrams widely used for phase estimation in conventional stainless steels, give poor estimates of secondary phases in PHCSS. No measureable retained austenite was observed in any of the CB7Cu-1 steels studied, in spite of the fact that austenite is predicted by the constitution diagrams. A designed experiment using computationally derived phase equilibrium diagrams and actual experimental tests on CB7Cu of different compositions suggests that the ferrite phase is less stable than the constitution diagrams for austenitic stainless steels suggest. Delta ferrite was also more stable in slower-cooled sand cast material as compared to thin, fast-cooled investment cast material. High temperature solutionizing treatments were effective in dissolving delta ferrite at temperatures above 1900°F (˜1040°C). Delta ferrite dissolution was found to proceed at high rates during initial dissolution, and then was found to slow after 1 hour. Diffusion during the later stages is well-predicted by classical diffusion models. Repeated solution treatments were found to modestly increase both ductility and strength, likely due to subgrain refinement through austenite regrowth. Multistaged aging provided superior strength and toughness increases over similarly peak-aged and near peak-aged material aged at a single temperature. Peak-aged material fractography suggested that low energy quasi-cleavage fracture was likely due to age precipitate embrittlement along with some nucleation of MnS particulates at prior austenite grain boundaries. Yield strengths approaching 190 ksi (1310MPa) can be achieved in CB7Cu-1 if appropriate best-practices "+" processing techniques are used. This includes hot isostatic processing to reduce solidification segregation and heal microporosity, high temperature homogenization for effective age hardening and ferrite reduction, double-cycle solutionizing for structure refinement, and multistaged age strengthening for finer precipitate control. The experimental prototype 11-11PH (Fe-Ni-Cr-Ti-Mo) casting alloys was cast and was found to be delta-ferrite free in the as-cast condition. In this material, proper quench processing to eliminate excessive retained austenite was found to be most influential in terms of high strengths. It was also found that cooling below 0°C provided the best combination of strength and toughness, with the specific strength of the material exceeding that of cast Ti-6Al-4V material. Fractography studies suggest that titanium carbonitride and titanium carbon-nitride-sulfide inclusions limit the toughness of cast materials due to long exposures to ideal growth conditions during initial cooling. OIM studies also suggest that the retained austenite in properly processed 11-11PH alloy takes on an interlath structure, which likely contributes to toughness of the alloy, even at high-strength, peak aged conditions. Yield strengths approaching 235 ksi (1620 MPa) were achieved during initial heat treatment trials. It is expected that further improvements in properties can be achieved with continued improvement of processing for this new cast alloy system.
Application of addition-cured silicone denture relining materials to adjust mouthguards.
Fukasawa, Shintaro; Churei, Hiroshi; Chowdhury, Ruman Uddin; Shirako, Takahiro; Shahrin, Sharika; Shrestha, Abhishekhi; Wada, Takahiro; Uo, Motohiro; Takahashi, Hidekazu; Ueno, Toshiaki
2016-01-01
The purposes of this study were to examine the shock absorption capability of addition-cured silicone denture relining materials and the bonding strength of addition-cured silicone denture relining materials and a commercial mouthguard material to determine its applicability to mouthguard adjustment. Two addition-cured silicone denture relining materials and eleven commercial mouthguard materials were selected as test materials. The impact test was applied by a free-falling steel ball. On the other hand, bonding strength was determined by a delamination test. After prepared surface treatments using acrylic resin on MG sheet surface, 2 types of addition-cured silicone denture relining materials were glued to MG surface. The peak intensity, the time to peak intensity from the onset of the transmitted force and bonding strength were statistically analyzed using ANOVA and Tukey's honest significant difference post hoc test (p<0.05). These results suggest that the silicone denture relining materials could be clinically applicable as a mouthguard adjustment material.
NASA Technical Reports Server (NTRS)
Choi, Sung R.; Salem, Jonathan A.
1998-01-01
The service life of structural ceramic components is often limited by the process of slow crack growth. Therefore, it is important to develop an appropriate testing methodology for accurately determining the slow crack growth design parameters necessary for component life prediction. In addition, an appropriate test methodology can be used to determine the influences of component processing variables and composition on the slow crack growth and strength behavior of newly developed materials, thus allowing the component process to be tailored and optimized to specific needs. At the NASA Lewis Research Center, work to develop a standard test method to determine the slow crack growth parameters of advanced ceramics was initiated by the authors in early 1994 in the C 28 (Advanced Ceramics) committee of the American Society for Testing and Materials (ASTM). After about 2 years of required balloting, the draft written by the authors was approved and established as a new ASTM test standard: ASTM C 1368-97, Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperature. Briefly, the test method uses constant stress-rate testing to determine strengths as a function of stress rate at ambient temperature. Strengths are measured in a routine manner at four or more stress rates by applying constant displacement or loading rates. The slow crack growth parameters required for design are then estimated from a relationship between strength and stress rate. This new standard will be published in the Annual Book of ASTM Standards, Vol. 15.01, in 1998. Currently, a companion draft ASTM standard for determination of the slow crack growth parameters of advanced ceramics at elevated temperatures is being prepared by the authors and will be presented to the committee by the middle of 1998. Consequently, Lewis will maintain an active leadership role in advanced ceramics standardization within ASTM. In addition, the authors have been and are involved with several international standardization organizations including the Versailles Project on Advanced Materials and Standards (VAMAS), the International Energy Agency (IEA), and the International Organization for Standardization (ISO). The associated standardization activities involve fracture toughness, strength, elastic modulus, and the machining of advanced ceramics.
Yang, Se-fei; Wang, You-xu; Guo, Tian-wen; Liu, Hong-chen
2011-11-01
To determine the optimal composition of a self-developing investment material by measuring physical and mechanical properties of mould. L(9) (3(4)) orthogonal design was adopted. One hundred and fifty specimens with the size of 80 mm × 20 mm × 20 mm were prepared to measure the atmospheric temperature bending strength, high temperature bending strength and residual bending strength. Nine specimens with the size of 5 mm diameter 25 mm heigh were prepared to survey the thermal expansion curve from ambient temperature to 1150°C. Strengths were greatly affected by fine powder proportion in refractory and water/powder ratio. When the content of fine powder was 35% and water/powder ratio was 1:7.5, adequate atmospheric temperature strength and high temperature strength could be achieved. Moreover, the residual strength was moderate. The thermal extension curves of specimens in experiment group were almost similar. And the average linear expansion coefficient was (4 ∼ 5) × 10(-6)/°C. The three kinds of bending strength of self-developing investment material are compared with commercialized investment material for titanium casting when water/powder ratio and the content of fine powder are carefully controlled.
NASA Astrophysics Data System (ADS)
Bonicelli, Alessandra; Fuentes, Luis G.; Khalil Dawd Bermejo, Ibrahim
2017-10-01
Pervious concrete pavement is a recognized sustainable solution for urban roads. To enhance mechanical properties of pervious concrete material, in order to allow wider use of this technology, a lot of studies are going on all over the world. The use of a little percentage of fine aggregates is proven to increase the material resistance without an excessive reduction of permeability. This study aimed to evaluate the effect of replacing the fine virgin aggregates with r cycled tire rubber. 14 different mixes were analysed in terms of indirect tensile strength resistance, void content and density. Two different dimensions of crumb rubber were studied, as well as two different dosages, which were applied to different no-fine control mixes. All results were compared with the same control mixes containing natural fine aggregate. The mixes had a fixed granulometric curve but varied in water/cement ratio; this in order to evaluate the effect of recycled rubber depending to w/c ratio of the mix. An image analysis was also conducted to verify the rubber distribution in the mixture and the cracking surfaces. The experimental analysis showed that a correct proportioning of fine sand significantly increased the strength of the material. Moreover, the use of recycled waste tire rubber, gave interesting improvements respect to the no-fine control mixes, even though the developed resistance was lower respect to mixes containing mineral sand. This result was expected because of the cementing property of mineral sand. Although, the important result was that it was possible to use waste tire rubber in pervious concrete, with an appropriate dosage and granular dimension, for increasing the performance of traditional mix design, in order to achieve pavement materials more and more sustainable.
High slot utilization systems for electric machines
Hsu, John S
2009-06-23
Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.
NASA Astrophysics Data System (ADS)
Szabo, Attila
While large structural components can be electron beam (EB) welded, equipment and operating costs increase with the requisite vacuum chamber's size. Attention is presently given to cost-effective ways of EB welding launch-vehicle assemblies without compromise of weld quality in such alloys as 2219, 2090, Weldalite, and HP9-4-30/20. Weld strengths at both room and cryogenic temperatures that were 50 percent higher than those obtainable for such materials with arc welding have been demonstrated. Fracture toughnesses were also 40-50 percent higher than arc-welded values. Attention is given to EB joint fit-up allowables for 2219-T87 Al alloy.
Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang
2017-01-01
Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Connecting Molecular Dynamics Simulations and Fluids Density Functional Theory of Block Copolymers
NASA Astrophysics Data System (ADS)
Hall, Lisa
Increased understanding and precise control over the nanoscale structure and dynamics of microphase separated block copolymers would advance development of mechanically robust but conductive materials for battery electrolytes, among other applications. Both coarse-grained molecular dynamics (MD) simulations and fluids (classical) density functional theory (fDFT) can capture the microphase separation of block copolymers, using similar monomer-based chain models and including local packing effects. Equilibrium free energies of various microphases are readily accessible from fDFT, which allows us to efficiently determine the equilibrium nanostructure over a large parameter space. Meanwhile, MD allows us to visualize specific polymer conformations in 3D over time and to calculate dynamic properties. The fDFT density profiles are used to initialize the MD simulations; this ensures the MD proceeds in the appropriate microphase separated state rather than in a metastable structure (useful especially for nonlamellar structures). The simulations equilibrate more quickly than simulations initialized with a random state, which is significant especially for long chains. We apply these methods to study the interfacial behavior and microphase separated structure of diblock and tapered block copolymers. Tapered copolymers consist of pure A and B monomer blocks on the ends separated by a tapered region that smoothly varies from A to B (or from B to A for an inverse taper). Intuitively, tapering increases the segregation strength required for the material to microphase separate and increases the width of the interfacial region. Increasing normal taper length yields a lower domain spacing and increased polymer mobility, while larger inverse tapers correspond to even lower domain spacing but decreased mobility. Thus the changes in dynamics with tapering cannot be explained by mapping to a diblock system at an adjusted effective segregation strength. This material is based upon work supported by the National Science Foundation under Grant 1454343 and the Department of Energy under Grant DE-SC0014209.